72 research outputs found

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Large Model Visualization : Techniques and Applications

    Get PDF
    The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture.The size of datasets in scientific computing is rapidly increasing. This increase is caused by a boost of processing power in the past years, which in turn was invested in an increase of the accuracy and the size of the models. A similar trend enabled a significant improvement of medical scanners; more than 1000 slices of a resolution of 512x512 can be generated by modern scanners in daily practice. Even in computer-aided engineering typical models eas-ily contain several million polygons. Unfortunately, the data complexity is growing faster than the rendering performance of modern computer systems. This is not only due to the slower growing graphics performance of the graphics subsystems, but in particular because of the significantly slower growing memory bandwidth for the transfer of the geometry and image data from the main memory to the graphics accelerator. Large model visualization addresses this growing divide between data complexity and rendering performance. Most methods focus on the reduction of the geometric or pixel complexity, and hence also the memory bandwidth requirements are reduced. In this dissertation, we discuss new approaches from three different research areas. All approaches target at the reduction of the processing complexity to achieve an interactive visualization of large datasets. In the second part, we introduce applications of the presented ap-proaches. Specifically, we introduce the new VIVENDI system for the interactive virtual endoscopy and other applications from mechanical engineering, scientific computing, and architecture

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Modeling and visualization of medical anesthesiology acts

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformåticaIn recent years, medical visualization has evolved from simple 2D images on a light board to 3D computarized images. This move enabled doctors to find better ways of planning surgery and to diagnose patients. Although there is a great variety of 3D medical imaging software, it falls short when dealing with anesthesiology acts. Very little anaesthesia related work has been done. As a consequence, doctors and medical students have had little support to study the subject of anesthesia in the human body. We all are aware of how costly can be setting medical experiments, covering not just medical aspects but ethical and financial ones as well. With this work we hope to contribute for having better medical visualization tools in the area of anesthesiology. Doctors and in particular medical students should study anesthesiology acts more efficiently. They should be able to identify better locations to administrate the anesthesia, to study how long does it take for the anesthesia to affect patients, to relate the effect on patients with quantity of anaesthesia provided, etc. In this work, we present a medical visualization prototype with three main functionalities: image pre-processing, segmentation and rendering. The image pre-processing is mainly used to remove noise from images, which were obtained via imaging scanners. In the segmentation stage it is possible to identify relevant anatomical structures using proper segmentation algorithms. As a proof of concept, we focus our attention in the lumbosacral region of the human body, with data acquired via MRI scanners. The segmentation we provide relies mostly in two algorithms: region growing and level sets. The outcome of the segmentation implies the creation of a 3D model of the anatomical structure under analysis. As for the rendering, the 3D models are visualized using the marching cubes algorithm. The software we have developed also supports time-dependent data. Hence, we could represent the anesthesia flowing in the human body. Unfortunately, we were not able to obtain such type of data for testing. But we have used human lung data to validate this functionality

    True-color 3D rendering of human anatomy using surface-guided color sampling from cadaver cryosection image data: A practical approach Jon Jatsu Azkue

    Get PDF
    Three-dimensional computer graphics are increasingly used for scientific visualization and for communicating anatomical knowledge and data. This study presents a practical method to produce true-color 3D surface renditions of anatomical structures. The procedure involves extracting the surface geometry of the structure of interest from a stack of cadaver cryosection images, using the extracted surface as a probe to retrieve color information from cryosection data, and mapping sampled colors back onto the surface model to produce a true-color rendition. Organs and body parts can be rendered separately or in combination to create custom anatomical scenes. By editing the surface probe, structures of interest can be rendered as if they had been previously dissected or prepared for anatomical demonstration. The procedure is highly flexible and nondestructive, offering new opportunities to present and communicate anatomical information and knowledge in a visually realistic manner. The technical procedure is described, including freely available open-source software tools involved in the production process, and examples of color surface renderings of anatomical structures are provided

    Real-time Volume Rendering Interaction in Virtual Reality

    Get PDF
    Volume visualization using Direct Volume Rendering (DVR) techniques is used to view information inside 3D volumetric data. Data is classified using a transfer function to emphasize or filter some parts of volumetric information, such as that from Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). In this paper, we introduced an application for real-time volume rendering interaction with 1D transfer functions using Virtual Reality (VR) technology based on the Oculus Rift headset and Oculus Touch controllers. Resulting images were visualized stereoscopically at 60 frames per second using a ray-casting shader, which works based on Graphics Processing Unit (GPU). To evaluate the system, 20 participants interacted with the application to complete three tasks, including a free viewpoint scan, clipping planes renderer, and an editable transfer function in the virtual environment. Then, a survey was carried out using a questionnaire to gather data. Findings showed that the average usability score for the application was 87.54, which suggested that it was highly usable

    Intraoperative Endoscopic Augmented Reality in Third Ventriculostomy

    Get PDF
    In neurosurgery, as a result of the brain-shift, the preoperative patient models used as a intraoperative reference change. A meaningful use of the preoperative virtual models during the operation requires for a model update. The NEAR project, Neuroendoscopy towards Augmented Reality, describes a new camera calibration model for high distorted lenses and introduces the concept of active endoscopes endowed with with navigation, camera calibration, augmented reality and triangulation modules

    Enhanced computer assisted detection of polyps in CT colonography

    Get PDF
    This thesis presents a novel technique for automatically detecting colorectal polyps in computed tomography colonography (CTC). The objective of the documented computer assisted diagnosis (CAD) technique is to deal with the issue of false positive detections without adversely affecting polyp detection sensitivity. The thesis begins with an overview of CTC and a review of the associated research areas, with particular attention given to CAD-CTC. This review identifies excessive false positive detections as a common problem associated with current CAD-CTC techniques. Addressing this problem constitutes the major contribution of this thesis. The documented CAD-CTC technique is trained with, and evaluated using, a series of clinical CTC data sets These data sets contain polyps with a range of different sizes and morphologies. The results presented m this thesis indicate the validity of the developed CAD-CTC technique and demonstrate its effectiveness m accurately detecting colorectal polyps while significantly reducing the number of false positive detections
    • …
    corecore