
Large Model Visualization:
Techniques and Applications

Dissertation

der Fakulẗat für Informatik
der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

vorgelegt von
Dipl.-Inf. Dirk M. Bartz

aus T̈ubingen

Tübingen
2001

Tag der m¨undlichen Qualifikation: 9. Mai 2001
Dekan: Professor Dr. Andreas Zell,

Universität Tübingen
1. Berichterstatter: Professor Dr. Wolfgang Straßer,

Universität Tübingen
2. Berichterstatter: Professor Dr. Amitabh Varshney,

University of Maryland, College Park

Zusammenfassung

Die Größe von Datens¨atzen im Bereich des wissenschaftlichen Rechnens
(Scientific Computing) w¨achst rapide. Dies wurde durch die rasante Stei-
gerung der Verarbeitungsleistung von Computern in den letzten Jahren ver-
ursacht, die in eine erh¨ohte Genauigkeit und Modellgr¨oße investiert wur-
de. Eineähnliche Entwicklung erm¨oglichte eine betr¨achtliche Leistungs-
steigerung von modernen Schichtbildtomographen in der Medizin. Mehr
als 1000 Schichtbilder mit einer jeweiligen Aufl¨osung von512� 512 Pixel
können mittlerweile in der t¨aglichen Routine erzeugt werden. Auch Mo-
delle aus dem Computer-aided Engineering bestehen inzwischen aus vielen
Millionen von Polygonen. Leider w¨achst diese Datenkomplexit¨at deutlich
schneller, als die graphische Darstellungsleistung auf modernen Computer-
systemen. Dies wird nicht nur durch langsamere Leistungssteigerungen der
Graphiksubsysteme verursacht, sondern vor allem auch durch die deutlich
geringeren Zuw¨achse der Speicherzugriffsbandbreite bei derÜbertragung
der Geometrie- und Bilddaten vom Hauptspeicher auf die Graphikhardwa-
re.

Methoden derLarge Model Visualizationzielen auf eine Verkleinerung
dieser wachsenden Kluft zwischen Datenkomplexit¨at und Darstellungslei-
stung. Bei den meisten Methoden soll dies durch eine Verringerung der
Geometrie- und Pixelkomplexit¨at um mehrere Gr¨oßenordnungen erreicht
werden, die damit auch die Anforderungen an die Speicherzugriffsband-
breite entsprechend reduziert.

In dieser Dissertation werden neue Ans¨atze aus drei verschiedenen Be-
reichen diskutiert, die auf eine Verkleinerung der Verarbeitungskomplexit¨at
zielen. Die dadurch erreichten Verbesserungen erm¨oglichen somit eine in-
teraktive Darstellung großer Datens¨atze.

Im ersten vorgestellten Ansatz, dem Volumerendering, werden Daten als
diskrete Abtastwerte auf einem Gitter repr¨asentiert. Dadurch k¨onnen die
erforderlichen Speicher- und Leistungsgr¨oßen sogar unter die der polygo-
nalen Darstellung sinken. Leider mangelt es in der Literatur an geeigneten
Bewertungen der verschiedenen Verfahren. Deshalb werden in dieser Arbeit
zum ersten maldie wichtigsten Algorithmen des direkten und indirekten Vo-
lumerendering gegen¨ubergestellt und bewertet. Die Bewertung wird insbe-
sondere in Bezug auf die visuelle Qualit¨at und den Ressourcenverbrauch als
die wichtigsten Entscheidungsparameter durchgef¨uhrt.

ii

Rekursive Baumstrukturen (Octrees, BSP-trees, k-d-Trees) geh¨oren zu
den beliebtesten Datenstrukturen der Computer Graphik um eine hierarchi-
sche Datenrepr¨asentation zu erzeugen. Leider ist dieser Schritt sehr aufwen-
dig, so daß ¨anderungen im Datensatz einen hohen rechnerischen Aufwand
nach sich ziehen. In dieser Arbeit stellen wir ein neues Verfahren vor, das
diese Datenstrukturen parallel auf- oder umbauen kann und so den zeitli-
chen Aufwand proportional zur Anzahl der verf¨ugbaren CPUs reduziert.

Bei der computer-graphischen Darstellung große Datens¨atze stellt vor
allem der sogenannte Speicherflaschenhals ein großes Hindernis dar. Die-
ser Engpaß versch¨arft sich durch sogenanntereichhaltige Pixel(“richer Pi-
xels”), die die Anforderungen an die Speicherzugriffsbandbreiten deutlich
erhöhen. Wir stellen hier neue Methoden aus der Verdeckungsrechnung vor,
die neben der Geometrie auch die Pixelkomplexit¨at deutlich verkleinern und
so Bandbreitenkapazit¨aten freigeben.

Im zweiten Teil dieser Dissertation werden Anwendungen der hier pr¨asen-
tierten Ansätze vorgestellt. Speziell pr¨asentieren wir das neue VIVENDI-
System für die interaktive virtuelle Endoskopie und andere Anwendungen
aus den Bereichen Maschinenbau, wissenschaftliches Rechnen und Archi-
tektur.

Abstract

The size of datasets in scientific computing is rapidly increasing. This in-
crease is caused by a boost of processing power in the past years, which in
turn was invested in an increase of the accuracy and the size of the mod-
els. A similar trend enabled a significant improvement of medical scan-
ners; more than 1000 slices of a resolution of512 � 512 can be generated
by modern scanners in daily practice. Even in computer-aided engineering
typical models easily contain several million polygons. Unfortunately, the
data complexity is growing faster than the rendering performance of modern
computer systems. This is not only due to the slower growing graphics per-
formance of the graphics subsystems, but in particular because of the signif-
icantly slower growing memory bandwidth for the transfer of the geometry
and image data from the main memory to the graphics accelerator.

Large model visualizationaddresses this growing divide between data
complexity and rendering performance. Most methods focus on the reduc-
tion of the geometric or pixel complexity, and hence also the memory band-
width requirements are reduced.

In this dissertation, we discuss new approaches from three different re-
search areas. All approaches target at the reduction of the processing com-
plexity to achieve an interactive visualization of large datasets.

As the first approach, we discuss volume rendering, which represents
data as a set of discrete samples arranged on a 3D grid. The required mem-
ory and rendering costs of a volumetric approach can be significantly lower
than for standard polygonal rendering. Unfortunately, the literature lacks
a sufficient evaluation of the various volume rendering algorithms. There-
fore, we assess the most important algorithms of direct and indirect volume
rendering for the first time. In particular, we examine visual quality and
resource consumption.

Recursive tree structures (octrees, BSP-trees, k-d-trees) are among the
most popular data-structures in computer graphics for the construction of
a hierarchical data representation. Unfortunately, this is an expensive op-
eration which requires high computational costs. In this dissertation, we
present a new approach for the parallel construction of these data-structures.
Using this approach, the required computation time can be reduced by the
numbers of available CPUs.

One of the major barriers for the visualization of large datasets is the

iv

memory bottleneck. This barrier aggravates withricher pixelswhich even
significantly increase the requirements for the memory access bandwidth.
Therefore, we introduce new culling methods which significantly reduce
the geometric and the pixel complexity, such releasing bandwidth capacity.

In the second part of this dissertation, we introduce applications of the
presented approaches. Specifically, we introduce the new VIVENDI system
for the interactive virtual endoscopy and other applications from mechanical
engineering, scientific computing, and architecture.

Acknowledgements

The work described in this dissertation would not have been possible with-
out the advise, support and encouragement of many people. First of all, I
would like to thank my advisor Wolfgang Straßer for the tremendous degree
of freedom I received to work on different topics, advise, and the support
to cooperate with numerous academic and industrial partners. I also would
like to thank Amitabh Varshney who agreed to be part of my graduation
committee, and for support and advise. A large share of successful research
is due to a pleasant and fruitful environment. I found this environment in my
friends and colleagues at the WSI/GRIS, namely Edelhard Becker, Michael
Doggett, Olaf Etzmuß, Thomas Grunert, Johannes Hirche, Tobias H¨uttner,
Rainer Jäger, Urs Kanus, Michael Keckeisen, Stefan Kimmerle, Anders Ku-
gler, Michael Meißner, Gregor Wetekam, as well as our secretary Adelheid
Ebert and our system administrators Helga Mayer and J¨urgen Fechter for
providing support, not only in a technical sense. To a large share, my work
was also supported and shared by friends and colleagues working at the Uni-
versity Hospital at T¨ubingen. Special thanks to Andreas and Christine Bode,
Dirk Freudenstein,̈Ozlem Gürvit, Jürgen Hoffmann, Rupert Kolb, Barbara
Kortmann, Martin Skalej, Marion Strayle-Batra, Mechthild Uesbeck, and
Dorothea Welte.

To a large extend, the work at an University is only possible with stu-
dents. Eduard Hiti, Michael Guthe, Frank Knoll, Eugen Resch, and Dirk
Staneker among others worked with me on several thesis and student projects.
Advising and working with them was never only an one-way street.

Furthermore, I would like to thank all industrial cooperation partners, my
academic research partners, for support, advise, and helpful discussions;
Jian Huang and Roger Crawfis (Ohio State), Stephan Braun (MPI for Bi-
ological Cybernetics, T¨ubingen), Joachim Hornegger and Stefan Schaller
(Siemens Medical Systems), James Klosowski (IBM Watson), Klaus M¨uller
(SUNY Stony Brook), Dan Olsen (EAI), Bengt-Olaf Schneider (NVIDIA),
Claudio Silva (AT&T Labs), Alan Ward (HP Workstations Systems Lab),
Mike Goss, and Craig Wittenbrink (HP Labs), Montserrat Boo Cepeda of
the University of Santiago de Compostela, Margarita Amor Lopez of the
University of Da Coru˜na. The various datasets used in this dissertation are
courtesy of EAI, Hewlett-Packard, IBM T. J. Watson Research, Philips Re-
search Labs, Siemens Medical Systems, and of the Clinic of Radiology of
the University Hospital at T¨ubingen.

vi

Work and life is only enjoyable with friends. Several accompanied me
along my way. Thanks for celebrating the good times and for comfort in
the bad times: Andreas Loos, Corina Sandersfeld, and Marco Zierl. In
particular I would like to thank Martina Lanzend¨orfer for patience and love.

These acknowledgements would not be complete without thanking Elis-
abeth Bartz. Since my birth, I received invaluable support, advise, and love
from her. Many of my dreams would not have come true without her. Thank
you very much.

CONTENTS vii

Contents

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Large Model Visualization 1
1.2 Volumetric Data Representation 4

1.2.1 Volume Data . 4
1.2.2 Voxel-based Shading 5
1.2.3 Indirect Volume Rendering 6
1.2.4 Direct Volume Rendering 7

1.3 Parallel Processing . 13
1.3.1 Symmetric Multiprocessing Systems 14
1.3.2 Cluster-based Systems 15
1.3.3 Threading versus Message Passing 15

1.4 Virtual Medicine . 16
1.5 Outline 18

I Visualization Techniques for Large Models 19

2 Assessment of Volume Rendering Algorithms 21
2.1 Introduction 21
2.2 Voxels versus Polygons – A Practical Comparison 22

2.2.1 Visual Quality 24
2.2.2 Resource Consumption 26

2.3 Comparing Direct Volume Rendering Approaches 31
2.3.1 Assessment of Image Quality 32
2.3.2 Experiments . 33
2.3.3 Visual Quality 34
2.3.4 Time Consumption 34

2.4 Summary . 40

viii CONTENTS

3 Parallel Construction of Scene Hierarchies 41
3.1 Introduction 42
3.2 Parallel Octree Construction and

Isosurface Extraction 43
3.3 Optimizing Memory Synchronization 46

3.3.1 Standard Memory Allocation 49
3.3.2 Process Global Pre-allocation 49
3.3.3 Thread Local Pre-allocation 50

3.4 Summary . 51

4 Visibility and Occlusion Culling 53
4.1 Introduction 53
4.2 Hierarchical Occlusion Culling 56
4.3 View-Frustum Culling 58
4.4 A Virtual Occlusion Buffer Approach 59

4.4.1 The Virtual Occlusion Buffer 59
4.4.2 Analysis . 61
4.4.3 Quantitative Occlusion Culling 63

4.5 Efficient Scene Traversal 65
4.6 Hierarchical Model Organization. 66

4.6.1 Polygon-based Hierarchical Bounding
Volume Optimization (p-HBVO) 67

4.6.2 Octree-based Regular Space Decomposition (ORSD) 68
4.6.3 SGI’s OpenGL Optimizer (OPT) 69
4.6.4 Evaluating the Model Organization Quality 70
4.6.5 Summary . 73

4.7 Efficient Bounding Volumes 74
4.7.1 Discrete Orientation Polytopes (k-dops) 74
4.7.2 k-dops for Occlusion Culling 76
4.7.3 Summary . 82

4.8 Hardware Support for Occlusion Culling 83
4.8.1 Hardware Support for Quantitative Occlusion Queries 83
4.8.2 Visibility Driven Rasterization 85

4.9 Summary . 88

II Applications of Large Model Visualization 91

5 Applications in Virtual Medicine: Virtual Endoscopy 93
5.1 Introduction 93
5.2 Related Work . 94
5.3 VIVENDI System .. 95

5.3.1 System Architecture 96
5.3.2 Visibility Culling 99
5.3.3 Multiple Camera Settings 101
5.3.4 Guided Navigation 102

CONTENTS ix

5.4 Discussion of Virtual Endoscopy. 102

6 Other Applications 107
6.1 Mechanical Engineering 107
6.2 Scientific Visualization . 108
6.3 Architectural Walkthroughs 109

7 Conclusions 111
7.1 Future Directions . 112

III Appendix 115

A Volume Data Acquisition Techniques 117
A.1 X-Ray . 117
A.2 Computed Tomography . 118
A.3 Rotational Biplane X-Ray 120
A.4 Magnetic Resonance Imaging 120

B Virtual Endoscopy Applications of VIVENDI 123
B.1 Virtual Colonoscopy 123

B.1.1 Motivation . 124
B.1.2 Optical and Virtual Endoscopy 125

B.2 Virtual Ventriculoscopy . 127
B.2.1 Motivation . 127
B.2.2 Virtual Endoscopy of the Ventricular System. . . . 128

B.3 Multi-modal Visualization for Neuroendoscopic
Interventions . 130
B.3.1 Matching Different Data Modalities 131

B.4 Virtual Angioscopy . 133
B.4.1 Angioscopy of Cerebral Blood Vessels. 136
B.4.2 Angioscopy of Coronary Blood Vessels 139

Bibliography 143

x CONTENTS

LIST OF FIGURES xi

List of Figures

1.1 Volume cell in a rectilinear grid 4
1.2 Reduced Marching Cubes case table 6
1.3 (Post-shading) Direct Volume Rendering Pipeline 7
1.4 Color bleeding artifacts in a rotational angiography dataset . 9
1.5 Ray Casting . 10
1.6 Shear-warp Factorization 10
1.7 Splatting 11
1.8 3D Texture Mapping-based Volume Rendering 12

2.1 Reconstructions from object to image 22
2.2 Volumetric display of CT lobster and MRI head 24
2.3 Surface display of CT lobster and MRI head 26
2.4 Frame time versus magnification 36
2.5 Frame time versus viewport size 37
2.6 Dataset Overview I . 38
2.7 Dataset Overview II . 39

3.1 Octree of a volume dataset 42
3.2 Flow of control of recursive tree construction. 44
3.3 Tree level mutexes . 44
3.4 Flow of control of the asynchronous push-up. 45
3.5 Octree construction of dataset A using standard memory al-

location . 47
3.6 Octree construction of dataset B using standard memory al-

location . 48
3.7 Octree construction of dataset A using process global mem-

ory pre-allocation .. 49
3.8 Octree construction of dataset B using process global mem-

ory pre-allocation .. 50
3.9 Octree construction of dataset A using thread local memory

pre-allocation 51
3.10 Octree construction of dataset B using thread local memory

pre-allocation 52

4.1 Hierarchical occlusion culling 58
4.2 View-frustum culling 59
4.3 Double interleaved sampling scheme 60

xii LIST OF FIGURES

4.4 Model overview for virtual occlusion buffer 61
4.5 Stencil buffer bandwidth 62
4.6 Quantitative occlusion culling: Alley of trees. 64
4.7 Bounding box hierarchies 71
4.8 Performance of hierarchical cathdral models 71
4.9 Performance of hierarchical ventricular system models . . . 72
4.10 Performance of hierarchical city models 73
4.11 Bounding volumes. 75
4.12 Rendering rate of engine dataset 77
4.13 Engine model . 78
4.14 Screw driver model . 79
4.15 Rendering rates of screw driver and racing car datasets . . . 80
4.16 Racing car model . 80
4.17 Building from city model 81
4.18 Rendering rates of city and angiography datasets 81
4.19 Graphics Pipeline with Occlusion Culling 83
4.20 Projection hit and non-occlusion hit counters. 84
4.21 Quadtree of occlusion tiles 85
4.22 Graphics Pipeline for Visibility Driven Rasterization. . . . 86
4.23 Four wheel hubs of a cotton picker model in aVisibility Mask 87
4.24 Tile groups 88
4.25 Occlusion Culling Pipeline: Preprocessing Step 88
4.26 Occlusion Culling Pipeline: Interactive Culling Step 89

5.1 VIVENDI pre-process flow 96
5.2 Distance fields of a segment of a blood vessel 97
5.3 VIVENDI control flow . 98
5.4 VIVENDI user-interface 100
5.5 Snapshot from the Scout Panel 102
5.6 Segmentation error: Holes of different sizes in the ventricu-

lar septum . 103

6.1 MCAD models . 108
6.2 Models from scientific visualization 109
6.3 Architectural models . 110

B.1 Octree-based decomposition of colon dataset. 123
B.2 An 8mm polyp in the descending colon 124
B.3 An 4mm polyp in the transverse colon 126
B.4 Ventricular system of the human head 127
B.5 Virtual Ventriculoscopy . 129
B.6 Manually matched views from optical and virtual ventricu-

loscopy . 130
B.7 CT versus MRI . 131
B.8 Cyst and internal carotid artery 132
B.9 Temporal arachnoid cyst dataset. 134
B.10 Ventriculostomy dataset: Lateral ventricles 134

LIST OF FIGURES xiii

B.11 Ventriculostomy dataset: Third ventricle 134
B.12 Cerebral aneurysms. 136
B.13 Fusiform aneurysm of the middle cerebral artery 137
B.14 Anterior cerebral aneurysm 138
B.15 Contrast media filled cavities of the heart 140
B.16 Virtual endoscopy of the heart 141

xiv LIST OF FIGURES

LIST OF TABLES xv

List of Tables

2.1 Benchmark datasets for direct vs. indirect volume rendering 23
2.2 Overview of dataset material properties 23
2.3 Resource consumption of ray casting 27
2.4 Resource consumption of Marching Cubes 28
2.5 Operations of ray casting and Marching Cubes. 29
2.6 Benchmark datasets for direct volume rendering comparison 32
2.7 Average time consumption of direct volume rendering ap-

proaches . 35

3.1 Recursive tree construction dataset overview 46

4.1 Code example of using the HP flag 57
4.2 Performance of virtual occlusion buffer culling 62
4.3 Models for hierarchical model organization evaluation . . . 70
4.4 Models for the evaluation of bounding volumes 76

5.1 Virtual endoscopy: Average performance of view-frustum
and occlusion culling 101

xvi LIST OF TABLES

1

Chapter 1

Introduction

The visual representation of complex data has always been a major moti-
vation for computer graphics. However, there have always been computer
graphics scenes which were too complex to be rendered within a reasonable
time limit, or even too complex to be rendered at all with the available re-
sources. Nevertheless, computer graphics has become one of the primary
tools used for the interpretation of data from engineering or science. By
the end of the eighties, the application of computer graphics methods for
the visual interpretation of scientific data became a research field on its own
and was calledScientific Visualization. By now, it is almost unthinkable to
understand data, which is generated by simulations or is measured, without
any graphics or visualization technology. The technology used ranges from
simple plot drawings, via direct volume rendering techniques to provide
semi-transparent view through a dataset, to illuminated streamlines, and
line integral convolutions to visualize the flow of particles through multi-
dimensional and multi-variate data.

1.1 Large Model Visualization

In recent years, large model visualization or Large Scale Data Visualization
(LSDV) became one of the most important research fields in scientific com-
puting. The reason of the emergence of LSDV lies in the fast increasing
size of datasets from various sources. In the United States, research efforts
are mostly driven by the Accelerated Strategic Computing Initiative (ASCI)
of the US Department of Energy (DOE), focusing on nuclear weapon re-
search, and the Large Scientific and Software Data Set Visualization pro-
gram (LSSDSV) of the US National Science Foundation (NSF), motivated
by simulation of natural phenomena (i.e., global and regional weather, ocean
dynamics, high energy and astro-physics, etc.). Besides these initiatives, the
increasing dataset size of medical scanners (i.e., multi-slice Computer To-
mography, rotational biplanar X-ray) and design review tasks in product
data management systems (PDM) drive the need for techniques for large
datasets:

2 Introduction

� The generated data volumes of simulations from scientific computing
can easily grow into the range of tera-bytes.

� The size of scientific measured data frequently exceeds tera-bytes of
storage space, not only in academic experiments, but also in commer-
cially driven scientific tasks like in flow experiments in the aircraft and
automotive industry, or the oil-and-gas exploration.

� Design review tasks in computer-aided engineering (CAE) have to deal
with tessellated, polygonal models of up to 100 million polygons.

� Medical scanners routinely generate data volumes with a resolution
of 5123 voxels (see Appendix A) – some scanners like multi-slice CT
even generate more than 1000 image slices in one scan; modern high
field MRI scanners can go up to a slice resolution of20482 voxels.

Techniques for the handling of large datasets include database manage-
ment, architectural aspects of large computing systems, parallel computing,
and last but not least, rendering techniques for the visualization of large
datasets. Here, we focus on techniques for the advanced visualization of
large datasets.

Overview

Two issues are usually the major subject of large data handling; memory
efficiency and rendering performance. However, many standard visualiza-
tion techniques require substantial auxiliary data like spatial data-structures
or distance fields which are usually computed in a pre-process. Storing this
data can exceed the memory capacities of the visualization host computer,
prompting the use of different visualization algorithms. Some visualization
applications, i.e. design review tasks or intra-operative navigation-based vi-
sualization, require a certain rendering performance to provideinteractive
or evenreal-time frame-rates, where an interactive frame-rate usually speci-
fies more than five frames-per-second (fps), and a real-time frame-rate more
than 20 fps. Currently available top-of-the-line computer graphics acceler-
ators achieve a sustained performance of several million triangles per sec-
ond, which is only satisfactory for the interactive rendering of medium sized
models. Unfortunately, the data volume generated by applications in archi-
tecture, medicine, mechanical engineering, or scientific computing grows
faster than the rapidly increasing graphics performance of modern graph-
ics subsystems. This growing divide requires approaches which reduce the
complexity by an order of magnitude.

Several methods have been proposed in the recent years to address this
divide. Many of these methods have a hierarchical scene representation in
common which usually provides different levels-of-detail. However, this hi-
erarchy has to be constructed, an operation which is potentially very expen-
sive, and imposes additional space requirements on the actual application.

1.1 Large Model Visualization 3

Probably the best known class of methods are mesh-reduction approaches,
which reduce the rendering complexity of the given geometry data depend-
ing on the required rendering performance or quality. A recent survey on
mesh-reduction approaches can be found in [79]. In contrast, subdivision
progressively refines a coarse polygonal base mesh until a specifiable error
threshold is satisfied [244]. If only a limited transfer bandwidth is avail-
able, geometry compression methods can be applied to reduce the storage
size of a model [203, 204]. Parallel processing of a given problem reduces
the per-pipeline rendering complexity by increasing the number of process-
ing pipelines with the number of CPUs. However, potential bottlenecks,
required data replication, or synchronization overheads prevent many ap-
plications from achieving an optimal speed-up. While parallel rendering
concentrated on large SIMD supercomputers in the past, it experienced a
renaissance on modern symmetric multi-processing (SMP) systems, large
non-uniform memory access (NUMA) computers, or on clusters of single
PC-class or RISC-based workstations [23]. In particular the ASCI and LSS-
DSV programs drive the development of methods for large NUMA- and
cluster-based systems.

All the approaches so far address the lack of rendering performance by
reducing the polygonal complexity of objects, or by distributing the ren-
dering load to several processing entities. However, the overall rendering
complexity of individual pixels remains the same. In contrast, visibility
and occlusion culling approaches reduce that pixel complexity by removing
geometry which is not visible from a specific view-point. In depth-complex
scenes – where many polygons are rasterized at the same pixels of the frame-
buffer, due to the same location in image-space – visibility and occlusion
culling enables a reduction of the polygonal complexity of up 90% [22, 25].
If interactive rendering needs to be guaranteed, a budget-oriented rendering
system can be applied, which may skip rendering of parts of the models if
the budget is not sufficient for the entire model [101, 22, 127].

A technique especially suitable for architectural walkthroughs is image-
based rendering [53], where distant parts of the geometric model are ap-
proximated by an image (i.e., a texture), since their visual appearance is not
changing much [4]. This method also reduces the per-pixel-complexity of
a rendered frame. A somewhat related approach is point rendering which
computes the required object-space geometry based on a sampling of the
image-space [167, 176, 222]. Therefore, the complexity of the rendering is
determined by the image-space complexity, not by the geometric complex-
ity of the model. A similar approach was already proposed by Cline et al.
in 1988 [42], which used attributed points instead of triangles to render vol-
ume datasets from medical scanners. In contrast to the recent methods, the
point rendering complexity was determined in object-space.

Volume rendering approaches the problem from a different side. The
model is no longer represented as a set of polygons, but as a discrete, vol-
umetric set of samples. Depending on the requested modeling details, the
space requirements can be substantially smaller than with a polygonal rep-

4 Introduction

resentation [19]. Methods of virtual environments provide different inter-
action methods for the user of large data. In contrast to traditional rotating,
translating, and zooming, the user can interact with the models in a more
intuitive way.

In the following sections, we introduce the background for several ap-
proaches for an effective handling of large models. Specifically, we look
into volume rendering in Section 1.2 and parallel processing 1.3. Based on
this approaches, we later present our new results in the Chapters 2, 3, and 4.

1.2 Volumetric Data Representation

Traditionally, computer graphics represented a model as a set of vectors
which were displayed on vector graphic displays [65]. With the introduction
of raster displays, polygons became the basic rendering primitive, where
the polygons of a model were rasterized into pixels, which represent the
compounds of the framebuffer. The concept of an image composed of two-
dimensional discrete pixels was later extended into a volume, composed of
discrete voxels, arranged in a three-dimensional array. The representation
of model data as a volume is particularly useful for scientific visualization,
since the data is usually computed by a simulation on a multi-dimensional
grid with three or more dimensions, or measured by a volumetric scanner
like a CT scanner.

In the following sections, we will briefly introduce into the concepts of
volume datasets (Section 1.2.1) and volume rendering. Specifically, we de-
scribe the two primary approaches to generate a visual representation of
the volume dataset; indirect (Section 1.2.3) and direct volume rendering
(Section 1.2.4). Both approaches use voxel-based shading, which will be
reviewed in Section 1.2.2.

1.2.1 Volume Data

Vi+1,j,k+1

Vi+ 1,j+1,k+1Vi,j +1,k+1

Vi,j,k+1

Vi,j,k Vi+1,j,k

Vi+1,j+1,kVi,j+1,k

Figure 1.1: Volume cell in a rectilinear grid

1.2 Volumetric Data Representation 5

A volumetric dataset is a three-dimensional array of data values, the vox-
els. We address these voxels with three indicesi; j; k, indicating the position
of a voxel within the volume dataset. If we assume an array of 512 data val-
ues in each dimension, each index runs fromi; j; k = 0::511, forming a
512 � 512 � 512 volume dataset. The three-dimensional array can also be
seen as a stack of two-dimensional arrays of data values and each of these
two-dimensional arrays as an image (or slice), where each of the data values
represents a pixel. This alternative view is motivated by the slice oriented,
traditional way physicians look at a volumetric dataset (see also Chapter 5).

Eight neighboring voxels (Vi;j;k, Vi+1;j;k, Vi;j+1;k, Vi+1;j+1;k, Vi;j;k+1,
Vi+1;j;k+1, Vi;j+1;k+1, Vi+1;j+1;k+1) form a volume cell, or simply cell1 (see
Fig. 1.1). Thepixel distancebetween the voxels within one slice or image is
usually equal. However, theslice distancebetween two neighboring voxels
in two neighboring slices is frequently not equal to the pixel distance. We
call these datasetsanisotropicvolume datasets. If slice and pixel distance
are equal, we speak of anisotropicvolume dataset. The distances are also
calledvoxel spacing. In most datasets, all voxels are aligned on acartesian
grid, according to voxel spacing. Therefore, we speak of a cartesian or
rectilinear grid dataset. If the voxel spacing is constant, the grid is also
called anuniform grid, or a non-uniform gridvice-versa. Some scanners
(i.e., 3D ultrasound) produce volume datasets which are not aligned on a
cartesian grid, but on a grid which is bent. In other words, the grid geometry
has changed, but the grid topology (connectivity) has remained the same.
These grids are calledcurvilinear grids. Together with cartesian grids, they
are classified asregular grids. If also the topology is no longer of a cube-
like (possibly bent) cell, the resulting grids are classified asirregular or
structured grids. If the grid topology is using various cell types of different
connectivity, we speak of anunstructured grid. In the course of this thesis,
we will only encounter regular, cartesian gridded volume datasets.

1.2.2 Voxel-based Shading

The shading of an object has a significant influence on the appearance of
the object, since it simulates the interaction of light and the material prop-
erties of the object. Besides material and light, the shading is determined
by the normals of the object, which define its surface. In traditional com-
puter graphics, these normals are defined at the vertices of a triangle and
they are interpolated over the area of the triangle to compute the shading of
the triangle.

In contrast, the normals of a volumetric representation are defined at the
positions of the data values. Due to the lack of a specific surface in a vol-
ume dataset, the normals are approximated by gradient operators, which de-
scribe changes in the material properties of a volume dataset. This method

1An alternative, somewhat outdated terminology describes a voxel as a cubic cell around a data value which
extents half way to the next neighboring voxels. The basic difference is the notion of interpolation between the
data values, which is nearest-neighbor (non-continuous) for the older scheme, and trilinear (continuous, orC0)
for the current scheme.

6 Introduction

was originally motivated by thepartial volume effect(see Appendix A),
which generates smooth density changes between two different materials
(i.e., bone and tissue) in CT datasets [105], thus the density gradient rep-
resents the surface of the material interface between bone and tissue. The
partial volume effect also affects other image modalities, such as MRI, or
rotational angiography (see Appendix A).

The currently used standard gradient operator – which we also use later
on – computes the central difference between the six direct neighbors of a
voxel [105], without taking into account the value of the voxel itself. Other
gradient operators include the intermediate difference operator (sometimes
also called forward or backward difference operator) – which consider the
voxel values at the current position and at three neighboring voxels [140]
– and the Sorbel operator, which considers the full 26-neighborhood of a
voxel to approximate the gradient [140].

Once the normals at the voxel positions are computed by the (normal-
ized) gradient operators, the normals at the sample points within a volume
cell are usually computed by trilinear interpolation of the normals at the
eight voxels of this cell.

1.2.3 Indirect Volume Rendering

Figure 1.2: Reduced Marching Cubes case table [119]

1.2 Volumetric Data Representation 7

In indirect volume rendering (IVR), a “traditional” computer graphics
representation is generated, usually by extracting an isosurface or an iso-
contour from the dataset. The respective graphics primitives (i.e., polygons)
are then rendered using standard computer graphics hardware. The most
popular approach of IVR is probably the Marching Cubes algorithm [142],
where each volume cell of eight neighboring voxels is classified according
to the specified isovalue (which specifies the isosurface).28 possible combi-
nations whether the scalar value of a voxel of the cell is above or below (or
equal to) the isovalue are stored in a table of 256 cases. In the original paper
on Marching Cubes, these 256 cases were reduced to 15 cases by inverting
or rotating the classification cubes (see Fig. 1.2). However, later research
showed that these reduced case table generates inconsistencies, which re-
sult in holes in the isosurface [119]. Therefore, we only use a full 256 case
table, similar to many other state-of-the-art implementations of the March-
ing Cubes algorithms [182].

Up to five triangles per cell are generated depending on the classification
case. To approximate the normals at the vertices of the generated triangles,
each normal is computed by a trilinear interpolation of the normals at the
eight voxels of the current cell, which in turn are computed by a central
difference operator (see Section 1.2.2) [105].

Several approaches addressed improvement of the basic Marching Cubes
algorithm. Most of them focused on skipping of regions which do not con-
tain the isosurface, by applying hierarchical data-structures, like quadtrees
and octrees [180], k-D-trees [33], and BSP-trees [76]. Wilhelms and van
Gelder introduced the Branch-ON-demand-Octree (BONO) [231], which
stores the isovalue interval of the octants to skip octants whose isosurface
interval does not contain the specified isovalue.

Many other approaches are known for the efficient isosurface or contour
extraction of large volumetric scalar fields. Value partitioning methods [141,
192, 40] store the minimum and maximum values of the voxels of a cell as a
pair in a 2D field. Livnat et al. used a k-D-tree structure [141], and Shen et
al. [192] used lattice subdivision to subdivide this field. Cignoni et al. used
an interval tree as search index for optimal efficiency [40]. Space and value
partitioning methods are used for an efficient contour propagation, starting
from a small set of seed cells [116, 8].

1.2.4 Direct Volume Rendering

CompositingClassification
and shadingSampling

Figure 1.3: (Post-shading) Direct Volume Rendering Pipeline

In contrast to IVR, methods of direct volume rendering (DVR) are gener-

8 Introduction

ating images without an intermediate polygonal representation. Instead, the
volume dataset is projected onto an image- or view-plane. Figure 1.3 shows
an overview of the direct volume rendering pipeline using a post-shading
scheme. After computing a sample according to the chosen algorithms, it
is classifiedby the transfer functions and shaded according to the specified
lights. Finally, the lit sample iscompositedwith the previous samples using
the over-operator [170].

The transfer functions define the contribution of the samples by mapping
their value(s) to a red, green, blue, and� (transparency) value. By evalu-
ating the volume rendering integral (see Equation 1.1), the contribution of
the volume data (through the transfer functions) lit by the possibly multiple
light sources is computed for each pixel on the image- or view-plane, where
I� is the color intensity of the pixel at~x, which receives a contribution of
a ray of the lengthL – casted from~x in direction~r – and� corresponds to
the wavelength of a color (r; g; b). C�(s) is the actual color of the sample
at position s on the ray, with an extinction coefficient�(s) at the sample,
which is basically the opacity of the sample. The opacity-weight color is at-
tenuated by the exponential opacity term, which collects the opacity of the
ray through the volume (from entry point0 to current samples).

I�(~x;~r) =

LZ

0

C�(s)�(s)e
(�

sR

0

�(t)dt)
ds (1.1)

Unfortunately, the analytical volume rendering integral cannot be computed
for the general case [147], hence a discrete approximation is used, where
�s is the width of the discretized integration interval:

I�(~x;~r) =

L=�sX
i=0

C�(si)�(si)
i�1Y
j=0

e(��(sj)�s) (1.2)

The theoretical basis of the volume rendering integral is thedensity emit-
ter modelintroduced by Sabella [177], which assumes a simplified model
of the transport theory of light [97]. This simplified models takes only ab-
sorption and emission into account; physical terms like scattering, influence
of the different wavelengths (red, green, and blue), or the influence of par-
ticipating media are ignored.

Generally, DVR-algorithms are classified into front- and back-projection
approaches. While front-projection approaches project the contributions of
a dataset onto the view-plane, back-projection approaches trace the contri-
bution for each pixel of the view-plane through the volume. Prominent can-
didates for front-projection are splatting [229, 230, 161], texture-mapping
[50, 35], or cell projection [233]. For back-projection, the most prominent
candidate is ray-casting [210, 138].

Another important algorithmic classification is the shading scheme, which
basically depends on when and how the normals at the sample points are
calculated. Most approaches use the normalized gradient of the sample,

1.2 Volumetric Data Representation 9

based on central differences, to compute the normal at the sample [105]
(also see previous section on voxel-based shading). However, this gradi-
ent can be computed before (pre-shading), or after the sample is computed
(post-shading), as described above. Pre-shading pre-computes the normal
gradients – and hence the illumination and shading – for all voxel values
of the volume. The resulting colors and opacities are stored as a color vol-
ume instead of the original data. During the actual rendering process, the
samples are computed based on the color volume. If the lighting condi-
tions are changing (i.e., modifications of the lights for a diffuse lighting
model, or of the view-point in a Phong-like lighting model), this requires
the re-calculation of this color volume. Additionally, the colors need to
be pre-multiplied by the opacities in order to avoid color bleeding artifacts
[236] (see Fig. 1.4). In contrast, post-shading computes the classification
and normals during rendering, after computing the sample.

(a) (b)

Figure 1.4: Color bleeding artifacts in a rotational angiography dataset. (a) Non-opacity
weight, pre-shaded volume rendering; color bleeding artifacts are marked with red ellipse.
(b) Post-shaded volume rendering.

In the following, we will briefly describe four of the most popular direct
volume rendering approaches, where each of them has their own specific
advantages and disadvantages.

Ray Casting

In the image-space oriented ray casting approaches, rays are cast from the
view-point through the view-plane into the volume. Along their way through
that volume, samples are calculated usually at equal sampling distances be-
tween two sample points (see Fig. 1.5). A sample is computed based on
trilinear interpolation within a cell of eight voxels. Thereafter, it is classi-
fied according to the transfer functions. If that sample has a contribution to
the ray, the normal gradient is computed based on a trilinear interpolation of
the normalized central differences at the eight voxels of the cell which con-
tains the sample point. Finally, the sample is composited with the previous

10 Introduction

Image
plane

Rays

Voxel grid
Samples

Voxel

Figure 1.5: Ray casting of a volume dataset with parallel projection and uniform sampling.

samples of the ray.
Acceleration methods includeearly ray termination, where the sampling

along the ray is terminated, once (almost) full opacity has been reached,
or space leaping, where a distance field or other data-structures indicate
empty space where no sampling is required. Ray casting can also utilize
oversampling within the view-plane and along the ray to account for high-
frequency data in the data volume.

Shear-Warp Factorization

!
!!
!!
!!
!
!
!!
!!
!

View−
plane

Base−
plane

} Shift
amount

Sheared
slices

!
!!
!!
!!
!
!
!!
!!
!

View−
plane

Base−
plane

Sheared
slices

Warping

(a) (b)

Figure 1.6: Shear-warp Factorization: (a) The volume slices are shifted (sheared) to ac-
count for the angle between view- and base-plane. (b) The base-plane image is warped to
the view-plane.

A variation of the ray casting approach is the image-space oriented shear-
warp factorization, which essentially factorizes the viewing transformation
into a shearing and a warping matrix [133]. This enables the casting of rays
from each pixel of a volume aligned base-plane, which is most parallel to
the image- or view-plane, which in turn can be exploited for an optimized
memory access. To take into account the angle between view- and base-

1.2 Volumetric Data Representation 11

plane, the individual slices are shifted (sheared) accordingly (see Fig. 1.6a).
The samples of a whole scanline are computed simultaneously within one
slice, employing a bilinear interpolation scheme. This results in a view-
dependent sampling interval, which can vary between 1.0 for axis-aligned
views, to 1.73 (=

p
3) for corner-on views. Perspective projection also

requires the scaling of the slices to address the divergence of perspectively
cast rays. Finally, the computed base-plane image iswarped onto the view-
plane (see Fig. 1.6b).

The Stanford VolPack-implementation of the shear-warp factorization is
highly memory optimized. A pre-computed classification and a run-length-
encoding of the opacity weighted voxels are used to rapidly skip the trans-
parent, non-contributing volume space. VolPack uses a pre-shading scheme
which computes the lighting on the pre-classified voxels, before generating
the sample within a slice. Note that this (pre-)shading operation occurs dur-
ing rendering, not in a pre-process, which allows the modification of the
light settings without re-generating the pre-classified volume dataset.

Splatting

Image
plane

Voxel slab} Splat

Sheet buffers

...

Voxel

Figure 1.7: Splats arranged on view-plane aligned voxel slaps are projected into sheet
buffers, which are in turn composited front to back into the final image on the view-plane.

The object-space oriented splatting approach projects each voxel onto
the screen as an overlapping, orientation invariant Gaussian kernel with an
amplitude scaled according to the voxel value [229, 230]. High speed is
obtained by a footprint lookup table of the pre-computed, radially symmet-
ric kernel function. For correct compositing, the volume is processed by
slices oriented most parallel to the view-plane, which causes severe bright-
ness variations, such as popping artifacts in animated views. Mueller et al.
modified the splatting approach such thatslabsof the voxel kernels were
processed in an image aligned fashion [161] and projected insheet buffers,
which in turn are composited into the final image on the view-plane. Other
modifications include theearly splat eliminationfor the removal of non-

12 Introduction

contributing splats from rasterization [162]. Similar to early ray termina-
tion, the (average) opacity of the screen area covered by a splat is tested, if
it is above a specified threshold. In this case, the respective splat will not
have a significant contribution (or no contribution, if the chosen threshold
specifies full opacity). The test itself is performed by convolving the associ-
ated opacity buffer area (which stores the up to now accumulated opacity of
each sheet buffer) with a box filter of the screen size of the splat, resulting
in the opacity average of that area [162].

Instead of tri-/bilinear interpolation-based point sampling, splatting em-
ploys a sample average across the sampling distance in view direction. This
introduces an additional low-pass filter operation, which reduces aliasing,
but also tends to smooth signal characteristics. Finally, the recent splatting
approaches [161, 162] also provide post-shaded DVR, in contrast to pre-
shading provided by the original splatting approach.

Texture Mapping

(a) (b) (c)

Figure 1.8: 3D Texture Mapping-based Volume Rendering [228]: (a) 3D texture slices are
generated from the volume, perpendicular to the view-plane; the texture slices are mapped
onto the screen (b) and blended with the previous slice (c).

Object-space oriented texture-mapping is accumulating texture slices per-
pendicular to the view-plane back-to-front using the blending functionality
of graphics hardware (see Fig. 1.8) [50, 35]. The sampling of the texture
slices from the volume are either trilinear, if 3D texture mapping hardware
is available, or bilinear, if only 2D textures are supported2. Shading can
be achieved by the computation of a pre-shaded color volume [214], or by
using multi-pass methods to visualize isosurfaces [228, 195, 51], or trans-
parent volumes [155]. In our comparison later-on, we use the color volume
approach to provide high-speed volume rendering of semi-transparent vol-
umes. However, due to the limited precision of the alpha channel of the
framebuffer (only eight bits), we do not pre-multiply the voxels with the
opacity which leads to color bleeding artifacts [236] (see Fig. 1.4).

2On some graphics systems, quadlinear interpolation is also available, where an additional interpolation takes
place between two mipmap-levels.

1.3 Parallel Processing 13

1.3 Parallel Processing

Parallel processing is a popular method to speed-up the computation of large
problems. For this purpose, an algorithm which solves a problem needs to
beparallized, in other words, the algorithms needs to be mapped to multiple
CPUs or processing entities [24, 23]. While this mapping can be straight
forward for some algorithms, it is challenging for others. The reason for
the substantially varying parallelization difficulties is the necessary parti-
tioning of a single problem inton smaller sub problems or tasks, where
each of the smaller tasks is then processed by a different entity. Frequently,
these individual entities need to share data or resources to solve the overall
problem. Sometimes, one entity even relies on the results of another entity.
All these dependencies require the synchronization of some or all entities
which process then tasks of the original problem. The associated synchro-
nization mechanisms, such as signals, locks, mutexes (MUTual EXclusion),
or semaphores are not for free; often a processing entity needs to wait for
a result or a resource until another entity as completed its computation, or
has released the used resource. During this time, the waiting entity does
not process any task-relevant data, it isidle. The total of idle time and syn-
chronization costs are called theparallelization overhead. Obviously, this
parallelization overhead is directly related with the grade of dependencies
among the sub problems; the more dependencies exist, the more synchro-
nization effort is required, and vice versa. Unfortunately, an optimal se-
quential algorithm for a problem can have a poor parallel performance, due
to the inherent dependencies of the parallel implementation. In these cases,
a sub optimal algorithms needs to be chosen, which allows the partitioning
into more independent tasks, and hence has a better parallel performance.

In the past, large massively-parallel systems, array or vector computer
were dominating parallel computing. These systems – classified as SIMD
systems3 by Flynn [64] – consist of thousands of processing elements (PE)
which are typically interconnected by a network of switches. This network
propagates data from the host computer to the processing elements, or from
one processing element to other processing elements. It is also frequently
the bottleneck of SIMD-based parallel computing. SIMD systems require
a very specific parallelization of an algorithm that is not always efficiently
possible, which makes them difficult to use. However, SIMD computing has
experienced a renaissance in modern processor design; most of the today
available RISC and PC processors have a limited SIMD functionality where
multiple operations can be performed at the same time.

Today, MIMD systems4 are the predominant parallel computing approach.
In contrast to the SIMD approach, a significant smaller number of standard
processors are performing their individual instructions on their own data
stream. There are basically four different implementations of MIMD sys-

3Single Instruction stream, Multiple Data steams; a large number of simple processing elements perform the
same operation (single instruction) on different data (multiple data).

4Multiple Instruction streams, Multiple Data streams after Flynn’s taxonomy.

14 Introduction

tems;massively parallel processingsystems (MPP) of homogeneous system
components,symmetric multiprocessingsystems (SMP), clusters of com-
puter, and clusters of SMP systems. Currently, MPP and clustered-SMP sys-
tems are dominating the top 500 list of super-computing sites [209]. They
combine high performance with a large number of processing entities.

MPP and SMP systems are tightly coupled systems, where the process-
ing entities share more (SMP) or less (MPP) of the system components.
In contrast, clustered systems (of computers or SMPs) are loosely coupled
system which do not share components (except of the network) through all
the system. Systems with shared memory (SMPs) are also referred to as
multiprocessors, while systems which do not share memory are referred to
asmulticomputers[202]. In the following, we are focusing on SMP and
clustered systems.

1.3.1 Symmetric Multiprocessing Systems

A tightly coupledSMP system shares components such as the system inter-
connect (bus or crossbar), system memory, or the system I/O. They are also
classified with respects to their memory architecture. SMP systems are usu-
ally implementing a single hierarchy layer, where main memory access is
equal for all processing entities (CPUs). This scheme is labelled asuniform
memory accessarchitecture (UMA). Unfortunately, only a limited number
of processing entities can be supported by the used interconnects; the system
bus capacity gets congested, if too many data and synchronization request
are submitted, thus limiting the parallel performance. If a crossbar is used as
interconnect, the hardware complexity (and hence the costs) of the crossbar
are growing quadratically by the number of ports (number of possible con-
nected components). For these reasons, many UMA systems are effectively
limited to approximately 10 to 20 CPUs. To overcome these problems, addi-
tional hierarchy elements are introduced into the hierarchy. These additional
hierarchy elements are altering the uniform memory access, since the main
memory is now distributed through the various system components – hence
these systems are also denoted asdistributed shared memory systems. In
particular, the distance of the memory modules to the processing entities
now depends on their physical location within the system. The different ac-
cess distances is reflected in the label for thisnon-uniform memory access
architecture (NUMA).

Due to various caching techniques of modern CPUs, the memory vis-
ibility of the processing entities is not necessarily the same; the logical
same data item might have a different content for one processing entity than
for another entity. This problem aggravates on NUMA architectures, since
more memory hierarchy layers are introduced. Some systems overcome
this problems by implementing acache coherentmemory access protocol
in hardware or in software. These systems are labelled ascache coherent
NUMA systems (ccNUMA).

Synchronization and the exchange of data on (distributed) shared mem-

1.3 Parallel Processing 15

ory systems is handled via the shared memory itself, which is very effective,
since no explicit messages need to be exchanged. Due to this shared mem-
ory, the data does not need to be replicated through all the processing enti-
ties, since the master copy itself can be shared. However, the different hier-
archy elements introduce different memory latencies which can increase the
synchronization and memory access costs. Note, that the increased memory
access costs are also frequently hidden by the synchronization costs (see
Section 3.3).

All parallel programming models can be used on shared memory sys-
tems, such as thread models (i.e., pthreads [34] or OpenMP [37]), or mes-
sage passing libraries (i.e., MPI [67] or PVM [82]).

1.3.2 Cluster-based Systems

In contrast to tightly coupled systems are the loosely coupled systems which
share less system components or non at all. Instead, all processing entities
are connected via a (high-speed) network to exchange instructions and data.
Loosely coupled systems composed of individual PCs are also labelled as
cluster of workstations(CoW), network of workstations(NoW), or simply
asclusters. Each individual entity is a SISD system5 with its private memory
and private I/O system. Synchronization is handled by the explicit exchange
of messages via a network by a message passing library, or by other data
exchange mechanisms (i.e., UNIX sockets or files).

The major attribute of thread-based systems – the implicit synchroniza-
tion and exchange of information via the shared memory – is not available
on cluster systems6. Therefore, popular threading concepts such as pthreads
[34] or OpenMP [37] are not available. Applications use instead message
passing libraries such as theMessage Passing Interface(MPI) [67], or the
Parallel Virtual Machine(PVM) [82].

1.3.3 Threading versus Message Passing

The main advantages of threading over message passing are the drastically
smaller parallel programming overhead (no explicit exchange of messages,
no buffer (size) checking, no buffer overflow) – hence the reduced costs
for programming and testing – and the significantly faster communication
through the shared memory (smaller physical distance between processing
entities, no required data replication). However, the threading programming
model is only available on shared memory systems – not on clusters –, while
message passing is available on virtually all MIMD systems, including SMP
and cluster-based systems.

5Single Instruction stream, Single Data stream after Flynn’s taxonomy.
6Some distributed (non-shared) memory systems (MPP) provide an additionalvirtual shared memorylayer

which emulates shared memory. Access to the virtual shared memory on another processing entity is usually
implemented through message passing. Therefore, these libraries only reduce the programming overhead of
explicit message exchange, but they do not provide the same performance as physically shared memory systems.

16 Introduction

SMP enables high performance and lower software implementation costs
than clusters, due to the tightly coupled architecture, while the investments
in computer hardware are usually significantly higher than for a cluster. The
latter fact is usually the major reason why academic institutions frequently
choose cluster-based systems. One of the downsides of a cluster is often
ignored when estimating the costs of a parallel computer system. The main-
tenance costs of a cluster are usually significantly higher than the mainte-
nance costs of a SMP system of similar size. This is mainly due to the fact
that a cluster consists of many, potentially individual systems, while a SMP
system is only one computer, with less periphery devices which requires
maintenance.

Finally, some algorithms are difficult to map to systems which do not
share the main memory (MPP and clustered systems). This problem arises
if the data of a task cannot split up into smaller parts that fit into the main
memory of a single entity. In these cases, a SMP system with a shared
memory architecture is required.

1.4 Virtual Medicine

A major application field of large scale data visualization methods is vir-
tual medicine. It is concerned with the simulation and visualization of
biomedical processes and procedures using methods from computer graph-
ics, namely from scientific visualization and virtual environments. Virtual
medicine is almost as old as modern imaging methods. It started with two-
dimensional image processing techniques to display the slice images from
CT, or to enhance the relevant features in such images. Soon, methods of
Computer-Aided-Geometric-Design (CAGD) had been introduced; Vannier
et al. used Bezier-curves to provide planning information for complex cra-
nial surgery [215]. Other approaches focused on the modeling of the biome-
chanical behavior of body parts. Waters modeled facial muscles for artificial
muscle actors [223], which was later extended with Terzopoulos to a facial
tissue model [224]. This model used a mechanical mass/spring model to
simulate the behavior of tissue. Numerous variations and improvements
were later introduced. Some of these approaches used spline models for
better surface representations of 3D scanner data [104, 10], others focused
on the simulation of the actual surgical procedure [121]. As a related model
for the modeling of tissue, particle systems were introduced, which were
originally applied to textile simulations [60] with a two-dimensional topol-
ogy. In 1992, Pieper introduced Finite Element Methods (FEM) to provide
more advanced modeling of human tissue [168]. However, the high com-
putational costs and improvements in mass/spring system like models (i.e.,
particle systems) hindered their use. Currently, advanced mass/spring sys-
tems which enable more accurate tissue modeling [128, 59] are used next to
modified FEM in this field. Another recent development is the use of haptic
methods for the tactile feedback of the tissue reaction. Among other appli-

1.4 Virtual Medicine 17

cations, it has been applied to training purposes for the palpation of tumors
[55], for endoscopic simulators [131], or it has been used for navigation in
volumetric datasets [15].

Other applications in virtual medicine focus on the representation and
identification of tissue from scanned data. Various segmentation techniques
are introduced which address the automatic or semi-automatic identifica-
tion and selection of anatomical entities using diverse imaging modalities.
Anatomical information systems like VOXEL-MAN [106, 107] introduced
by Höhne et al. provide complex information on the topology and anatomy
of the human body. Other systems use multimedia technology to present
anatomical information [130, 200]. Segmentation approaches are also ap-
plied in the medical routine. However, automatic segmentation has up to
now failed to accurately select specific organ systems. Therefore, semi-
automatic and fully manual techniques are applied in the daily routine [83,
196].

In related areas, image processing methods are applied to enhance the
display of histological information or to identify pathological structures
[211]. Other approaches attempt the registration of identical organ struc-
tures in different data modalities for the fusion of these datasets. In particu-
lar, the fusion of structural anatomical data (i.e., CT, MRI, angiography, ul-
trasound) with functional data (functional MRI, Positron Emission Tomog-
raphy (PET), Single Photon Emission Computer Tomography (SPECT)) is
of interest in neuro-medicine, or neuro sciences in general.

The use of tracking systems in virtual environments has also become
popular in the medical field. Often, these systems are used to provide an
augmented representation, where rendered or other additional data is over-
laid with the “real world”. The combined data is either provided via semi-
translucent head-mounted displays [81, 179], or simply combined on a mon-
itor or a projection screen [72]. Similar registration techniques using fidu-
cial markers are employed in a suite for the planning of stereotactic frame
neurosurgery. Serra et al. combined this planning suite with a 3D brain
atlas, which is mapped to the individual patient data [184]. Other virtual
environments are used for virtual drug design, where drugs are constructed
virtually on a molecular base [217, 216]. Recently, methods from flow visu-
alization were combined with immersive projection techniques to simulate
and visualize the blood flow along blood vessels [66]. Of specific interest
is the development of vortices and swirls along aneurysms, stents, or other
features in a blood vessel.

In the daily routine of radiology departments, volumetric datasets are
usually viewed in a cine mode, where image slices are browsed sequen-
tially. However, the huge amount of data of recent scanners requires the
use of three-dimensional techniques [94]. Direct volume rendering slowly
emerges as an accepted three-dimensional method, since it does not require
intermediate geometric representations. However, limited performance and
complex parameter spaces still represent major barriers for the deployment
in daily routine.

18 Introduction

On of the most active fields in virtual medicine is the virtual-endoscopic
exploration of organ systems, based on three-dimensional scanned data. A
detailed discussion of this topic can be found in Chapter 5.

1.5 Outline

The remaining chapters of this dissertation are organized in two parts.
In Part I, we present new methods and techniques from three different

research areas which are addressing the visualization of large models. In
Chapter 2, we present the results from a new framework for the assess-
ment and analysis of volume rendering methods. Specifically, we compare
the four most popular direct volume rendering algorithms and the March-
ingCubes algorithm as the most popular indirect volume rendering tech-
nique. Many acceleration methods for the efficient rendering of large data
require a hierarchical organization of the data. Therefore, we present a new
parallel scheme for the efficient construction of such a hierarchical organi-
zation in Chapter 3. In the last chapter of Part I, we introduce new tech-
niques for the effective removal of not visible geometry (Chapter 4). These
techniques address the full culling pipeline from effective pre-processing
techniques to highly efficient geometry culling methods which enable a re-
duction by approximately 90% of the model geometry. Finally, we propose
modifications to modern graphics subsystem which allow an even more ef-
ficient utilization of this accelerators for “richer pixel” operators.

In Part II, we put the developed techniques into the context of “real-life”
applications dealing with large model data. In Chapter 5, we present VIV-
ENDI a flexible system for the endoscopic exploration of medical data. In
contrast to other virtual endoscopy system, VIVENDI allows the interactive
and intuitive visualization of large medical data, without relying on appli-
cation specific optimizations. In this chapter, we also critically discuss the
benefits and drawbacks of virtual endoscopy in modern medicine. Appli-
cations of VIVENDI are discussed in Appendix B; specifically, we present
applications to colonoscopy (Section B.1), ventriculoscopy (Sections B.2
and B.3), and angiography (Section B.4). Virtual medicine is not the only
application field of the methods discussed in Part I. All introduced methods
have also a large potential in fields such as computer-aided mechanical engi-
neering (MCAD/CAE), visualization of data from scientific computing, and
architectural walkthroughs. We sketch these other applications in Chapter 6.
This dissertation concludes in Chapter 7 with a summary of the presented
topics and achievements.

19

Part I

Visualization Techniques for
Large Models

21

Chapter 2

Assessment of Volume Rendering
Algorithms

A major question of using a volumetric representation is which rendering
technique should be used for which objectives. However, little research is
available which provide advice on this important topic. Tiede et al. com-
pared gradient filters for ray casting and Marching Cubes in medical appli-
cations [208]. Williams and Uselton specified a framework for the specifica-
tion of rendering parameter before any image comparison takes place [234].
Recently, Kwansik et al. contrasted a variety of direct volume rendering
algorithm using artificial, modeled datasets to assess the rendering quality
by means of root mean square error (RMS error) and other statistical met-
rics. Both Williams/Uselton and Kwansik et al. have focused mainly on
quality. In contrast, we will discuss the quality and rendering performance
of direct and indirect volume rendering (Section 2.2) [19] and the practical
usage of the four most popular direct volume rendering approaches (Sec-
tion 2.3) in the course of this chapter which will help researchers to choose
an appropriate approach [212, 156].

2.1 Introduction

To avoid confusion of the used terminology, we briefly differentiate the vari-
ous meanings of reconstruction. An overview can also be seen in Figure 2.1.
A volume dataset consist of 3D data values, arranged on a 3D grid. These
data values are reconstructed from projections which are the result of mea-
surements from a 3D scanning process of an object (see also Appendix A).
This reconstruction is also calledimageor volume reconstruction, or recon-
struction from projections. Based on this volume datasets, two avenues can
be taken; with indirect volume rendering (IVR), a polygonal isosurface is
extracted and rendered by standard polygonal graphics hardware (see Sec-
tion 1.2.3). This reconstruction is calledsurface reconstruction. In contrast,
direct volume rendering (DVR) directly generates the image, without re-
constructing an intermediate surface. In both cases, however, the material
interfaces are in the focus of interest. Therefore, we call this reconstruction

22 Assessment of Volume Rendering Algorithms

Measured by
3D Scanner

Volume
Dataset

Set of
Projections

Image or Volume
Reconstruction3D Object

Surface
Representation
(i.e., Triangles)

Image

Surface
Rendering

Direct Volume
Rendering

Surface
Reconstruction

by IVR

Material Interface
Reconstruction

Figure 2.1: Reconstructions from object to image; IVR = Indirect Volume Rendering

thematerial interface reconstruction(see Fig. 2.1).

2.2 Voxels versus Polygons – A Practical Comparison

In our first comparison, we are comparing the benefits and drawbacks of
using direct (DVR) or indirect volume rendering (IVR) methods. All exper-
iments were performed on an SGI Octane, R10000 @ 250MHz with MXE
graphics using similar viewing parameters [19].

We are using Marching Cubes (MC) as an IVR approach. Specifically,
we are using the VTK implementation as being a gold standard for isosur-
face extraction, which visits and classifies all cells of the volume dataset
[182]. Gradients are only computed for contributing cells. To avoid multi-
ple vertices at the cell boundaries, a bucket-sort-like data-structure is used,
which reduces the consumed memory significantly below the upper bound
estimated later on in this section. The rendering time of the generated
triangle-composed surface depends on the used graphics subsystem. There-
fore, we only consider the surface reconstruction time of the MC algorithm.
Depending on the rendering complexity of the extracted isosurfaces (num-
ber of polygons and opacity), the actual rendering with OpenInventor ranged
from approximately0:5 seconds to approximately five seconds for the MRI
Head dataset, depending on the number of transparent isosurfaces (similar
for the CT Lobster dataset).

For DVR, we use the ray casting (RC) approach with early ray termi-
nation, which stops sampling of the ray after the opacity has accumulated
to 98%, which means that there is practically no further contribution to the
pixel associated with this ray (oversampling is not used). Furthermore, no
gradients are computed for non-contributing samples (opacity is zero). RC
is a single pass algorithm where material interface reconstruction and ren-
dering cannot be distinguished; therefore, the timings of both operations are
included inherently in the measurements.

To compare the direct and indirect volume rendering approaches, we use

2.2 Voxels versus Polygons – A Practical Comparison 23

two different “real-life” datasets, each with eight bit voxel data (see also
Table 2.1). As convention, we name voxels asrelevant voxels, if they poten-
tially have a contribution to the image, despite possible acceleration tech-
niques (i.e., early ray termination, early splat termination). If the voxels,
samples, or cells actually have a contribution, we name themcontributing
voxels, samples, or cells.

� CT lobster: CT scan of a lobster immersed in a cylinder of resin. We
map the scalar value interval associated with the meat to opaque red,
the shell scalar value interval to semi-transparent white, and the resin
interval to highly transparent green (see Table 2.2).

� MRI head: MRI/3D CISS sequence (see Appendix A.4) of a human
head. Head tissue and brain fluid-filled cavities of the MRI head are
easy to classify, due to the good contrast of the MRI/3D CISS se-
quence. The color and opacity attributes for MC and RC are shown
in Table 2.2, where we map the fluid-filled cavities to opaque, and the
tissue to semi-transparent.

Dataset Size/ Relevant Rendering
Spacing Voxels Mode

CT lobster 301� 324� 38 2,872,082 semi-transparent with
1:0; 1:0; 1:5 (77.5%) opaque interior

MRI head 258
2
� 126 1,861,928 semi-transparent with

1:0; 1:0; 1:0 (22.2%) opaque interior

Table 2.1: Benchmark datasets for direct vs. indirect volume rendering; note that the num-
ber of relevant voxels depends on the RC classification, not on the MC isovalue. This
results in difference between relevant voxels and contributing cells in Table 2.4.

Material Material Color (RGB) MC Opacity RC Opacity
Labels Interfaces

CT Lobster Dataset
Resin (R) 2 0.0, 1.0, 0.0 0.13 0.02
Shell (S) 50 0.8, 0.8, 0.8 0.27 0.73
Meat (M) 130 1.0, 0.1, 0.1 1.0 1.0

MRI Head Dataset
Tissue (T) 30 1.0, 1.0 ,1.0 0.02 0.02
Liquor (L) 70 1.0, 1.0, 1.0 1.0 1.0

Table 2.2: Overview of dataset material properties [19]: The material interfaces where used
to extract the material surfaces by isovalues for the MC algorithm and as rising edges of
the transfer functions of RC. However, the tissue (T) RC opacity transfer function is a peak
at the threshold 30, while the rising ramp starts at 20, and the falling ramp ends at 40. We
increased the MC opacity of the Resin for better visibility.

24 Assessment of Volume Rendering Algorithms

2.2.1 Visual Quality

The properties of RC and MC seem to be very obvious but as it can be seen
in the next section, the impact to resource consumption can be quite severe.
To enable a proper understanding of the differences, it is necessary to have a
closer look at the features of both techniques with respect to volume graph-
ics. In the following, we will discuss the two approaches and highlight their
features in order to describe their strengths and weaknesses. Hereby we will
try to answer the following questions:

� How good is the 3D understanding from generated images?

� How good can depth be understood from generated images?

� How accurate can smallest structures be displayed?

Display of Volumetric Information

(a) (b)

(c) (d)

Figure 2.2: Volumetric display of CT lobster and MRI head [19]: (a) CT Lobster dataset
rendered using RC, classifying resin, shell, and meat. (b) same as (a) using MC. (c) MRI
head dataset rendered using RC, classifying tissue and liquor. (d) same as (c) using MC.

The MC algorithm extracts isosurfaces from volumetric data, hence real

2.2 Voxels versus Polygons – A Practical Comparison 25

thickness, or volumetric dimension of an object is difficult to represent1.
This is inherent to the isosurface paradigm which is designed to extract
infinite thin isosurfaces from volumetric data. As an example, images of
objects with different thickness will always look alike. Therefore, the depth
of highly transparent objects and the position of objects within highly trans-
parent materials cannot be determined without rotating the object (see Fig-
ure 2.2b).

In contrast, RC samples volumetric data along rays and accumulates the
obtained information according to the density emitter model which gener-
ates a noticeable depth perception by the accumulated color of the individ-
ual pixels. Cloudy, fuzzy, or gaseous objects like fog (or the resin of the
CT lobster) that do not have a specific surface, can be displayed in a visual
realistic way, which is not possible using MC. This effect can be seen in
Figure 2.2a, where the resin is rendered as a cloudy (transparent) object but
still, the position of the lobster within the resin can be conceived.

Display of Isosurfaces

When it comes to displaying real surfaces within volumetric data, the MC
algorithm is capable of precisely extracting a surface which is represented
by a certain isovalue, as long as objects do have surfaces. However, the
surface of an object might not be specifiable by a single isosurface, since
a material usually occupies an interval of isovalues. The number of re-
quired isosurfaces depends on the material interfaces of the volume dataset;
i.e., the overall surface of the object resin – including the surface between
lobster and resin and resin/air – can only be captured applying two isoval-
ues. For MC in general, the number of isosurfaces which can be displayed,
mainly depends on the memory limitations and on the polygonal render per-
formance of the graphics subsystem. MC is capable of extracting smallest
structures preserving their nature, as along as the structures can be specified
by isovalue(s). With RC, the volumetric data is sampled along rays and the
samples are interpreted using the transfer functions (post-shading), result-
ing in a quadrupleRGB�, and composited corresponding to the volume
rendering line integral (Equation 1.2). In contrast to MC, RC is not dealing
with specific isovalue(s), but rather with the classification of all generated
samples using the transfer functions. The sampling rate is therefore very
important to achieve sufficient image quality and to prevent aliasing arti-
facts. Structures can appear smaller than they actually are, if samples are
computed just at the border of the structures and classified asoutside. Their
surface will not be detected before the next sample in the structure, classi-
fied asinside. This can be seen in Figure 2.3a where the legs and antennas
of the RC rendered lobster are not as well defined than in Figure 2.3b (MC
rendered).

Furthermore, very small structures which are just one voxel wide might
1Some approaches suggest the variation of the�-value according to thickness properties to represent volumet-

ric differences.

26 Assessment of Volume Rendering Algorithms

(a) (b)

(c) (d)

Figure 2.3: Surface display of CT lobster and MRI head [19]: (a) CT lobster dataset ren-
dered using RC, classifying shell and meat; (b) same as (a) using MC; (c) MRI head dataset
rendered using RC, classifying liquor only; (d) same as (c) using MC.

be missed, depending on sampling and classification2. Therefore, classi-
fication and sampling are crucial parts of any DVR. Better results can be
achieved using already segmented data – which also requires higher sam-
pling rates, since segmentation introduces higher frequencies – or applying
higher sampling rates. However, the images in this section were rendered
using the original datasets without any oversampling.

2.2.2 Resource Consumption

Visualization of large datasets is in particular limited by space (memory)
and time (rendering) consumption of the respective algorithms. Here we
examine the specific memory and time consumption of MC and RC (see
Tables 2.3 and 2.4).

2Techniques to adapt ray casting for accurately computing isosurfaces are available [165]. However, we only
examine the “standard” approach of ray casting.

2.2 Voxels versus Polygons – A Practical Comparison 27

Memory Consumption

Memory consumption of DVR applications is limited to the actual represen-
tation of the volume. Some acceleration structures like octrees or BSP-trees
do need significant additional amounts of memory. However, our investi-
gated implementation of RC only uses the standard representation as a 3D
array of voxel values, which limits the memory consumption to the number
of voxels. If we consider eight bits per voxel, we use approximatelyn3 bytes
for the volume representation – where n is the number of voxels in each di-
mension in a cubic volume –, four times 256 bytes (eight bits per voxel)
for theRGB� transfer functions, andx � y � 4 bytes for a 24+8 bits/pixel
view-plane. For reasonably large volumes – which is the case for most ap-
plications –, the 3D voxel array will dominate the memory consumption.

The memory consumption of MC applications depends on the volume
resolution as well. Similar to RC, we have a cubic space complexity, be-
cause potentially all cells of the volume might be contributing. In those
cases, up to five triangles3 with three vertices each are generated. Each ver-
tex is described by six floats for position and normal vector. Therefore, we
have an upper bound of 360 (= 5 � 3 � 6 � 4) bytes per cell4.

Material Time #Visited #Contributing
/[s] Samples Samples

CT Lobster Dataset, 4,126,840 bytes used
M 10.9 4,803,006 6,965
S 11.9 4,868,610 109,091
R 31.9 5,064,276 3,431,673
M, S 10.5 4,739,096 87,622
M, S, R 30.4 4,682,680 3,318,655

MRI Head Dataset, 8,654,344 bytes used
T 24.1 8,453,628 1,193,236
L 11.4 6,890,357 18,480
T, L 17.5 6,890,357 841,856

Table 2.3: Resource consumption of ray casting [19]; R denotes resin, M denotes the meat
of the lobster, S denotes the shell of the lobster, T denotes the tissue of the MRI Head, and L
denotes the liquor of the MRI Head. Memory consumption is constant for all classifications
of the same datasets.

Our complexity sketch shows that although the space complexity of RC
and MC is both cubic, the actual memory consumption of MC can be sig-
nificantly larger than RC (Tables 2.3 and 2.4). Most important is that the
memory consumption of RC does not depend on the number of samples
taken for the final image; the memory consumption – considering a fixed
view-plane size – is constant. In contrast, the memory consumption of MC
depends very much on the number of contributing cells. If this number is

3On average, about two triangles per contributing cell of the examined datasets were generated.
4VTK eliminates vertices which are generated more than once. Therefore, the actual number of vertices is

smaller than the estimated upper bound. Table 2.4 shows only the memory used by the volume itself, the pointers
of the generated triangles to the actual stored vertices, and these vertices themselves.

28 Assessment of Volume Rendering Algorithms

Material Time Memory #Vertices #Triangles #Contributing
/[s] /[bytes] Cells

CT Lobster Dataset, 3,585,300 visited cells, 3,705,912 voxels
M 5.2 7,044,496 71,207 139,968 72,478
S 9.6 10,800,408 147,470 296,268 144,102
R 18.3 15,617,640 248,297 496,050 252,855
M, S 14.8 10,483,080 218,677 436,236 216,580
M, S, R 57.2 22,294,808 466,974 932,286 479,435

MRI Head Dataset, 8,256,125 visited cells, 8,387,064 voxels
T 120.2 70,978,920 1,318,170 2,579,648 1,374,041
L 23.8 21,899,520 285,513 555,012 293,528
T, L 165.3 84,491,376 1,603,683 3,134,660 1,667,569

Table 2.4: Resource consumption of Marching Cubes [19]; R denotes resin, M denotes the
meat of the lobster, S denotes the shell of the lobster, T denotes the tissue of the MRI Head,
and L denotes the liquor of the MRI Head. Memory consumption represents the actual
used memory.

high, the number of generated triangles (and their respective vertices) is
high as well. Therefore, the size of the memory needed is directly related to
the number of contributing cells.

Time Consumption

In the previous paragraphs, we showed that memory consumption of RC
applications is dependent on the resolution of the volume dataset, but not
on the number of samples taken. However, the number of samples deter-
mines material interface reconstruction and rendering time of these appli-
cations. In order to provide some operation quantification, we estimated
the number of operations for both approaches (see Tab. 2.5). Additional to
the mentioned operations are numerous branching (if) and loop (for) con-
structs which are not considered in this time complexity sketch. Generally,
sampling along the rays first calculates the sample (one trilinear interpola-
tion). Thereafter, this sample is classified (one access to the opacity func-
tion table). If the sample has a contribution to the final image (its opacity is
not equal zero), its classification is completed (three accesses in the trans-
fer function tables) and it is gradient shaded – which requires a gradient
approximation using central differences (including 48 accesses to voxels
which surround the sample5), and one trilinear interpolation of a vector. Fi-
nally, the sample is composited with the already accumulated samples.

The number of rays which are cast through the volume depends on the
pixel resolution of the view-plane. In order to catch all features in the vol-
ume datasets, the sampling theorems requires that we need to cast at least
four rays (22) through the voxels visible from the view point. Assuming a
volume with an3 voxel dimension, this gives a quadratic complexity of the
number of rays (O(n2)), since we need to cast sufficient rays to cover a full

5Although all voxel accesses are only in a 32-voxel-neighborhood, no optimizations are used.

2.2 Voxels versus Polygons – A Practical Comparison 29

High-Level Operation Mult Add Others

Trilinear Interp. 7 14
Linear Vertex Interp. 7 14
Gradient Approx. 18 12
Transfer/Voxel Access 1 1
Cell Access (eight voxels) 8 20
Normalization (per vertex) 6 2 1 sqrt
Compositing 7 4

Summary
MC Contributing Cell 362/ 386/ 15/6 sqrt’s

236 224 8 bit op’s
MC Non-contrib. Cell 8 20 8 bit op’s
RC Contributing Sample 169 132
RC Non-contrib. Sample 8 15

Table 2.5: Number of multiplications (mult) and additions (add) for each high-level op-
eration, and for the respective cell/sample types. For the number of operations for MC
Contributing Cells, we consider the worst case of five triangles per contributing cells (first
value) and the measured average case of two triangles per contributing cell (second value)
[19].

side of the volume, which is composed ofn � n voxels. Furthermore, we
sample through the volume. Again, taking the sampling theorem into ac-
count, we should sample with a step size of at least half the smallest spacing
of the volume. An even higher sampling rate is required, if a segmentation
of the volume introduces high frequencies. Overall, we have a view-plane
resolution which depends on the volume resolution (n2), and we have the
sampling distance which depends on the volume resolution (n). Therefore,
we can approximate the time complexity as cubic.

For the material interface reconstruction and rendering times of RC (see
Table 2.3), the time costs do not simply depend on the number of “visited
samples”, which varies only by 8% (CT Lobster) up to 19% (MRI head),
depending on early ray termination. More important are the samples which
contribute to the final image; these are the samples with a non-zero opacity.
These samples cause most of the computational costs (gradient-shading and
compositing) of RC. If the opacity of large areas of the volume is low (i.e.,
resin), there will be a good chance that a large share of the area will contain
contributing samples. Therefore, the total number of these samples will be
higher, resulting not in an early but late ray termination and consequently
many shading operations (see experiment R and M,S,R in Table 2.3).

The time consumption of the surface reconstruction process using the
MC algorithm depends on the number of cells. As mentioned earlier, each
cell is visited and classified, as inside, outside, or intersecting with the iso-
surface, which requires a cell lookup and eight logical bit operations. For
all the contributing cells, we need one multiplication to calculate the po-
sitions with respects to the grid spacing6. The cell gradients for shading

6One multiplication is needed for each slice, for each scanline within a slice, and for each cell of a scanline,
which corresponds to approximately one multiplication for each cell.

30 Assessment of Volume Rendering Algorithms

are determined similar to RC by using eight vector central differences (no
optimizations used), which includes 48 voxel accesses. Finally, up to five
triangles – depending on the classification case – are generated. Each vertex
of these triangles involves a linear vertex interpolation of position and nor-
mal, and one vector normalization. Note that especially the final estimate
is only an upper bound which is usually never met in practice. In our mea-
surements, on average two triangles per contributing cell were generated
(see Table 2.4).

The complexity is determined by the number of cells of the volume
dataset, because all cells are visited by the VTK implementation of the
MC algorithm (thus the similarity between voxels and the number of visited
cells). Consequently, the complexity is cubic, similar to the space complex-
ity of RC. For each cell, we can give a constant upper bound of five triangles
(and 15 vertices) for the costs of gradient, position and normal computation.

Table 2.4 shows the timing of the surface reconstruction process using
the MC algorithm. The VTK implementation of MC checks if a vertex
was already generated by a previous triangle of the current or a neighboring
cell. This checking overhead consumes a significant share of the overall
time costs. For the extraction of the isosurface of the MRI Head dataset,
the overhead accounts for approximately 50% (isosurface of L) up to 68%
(isosurfaces T and L) of the total extraction time. Furthermore, this over-
head grows faster than the actual number of vertices. Therefore, the time
spent for the generation of multiple isosurfaces is higher than the sum of
each individual isosurface. The surface reconstruction times of the differ-
ent isosurfaces does vary much, due to the significantly larger numbers of
contributing cells, hence the larger numbers of generated triangles (see Ta-
ble 2.4).

Marching Cubes Versus Ray Casting

Generally, the amount of memory need by MC – dominated by the triangles
and vertices – is significantly larger than the constant amount of memory
for RC – dominated by the volume itself.

For the time costs, MC is only faster for classified datasets where the
number of contributing primitives (cells vs. samples) is smaller than for
RC, which is only the case for the CT Lobster. Furthermore, RC is more
affected by a large number of visited (but not contributing) samples than
MC for visited cells, since sample (without shading) is more expensive than
the cheap MC classification.

Overall, MC is very efficient for single isosurfaces with a low number
of contributing cells (and triangles), while RC is faster for large volume
datasets. This is in particular true for opaque structures, which can be ex-
ploited for early ray termination. However, it is important to note that ren-
dering of MC generated polygonal isosurfaces is much faster and the sur-
face reconstruction can be viewed as a pre-processing step. Furthermore,
the polygonal isosurface is a continuous representation, and its rendering

2.3 Comparing Direct Volume Rendering Approaches 31

usually is not fill-rate limited. Therefore, a larger viewport can be used at
almost no additional rendering costs. This is different using RC. If a larger
view-plane is used, more rays are cast through the volume. These additional
rays significantly increase the material interface reconstruction and render-
ing time.

2.3 Comparing Direct Volume Rendering Approaches

Our next comparison focuses on four DVR approaches which are used in
many applications [156]. These four algorithms, ray casting (RC), splatting
(SP), shear-warp (SW), and graphics hardware-assisted 3D texture mapping
(TEX) were already introduced in Section 1.2. The assessment is based on a
set of “real-life” datasets from physical simulations, from medical scanners,
or computed functions [212]. In contrast to the datasets of the previous
comparison, all datasets provide an isotropic sampling (see also Table 2.6):

� Fuel injection: Physical simulation of diesel being injected into a com-
bustion chamber filled with air. The presence of air in the dataset is
represented by the density values; the higher the density value, the
lower the presence of air. The dataset is a semi-transparent, but com-
pact representation that requires many samples to be taken for each
pixel.

� Neghip: Physical simulation of a high potential protein representing
the electron probability around each atom (blue is high, green is medium,
and red is low). This dataset has some dispersed elements.

� Skull: Rotational biplane X-ray scan (see Appendix A.3) of a human
head (except top part of skull). Bone and teeth structures are recon-
structed (from the projections) with good contrast. There is also a
contrast agent enhanced segment of the left internal carotid artery.

� Blood vessel: Rotational biplane X-ray (rotational angiography, see
Appendix A.3)) scan of a human head with a focus on the right hemi-
sphere, where a contrast agent has been injected into the blood to cap-
ture the blood vessel to visualize the main feature of the dataset, an
aneurysm of the internal carotid artery, between the carotid T-junction
and the carotid siphon.

� Shockwave: Simulation of an unsteady interaction of a planar shock-
wave with a randomly-perturbed contact discontinuity, rendered with
a highly translucent transfer function. All voxels potentially contribute
to the display.

� Marschner-Lobb: High frequency test dataset, rendered as an iso-surface.
This dataset contains very high frequencies, where 99.8% of the sinu-
soids are right below the Nyquist frequency.

32 Assessment of Volume Rendering Algorithms

Dataset Size Relevant Rendering
Voxels Mode

Fuel Injection 64
3 13,731 semi-transparent with

(5.2%) opaque interior
Neghip 64

3 121,586 moderately
(46.4%) semi-transparent

Skull 256
3 1,172,924 opaque isosurface

(7.0%)
Blood Vessel 256

3 76,929 opaque isosurface
(0.5%)

Shockwave 64
2
� 512 1,206,828 fully

(57.6%) semi-transparent
Marschner-Lobb 41

3 34,387 opaque isosurface
(49.9%)

Table 2.6: Benchmark datasets for direct volume rendering comparison; all spacing is1 :

1 : 1 [156]

Both rendering quality and expense is likely to be dependent on view-
point, magnification, as well as image size. To study these effects, we have
rendered the datasets at four to five magnification levels each and into six
image resolutions:642, 1282, 2562, 5122, 10242, and20482 pixels7. To get
statistically valid results we have also rendered a series of 24 images at ran-
dom view-points over an enclosing sphere. No frame-to-frame coherence
in either data access or rendering was exploited. A specific storage order
of the volumes was not allowed (VolPack with its three encoded volumes
is an exception). Diagonal views are especially challenging for the shear-
warp algorithm in terms of quality (the ray step size is significantly below
Nyquist), and for the splatting algorithm in terms of rendering time (due
to the required re-alignment of the voxel slabs, see also Section 1.2). Ray
casting may incur some caching delays when the volume is accessed out of
stride, while the texture mapping hardware will most likely be least sensitive
to the change of viewing directions.

2.3.1 Assessment of Image Quality

It is difficult to evaluate rendering quality in a quantitative manner. Often,
researchers simply put images of competing algorithms side by side, ap-
pointing the human visual system (HVS) to be the judge, whereas it is well
known that the HVS is less sensitive to some errors (stochastic noise) and
more to others (regular patterns). In particular images with larger numerical
errors (i.e., RMS), are sometimes judged as worse by a human observer than
images with lower numerical errors [207]. It seems that the visual com-
parison is more appropriate than the numerical, since after all images are
produced for a human observer and not for error functions. In that respect,

7The different image resolutions represent different requirements of available display media: web-based ren-
dering, head-mounted displays, computer screens, high-definition screens, CAVE projection walls, and Power-
Walls.

2.3 Comparing Direct Volume Rendering Approaches 33

an error model that involves the HVS characteristics [77] would be more
appropriate than a purely numerical one. But nevertheless, to perform such
a comparison, we still need the volume rendered image computed by the
analytical integration of the volume via Equation 1.1. As was pointed out
by Max [147], analytical integration can be done when assuming thatC(s)
and�(s) are piecewise linear. This is, however, somewhat restrictive to our
transfer functions. Hence we decided to employ visual quality assessment
only.

Apart from the real-life datasets, we also chose a particularly challenging
dataset for visual quality assessment; the Marschner-Lobb function [146].
This three-dimensional function is made of a combination of sinusoids and
contains very high frequencies. 99.8% of these frequencies are below the
Nyquist rate when sampled into a413 lattice. It is extremely sensitive to
filter and sampling inaccuracies and has been used for (material interface)
reconstruction error evaluations.

2.3.2 Experiments

The four volume rendering approaches were devised with different objec-
tives on rendering performance and image quality. While shear-warp and
3D texture mapping focus on frame-rates at the expense of rendering qual-
ity, image-aligned splatting and ray casting have been devised to achieve
images of high quality, not to be compromised by the employed accelera-
tion strategies. To account for this, we have divided the four renderers into
two groups of two renderers each:

� High-performance volume renderers: Shear-warp (SW) and 3D texture
mapping (TEX). These renderers use the pre-shading model, where
SW uses pre-multiplied colors and opacities [236]. Due to the limited
precision of the alpha channel of the MXE framebuffer (eight bits), the
visual artifacts of opacity pre-multiplied colors are actually worse than
with the original values. Therefore, we use the non-multiplied colors,
taking the color bleeding artifacts.

� High-quality volume renderers: Splatting (SP) and ray casting (RC).
These renderers use the post-shading model.

All presented results were generated on an SGI Octane (R10000 CPU @
250MHz) with 250 MB main memory and MXE graphics with 4 MB of tex-
ture memory. The graphics hardware was only used by the TEX approach.
Figures 2.6 and 2.7 show representative still frames of the six datasets that
we rendered with the four volume rendering algorithms. Figure 2.4 relates
frame times to magnification factors. The icon images next to the graphs in-
dicate the level of magnification as well as the view-point (the icon images
were rendered with RC). Figure 2.5 shows how image size affects rendering
time of the screen filling shots (a), (b), and (d) of Figure 2.6, and (a), and (c)
of Figure 2.7. Finally, Table 2.7 lists the average frame time for the 24 ran-

34 Assessment of Volume Rendering Algorithms

domly generated views. For these random views, we set the magnification
factors such that the object just fills the screen.

2.3.3 Visual Quality

In Figures 2.6 and 2.7, we observe that the image quality achieved with
TEX shows severe color-bleeding artifacts, due to the non-opacity weighted
colors [236], as well as staircasing. The latter artifacts can be reduced by
increasing the number of slices.

VolPack shear-warp performs much better, with a quality similar to ray
casting and splatting whenever the resolution of the image matches the res-
olution of the respective base-plane area (Figures 2.6d, 2.7a, and c). For
the other images, the rendered base-plane image was of lower resolution
than the screen image and had to be magnified using bilinear interpolation
in the warping step. This leads to excessive blurring, especially for the
Marschner-Lobb dataset with a magnification factor of six (Figure 2.7e). A
more fundamental drawback can be observed in the 45 degrees neghip view
in Figure 2.6c, where – in addition to the blurring – significant aliasing in
the form of staircasing is present. This is due to the insufficient ray sam-
pling rate which is less than 1.0, and can be disturbing in animated viewing
of some datasets.

The Marschner-Lobb dataset renderings for RC and SP (see Fig. 2.7e)
demonstrate the differences of point sampling (RC) and sample averaging
(SP). While ray casting’s point sampling misses some detail of the func-
tion at the crests of the sinusoidal waves (insufficient sampling according to
Nyquist), splatting averages across the waves and renders them as blobby
rims. For the other datasets the averaging effect is more subtle, but still
visible. For example, ray casting renders the skull and the magnified blood
vessels with somewhat crisper detail than splatting does, but suffers from
aliasing artifacts, if the sampling rate is not chosen appropriately. However,
the quality is quite comparable, for all practical purposes.

But even though the quality is similar, there are still subtle differences
in the images rendered by each algorithm. These differences are due to the
different convolution kernels (bilinear for SW, trilinear for TEX and RC,
Gaussian for SP) which combine transfer functions and sample values.

2.3.4 Time Consumption

Shear-warp versus 3D Texture Mapping

From Table 2.7, we observe that the frame times for both TEX and SW
are always substantially faster than those of RC and SP. Both TEX and SW
consistently achieve frame times in the sub-second range. With TEX, all
data is always sliced and composited by the graphics hardware in brute
force. SW’s frame times are a function of the number of relevant voxels
and opaqueness. It takes roughly three times longer to render the translu-
cent shockwave dataset than the opaque skull, although both have about the

2.3 Comparing Direct Volume Rendering Approaches 35

Fuel Injection Neghip Skull Blood Vessel Shockwave

Ray Casting 4.96 8.15 7.78 12.31 3.02
Splatting 1.41 7.35 11.09 1.87 21.77
Shear-warp 0.09 0.24 0.27 0.09 0.91
Texture Mapping 0.06 0.04 0.7 0.7 0.14

Table 2.7: Average frame time (seconds) for 24 random views onto the five datasets [156].
The image size was2562, and the object was viewed in an image filling shot. Note that TEX
is slower than SW for large datasets (skull, blood vessel) which exceed the 4 MB of texture
memory of the used SGI Octane/MXE and requires texture swaps. (Marschner-Lobb is
only used for quality assessment.)

same number of relevant voxels. This effect is due to VolPack’s early ray
termination which terminates sampling along the base-plane rays, once the
opacity threshold is reached.

An interesting case is the blood vessel dataset, where SW is more than
seven times faster than TEX (similar the skull dataset), while otherwise
slower or of similar performance. This is due to the small number of rele-
vant voxels (0.5%, see Table 2.6), in contrast to the large size of the brute-
force rendered TEX volume which causes expensive texture swap opera-
tions. For similar reasons TEX is relatively insensitive to large image res-
olutions, since the usually fill-limited texturing operation is hidden by tex-
ture swaps. Magnifications do neither require a different 3D texture access,
nor do the number of rendered pixels change. This is consistent with our
TEX measurement which did not expose any magnification sensitivity. The
image resolution insensitive SW only bilinearly interpolates the base-plane
image to the larger viewport which also takes little time. For similar reason,
SW is also insensitive to magnifications, since the base-plane size does not
change.

Ray Casting versus Splatting

Splatting is an object-space oriented approach which processes the relevant
voxels in object order along the voxel slabs. Therefore, if the number of
relevant voxels is small (i.e., blood vessel), the number of footprints to be
rasterized is small too. We can also see in Table 2.7 that the splatting of the
opaque skull dataset is twice as fast as the transparent shockwave dataset, al-
though the number of relevant voxels is almost the same. This is mainly due
to the successful use of early splat elimination, since the quickly saturating
opacity buffer areas of the skull occlude many of the relevant voxels, while
the transparent shockwave does not allow for culling of relevant voxels.

In contrast, a high number of irrelevant voxels causes a high number of
non-contributing RC samples, which dominate the rendering time, as ob-
served with the blood vessel and fuel injection datasets. In both cases most
of the rays are cast through non-relevant voxels, wasting rendering time.
This is different with the skull dataset, where early ray termination skips
the backward empty space. The associated costs of early ray termination

36 Assessment of Volume Rendering Algorithms

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16
F

ra
m

e
T

im
e

(s
)

Magnification Factors

Fuel Injection

Ray Casting
Splatting

2

4

6

8

10

0 2 4 6 8 10 12 14 16

F
ra

m
e

T
im

e
(s

)

Magnification Factors

Neghip

Ray Casting
Splatting

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

F
ra

m
e

T
im

e
(s

)

Magnification Factors

Blood Vessel

Ray Casting
Splatting

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8

F
ra

m
e

T
im

e
(s

)

Magnification Factors

Skull

Ray Casting
Splatting

Figure 2.4: Frame time versus magnification; the timings for TEX and SW are not included,
since we noticed almost no dependencies from magnification [156].

are low, since it is a simple comparison of the accumulated�-value with a
specified threshold. In contrast, splatting’s early splat elimination has high
associated costs, thus splatting takes considerably longer to render the skull
dataset. The shockwave dataset, where the low opacity of all voxels prevents
both early ray termination and early splat elimination, exposes the differ-
ences in cost for trilinear interpolation versus footprint mapping. Since the
rendering time for ray casting is almost seven times lower than the time for
splatting (see Table 2.7), we conclude that the mapping of footprint kernels
is costlier than trilinear interpolation, at least at moderate screen sizes.

The magnification plots of Figure 2.4 indicate that it is better to rasterize
a small number of large SP footprints, even when they fill the entire screen,
than to rasterize and transform a large number of small footprints. Good
examples for this are the skull and the neghip datasets where at large mag-
nification the number of splats that are not culled by view-frustum culling
is small, but their footprints are large. In contrast, the number of rays cast

2.3 Comparing Direct Volume Rendering Approaches 37

0.1

1

10

100

64 128 256 512 1024 2048

F
ra

m
e

T
im

e
(s

)

Image Dimension (Pixels)

Fuel Injection

Ray Casting
Splatting

0.1

1

10

100

64 128 256 512 1024 2048

F
ra

m
e

T
im

e
(s

)

Image Dimension (Pixels)

Neghip

Ray Casting
Splatting

0.1

1

10

100

64 128 256 512 1024 2048

F
ra

m
e

T
im

e
(s

)

Image Dimension (Pixels)

Blood Vessel

Ray Casting
Splatting

0.1

1

10

100

64 128 256 512 1024 2048

F
ra

m
e

T
im

e
(s

)

Image Dimension (Pixels)

Skull

Ray Casting
Splatting

0.1

1

10

100

64 128 256 512 1024 2048

F
ra

m
e

T
im

e
(s

)

Image Dimension (Pixels)

Shockwave

Ray Casting
Splatting

Figure 2.5: Frame time versus viewport size; note that we use a logarithmic scale. The
timings for TEX and SW are not included, since we noticed almost no dependencies from
the viewport size [156].

with RC is constant, since the image resolution has not changed. However,
the magnified views enable more early ray termination (all opaque datasets),
which reduces the required rendering time significantly.

Figure 2.5 illustrates the relationship of viewport size versus rendering
time. We observe that for both sparse datasets, the fuel injection and the
blood vessel datasets the differences between splatting and ray casting be-
come more pronounced as the screen size increases, which shows the ad-
vantages of the object-space oriented splatting. However, the shockwave
and the skull dataset exhibit a reversal of the rendering cost relationships
at larger screen sizes, when SP becomes faster than RC. This is due to
the fact that the time for transforming the voxels and for setting up the
footprint rasterization (i.e., mapping the voxel center and computing the
footprints screen extent) does not grow with the screen size, although the
cost for footprint rasterization and opacity buffer maintenance does. Ob-

38 Assessment of Volume Rendering Algorithms

(I) (II) (III) (IV)

(a)

(b)

(c)

(d)

Figure 2.6: Dataset Overview I – Columns (I) to (IV) show the images from Ray Casting,
Splatting, Shear-warp, and 3D Texture Mapping; Rows (a) to (d) show the images for the
datasets fuel injection, neghip, neghip rotated45

o, and shockwave. Magnification factors
are 5 for (a)-(c) and 1 for (d) [156].

2.3 Comparing Direct Volume Rendering Approaches 39

(I) (II) (III) (IV)

(a)

(b)

(c)

(d)

(e)

Figure 2.7: Dataset Overview II – Columns (I) to (IV) show the images from Ray Casting,
Splatting, Shear-warp, and 3D Texture Mapping; Rows (a) to (e) show the images for the
datasets skull (magnification 2), skull (magnification 8), blood vessel (no magnification),
blood vessel (magnification 2), and Marschner-Lobb, (magnification 6) [156].

40 Assessment of Volume Rendering Algorithms

viously, the screen size-dependent costs of splatting increase not as fast as
size-dependent number of trilinear interpolations, resulting in higher total
RC rendering costs beyond a certain screen size threshold.

2.4 Summary

No general recommendation which approach to choose can be made. Each
one has its individual properties. However, our results of the first part show
that direct volume rendering (DVR) techniques can have significant resource
consumption advantages compared to indirect volume rendering techniques.
In particular the memory consumption of Marching Cubes can quickly ex-
ceed the available resources. Furthermore, DVR techniques can also be
faster for large datasets as shown for the MRI Head dataset of the first mea-
surement.

For the second part, two of the DVR techniques were exposed as high-
performance rendering approaches on the expense of quality, while the two
other techniques focus on rendering quality. Shear-warp (SW) and 3D tex-
ture mapping (TEX) provided similar rendering performance with similar
rendering quality. However, both techniques exposed different weaknesses;
the base-plane rendering approach of SW introduces heavy blurring, when
the size of the viewport increases the size of the respective area of the base-
plane, thus violating the sampling theorem. TEX in contrast suffered from
a limited bit accuracy of the�-channel of the framebuffer.

Splatting (SP) and Ray Casting (RC) provided similar excellent visual
quality at relatively high time costs. The Gaussian kernel of SP provides
good anti-aliasing, but it also tends to blur fine detail. RC in contrast can
exhibit alias problems, if the sampling rate is not chosen appropriately by
obeying the Nyquist rate. The rendering time of SP basically depends on
the number of relevant voxels, which in turn depends on the classification
of the dataset. In contrast, the rendering performance of RC correlates with
the number of samples, which depends on viewport resolution and dataset
classification.

41

Chapter 3

Parallel Construction of Scene
Hierarchies

Hierarchical data-structures play an important role in computer graphics to
reduce the complexity of common problems. Specifically, multi-resolution
methods are used to reduce the polygon count of large models [79], for
culling of not visible geometry [92], for the reduction of the light interact-
ion between different parts of a scene [95], for filtering [65], and so forth.
Among the most popular spatial multi-resolution representations are recur-
sive tree structures like quadtrees and octrees [180], k-D-trees [33], and
BSP-trees [76]. In most cases, the construction of recursive tree structures
is performed as a pre-processing step. If this step is required frequently, a
parallelization becomes quickly worthwhile. Furthermore, changes in the
transfer functions, color tables, or of the isovalues frequently require a fast
reconstructions (or re-evaluation) of the data-structures [93, 139, 231]. In
occlusion culling applications, animated objects cause a partial reconstruc-
tion of the scene representation [199].

In this chapter, we focus on the parallel construction of a hierarchical rep-
resentation of volume datasets. In particular, we present a method for the
parallel, asynchronous, and balanced construction of recursive tree struc-
tures [14, 29, 13]. Specifically, we apply the method on the construction
of octrees as a typical candidate for a recursive tree structure. However, all
techniques are also applicable to other recursive tree structures as well. Due
to the tightly coupled nature of the task, we chose an implementation on
shared memory systems (see Section 1.3 for a discussion of the possible ap-
proaches) which represent the current state of the art of parallel computing
architectures.

In the next sections, we briefly review octrees and some of their use on
computer graphics (Section 3.1). In Section 3.2, we introduce our new par-
allel octree construction scheme and parallel isosurface extraction, followed
by a discussion of three memory allocation schemes in Section 3.3 on dif-
ferent SMP computer architectures. Finally, we summarize these techniques
in Section 3.4.

42 Parallel Construction of Scene Hierarchies

3.1 Introduction

An octree is a hierarchical spatial data-structure to represent three-dimens-
ional volumetric data1 at different levels of details [180]. Starting with the
superblock – representing the whole dataset – each octant is decomposed
into eight child blocks. Each of these child blocks has half the size of the
parent in each dimension (Fig. 3.1). This decomposition is performed until
the lowest level is reached, where each block represents eight volumetric
sample values (voxels). These bottom level blocks are called cells and they
are identical to Marching Cubes cells, or cells in structured datasets with a
rectilinear grid topology.

Figure 3.1: Octree of a volume dataset [29]

Due to the decomposition, the size of each octant is a power of two.
Unfortunately, datasets usually do not have the exact size for this scheme
(see Table 3.1). Therefore, some octants are “empty“ – they do not intersect
with the dataset – according to the alignment of the dataset within the octree.
These “full octrees” result in wasted space allocated for empty octants. In
order to save this space, we use a branch on demand octree (BONO) [231].
The BONO approach enumerates only the octants – and their children – that
are not empty. Furthermore, BONO always tries to maximize the size of at
least one octant by aligning the dataset to the lower-left-front corner of the
octree [231].

Octrees are used in several applications to provide a multi-resolution
representation. Laur and Hanrahan presented an octree-based scheme for
hierarchical splatting [136]. Splats of different size and shape were used,
according to the standard deviation of the color values of the different oc-
tree blocks. Grosso et al. presented a parallel implementation of this algo-
rithm [93]. In their approach, a static parallelization of the octree construc-
tion was used, where up to eight threads were processing up to eight child
blocks of the superblock. Greene et al. used an octree and an image pyra-
mid for visibility queries in large polygonal environments [92]. Shekkar et
al. used an octree representation of a volumetric dataset to generate a block-
oriented polygon reduction scheme of its isosurface [191]. Levoy presented

1Other approaches also organize geometric data in an octree.

3.2 Parallel Octree Construction and
Isosurface Extraction 43

an approach to accelerate ray casting by using octrees [139], where coher-
ent (non-contributing) data can be rapidly skipped. A hierarchical approach
for cell-projection based volume rendering using a k-D-tree was proposed
by Wilhelms et al. [232]. Wittenbrink and Kim presented an octree-based
approach to accelerate permutation warping-based volume rendering where
subvolumes are decomposed using the octree [235]. Swift et al. combined
quadtree slices of a data volume to an octree [201]. This process starts at
leaf level of the quadtree and continues up to the root, where the combina-
tion of two slices can be performed in parallel. However, details on the ac-
tual parallel implementation are sparse. Kela and Wynn proposed a parallel
construction scheme for quad- and octrees, but the push-up of information
during that construction process was not supported [122].

We are using a parallel implementation of the BONO approach by Wil-
helms and van Gelder [231]. By storing the minimum and maximum values
of the voxels at each block of the octree, the blocks which do not contain the
isovalue in their minimum/maximum interval, can be rapidly skipped. After
selecting all contributing voxels (“surface voxels/cells”) of these blocks, the
isosurface is generated.

Note that octrees only depend on a rectilinear grid topology (structured
grids), not on a rectilinear grid geometry. Therefore, this approach is suited
– and implemented – for cartesian and non-uniform rectilinear grids, as well
as curvilinear grids [13].

3.2 Parallel Octree Construction and
Isosurface Extraction

In general, recursive tree structures are constructed in two stages; a split-
down of a parent into several children, and a push-up of the results of the
children back to the parent, i.e. the standard deviation, or – in our case – the
minimum and maximum voxel values.

The parallelization of a recursive split-down is a rather simple task. De-
pending on the workload and the available processors, a subtree could be
assigned to a thread. Usually, the second stage causes difficulties for a bal-
anced parallelization. Due to their recursive relationship, we need to main-
tain the parent/child information. On the other hand, a balanced paralleliza-
tion requires a decoupling of this structure. A simple distributed top-down
decomposition, as suggested for the first stage, only provides the top-down
information, where every parent knows its children. For a push-up, we also
need the bottom-up information – i.e., which block is the parent of the cur-
rent block and needs to be updated by the current block. In our approach,
we solve this problem by combining a central workload splitting job queue
and our newasynchronous push-up[14].

In Figure 3.2, we outline the general design of our algorithm. After ini-
tially adding the superblock of the octree to the empty job queue, the algo-
rithm starts to read the first job from the queue. If the size of this job, which

44 Parallel Construction of Scene Hierarchies

Last
unprocessed

child
?

Size >
Granularity

?

Yes

No

Job Queue

Super−
block

No

Yes

Asynchronous
Push−up

Split−down

Update Parent

Get
new
job

Add new blocks
to job queue

Figure 3.2: Flow of control of recursive tree construction [29]

is the block size of the octant, exceeds a certain granularity value, this block
is split into its children which are added to the queue. Thereafter, a new job
is read from the queue. If the block size is below the granularity value, the
processing thread proceeds sequentially with the octant and the associated
subtree. This differentiation of the block size granularities is necessary in
order to guarantee a balance between the parallelization overhead, and the
parallelization benefits.

....

block
j,0,0

block
j,0,l

block
j,m−1,0

tree level mutex j,m−1tree level mutex j,0

block j,0 block j,m−1

tree level mutex j

block j

.... block
j,m−1,k

Figure 3.3: Tree level mutexes. Note that the number of child blocks of an octree block can
vary significantly [29].

After processing the octant, we update its parent with the generated in-
formation (i.e., voxel value interval or standard deviation). Subsequently,
we check if this octant was the last child of its parent which did not com-
plete its computation. If this condition is matched, the processing thread
continues processing the parent block and the flow of control has returned
to the parent. Otherwise, the thread simply gets a new job from the queue.
We call this push-up semantic an asynchronous push-up (apu). Generally,
the update operation introduces a critical section to our algorithms which
needs to be protected with a mutex. In our approach, we use atree level

3.2 Parallel Octree Construction and
Isosurface Extraction 45

mutexwhich protects only one parent block and its child blocks, resulting in
a minimal obstruction for other threads (Fig. 3.3). This locking mechanism
is somewhat similar topredicate lockingor tree locking[88]. However, the
flow of update information is dictated by the control flow, which guarantees
that local updates do not corrupt data in parent nodes of the octree. Hence,
it is not required to lock other parts of the octree as well, which simplifies
the locking mechanism significantly.

Figure 3.4 outlines the flow of control of the asynchronous push-up.
Threadt0 is splitting the parentj into m child blocks, where threadt1 is
processing childj; 0, threadt2 is processing childj; i, and threadt0 is pro-
cessing childj;m� 1. After the completion of childj; 0 and childj;m� 1,
threadst0 andt1 get a new job from the job queue. Threadt2 processes the
last uncompleted child of parentj. Therefore, after completion of childj; i,
threadt2 performs the asynchronous push-up and continues with parentj.

Measurements of the time spent for mutex locking show that all potential
bottlenecks added by our algorithm – the mutex protected job queue access
and the mutex protected asynchronous push-up – turned out to be of no sig-
nificance. Up to 5% of the octree construction time was used for locking and
unlocking of the job queue mutex, while no measurable time was consumed
by the tree level mutexes. Comparing these numbers with the saved time
due to the parallel construction (see Section 3.3 and Figures. 3.9 and 3.10),
we consider this amount as insignificant. However, synchronization costs
of the job queue can become significant, if the number of threads gets much
higher. At no point during the computation do the threads stall because of an
empty job queue. Until the final phase of the octree construction, the queue
is always sufficiently filled, even with a large number of threads. However,
the construction process introduces heavy memory allocation which limits
the scalability of the algorithm. We will discuss this problem in detail in
Section 3.3.

......

Parent j

Child j,i Child j,m−1

Split−down

Async’
Push−up

Get New Job
From Queue

Thread t1Thread t0 Thread t2 Threads t0,t2

Get New Job
From Queue

Child j,0

Figure 3.4: Flow of control of the asynchronous push-up (apu) [29]

46 Parallel Construction of Scene Hierarchies

Parallel Isosurface Extraction

Following Wilhelms and Van Gelder [231], we store the minimum and max-
imum isovalues of the voxels of an octant at all levels-of-detail. There-
fore, we can rapidly decide if a subtree contains contributing, or relevant
cells (“surface cells”), thus limiting the number of voxels examined by the
Marching Cubes algorithm [142].

In our implementation, we recursively traverse the octree and select all
contributing cells represented by the octree leaf blocks. All selected cells
are assigned to active cell queues (one for each available thread) in a round-
robin fashion, where at most, the number of contributing cells differs by
one. After generating a balanced work distribution using this static load-
balancing scheme, each thread starts its own Marching Cubes to compute
the isosurface in the assigned contributing cells. To optimize cache-access,
the load-balancing scheme can easily be modified to assign cells which are
stored in close memory locations to one active cell queue, i.e. by assigning
cells of the same volume slice to the same queue. Due to the distributed
active cell queues, no additional synchronization overhead is introduced.

Note that the focus is on the construction of the octree, not on the iso-
surface extraction. Therefore, no time measured results on the isosurface
extraction are provided in Section 3.3. However, more details can be found
in [14].

3.3 Optimizing Memory Synchronization

Dataset/Size Octree #Nodes of #Nodes of #Contributing #triangles
Depth Full Octree BONO cells

A: Cavity dataset 7 2,397K 984K 43K 128K
191�191�191 100% 41% 2%
B: MRI Head 8 19,174K 2,044K 103K 859K

258�258�212 100% 11% 1%
C: Angiography 9 153,392K 9,917K 185K 1,554K
514�514�260 100% 6% 0%

Table 3.1: Dataset overview

As pointed out earlier, the tightly coupled nature of recursive octrees re-
quires shared memory systems for an efficient construction process. There-
fore, we base our discussion on the pthread implementations on three differ-
ent memory architectures of SMP systems, which provide this tightly cou-
pled, (distributed) shared-memory; two NUMA (Non-Uniform-Memory-
Access) systems (SGI Onyx2/Origin2000, SGI Origin200), and one UMA
(Uniform-Memory-Access) system (SGI Challenge). All systems show dif-
ferent synchronization behavior, due to their architectural differences.

The Origin200 is a four processor system which is split into two subsys-
tems with each having 512 MB of main memory and two 180 MHz MIPS

3.3 Optimizing Memory Synchronization 47

R10000 CPUs [135]. The memory and two CPUs of one subsystem are con-
nected via a hub chip, implementing a four port crossbar. The two subsys-
tems are connected via a “CrayLink” interconnect between the respective
hub chips. The peak performance of the interconnect is 1.44 GB/s2 Note
that the performance deterioration of dataset C on the SGI Origin 200 (in
contrast to the SGI Onyx2 and SGI Challenge) is due to swapping.

0

10

20

30

40

50

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset A: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

-5

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Memory acquisition

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

-1

0

1

2

3

4

5

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Memory access

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.5: Octree construction of dataset A usingstandard memory allocation. (a) shows
overall construction time, (b) shows the parallel efficiency of the octree construction, (c)
shows time spent for memory allocation, and (d) shows a zoom into the time spent for
memory access (the latter two are determined by profiling with 1, 2, 4, 8, and 16 CPUs
only) [13].

The Onyx2 used for our measurements has ten 195 MHz R10000 CPUs.
These CPUs are organized on two processor modules, with a total of five
node boards [187]. The first processor module contains four node boards,
while the second only contains one node board. Each node board contains
up to 512 MB main memory and two CPUs. These CPUs, the memory,
and the connection to other parts of the Onyx2 are interlinked via a hub
chip, implementing a four port crossbar. Two node boards are connected
via a six port crossbar, thus interlinking both node boards via a router to the
interconnection fabric of the processor modules. This interconnection fabric
interlinks both processor modules using a hypercube topology. Similar to
the Origin200, the peak performance of the interconnect is 1.6 GB/s.

In contrast to the previous systems, the SGI Challenge is an UMA archi-
tecture system. 3 GB main memory is connected with sixteen 195 MHz
R10000 CPUs via a system bus running at 1.2 GB/s [186]. Note that more
recent SMP systems do not vary much from the discussed systems. Basi-
cally, only the CPU performance has increased, while the overall crossbar-

2The SGI Origin200 is in a way a reduced, two-node board version of the SGI Onyx2/Origin2000 architecture.
Therefore, both systems have several common features and characteristics.

48 Parallel Construction of Scene Hierarchies

based system architecture (of the NUMA systems) is still state-of-the-art in
high-performance computing.

0
10
20
30
40
50
60
70
80
90

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset B: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset B: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset C: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset C: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.6: Octree construction of dataset B (a, b) and C (c, d) usingstandard memory
allocation. (a, c) shows overall construction time, (b, d) shows the parallel efficiency of
the octree construction [13].

Three different methods for the parallel allocation of memory are ex-
amined. These methods produce very different results on the three differ-
ent architectures. For the measurements3, we used three different volume
datasets (A, B, C) of different origin (Table 3.1). Dataset A represents a
velocity field generated by a computational fluid dynamics (CFD) simula-
tion, where two sides of a fluid filled cavity are heated differently. Velocity
magnitude is used as an isovalue, while the temperature is mapped as color
onto the isosurface. Dataset B is a MRI scan of a human head with spe-
cial focus on the cerebro-spinal-fluid (CSF) filled cavities. Dataset C is a
rotational angiography dataset of a fusiform aneurysm of an arterial blood
vessel in a human head. Both datasets from medical scanners (B and C) are
only slightly larger (two elements) than a valid octree block size (258 and
514). Therefore, the next larger size is chosen, resulting in huge memory
space savings of the BONO representation. More datasets were examined
in [29, 13], also including curvi-linear grid datasets.

On all datasets, our algorithms showed the same general behavior. How-
ever, we only look in detail at dataset A, and show general behavior of
datasets B and C.

3We measured the octree construction time with/on 1, 2, 4, 6, 8, 10, 12, 14, and 16 threads/CPUs, the detailed
profiling only on 1, 2, 4, (6,) 8, and 16.

3.3 Optimizing Memory Synchronization 49

3.3.1 Standard Memory Allocation

This initial technique uses the memory allocation functions (malloc or cal-
loc) of the C standard library (stdlib). The thread-safe versions of these
functions use a global locking mechanism to guarantee mutual exclusion,
usually denoted as a “big lock” [34]. Closer examination of the memory al-
location using malloc/calloc shows that this mechanism introduced a signif-
icant synchronization overhead (Fig. 3.5c, Figs. 3.5, and Fig. 3.6); approx-
imately 95% of the time spend for memory allocation is used only for syn-
chronization. While synchronization is scaling on the SGI Challenge down
to a constant overhead, memory allocation on the SGI NUMA-architecture
machines (Origin200 and Onyx2) deteriorates severely. This is due to the
need of synchronization of the kernel threads on each CPU of the NUMA-
architectures, which is significantly more expensive than the respective syn-
chronization on UMA-architectures. Note that memory access through-out
the whole virtual memory of all three architectures scales nicely, thus ex-
hibiting no varying memory latency between the memory levels.

0

10

20

30

40

50

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset A: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

-5
0
5

10
15
20
25
30
35
40

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Memory acquisition

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Memory access

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.7: Octree construction of dataset A usingprocess global memory pre-allocation.
(a) shows overall construction time, (b) shows the parallel efficiency of the octree construc-
tion, (c) shows time spent for memory allocation, and (d) shows a zoom into the time spent
for memory access (the latter two are determined by profiling with 1, 2, 4, 8, and 16 CPUs
only) [13].

3.3.2 Process Global Pre-allocation

The previous experiment showed that the standard thread-safe memory al-
location functions introduced an expensive memory-locking mechanism.
However, the pthread mutexes used in the experiments suggested that the
standard mutex locking mechanism is a faster, and therefore cheaper syn-
chronization mechanism. Consequently, we introduced an alternative mem-

50 Parallel Construction of Scene Hierarchies

0
10
20
30
40
50
60
70
80
90

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset B: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset B: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset C: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset C: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.8: Octree construction of dataset B (a, b) and C (c, d) usingprocess global mem-
ory pre-allocation. (a, c) shows overall construction time, (b, d) shows the parallel effi-
ciency of the octree construction [13].

ory allocation method where a huge chunk of memory is allocated before
entering the parallel region of our code. Later, we assign blocks of this
memory to the octants using a customized data-structure, similar to an array
of octants. The actual assigning action is protected by a data-structure local
mutex, where only one structure is used for the whole construction process.
Using this method, we obtained good scaling on the SGI Origin200 architec-
ture (Fig. 3.7 and 3.8). Memory synchronization in particular scaled down
to a fraction of the original amount. The SGI Onyx2 architecture showed
a different picture. While the four CPU Origin200 only needs one addi-
tional crossbar hop to the CPUs on the other subsystem, access to all other
CPUs of the Onyx2 requires up to two hops via the interconnection fabric,
thus increasing the synchronization overhead similar to the standard mem-
ory allocation scheme. On the SGI Challenge, increasing memory requests
of the threads increased the costs for synchronization. In contrast to mem-
ory locking using the standard library functions, global mutex locking does
not scale, resulting from increasing contention of the growing number of
threads. Similar to the measurements of the previous standard allocation
approach, memory access does scale without any measurable latency differ-
ence between the different memory levels.

3.3.3 Thread Local Pre-allocation

From the previous experiment, we learned that mutex locking using only
one global mutex can increase synchronization costs due to high contention.
Consequently, we need to reduce this contention by using multiple locks.
Due to the fact that all systems are shared-memory systems and that mem-

3.4 Summary 51

0

10

20

30

40

50

2 4 6 8 10 12 14 16
se

co
nd

s

#threads

Dataset A: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset A: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

-5
0
5

10
15
20
25
30
35
40

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: memory acquisition

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset A: Memory access

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.9: Octree construction of dataset A usingthread local memory pre-allocation.
(a) shows overall construction time, (b) shows the parallel efficiency of the octree construc-
tion, (c) shows time spent for memory allocation, and (d) shows a zoom into the time spent
for memory access (the latter two are determined by profiling with 1, 2, 4, 8, and 16 CPUs
only) [13].

ory access through the interconnect always scaled nicely, despite the inter-
connection technology (bus or crossbar), this approach uses the previous
pre-allocating data-structure for each thread. Therefore, specific memory
locking is not necessary.

Figures 3.9 and 3.10 shows the results of this approach. Memory allo-
cation time (including the synchronization overhead) could be reduced to a
fraction of the previous amounts on all three systems. It scales throughout
all CPUs, resulting in a balanced parallelization of the complete construc-
tion process. Furthermore, the measurements of the memory access show no
evidence of a varying memory latency, which is consistent with the previous
measurements.

3.4 Summary

In contrast to many statements in NUMA thread programming, cross-node
memory access introduced no measurable latency or bottleneck in our appli-
cation. At no time, did we find evidence of access penalties, once the mem-
ory access was leaving the lower hierarchy level of node board or processor
module local memory. However, this cross-node memory access latency
might become more significant using 32 or more CPUs on larger systems,
when synchronization costs are no longer hiding the increasing memory ac-
cess latency.

Yet, synchronization turned out to be expensive on NUMA architec-
tures. This potential bottleneck emerged during dynamic and parallel mem-

52 Parallel Construction of Scene Hierarchies

0
10
20
30
40
50
60
70
80
90

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset B: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(a)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset B: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(b)

0

50

100

150

200

250

300

350

2 4 6 8 10 12 14 16

se
co

nd
s

#threads

Dataset C: Octree construction

SGI Challenge
SGI Onyx2

SGI Origin200

(c)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

ef
fic

ie
nc

y

#threads

Dataset C: Parallel efficiency

SGI Challenge
SGI Onyx2

SGI Origin200

(d)

Figure 3.10: Octree construction of dataset B (a, b) and C (c, d) usingthread local memory
pre-allocation. (a, c) shows overall construction time, (b, d) shows the parallel efficiency
of the octree construction [13].

ory allocation. The necessary locking mechanism represented a significant
slow-down in thread-parallel applications. We discussed three different ap-
proaches which address this problem. The final approach using a thread
local pre-allocation scheme solved the problem on three different architec-
tures and ensured a scaling scheme for the construction of tree hierarchies.

Compared to the memory synchronization overhead, the mutex protected
job queue access represented no significant overhead. Nevertheless, using
even more threads, this access might introduce a more significant bottle-
neck. Therefore, future work will focus on a distributed job queue.

In this chapter, we presented a new algorithm for the parallel construc-
tion of recursive tree structures. It is used to compute hierarchical scene
organizations for occlusion culling queries, as described in the next chap-
ter. In particular the increasing size of medical volume datasets required the
parallel execution to ensure a timely construction of the data-structure. Note
that this algorithm is also suited for quadtrees, BSP-trees, or other recursive
tree structures, although it was only discussed for octrees.

53

Chapter 4

Visibility and Occlusion Culling

Hidden-line-removal and visibility are among the classic topics in computer
graphics [65]. A large variety of algorithms are known to solve visibility
problems, including the z-buffer approach [198, 36], the painter’s algorithm
[65], and many more. However, the size of polygonal datasets used in scien-
tific visualization has increased rapidly in the past decade, urging the need
to reject groups of polygons before entering the rendering pipeline. The
respective approaches are usually referred to as culling algorithms.

4.1 Introduction

By now, a large number of different algorithms has been published on the
topic of culling. A recent survey and taxonomy can be found in the ACM
SIGGRAPH 2000 course #4 [44], or in [57]. Here, we will only briefly
review a small subset of culling approaches. Basically, three different ap-
proaches can be distinguished:

� Back-face culling, which removes single polygons or groups of poly-
gons with a surface normal facing away from the view-point, thus ex-
posing the back-face of these polygons. This is the only culling tech-
nique currently supported in core OpenGL [238]. A more recent tech-
nique has improved the performance of back-face culling [132].

� Visibility culling is frequently used as the general term for visibility
and occlusion culling. Here we use visibility culling in the context
of the computation of exact visibility, which determines the visibility
status of a scene object.

� Occlusion culling, which – in contrast to visibility culling – computes
the occlusion status of a scene object, thus returning a list of objects
which are definitely occluded, leaving all other objects as potentially
visible, although they might be not visible. Occlusion culling algo-
rithms are referenced as conservative – if at least all visible scene ob-
jects are determined as potentially visible – and as non-conservative –
if some visible scene objects are classified as occluded.

54 Visibility and Occlusion Culling

Most exact visibility culling algorithms are based on the aspect graph
from computer vision [129, 169, 84] which compute the exact visibility of
the objects of a region of view-points. However, the high complexity of this
approach (�(n9), wheren is the number of polygons in the scene) eliminates
the practical use. Other approaches relax regional or exactness conditions to
reduce the computational complexity [46], or compute the visibility based
on specific occluders by calculating a shadow-frustum which occludes other
objects [47, 114].

Occlusion culling approaches in contrast avoid the costly computation
of exact visibility; instead, they compute whether objects are occluded,
which is a significantly cheaper operation, since heuristics and object ap-
proximations (i.e., bounding boxes) can be used to achieve efficient culling.
Occlusion culling algorithms can be classified in object-space and image-
space approaches, depending on if the occlusion is computed depending
on the view-points in object-space – frequently in a pre-process –, or if
it is computed for each frame in image-space. Approaches for architec-
tural walkthroughs are usually object-space approaches, which compute a
potential-visible-set (PVS) based on a decomposition of the model; each
room of the architectural scene is considered as a cell, and the visibility for
that cell is computed based on portals, connecting this cell to other cells
[117, 3, 2, 206, 205]. A variation of this approach computes the visibil-
ity through the portals in image-space [144]; the 2D screen-space bounding
box of the geometry objects of every neighboring cell is intersected with
the screen-space bounding boxes of the portal. If the intersection is empty,
the object is not visible. Hong et al. added an OpenGL depth buffer based
occlusion test to determine whether subsequent cells are occluded, if the in-
tersection is not empty [110]. Many other object-space approaches exploit
additional boundary conditions of city-walkthroughs [45, 237, 181], which
is also referred as21

2
D visibility, since view-points are usually limited to

street positions.
View-frustum culling is an object-space technique which is used in most

culling approaches prior to the actual occlusion culling due its low computa-
tional costs. Every scene object of a hierarchical scene organization is tested
for intersection with the view-frustum. Objects with no intersection can be
culled rapidly, since they are not visible. View-frustum culling was first in-
troduced by Clark [41], and later implemented as described by Garlick et al.
[80]. Unlike the usual CPU-computed view-transformation [80, 101], we
will later introduce a view-frustum culling technique exploiting OpenGL’s
selection buffer [22].

In contrast to the object-space approaches, image-space algorithms es-
tablish occlusion information for each frame by projecting the geometry
or approximations of the geometry into screen-space, usually after a view-
frustum culling step in object-space. Greene et al. used a pyramid of depth
values to trace visual contributions of the virtually rasterized silhouette of
the bounding box of scene objects, which indicate visibility [92, 89]. Zhang
et al. [243, 242] used a hierarchical screen projected map of pre-selected

4.1 Introduction 55

occluders to check if the scene elements are occluded, and finally, we pro-
posed to use avirtual occlusion bufferto trace visual contributions [22].
More details on this approach will be presented later on.

While most of the presented occlusion culling algorithms are software-
based, some are exploiting computer graphics hardware to accelerate the
occlusion queries [243, 22]. Full hardware support was already available as
a z-query in the not anymore available Denali GB graphics on the Kubota
Pacific Titan workstation [92], which detected changes in the depth buffer.
Two analyses and implementations of a simplified version of the hierarchi-
cal z-buffer algorithms were presented later in 1999 by Xie et al. [239]
and Greene [91]. A variation of the hierarchical z-buffer algorithm was
recently implemented in the “HyperZ-Technology” of ATI [159], which im-
plements are reduced resolution z-buffer on-chip to skip texturing of oc-
cluded pixels. In 1998, we proposed an occlusion culling extension to the
OpenGL rendering pipeline [21], which provides detailed quantitative and
qualitative information on the visibility. Also in 1998, Hewlett-Packard re-
leased the VISUALIZE fx-series of graphics subsystems which provided
the Hewlett-Packard occlusion culling flag (HP flag), indicating if geometry
(i.e., a bounding box) rendered in a specific occlusion mode would generate
a footprint in the depth buffer, indicating visibility [183]. This HP flag was
later used in virtual endoscopy application to speed up rendering [25], and to
evaluate model1 organization hierarchies [153], as we will report on later in
Section 4.6. Last year, SGI released the Visual PC [189], which introduced
the OpenGL instruments extension for occlusion culling queries similar to
the HP flag. Finally, we proposed an extension to the rasterizer stage of a
rendering pipeline to cull small triangles and pixel groups on top of “tradi-
tional”, HP flag-like occlusion culling [150, 151]. Earlier this year, the next
generation of HP graphics hardware, the VISUALIZE fx5 and fx10, was
released which also provide quantitative visibility information similar to the
functionality proposed by Bartz et al. [21]. Furthermore, they provide mul-
tiple, asynchronous occlusion queries which take previous, not necessarily
up-to-date depth buffer-based visibility information into account.

With all the different approaches (for a more detailed overview refer to
the recent survey on visibility in [44] or to [57]) the question remains which
algorithm is best suited for an application. Generally, object-space methods
lack sufficient performance if the polygonal models become too large, be-
cause the actual visibility query is too expensive. However, this situation
changes once topology information can be exploited, such as floor-plans of
building walkthroughs. BSP-tree methods [164, 76] are applied with good
performance in computer games, since a suitable hierarchical scene organi-
zation is inherently known due to the game design process [1]. However,
if no assumption on the scene is available and the polygonal complexity of
the scene is high, only image-space-based methods are able to provide suf-
ficient performance. Nevertheless, these methods frequently require hard-
ware support [183, 25] or introduce budget-oriented non-conservative tech-

1In the course of this chapter, we will use the termssceneandmodelin an interchangeable fashion.

56 Visibility and Occlusion Culling

niques [22, 127].
In the course of this section, we will describe the basic hierarchical oc-

clusion culling approach used by many occlusion culling algorithms, and
the specific version using the HP flag used in our applications (Section 4.2).
In Section 4.3, we discuss our efficient methods to perform view-frustum
culling using OpenGL. Our new software-based occlusion culling approach
based on OpenGL is presented in Section 4.4, followed by a brief discus-
sion of graphics hardware modifications necessary to provide a more de-
tailed and efficient occlusion culling mechanism (Section 4.8). In the fol-
lowing sections, we will describe our techniques how to efficiently traverse
the hierarchical scene organization (Section 4.5), how to generate effective
hierarchical scene organizations (Section 4.6), and finally how to optimize
the bounding volumes to improve the culling performance (Section 4.7).

4.2 Hierarchical Occlusion Culling

Most current occlusion culling approaches are using hierarchical techniques
to reduce the complexity of an occlusion query. Usually, a model or scene
is decomposed into objects and these objects are organized in a hierarchical
tree representation, i.e., octrees, orsloppy n-ary space partitioning trees
(snSP-trees) [22]. The advantage of this organization is that the number of
occlusion tests is now depending on the number of tree nodes, not on the
number of polygons in the model.

To clarify the terminology, we briefly introduce the terms later used to
describe a hierarchical representation. Generally, a polygonal model can be
decomposed into smaller parts, where this model organization can be either
hierarchical or non-hierarchical. We call each part of this decomposition a
scene entity. If information at different multi-resolution levels is required,
usually a hierarchical organization is chosen, where different scene entities
are combined into one parent entity which contains the whole information
of the associated scene entities, or only information with less detail (a lower
level-of-detail). This decomposition can be represented as a tree which is re-
ferred to asscene treeor scene graph. This tree contains two different kinds
of nodes (scene entities); inner scene tree node(or scene nodefor short),
and leaf nodes. Only the leaf nodes contains the geometry of the actual
model and the bounding volume (usually a bounding box) with respect to
the used decomposition method. In contrast, a scene node does not contain
any geometry of the actual dataset; it only contains the spatial boundaries of
the associated geometry nodes, thus the scene node is the implementation of
the abstract scene entity. In Section 4.6, three different approaches to gen-
erate a scene or model hierarchy starting from given models are discussed.

Commonly, the occlusion test starts with the root node of the scene tree
and descends to the leaf nodes, depending on the results of the individ-
ual tests. Clark suggested this approach as early as 1976 [41], where he
proposed to use view-frustum culling as a basic culling technique (see Sec-

4.2 Hierarchical Occlusion Culling 57

tion 4.3). An implementation of this technique was presented much later
by Garlick et al. [80]. Hierarchical view-frustum culling was adopted by
most culling approaches, while the basic difference arises in the additional
specific occlusion queries used (see the beginning of this section).

glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glEnable(GL_OCCLUSION_TEST_HP); {

render(object_bounding_volume);
glGetBooleanv(GL_OCCLUSION_RESULT_HP, ¬_occluded);

} glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
if (not_occluded)

render(object_geometry);

Table 4.1: Using the HP flag; modifications to depth and color buffer are disabled, the
HP occlusion mode is enabled. After rendering of the bounding volume, bounding the
actual geometry, the HP flag is queried if the bounding volume would be occluded. If it
is not occluded, the associated object geometry is rendered after enabling depth and color
modifications.

With the introduction of the HP flag [183] a fast and fully hardware-
supported occlusion test became available. The HP flag-supporting graphics
hardware provides an additional rendering mode (GL_OCCUSION_TEST_HP)
which traces the depth buffer for potential changes while rendering geometry.
If modifications to the framebuffer are disabled, the potential changes can
be traced without actually modifying the color or depth buffer and are avail-
able after a rendering pipeline flush (see also Table 4.1). However, if the
full geometry is used to test for occlusion, no saving can be gained, since
most of the rendering work (transformation, lighting, and rasterization) is
already done. Therefore, bounding volumes are used which approximate
the shape of a scene object. In most cases, a simple axis-aligned bounding
box (AABB) is used for this purpose. If this bounding box does not generate
a contribution to the depth buffer, all the contained geometry will not gen-
erate a contribution either. On the other hand, if the AABB does generate a
footprint in the depth buffer, the associated geometry might be visible (see
Section 4.7 for a more detailed discussion).

In [183], a very simple approach was proposed, where each object of the
scene was tested individually for occlusion. This approach was extended
in HP’s Jupiter large model rendering toolkit [101] (formerly known as Di-
rectModel) to apply CPU-based view-frustum culling and subsequently, the
HP flag-based test hierarchically to every scene node. Unfortunately, the
HP flag-based occlusion test is rather expensive, since it requires a costly
flush of the rendering pipeline2. Therefore, our HP flag based approach (see
Fig. 4.1) first evaluates the scene tree using the fast OpenGL-assisted view-
frustum culling (see Section 4.3). After depth-sorting of the remaining leaf

2According to Severson [185], the costs for one occlusion query are equivalent to the rendering of 190 triangles
of the size of 25 pixels.

58 Visibility and Occlusion Culling

Scene Tree

View−Frustum
Culling

Polygons
to render

Model Data

2 4 7 8

Depth Sorting
of Leaf Nodes

4 27 8
Occlusion
Culling

Leaf Nodes

Scene Nodes
!!
!!

!
!Not visible objects

Potentially visible objects

4 27 8

3 5 6 7

8
24 13

6

1 2 3 4 5 6 7 8

Field of View

1

5

Figure 4.1: Hierarchical occlusion culling

nodes of the scene tree and rendering of then front-most objects3 (since
they are almost always visible), HP flag-based occlusion culling is applied.
This approach requires a significantly lower number of occlusion culling
queries than the HP/Jupiter algorithm, thus reducing the occlusion culling
overhead substantially.

4.3 View-Frustum Culling

Most view-frustum culling implementations use the CPU to transform the
vertices of the object or a bounding volume into normalized view-space
(after (perspective) projection). These transformed vertices are then tested
if they are located inside of the view-frustum, represented by the unit box
[80, 173, 101].

In contrast, we use theOpenGL selection modeto check if the bound-
ing volume intersects with the view-frustum (see Fig. 4.2). The selection
mode is intended to identify objects rendered into a specifiable area of the
screen [238] to implement the picking operation in OpenGL. In our case,
the screen area of interest is the whole screen, since it is the image-space
representation of the view-frustum (Fig. 4.2b). The polygonal representa-
tions of the bounding volumes (as convex hulls) are transformed, clipped
against the view-frustum, and finally rendered without actually contributing
to the framebuffer. Once the hit buffer of OpenGL’s selection mode con-

3n is a very application depending parameter. For endoscopic applications, approximately 10% of the front-
most nodes are virtually never occluded. For MCAD models,n is usually smaller (approximately 5%), since case
elements frequently occlude the interior geometry.

4.4 A Virtual Occlusion Buffer Approach 59

Near
Plane

View−
point

Far Plane

(a) (b)

Figure 4.2: View-frustum culling: (a) all eight objects intersect with the view-frustum. (b)
Current view of the scene using the perspective view-frustum shown in (a); all eight visible
objects generate a hit in the selection buffer (box of near plane is also drawn).

tains a footprint from a bounding volume, this bounding volume intersects
the view-frustum. If the entire bounding volume resides within the view-
frustum – the hit buffer contains also footprints of all corners of the bound-
ing volumes –, all child nodes of the scene tree (if a hierarchical represen-
tation is used) are also located within the view-frustum, since the bounding
volume of the parent node is a convex hull of all child nodes. If the bounding
volume resides only partially within the view-frustum, we recursively test
the child nodes of the scene tree hierarchy. After the view-frustum culling
step all leaf nodes are tagged either aspotentially visible, if they are not
culled by the view-frustum culling, ordefinitely not visibleotherwise.

Occasionally, the bounding volume can completely contain the view-
frustum, resulting in no footprints in the hit buffer of the selection mode,
since the geometry of the bounding volume is not visible. This can be pre-
vented by testing if the closest bounding volume plane lies between the near
plane of the view-frustum and the view-point, or if the view-point lies within
the bounding volume.

4.4 A Virtual Occlusion Buffer Approach

4.4.1 The Virtual Occlusion Buffer

As pointed out earlier, the basic difference between most image-space oc-
clusion culling algorithms is in how they determine if an object (bound-
ing volume) is occluded. Here, we present an OpenGL-assisted occlusion
culling algorithm that uses avirtual occlusion bufferto trace footprints of an
object in the depth buffer [22]. The actual implementation on an SGI O2 and

60 Visibility and Occlusion Culling

an SGI Octane/MXE uses the OpenGL stencil buffer4 as virtual occlusion
buffer (VOB), since measurements revealed the best reading performance
compared to other buffers of the framebuffer. For our use as VOB, the sten-
cil buffer is recording the ID of the object passed through the depth buffer
test at that specific pixel, which indicates that this object is not occluded.
Specifically, we render the bounding volume into the stencil buffer, depend-
ing on its visibility based on the OpenGL depth buffer, and trace the 2D
screen-space bounding box of the rasterized object bounding volume.

Span read from the buffer

Figure 4.3: Double interleaved sampling scheme;1

n
of the 2D bounding box is read, with

n = 6 [22].

Reading access to the framebuffer is generally expensive, since it re-
quires high set-up costs to read from the OpenGL rendering pipeline. Con-
sequently, reading from the VOB is the most costly single operation of
this approach, which accounts for approximately 90% of the total occlu-
sion culling costs. If a model is composed of many objects, we require
many accesses to the VOB, resulting in a less efficient operation. Addi-
tionally, bounding volumes close to the view-plane often occupy a large
screen-space, thus requiring read operations from large portions of the VOB.
Overall, two measures limit the use of a VOB; the number of objects in-
creasing the number of occlusion queries, and the screen-space size of the
objects, increasing the size of the VOB area to be traced. While the first
limiting factor can only be controlled by the geometry/object assignment,
we address the second limitation by using a double interleaved, progressive
sampling scheme that reads spans of pixels from the VOB (see Fig. 4.3).
Basically, this scheme implements asamplingof the VOB, where1

n
of each

2D bounding box is read in each iteration. In other words, the algorithm
needsn iterations to fully read the entire bounding box.

Depending on the graphics subsystem, the reading set-up time, or the
actual reading time, is the dominating time, hence influencing the sampling
scheme. On the O2, reading ten spans required almost the same time as
reading all the pixels in one read operation, suggesting that the O2 graph-
ics system is dominated by the reading time. In contrast, the required
time on the Octane/MXE was significantly increased if multiple read op-
erations were employed, revealing a set-up time dominated scheme. This

4Intentionally, the stencil buffer is used for multi-pass rendering, such as limiting rendering to a certain area
of the screen.

4.4 A Virtual Occlusion Buffer Approach 61

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Models – (a,d) city, (b,e) garbage, (c,f) cathedral; upper row: views with oc-
clusion culling; lower row: overviews with (yellow) bounding boxes of occluded model
elements [22].

is not really surprising, since most high-performance graphics subsystems
are highly interleaved, and have distributed rendering engines, which re-
quire more synchronization for reading data from the rendering pipeline
than low-end graphics subsystems that are commonly not interleaved. For
these reasons, we read a lower number of larger chunks from the VOB on
the Octane/MXE than on the O2 to achieve a sufficient speed-up. Note that
sampling introduces a non-conservative heuristic which trades off quality
versus rendering performance. However, the later experiments showed no
apparent artifacts (even in animations), although small image differences
are present.

4.4.2 Analysis

We ran several experiments to evaluate the performance of the virtual oc-
clusion buffer approach. For a complete listing of the results, please refer to
[22].

All experiments were performed with four different scenes; an architec-
tural model of eight gothic cathedrals – arranged on a 3D array –, a city
scene, a forest scene to demonstrate quantitative culling, and – similar to
[243] – the content of a virtual garbage can of rather small objects. A hier-
archical model organization for each dataset was generated by manual tun-
ing of a model hierarchy generated by SGI’s OpenGL optimizer (see Sec-
tion 4.6). Frame-rate and culling rate are measured over a sequence of about
100 frames on an SGI O2 workstation (256 MB, R10000 @ 175 MHz), and

62 Visibility and Occlusion Culling

on an SGI Octane/MXE (896 MB, R10000 @ 250 MHz CPU)5.

model #triangles culling culling frame-rate speed-up
O2 MXE MXE/[fps] O2/MXE

cathedrals 3,334,104 91.3% 92.5% 5.3 4.2 / 12.6
city 1,056,280 99.8% 87.7% 7.7 4.8 / 9.8
forest 452,981 84.7% 80.5% 4.7 2.6 / 6.1
QOC 89.0% 83.0% 5.0 3.8 / 6.5
garbage 5,331,146 96.0% 38.2% 0.3 7.0 / 5.0

Table 4.2: Average performance of virtual occlusion buffer culling compared to view-
frustum culling only. Different culling rates are due to different sampling parameters. The
forest scene reflects comparison of quantitative occlusion culling (QOC) and VOB culling
to view-frustum only culling.

0.1

1

10

100

10 100 1000 10000 100000

M
P

ix
el

s/
s

Read area size, 2.5x [Pixels]

Stencil buffer Bandwidth

SGI MXE
SGI O2
HP fx6

nVIDIA Geforce2
nVIDIA Geforce2/64

ATI Radeon

Figure 4.5: Bandwidth of stencil buffer reads on various platforms: read performance is
measured by reading the constant total amount of 2.5 MPixels in a decreasing number of
single read operations of a growing read area.

The polygonal complexity and speed-up numbers are listed in Table 4.2.
The costs for view-frustum and occlusion culling vary with the different
model organization granularities; i.e., for the cathedral dataset, view-frustum
culling accounts for approximately 5% of the costs, occlusion culling (mostly
dominated by reading the stencil buffer) for approximately 20%, and ren-
dering of the as visible classified model elements for about 75% of the total
frame time. The distribution and total costs basically depend on the archi-
tecture of the graphics subsystem. A highly interleaved graphics system
like the InfiniteReality of SGI is likely to perform worse than the O2 for
this algorithm, due to the high set-up costs of reading from the framebuffer,
while single-pipeline low- and mid-end graphics are mostly limited by the
total amount read from the framebuffer. This effect can also be seen in
Figure 4.5, where the SGI Octane/MXE performs best for reading large ar-
eas from the stencil buffer, while it performs worse than the O2 for very

5Note that the datasets used for the SGI O2 were using triangle strips, while this was not possible for technical
reasons on the Octane.

4.4 A Virtual Occlusion Buffer Approach 63

small areas. Modern PC graphics subsystems show a similar behavior;
the high-end ATI Radeon and nVIDIA Geforce2/64 perform better read-
ing large parts, while their performance degrades faster than the mid-range
systems (nVIDIA Geforce2, HP VISUALIZE fx6) with smaller reading ar-
eas. However, it is interesting that the three years old SGI Octane/MXE
performs an order of magnitude faster for the largest read area, but also an
order of magnitude slower for the smallest read areas.

As a bottom-line, we can see that the PC graphics subsystems have lower
set-up costs and are therefore better suited for the VOB occlusion culling
approach. Nevertheless, the sampling parameters – sampling frequency and
how much is read from the framebuffer per sampling – of the occlusion
culling approach trade off visual quality and minimize set-up time, and need
to be parametrized for each graphics system.

4.4.3 Quantitative Occlusion Culling

In many complex scenes some of the objects are almost occluded; they
are barely noticeable, since only a few pixels contribute to the final image.
Furthermore, objects which were classified as potentially visible, are actu-
ally not visible, since the occlusion test is based on the bounding volume
(usually a bounding box) that is often much larger than the actual object
geometry. Unfortunately, most occlusion culling approaches do not provide
quantitative visibility/occlusion information; only the extensions proposed
in [21] (see also Section 4.8) and the new HP VISUALIZE fx5/10 function-
ality provides this data. However, our VOB-based approach also provides
some quantitative measures which can be combined to cull objects which
are virtually occluded, either because only their bounding volume is not oc-
cluded – in contrast to the actual geometry which is occluded –, or they are
contributing only a few pixels to the virtual occlusion buffer [22].

Each bounding volume of scene tree objects which generates a footprint
on the virtual occlusion buffer needs to be evaluated. For a perspective pro-
jection, we consider the size of its 2D bounding box relative to the view-
plane (first term in Equation 4.1) and the relative distance of the object
to the view-point (eye in second term of Equation 4.1). In other words,
QOC(Obj) of Equation 4.1 describes the relative contribution of the 2D
bounding box with respects to the distance of the object to the viewer.

QOC(OBJ) :=

8<
:

Size2DBB(Obj)
SizeV P

� D(Eye)+D(Obj)
D(Eye)

, if perspective view

Size2DBB(Obj)
SizeV P

, if parallel view

(4.1)

where Size2DBB(Obj) returns the number of pixels of the screen projec-
tion of the bounding box, SizeVP returns the number of pixels of the view-
plane, D(Eye) returns the distance between view-plane and view-point, and
D(Obj) returns the minimal distance between theObj and the view-plane.
For a parallel projection, the distance term in Equation 4.1 is simply re-
moved.

64 Visibility and Occlusion Culling

For each potentially visible object, we evaluate Equation 4.1. If the quan-
titative occlusionQOC(Obj) of ObjectObj is smaller than an user defined
threshold, we consider this object as occluded. Objects which have a larger
screen contribution of their 2D bounding box are consequently less likely
culled than objects with a smaller contribution of the 2D bounding boxes.
For perspective views, this heuristic additionally favors objects which are
farther away, since they are larger in object-space than closer objects with
the same projected contribution. During changes of the view-point (i.e., ro-
tations or translations) the farther, but larger (in object-space) objects are
more likely to remain visible than the closer, but smaller objects.

(a) (b) (c)

Figure 4.6: Alley of trees; bounding boxes of culled objects are marked yellow. 0.1% of
the pixels rendered with quantitative occlusion culling are wrong compared to the correct
image with (conservative) VOB-based rendering: (a) Quantitative occlusion culling (94%
culled), (b) conservative occlusion culling (88% culled), (c) differences of images without
boxes; white markers point to image differences (image is zoomed to the relevant area,
according to white rectangle in (b) [22].

Once the quantitative occlusion of an object (or its bounding volume)
is established, the question arise of how to deal with this object. Differ-
ent strategies for almost occluded objects are possible. First, as mentioned
earlier, the actual geometry is usually smaller than the associated bounding
volume. A partially not occluded bounding volume does not necessarily
mean that the associated geometry is not occluded. Therefore, culling of
the object may not have any visual impact. Second, even if a small frac-
tion of the actual geometry is not occluded, we will probably not see any
detail6. Using a lower level of detail representation of the respective object
geometry can be indicated, since no details will be noticeable.

Figure 4.6 shows visual results of our quantitative occlusion culling mode
using the first strategy, compared to the standard occlusion culling mode of
our algorithm (see also Table 4.2). A threshold of 100 (0.02% of view-
plane) was used on a view-plane of650 � 650 pixels. Average distance to
the objects is 10m; their bounding box projection covers on average 423
pixels; the view-point is located 0.002m behind the view-plane. 94% of the
geometry are culled using quantitative occlusion culling, compared to 88%
with VOB-based culling with full (conservative) VOB sampling. The pixel

6From a sampling theory point of view, the visible fractions of the actual geometry do not allow a reasonable
signal reconstruction of the projected geometry, due to severe undersampling.

4.5 Efficient Scene Traversal 65

difference between the quantitative (Fig. 4.6a) and the conservative Image
(Fig. 4.6b), thepixel error, is not larger than 0.1%.

4.5 Efficient Scene Traversal

The efficiency of image-space occlusion culling approaches depends on the
sequence by which occlusion is determined, since objects in the back of
the scene are very unlikely to occlude other objects. Greene et al. [92, 90]
used a BSP-tree front-to-back sorted scene to ensure efficiency. Zhang et al.
[243] select “good occluders” from a pre-selected occluder database based
on heuristics such as distance to view-point, object-space size, and number
of polygons (to reduce rasterization costs).

In our VOB-based approach [22] (see also the previous section), we per-
form front-to-back sorting of the scene objects along their smallest depth
value, which is the closest object vertex. These depth values are computed
during view-frustum culling which involves the transformation of the scene
objects (or their bounding boxes) into the view coordinate system. We also
proposed an interleaved scheme where the occlusion test is performed also
on the inner nodes of the scene hierarchy tree, once view-frustum culling
has determined those as potentially visible – and sorted these nodes front-
to-back by the smallest (closest) depth value of the nodes. The scene tree
is traversed in a breadth-first strategy, which also enables an early occlu-
sion culling of inner scene tree nodes, which contain several leaf nodes (and
inner scene tree nodes). With this interleaved scheme, temporal coherence
can be exploited. Previously as potentially visible determined nodes are
most likely also potentially visible from a view-point nearby. In contrast, a
previously as occluded tagged scene node might change its occlusion status;
therefore, if we only test the as occluded tagged nodes, we save time spent
on occlusion testing, while we guarantee that we do not cull scene objects
previously established as potentially visible. If the occlusion status of a
scene node changes from occluded to potentially visible, all its child nodes
have to be tested as well. Once the camera motion stops, or the view-point
is significantly different from the reference view-point which we used for
the initially computed occlusion status of the scene nodes, we re-compute
the occlusion status for the full scene tree.

Additional to time coherence, the interleaved scheme allows the assign-
ment of an occlusion budget to balance rendering and culling costs. If this
occlusion budget is used up or even overdrawn, culling is limited to cheap
view-frustum culling [22]. Other strategies are also possible, such as in-
cluding a second budget for rendering. If this budget is also overdrawn, the
remaining scene objects can be skipped completely from testing and ren-
dering. The resulting visual impacts can be significant, but as the remaining
objects are usually behind other objects due to depth sorting, it is likely that
the visual impact is limited. A similar approach was later developed by
Klosowski and Silva [127], where a sorting algorithm for cells of unstruc-

66 Visibility and Occlusion Culling

tured grid datasets was used to prioritize rendering.
The early HP flag-based approaches used a brute-force testing of all

scene elements with no specific object ordering [183]. We modified this ap-
proach to view-frustum culling of the complete scene hierarchy tree, sorting
of the remaining leaf nodes, and subsequent front-to-back occlusion testing
of the potentially visible leaf nodes [25, 153]. In contrast to depth sorting of
the scene objects, a projected screen size metric was used to prioritize object
rendering in the Jupiter large model rendering toolkit [101]. As it turned out,
the screen size metric is well suited for the selection of an appropriate level
of detail, but it is inefficient for occlusion culling; a front-to-back sorting
enabled the culling of up to two-times more geometry [197].

Further measurements on the occlusion status of leaf nodes indicated
additional potential for more efficient utilization of occlusion culling for
scenes with a high depth complexity in a cascaded manner. The approx-
imately 10% front-most leaf elements in virtual endoscopy scenes are not
occluded in most of the cases, hence they can be rendered without the costly
determination of their visibility or occlusion status. Furthermore, the 40%
farthest scene elements do not significantly change the visibility information
stored in the depth buffer of the graphics system, because they are almost oc-
cluded. Therefore, their occlusion status can be established without taking
their own occluder potential into account, which usually is a cheaper oc-
clusion query and can be exploited by the faster multiple occlusion queries
in HP’s new VISUALIZE fx5/10 graphics subsystems. However, the distri-
bution of the objects in a scene is very application dependent and needs to
be established individually. In particular data from mechanical CAD have
usually a deep visibility, while case elements occlude many objects of the
model.

Note that front-to-back sorting is a highly efficient scene traversal strat-
egy for visibility and occlusion culling7. In contrast to a frequent miscon-
ception however, it is not necessary. Only approaches similar to the painter’s
algorithm [65] (i.e., hierarchical polygon tiling [90]) actually do require a
front-to-back, or back-to-front sorting. In all other cases, other strategies
are possible [101, 197], but usually less efficient.

4.6 Hierarchical Model Organization

In the previous sections, we pointed out the need for a hierarchical model
organization, which is difficult to derive for general polygonal models. Sev-
eral papers on visibility and occlusion culling touch the topic of model orga-
nization. While some approaches require the designer to provide the model
organization [194, 243], others employ decomposition methods which are
application specific, such as a decomposition along the skeleton of a vol-

7In one experiment, we examined the culling efficiency with front-to-back sorting. We calculated the full,
or perfect occlusion potentialby rendering the complete model without any culling technique. Thereafter, we
traversed the model hierarchy to test for occlusion against the already rendered model. As it turned out, front-to-
back sorting achieves already 99.5% of the perfect occlusion potential on the investigated MCAD models.

4.6 Hierarchical Model Organization 67

umetric object [110], or a floor plan of a building [3, 206, 144]. How-
ever, these schemes cannot be applied efficiently to general models. Models
built in Computer-Aided-Design (CAD) systems already include appropri-
ate model organization information in the product data management system,
due to the design process which uses hierarchical notions like grouping and
replication.

A more general approach is to organize a polygonal model into regular
spatial decomposition schemes, such as BSP-trees [76, 164, 90] or Octrees
[92]. While these decomposition schemes produce good results on poly-
gonal models extracted by the Marching Cubes algorithm from uniform grid
volume datasets – which provide a “natural” decomposition on a Marching
Cubes cell base –, these schemes run into numerous problems on general
models. If a polygon of the model lies across a decomposition boundary, it
must be either split into several parts in order to produce a disjunct represen-
tation of the bounding entities, or handled in another special way. Splitting
polygons however, can increase the number of small and narrow polygons
tremendously.

Significant work on model organization has been published in the field of
collision detection. Methods based on oriented bounding boxes (OBB) were
explored by Gottschalk et al. [87]. A bottom-up approach for the construc-
tion of a model hierarchy is suggested in [9] in which nodes representing
small parts of the geometry are “merged” into higher hierarchy nodes. A
similar approach is used in [126].

In [22], the spatialization functionality of OPT’s OpenGL Optimizer
package [188] was used to generate model hierarchies automatically. How-
ever, our experience from these experiments showed that these model hi-
erarchies need to be tuned manually in order to get sufficient performance
and motivated the work described in this section [153, 154]. To measure the
decomposition quality, we use our modified HP flag approach, as described
in the last paragraph of Section 4.2. This approach interleaves the occlu-
sion culling tests of the bounding volumes (usually bounding boxes) and
the rendering of the respective geometry, if the bounding volume has been
established as potentially visible.

4.6.1 Polygon-based Hierarchical Bounding
Volume Optimization (p-HBVO)

The polygon-oriented Hierarchical Bounding Volume Optimization (p-HBVO)
method decomposes recursively a set of polygons into two model or scene
entities. The selection of the optimal decomposition planes, which separates
the model into two parts at each decomposition step is computed by evalu-
ating a cost function based on the barycenter of each polygon (triangle). At
each decomposition level, the individual polygons are assigned to exactly
one model entity of that level. Consequently, no polygons are split, hence
no new polygons are generated by this method.

Starting from the root node, at each decomposition step, the polygons

68 Visibility and Occlusion Culling

are sorted along all coordinate axes, where the barycenter of each poly-
gon serves as sorting key. Based on these three ordered lists, we evaluate
the potential decomposition planes along each axis for each entry in the
respective list by splitting the sorted list of polygons into aleft and right
part. In contrast to pre-defined decomposition planes of the median cut
scheme [120], we evaluate for each possible decomposition plane – de-
fined by the entries in the lists – a cost function which approximates the
costs of rendering the polygons of one of the two model entities, generated
by the respective decomposition plane. By minimizing this cost-function
over all possible decomposition planes, an optimal plane is obtained gen-
erating two new scene entities; one contains allleft�polygons, the other
one contains allright�polygons. The decomposition process terminates
when either the number of polygons, or the scene depth exceeds one of
the two pre-defined parameters:Max TrianglesPer DecompositionEntity
or Max DecompositionDepth. These parameters are specified by the user
and supplied at the start of the decomposition process.

This cost function is identical to one which has already been successfully
applied in ray tracing environments [163], since the objective is the same;
both algorithms traverse the scene graph in a similar way to determine vis-
ibility. The costs of a model entityH, with childrenHleft andHright, is
given by:

CH(axis) =
S(Hleft)

S(H)
� jHleftj+ S(Hright)

S(H)
� jHrightj (4.2)

wherejHj is the number of polygons within hierarchyH, S(H) the object-
space surface area of the bounding box associated with subtreeH, and
axis 2 fX; Y; Zg.

Overall, this algorithm generates well balanced scene trees with respect
to their polygon load. Furthermore, polygons of individual objects are de-
tected and clustered together. The highest culling performance was achieved
with finer decompositions, which usually requires more occlusion culling
tests, resulting in higher culling costs. If these culling costs are not compen-
sated by lower rendering costs, it results in an overall lower rendering rate
(see ventricular system in Table 4.3).

4.6.2 Octree-based Regular Space Decomposition (ORSD)

While the previous approach is able to handle arbitrary sets of polygons,
some data sources inherently generate regular decompositions which can be
exploited at much lower cost. Polygonal models extracted as isosurfaces
from volume datasets (i.e., ventricular system dataset) consist of triangles
which are arranged on uniform grid (see Section 1.2.1). The Octree-based
Regular Space Decomposition method (ORSD) exploits these natural de-
composition borders to generate a non-polygon splitting model decomposi-
tion.

4.6 Hierarchical Model Organization 69

After the construction of a minimum/maximum isovalue octree (or BONO
[231], see Section 3.2), ORSD selects all relevant (contributing) cells which
intersect with the isosurface. It counts the number of relevant cells (rel-
evant cell load or RCL, see also Section 5.3.2) for each octree block and
selects those octree blocks which are just below the specified RCL (their
parent nodes are still above the RCL) as leafs nodes. This criterion is only a
rough approximation of the actual number of extracted polygons, consider-
ing that each relevant cell represents between one and five triangles. In our
experience however, RCL turned out to be sufficiently accurate. Figure 4.7c
visualizes one of the generated scene trees, where the drawn bounding boxes
are bounding the actual geometry, not the respective octant volume.

Overall, ORSD is a simple but efficient decomposition scheme which
generates an adequate polygon load balance and bounding box sizes. As
shown in the results, the indirect evaluation method (RCL instead of num-
ber of polygons) does not adversely affect the occlusion culling perfor-
mance. However, ORSD is limited to regular grids, or to even rectilinear
grid datasets, if the scene entities need to be disjoint.

4.6.3 SGI’s OpenGL Optimizer (OPT)

SGI’s OpenGL Optimizer (OPT) is a C++ toolkit for CAD applications that
provides scene graph functionality for handling and visualization of large
polygonal scenes. The decomposition method realized in OPT is similar to
the construction of an octree; each model entity is split into eight equally
sized model entities. This process is repeated recursively, until a certain
threshold criterion for the iterated decomposition is reached. The octree-
based spatial decomposition is a simple and efficient scheme. However,
the OPT model organization mechanism decomposes space not by simply
bisecting edges of a cube, as in an octree, but by choosing decomposition
planes so that the rendering loads of the resulting parts are similar. As a
result, the amount of geometry in each model entity on each side of the cut-
ting plane is approximately the same. Polygons which are split due to the
decomposition are distributed to the respective model entities. The main
parameters that can be used to control the decomposition are hints for the
lowest and highest amount of triangles(trimin; trimax) in each model en-
tity at the leaf-level of the scene hierarchy. However, the decomposition
algorithm only tries to meet these criterion, but is not bound to it.

In general, OPT generates model hierarchies with a well-balanced poly-
gon load. However, the bounding boxes of the model entities are less suited
for occlusion culling applications, because the cost function determining the
model entities is obviously not optimized with respect to the volume or the
screen-space area of the bounding boxes. We observed that the right-most
branch of the scene tree frequently contained large subsets (bounding box
volume size) of the model, even in the lower tree levels.

70 Visibility and Occlusion Culling

4.6.4 Evaluating the Model Organization Quality

In this section, we discuss the efficiency of the decomposition algorithms
with respect to their occlusion culling-based rendering performance. All
measurements are performed on an HP B180/VISUALIZE fx4 graphics
workstation. The different polygonal datasets (see Table 4.3) represent typ-
ical scenarios of different application areas. Their scene trees only contain
individual polygons (triangles) in order to evaluate comparable scenes. Two
of the datasets are examined in more detail.

Ventricular System Cathedral City

Grid Type Uniform Unstructured Unstructured
Source MRI CAD Modeler
#Triangles 270,882 416,763 1,408,152
#Inner / leafs nodes):
p-HBVO 80 / 71 9 / 10 2722 / 2723
OPT 29 / 36 51 / 52 420 / 420
ORSD 6 / 28 n. a. n. a.
Frame-rates/[fps]:
No Culling 4.6 3.8 0.9
p-HBVO 12.3 12.4 14.0
OPT 13.6 7.8 11.8
ORSD 15.3 n. a. n. a.
Rendering rates/[%]:
p-HBVO 16.0 30.0 0.1
OPT 19.7 30.1 3.6
ORSD 22.4 n. a. n. a.
Occlusion Time/[ms]:
p-HBVO 30 4 54
OPT 16 27 33
ORSD 11 n. a. n. a.

Table 4.3: Model overview – as gold standard for the speed-up due to occlusion culling,
we show the frame-rate and rendering rates for the datasets with and without culling (view-
frustum and occlusion). ORSD requires MarchingCubes-generatedscenes, which are avail-
able only for the ventricular system. Occlusion time lists the costs required for occlusion
culling (no view-frustum culling).

Scene trees of different decomposition granularities are evaluated for the
respective costs of view-frustum culling, occlusion culling, and rendering
(in frame-rate) of the not occluded geometry. Here, we present only culling
and rendering performance on the scene trees with the best rendering perfor-
mance. Culling performance is expressed as rendering rate, which gives the
percentage of the geometry determined not occluded from the total model
geometry. More detailed information on the evaluation can be found in
[153].

4.6 Hierarchical Model Organization 71

(a) (b) (c) (d)

Figure 4.7: Cathedral and ventricular system bounding box hierarchies generated by (a,d)
p-HBVO, (b) OPT, (c) ORSD/OPT; the arts and pillars of the cathedral are well detected
by p-HBVO (a); OPT only used a regular spatial decomposition (b). ORSD and OPT
generated identical results for the ventricular system dataset (c) [153].

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90

F
ra

m
e-

ra
te

 (
fp

s)

Frame

Cathedral Model

p-HBVO
OPT

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90

R
en

de
rin

g
R

at
e

(%
)

Frame

Cathedral Model

p-HBVO
OPT

(a) (b)

Figure 4.8: Cathedral dataset, all frames of the path are shown; (a) frame-rate, (b) rendering
rate, which is the percentage of remaining geometry after occlusion culling [153].

Cathedral Dataset:

This dataset represents the interior of a gothic cathedral, designed with a
CAD system (see Table 4.3). Occlusion is limited to small parts of the
model, because a large share of the polygons are visible from most view-
points within the model. Figure 4.7a shows a very fine grain decomposi-
tion of the cathedral model using the p-HBVO approach which adapts very
nicely to the structures of the model, such as pillars and arcs. In contrast, the
decomposition generated by OPT (b) introduces very large bounding boxes,
which do not adapt properly to the actual geometry.

The p-HBVO approach performed best on this dataset (see Fig. 4.8).
This is due to the low culling costs, compared to OPT (see Table 4.3 and
also [153]). The bounding boxes of OPT require a significantly higher time
for occlusion culling compared to p-HBVO, which reduced the frame-rate
severely.

72 Visibility and Occlusion Culling

0

5

10

15

20

25

40 60 80 100 120 140

F
ra

m
e-

ra
te

 (
fp

s)

Frame

Ventricular System Model

p-HBVO
ORSD

OPT

0

5

10

15

20

25

30

35

40 60 80 100 120 140

R
en

de
rin

g
R

at
e

(%
)

Frame

Ventricular System Model

p-HBVO
ORSD

OPT

(a) (b)

Figure 4.9: Ventricular system dataset, all frames of the path are shown; (a) frame-rate,
(b) rendering rate, which is the percentage of remaining geometry after occlusion culling
[153].

Ventricular System Dataset:

The second dataset is a polygonal model of the ventricular system of the
human brain extracted from an MRI scan. We explore the dataset by mov-
ing through the lower part (Cisterna Magna) of the polygonal model. Most
of the model structures through-out the walkthrough are located within the
view-frustum, while the structures with the largest number of polygons (lo-
cated in the upper part or lateral ventricles) were not visible due to occlu-
sion. All polygons of this model are aligned on the uniform cell grid and are
of approximately the same size. All three adapted algorithms were able to
detect this “natural” decomposition boundary; only OPT generated approx-
imately 15% additional polygons due to splitting operation between the grid
points.

Figure 4.9 shows frame-rate and rendering rate of the evaluated algo-
rithms. The most interesting detail is the low amount of time consumed by
occlusion culling by ORSD, due to its coarse decomposition. The render-
ing rate of p-HBVO was approximately 25% better than the rendering rate
of the ORSD approach. However, the finer decomposition (see Fig. 4.7d)
introduced additional culling costs twice as much as for ORSD, resulting in
a lower frame-rate (see Table 4.3).

City Dataset:

The final dataset is an artificial model of a city with 400 basic building mod-
els with some interior, which contains most of the polygonal complexity.
Consequently, most of the polygons of this model are occluded. However,
only the p-HBVO approach was able to subdivide all the interior into in-
dividual subdivision entities, hence resulting in a large number of nodes, a
very low rendering rate, and high occlusion culling costs which were more
than compensated by the small amount of potentially visible geometry (see
Table 4.3 and Fig. 4.10). In contrast, OPT did not detect the interior objects

4.6 Hierarchical Model Organization 73

as well as p-HBVO; it used a coarse granular subdivision, which conse-
quently increased the rendering rate.

0

5

10

15

20

10 20 30 40 50 60 70 80 90

F
ra

m
e-

ra
te

 (
fp

s)

Frame

City Model

p-HBVO
OPT

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90

R
en

de
rin

g
R

at
e

(%
)

Frame

City Model

p-HBVO
OPT

(a) (b)

Figure 4.10: City dataset, all frames of the path are shown; (a) frame-rate, (b) rendering
rate, which is the percentage of remaining geometry after occlusion culling [153].

4.6.5 Summary

Overall, the adapted model organization approaches were able to generate
decompositions with faster rendering due to higher cull performance. This
was achieved by reducing culling costs or by reducing the rendering rate of
the dataset. On regular grid datasets, the basic ORSD approach produced a
model subdivision which performed best, mostly due to the low time spent
to establish occlusion or non-occlusion.

Generally, we observed that models with high occlusion do not require
very fine decomposition (ventricular system dataset, p-HBVO vs. ORSD).
On the other hand, a fine decomposition pays off if interior (thus completely
occluded) objects are clustered in a scene entity (city dataset, p-HBVO vs.
OPT). In contrast, models with low occlusion (cathedral dataset) do only
benefit from finer decompositions, if the culling costs loss are compensated
by the reduced rendering costs

Note that the p-HBVO approach originally built a binary scene tree. This
resulted in deeper trees, hence more intermediate model entities, which in
turn increased the time spent for occlusion culling significantly. Once this
binary tree was re-built into a quad-tree representation, we achieved a frame-
rate increase of approximately 20%.

In summary, hierarchical scene organization has a significant impact on
the occlusion culling (how much is culled) and rendering performance (how
many frame per second can be achieved). There is also a tradeoff between
culling performance and rendering performance. A highly refined decom-
position does not pay, if there is nosignificant smaller rendering rate (see
ventricular dataset; p-HBVO vs. OPT); in these cases, the higher occlusion
culling costs will consume all culling benefits.

74 Visibility and Occlusion Culling

4.7 Efficient Bounding Volumes

To reduce the complexity of interference tests (visibility queries in our case),
a simple polygonal representation of the object to be tested is used. In the
occlusion culling approaches previously introduced (and many other ap-
proaches in the various similar and related research fields, such as ray trac-
ing [86, 163], collision detection [213], and visibility culling [92, 243, 22]),
axis-aligned bounding boxes (AABBs) were used to approximate the ge-
ometric shape of the objects. However, in many cases this approximation
fills a much larger volume in object-space, and a much larger screen area –
once rasterized into screen-space – than the actual geometry. This results
in false positiveinterference results8, which can increase the computational
load significantly.

Other bounding volume primitives are used, such as bounding spheres
[226, 113], or oriented bounding boxes [175, 87, 9], where the spanning
axes of the bounding box are oriented according to the shape of the ob-
ject, thus generating a tighter approximation of the original shape than an
AABB. While OBBs perform better for collision detection than AABBs, the
benefits for image-based occlusion culling are significantly smaller. This is
mainly due to the fact that the rasterized screen-area of an OBB is still of
similar size as for an AABB. In 1996, Klosowski et al. [98, 126] proposed
a collision detection scheme using discrete orientation polytopes (k-dops),
which enabled faster collision tests than OBBs.k-dops are also used in
visualization systems to compute a level-of-detail in a multi-resolution rep-
resentation [7, 48]. Essentially,k-dops are an approximation of an object
by computing bounding planes of an object along k orientations (k/2 direc-
tions) [120]. This generates an AABB for a 6-dop, or an AABB where the
edges and corners are cut to the object surface using a 26-dop.

In this section, we explore the use ofk-dops for occlusion queries. They
enable a close approximation of the geometric shape of an object which in
turn generate a smaller number of false positives of occlusion tests, thus
reducing the rendering load.

4.7.1 Discrete Orientation Polytopes (k-dops)

A discrete orientation polytope (k-dop) is composed of k facets which are
determined by a set of k halfplanes, where two halfplanes at a time are
parallel to each other. The halfplanes in turn are determined by k normal
vectors – which determine the orientation – and a distance value. More
information onk-dops can be found in [125, 158].

Four different, potentially conflicting objectives need to be considered
for choosing an appropriate bounding volume primitive; (a) approximation
quality, (b) computational expenses, (c) rendering complexity, and (d) in-
terference complexity. For image-based visibility purposes, only (a)-(c) are

8A false positive occlusion test result determines an object as not occluded – based on its bounding volume –,
while in fact it is occluded.

4.7 Efficient Bounding Volumes 75

of interest, since interference computation is usually only meaningful in
object-space.

(a) (b) (c) (d)

Figure 4.11: Approximations of an object by four bounding volumes: (a) An axis-aligned
bounding box (AABB), (b) a sphere, (c) an oriented bounding box (OBB), and (d) ak-dop
(wherek = 8) [125].

Generally, the object approximation qualities of AABBs and spheres are
poor, since they disregard the actual geometric shape of the object; only
minimum and maximum values are considered. This results in empty re-
gions in particular at the edges and corners of the AABB, or the periph-
ery of the sphere (see Fig. 4.11a and b). An OBB or the convex hull of
the object in contrast provide a significantly better approximation quality
(see Fig. 4.11c), unfortunately at much higher computational expenses9. k-
dops in turn provide a sufficient approximation (see Fig. 4.11d) at reason-
able costs. In a way,k-dops are an extension to AABBs; the empty regions
at the corners and edges of an AABB are cut off by halfplanes of a 26-
dops, thus generating the tighter approximation. Next to the six halfplanes
to compute the AABB, this requires 12 halfplanes to cut off the edges, and
eight halfplanes to cut off the corners.

The computational expenses of ak-dop are comparable to the expenses
for an AABB. The computation of a 26-dop involves the dot-product of
each object vertex with the 13 vectors (26/2 directions, or 26 halfspaces)
which define the 26-dop: (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1),
(1,-1,0), (1,0,-1), (0,1,-1), (1,1,1), (1,-1,1), (1,1,-1), (1,-1,-1). Similar to the
minimum/maximum comparison for computing an AABB, this can also be
simplified for each differentk (see [125] for details). To construct the ac-
tual polygonal representation of the 26-dop, the 26 halfspaces are mapped
into dual space, where each halfspace is represented as a vertex, and a con-
vex hull is constructed from this vertices. The faces of the convex hull are
mapped back into primal space, as vertices – including the connectivity in-
formation – which are used to construct the polygons which represent the
26-dop.

Rendering complexity is usually measured in object-space triangles (geometry),
used to model the bounding volume, and image-space pixels, which cover
the screen-area of the rasterized triangles. In terms of geometric render-
ing complexity, an AABB or an OBB use only up to six polygons, while

9If the model design is in a fairly stable state, the computational costs for the computation of a convex hull
might be negligible. Frequent design updates, however, involve a significant share of costs for the re-computation
of the bounding volume. These costs can potentially dominate the design process.

76 Visibility and Occlusion Culling

a reasonable tessellated sphere, or a convex hull use much more polygons.
In contrast, ak-dop requires only up tok polygons; it therefore represents
a good compromise between the geometric complexity of an AABB and a
convex hull. However, the difference of geometric complexity is not rel-
evant, since the synchronization latency introduced by one HP flag-based
occlusion query hides the rendering amount for approximately 190 triangles
of 25 pixels [185]. More important for an image-based occlusion culling ap-
proach is the screen-area covered by the rasterized bounding volume, which
is quite large for AABBs, spheres, and also relatively large for OBBs. The
least screen-space is covered by a convex hull, which is as mentioned earlier
quite expensive to compute. Again, ak-dop is a good compromise which
occupies only a relatively small screen area and requires only a limited num-
ber of polygons (see Fig. 4.11d).

Overall,k-dops provide a good approximation quality at a low computa-
tional and rendering complexity, which makesk-dops an excellent candidate
for a bounding volume.

4.7.2 k-dops for Occlusion Culling

For our evaluation ofk-dops as bounding volume for occlusion culling, we
perform several experiments where 26-dops are compared with AABBs (or
6-dops). All experiments are performed on an HP J7000 workstation (4 GB,
four HP PA 8500@440MHz CPUs, only one is used) using a VISUALIZE
fx6 graphics subsystem.

model / #triangles / rendering rate(%) frame-rate (fps)
#frames #objects k-dops AABBs k-dops AABBs

Engine 150,248 59.7 73.7 4.5 3.8
41 149 48.6 64.5
Screw Driver 156,424 32.9 47.3 7.8 5.5
36 83 20.9 37.0
Racing Car 746,827 34.8 39.9 1.6 1.4
41 306 27.3 32.1
City 1,403,096 1.6 11.2 16.8 3.3
201 420 1.6 11.3
Angiography 1,817,731 2.8 3.0 11.3 10.7
1034 278 3.9 3.9

Table 4.4: Model overview: culling performance is shown as the average rendering rate
recorded over a sequence of frames. Rendering rate is the percentage of remaining
geometry after occlusion culling. Note that the triangle (upper row) and the object per-
centages (lower row) are given.

Table 4.4 shows an overview of the models used for the experiments10.
Several models from mechanical CAD (MCAD), a modeling system, and
from medical scanners of various sizes are used. Every model is stored in a
hierarchical tree representation.

10Rendering using OpenGL was not optimized for frame-rates. We used display lists of lit triangle meshes, but

4.7 Efficient Bounding Volumes 77

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

R
en

de
rin

g
R

at
e

(%
)

Frame

Engine Model

26-dops
AABBs

Figure 4.12: Engine dataset – the engine dataset shows a betterk-dop-culling performance
for frames where the camera is facing the outer hull of the engine (frames 0-6,15,16,24-40).
The final frames show measurements of close-ups into the dataset

For each of these models, we perform the HP flag-based hierarchical oc-
clusion culling approach as introduced in Section 4.2 with a standard full
scene tree traversal, including the depth-sorting of the leaf nodes (see Sec-
tion 4.5). The front-mostn leaf nodes of the leaf node list are rarely oc-
cluded, hence we render these nodes without any occlusion test. For each
model, we move through a list of arbitrary view-points, which represent typ-
ical view situations of the datasets, such as rotations, close-ups, and walk-
throughs of the geometry (angiography and city models only). The results
are accumulated and visualized in gnuplot diagrams.

Engine

The Engine dataset [100] is an MCAD model of a truck engine, after ap-
plying a cutting plane which removes half of the engine geometry, exposing
the interior engine parts [100]. The 149 individual parts are organized in a
tree hierarchy, where among other objects each of the four pistons and com-
bustion chambers are composed into one second level node of the hierarchy
(see Fig. 4.13b-d). The measurements are performed over a camera path of
41 frames of rotations and close-ups of the model.

On average, almost 40% of the geometry could be culled usingk-dops,
compared to only 26% using AABBs. Most of the additionalk-dop-based
culling takes place when the camera is facing the outer structure of the en-
gine, while most of the engine parts are visible when facing the interior part
on the clipped side (see Fig. 4.12). This behavior is caused by the fact that
most AABBs intersect through the occluding geometry of the exterior hull
parts (see Fig. 4.13a), while thek-dop bounding volumes approximate the
geometry much tighter (see Fig. 4.13b). Some of the combustion cham-
ber/piston parts for example are determined visible using AABBs, while
they are classified as occluded usingk-dops (see Fig. 4.13).

no triangle strips or vertex arrays.

78 Visibility and Occlusion Culling

AABB
k−dops

(a) (b)

(c) (d)

Figure 4.13: Engine model: (a) Intact outside view of Engine; the (red) AABB of a piston
is visible through the occluding parts; thek-dop is not visible. (b) Clipped view of Engine;
piston with k-dops (red). (c) Piston from engine with AABBs (blue), and (d) withk-
dops (blue).

4.7 Efficient Bounding Volumes 79

Screw Driver

AABB

(a)

(b) (c)

Figure 4.14: Screw driver: (a) Full dataset with (red) AABB of a motor part; thek-dop is
not visible. (b) Motor part with AABB (blue), and (c) withk-dop. (blue)

The screw driver datasets [49] represents a servo screw driver model
from an MCAD system [100]. Average culling performance is measured
over a sequence of 36 frames of rotations and close-ups. 83 components are
organized in a relatively flat tree hierarchy where its case is composed of two
parts, occluding most of the interior geometry. However, the axis-aligned
bounding boxes as bounding volumes frequently extend through the case
parts, resulting in a not occluded visibility status. Ifk-dops are used instead
as bounding volumes, the approximation to the actual geometry is much
tighter. This can be seen in a part of the screw driver (see Fig. 4.14), which
is determined occluded usingk-dops, and determined not occluded using
AABBs. The overall occlusion culling results can be see in Figure 4.15a,
where more than twice as much geometry can be culled usingk-dops (see
also Table 4.4).

Racing Car

The racing car is a complex MCAD dataset [100] composed of 306 individ-
ual car parts organized in a flat tree hierarchy [100]. The measurements are

80 Visibility and Occlusion Culling

0

20

40

60

80

100

0 5 10 15 20 25 30 35

R
en

de
rin

g
R

at
e

(%
)

Frame

Screw Driver Model

26-dops
AABBs

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

R
en

de
rin

g
R

at
e

(%
)

Frame

Racing Car Model

26-dops
AABBs

(a) (b)

Figure 4.15: (a) The screw driver dataset includes two case parts which cover most of the
geometry. (b) The racing car dataset; the final frames show measurements of close-ups into
the dataset.

(a) (b)

Figure 4.16: Racing car: (a) All car parts – in different colors – with the associated AABBs
(blue), and (b) with the associatedk-dops (blue).

performed on a camera path of 41 frames of rotations and close-ups.
On average, an additional 5% of the geometry was culled usingk-dops as

opposed to AABBs (see Fig. 4.15b). The major reason for the limited im-
provement usingk-dops is that thek-dops-based bounding volumes of many
car parts still intersect through the facing of the car, although the overlap-
ping volume is significantly smaller than with AABB-based bounding vol-
umes (see Fig. 4.16).

City

The city model is an artificial scene generated by a modeling system (see
Fig. 4.4a and d) [22]. All buildings have a very simple geometry, which
can be approximated quite well by ak-dop (see Fig. 4.17). Every building
contains some interior geometry, which increases the total polygonal com-
plexity significantly. The model hierarchy is generated based on a quadtree
scheme, which subdivides the model regularly. The camera follows a walk-
through path of 201 frames through the city, where the AABBs expose a
relative deep visibility.

Figure 4.18a shows that the determined occlusion status of the building

4.7 Efficient Bounding Volumes 81

(a) (b)

Figure 4.17: Building from city model: (a) with AABB (blue) and (b) withk-dop (blue).

objects change significantly while usingk-dops as bounding volumes; on
average, six times more geometry can be culled in comparison to an AABB-
based occlusion culling approach (see Table 4.4). The main reason for this
performance gain is that the geometry of many buildings is not visible from
most view-points, while the AABB of those buildings are visible. Thek-
dops which are approximating the shape of the building better avoid these
false positive results of the occlusion queries.

0

5

10

15

20

25

0 50 100 150 200

R
en

de
rin

g
R

at
e

(%
)

Frame

City Model

26-dops
AABBs

0

1

2

3

4

5

6

600 650 700 750 800 850 900 950 1000

R
en

de
rin

g
R

at
e

(%
)

Frame

Angiography Model

26-dops
AABBs

(a) (b)

Figure 4.18: (a) The city dataset exposes a large culling potential. However, only a limited
amount can be exploited using AABBs, while the geometry determined as visible can be
reduced to a 6th usingk-dops. (b) The angiography datasets does not reveal an additional
culling potential. AABBs andk-dops provide similar culling performance.

Angiography

The angiography model (see also Section B.4) is an extracted isosurface
of an arterial blood vessel from a rotational angiography scan of a human
head [31]. The isosurface of the original volume dataset is extracted us-

82 Visibility and Occlusion Culling

ing an octree-based MarchingCubes approach [13, 142], which generates a
large number of small triangles. For the camera path, we perform an en-
doscopic walkthrough of the arterial blood vessels of about 1000 frames.
The resulting culling data from a section of this camera path can be seen in
Figure 4.18b.

The objects in this model are composed from octants of a specific granu-
larity of voxels which contain the isosurface [25]. In many cases, they have
a cubic shape which is already well approximated by an AABB, hence no
significant improvement can be expected usingk-dops. Our measurements
confirm this consideration; less than 0.2% of the geometry can be addition-
ally culled usingk-dops in comparison with AABB (see Table 4.4). Over
the full sequence of more than 1000 frames, we save only 11 seconds.

4.7.3 Summary

In the past paragraphs, we presented measurements on different datasets
from various sources such as MCAD, medical scanners, and modeling sys-
tems. For most datasets, we achieved additional culling usingk-dops in
contrast to AABBs. As the major reason for the additional culling perfor-
mance, we identified the tighter approximation of thek-dop-based bounding
volumes. All increased culling performance also resulted in an increased
rendering performance measured in frame-rate, ranging from a 5.6% in-
crease (angiography model) to a 500% increase (city model).

Typical datasets from MCAD consist of interior model parts, i.e. en-
gine parts, and case elements that are occluding the interior parts. However,
AABBs frequently intersect the outer hull and cause a false positive occlu-
sion result, indicating visibility.k-dops approximate the geometry of the
model objects much tighter, thus reducing the number of false positive vis-
ibility hits. Nevertheless, if the occluding case elements enclose the model
objects too tightly, ak-dop-based bounding volume will still generate a false
positive visibility hit, as it happened with the racing car dataset.

Apparently, ak-dop-based occlusion culling algorithm does not provide
(significantly) better performance than AABB-based algorithms on March-
ingCubes generated polygonal models (see angiography model, Fig. 4.18b).
These kinds of models are composed of small triangles which we combined
into octree blocks which are well approximated by AABBs;k-dops are not a
significantly tighter approximation, thus (almost) no improved performance
can be gained. Furthermore, the endoscopy-mimicking camera path limits
the visibility already to a small amount of visible polygons. However, other
experiments with exterior camera paths (and other MarchingCubes gener-
ated models) – which are not documented here – showed that almost no
additional culling performance can be gained withk-dops.

Finally, the angiography model showed that the additional polygonal
complexity of thek-dops is negligible, since every occlusion culling query
using the HP flag requires approximately the same time as the rendering of
190 triangles of a screen size of 25 pixels [185], which is much more than

4.8 Hardware Support for Occlusion Culling 83

needed for a 26-dop.

4.8 Hardware Support for Occlusion Culling

There is a long “tradition” for hardware support to solve the visibility prob-
lem in computer graphics. Most important is the z-buffer approach [198, 36]
which solves the hidden-line or hidden-surface problem. Az-queryof the
Denali GB graphics on the Kubota Pacific Titan workstation was used by
Greene in the hierarchical z-buffer approach [92]. Here, we outline two
extensions to graphics subsystems to provide fast and detailed information
on the occlusion status of objects in a computer graphics scene. While the
first extension provides support for quantifying occlusion of an object, the
second extension enables culling of small triangles and pixel groups on top
of a standard occlusion culling approach. For more details on the hardware
implementations, please refer to [21] and [152, 151].

render

next

Object
geometry

Rasterization
Geometry

transformation

Object
bounding
volume

Y

occluded
?

N

Framebuffer

Occlusion Culling

Figure 4.19: Graphics Pipeline with Occlusion Culling; The bounding volume of an object
is transformed and rasterized (without actually contributing to the framebuffer). Occlusion
information is generated in the rasterizer, during the depth test.

4.8.1 Hardware Support for Quantitative Occlusion Queries

The main source of performance problems of software-based occlusion culling
algorithms like the hierarchical z-buffer [92] or virtual occlusion buffer [22],
is the framebuffer-like design of the z-buffer. Most of the effort is spent
searching for the changes due to non-occlusion11, while this information can
be easily obtained by directly catching the write enable signals of the depth
buffer test, like the HP flag [99], theOcclusion Unitby Bartz et al. [21], or
more recently, the SGI instrument extension of the Visual PC [189]. In con-
trast to the z-buffer, this information is data-sensitive – the actual changes
are listed as results of the query – and straightforward to process. However,
the provided information lacks details about where and how much of an ob-
ject is visible. This information is essential to determine how to deal with

11In the case of the hierarchical z-buffer, additional significant effort is spent updating the z-pyramid [103].

84 Visibility and Occlusion Culling

partially occluded objects. In Section 4.4.3, we introduced quantitative oc-
clusion culling, which depends on quantitative information on the visibility
to decide if a fully detailed object is rendered, or a coarser level-of-detail of
this object is chosen. To provide this quantitative information, we proposed
an extension to the graphics subsystem, theOcclusion Unitembedded in the
OpenGL pipeline (or any other rendering pipeline) [21]. A similar function-
ality is implemented in the recent VISUALIZE fx5/fx10 graphics subsystem
of Hewlett-Packard. Figure 4.19 shows the modified graphics pipeline. The
object geometry is rendered, depending on the occlusion status of the asso-
ciated bounding volume.

(a) (b)

Figure 4.20: A rasterized box: (a) shows a visual representation of the pixels counted by
the Projection Hit Counter(orange), while (b) shows the not occluded pixels behind the
tree objects as counted by theNon-Occlusion Hit Counter(yellow).

The core of the extension are two features which provide counters to
quantify the not occluded parts of the tested objects, and one extension
which enables the adaptive decomposition of the occlusion sensitive areas.

� TheProjection Hit Counter (PHC) counts the number of pixels of the
projection of the scan-converted object to be rendered. Projection hits
together with non-occlusion hits can provide information about how
much of the projection of an object is not occluded (see Fig. 4.20a).

� TheNon-Occlusion Hit Counter (NOHC) is used to quantify all not
occluded pixels of the scan-converted object. This provides simple
analysis of the non-occlusion hits; how many and on which area of the
viewport (Multiple Occlusion Tiles, see below) (see Fig. 4.20b).

� With Multiple Occlusion Tiles, the complete viewport can be lim-
ited to smaller portions, or refined into a hierarchy of tiles. Alter-
natively, multiple occlusion tiles can split the area of interest into a
multi-resolution non-occlusion hit representation to run a hierarchy of
occlusion tests (i.e., a quadtree-like representation of occlusion in a
given model (see Fig 4.21)). Multiple occlusion tiles can also be used
to determine the visibility of portals in a PVS-like approach [144].

4.8 Hardware Support for Occlusion Culling 85

This new functionality modifies the quantitative occlusion culling Equa-
tion 4.1 which now computes the actual relative contribution to the frame-
buffer, as defined in Equation 4.3 (or only the first term of Equation 4.1 for
the perspective view case).

QOChw(Obj) =
NOHC(Obj)

PHC(Obj)
(4.3)

Alternatively, the new ratio can be multiplied with the previous Equation 4.1,
if depth and viewport size are of interest. Depending on the computed value,
an appropriate rendering strategy can be chosen.

t0

t1

t2 t3

t4

t5 t8

t6
t9

t10 t11

t12

t7

Figure 4.21: Quadtree of occlusion tiles t0..t12 is used [21].

The information on the occlusion status – which is returned via an OpenGL
data buffer – of an object contains the number of not occluded pixels of the
object (provided by the NOHC), and the number of rasterized screen pix-
els of the object (provided by the PHC, see Fig 4.20a). The data buffer
itself is organized according to the defined occlusion tile arrangement (i.e.,
a quadtree as in Fig. 4.21); one hit record is generated for each available
occlusion tile with a non-occlusion hit. If a hierarchical organization is used
(i.e., a quadtree), the returned hit records are organized in the same hierar-
chy. Furthermore, the position of the not occluded pixels is given as a screen
bounding box of minimum and maximum screen coordinates (clamped to
the occlusion tiles), and the minimum and maximum depth values. In a
detailed information mode, a list of the specific not occluded pixels can be
queried. The API’s access to the information is managed in a similar fash-
ion like the OpenGL selection buffer, which provides information up to an
allocated limit for picking hits in OpenGL. For details on the API specifica-
tion and on the hardware implementation, we refer the interested reader to
[21].

4.8.2 Visibility Driven Rasterization

In recent years, memory bandwidth and access problems have emerged as
a major challenge for computer graphics hardware.Richer pixeloperations

86 Visibility and Occlusion Culling

Triangle
Culling

Pixel Group
Culling

render

next

Visibility
Driven

Rasterization
Geometry

transformation

Object
bounding
volume

Object
geometry

Y

occluded
?

N

Framebuffer

Visibility
Mask

Occlusion Culling

Figure 4.22: Graphics Pipeline for Visibility Driven Rasterization; The visibility mask is
set during rasterization of the bounding volume. If the object is potentially visible, the
information in the visibility mask is exploited for the culling of triangles (trivial reject I &
II) and groups of pixels.

[124], such as multi-texturing, per-pixel shading, or advanced filtering tech-
niques have even increased the performance requirements for this memory
bottleneck. While most approaches to reduce the bandwidth requirements
(such as mesh compression and reduction) only address the geometric or
object-space complexity, occlusion culling also reduces the per-pixel com-
plexity, hence also accesses to the depth buffer or other entities of the frame-
buffer. Most occlusion culling approaches only cull on object level (see
Section 4.2), where objects are usually composed of several hundreds, or
thousands of triangles. While this culling operation is quite effective, a sig-
nificant culling potential still remains to be exploited on triangle and pixel
level. In this section, we outline a modification to the rasterizing stage in-
side of a graphics subsystem which reduces the remaining pixel load on top
of a standard image-space occlusion culling algorithm. For a detailed pre-
sentation of the approach, including the hardware modifications, we refer
the interested reader to [150, 152].

The core of visibility driven rasterization (VDR) is a two-levelvisibility
mask, which collects coverage (visibility) information during rendering of
a set of polygons – i.e., an AABB, ak-dop, or any other kind of hull of the
current object. This information is later exploited when the actual object
geometry is rendered, possibly using richer pixel operations (see Fig. 4.22).
The visibility mask itself is implemented using either a large register file or
SRAM within the rasterizer, on-chip. Its actual size is a tradeoff of storage
(chip real estate) and resolution (culling efficiency). A full resolution visi-
bility mask of a viewport of1024�1024 pixels would require an unrealistic
128K Bytes storage, while a low resolution visibility mask (i.e.,4 � 4 en-
tries) misses most of the culling potential. Each of its entries is denoted as
a visibility mask tiles(VM tile), where each VM tile represents a viewport
area within the visibility mask. In a full resolution visibility mask, a VM
tile would represent one viewport pixel; in a4 � 4 visibility mask, a VM
tile represents a256 � 256 pixels viewport area (assuming a1024 � 1024
pixel viewport). The second level of the visibility mask combines several

4.8 Hardware Support for Occlusion Culling 87

(a) (b)

Figure 4.23: Four wheel hubs of a cotton picker model in aVisibility Mask: (a) Two of
the wheel hubs are partially occluded by the front wheel hubs. (b) The culled triangles of
the partially occluded wheel hubs are colored in red, the culled pixel groups are colored in
yellow. The black grid indicates the applied two-level visibility mask [151, 150].

VM tiles to agroup of VM tiles. In our example of four wheel hubs from a
cotton picker model, we show a two-level visibility mask, where4� 4 VM
tiles are combined to a tile group (see Fig. 4.23).

After the visibility information of an object is collected, its triangles are
only rendered if they pass two occlusion tests. The first test – trivial reject
I – culls triangles which are located within a single occluded VM tile; the
second test – trivial reject II – culls all triangles which are located within a
single occluded VM tile group. In Figure 4.24a, all polygons except triangle
B would be culled due to trivial reject II, if all four tile groups are completely
occluded in the visibility mask; all polygons emerge over more than one VM
tile, therefore no polygon is culled due to trivial reject I.

In addition to triangle culling, groups of pixels – based on the VM tiles
of the visibility mask – are culled, if the respective VM tiles are completely
occluded. In Figure 4.24b, a partially occluded triangle overlaps three tile
groups; two of the tile groups are completely occluded, one is only partially
occluded. All pixels of the triangle which are associated with occluded VM
tiles are culled due to the pixel group culling.

In [152, 151], we performed several experiments to evaluate the appro-
priate resolution of the visibility mask, based on the different VM tile sizes.
As it turned out, sizes of16 � 16 (512 Bytes SRAM) or32 � 32 (128
Bytes SRAM) are of a high practical value. Up to 40% of the remaining
triangles can be culled in addition to standard view-frustum and occlusion
culling. Additionally, between 40% and 55% of the remaining pixels can be
skipped. This results in a significantly reduced rasterization load, which in
turn reduces the required bandwidth tremendously, and potentially doubles

88 Visibility and Occlusion Culling

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!!
!!!!!
!!!!!
!!!!!
!!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

B

D

Tile
group

A
C

VM Tile
Visible VM tile

Occluded VM tile
&&&
&&&
&&&
&&&

!!!
!!!
!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!

&&

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&

(a) (b)

Figure 4.24: (a) Four tile groups; each VM tile represents the area ofn �m pixels on the
screen. The visibility information of a tile group (16 VM tiles,4� 4) is stored in one entry
of the visibility mask. (b) The triangle covers several non-visible VM tiles of umpteen tile
groups [151, 150].

the frame-rate.
The main advantage of the visibility mask hierarchy (measured by the

second triangle test (trivial reject II)) is the broadening of the effective VM
tile size range, which is important to reduce the dataset dependency of the
VM tile size.

4.9 Summary

Compute
Bounding
Volumes

Hierarchial
Model

MCAD
Models

Model
DecompositionPolygons

Object
Bounding
Volumes

Model
stream

Bounding
Volume

stream

Figure 4.25: Occlusion Culling Pipeline: Preprocessing of the polygon data to generate a
hierarchical model representation, and the respective bounding volumes.

In this chapter, we described multiple, hardware- and software-based
techniques which are combined into a hierarchical visibility and occlusion
culling pipeline. This pipeline is split into a preprocessing step (see Fig. 4.25)
and an interactive culling step (see Fig. 4.26) which performs the actual
culling, where hardware-based techniques replace the occlusion culling stage
of the culling step.

If interactive performance is required for large polygonal models and
no special assumptions are available to define a specific optimized occlu-
sion culling approach, graphics hardware support is necessary. However,

4.9 Summary 89

Y

occluded
?

NHierarchical
Model

Traversal View−Frustum
Culling

Occlusion
Culling

next

Rendering
Model
stream

Bounding
Volume
stream

Figure 4.26: Occlusion Culling Pipeline: Interactive part of the occlusion culling pipeline.
The model is hierarchically traversed; the bounding volume of each traversed node is tested
for intersection with the view-frustum, and – if visible – tested for occlusion.

we also showed that a hardware-accelerated occlusion culling approach still
leaves space to improve the rendering performance. Specifically, we in-
troduced techniques for efficient scene traversal, techniques to derive an
efficient hierarchical organization, and bounding volume primitives, which
perform better than the standard axis-aligned bounding boxes. The powerful
combination of these methods enables a highly effective occlusion culling
framework for arbitrary polygonal scenes.

90 Visibility and Occlusion Culling

91

Part II

Applications of Large Model
Visualization

93

Chapter 5

Applications in Virtual Medicine:
Virtual Endoscopy

In this chapter, we introduce the VIVENDI system for virtual endoscopy
[25] which uses several techniques presented in the previous chapters. Ap-
plications of VIVENDI are presented in Appendix B.

The data used for VIVENDI are computed by medical scanners, such
as Computed Tomography (CT or CAT scanners), Magnetic Resonance To-
mography (MRT or MR scanner), rotational biplane X-ray (or rotational
angiography), 3D Ultrasound, Positive Emission Tomography (PET), and
many more. These data acquisition techniques are described in Appendix A.

5.1 Introduction

Minimally-invasive procedures are of increasing importance in medicine be-
cause they have less deleterious effects on the patient. In particular, these
procedures are used in gastroenterology, surgery, neurosurgery, radiology,
and many other fields. However, several drawbacks are associated with
minimally-invasive procedures. They are usually very unpleasant for pa-
tients, they are expensive (although they are still cheaper than “traditional”
open surgery), and some areas of interest cannot be reached by the endo-
scope or catheter (due to folds and plaits). Especially in (neuro-) surgery,
these procedures lack the fast access in case of serious complications, such
as strong bleeding. Therefore, careful planning and realization of these pro-
cedures is essential, in order to avoid such complications. This problem
aggravates, because handling and control of many of these endoscopes is
very difficult, mainly due to limited flexibility of and limited field of view
through the endoscope, a very limited depth perception, and the sensitive
nature of the brain tissue.

In contrast, virtual endoscopy is a convenient alternative. It is based
on a 3D scan of the respective body region. Examples for these scans are
CT (Computed Tomography) scans of the abdominal area, MRI (Magnet
Resonance Imaging) scans of the head, or rotational angiography of blood
vessels at the skull base. Based on the resulting volumetric data, the organs

94 Applications in Virtual Medicine: Virtual Endoscopy

of interest are visualized and inspected from interior (“endo”) view-points.
Depending on the original endoscopic procedure, which is mimicked by
virtual endoscopy, different goals can be achieved. These goals range from

� teaching: providing unusual insights into the anatomy of living pa-
tients,

� diagnosis: inspecting organs for (shape) defects, indicating unusual
organ geometry,

� intervention planning: providing insight into the potentially compli-
cated and non-standard anatomy of the patients and the individual or-
gan location, and

� intra-operative navigation: currently, the position of a “real” endo-
scope is tracked by an infrared-based 3D navigation system and mapped
into the image stack acquired previous to the operation. With virtual
endoscopy, this position and orientation information can be exploited
to provide a coupled visualization of optical and virtual endoscopy. In
particular the virtual endoscopy can provide information which is not
available to the optical endoscope, due to the limited flexibility and
field of view.

The next sections review related work in the field of virtual endoscopy
(Section 5.2), and discuss the VIVENDI system for virtual endoscopy (Sec-
tion 5.3). Finally, several virtual endoscopy applications that are conducted
with VIVENDI are presented (Section B.1- B.4).

5.2 Related Work

Research on virtual endoscopy is one of the most active areas in virtual
medicine. In this section, we briefly introduce some of the related, published
work in the field. The various developed methods of virtual endoscopy have
been applied to virtual colonoscopy [218, 110, 134], bronchoscopy [219,
63, 171], ventriculoscopy [6, 27], and angioscopy [52, 32, 85, 31].

Different rendering techniques are used to provide sufficient visual qual-
ity and/or interactivity. Standard graphics hardware is used to render surface
models [220, 143, 110, 25], extracted with the Marching Cubes algorithm
[142]. However, the high geometric complexity of the extracted organ mod-
els exceed the interactive rendering capabilities of most of these hardware
accelerators, thus requiring either high-end systems [110, 220], algorithms
to reduce the rendering complexity [25], or to relinquish interactive perfor-
mance [32]. In contrast, volume-rendering techniques are used, partially for
better visual quality, partially for interactive speed [190, 109, 52, 241, 85].
Unfortunately, interactive speed has always compromised visual quality,
general applicability, or flexibility. In [190] and [109], key-framed ani-
mations are generated offline, which frequently leads to the time-intense
refinement of the key-framed animation. You et al. used a 16 processor

5.3 VIVENDI System 95

SGI Challenge for parallel volume-rendering of isosurfaces [241, 221]. In
contrast, Gobetti et al. used the 3D texture mapping hardware abilities of
high-end graphics systems for volume rendering [85]. However, the lack
of shading reduced the visual quality significantly1. Furthermore, the size
of the texture memory limits the size of datasets severely, while swapping
techniques like bricking reduce the frame-rate. The Navigator software of
General Electric uses isosurface ray casting with approximately one frame
per second. Even if the performance of the 1996 results has significantly
improved, it hardly can be viewed as interactive [52]. A mixed technique
is used in [102], where a variation of template-based ray casting [240] pro-
vides visibility information later used for MarchingCubes-based polygonal
rendering. Another variation was recently presented in [225], where six of-
fline generated volume rendered movies were combined into a cube map
to provide interactive rendering speed on low-end PCs similar to Chen’s
QuicktimeVR [38].

Besides rendering, the used navigation paradigm determines the usability
of a virtual endoscopy system. Many systems [218, 109, 143, 174, 32] use
a planned or automatic navigation, which generates an offline animation of
a fly-through after specifying a camera path. This simple scheme reduces
the interaction to a VCR-like functionality, requiring a costly refinement of
the camera path (and of the animation), if the structure of interest is not well
covered. A variation of the planned navigation is the “reliable navigation”
[96], in which a complete “visit” of all structures of the organ is guaranteed.
However, this also means that user interaction is limited and that irrelevant
regions cannot be easily skipped.

A free navigation approach is followed by [52, 63, 220, 6]. Unfortu-
nately, the complexity of the anatomical structures commonly found in the
datasets is very high. Even for a specifically trained physician, it can be
difficult to navigate to the target. For similar reasons, semi-automated fly-
throughs [110] cannot be easily integrated into free navigation frameworks.
Furthermore, collision avoidance is a costly operation which is frequently
not available in these systems.

In [110, 25, 31], a guided navigation paradigm [78] was adopted in order
to provide full navigation flexibility, combined with user guidance and an
efficient collision avoidance scheme.

5.3 VIVENDI System

For our virtual endoscopy applications interactivity, image quality, and in-
tuitive navigation are essential. The first two goals are currently only possi-
ble with the efficient use of polygonal graphics accelerators. This situation
might change, once hardware-accelerated ray casting boards are commer-
cially available [157], enabling interactive perspective and flexible volume

1In 1998, Westermann and Ertl presented 3D texture mapping-based volume-rendering with isosurface shading
[228]. However, this approach does not provide sufficient performance for interactive endoscopy applications.

96 Applications in Virtual Medicine: Virtual Endoscopy

rendering2. Guided-navigation provides the most intuitive navigation tech-
nique, which combines guidance and flexibility. Consequently, the VIV-
ENDI systems uses a visibility-based polygonal rendering technique, to-
gether with a physically-based guided navigation system. In some parts,
VIVENDI follows the VICON system for interactive colonoscopy [11, 110].
However, due to the different anatomical topology, it uses a different scene
decomposition and visibility scheme. Therefore, the only common method
is the guided-navigation system, which is already discussed in detail in work
previous to this dissertation [110].

5.3.1 System Architecture

Volume dataset

Segmentation

Octree−based
MarchingCubes

Ventricular
surface meshes

Minimum−path
Algorithms

data

system
modules

Distance fields
Scene

decomposition
tree

Default
camera path

Ventricular voxels

Figure 5.1: VIVENDI pre-process flow [25]

The endoscopy system itself consists of two stages: pre-process and in-
teractive virtual endoscopy. The pre-processing stage is responsible for the
generation of numerous auxiliary data, which is later used during the in-
teractive virtual endoscopy. It is organized in three major steps, which are
outlined in Figure 5.1.

In the first step, the voxels classified as part of the organ of interest are
segmented. After the interactive specification of a seed voxel in the organ, a
3D region growing algorithm selects all organ voxels which are connected
via other voxels satisfying the threshold based segmentation criterion. Us-
ing the seed point and an additionally specified target voxel as start and end
point of the default camera path, this path is generated using Dijkstra’s sin-
gle source shortest path algorithm [54] (see Fig. 5.2c). As a cost function, a
3D Euclidean distance transformation is employed on the segmented organ
voxels [178].

2The VolumePro system [166] is an already available hardware-accelerated volume rendering board. However,
the lack of perspective projection and the base-plane rendering approach prevent its use for virtual endoscopy.An
early case study on the use of the VIZARD II board [157] can be found in [149].

5.3 VIVENDI System 97

Thereafter, we extract the isosurfaces of the respective organ system,
using an octree-based parallel implementation of the Marching Cubes al-
gorithm [29] (see Chapter 3). The size of the leaf blocks of the octree de-
pends on a specified granularity value of volume cells which intersect with
the isosurface3 to produce a roughly leaf load balanced tree. Based on this
octree representation, a decomposition of the extracted isosurface is gener-
ated, where the isosurface geometry associated with an octree leaf block is
considered as a scene decomposition entity.

(a) (b) (c)

Figure 5.2: Distance fields of a segment of a blood vessel; the distances are coded in
colors: (a) distance to target point (red), (b) distance to start point (red), (c) distance to
surface (small distance: yellow, large distance: red). The default camera path can be seen
as red (a,b) and black lines (c).

Finally, three distance fields are computed, implementing a collision
avoidance scheme and the simulated current in which the virtual camera
for guided-navigation [110] flows towards a target point. The first two dis-
tance fields are representing the minimum path data from every organ voxel
to the target voxel – implementing a current towards the target point – and
from every organ voxel to the start (seed) voxel – implementing a current in
the opposite direction. For the computation of both distance fields, we again
use Dijkstra’s single source shortest path algorithm [54], using the standard
voxel distance as cost function (see Fig. 5.2a and b).

The third distance field represents the distance information from every
organ voxel to the closest surface voxel of that organ4. This distance field
is computed by the same volumetric Euclidean distance transformation as
used for the default camera path computation [178] (see Fig. 5.2c).

3We call these cells relevant cells and the respective granularity valuerelevant cell loador RCL.
4A surface voxel of the organ is an organ voxel with neighboring voxels which do not belong to the organ

segmentation.

98 Applications in Virtual Medicine: Virtual Endoscopy

For interactive colonoscopy using the VICON system, complete pre-
processing time took up to ten hours. Most of the time was spent on gener-
ating the default camera path (or skeleton of the colon), the distance fields,
and on the generation of the decomposition along this skeleton. However,
this time can be greatly reduced by using improved data-structures and algo-
rithms. Replacing FIFO-queue based priority queues of the pre-processing
steps by Fibonacci heaps and hash tables [148], we could reduce the algo-
rithmic time complexity5, which in turn reduced the time consumption from
several hours to a few minutes.

For the previous skeleton-based decomposition step, a back-tracking al-
gorithm was used, in order to optimize the size of the respective decompo-
sition cells. However, this was a computational expensive approach, which
frequently lead to a processing time of a few hours. Furthermore, most or-
gan systems do not have a tube-like shape, and hence no tube-like scene
decomposition is available. Instead, we used a generalized octree-based de-
composition scheme where computational costs are only a fraction of the
skeleton-based method. In total, we reduced the pre-processing time down
to approximately 15 minutes, depending on the size of the volume dataset.

user−interface

position &
orientation

overlay
image

visible
meshes

update

interaction

interaction

interactionPatient
data

Scout
Panel

Camera

VIVENDI
Rendering

Volume
Renderer

Volume
dataset

 Visibility

Slice
Panel

Distance
fields

system core

Main
Control
Panel

datasystem
modules Output

User−
Interaction

Ventricular
surface
meshes

trigger

Video
output

output from
Panels and
Rendering

Video
position &
orientation

position &
orientation

position &
orientation

interaction

Scene
decomposition

tree

interaction

Figure 5.3: VIVENDI control flow [25]

The interactive endoscopy stage of the VIVENDI system is built from an
user-interface and system core (Figure 5.3). The centerpiece of the latter is
the VIVENDI rendering system (moduleVIVENDI Rendering), which is

5The run-time complexity of our camera path generation using Dijkstra’s single source shortest path algorithms
isO(nlogn)with a priority queue based on a Fibonacci heap, andO(n2)with a FIFO-queue based priority queue,
wheren is the number of voxels selected as inside. Note that we can give an upper bound for the number of edges
in our voxel grid-based graph with3 � n.

5.3 VIVENDI System 99

responsible for the OpenGL rendering of the geometry of the organ. In order
to reduce the geometric complexity, a visibility culling algorithm is applied
(moduleVisibility , see below for details), based on the scene decomposition
generated in preprocessing step two. User-interaction (for navigation and
measurement) via the rendering area of VIVENDI Rendering is bypassed to
theMain Control Panel. Position and orientation of the virtual camera are
provided by the guided-navigation system (moduleCamera, see [110] or
see below for details). If the user initiates direct volume rendering (module
Volume Renderer), the generated images are overlaid on the polygonal
rendering of VIVENDI Rendering.

On the left hand side of Figure 5.3, the user-interface (see Fig. 5.4) is or-
ganized around the Main Control Panel, which provides control over camera
navigation, volume rendering, video generation, and other general param-
eters of the system. The Main Control Panel communicates with theSlice
Panel, which provides the three orthogonal slices at the current position
of the virtual camera in the volume dataset at different resolutions. These
projections represent the “traditional” imagery in radiology. Furthermore,
the slices can be used for slicing through the volume data and to specify
a new position and orientation of the virtual camera by clicking into organ
voxel areas using the mouse. TheScout Panelprovides a fully rotatable 3D
overview of the surface of the organ system. Furthermore, it administrates
the position bookmarks and controls the multiple camera paths (see below).
If a bookmark is used as a jump mark, it provides the virtual camera with
the new position and orientation via the Main Control Panel. Similarly, the
Video module provides a pre-specified sequence of position and orientation
data to the virtual camera, once the video generation is triggered by the Main
Control Panel, to allow an automated animation of a previous walkthrough
of the organ. The current rendered contents of the endoscopic view (VIV-
ENDI Rendering), the 3D overviews of the organ system (Scout Panel), and
the three orthogonal volume slices of the Slice Panel are combined into a
video frame and stored to disc.

5.3.2 Visibility Culling

In Chapter 4, we presented several methods for efficient culling of geometry.
While some of the approaches provide conservative culling (“Everything
which might be visible will be rendered”), others provide only non-conserva-
tive culling – where possibly visible geometry is culled, if the used heuris-
tics does not find a trace of a visual contribution of that geometry. How-
ever, medical applications have specific requirements which prohibit non-
conservative culling methods. Therefore, the VIVENDI system uses a con-
servative visibility driven rendering approach, using hierarchical view-frus-
tum culling, depth-oriented traversal, and occlusion culling exploiting the
Hewlett-Packard occlusion culling flag (“HP flag”) [25] as described in
Chapter 4.

Table 5.1 shows the tradeoff between visibility test overhead and render-

100 Applications in Virtual Medicine: Virtual Endoscopy

(a)

(b)

(c)

(d)
(e)

Figure 5.4: VIVENDI user-interface (snapshot from virtual angioscopy): (a) Control Panel,
(b) Main Endoscopic View, (c) Scout Panel, (d) Slice Panel, and (e) Full Resolution Coronal
Slice Panel [25].

ing performance for a dataset of the virtual ventricle endoscopy application;
virtual colonoscopy and virtual angioscopy show similar results. The mea-
surements are performed on an HP J-class/VISUALIZE fx6 workstation us-
ing a PA-8500 LC/440 MHz CPU, and on an HP P-class/VISUALIZE fx6
Linux PC using a PIII/750 MHz CPU. Both systems are using the HP flag
and provide enough memory (� 256 MB) for an efficient use of VIVENDI.

The first decomposition into 121 blocks achieves the best culling rate,
since it allows the finest approximation of the octree leaf blocks to the
geometry. However, the frame-rate of the second decomposition (67 blocks)
is higher (0.6 fps), although the number of rendered polygons is 20% (2% of
the total polygon count) larger. The finer scene decomposition induced more
visibility tests which are quite costly. In particular the occlusion culling test
requires a flush of the graphics pipeline to obtain the up-to-date occlusion
information of the current query. These higher costs are not compensated
by the only slightly reduced polygonal rendering load, thus the benefits of
culling polygons of the model is exceeded by the occlusion culling over-
head. In some areas with low occlusion, the overhead might even reduce
the frame-rate (compared to view-frustum only, or straight forward render-
ing). Overall, a culling performance of up to 92% of the model and average
frame-rates of up to 38.7 fps on the HP/J-class were achieved.

5.3 VIVENDI System 101

RCL total % blocks #polygons culling rate frame-rate (fps)
#blocks visible visible (%) J7000/fx6 PIII/fx6

View-frustum culling only
1000 121 59.2 187799 40.5 12.24 10.12
2000 67 60.1 212153 32.6 11.87 9.4
4000 31 79.8 241666 23.1 11.44 8.79

View-frustum and occlusion culling
1000 121 48.6 25417 91.9 38.03 22.58
2000 67 43.1 32048 89.8 38.7 18.67
4000 31 38.3 64709 79.4 29.15 13.46

Table 5.1: Average performance of view-frustum and occlusion culling of a ventricular
system with more than 315K polygons. Other ventricular datasets and virtual colonoscopy
and virtual angioscopy applications show similar results. RCL describes the relevant cell
load (see Section 4.6.2) which determines the size of the hierarchy leaves.

5.3.3 Multiple Camera Settings

Segmentation and navigation depend heavily on the start point of the camera
path (the seed point of the segmentation) and the camera path itself respec-
tively. However, not all areas of interest are connected by voxels classified
as organ voxels. This is due to partial volume effects, lack of resolution,
or obstruction of narrow areas. Furthermore, some examinations require
different camera settings in order to reach different locations within the
ventricular system. Other applications (see Section B.3) even use data of
different modalities, which require individual pre-processing.

For these cases, VIVENDI supports multiple camera settings, which
combines the models of different areas of interest of one or more volume
datasets into a joined representation. Each single model is pre-processed in-
dividually – providing its own camera path (and reconstructed isosurface if
necessary) – and finally combined into the joined model with the respective
number of camera settings. Alternatively, this functionality can be used to
generate multiple camera paths in a single model6. For the actual virtual
endoscopic examination, all individual models of the joined representation
which are not the current one, are considered not visible (with an excep-
tion for the combined transparent version, see Section B.3), since they are
outside of the current opaque model. To change to one of the other camera
paths, automatic pre-defined blue model markers at the ends of the cam-
era paths on the scout panel can be selected (Figure 5.5). In the course of
changing to another camera path, the distance fields are changed too. This
is necessary to reduce the look-up time of the binary tree on the compressed
representation of the distance fields.

6In this case, the single model is not simply copied, but referenced for each additional camera path.

102 Applications in Virtual Medicine: Virtual Endoscopy

Camera Path

Camera
Start and
end points
of path 2

Start and
end points
of path 1

Figure 5.5: Snapshot from the Scout Panel: Two different camera paths are combined into
one model. Blue (dark) markers are pre-defined model bookmarks; red, green, and yellow
(different shades of grey) markers are user-defined markers [25].

5.3.4 Guided Navigation

Guided navigation is already described in detail in work previous to this dis-
sertation. Therefore, we limit this section to a brief review of this technique.
More detail can be found in [110].

Guided navigation was also introduced by Galyean [78] in 1995, where
he employed pre-computed paths and a spring-based model for user-interact-
ion. Unfortunately, the paper lacks implementation detail, specifically on
the parameterization of the camera model.

For virtual colonoscopy [110], the camera mimicked the miniaturized
submarine in the Academy-award-winning movieFantastic Voyage(20th
Century Fox, 1966), which traveled through the blood vessels to the brain.
Like this submarine, the virtual endoscope travels along a default path to
the target area. Two distance fields are interpreted as potential fields and are
implementing a current towards a forward and backward target point (see
Fig. 5.2ab). The third distance field is interpreted as a repulsion force which
prevents the virtual endoscope from penetrating the surface (see Fig. 5.2c).
These distance fields are evaluated at each camera position using a force
function. Additional kinematic rules implement several movement models
of the camera. Most important is an user-applied force, implementing an
impetus of the camera (similar to the submarine of the movie) which can
move the camera against the current. Details on these functions can be
found in [110].

5.4 Discussion of Virtual Endoscopy

In this chapter and in Appendix B, we presented several applications of vir-
tual endoscopy. The different objectives of the applications impose specific
requirements on the virtual endoscopy system. An educational objective fo-
cuses more on the visual quality which demonstrate the general topological
and geometric aspects of the specific patient anatomy. In contrast, the ac-

5.4 Discussion of Virtual Endoscopy 103

curacy of fine details is only of limited importance, if the details are not the
subject of the examination. However, this is different for a clinical objec-
tive where the accurate rendering is one of the major factors which deter-
mine the usability, where an incorrectly represented blood vessel connection
might have a fatal impact on the medical intervention. If virtual endoscopy
is used for planning an intervention, it is important that relevant anatom-
ical structures are represented appropriately, since otherwise the planned
access path (i.e., in virtual ventriculoscopy) might be occluded in the “real
world” anatomy. Similar, the visual representation must be highly accurate
for intra-operative navigation to provide usable information to the surgeon.

There are several sources of errors which can lead to an inaccurate visual
representation of anatomical structures in virtual endoscopy. Most notori-
ous are partial volume effects and undersampling which generate “fake”
connections between the various caverns that are actually not connected.
Furthermore, motion artifacts can reduce the visual quality severely or dis-
tort the actual anatomical geometry. These artifacts are generated by move-
ment of the patient during a (long) medical scanning procedure. Another
example is scanning of fast moving body parts, i.e., the valves of the heart
which cannot be traced by modern volumetric scanners (see Section B.4).

Inconclusive
Volume Area

(a) (b) (c)

Figure 5.6: Hole of different sizes in ventricular septum (of the brain); isovalue in (a) is
lower than in (b). (c) shows a slice from the original volumetric data of that area.

Even if these effects do not reduce the accuracy of the volumetric repre-
sentation, the quality of the visualization depends heavily on the quality of
the segmentation process. Isovalues which are not selected with sufficient
particularity lead to holes in surfaces, if the isovalue is to low, or existing
holes in the surface are closed and vice versa. In Figure 5.6, the hole in
the ventricular septum between the two lateral ventricles varies in size, de-
pending on the isovalue. However, the question of which isovalue is correct
is not easy to answer in this case, because the volume data in that area is
inconclusive (Fig. 5.6c); due to partial volume effects, it is not clear exactly
what size the hole is.

Besides visual quality, interactivity is a major issue for virtual endoscopy.
A rendering speed significantly below interactive rendering (10 fps) is usu-
ally not well accepted in the medical community. If virtual endoscopy is

104 Applications in Virtual Medicine: Virtual Endoscopy

used for inter-operative navigation, no measurable rendering lag is accept-
able. The virtual endoscopy system must deliver real-time rendering per-
formance to represent the geometry of the current view of the endoscope
immediately with every movement of the endoscope. These requirements
are usually not met with most virtual endoscopy systems. Even the VIV-
ENDI system does not provide sufficient performance for all applications;
virtual angioscopy of the heart provides only a few frames per second. The
widely visible inner geometry of the left and right ventricles of the heart
allow only a culling rate of 80% which leaves a high polygonal complex-
ity for rendering. For all other applications however, VIVENDI meets the
requirements for interactive exploration and in particular for inter-operative
real-time navigation of ventricular MRI datasets.

Virtual Endoscopy versus Optical Endoscopy

The more general question of whether virtual endoscopy provides more sci-
entific or medical insights, more patient safety or comfort, or an economic
benefit is more difficult to answer. As for most scientific problems, the an-
swer depends on the actual goal of the procedure, the qualities of alternative
medical procedures, and various costs of the procedures.

In all procedures which require a histological examination of a tissue
sample under a microscope, virtual endoscopy is not able to compete. The
data resolution of modern 3D scanners does not reach into the resolution of
a microscope, although it is already in a sub-millimeter range for rotational
angiography. Furthermore, texture information, such as structure, color,
and reflections is also not captured by 3D scanners. All applications which
heavily depend on this information will not succeed with virtual endoscopy.
Similarly, if the medical procedure includes the removal of tissue (i.e., le-
sions or tumors), or other objects, invasive or minimally-invasive procedures
cannot be replaced by virtual endoscopy, since it does not interact with the
actual body of a patient.

However, if the relevant information can be represented as geometric
shape – i.e., a polyp of virtual colonoscopy –, virtual endoscopy can be
used for diagnostic purposes. Furthermore, it provides insights into body
parts which might not be accessible to current medical procedures. The
virtual representation based on scanner data provides access to virtually all
scan-able body parts. Physical limitations of optical endoscopes – i.e., the
limited flexibility and navigation of the endoscope used for ventriculoscopy,
the insuperable obstruction of folds in a colon for optical colonoscopy –
are not shared with virtual endoscopes. Similarly, virtual endoscopes do
not share the frequent unpleasantness of optical endoscopes. The patient
interaction is limited to the scanning procedure, and is therefore providing
much more patient comfort and acceptance. In addition, data acquisition
and the actual virtual procedure are not necessarily at the same location.
This geographical decoupling allows tele-medical procedures which are not
possible with optical endoscopy, where data acquisition and procedure are

5.4 Discussion of Virtual Endoscopy 105

inseparably combined.
From an economic point of view, virtual endoscopy does produce less

costs than the optical counterpart, since usually no sedation, patient prepa-
ration, or even hospitalization are required. The necessary computational
expenses can be seen as additional post-processing of the volume recon-
struction of the scanner. However, procedures which combine virtual and
optical methods, i.e., ventriculoscopy, do not benefit from these costs; the
goal of this combination was to reduce the risk of complications and to in-
crease the success of the intervention.

106 Applications in Virtual Medicine: Virtual Endoscopy

107

Chapter 6

Other Applications

In the previous chapter, we introduced an application from virtual medicine,
namely virtual endoscopy, which heavily use large model visualization tech-
niques. However, these techniques are as well useful for numerous other
application fields. Here, we briefly touch a few of these other application
fields.

6.1 Mechanical Engineering

Mechanical engineering is one of the premier source of large polygonal
models. Products such as cars, electronic devices, or production facili-
ties, are designed with mechanical CAD (MCAD) software and managed
by product data management systems (PDMs). Usually these models are
designed with freeform surfaces, which are tessellated into polygons for
rendering. The resulting multi-million polygon models introduce a tremen-
dous polygon load to rendering systems which are assigned to design review
tasks. Systems like CoCreate’s OneSpace or EAI’s VisMockUp employ
large model visualization techniques from computer graphics to acceler-
ate the rendering of the large models. In particular techniques like multi-
resolution representations and occlusion culling are used in these systems,
based on HP’s Jupiter rendering toolkit [101].

Examples of typical MCAD datasets can be seen in Figure 6.1. The
cotton picker (a-c) is composed of more than 13.000 individual parts, orga-
nized in a hierarchical assembly list. The total model contains 10.605.158
triangles, where most of the geometric complexity is located in the six spin-
dle compartments (1.633,137 triangles each), containing the spindle drums
(694,113 triangles each) which collect the cotton flakes. These drums in
particular are usually occluded by covers and chassis parts. The second
dataset is an MCAD model of an engine of a BMW car (d). The model is
composed of 245 individual parts, which total in almost 140.000 triangles.
Finally, the third dataset is an MCAD model of a formula one racing car
(e). Its assembly list contains 306 individual parts with a total of more than
740.000 triangles.

In Chapter 4, we examined visibility and occlusion culling methods which

108 Other Applications

(a) (b) (c)

(d) (e)

Figure 6.1: MCAD models: (a-c) Cotton picker; (b) close-up of (a), (c) further close-up of
(a) showing the spindles drums; (d) engine of a BMW car; (e) racing car.

are useful in the context of rendering of MCAD models. Effective model
tree organization and efficient model tree traversal are improving the frame-
rate measured performance. Of particular interest for MCAD datasets is the
careful design of bounding volumes used in a hierarchical, visibility driven
rendering approach. In Section 4.7, we evaluated discrete orientation poly-
topes (k-dops) as bounding volumes of entities in a hierarchical model or-
ganization. Especially for MCAD modelsk-dops proved to be very efficient
and reduced the quantity of rendered polygons tremendously.

6.2 Scientific Visualization

The probably major source of large scale data is scientific computing. Driven
by various research programs, tera-byte datasets [123] are computed or mea-
sured, ranging from medical data, like the “visible female” dataset, to en-
vironmental simulation. Beside the management of this huge quantity of
data, the visualization of the features is one of the major research fields of
scientific computing. Figure 6.2 shows two examples of the visualization of
datasets from computational fluid dynamics (CFD). (a) shows a fluid filled
cavity, which is heated from two sides. The isosurfaces represents a surface
of the same velocity magnitude; the temperature is mapped as color onto
the isosurface. (b) shows a vortex breakdown of a fluid which is injected
into another fluid at different time steps. The isosurfaces represent again a
surface of the same velocity magnitude.

Various techniques are applied to find the “hot spots” and other interest-
ing features in the datasets. Among the most popular are mesh-reduction,
parallel processing, feature extraction [123], occlusion culling and volume
rendering [165] for the fast visual representation. In Part I, we explored

6.3 Architectural Walkthroughs 109

(a) (b)

Figure 6.2: Models from scientific visualization: (a) Heated cavity with fluid; (b) vortex
breakdown at two different time steps.

some of these techniques. We compared the advantages and disadvantages
of direct and indirect volume rendering, and the different qualities of the
four most popular direct volume rendering algorithms to decide which ap-
proach is most suited for a specific visualization problem (Chapter 2). We
also introduced a technique how to parallelize the hierarchy generation of
large datasets, which becomes worthwhile, if the hierarchical organization
of such datasets is frequently revised (Chapter 3). And finally, the visibil-
ity and occlusion culling techniques described in Chapter 4 can be used to
reduce the rendering complexity.

6.3 Architectural Walkthroughs

Computer graphics methods became very popular for the visualization of
architectural models. In particular the correct illuminated rendering of a
planned building is important to demonstrate the impact of the building
on the environment, and the light conditions inside of the building. How-
ever, global illumination methods are of high computational expenses which
make their practical use difficult. The radiosity and ray-tracing based ren-
dering of such complex buildings can take hours, or even days, depending
on the individual geometric complexity. Recently, several methods were de-
veloped which limit the energy exchange calculation to the visible patches
[58, 181], thus reducing the necessary rendering time by an order of magni-
tude. Other visibility methods were used to accelerate the polygonal render-
ing of the interior of buildings to interactive frame-rates [3, 206, 22, 127].
Figure 6.3 shows examples of architectural models. (a) shows a snapshot
from the interior of a gothic cathedral and (b) shows a snapshot from the
interior of the atrium of the University of Aizu (Image courtesy of Karol
Myszkowski, Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken).

Other architectural applications include urban planning management, where

110 Other Applications

(a) (b)

Figure 6.3: Architectural models: (a) Gothic cathedral; (b) Atrium of University of Aizu.

walkthroughs of entire current or future cities are required.

111

Chapter 7

Conclusions

In this dissertation, we presented several new techniques to handle the ef-
ficient visualization of large models. We put a special focus on volume
rendering, parallel processing, and on the efficient culling of not visible
polygonal geometry.

Assessment of Volume Rendering Techniques:We provided a frame-
work for quality- and resource consumption-based comparison of various
direct and indirect volume rendering approaches which creates a basis for
deciding which approach is the most suitable for a particular application.
Specifically, we compared one indirect volume rendering approach (March-
ing Cubes), and one direct volume rendering approach (ray casting). In
the second part, we compared ray casting, splatting, shear-warping, and 3D
texture mapping, since they are the four most popular volume rendering ap-
proaches.

Parallel Construction of Recursive Tree Hierarchies:With techniques
like the asynchronous push-up, tree level mutexes (as a simplified version
of predicate or tree locking), and the thread local memory pre-allocation,
we introduced a new and efficient approach for the parallel construction of
recursive tree structures, such as octrees, quadtrees, BSP-trees, or kd-trees.

Visibility and Occlusion Culling: The efficient culling of not visible
geometry involves many aspects. First of all, an adequate, often hierarchi-
cal representation of the data needs to be computed. This also requires the
acquisition of the respective information during the modeling stage of the
data, or the retrieval of this information from a given model. During the
visibility driven rendering, the representation must be traversed using ap-
propriate heuristics which significantly influence the culling and rendering
performance. Finally, the occlusion status of an object must be determined
to decide if and how this object needs to be rendered. In this dissertation,
we addressed all these aspects of the full culling pipeline of modeling, rep-
resentation, and soft- and hardware-based visibility driven rendering.

In the second part of the dissertation, we presented several applications
which heavily rely on the large scale data visualization techniques intro-
duced in the first part. The major focus here lies on virtual endoscopy,

112 Conclusions

which visualizes anatomical structures of patient data mimicking an endo-
scope. We introduced VIVENDI, a virtual endoscopy system for the inter-
active exploration of patient organ systems. The usefulness of VIVENDI
was demonstrated on several endoscopic applications (see Appendix B). In
particular we looked into the endoscopic exploration of the colon (colon-
oscopy), of the ventricular system in the human brain (ventriculoscopy),
and of the blood circulation and supply system (angioscopy).

Besides virtual endoscopy, there are many other applications for large
scale data visualization techniques. Specifically, computer aided mechani-
cal engineering, scientific visualization, and architectural walkthroughs pose
challenging requirements to modern computer graphics systems, which are
significantly reduced with the presented techniques.

7.1 Future Directions

Throughout the approaches discussed in this dissertation, we pointed out
several possibilities for future work. Some of these topics are already ex-
plored, but are not part of this dissertation. In this section, we briefly outline
some of the future research directions in the field of large model visualiza-
tion, virtual medicine, and other applications of large model visualization
techniques.

The comparison of volume rendering approaches still leaves enough room
for the examination of advanced algorithmic techniques to improve the qual-
ity and the resource consumption. In particular the influence of oversam-
pling and resampling of the data for the various approaches needs to be
examined. Also necessary is the close examination of advanced accelera-
tion techniques such as space-leaping, multi-resolution representation, and
advanced filtering techniques.

The methods for the parallel construction of recursive tree structures also
provides strategies for the on-the-fly reconstruction of data-structures. This
reconstruction becomes necessary, if the location of significant parts of a
model is frequently changing, i.e. in highly dynamic applications. Other fu-
ture topics include the adaption of the techniques from thread-based systems
to message-passing systems like large clusters of computers.

While the culling pipeline is already very efficient on a single CPU, sin-
gle graphics pipeline systems, it leaves many research opportunities for the
efficient deployment of multi-threaded, or multi-piped systems. However,
this combination is non-trivial due to difficult synchronization and distribu-
tion issues. Other interesting research topics include the efficient combina-
tion of mesh-reduction and occlusion culling beyond the ideas presented in
Chapter 4.

The field of virtual medicine and endoscopy also provides many research
opportunities. A typical short term goal is the incorporation of stereo-
graphic display techniques for virtual endoscopy, since depth perception of
optical endoscopy is very limited due to the “fish-eye” phenomenon.

7.1 Future Directions 113

In the long run, the combination of anatomical and physiological (func-
tional) information forphysiological modelingwill be a major research ob-
jective. Starting from measuring the volume of anatomical structures and
the acquisition of MRI-based flow data, functional simulations of organ
structures of a patient will become possible. This data can be used to val-
idate and improve physically-based models for the complex simulation of
medical interventions, including a haptic aspect which provides an addi-
tional cue for training, but also for the understanding of medical data.

114 Conclusions

115

Part III

Appendix

117

Appendix A

Volume Data Acquisition
Techniques

There are many sources of data for medical visualization. For our purposes,
we rely on data from medical scanners, such as Computed Tomography (CT
or CAT scanners), Magnetic Resonance Tomography (MRT or MR scan-
ner), rotational biplane X-ray (or rotational angiography), 3D Ultrasound,
Positive Emission Tomography (PET), and many more. These scanners
produce a stack of images, where each image represents a slice from a data
volume. Each entity or pixel of the images represents a sample point within
the data volume and it is also called a voxel (see Section 1.2.1).

In the course of this appendix, we give an introduction into basic con-
cepts of the scanning technology of the modalities of the volume datasets
later used in chapter 5. More details on the specific technology can be found
in [39, 137, 118]. Several sources of artifacts are known; most notorious are
aliasing problems due to undersampling, motion artifacts if the scanned ob-
ject is moving during the scanning procedure (i.e., a heart), andpartial vol-
ume effects, which are also related to undersampling of a structure. 3D data
samples (voxels) which are reconstructed from projections of a 3D scanner
are averages of the local volume. If material with a high voxel value is ad-
jacent to material with a low voxel value, this averaging can lucidly distort
these voxel values, causing the partial volume effect.

A.1 X-Ray

In classical X-ray imaging, electrons are shot at the focal spot of a spe-
cific target. The resulting radiation is absorbed (and scattered) by an object
(i.e., body parts) behind the focal spot and hence the attenuated intensity
is recorded on detectors behind the object. Depending on the quantity of
the acceleration voltage, X-rays are denoted as hard or soft radiation. The
interaction of X-rays with matter is basically determined by photo-electric
absorption and by scattering (Compton scattering). With hard radiation, the
scattering effect is dominating the interaction, resulting in an absorption
only significant in object areas with high density (high atomic number), i.e.

118 Volume Data Acquisition Techniques

bones. For areas with a lower density (i.e., tissue), a sufficient absorption
requires soft radiation. Today’s X-ray devices feature a very high resolution
(i.e.,4096� 4096 pixels), but only as a 2D projection.

A variation of classical X-ray imaging is fluoroscopy. The emitted ra-
diation is recorded with an image intensifier and displayed such that the
progress of specific procedures can be observed. This permanent exposure
to ionizing radiation requires a significant lower intensity than with classical
X-rays. Hence, the resolution and general image quality are reduced.

A.2 Computed Tomography

The introduction of X-ray Computed Tomography (CT) in 1972 [112] pro-
vided for the first time a volumetric representation of objects, and not only
a 2D projection of a volumetric object. Generally, it is seen as one of the
major milestones in medical imaging [39].

As basic concept, X-rays are emitted through the object from different
positions around that object (i.e., filling an angular range of 180 degree)
and the intensity profile is recorded by a detector. Algorithms are applied to
reconstruct an intensity attenuation layer of the object. A series of these pro-
jection with an incremental modified position generates a stack of intensity
attenuation layers, which forms an intensity volume. The intensity attenua-
tion is measured in Hounsfield units (HU), with water as reference material
(0 HU). I.e., bone has a high measured intensity attenuation, while fat or
air have negative HU [137]. Each of the reconstructed volumetric samples
(voxels) represents the average of the local environment.

The major differences between the development stages of CT [118] are
different projection reconstruction algorithms and the emitter and detector
architecture (data acquisition). The first generation of CT scanners was ba-
sically the experimental setting of Hounsfield’s CT scanner. It used a single
pencil-like X-ray beam emitter and a single detector on the opposite side
of the object. To acquire a data slice, the pencil beam is translated along
the object and rotated afterwards for the next series of beams. All together,
the costly mechanical movement of emitter and detector caused long scan-
ning times, ranging from several minutes to several hours at a resolution
of 80 � 80 pixels per scan/slice. Furthermore, the single emitter/detector
architecture enabled only a poor utilization of the emitted radiation.

The next generation and first commercial generation of CT scanner used
small angle fan beams and multiple detectors to scan two neighboring ro-
tational projections at the same time. This technique reduces the number
of necessary rotations, and hence the required scanning time (10 - 60 sec-
onds, up to several minutes) needed for a sufficient reconstruction. It also
provides a better utilization of the emitted radiation. Both first and second
generation techniques are parallel beam devices, which use different recon-
struction algorithms than the next fan beam devices.

The next improvement increased the fan beam angle and the number of

A.2 Computed Tomography 119

detectors to cover the whole object, thus the translating movement became
unnecessary and increased the scanning speed to five seconds per slice. Sim-
ilar to the previous techniques, the radiation is enabled in fixed time intervals
to be measured by the detectors.

In the fourth generation, the rotating detector was replaced by a fixed cir-
cular ring detector, which reduced the technical effort of moving the larger
mass of emitter and detector. Here, the radiation was permanently emitted
and only the detectors were enabled at certain intervals. However, several
problems of ring detectors led to further developments in favor of third gen-
eration scanners. Besides the higher costs for the detector ring, specific X-
ray scattering problems reduced the image quality of these systems, while
collimator technology could reduce the scattering problems with a rotating
emitter/detector system of the third generation.

Currently, the state-of-the-art are spiral or helical CT, where the emit-
ter/detector system is rotating permanently around the object, while the ob-
ject is moved continuously in the perpendicular direction to acquire a full
data volume. This technique enables faster scanner due to the continuous
rotating movement of the emitter/detector system which saves the time for
the previously needed time to accelerate and slow down these heavy parts
of the scanner. Recently, multiple layers of emitters and detectors (twin
or quad slices) where combined to create multi-slice CT scanners, which
enable fast and isotropic scanning of large object areas.

Besides the architectural development, different volume/slice reconstruc-
tion algorithms differentiate the various systems and generations. The basic
approach is the back transformation of the slice projections into the volume
slices by the Radon transform [39]. In the beginning of computed tomog-
raphy, algebraic reconstruction techniques (ART) were used to solve this
back projection problem. However, the high computational costs of iter-
ative solving the large matrices1 rendered this approach as not usable for
standard applications [118]. The standard method today is filtered back-
projection, where each projection is composed according to the measured
direction. Parallel and fan beam methods are available to perform this back-
projection. However, the current fan beam methods are more complex and
less efficient than state-of-the-art parallel beam reconstruction algorithms.
Hence, the projections of today’s fan-beam scanners are re-sorted in paral-
lel beams before the actual reconstruction. Another modification is required
to address the continuously moving object tray of modern spiral CT scan-
ners, where a z-interpolation corrects the measured projections according
to the tray movement [118]. In the future, cone beam reconstruction algo-
rithms will probably replace the current methods [118], which are already
successfully used in rotational biplane X-ray (see below).

1The size of a reconstruction matrix is equal to the resolution of the slice.

120 Volume Data Acquisition Techniques

A.3 Rotational Biplane X-Ray

Rotational biplane X-ray is a recent scanning technology which started from
digital subtraction angiography (DSA)2. Hence, most of the associated ap-
plications are angiography applications and this technique is frequently re-
ferred to as rotational angiography [62, 94].

To generate volumetric datasets, a series of up to 132 X-ray projections
are taken from a rotation range of 200 degrees around the scanning object.
In contrast to CT, rotational biplane X-ray is using a full array of up to10242

detectors which enable the measurement of a full cone of rays. To account
for reconstruction errors [118], a modified back-projection algorithm is used
[111]. Additionally, special filter kernels are used which further reduces
potential artifacts. Current rotational angiography systems provides very
high resolution, isotropic datasets, good reconstruction quality, and a high
data acquisition speed of up to 13 seconds for a full scan.

A.4 Magnetic Resonance Imaging

The beginning of Magnetic Resonance Imaging (MRI) dates back to the
early seventies, but it was not adopted into medical use until the nineteen-
eighties. It is based on the nuclear resonance of hydrogen in a magnetic
field, where each of the hydrogen nuclei can be considered as a small dipole
magnet which aligns itself either parallel or anti-parallel along the magnetic
field.

While aligned in that field, the protons (which are identical to the hy-
drogen nucleus) spin arbitrarily around the axis of the field. This spinning
is called theprecessionof the nuclei. If energy is applied to the magnetic
field as a radio-frequency pulse (RF) at theLarmor-frequency, the nuclear
resonance forces the protons to receive some of the energy from the RF.
This pulse also forces all the protons to spin synchronously, orin phaseand
flip increasingly into the anti-parallel orientation of higher energy, until the
number of parallel protons is equal to the number of anti-parallel oriented
protons. The duration of the RF pulse determines the amount of preces-
sion; i.e., a90 degree pulsewill force the protons into a 90 degree preces-
sion, where the precession vector of the protons is completely perpendicular
to the magnetic field, resulting in a zero z-component (along the magnetic
field). After the stimulation of the protons, they slowly release the received
energy,de-phaseand re-align with the magnetic field. Thisrelaxation is
described asfree induction decay (FID)and is divided into the transverse
and longitudinal relaxation. The first relaxation of the transverse magneti-
zation – also called spin-spin relaxation – describes the de-phasing of the
x/y-component of the precession. The time required for this relaxation is
calledT2 and is in the order of a few milliseconds. The longitudinal, or
spin-lattice relaxation describes the re-alignment of the precession with the

2In DSA, X-ray images are recorded before (mask) and after (filling) the injection of a contrast agent. The
mask is subtracted from the filling image, thus presenting only the contrast agent enhanced object areas.

A.4 Magnetic Resonance Imaging 121

magnetic field, thus the restoring of the z-component. This relaxation time
is calledT1 and is in the order of seconds. The actual measured volumetric
information is the proton density� which needs to be reconstructed at the
specific voxels.

To reconstruct the spatial information of the measured signal, two addi-
tional gradient magnetic fields are applied. The first field selects the slice
in z-direction of the volume, since only one layer of protons suffices the
Larmor-frequency for the main and gradient magnetic fields. An additional
gradient field in x-direction selects a y-slab. With a 2D Fourier recon-
struction, the x/y-coordinate is encoded into that signal [137] by increasing
de-phasing signal of the transverse relaxation along the x and y directions,
which generate specific frequencies into the signal. Thus, the RF intensity
(proton/spin intensity) is encoded into the intensity of the signal, while the
position is encoded into the frequencies [39, 137].

Different protocols describe sequences of various RF pulses and the ac-
tual measurement of the signal, where the time between the initial stimula-
tion and the measurement is calledecho timeTE and the time between two
(initial) stimulation cycles is calledrepetition timeTR. By varyingTE and
TR, different weight data can be achieved; i.e., with short echo and repeti-
tion times, the proton density is mostly dominated by theT1 relaxation time
(T1 weighted), with longTE andTR, theT2 relaxation time is dominating
the signal (T2 weighted), or with a longTR and a shortTE, the resulting data
is neitherT1 norT2 and can be seen as ”the pure (proton) density function”
[39]. Scanning protocols such as Turbo Spin Echo (TSE) or Constructive In-
terference in Steady States (3D CISS) belong to these categories. A slightly
different technique is used for angiography sequences, which focus on flow
information. Specifically, the Time of Flight sequence (TOF) measures the
spin saturation of the protons; the repeated stimulation of the protons in the
data volume leads to a saturation of the signal of stationary samples. How-
ever, the particle flow in blood vessels are continuously introducing “fresh
material” into the magnetic field which gives a strong signal. Typical MRI
scans take between 2 and 25 minutes. This relatively long scanning time is
dominated by the relaxation of the spins, not by the time required for the
measurements.

122 Volume Data Acquisition Techniques

123

Appendix B

Virtual Endoscopy Applications
of VIVENDI

B.1 Virtual Colonoscopy

Rectum

Ascending
Colon

Ascending
Colon

Descending
Colon

{ } }
{ Transverse Colon

{
Sigmoid Colon

{
Sigmoid Colon

Transverse Colon{

Figure B.1: Octree-based decomposition of colon dataset; the octree leaf blocks of the
isosurface are represented with different colors. The left image shows a coronal view, the
right image shows a sagittal view.

Originally, virtual colonoscopy used the VICON system [11, 110] with
application specific algorithms for occlusion culling and volume rendering.
Unfortunately, these algorithms depended on the tube-like topology of the
colon which circumvented the utilization of VICON for other application
areas. However, the VIVENDI system [25] does not have these limitations.
As described earlier, it uses an octree-based decomposition of the isosur-

124 Virtual Endoscopy Applications of VIVENDI

face extracted from the volume dataset. The octree structure can be seen
in Figure B.1. The individual blocks of the colon of the patient dataset are
rendered in different colors. In the remainder of this section, we repeat the
results already reported in [110] for the sake of completeness. This time,
however, we use the VIVENDI system which has a more flexible lighting
model, which enables a spotlight at the camera position pointing in the view
direction.

B.1.1 Motivation

(a) (b)

(c) (d)

Figure B.2: An 8mm polyp in the descending colon, close to the Sigmoid colon; left (a,c):
optical colonoscopy, right (b,d): virtual colonoscopy [110].

Cancer of the colon and rectum is the second leading cause of cancer
deaths in the USA. Approximately 150,000 new cases of colorectal cancer
are diagnosed every year [43]. Consequently, it is imperative that an effec-
tive diagnostic procedure is found to detect colonic polyps or tumors at an

B.1 Virtual Colonoscopy 125

early stage. Currently, optical colonoscopy and barium enema are the major
procedures available for examining the entire colon to detect polyps larger
than5mmin diameter, which are clinically considered to have a high prob-
ability of being malignant. In optical colonoscopy, a fiber optical probe is
introduced into the colon through the rectum. By manipulating the tiny cam-
era attached to the tip of the probe, the physician examines the inner surface
of the colon to identify abnormalities. This invasive procedure takes about
one hour and requires intravenous sedation, resulting in high costs. Barium
enema in contrast requires a great deal of physical cooperation from the pa-
tient when the X-ray radiographs of the colon are taken at different views.
Additionally, its sensitivity can be as low as 78% in detecting polyps in the
range of5mmto 20mm[160].

Both methods are either too expensive or to circumstantial for prophylac-
tic screening examinations – resulting in a low patient acceptance –, hence
virtual colonoscopy was proposed to limit optical colonoscopy to cases in
which either a suspicious polyp was found – which induced a biopsy or
removal of the polyp – or which were inconclusive in virtual colonoscopy
[218]. The latter happens if (shape) defects of the graphical representation
of the inner colon surface cannot be identified as polyps or residual stool.

After cleansing and inflating of the colon (both actions are also required
for optical colonoscopy), a CT scan (or alternatively an MRI scan) is per-
formed. The resulting image stack is pre-processed and examined using the
VIVENDI system.

B.1.2 Optical and Virtual Endoscopy

We compare the results of optical and virtual endoscopy based on polyps
found in both procedures. In particular we compare snapshots of two polyps
(see Fig. B.2 and B.3). The first polyp (Fig. B.2) is located in the descending
colon, close to the sigmoid colon. It is of a size of 8mm and hence of high
clinically relevance. Figure B.2a and c show the information provided by
optical colonoscopy, while b and d show the information provided by virtual
colonoscopy. The shape information of the polyp is well represented by the
virtual technique. However, textual information is not available, while it
is very helpful in optical colonoscopy (although not obvious in Fig. B.2a
or B.3a).

The overview image of virtual colonoscopy (Fig. B.2d) provides much
better information than for optical colonoscopy, which is just a rough sketch
of the general shape of a colon (Fig. B.2c). In particular the position infor-
mation of the polyps can be misleading – optical colonoscopy estimates
the position of the polyp in the sigmoid colon (see Fig. B.2c), while it is
accurately reconstructed in virtual colonoscopy – locating the polyp in the
descending colon.

The second polyp is of a size of 4mm and it is located in the transverse
colon, not too far away from the hepatic (right) flexure. Similar to the previ-
ous polyp, the actual location is quite different from the rough estimation in

126 Virtual Endoscopy Applications of VIVENDI

(a) (b)

(c) (d)

Figure B.3: An 4mm polyp in the transverse colon.; left (a,c): Optical colonoscopy, right
(b,d): virtual colonoscopy [110].

the overview image of optical colonoscopy, which locates the polyp in the
ascending colon.

To summarize, virtual colonoscopy is an alternative procedure for the
diagnosis of polyps in the human colon. However, it does not replace optical
colonoscopy, which is still required once a found polyp has to be removed
or a suspicious structure needs to be identified with additional information,
such as texture, color, and histological information through a biopsy, which
is generally not available by means of volume scanning methods,

Other applications of virtual colonoscopy include teaching, planning of
optical colonoscopy procedure, and of intra-operative navigation.

B.2 Virtual Ventriculoscopy 127

B.2 Virtual Ventriculoscopy

The focus of (optical and virtual) ventriculoscopy is the ventricular system
of the human brain, where the CSF (cerebrospinal fluid) is produced and
resorbed (Figure B.4a). Specifically, the CSF is produced in the lateral (up-
per two) ventricles. Due to respiration and other metabolistic activity, the
CSF flows through theforamen of Monrointo the third ventricle (which is
also producing CSF), and via the narrow connection of the ventricular (cere-
bral) aqueduct to the lower fourth ventricle. From this ventricle, the CSF is
distributed to other cavities inside of the skull.

A

B

(a) (b)

Figure B.4: Ventricular system of the human head [172]: (a) A ventricles, B ventricular
(cerebral) aqueduct, (b) Hydrocephalus in an image from a CT scan

B.2.1 Motivation

The drain of the third ventricles into the fourth ventricles is often blocked,
due to occlusion or a stenosis of the aqueduct. This can be caused by a
tumor, an accident, meningitis, or a congenitally defect. The result of such
a blockage is a serious disturbance of the natural flow of the CSF, which
frequently leads to a dangerous increase of pressure inside the skull and can
damage the brain severely (Fig. B.4b).

The standard procedure for this hydrocephalus is the external drainage
of the ventricular system into the abdominal cavity using a shunt. Unfor-
tunately, this external drainage system is frequently the cause of complica-
tions – such as obstructions and degenerative processes – which result in
the needed neurosurgical replacement of the shunt. Furthermore, the miss-
ing natural flow of CSF leads to degenerative processes of CSF producing
structures and the resolving of the septum between the lateral ventricles.
The treatment of the basic cause of the occlusion is usually not possible,
because of the inaccessibility of the aqueduct for neurosurgical instruments.
Recently, a new endoscope – small enough to pass through the foramen of
Monro and with enough luminous intensity – was developed which allows

128 Virtual Endoscopy Applications of VIVENDI

interventions inside of the ventricular system [56]. In consideration of the
inaccessibility of the aqueduct – even with the new endoscope – the depart-
ment of neurosurgery of the University Hospital at T¨ubingen is performing
a ventriculostomy, where the natural drain via the aqueduct and the fourth
ventricle is bypassed by a new drain in the floor of the third ventricle. To
access the ventricles, a hole is drilled through the skull and a tube is placed
through this hole, through the brain, into the posterior horn of the left or
right lateral ventricle. Thereafter, the endoscope is introduced through the
tube, which is used as a stable guide for the endoscope. It proceeds forward
through the foramen of Monro to the floor of the third ventricle.

Because of the water-like optical property of the CSF - which fills the
ventricular system, viewing of the surrounding tissue is possible. Movement
of the endoscope – guided by video-control via the small field of view of
the endoscope – is limited by the tube and the surrounding tissue. Micro-
instruments, introduced through an additional canal inside the endoscope,
can then be used to perform the actual minimally-invasive procedure, i.e.,
removing accessible mass lesions. In the case of a ventriculostomy, the thin
membrane of thelamina terminalisis perforated, thus realizing a new CSF
perfusion balance.

Other indications for minimally-invasive procedures include the forma-
tion of a CSF-filled cyst which also introduces pressure on blood vessels,
nerves, or the ventricular aqueduct. To avoid these dangerous increases of
pressure inside of the skull, the cyst is drained using the endoscope.

B.2.2 Virtual Endoscopy of the Ventricular System

The major problem of procedures as described above is the limited view
and orientation through-out the intervention which increases the necessary
time of the intervention and consequently, the inherent risks of serious com-
plications. To overcome these drawbacks, we propose the use of a virtual
endoscopy system to improve the planning of and orientation during this
procedure [25, 27].

Based on pre-operative acquired MRI/3D CISS (Constructive Interfer-
ence in Steady States) scans of the patient’s head, the respective ventricular
system is reconstructed and examined by the VIVENDI system. In particu-
lar the access ways to the target areas – i.e., the floor of the third ventricle
– are explored to optimize the optical neuroendoscopic procedure. Besides
the planning of neuroendoscopic interventions, virtual neuroendoscopy can
also be applied to explore the stenosis of the ventricular aqueduct, an area
which is not accessible with the endoscope. Figure B.5 shows various snap-
shots from virtual ventriculoscopy; the position and orientation of the virtual
camera is represented in the lower row of Figure B.5. Each snapshot visu-
alizes important anatomical structures, such as thechoroid plexus, which is
responsible for the production of CSF, and thechoroid plexus vein, which
is supplying the choroid plexus in Figure B.5a. The entry point for the
endoscope into the third ventricle is shown in Figure B.5b. The pipe-like

B.2 Virtual Ventriculoscopy 129

AH

CP

CPV
PC

AH
AI

MB

MB
F

LT
AI

L

R

LLV RLV

LT

(a) (b) (c)

(d) (e) (f)

Figure B.5: Virtual Ventriculoscopy; upper row – endoscopic view, lower row – MRI/3D
CISS orientation slice. (a/d) Left lateral ventricle, approach from posterior horn via pars
centralis (PC) to anterior horn (AH); (b/e) foramen of Monro, approach via right lateral
ventricle; (c/f) foramen of Monro, approach from third ventricle; CP = choroid plexus,
CPV = choroid plexus vein, F = fornix, AI = adhesio interthalamica, MB = mamillary
bodies, LT = lamina terminalis, LLV = entrance to left lateral ventricle, RLV = entrance to
right lateral ventricle [27].

structure of theadhesio interthalamicaconnects thethalamusthrough the
third ventricle. The upper bending of the foramen of Monro contains the
fornix, which belongs to thelimbic system. The limbic system is involved
in the learning process which renders the fornix as a very sensitive part of
the body. If it is injured by the endoscope while it enters the third ventricle,
a severe learning disability can be the result. Themamillary bodiesin the
floor of the third ventricle, also belong to the limbic system. Figure B.5c
shows a view from a view-point which is already not accessible for an op-
tical endoscope. It visualizes another important structure in the floor of the
third ventricle, thelamina terminalis, which is a thin membrane between
the third ventricle and the basilar cistern (or sometimes also referred to as
cistern of the lamina terminalis). This membrane is the target area for the
new CSF drain of the ventricular system.

Another application for virtual endoscopy is as a 3D navigation aid to
complement the current slice based navigation which tracks the tip of the
endoscopic instruments and maps their registered position into the MRI
dataset. The position and orientation derived from this navigation system
can be loaded into VIVENDI to synchronize optical and virtual endoscopy.
If a complicated anatomical situation is experienced, the area can be vir-

130 Virtual Endoscopy Applications of VIVENDI

VP
V

P

(a) (b)

(c) (d)

Figure B.6: Manually matched views from optical and virtual ventriculoscopy. (a, b) show
the thalamostriate vein (V) and choroid plexus (P) from the right lateral ventricle. (c, d)
show the right foramen of Monro, including the choroid plexus vein (Fig. B.5a) and the
choroid plexus structure.

tually explored using VIVENDI to determine the appropriate action. Fig-
ure B.6 shows the (manually) matched display of optical (a, c) and virtual
(b, d) endoscopy of two different datasets. Only the geometric shape infor-
mation is captured by the MRI scan; all texture information, such as blood
vessel color, surface color, is not available to virtual endoscopy.

B.3 Multi-modal Visualization for Neuroendoscopic
Interventions

One of the most dreaded complications of minimally-invasive neurosurgery
are lesion of blood vessels. Even if only a small blood vessel is injured,
the resulting bleeding (“red-out”) causes a sudden loss of optical visibility
through the endoscope which introduces severe difficulties for obtaining the
desired results of the interventions. A more dangerous situation arises if a

B.3 Multi-modal Visualization for Neuroendoscopic
Interventions 131

major blood vessel is injured. A lesion of an artery results in a fatal mass
bleeding, an usually lethal outcome of an intervention.

Unfortunately, the major basilar artery is located directly below the floor
of the third ventricle without an optical visibility from the third ventricle. To
avoid traumas of such blood vessels, we modified the VIVENDI-framework
[25, 31] to represent multiple anatomical information of the patient data us-
ing several 3D scanning techniques [30]. For the rendering of this multiple
anatomical patient data, VIVENDI provides frame-rates of more than 25 fps
on an HP J7000/VISUALIZE fx6 workstation, and about 20 fps on an HP
P-class/VISUALIZE fx6 PC running LINUX.

Middle
Cerebral
Artery

Lateral
Ventricles
(posterior
horns)

Middle
Cerebral
Artery

Lateral
Ventricles
(posterior
horns)

(a) (b)

Middle
Cerebral
Artery

Lateral
Ventricles
(inferior horns)

Middle
Cerebral
Artery

Lateral
Ventricles
(inferior horns)

(c) (d)

Figure B.7: Upper row: CT axial slice with the posterior horns of the lateral ventricles and
middle cerebral artery with two contrast windows (a, b). Lower row: MRI axial slice with
the inferior horns of the lateral ventricles and middle cerebral artery (left and right). (c)
MRI angiography sequence, (d) MRI TSE sequence [30].

B.3.1 Matching Different Data Modalities

To visualize different anatomical structures, different scanning modalities
and protocols are required. The associated volume datasets vary in terms of
orientation, resolution, voxel dimensions, translations, and rotations. For
a combined visualization of these datasets matching parameters need to

132 Virtual Endoscopy Applications of VIVENDI

be found, which is a very difficult procedure. To minimize the necessary
matching expenditure, we conducted several experiments to determine an
appropriate scanning protocol, based on CT and MRI scans. For the tar-
geted application, two anatomical structures need to be identified; the CSF-
filled ventricular system and cysts, and the blood filled major arterial blood
vessels in proximity to the CSF-filled target areas.

The (contrast agent-enhanced) CT scan provided a good contrast and a
high resolution for the vascular system within the region of interest. How-
ever, this CT scan did not produce a sufficient contrast between the brain
tissue and the CSF-filled cavities, while still preserving the complete inner
surface of the cavities (Fig. B.7a and b). Furthermore, CT inherently intro-
duces radiation, an additional drawback compared to MRI. Blood-flow in-

Internal
Carotid
Artery

Anterior
Cerebral
Artery

Carotid
T Junction

Internal
Carotid
Artery

(a) (b)

Figure B.8: (a) Close-up to internal carotid artery. (b) View downwards on the “carotid
siphon”, below the carotid T junction [30].

duced MRI angiography (Time of Flight/TOF, Fig. B.7c) also reconstructs
the vascular system with good quality, although the resolution is slightly
lower than with a CT scan. However, it is not usable for the segmentation of
CSF-filled cavities, since the ventricular system cannot be separated from
the space surrounding the skull. Therefore, we perform a second MRI scan
that focuses on these cavities right after the MRI angiography. We previ-
ously (see Section B.2) used an MRI 3D CISS sequence to reconstruct the
ventricular system in patient datasets. Unfortunately, the different scanning
orientation (sagittal/3D CISS and axial/TOF) introduced a surprisingly dif-
ficult match procedure, which qualified this sequence as impractical. Sim-
ilar problems prevent a combination of MRI volumes with CT volumes,
since different patient positioning and field of views pose almost insupera-
ble matching problems. Consequently, we modified the 3D CISS sequence
to an MRI TSE sequence (Turbo Spin Echo, Fig. B.7d) to reconstruct the
cerebral ventricles, which provides the same orientation as the angiography
sequence and unfortunately, also a smaller slice range than the 3D CISS.

B.4 Virtual Angioscopy 133

However, it turned out that the resolution is sufficient for our purposes. Fi-
nally, the combination of MRI angiography and MRI TSE data delivered a
satisfying matching and image quality and was henceforth used in all later
experiments. Furthermore, MRI does not expose radiation, in contrast to a
CT scan.

Both sequences were performed subsequently, without changing the po-
sition and orientation of the patient. It later turned out in our experiments
that patient movement during both scans is negligible. Although the reso-
lution within the axial slices is twice as large in the MRI angiography as in
the MRI TSE sequence, the scans generate two well-aligned data volumes.
However, the number of axial slices in the MRI data is different, and hence
so is the covered scanning area. This difference requires a manual slice
matching step that is performed by a neuroradiologist or neurosurgeon. The
calculated axial translation generates an error which is at most the distance
between two slices in the data volumes. A manifestation of this error can be
found in Figures B.8 and B.9, where the red/dark, as opaque rendered artery
geometry reconstructed from the MRI angiography sequence penetrates the
geometry of the as transparent rendered CSF-filled cavity geometry1. Es-
pecially in Figure B.9a, the “original” position of the blood vessel is also
visible in the geometry extracted from the MRI TSE sequence. Fortunately,
the maximum error (if the matching step is correct) is always sufficiently
below a critical threshold, where the “clearance area” would also cover the
proposed target area of the endoscope. Figures B.10 and B.11 show a dif-
ferent dataset of a patient who was subject of a ventriculostomy.

Currently, the VIVENDI system is now providing the vascular topogra-
phy combined with the information of the anatomical structure of the CSF-
filled ventricular cavities. This information is successfully used to represent
the location of the blood vessels to carefully plan the neuroendoscopic in-
tervention. Lesions of the respective arteries can be avoided, resulting in a
substantial reduction of the risk of serious complications.

B.4 Virtual Angioscopy

The blood circulation system is of special interest for physicians, since
many injuries and diseases of this organ system can result in serious, po-
tentially life-threatening conditions. Many of the diseases cause stenosis or
aneurysms of the blood vessels. Both developments can be assessed using
virtual endoscopy methods. These methods can be particularly useful in
diagnostic applications where interior explorations using “real” endoscopic
tools are not possible.

1The depth sorting of the geometry for correct transparent rendering is obtained by the view-frustum culling;
all subdivision entities are sorted according to their closest depth values.

134 Virtual Endoscopy Applications of VIVENDI

Internal
Carotid
Artery

Anterior
Cerebral
Artery

Middle
Cerebral
Artery

Carotid T Junction

Right Carotid
Artery

Anterior
Cerebral
Artery

Middle
Cerebral
Artery

Temporal Arachnoid Cyst

Temporal Arachnoid Cyst

(a) (b)

Figure B.9: Temporal arachnoid cyst dataset: (a) View on to carotid T junction, where
the internal carotid artery branches into the lateral middle cerebral artery and the frontal
anterior cerebral artery. The red vascular geometry – extracted from MRI angiography –
penetrates through the visible vascular geometry extracted from MRI TSE. (b) Frontal and
top overview of temporal arachnoid cyst [30].

Carotid
T Junction

Anterior
Cerebral
Artery

Middle
Cerebral
Artery

Current
Position

Carotid
T Junction

Left and Right
Laterial Ventricles

Basilar
Artery

(a) (b)

Figure B.10: Ventriculostomy dataset: (a) Frontal view from the center of the lateral ventri-
cles (first two ventricles); the septum between the lateral ventricles is dissolved. The white
line marks the default camera path from the left lateral ventricle through the foramen of
Monro into the third ventricle. (b) Frontal and top overview of ventricular system [30].

Carotid
T Junction

Anterior
Cerebral
Artery

Internal
Carotid
Artery

Foramen
of Monro

Middel
Cerebral
Artery

Anterior
Cerebral
Artery

Internal
Carotid
Artery

Third
Ventricle

Current
Position

Circle of
Willis

(a) (b)

Figure B.11: Ventriculostomy dataset: (a) Frontal view from the cerebral aqueduct entrance
in the third ventricle. The floor of the third ventricle – the potential location for a new CSF
drain – is bounded by the arterialcircle of Willis, a potential cause for mass bleeding. (b)
Frontal and top overview of ventricular system [30].

B.4 Virtual Angioscopy 135

Data Acquisition

Currently, the major method for the visual representation of the angio-archi-
tecture is by 2D angiography, where a contrast agent is injected via an en-
dovascular catheter. A subsequently taken X-ray radiograph (DSA or fluo-
roscopy) acquires a 2D projection of the vessels, which are of high resolu-
tion but lack spatial information.

Alternatively, other non-invasive techniques are available to visualize
vessel trees in 3D. CT angiography techniques also require the injection
of a contrast agent. The major drawbacks of this method are the limited
resolution in Z (slice distance) and motion artifacts due to patient move-
ments. These problems are reduced or even eliminated with the new CT
multi-slice technology (i.e., Siemens SOMATOM Volume Zoom) which en-
able isotropic data volumes and less motion artifacts due to faster scanning,
possibly triggered by a heart monitor for cardio-vascular imaging.

MRI angiography is based on the flow-induced data and hence, it does
not require the injection of a contrast agent. Furthermore, it does not in-
troduce radiation in contrast to CT-based angiography. However, the lower
resolution and the relatively long scanning time of 20 minutes make MRI-
based angiography sensitive to patient movement and virtually impossible
to use for fast moving organs, i.e., the heart. Additionally, some MRI angio-
graphy sequences might introduce fake stenosis, due to measuring artifacts
[39].

Another advanced technique isrotational angiography[62, 94], where
up to 140 X-ray-based projections are taken from a rotation range of 200
degrees around the patients. Based on these individual projections, a 3D
volume is reconstructed which represents the respective blood vessels (if
a contrast agent is injected) and other anatomical structures in very high
resolution. However, the relatively short scanning times of up to 13 seconds
make rotational angiography still too slow for fast movements (i.e., heart
beat).

Currently in clinical practice, the examinations of the vascular systems
are mainly performed using Maximum-Intensity-Projections (MIP) or slic-
ing through the 3D dataset. In contrast, using virtual endovascular methods
(virtual endoscopy) enables both quantitative and qualitative analysis of the
blood vessels [52].

After a segmentation and classification operation, the visual reconstruc-
tion of the blood vessels in the scanned area can be generated from the
volume data. However, due to venous reflux of the contrast agent (if used),
occasionally more blood vessels of the respective area are selected than the
vessels of interest. This can lead to a situation where the important infor-
mation is hidden behind less important information. Two techniques are
applied to solve this situation. The application of virtual clips limits the
segmentation of the vessel tree to the part of the vessels the physician is
interested in [227, 31]. The second technique applies methods from vir-
tual endoscopy [25, 31, 26] to generate an interactive environment for the

136 Virtual Endoscopy Applications of VIVENDI

vascular examination from a point of view which is inside the vessels.

B.4.1 Angioscopy of Cerebral Blood Vessels

Fusiform
Aneurysm

A. cerebri anterior
A. cerebri media

A. carotis interna A. carotis interna

A. cerebri anterior

A. cerebri media

Aneurysm

(a) (b)

Figure B.12: Cerebral aneurysms; (a) fusiform aneurysm, (b) non-fusiform aneurysm.

A common procedure in neuroradiology is the examination of extra- and
intracranial blood vessels. The major motivation behind these examina-
tions is the diagnosis of cerebral aneurysms. Clinically, two major forms of
aneurysms are distinguished; thefusiform aneurysmand thenon-fusiform
or other aneurysms. The fusiform aneurysm is an expansion of an arterial
blood vessel through all of its wall layers (see Fig. B.12a). The basic cri-
terion is that noneck of the aneurysmcan be determined which renders the
aneurysm effectively as non-treatable. In contrast, a neck or exit can be
identified fornon-fusiform aneurysm(see Fig. B.12b). From an anatomic
point of view, other distinctions are possible according to the shape and lo-
cation of the aneurysms. Furthermore, some aneurysms include a rupture of
the inner arterial wall layers, the intima and media. The remaining adven-
titia layer forms a saccular deformation which is very sensitive to pressure.
However, these differences cannot be easily identified which results in no
clinical relevance of this distinction.

The expansion of the aneurysms can introduce pressure on other blood
vessels – possibly resulting in the occlusion of that blood vessel –, or on
surrounding commissures (nerve fibers). This pressure can result in severe
headache, partial paralysis, or a stroke. Furthermore, strong blood flow
vortices and swirls at the neck and in the aneurysms increase the risk of a
highly dangerous rupture of the artery, in particular if the blood pressure
is increasing due to physical exercises. This rupture in turn results in the
serious destruction or necrosis of the surround brain tissue or in a lethal
mass bleeding.

The usual procedures to treat aneurysms include neurosurgical and neu-
roradiological interventions. The major neurosurgical procedure is the ex-
clusion of the aneurysm from the blood flow by positioning a clip on the

B.4 Virtual Angioscopy 137

Fusiform
Aneurysm

Internal
Carotid Artery

Internal
Carotid ArteryAnterior

Cerebral Artery

(a) (b)

Anterior
Cerebral
Artery

Internal
Carotid
Artery

Fusiform
Aneurysm

Carotid
Siphon

Carotid
T−Junction

Middle
Cerebral
Artery

Endoscopic
Viewpoint

Anterior
Cerebral
Artery

Internal
Carotid
Artery

Fusiform
Aneurysm

Middle
Cerebral
Artery

Endoscopic
Viewpoint

(c) (d)

Figure B.13: Patient One – (a) Fusiform aneurysm of the middle cerebral artery. (b)
Carotid T-junction as seen from the middle cerebral artery. (c) and (d) show magnifications
of views on the aneurysm from outside of the blood vessels. The respective view-points of
(a), (b) are annotated in (c) and (d).

neck of the aneurysm. In neuroradiology, tiny platinum spirals (“coils”) are
introduced into the dome of the aneurysm using a micro-catheter, which
is usually inserted via one of the femoral arteries of the legs. Together
with the clotting of the thrombocytes, the coils close the aneurysm from
the blood stream. All these interventions require the identification of the
neck and exit of the aneurysms. However, these tasks can frequently not be
achieved with standard 2D angiographies, MIPs, or slicing through the vol-
ume dataset. 3D geometry reconstructions using direct or indirect volume
rendering techniques [19] have been recently introduced into the clinical
practice of research hospitals [94] to provide a better understanding of the
angio-architecture of aneurysms in complex blood vessel trees. In particular
endovascular inspections of the blood vessel can provide valuable informa-
tion on the position, orientation, and connection of the aneurysm [145].

138 Virtual Endoscopy Applications of VIVENDI

Neck of
Carotid
Aneurysm

Carotid
Aneurysm

Neck of
Anterior
Cerebral
Aneurysm

Anterior
Cerebral
Artery

(a) (b)
Neck of
Anterior
Cerebral
Aneurysm

Anterior
Cerebral
Aneurysm

Aneurysm

Anterior
Cerebral
Artery

Aneurysm
Neck

(c) (d)

Figure B.14: Patient Two – (a) Exit of carotid aneurysm. (b) View from anterior cere-
bral aneurysm into anterior cerebral artery. (c) View from anterior cerebral artery into
aneurysm. Measurements show the size of the aneurysm neck. (d) Anterior cerebral artery
from outside.

We applied the VIVENDI framework for the endovascular identification
of the neck, exit, and dome of cerebral aneurysms [31]. The geometry rep-
resenting the inner surface of the blood vessels is reconstructed using data
from rotational angiography, which provides an isotropic volume dataset at
a very high resolution with a voxel spacing in the sub-millimeter range.

The first patient dataset shows a fusiform aneurysm of the middle cere-
bral artery (see Fig. B.12a). It is located close to the carotid T-junction,
where the internal carotid artery branches into the anterior and middle cere-
bral arteries. Figure B.13a shows the exit (entrance) of the fusiform aneurysm
as seen from the anterior cerebral artery at the T-junction. Below is the en-
trance of the internal carotid artery. An endovascular view from the middle
cerebral artery to the T-junction can be seen in Figure B.13b. To the left is
the entrance to the frontal anterior cerebral artery, to the right is the entrance
to the internal carotid artery. In Figure B.13c and d, magnifications of the

B.4 Virtual Angioscopy 139

aneurysm from view-points outside of the blood vessels can be seen. Unfor-
tunately, the fusiform nature of the aneurysm does not permit an effective
treatment.

The second patient has several non-fusiform aneurysms; an aneurysm
of the internal carotid artery (see Fig. B.12b right) and an aneurysm of the
anterior cerebral artery (see Fig. B.12b left and Fig. B.14d). Figure B.14a
shows the exit (entrance) of the carotid aneurysm. The neck is easily iden-
tified from the endovascular view. Similar, Figure B.14c shows the neck of
the anterior cerebral aneurysm. Measurements suggest that the approximate
radius of the aneurysm’s head is 5mm. Figure B.14b shows the respective
view from inside of the aneurysm to the anterior cerebral artery. Finally,
Figure B.14d shows the aneurysm from an outside view. The visualizations
of the anterior cerebral aneurysm show that all three branches of the anterior
cerebral artery are closely located to the aneurysm. However, clipping al-
lows the exclusion of the aneurysm without occluding one of these branches.
This result was confirmed by the neurosurgical examination and treatment
which applied a clip to the anterior aneurysm. The smaller carotid aneurysm
was coiled during a successful interventional neuroradiologic procedure.

B.4.2 Angioscopy of Coronary Blood Vessels

The heart of the human body is responsible for circulating the blood through
the blood vessels of the human body. It is organized into four chambers,
the atria and ventricles of the heart (see Fig. B.15). One atrium and one
ventricles belong to theright heart, or left heartrespectively. The heart is
connected with the blood vessel system through veins (leading towards the
heart) and arteries (leading away from the heart). The venous blood from
the various body parts arrives in theright atrium through thegreat veins,
thesuperiorandinferior vena cava. It enters through the rightatrioventric-
ular valve, the tricuspid valve, into theright ventricle, where it is pumped
via thepulmonary valveinto thepulmonary arteryto the lungs. After the
refreshing of the blood with oxygen in the lungs, it arrives through thepul-
monary veinsin the left atrium. It passed via theleft atrioventricular valve,
the mitral valve, into theleft ventricleand is pumped via theaortic valve
into theaorta, which distributes the blood to all body parts. Directly af-
ter the aortic valve are the entrances to theleft andright coronary arteries,
which supply the heart muscle with blood. The left coronary artery bifur-
cates into theanterior interventricular branchand thecircumflex branch,
which supplies most of the left heart, and it is the main source of supply of
the interventricular septum – which separates the left and right ventricles –,
that includes most of the conducting system of the heart. The right coronary
artery extends over the right heart. It supplies this part of the heart, the inter-
atrial septum – which separates the left and right atria –, and additionally the
interventricular septum, including the sinuatrial and atrioventricular nodes,
which are the major parts of the conduction system of the heart [108].

Cardiac diseases are among the number one causes of life-threatening

140 Virtual Endoscopy Applications of VIVENDI

Aorta

Pulmonary
artery

Right
ventricle

Right
coronary
artery

Pulmonary
veins

Right
atrium

Inferior
vena cava

(a)

Aorta

Pulmonary
artery

Right
ventricle

Right
coronary
artery,
marginal
branch

Pulmonary
veins

Left
atrium

Left
ventricle

Interventricular
septum

Left
coronary
artery

Circumflex
branch

Anterior
interventricular
branch

(b)

Figure B.15: Contrast media filled cavities of the heart: (a) Front/top view, (b) left/top view
[17].

diseases in Europe and North-America. Usually, the under-supply of the
heart muscle with oxygen through the blood leads to severe arrhythmia.
This arrhythmia can cause an electro-mechanic decoupling of the conduc-
tion of the heart, resulting in a dangerous reduction of the pumping perfor-
mance, in a possible collapse of the blood circulation, and finally the death
of the patient. Even if the arrhythmia is not leading to a fatal decoupling of
the conduction, the missing supply of oxygen leads to the necrosis of that
part of the heart muscle, if necessary medical procedure are not applied in
time. The actual cause of the under-supply of the heart muscle is usually a

B.4 Virtual Angioscopy 141

Stenosis of
right coconary
artery

Aorta

Pulmonary
artery

Stenosis

Remaining
connection

(a) (b)

Aortic
valve

Entrance
to left
ventricle

Aorta

Right
coronary
artery

Tricuspid
valve

(c) (d)

Figure B.16: Virtual endoscopy of the heart: (a) Outside reconstruction of stenosis of right
coronary artery; (b) endoscopic view on stenosis; (c) view from aorta onto (remainder of)
aortic valve; (d) view from right ventricle onto (remainder of) tricuspid valve [17].

stenosis or an occlusion of a coronary artery. Other reasons for arrhythmias
are direct injuries of the heart muscle by force, failure of the valves of the
heart, or infectious diseases.

For the diagnosis of these malfunctions, several clinical and laboratory
tests are applied. For imaging, echo cardiography, coronary angiography,
or nuclear medicine methods are used. However, only 3D scanning meth-
ods are able to generate volumetric data of the heart. Unfortunately, most
modalities are too slow to avoid motion artifacts of the fast moving heart.
More or less only ECG-triggered (Electro-Cardio-Gramme) spiral CT pro-
vides scanning which captures volumetric data of the heart that is widely
motion artifact free. With the introduction of multi-slice CT, enough spatial
resolution is also available for 3D coronary angiography.

Based on an anisotropic dataset from multi-slice CT coronary angio-
graphy, we explore the use of virtual endoscopy for virtual angioscopy of the

142 Virtual Endoscopy Applications of VIVENDI

heart [17]. The dataset consist of 150 slices at a slice distance of 1.25mm.
Each of the slices has a resolution of512� 512 pixels at a pixel distance of
0.59 mm. Outside views on the reconstructed, contrast media filled cavities
of the heart can be seen in Figure B.15. The reconstructed geometry of the
heart is very complex. From more than two million polygons, more than
80% of the geometry was culled by our visibility driven rendering, thus ob-
taining a frame-rate with an average of 4.2 fps on a typical path through the
right heart. The low culling and frame-rate are a result of the deep visibility
within the chambers of the heart which reduces possible culling benefits.

The coronary valves, which open and close at a high speed, cannot be
reconstructed completely, due to motion artifacts in the scanned dataset (see
Fig. B.16c and d). In particular the right atrium of the heart is subject to
artifacts which are due to the injection of the contrast agent and they can
be seen in the respective slices of the CT dataset. However, other important
features of the anatomy of the heart of the patient are visible, such as the
aorta, the pulmonary artery, the great veins, the pulmonary veins, and the
coronary arteries. Of special interest are the latter one’s, since most of the
cardiac emergencies result from a stenosis of these arteries. Figure B.16a
and b shows such a stenosis of the right coronary artery, which supplies
the right heart and important parts of the conduction system of the heart.
Measurements of the diameter of the blood vessel at of the stenosis pro-
vide a quantitative evaluation of the stenosis. Additionally, measurements
of the volume of the ventricles provide information of the performance of
the heart.

BIBLIOGRAPHY 143

Bibliography

[1] M. Abrash. Inside Quake.Dr. Dobb’s Sourcebook, Jan/Feb:41–45,
1996.

[2] J. Airey. Increasing Update Rates in the Building Walkthrough Sys-
tem with Automatic Model-Space Subdivision and Potentially Visible
Set Calculations. PhD thesis, Department of Computer Science, Uni-
versity of North Carolina, Chapel Hill, 1990.

[3] J. Airey, J. Rohlf, and F. Brooks. Towards Image Realism with Inter-
active Update Rates in Complex Virtual Building Environments. In
Proc. of ACM Symposium on Interactive 3D Graphics, pages 41–50,
1990.

[4] D. Aliaga, D. Manocha, J. Cohen, S. Kumar, T. Funkhouse, M. Lin,
A. Wilson, and D. Luebke. Interactive Walkthroughs of Large Geo-
metric Datasets. InACM SIGGRAPH Course 18, 2000.

[5] H. Arabnia, D. Bartz, A. Jacobsen, M. Meißner, M. Misra, H. Shen,
and G. Thiruvathukal (eds). Parallel and Distributed Process-
ing Techniques and Applications (PDPTA), volume III of ISBN 1-
892512-6-8. CSREA Press, 1998.

[6] D. Auer and L. Auer. Virtual Endoscopy - A New Tool for Teaching
and Training in Neuroimaging.International Journal of Neuroradi-
ology, 4:3–14, 1998.

[7] L. Avila and W. Schroeder. Interactive Visualization of Aircraft and
Power Generation Engines. InProc. of IEEE Visualization, pages
483–486, 1997.

[8] C. Bajaj, V. Pascucci, and D. Schikore. Fast Isocontouring for Im-
proved Interactivity. InProc. of Symposium on Volume Visualization,
pages 39–46, 1996.

[9] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. BOX-
TREE: A Hierarchical Representation for Surfaces in 3D. InProc. of
Eurographics, pages 387–396, 1996.

[10] D. Bartz. Modellbasierte Ver¨anderungen von B-Spline-Oberfl¨achen
zur Simulation von Verformungen der Gesichtshaut. Studienarbeit,
Dept. of Computer Science, University of Erlangen-N¨urnberg, 1995.

144 BIBLIOGRAPHY

[11] D. Bartz. Prototyping a Virtual Colonoscopy System. Master’s thesis,
Dept. of Computer Science, University of Erlangen-N¨urnberg, 1996.

[12] D. Bartz, editor.Visualization in Scientific Computing. ISBN 3-211-
83209-2. Springer Verlag-Wien, 1998.

[13] D. Bartz. Optimizing Memory Synchronization for the Parallel Con-
struction of Recursive Tree Hierarchies. InProc. of Eurograph-
ics Workshop on Parallel Graphics and Visualization, pages 53–60,
2000.

[14] D. Bartz, R. Grosso, T. Ertl, and W. Straßer. Parallel Construction
and Isosurface Extraction of Recursive Tree Structures. InProc. of
WSCG, volume III, pages 479–486, 1998.

[15] D. Bartz andÖ. Gürvit. Haptic Navigation in Volumetric Datasets. In
Proc. of PHANToM User Research Symposium, pages 43–47, 2000.

[16] D. Bartz, Ö. Gürvit, D. Freudenstein, H. Schiffbauer, and J. Hoff-
mann. Integration of Navigation, Optical and Virtual Endoscopy in
Neurosurgery and Oral and Maxillofacial Surgery. In3rd Caesarium
on Computer Aided Surgery, 2001.

[17] D. Bartz, Ö. Gürvit, M. Lanzend¨orfer, A. Kopp, A. Küttner, and
W. Straßer. Virtual Endoscopy for Cardio Vascular Exploration. In
Proc. of Computer Assisted Radiology and Surgery, pages 960–964,
2001.

[18] D. Bartz, J. Klosowski, and D. Staneker. Tighter Bounding Volumes
for Better Occlusion Performance. InVisual Proc. of ACM SIG-
GRAPH, page 213, 2001.

[19] D. Bartz and M. Meißner. Voxels versus Polygons: A Comparative
Approach for Volume Graphics. InProc. of Volume Graphics, pages
33–48, 1999.

[20] D. Bartz and M. Meißner. Voxels versus Polygons: A Compar-
ative Approach for Volume Graphics. In M. Chen, A. Kaufman,
and R. Yagel, editors,Volume Graphics, ISBN 1-85233-192-5, pages
171–184. Springer Verlag-London, 2000.

[21] D. Bartz, M. Meißner, and T. H¨uttner. Extending Graphics
Hardware for Occlusion Queries in OpenGL. InProc. of Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware, pages 97–
104,158, 1998.

[22] D. Bartz, M. Meißner, and T. H¨uttner. OpenGL-assisted Occlu-
sion Culling of Large Polygonal Models.Computers & Graphics,
23(5):667–679, 1999.

[23] D. Bartz, C. Silva, and B. Schneider. Rendering and Visualization in
Parallel Environments. InACM SIGGRAPH Course 13, 2000.

BIBLIOGRAPHY 145

[24] D. Bartz, C. Silva, and B. Schneider. Rendering and Visualization in
Parallel Environments. InIEEE Visualization, tutorial 7, 2000.

[25] D. Bartz and M. Skalej. VIVENDI - A Virtual Ventricle Endoscopy
System for Virtual Medicine. InData Visualization (Proc. of Sympo-
sium on Visualization), pages 155–166,324, 1999.

[26] D. Bartz, M. Skalej, D. Welte, and W. Straßer. 3D Interactive Virtual
Angiography. InProc. of Computer Assisted Radiology and Surgery,
pages 44–48, 1999.

[27] D. Bartz, M. Skalej, D. Welte, W. Straßer, and F. Duffner. A Virtual
Endoscopy System for the Planning of Endoscopic Interventions in
the Ventricle System of the Human Brain. InProc. of BiOS: Biomedi-
cal Diagnostics, Guidance and Surgical Assist Systems, volume 3514,
pages 91–100, 1999.

[28] D. Bartz, M. Skalej, D. Welte, W. Straßer, D. Freudenstein, and
F. Duffner. VIVENDI - Ein Planungssystem f¨ur minimal-invasive
Eingriffe in der Neurochirurgie. InProc. of Workshop Bildverar-
beitung in der Medizin, Informatik Aktuell, pages 197–202, 1999.

[29] D. Bartz and W. Straßer. Asynchronous Parallel Construction of Re-
cursive Tree Structures. InParallel Computation (Proc. of ACPC),
LNCS 1557, pages 427–436, 1999.

[30] D. Bartz, W. Straßer,̈O. Gürvit, , D. Freudenstein, and M. Skalej.
Interactive and Multi-modal Visualization for Neuroendoscopic In-
terventions. InData Visualization (Proc. of Symposium on Visualiza-
tion), pages 157–164, 2001.

[31] D. Bartz, W. Straßer, M. Skalej, and D. Welte. Interactive Exploration
of Extra- and Intracranial Blood Vessels. InProc. of IEEE Visualiza-
tion, pages 389–392,547, 1999.

[32] J. Beier, T. Diebold, H. Vehse, G. Biamino, E. Fleck, and R. Felix.
Virtual Endoscopy in the Assessment of Implanted Aortic Stents. In
Proc. of Computer Assisted Radiology, pages 183–188, 1997.

[33] J. Bentley. Multidimensional Binary Search Trees Used for Associa-
tive Search.Communications of the ACM, 18(9):509–516, 1975.

[34] D. Butenhof. Programming with POSIX Threads. Addison-Wesley,
Reading, MA, 1997.

[35] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and
Tomographic Reconstruction Using Texture Mapping Hardware. In
Proc. of Symposium on Volume Visualization, pages 91–98, 1994.

[36] E. Catmull.A Subdivision Algorithm for Computer Display of Curved
Surfaces. PhD thesis, University of Utah, 1974.

146 BIBLIOGRAPHY

[37] R. Chandra, R. Menon, L. Dagum, David Kohr, D. Maydan, and
J. McDonald.Parallel Programming in OpenMP. Morgan-Kaufmann
Publishers, San Francisco, CA, 2000.

[38] S. Chen. Quicktime VR – An Image-based Approach to Virtual En-
vironment Navigation. InProc. of ACM SIGGRAPH, pages 29–38,
1995.

[39] Z. Cho, J. Jones, and M. Singh.Foundations of Medical Imaging.
John Wiley, New York, NY, 1993.

[40] P. Cignoni, P. Parino, E. Montani, E. Puppo, and R. Scopigno. Speed-
ing Up Isosurface Extraction Using Interval Trees.IEEE Transac-
tions on Visualization and Computer Graphics, 2(12):158–170, 1997.

[41] J. Clark. Hierarchical Geometric Models for Visible Surface Algo-
rithms. Communications of the ACM, 19(10):547–554, 1976.

[42] H. Cline, W. Lorensen, S. Ludke, C. Crawford, and B. Teeter. Two
Algorithms for the Three-Dimensional Construction of Tomograms.
Medical Physics, 15(3)(3):320–327, 1988.

[43] L. Cohen, P. Basuk, and J. Waye.Practical Flexible Sigmoidoscopy.
Igaku-Shoin, New York, NY, 1995.

[44] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A Survey of Visibility for
Walkthrough Applications. InACM SIGGRAPH Course 4: Visibility:
Problems, Techniques, and Applications, 2000.

[45] D. Cohen-Or and E. Zadicario. Visibility Streaming for Network-
based Walkthoughs. InProc. of Graphics Interface, pages 1–7, 1998.

[46] S. Coorg and S. Teller. Temporally Coherent Conservative Visibility.
In Proc. of ACM Symposium on Computational Geometry, pages 78–
87, 1996.

[47] S. Coorg and S. Teller. Real-Time Occlusion Culling for Models
with Large Occluders. InProc. of ACM Symposium on Interactive
3D Graphics, pages 83–90, 1997.

[48] International Business Machines Corporation. User’s Guide, IBM 3D
Interaction AcceleratorTM . Version 1 release 2.0. Technical report,
IBM T. J. Watson Research Center, Yorktown Heights, 1995.

[49] Structural Dynamics Research Corporation. Screw driver dataset.
CD-ROM, 1997.

[50] T. Cullip and U. Neumann. Accelerating Volume Reconstruction with
3D Texture Hardware. Technical Report TR93-027, University of
North Carolina at Chapel Hill, 1993.

BIBLIOGRAPHY 147

[51] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kaufman. High
Quality Volume Rendering Using Texture Mapping Hardware. In
Proc. of Eurographics/SIGGRAPH Workshop on Graphics Hard-
ware, pages 69–76, 1008.

[52] C. Davis, M. Ladds, B. Romanowski, S. Wildermuth, J. Knoplioch,
and J. Debatin. Human Aorta: Preliminary Results with Virtual En-
doscopy Based on Three-dimensional MR Imaging Data Sets.Radi-
ology, 199:37–40, 1996.

[53] P. Debevec, C. Bregler, M. Cohen, R. Szeliski, L. McMillan, and
F. Sillion. Image-Based Modeling, Rendering, and Lighting. InACM
SIGGRAPH Course 35, 2000.

[54] E. Dijkstra. A Note on Two Problems in Connection with Graphs.
Numerische Mathematik, 1:269–270, 1959.

[55] M. Dinsmore, N. Langrana, and G. Burdea. Virtual Reality Training
Simulation for Palpation of Subsurface Tumors. InProc. of IEEE
Symposium on Virtual Reality and Applications (VRAIS), 1997.

[56] F. Duffner, W. Dauber, M. Skalej, and E. Grote. A New Endoscopic
Tool for the CRW Stereotactic System. InStereotactic and Func-
tional Neurosurgery, volume 67(3-4), pages 213–217, 1994.

[57] F. Durand. 3D Visibility: Analytical Study and Applications. PhD
thesis, Universit´e Joseph Fourier, 1999.

[58] F. Durand, G. Drettakis, and C. Puech. The Visibility Skeleton:
A Powerful And Efficient Multi-Purpose Global Visibility Tool. In
Proc. of ACM SIGGRAPH, pages 89–100, 1997.

[59] B. Eberhardt, O. Etzmuß, and M. Hauth. Implicit-Explicit Schemes
for Fast Animation with Particle Systems. InProc. of Eurographics
Workshop on Computer Animation and Simulation, 2000.

[60] B. Eberhardt, A. Weber, and W. Straßer. A Fast, Flexible Particle-
System Model for Cloth Draping.IEEE Computer Graphics and Ap-
plications, 16(5):52–59, 1996.

[61] U. Ernemann, M. Skalej, D. Bartz, D. Freudenstein, and K. Voigt.
Virtual Endoscopy of Cerebral Vessels. InProc. of Neuroendoscopy,
2000.

[62] R. Fahrig.Computed Rotational Angiography. PhD thesis, University
of Western Ontario, 1999.

[63] G. Ferretti, D. Vining, J. Knoplioch, and M. Coulomb. Tracheo-
bronchial Tree: Three-Dimensional Spiral CT with Bronchoscopic
Perspective.Journal of Computer Assisted Tomography, 20(5):777–
781, 1996.

148 BIBLIOGRAPHY

[64] M. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Transactions on Computers, C-21:948–960, 1972.

[65] J. Foley, A. van Dam, S. Feiner, and J. Hughes.Computer Graphics:
Principles and Practice. Addison Wesley, Reading, MA, 2nd edition,
1996.

[66] A. Forsberg, D.Laidlaw, A. van Dam, R. Kirby, and J. Elion. Immer-
sive Virtual Reality for Visualizing Flow Through an Artery. InProc.
of IEEE Visualization, pages 457–460, 2000.

[67] MPI Forum. MPI-2: Extensions to the Message-Passing Interface.
Technical Report MPI 7/18/97, Message-Passing Interface Forum,
1997.

[68] D. Freudenstein, D. Bartz, R. Boldt, M. Skalej, and F. Duffner. A New
System for Virtual Neuroendoscopy. InProc. of Neuroendoscopy,
2000.

[69] D. Freudenstein, D. Bartz,̈O. Gürvit, M. Skalej, W. Straßer, and
F. Duffner. Virtual Endoscopy for the Ventricular and Vascular Sys-
tem of the Human Brain. InProc. of Medicine meets Millenium. Brain
Diseases: Advances in Neuroradiology, 2000.

[70] D. Freudenstein, D. Bartz, M. Skalej, J. Rachinger, and F. Duffner.
Virtual Neuroendoscopy. Clinical Usefulness and Problems. InCom-
puter Assisted Surgery and Rapid Prototyping in Medicine (CAS),
1999.

[71] D. Freudenstein, D. Bartz, M. Skalej, J. Rachinger, and F. Duffner.
Ein neues System f¨ur die virtuelle Neuroendoskopie.Klinische Neu-
roradiologie, 3:182, 2000.

[72] D. Freudenstein, F. Duffner, D. Bartz, M. Skalej, and E. Grote. Virtual
Neuroendoscopy.Journal of Neurosurgery, 92:536, 2000.

[73] D. Freudenstein, F. Duffner, D. Bartz, M. Skalej, and E. Grote. Virtual
Neuroendoscopy. InProc. of AANS 68th Annual Meeting, 2000.

[74] D. Freudenstein, F. Duffner, M. Skalej, R. Mosterz, F. Hostenstein,
and D. Bartz. Virtuelle Neuroendoskopie (Abstract). InEndoskopie
Heute - Forum bildgebender Verfahren, page 52, 1999.

[75] D. Freudenstein, R. Mostertz, F. Duffner, D. Bartz, and M. Skalej.
VIVENDI - Virtual Neuroendoscopy. Zentralblatt f̈ur Neu-
rochirurgie, Suppl. 75, 2000.

[76] H. Fuchs, Z. Kedem, and B. Naylor. On Visible Surface Generation
by a Priori Tree Structures. InProc. of ACM SIGGRAPH, pages 124–
133, 1980.

BIBLIOGRAPHY 149

[77] A. Gaddipati, R. Machiraju, and R. Yagel. Steering Image Generation
with Wavelet Based Perceptual Metric. InProc. of Eurographics,
pages 241–251, 1997.

[78] T. Galyean. Guided Navigation of Virtual Environments. InProc. of
ACM Symposium on Interactive 3D Graphics, pages 103–104, 1995.

[79] M. Garland. Multiresolution Modeling: Survey and Future Opportu-
nities. InEurographics STAR report 2, 1999.

[80] B. Garlick, D. Baum, and J. Winget. Interactive Viewing of Large
Geometric Databases Using Multiprocessor Graphics Workstations.
In ACM SIGGRAPH course notes: Parallel Algorithms and Architec-
tures for 3D Image Generation, 1990.

[81] W. Garrett, H. Fuchs, M. Whitton, and A. State. Real-Time Incre-
mental Visualization of Dynamic Ultrasound Volumes Using Parallel
BSP Trees. InProc. of IEEE Visualization, pages 235–240, 1996.

[82] A. Geist, A. Beguelin, J. Dongarra, W. Jian, R. Machek, and V. Sun-
deram.PVM: Parallel Virtual Machine. MIT Press, 1994.

[83] D. Gering, A. Nabavi, R. Kikinis, W. Grimson, N. Hata, P. Everett,
F. Jolesz, and W. Wells. An Integrated Visualization System for
Surgical Planning and Guidance using Image Fusion and Interven-
tional Imaging. InProc. of Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 1999.

[84] Z. Gigus and J. Malik. Computing the Aspect Graph for Line Draw-
ings of Polyhedral Objects.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(2):113–122, 1990.

[85] E. Gobbetti, P. Pili, A. Zorcolo, and M. Tuveri. Interactive Virtual
Angioscopy. InProc. of IEEE Visualization, pages 435–438, 1998.

[86] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierar-
chies for Ray Tracing.IEEE Computer Graphics and Applications,
7:14–20, 1987.

[87] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A Hierarchical
Structure for Rapid Interference Detection. InProc. of ACM SIG-
GRAPH, pages 171–180, 1996.

[88] H. Gray and A. Reuter.Transaction Processing: Concepts and Tech-
niques. Morgan-Kaufmann Publishers, San Francisco, CA, 1993.

[89] N. Greene.Hierarchical Rendering of Complex Environments. PhD
thesis, Computer and Information Science, University of California,
Santa Cruz, 1995.

[90] N. Greene. Hierarchical Polygon Tiling with Coverage Masks. In
Proc. of ACM SIGGRAPH, pages 65–74, 1996.

150 BIBLIOGRAPHY

[91] N. Greene. Occlusion Culling with Optimized Hierarchical Buffer-
ing. In Visual Proc. of ACM SIGGRAPH, page 261, 1999.

[92] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility.
In Proc. of ACM SIGGRAPH, pages 231–238, 1993.

[93] R. Grosso, T. Ertl, and R. Klier. A Load-Balancing Scheme for Par-
allelizing Hierarchical Splatting on a MPP System with Non-uniform
Memory Access Architecture. InProc. of High Performance Comput-
ing for Computer Graphics and Visualization, pages 125–134, 1995.

[94] Ö. Gürvit, M. Skalej, R. Riekmann, U. Ernemann, and K. Voigt.
Rotational Angiography and 3D Reconstruction in Neuroradiology.
electro medica, 68(1):31–37, 2000.

[95] P. Hanrahan, D. Salzman, and L. Aupperle. A Rapid Hierarchical
Radiosity Algorithm. InProc. of ACM SIGGRAPH, pages 197–206,
1993.

[96] T. He and L. Hong. Reliable Navigation for Virtual Endoscopy. In
Proc. of IEEE Medical Imaging, 1999.

[97] H. Hege, T. Höllerer, and D. Stalling. Volume Rendering – Mathe-
matical Foundations and Algorithmic Aspects. Technical Report TR
93-7, Konrad-Zuse Zentrum f¨ur Informationstechnik Berlin, 1993.

[98] M. Held, J. Klosowski, and J. Mitchell. Real-time Collision Detection
for Motion Simulation Within Complex Environment. InVisual Proc.
of ACM SIGGRAPH, page 151, 1996.

[99] Hewlett-Packard. Occlusion test, preliminary. Hewlett Packard
Company, Palo Alto, available from http://oss.sgi.com/projects/ogl-
sample/registry/HP/occlusiontest.txt, 1997.

[100] Hewlett-Packard. Jupiter 1.0. CD-ROM, 1998.

[101] Hewlett-Packard. Jupiter 1.0 Specification. Technical report, Hewlett
Packard Company, Palo Alto, 1998.

[102] R. Hietala and J. Oikarinen. A Visibility Determination Algorithm
for Interactive Virtual Endoscopy. InProc. of IEEE Visualization,
pages 29–36, 2000.

[103] E. Hiti. Hierarchischer Z-Buffer – Implementierung und Analyse.
Master’s thesis, Dept. of Computer Science (WSI), University of
Tübingen, 1998.

[104] M. Hoch. Modellbasierte Animation von Gesichtsausdr¨ucken. Mas-
ter’s thesis, Dept. of Computer Science, University of Erlangen-N¨urn-
berg, 1992.

BIBLIOGRAPHY 151

[105] H. Höhne and R. Bernstein. Shading 3D-Images from CT using Gray-
level Gradients. InIEEE Transactions on Medical Imaging, volume
MI-5, pages 45–47, 1986.

[106] K. Höhne, M. Bomans, M. Riemer, R. Schubert, and U. Tiede. A
3D Anatomical Atlas Based on a Volume Model.IEEE Computer
Graphics and Applications, 12:72–78, 1992.

[107] K. Höhne, B. Pflesser, A. Pommert, K. Priesmeyer, M. Riemer,
T. Schiemann, R. Schubert, U. Tiede, H. Frederking, S. Gehrmann,
S. Noster, and U. Schumacher.VOXEL-MAN 3D Navigator: Inner
Organs. Regional, Systemic and Radiological Anatomy. Springer-
Verlag Electronic Media, Heidelberg, Germany, CD-ROM edition,
2000.

[108] W. Hollinshead and C. Rosse.Textbook of Anatomy. J.B. Lippincott
Company, Philadelphia, PA, 4th edition, 1985.

[109] L. Hong, A. Kaufman, Y. Wei, A. Viswambharan, M. Wax, and
Z. Liang. 3D Virtual Colonoscopy. InProc. of IEEE Symposium
on Biomedical Visualization, pages 26–32, 1995.

[110] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual Voy-
age: Interactive Navigation in the Human Colon. InProc. of ACM
SIGGRAPH, pages 27–34, 1997.

[111] J. Hornegger. Rotational Angiography. Siemens Medical Systems,
Personal Communications, 2000.

[112] G. Hounsfield. A Method of and Apperatus for Examination of a
Body by Radiation such as X-ray or Gamma Radiation. British Patent
No. 1283915, 1972.

[113] P. Hubbard. Approximating Polyhedra with Spheres for Time-Critical
Collision Detection.ACM Transactions on Graphics, 15(3):179–210,
1996.

[114] T Hudson, D. Manocha, J. Cohen, M. Lin, Kenneth E. Hoff, and
H. Zhang. Accelerated Occlusion Culling Using Shadow Frusta. In
Proc. of ACM Symposium on Computational Geometry, pages 2–10,
1997.

[115] T. Hüttner, M. Meißner, and D. Bartz. OpenGL-assisted Visibility
Queries of Large Polygonal Models. Technical Report WSI-98-6,
ISSN 0946-3852, Dept. of Computer Science (WSI), University of
Tübingen, 1998.

[116] T. Itoh and K. Koyamada. Automatic Isosurface Propagation Using
an Extrema Graph and Sorted Boundary Cell Lists.IEEE Transac-
tions on Visualization and Computer Graphics, 1(4):319–327, 1995.

152 BIBLIOGRAPHY

[117] C. Jones. A New Approach to the ”Hidden Line” Problem.The
Computer Journal, 14(3):232–237, 1971.

[118] W. Kalender. Computer Tomography. PUBLICIS MCD Verlag,
München, Germany, 2000.

[119] A. Kaufman, R. Avila, L. Sobierajski, and R. Yagel. Volume Visual-
ization Algorithms and Applications. InIEEE Visualization, tutorial
1, 1996.

[120] T. Kay and J. Kajiya. Ray Tracing Complex Scenes. InProc. of ACM
SIGGRAPH, pages 269–278, 1986.

[121] E. Keeve, S. Girod, P. Pfeifle, and B. Girod. Anatomy-based Facial
Tissue Modelling Using the Finite Element Method. InProc. of IEEE
Visualization, pages 21–28, 1996.

[122] A. Kela and M. Wynn. Parallel Computation of Exact Ouadtree and
Octree Approximations on Distributed Memory Multiprocessors. In
Proc. of 4th Conference on Hypercubes, Concurrent Computers, and
Applications, pages 1193–1196, 1989.

[123] D. Kenwright, D. Banks, S. Bryson, R. Haines, R. Liere, and S. Usel-
ton. Panel: Automation or Interaction: What’s Best for Big Data. In
Proc. of IEEE Visualization, pages 491–495, 1999.

[124] D. Kirk. Unsolved Problems and Opportunities for High-quality,
High-performance 3D Graphics on a PC Platform. InProc. of Eu-
rographics/SIGGRAPH Workshop on Graphics Hardware, pages 11–
13, 1998.

[125] J. Klosowski.Efficient Collision Detection for Interactive 3D Graph-
ics and Virtual Environments. PhD thesis, State University of New
York, Stony Brook, 1998.

[126] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan. Ef-
ficient Collision Detection Using Bounding Volume Hierarchies of
k-DOPs. IEEE Transactions on Visualization and Computer Graph-
ics, 4(1):21–36, 1998.

[127] J. Klosowski and C. Silva. Rendering on a Budget. InProc. of IEEE
Visualization, pages 155–122, 1999.

[128] R. Koch, M. Gross, F. Carls, D. B¨uren, G. Fankhauser, and Y. Parish.
Simulating Facial Surgery Using Finite Element Methods. InProc.
of ACM SIGGRAPH, pages 421–428, 1996.

[129] J. Koenderink and A. van Doorn. The Singularities of the Visual
Mapping.BioCyber, 24(1):51–59, 1976.

[130] H. Kretschmann and W. Weinrich.Neurofunctional Systems. Thieme
Interactive, Stuttgart, Germany, CD-ROM edition, 1999.

BIBLIOGRAPHY 153

[131] U. Kühnapfel, H. Cakmak, and H. Maaß. Endoscopic Surgery Train-
ing Using Virtual Reality and Deformable Tissue Simulation.Com-
puters & Graphics, 24(5):671–682, 2000.

[132] S. Kumar, D. Manocha, W. Garrett, and M. Lin. Hierarchical Back-
face Computation.Computers & Graphics, 23(5):681–692, 1999.

[133] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation. InProc. of ACM
SIGGRAPH, pages 451–458, 1994.

[134] A. Laghi, P. Pavone, V. Panebianco, I. Carbone, and L. Francone.
Volume-rendered Virtual Colonoscopy: Preliminary Clinical Experi-
ence. InProc. of Computer Assisted Radiology and Surgery, pages
171–175, 1999.

[135] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scal-
able Server. In24th Annual International Symposium on Computer
Architecture (ISCA), pages 241–251, 1997.

[136] D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Re-
finement Algorithm for Volume Rendering. InProc. of ACM SIG-
GRAPH, pages 285–288, 1991.

[137] T. Lehmann, W. Oberschelp, E. Pelikan, and R. Repges.Bildverar-
beitung f̈ur die Medizin: Grundlagen, Modelle, Methoden, Anwen-
dungen. Springer Verlag, Heidelberg, Germany, 1997.

[138] M. Levoy. Display of Surfaces from Volume Data.IEEE Computer
Graphics and Applications, 8(3):29–37, 1988.

[139] M. Levoy. Efficient Ray Tracing of Volume Data.ACM Transactions
on Graphics, 9(3):245–261, 1990.

[140] B. Lichtenbelt, R. Crane, and S. Naqvi.Introduction into Volume
Rendering. Prentice Hall, Upper Saddle River, NJ, 1998.

[141] Y. Livnat, H. Shen, and C. Johnson. A Near Optimal Isosurface Ex-
traction Algorithm Using the Span Space.IEEE Transactions on Vi-
sualization and Computer Graphics, 1(2):73–84, 1996.

[142] W. Lorensen and H. Cline. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. InProc. of ACM SIGGRAPH, pages
163–169, 1987.

[143] W. Lorensen, F. Jolesz, and R. Kikinis. The Exploration of Cross-
Sectional Data with a Virtual Endoscope. In R. Satava and K. Mor-
gan, editors,Interactive Technology and New Medical Paradigms for
Health Care, pages 221–230. IOS Press, 1995.

[144] D. Luebke and C. Georges. Portals and Mirrors: Simple, Fast Eval-
uation of Potentially Visible Sets. InProc. of ACM Symposium on
Interactive 3D Graphics, pages 105–106, 1995.

154 BIBLIOGRAPHY

[145] B. Marro, D. Galanaud, C. A. Valery, A. Zouaoui, A. Biondi,
A. Casasco, M. Sahel, and C. Marsault. Intracranial Aneurysm: In-
ner View and Neck Identification with CT Angiography Virtual En-
doscopy.Journal of Computer Assisted Tomography, 21(4):587–589,
1997.

[146] S. Marschner and R. Lobb. An Evaluation of Reconstruction Filters
for Volume Rendering. InProc. of IEEE Visualization, pages 100–
107, 1994.

[147] N. Max. Optical Models for Direct Volume Rendering.IEEE Trans-
actions on Visualization and Computer Graphics, 1(2):99–108, 1995.

[148] K. Mehlhorn and S. N¨aher. LEDA: A Platform for Combinatorial
and Geometric Computing. Cambridge University Press, Cambridge,
UK, 1999.

[149] M. Meißner and D. Bartz. Translucent and Opaque Direct Volume
Rendering for Virtual Endoscopy Applications. InProc. of Volume
Graphics, pages 375–384, 2001.

[150] M. Meißner, D. Bartz, and R. G¨unther. Visibility Driven Rasteriza-
tion. In Visual Proc. of ACM SIGGRAPH, page 275, 2000.

[151] M. Meißner, D. Bartz, R. G¨unther, and W. Straßer. Visibility Driven
Rasterization. Technical Report WSI-2000-16, Dept. of Computer
Science (WSI), University of T¨ubingen, 2000.

[152] M. Meißner, D. Bartz, R. G¨unther, and W. Straßer. Visibility Driven
Rasterization.Computer Graphics Forum, 20(4):283–294, 2001.

[153] M. Meißner, D. Bartz, T. H¨uttner, G. Müller, and J. Einigham-
mer. Generation of Subdivision Hierarchies for Efficient Occlusion
Culling of Large Polygonal Models. Technical Report WSI-99-13,
ISSN 0946-3852, Dept. of Computer Science (WSI), University of
Tübingen, 1999.

[154] M. Meißner, D. Bartz, T. H¨uttner, G. Müller, and J. Einighammer.
Generation of Decomposition Hierarchies for Efficient Occlusion
Culling of Large Polygonal Models. InVision, Modeling, and Vi-
sualization, pages 225–232, 2001.

[155] M. Meißner, U. Hoffman, and W. Straßer. Enabling Classification
and Shading for 3D Texture Mapping Based Volume Rendering. In
Proc. of IEEE Visualization, pages 207–214, 1999.

[156] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Prac-
tical Evaluation of Four Popular Volume Rendering Algorithms. In
Proc. of Symposium on Volume Visualization and Graphics, pages
81–90, 2000.

BIBLIOGRAPHY 155

[157] M. Meißner, U. Kanus, and W. Straßer. VIZARD II, A PCI-Card for
Real-Time Volume Rendering. InProc. of Eurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 61–68, 1998.

[158] T. Möller and E. Haines.Real-Time Rendering. A. K. Peters, Natick,
MA, 1999.

[159] S. Morein. ATI Radeon HyperZ Technology. InHot 3D Proc. of
Eurographics/SIGGRAPH Workshop on Graphics Hardware, pages
1–11, 2000.

[160] C. Morosi, G. Ballardini, and P. Pisani. Diagnostic Accuracy of the
Double-Contrast Enema for Colonic Polyps in Patients with or with-
out Diverticular Disease.Gastrointestinal Radiology, 16:346–347,
1991.

[161] K. Mueller and R. Crawfis. Elminating Popping Artifacts in Sheet
Buffer-Based Splatting. InProc. of IEEE Visualization, pages 239–
246, 1998.

[162] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality Splat-
ting on Rectilinear Grids with Efficient Culling of Occluded Vox-
els. IEEE Transactions on Visualization and Computer Graphics,
5(2):116–134, 1999.

[163] G. Müller and D. Fellner. Hybrid Scene Structuring with Applica-
tion to Ray Tracing. InProc. of International Conference on Visual
Computing (ICVC), pages 19–26, 1999.

[164] B. Naylor. Partitioning Tree Image Representation and Generation
from 3D Geometric Models. InProc. of Graphics Interface, pages
201–212, 1992.

[165] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. Interactive
Ray Tracing for Isosurface Rendering. InProc. of IEEE Visualization,
pages 233–238, 1998.

[166] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The
VolumePro Real-Time Ray-Casting System. InProc. of ACM SIG-
GRAPH, pages 251–260, 1999.

[167] H. Pfister, M. Zwicker, J. Baar, and M. Gross. Surfels: Surface Ele-
ments as Rendering Primitives. InProc. of ACM SIGGRAPH, pages
335–342, 2000.

[168] S. Pieper.CAPS: Computer Aided Plastic Surgery. PhD thesis, Mas-
sachussets Institute of Technology, 1992.

[169] W. Plantinga and C. Dyer. Visibility, Occlusion and the Aspect
Graph. International Journal of Computer Vision, 5(2):137–160,
1990.

156 BIBLIOGRAPHY

[170] T. Porter and T. Duff. Compositing Digital Images. InProc. of ACM
SIGGRAPH, pages 253–259, 1984.

[171] J. Rodenwaldt, L. Kopka, R. Roedel, A. Margas, and E. Grabbe. 3D
Virtual Endoscopy of the Upper Airways: Optimization of the Scan
Parameters in a Cadaver Phantom and Clinical Assessment.Journal
of Computer Assisted Tomography, 21(3):405–411, 1997.

[172] J. Rohen.Topographische Anatomie. Schattauer Verlag, Stuttgart,
Germany, 8th edition, 1987.

[173] J. Rohlf and J. Helman. IRIS Performer: A High Performance Mul-
tiprocessing Toolkit for Real-Time 3D Graphics. InProc. of ACM
SIGGRAPH, pages 381–394, 1994.

[174] G. Rubin, C. Beaulieu, V. Argiro, H. Ringl, A. Norbash, J. Feller,
M. Dake, R. Jeffrey, and S. Napel. Perspective Volume Rendering of
CT and MR Images: Application for Endoscopic Imaging. InRadi-
ology, volume 199, pages 321–330, 1996.

[175] S. Rubin and T. Whitted. A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. InProc. of ACM SIGGRAPH, pages
11–116, 1980.

[176] S. Rusinkiewicz and M. Levoy. Qsplats: A Multiresolution Point
Rendering System for Large Meshes. InProc. of ACM SIGGRAPH,
pages 343–352, 2000.

[177] P. Sabella. A Rendering Algorithm for Visualizing 3D Scalar Fields.
In Proc. of ACM SIGGRAPH, pages 51–58, 1988.

[178] T. Saito and J. Toriwaki. New Algorithms for Euclidian Distance
Transformation of an N-Dimensional Digitized Picture with Applica-
tions. Pattern Recognition, 27(11):1551–1565, 1994.

[179] G. Sakas and S. Walter. Extracting Surfaces from Fuzzy 3D Ultra-
sonic Data. InProc. of ACM SIGGRAPH, pages 465–474, 1995.

[180] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA, 1994.

[181] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative Volu-
metric Visibility with Occluder Fusion. InProc. of ACM SIGGRAPH,
pages 229–238, 2000.

[182] W. Schroeder, K. Martin, and B. Lorensen.The Visualization Toolkit.
Prentice Hall, Upper Saddle River, NJ, 2nd edition, 1998.

[183] N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUALIZE
fx Graphics Accelerator Hardware.The Hewlett-Packard Journal,
(May):28–34, 1998.

BIBLIOGRAPHY 157

[184] L. Serra, W. Nowinski, T. Poston, N. Hern, L. Meng, C. Guan, and
P. Pillay. The Brain Bench: Virtual Tools for Stereotactic Frame
Surgery.Medical Image Analysis, 1(4):317–329, 1997.

[185] K. Severson. VISUALIZE fx Graphics Accelerator Hardware.
Technical report, Hewlett Packard Company, Palo Alto, avail-
able from http://www.hp.com/workstations/support/documentation/
whitepapers.html, 1999.

[186] SGI. Power Challenge. Technical report, Silicon Graphics Inc.,
Mountain View, 1994.

[187] SGI. Onyx2 Reality and Onyx2 InfiniteReality. Technical report,
Silicon Graphics Inc., Mountain View, 1997.

[188] SGI. OpenGL Optimizer Manual. Silicon Graphics Inc., Mountain
View, 1997.

[189] SGI. Silicon Graphics 320, Visual Workstation. OpenGL Program-
ming Guide, available from http://support.sgi.com/nt/index.html,
1999.

[190] R. Shadidi, V. Argiro, S. Napel, L. Gray, H. McAdams, G. Rubin,
C. Beaulieu, R. Jeffrey, and A. Johnson. Assessment of Several Vir-
tual Endoscopy Techniques Using Computed Tomography and Per-
spective Volume Rendering. InProc. of Visualization in Biomedical
Computing, LNCS 1131, pages 521–528, 1996.

[191] R. Shekkar, W. Fayyad, R. Yagel, and J. Frederick. Octree-Based
Decimation of Marching Cubes Surface. InProc. of IEEE Visualiza-
tion, pages 287–294, 1996.

[192] H. Shen, C. Hansen, Y. Livnat, and C. Johnson. Isosurfacing in Span
Space with Utmost Efficiency (ISSUE). InProc. of IEEE Visualiza-
tion, pages 287–294, 1996.

[193] M. Skalej, D. Bartz, and F. Duffner. VIVENDI – Virtuelle Ventrike-
lendoskopie (Poster). InJahrestagung der deutschen Ges. für Neuro-
radiologie, Bad Homburg, 1998.

[194] J. Snyder and J. Lengyel. Visibility Sorting and Compositing without
Splitting for Image Layer Decompositions. InProc. of ACM SIG-
GRAPH, pages 219–231, 1998.

[195] O. Sommer, A. Dietz, R. Westermann, and T. Ertl. TIVoR: An Inter-
active Visualization and Navigation Tool for Medical Volume Data.
In Proc. of WSCG, pages 361–372, 1998.

[196] S. Sonntag, G. Glombitza, F. Floemer, M. Knopp, W. Lamade, and
H. Meinzer. Registration of Spatially Consecutive 3D MR Data Sets
for an Enhanced Structural Analysis of Intrahepatic Vessel Trees. In

158 BIBLIOGRAPHY

Proc. of Computer Assisted Radiology and Surgery, pages 129–133,
1999.

[197] D. Staneker. Ein hybrider Ansatz zur effizienten Verdeckungsrech-
nung. Master’s thesis, Dept. of Computer Science (WSI), University
of Tübingen, 2001.

[198] W. Straßer.Schnelle Kurven- und Flächendarstellung auf graphis-
chen Sichtger̈aten. PhD thesis, Technische Universit¨at Berlin, 1974.

[199] O. Sudarsky and C. Gotsman. Output-Sensitive Visibility Algorithms
for Dynamic Scenes with Applications to Virtual Reality. InProc. of
Eurographics, pages 249–258, 1996.

[200] J. Sundsten.The Digital Anatomist: Interactive Brain Atlas. Univer-
sity of Washington, Seattle, WA, CD-ROM edition, 1999.

[201] L. Swift, T. Johnson, and E. Livadas. Parallel Creation of Linear
Octrees from Quadtree Slices.Parallel Processing Letters, 4(4):447–
453, 1994.

[202] A. Tanenbaum.Modern Operating Systems. Prentice Hall, Upper
Saddle River, NJ, 1992.

[203] G. Taubin. 3D Geometry Compression and Progressive Transmission.
In Eurographics STAR report 3, 1999.

[204] G. Taubin, M. Deering, C. Gotsman, S. Gumhold, and J. Rossignac.
3D Geometry Compression. InACM SIGGRAPH Course 38, 2000.

[205] S. Teller. Visibility Computations in Densely Occluded Polyhedral
Environments. PhD thesis, Department of Computer Science, Uni-
versity of California, Berkeley, 1992.

[206] S. Teller and C. Sequin. Visibility Pre-processing for Interactive
Walkthroughs. InProc. of ACM SIGGRAPH, pages 61–69, 1991.

[207] P. Teo and D. Heeger. Perceptual Image Distortion. InProc. of Con-
ference on Image Processing, pages 982–986, 1994.

[208] U. Tiede, K. Höhne, M. Bomans, A. Pommert, M. Riemer, and
G. Wiebecke. Investigation of Medical 3D-rendering Algorithms.
IEEE Computer Graphics and Applications, 19(2):41–53, 1990.

[209] TOP500. Top500 supercomputer sites. http://www.top500.org, 2000.

[210] H. Tuy and L. Tuy. Direct 2D Display of 3D Objects.IEEE Computer
Graphics and Applications, 4(10):29–33, 1984.

[211] M. Uesbeck. Automatische Quantifizierung
von Gewebeschnitten f¨ur die Diagnose von
Entzündungsreaktionen in Organen. http://www.gris.uni-
tuebingen.de/people/staff/uesbeck/beschreibungikfz.html, 1999.

BIBLIOGRAPHY 159

[212] WSI/GRIS University of T¨ubingen. Volume Datasets.
http://www.volvis.org, 2000.

[213] G. van den Bergen. Efficient Collision Detection of Complex De-
formable Models Using AABB Trees.Journal of Graphics Tools,
3(5):1–13, 1997.

[214] A. van Gelder and K. Kim. Direct Volume Rendering with Shading
via Three-dimensional Textures. InProc. of Symposium on Volume
Visualization, pages 23–30, 1996.

[215] M. Vannier, J. Marsh, and O. Warren. Three Dimensional Computer
Graphics for Craniofacial Surgical Planning and Evaluation. InProc.
of ACM SIGGRAPH, pages 263–273, 1983.

[216] A. Varshney, F. Brooks, D. Richardson, W. Wright, and D. Manocha.
Defining, Computing, and Visualizing Molecular Interfaces. InProc.
of IEEE Visualization, pages 36–43, 1995.

[217] A. Varshney, F. Brooks, and W. Wright. Linearly Scalable Compu-
tation of Smooth Molecular Surfaces.IEEE Computer Graphics and
Applications, 14(5):19–25, 1994.

[218] D. Vining, R. Shifrin, E. Grishaw, K. Liu, and R. Choplin. Virtual
Colonoscopy (abstract). InRadiology, volume 193(P), page 446,
1994.

[219] D. Vining, R. Shifrin, E. Haponik, K. Liu, and R. Choplin. Virtual
Bronchoscopy (abstract). InRadiology, volume 193(P), page 261,
1994.

[220] D. Vining, D. Stelts, D. Ahn, P. Hemler, Y. Ge, G. Hunt, C. Siege,
D. McCorquodale, M. Sarojak, and G. Ferretti. FreeFlight: A Vir-
tual Endoscopy System. InFirst Joint Conference, Computer Vision,
Virtual Reality and Robotics in Medicine and Medical Robotics and
Computer-Assisted Surgery, LNCS 1205, pages 413–416, 1997.

[221] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax. Volume Ren-
dering Based Interactive Navigation within the Human Colon. In
Proc. of IEEE Visualization, pages 397–400, 1999.

[222] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, and W. Straßer.
The Radomized Z-Buffer Algorithm: Interactive Rendering of Highly
Complex Scenes. InProc. of ACM SIGGRAPH, 2001.

[223] K. Waters. A Muscle Model for Animating 3D-Facial Expression.
In Proc. of ACM SIGGRAPH, pages 17–24, 1987.

[224] K. Waters and D. Terzopoulos. A Physical Model of Facial Tissue and
Muscle Articulation. InProc. of Visualization in Biomedical Comput-
ing, pages 77–82, 1990.

160 BIBLIOGRAPHY

[225] R. Wegenkittl, A. Vilanova, B. Heged¨us, D. Wagner, M. Freund, and
E. Gröller. Mastering Interactive Virtual Bronchioscopy on a Low-
End PC. InProc. of IEEE Visualization, pages 461–465, 2000.

[226] H. Weghorst, G. Hooper, and D. Greenberg. Improved Computational
Methods for Ray Tracing.ACM Transactions on Graphics, 3(1):52–
69, 1984.

[227] D. Welte and U. Klose. Segmentation and Selective Imaging of Ar-
teries and Veins from Contrast-Enhanced MRA Data. InProc. of
European Congress of Radiology (ECR), 1999.

[228] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in
Volume Rendering Applications. InProc. of ACM SIGGRAPH, pages
169–177, 1998.

[229] L. Westover. Footprint Evaluation for Volume Rendering. InProc. of
ACM SIGGRAPH, pages 367–376, 1990.

[230] L. Westover.SPLATTING: A Parallel Feed-Forward Volume Render-
ing Algorithm. PhD thesis, University of North Carolina at Chapel
Hill, 1991.

[231] J. Wilhelms and A. van Gelder. Octrees for Faster Isosurface Gener-
ation. ACM Transactions on Graphics, 11(3):201–227, 1992.

[232] J. Wilhelms, A. van Gelder, P. Tarantino, and J. Gibbs. Hierarchical
and Parallelizable Direct Volume Rendering for Irregular and Multi-
ple Grids. InProc. of IEEE Visualization, pages 57–64, 1996.

[233] J. Wilhelms and A. van Geldern. A Coherent Projection Approach
for Direct Volume Rendering. InProc. of ACM SIGGRAPH, pages
275–284, 1991.

[234] P. Williams and S. Uselton. Metrics and Generation Specifications
for Comparing Volume-rendered Images.Journal of Visualization
and Computer Animation, 10:159–178, 1999.

[235] C. Wittenbrink and K. Kim. Data Dependent Optimizations for Per-
mutation Volume Rendering. InProc. of SPIE Visual Data Explo-
ration and Analysis V, pages 284–294, 1998.

[236] C. Wittenbrink, T. Malzbender, and M. Goss. Opacity-weighted
Color Interpolation for Volume Sampling. InProc. of Symposium
on Volume Visualization, pages 135–142, 1998.

[237] P. Wonka and D. Schmalstieg. Occluder Shadows for Fast Walk-
throughs of Urban Environments. InProc. of Eurographics, pages
51–60, 1999.

[238] M. Woo, J. Neider, and T. Davis.OpenGL Programming Guide. Ad-
dison Wesley, Reading, MA, 2nd edition, 1997.

BIBLIOGRAPHY 161

[239] F. Xie and M. Shantz. Adaptive Hierarchical Visibility in a Tiled
Architecture. InProc. of Eurographics/SIGGRAPH Workshop on
Graphics Hardware, pages 75–84, 1999.

[240] R. Yagel and A. Kaufman. Template-based Volume Viewing. InProc.
of Eurographics, pages 153–167, 1992.

[241] S. You, L. Hong, M. Wan, K. Junyapreasert, A. Kaufman, S. Muraki,
Y. Zhou, M. Wax, and Z. Liang. Interactive Volume Rendering for
Virtual Colonoscopy. InProc. of IEEE Visualization, pages 343–346,
1997.

[242] H. Zhang. Effective Occlusion Culling for the Interactive Display
of Arbitrary Models. PhD thesis, Department of Computer Science,
University of North Carolina, Chapel Hill, 1998.

[243] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility Culling
Using Hierarchical Occlusion Maps. InProc. of ACM SIGGRAPH,
pages 77–88, 1997.

[244] D. Zorin, P. Schr¨oder, T. DeRose, L. Kobbelt, A. Levin, and
W. Sweldens. Subdivision for Modeling and Animation. InACM
SIGGRAPH Course 23, 2000.

162 BIBLIOGRAPHY

Lebens- und Bildungsgang

22. Juli 1967 geboren in Simmern, Hunsr¨uck

1977 - 1983 Integrierte Gesamtschule Kastellaun, Hunsr¨uck

1983 - 1986 Herzog-Johann-Gymnasium, Simmern, Hunsr¨uck
Abschluß: Abitur

1986 - 1988 Ausbildung zum Datenverarbeitungskaufmann bei
Mannesmann-Kienzle, Villingen-Schwenningen

1988 - 1990 Zivildienst im Rettungsdienst, Deutsches Rotes Kreuz,
Kreisverband Rhein-Hunsr¨uck

1990 - 1996 Studium der Informatik an der Friedrich-Alexander-Universit¨at
Erlangen-N¨urnberg

1996 Diplomarbeit an der State University of New York at
Stony Brook, NY

1997 Wissenschaftliche Hilfskraft am Lehrstuhl f¨ur Graphische
Datenverarbeitung, Friedrich-Alexander-Universit¨at Erlangen-
Nürnberg

seit 1997 Wissenschaftlicher Mitarbeiter am Lehrstuhl f¨ur Graphisch-
Interaktive Systeme am Wilhelm-Schickard-Institut f¨ur Infor-
matik der Eberhard-Karls-Universit¨at Tübingen (Prof. Straßer)

