
Pedro Miguel Tenreiro Cardoso

Licenciado em Engenharia Informática

Modeling and visualization of medical
anesthesiology acts

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Adriano Lopes, CITI, FCT/UNL

Júri:

Presidente: João Alexandre Carvalho Pinheiro Leite

Arguente: Samuel de Sousa Silva

Vogal: Adriano Martins Lopes

Novembro, 2013

iii

Modeling and visualization of medical anesthesiology acts

Copyright c© Pedro Miguel Tenreiro Cardoso, Faculdade de Ciências e Tecnologia, Uni-
versidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

Aos meus pais

vi

Acknowledgements

First and foremost I would like to thank my dissertation supervisor, Dr. Adriano Lopes,
for all the support he offered me during the development of this dissertation. I am also
grateful to Dr. Samuel Silva for the changes he suggested that I make in this dissertation.
The MITK community was also very helpful while trying to solve some of the problems
related to the MITK toolkit. Lastly, I would like to thank my sister, Maria J. Cardoso, for
helping me to identify some of the anatomical structures in the lumbar region.

vii

viii

Resumo

A visualização médica evoluíu das simples imagens 2D num quadro de luz para
imagens computorizadas em 3D. Esta tendência possibilitou aos médicos encontrarem
melhores formas de planear cirurgias e de diagonosticar pacientes. Embora exista uma
grande variedade de software de imagiologia em 3D, este é ainda insipiente nas res-
postas que proporciona a actos de anestesiologia. De facto, tem sido pouco o trabalho
relacionado com anestesiologia. Consequentemente, médicos e estudantes de medicina
têm pouco apoio no estudo da anestesia no corpo humano. Com este trabalho, espe-
ramos contribuir para a existência de melhores ferramentas de visualização médica na
area da anestesiologia. Médicos e em particular estudantes de medicina devem poder
estudar os actos de anestesiologia de uma forma mais eficaz. Eles devem poder identi-
ficar as melhores localizações para administrar a anestesia, estudar sobre o tempo que
demora a anestesia a surtir efeito no paciente, etc. Neste trabalho apresentamos um pro-
tótipo de visualização médica com três funcionalidades principais: pré-processamento
de imagem, segmentação e renderização. O pré-processamento é usado sobretudo para
remover ruido das images, obtidas através de scanners de imagem. Na fase de segmen-
tação é possível identificar estruturas anatómicas relevantes. Como prova de conceito,
a nossa atenção esteve centrada na região lombar do corpo humano, com dados obti-
dos através de scanners de ressonância magnética. O resultado da segmentação implica
a criação de um modelo 3D. Relativamente à renderização, os modelos 3D são visuali-
zados usando o algoritmo marching cubes. O software desenvolvido também suporta
dados dependentes do tempo. Assim, poderemos representar o movimento da anestesia
no corpo humano. Infelizmente, não nos foi possível obter tal tipo de dados. No entanto,
utilizámos dados de pulmões humanos para validar esta funcionalidade.

Palavras-chave: anestesiologia, visualização médica, segmentação, dados dependentes
do tempo.

ix

x

Abstract

In recent years, medical visualization has evolved from simple 2D images on a light
board to 3D computarized images. This move enabled doctors to find better ways of
planning surgery and to diagnose patients. Although there is a great variety of 3D med-
ical imaging software, it falls short when dealing with anesthesiology acts. Very little
anaesthesia related work has been done. As a consequence, doctors and medical stu-
dents have had little support to study the subject of anesthesia in the human body. We
all are aware of how costly can be setting medical experiments, covering not just medi-
cal aspects but ethical and financial ones as well. With this work we hope to contribute
for having better medical visualization tools in the area of anesthesiology. Doctors and
in particular medical students should study anesthesiology acts more efficiently. They
should be able to identify better locations to administrate the anesthesia, to study how
long does it take for the anesthesia to affect patients, to relate the effect on patients with
quantity of anaesthesia provided, etc. In this work, we present a medical visualization
prototype with three main functionalities: image pre-processing, segmentation and ren-
dering. The image pre-processing is mainly used to remove noise from images, which
were obtained via imaging scanners. In the segmentation stage it is possible to iden-
tify relevant anatomical structures using proper segmentation algorithms. As a proof
of concept, we focus our attention in the lumbosacral region of the human body, with
data acquired via MRI scanners. The segmentation we provide relies mostly in two al-
gorithms: region growing and level sets. The outcome of the segmentation implies the
creation of a 3D model of the anatomical structure under analysis. As for the rendering,
the 3D models are visualized using the marching cubes algorithm. The software we have
developed also supports time-dependent data. Hence, we could represent the anesthesia
flowing in the human body. Unfortunately, we were not able to obtain such type of data
for testing. But we have used human lung data to validate this functionality.

Keywords: anesthesiology, medical visualization, segmentation, time-dependent data,

xi

xii

Contents

1 Introduction 1

1.1 Visualization Overview . 1

1.2 Problem Description . 4

1.3 Dissertation Organization . 7

2 Related Work 9

2.1 Data Visualization Process . 9

2.2 Data Acquisition . 10

2.2.1 Computed Tomography . 10

2.2.2 Magnetic Resonance Imaging . 11

2.2.3 Positron Emission Tomography . 11

2.2.4 Discussion . 11

2.3 Image Pre-processing . 12

2.3.1 Edge Preserving Smoothing . 12

2.3.2 Median Filter . 12

2.4 Generic Segmentation Algorithms . 13

2.4.1 Thresholding . 13

2.4.2 Region-based Segmentation . 15

2.4.3 Edge-based Segmentation . 16

2.4.4 Graph-based Segmentation . 17

2.4.5 Discussion . 18

2.5 Common Segmentation Algorithms for Medical Imaging 18

2.5.1 Active Contour Model . 19

2.5.2 Level set methods . 20

2.5.3 Active Shape Model . 22

2.5.4 Atlas-based Segmentation . 22

2.5.5 Discussion . 22

2.6 Volume Rendering . 23

xiii

xiv CONTENTS

2.6.1 Ray Casting . 23

2.6.2 Shear Warp . 23

2.6.3 Splatting . 24

2.6.4 Maximum Intensity Projection . 24

2.7 Surface Rendering . 25

2.7.1 Iso-surface extraction . 25

2.7.2 Segmentation Masks . 26

2.8 Time-Varying Visualization . 26

2.9 Development Toolkits for Medical Visualization 28

2.9.1 ITK – Insight Segmentation and Registration Toolkit 28

2.9.2 MITK – Medical Imaging Interaction Toolkit 28

2.9.3 IGSTK – Image-Guided Surgery Toolkit 28

2.9.4 User interface Development . 29

2.9.5 Application Builders . 29

2.9.6 Discussion . 30

3 Lumbar Segmentation 31

3.1 Segmentation Pipeline . 32

3.2 Image Pre-processing . 33

3.2.1 Comparison . 33

3.3 Initialization . 34

3.3.1 Edge Detection Filters . 35

3.3.2 Speed Image . 37

3.4 Segmentation . 40

3.4.1 Spinal Canal . 40

3.4.2 Abdominal Aorta . 42

3.4.3 Vertebral Body . 46

3.4.4 Back Muscles . 49

3.5 Conclusions . 51

4 Time-Dependent Rendering 55

4.1 Framework . 55

4.2 4D Dataset . 56

4.3 Multiple 3D Datasets . 57

4.4 Conclusions . 60

5 Prototype 61

5.1 Overview . 61

5.2 Software Architecture . 62

5.3 Graphical User Interface . 63

CONTENTS xv

6 Conclusions 71
6.1 Summary . 71
6.2 Further Work . 72

xvi CONTENTS

1
Introduction

Visualization as a discipline to present information is not a recent phenomenon. Before
the so-called information society, visualisation techniques were used in maps and scientific
drawings for over a thousand years.

Figure 1.1: The Ptolemy world map as an example of data representation.

In this chapter we provide a generic overview about computer visualisation, in partic-
ular in relation to medical visualization. Then, we set out the boundaries for the problem
we are studying and finally we point out the organisation of the remaining chapters in
this dissertation.

1.1 Visualization Overview

Today we are exposed to a sheer amount of information. As a consequence, the tasks
of filtering and understanding information have become a difficult ones. In order to

1

1. INTRODUCTION 1.1. Visualization Overview

investigate a huge amount of data, we can use computer generated graphs or images.
Visualization itself has already proved to be a powerful tool for data investigation in the
past so the know-how accumulated for many centuries has been transferred to computer
visualization.

The emphasis on computer visualization started in the early 1990s with the special
issue of Computer Graphics on Visualization in Scientific Computing. Since then, multiple
conferences solely focusing on visualization have been organised. Two of then are the
Eurographics Workshop on Visualization and the IEEE Conference on Visualization.

Despite initial differences that were set up according to the information to be repre-
sented, that is, whether it was scientific numerical data or more generic non-numerical
data, we are witnessing a more common approach to data visualization. Hence, the fields
of Scientific Visualization and Information Visualization are getting more and more interre-
lated.

In order to illustrate the importance of visualization nowadays, we list below some
important applications:

Medical visualization. Anatomic data is acquired through scanning device machines,
which is then presented using a volume visualization technique, for instance isosurface
extraction. This kind of applications can be used to help physicians to diagnose cancer
for example.

Flow visualization. The objective is to make flow patterns visible. Most fluids (air, wa-
ter, etc.) are transparent, thus their flow patterns are invisible to us without some special
methods to make them visible. The data can be obtained by flow simulation or by mea-
suring experiments. The design of new aircrafts can be validated by using simulations
with flow visualization. In this way, there is no longer a need to construct expensive pro-
totypes in order to test the project design.

Geographic information systems. For a long time maps have been used to visualize
geographic data. Techniques like height fields or isolines are commonly used in com-
puter visualization to show topographic information like mountains.

Information visualization. One of the focus is to use computer-based tools to explore
large amount of data. Big databases and multi-modal data increasingly require appropri-
ate visualization techniques. For example, business data visualization is widely used to
represent economic data.

Microscopic data visualization. Current microscopes are capable of generating large
numbers of images. Data visualization techniques can also be applied to these images to
quickly identify which ones are important. Microscopic data visualization is used in the
visualization of molecules or atomic structures studied in biology, chemistry and physics.

2

1. INTRODUCTION 1.1. Visualization Overview

Large-scale data visualization. It is particularly used when studying natural phenom-
ena. For example, earth sciences turbulence calculations can produce large amount of
data, leading to huge demands on power computation. Astrophysics is another example
which deals with data measured at a huge scale so no direct data investigation is possible.
Some techniques used in large-scale data visualization have to deal with data reduction,
sometimes trading data resolution for some level of user interactivity.

The first application we have mentioned above – Medical visualisation – is an important
part of the visualisation field. It is also the one where our work fits in. In the following
we will extend this subject.

After the x-ray technology was invented in the 19th century, it was then clear that it
would be a valuable diagnostic tool. Nevertheless, the x-ray technology was still limited
as physicians had to work with a minimal set of images.

Once computed tomography (CT) and Magnetic Resonance (MR) were introduced,
we were able to work with larger set of images from a given patient and to have a more
detailed view of his body. The amount of images was still limited, but the traditional
light boards started to become small to contain all the images, thus making it harder to
analyze the patient body. With the rise of computational power, computers helped to
solve the problem. By the end of the 1990s, computers were just an alternative to the
light board.

When the first multi-slice CT scanners were introduced, there was a new task for
computers: to create a 3D representation of the anatomical structure pictured in the im-
ages provided by these scanners. It was a perfect solution, as the huge amount of images
obtained were too hard to analyze one by one, and consequentely it was hard to get an
overall description of the patient’s body. Fortunately a 3D representation would help to
solve these problems.

With the rise of medical visualization, also new ways to visualize volumes in medicine
have emerged. For example:

Diagnostics. With 3D medical visualization, new ways to diagnose patients have been
found. This is the case of Virtual Endoscopy, which avoids the painful process the
patient would have to face by using a real endoscope. An example of a virtual
endoscopy is shown in Figure 1.2.

Communication. 3D medical visualization now helps the communication between the
radiologists, surgeons and patients. It is a fact that 3D renderings are much easier
to understand by people.

Planning. 3D visualization is able to aid procedures of treatment, surgery, etc. An exam-
ple of this is shown in Figure 1.3.

3

1. INTRODUCTION 1.2. Problem Description

Training. Students and doctors can be trained with the help of a virtual training envi-
ronment.

Figure 1.2: Virtual Endoscopy of the colon (virtual colonscopy) [MITa].

1.2 Problem Description

Some anesthesias (e.g. epidural anesthesia) can be hard to administer by doctors, partic-
ularly when they are professional juniors. Teaching a doctor or student the behavior of
the anesthesia along with the location in which it must be administered can be an hard
process.

Most of the available 3D medical applications don’t allow the representation of time-
varying data volumes. Because of this, there isn’t much support when it comes to anes-
thesiology acts. Furthermore, most of the research in the area of medical visualization is
focused in the fields of diagnostics and surgical planning.

The main purpose of this dissertation is to provide a tool that allows students or
young doctors to study anesthesiology acts. This tool should create a 3D representation of
an anatomical structure along with the anesthesia substance. Also, it should incorporate
an appropriate annotation system to facilitate the studying process.

By nature, we are dealing with time-dependent data. That is, as time goes by we
should be able to see where the anesthesia substance is flowing inside the body. As a
consequence, it would be interesting to provide a 3D model of the all process varying in

4

1. INTRODUCTION 1.2. Problem Description

Figure 1.3: Surgical plan of a neurosurgery [vdB].

time.

In order to answer positively to the requirements we have set out, we first must iden-
tify our main challenges and to establish how we can overcome them.

Before physicians started using 3D imaging software, they used to analyze the pa-
tients with the 2D images from CT or RM scanners. As the computational power has
increased, 3D imaging started being used more often and it became an active area of re-
search in computer science. Today we have multiple ways of representing the human
body in 3D from data acquired using medical imaging machines. Although a lot of re-
search has been done, to the best of our knowledge there is no software allowing doctors
or medical students to study the behaviour of anesthesia substances in the human body.

As it was mentioned, there are multiple methods to represent the human body in
3D. These methods have their own advantages and disadvantages, and so one of the
problems we are facing revolves around choosing the best methods to create our tool.
We envisage four major areas to look at:

• User interface and basic visualization.

• Image segmentation.

• Rendering of data volume.

• Rendering of time-varying data volume.

5

1. INTRODUCTION 1.2. Problem Description

User interface and basic visualization. This part of the problem consists of designing
a proper user interface with the potential of satisfying all user requirements. For exam-
ple, we have to decide what menus and what types of visualization will be available.

Image segmentation. As previously stated, 3D medical imaging software usually goes
through a phase of segmentation, so our application will not be different. There are sev-
eral segmentation methods available, some of them are more suited to our problem than
others. For instance, for our problem we are interested in those that work better with
soft tissues. There are other aspects we must also take into account when choosing the
segmentation method. For example, how accurate is the method, how sensitive is the
method to noise, etc. The level of interactivity in the segmentation phase is also a major
concern. The physician must be able to validate the segmentation and, in case the seg-
mentation is faulty, he must be able to make proper adjustments in the used segmentation
method used.

It is crucial that this phase of the problem is well addressed because the next phases
depend a lot on this one.

Rendering of data volume. This phase depends on the image segmentation phase. At
this point, the components identified in the segmentation phase are used to create the
corresponding 3D model. To do this, there are multiple approaches (e.g. volume ren-
dering and surface-based rendering). We have to decide which approach better fits our
objectives. The chosen approach must be of low computational complexity, because the
physician must be able to examine a given anatomical structure from different perspec-
tives and if using a complex rendering method might slow down this process. Although
at first this might not seem very important nowadays because of the growth in CPU/GPU
power, we must also take into account that, in the next phase, we need to represent a time-
varying data volume. The representation of multiple members identified in the segmen-
tation phase must be well distinguishable. It is a fact that it is necessary to differentiate
the anesthesia from the anatomical structure at hand.

Rendering of time-varying data volume. Because we want to be able to analyze the be-
haviour of the anesthesia, it is necessary that such behaviour varies as time passes. That
is what happens in reality. The main issue here might be the size of the data set used, even
though we do not expect to have very large data sets during the testing phase. However,
that doesn’t mean it will not be the case in the future.

Data type. Regarding the type of data in which we focus our attention, we intend to
use mainly MR images. As for CT images, we might not able to obtain the amount of
images we would need so we will not give CT too much attention. Moreover, no other
type of scanning images are considered at all.

6

1. INTRODUCTION 1.3. Dissertation Organization

1.3 Dissertation Organization

The remaining chapters in this dissertation are organized in the following way:
We start Chapter 2 by analysing work that might be related to ours. The main themes

are segmentation, rendering and time-dependent visualization. In the segmentation sec-
tion we present basic segmentation algorithms and algorithms widely used in medical
visualization. In the rendering section we present the marching cubes algorithm and vol-
ume rendering techniques. Regarding time-dependent visualization, we present some of
the main problems and suggested techniques to solve these.

In Chapter 3 – Lumbar region segmentation – we discuss the techniques used during
the segmentation of the lumbar region and the reasoning behind it. The whole segmenta-
tion process goes through 3 main stages: pre-processing, which addresses noise reduction,
algorithm initialization, which demonstrates some of the necessary intermediate steps we
have to go through to run a segmentation algorithm successfully and finally the segmenta-
tion, which deals with choosing and applying segmentation algorithms. The anatomical
structures segmented are the abdominal aorta, back muscles, spinal canal and the verte-
bral body.

Chapter 4 – Time-Dependent rendering – presents and compares two approaches
used to segment and render time-dependent datasets. The first approach tries to pro-
cess each of the time slices one at a time while the other has no defined order to process
the time slices (parts of each time slice can be processed instead of a whole slice) and
simply presents the final results at the end.

Chapter 5 – Prototype – presents the architecture used to build the prototype and
demonstrates how the interface works given that the user wants to segment a certain
anatomical structure and interact with, or modify the segmentation.

Finally, Chapter 6 – Conclusions – presents the conclusions taken from the work car-
ried out and indicates areas for further research.

7

1. INTRODUCTION 1.3. Dissertation Organization

8

2
Related Work

In this chapter we present some related work covering aspects of data segmentation,
rendering, time-varying visualization and development toolkits.

First, we start by introducing the framework of the data visualization process. Then
we lay out some aspects of data acquisition, followed by a discussion about some tech-
niques for image pre-processing. Then we present segmentation algorithms, whether
being the general ones or the ones commonly used in medical imaging. Next, we discuss
3D visualization techniques, both in terms of volume and surface-based visualization.
We then make reference to the difficult issue of time-varying visualization. Finally, we
present a set of toolkits that can be used to develop a tool for medical visualization.

2.1 Data Visualization Process

The data visualization process can be described according to the pipeline presented in
Figure 2.1.

Figure 2.1: The Data Visualization pipeline[cp].

Data Acquisition represents the process to obtain Raw Data. In medical applications,

9

2. RELATED WORK 2.2. Data Acquisition

the method can be a CT or MR scanning. In other kinds of applications (e.g. flow visual-
ization), the raw data can be obtained through a simulation.

To make the Raw Data useful, Data Transformations need to be applied in order to cre-
ate a set of Processed Data. Examples of Data Transformations are statistical computations
like averaging values. Operations like data stratification or ordering Raw Data by some
attribute can also be made at this stage of the visualization process. If there are problems
like errors in data, they must be detected and addressed right at this stage in order to
avoid presenting erroneous information to users.

Then, a mapping function is applied to the Processed Data in order to create a Visual
Structure. At this stage, it is important to consider the goal of the visualization so a proper
mapping function will be used. For example, statistical representation (e.g. histograms)
is a classic technique to build Visual Mappings.

Finally, View Transformations can then be applied interactively in order to modify rep-
resentations. An example of a transformation made at this stage is Zooming.

2.2 Data Acquisition

Medical data acquisition, as the first stage in the visualization pipeline (see Figure 2.1), is
particularly concerned with the technologies used to acquire data sets of the anatomical
structure of a given patient. In the following, we present some of the most important
technologies considering our problem.

2.2.1 Computed Tomography

Computed Tomography (CT) was the first imaging technique to generate slice images
and therefore it became a very important technology in 3D visualization.

Figure 2.2: A CT Scanner [Hos].

A CT scanner can be compared to digital x-ray device, where a x-ray tube is used to
generate radiation. The amount of radiation generated by the x-ray tube is tracked by a
reference detector. The x-rays passes through the patient’s body and are attenuated by the
different types of tissue. In the end, another detector gathers the radiation that passed

10

2. RELATED WORK 2.2. Data Acquisition

through the patient’s body. The value obtained by the last detector is then compared
to the radiation tracked by the reference detector in order to check how much did the
radiation weakened.

2.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is also an important imaging technique in 3D visu-
alization. Similarly to CT, this method can also generate slice images. An MRI scanner
contains a powerful magnet which is used to align the magnetization of some atomic
nuclei in the body. Radio frequency fields are then used to alter the alignment of this
magnetization. This causes the nuclei to produce a rotating magnetic field detectable by
the scanner. This information is used to construct and image of the scanned area of the
body.

2.2.3 Positron Emission Tomography

Positron Emission Tomography (PET) is an imaging technique that produces a 3D data
volume of functional processes in the body (a radioactive tracer is used to show chemi-
cal activity of anatomical structures). To produce a 3D data volume, the system detects
gamma rays emitted indirectly by a positron-emitting radionuclide, which is introduced
into the body. The 3D volumes are then constructed by using computerized reconstruc-
tion procedures, like the ones used in CT and MRI.

2.2.4 Discussion

As expected, the data acquisition technologies we have mentioned above have their own
advantages and disadvantages.

Computed Tomography is suited to detect bone injuries, chest imaging and cancer
detection. This technique is widely used in emergency room patients. When it comes to
details of bony structures, CT provides a good detail. Although with less detail, it is also
able to depict soft tissues and blood vessels.

Magnetic Resonance Imaging is suited for soft tissue evaluation such as ligament and
tendon injury, spinal cord injury and brain tumours. However, it is worth to point out
that bony structures are not as detailed as soft tissues.

Positron Emission Tomography is used to scan biological processes within the body.
It is widely used to detect cancer due to its ability to distinguish living and dead tissues
or benign and malignant disorders. This method is sometimes combined with CT so that
physicians can more accurately diagnose cancer, as well as heart disease and certain brain
disorders.

11

2. RELATED WORK 2.3. Image Pre-processing

2.3 Image Pre-processing

Before applying a data segmentation algorithm, sometimes it is necessary to denoise the
image as the segmentation algorithm to be used may be too sensitive to noise. If there is
no proper care then the resulting segmentation will have poor quality. In this section we
present two smoothing methods widely used: edge preserving smoothing and median
filter.

2.3.1 Edge Preserving Smoothing

The main problem of smoothing/denoising is that it tends to blur away sharp bound-
aries in the image that could help to distinguish anatomical structures. Perona and Malik
[PM90] introduced a method called anisotropic diffusion. With this technique it is possi-
ble to reduce image noise while preserving or even enhancing edges in the image. This
was possible by introducing a variable diffusion coefficient (which was constant before).
This way it is possible to limit the amount of smoothing near edges or boundaries. The
anisotropic diffusion equation if given in equation 2.1, where I(x, y, t) is the image inten-
sity, div and ∆ are the divergence and gradient operators, and c(x, y, t) is the diffusion
coefficient.

∂

∂t
I(x, y, t) = div(c(x, y, t)∇I(x, y, t)) (2.1)

The diffusion coefficient must encourage the forward diffusion inside smooth regions
and backward diffusion at high gradient locations. Perona and Malik [PM90] proposed
multiple mathematical functions for the diffusion coefficient, being equation 2.2 one of
them. The parameter k, the conductance parameter, controls the sensitivity of the process
to edge contrast.

c(x, y, t) = exp

(
−
(
|∇I(x, y, t)|2

k

))
(2.2)

This particular equation takes advantage of the high contrast edges rather than the
low contrast ones.

2.3.2 Median Filter

The median filter can also be used as a robust approach for noise reduction. The filter
is particularly efficient against salt-and-pepper noise 2.3. The median filter computes the
value of each output pixel as the statistical median of the neighborhood of values around
the corresponding input pixel. A radius for each dimension must be provided to create a
neighborhood.

An example of this process in depicted in Figure 2.4, where the pixel in the middle
(value of 25) is the one that will be modified. In 3D, the process is analogous.

12

2. RELATED WORK 2.4. Generic Segmentation Algorithms

Figure 2.3: Example of salt-and-pepper noise [Blo].

Figure 2.4: Median filter example [HJJtISC13].

This method tends to not damaging the boundaries and edges too much and it is of
very little complexity. It is also known that, by applying the algorithm multiple times
with the same radius, we can obtain results fairly similar to the ones that we obtain using
the anisotropic diffusion filter mentioned above.

2.4 Generic Segmentation Algorithms

Image segmentation is the process of partitioning an image into multiple segments. This
is a crucial task in medical visualization. The goal is to change the representation of
the image in order to ease the identification of the objects of interest in the image and
thus, to make the overall image analysis much easier. An image segmentation technique
usually assigns labels to the image pixels and the pixels with same label share certain
visual characteristics.

When applied to a stack of images, which is a typical scenario in medical imaging,
the resulting contours after image segmentation can then be used to create 3D represen-
tations.

In the following we present some of the basic segmentation algorithms. As a first
objective, we have to understand how basic segmentation can be done.

2.4.1 Thresholding

Thresholding is probably the simplest method of image segmentation [SS04]. It can be
divided into two categories: global thresholding and local thresholding.

13

2. RELATED WORK 2.4. Generic Segmentation Algorithms

Figure 2.5: Thresholding of an image with a bi-modal intensity distribution [oE].

Figure 2.6: Thresholding of an image with a multi-modal intensity distribution [oUSoc].

In global thresholding, there are two groups of pixels: The group 1 corresponds to the
set of pixels that have an intensity value greater or equal to the threshold value t; the rest
of pixels (the ones with an intensity value lesser than t) belong to group 2. The complexity
of this algorithm is very low, but because of this, it brings us some shortcomings. Global
thresholding works fine with images with a bi-modal distribution (see Figure 2.5) but, as
we can see in Figure 2.6, the algorithm will perform poorly if the image has a multi-
modal distribution. To obtain better results with images with a multi-modal distribution,
entropy based threshold algorithms were suggested in [PSY97]. These algorithms try to
maximize the entropy in the thresholded image. That is, in images with bigger contrast
between pixels, we can obtain better segmentation results using threshold techniques.
An alternative to entropy based algorithms are the histogram shape based threshold al-
gorithms [CL98], which try to force multi-modal intense distributions into a bi-modal
distribution.

Instead of global thresholding, we can use local thresholding. This local method divides
an image into sub-images and selects an independent threshold value for each sub-image.
This technique is very sensitive to noise and some of the segmented regions might not
correspond to the objects in the original image.

Recently, in the field of medical visualization, threshold methods have also been de-
veloped for CT images. K. J. Batenburg and J. Sijbers [BS09] suggested a projection dis-
tance minimization distance, which uses tomographic projection data to determine op-
timal thresholds. The thresholds are computed by minimizing the distance between the
forward projection of the segmented image and the measured projection data.

14

2. RELATED WORK 2.4. Generic Segmentation Algorithms

2.4.2 Region-based Segmentation

Region-based image segmentation rely on grouping similar neighbouring pixels. There
are two main methods: split and merge [CP80] and region growing [AB94].

2.4.2.1 Split and Merge

The split and merge method divides an image into multiple regions and then merges the
ones that are similar according to some criteria (see Figure 2.7). To be more precise, the
whole image is first considered as a single region. If a certain homogeneity criterion is
not met, then the region is split into four quadrants. This process is repeated recursively
within each region. When each of the regions contain only homogeneous pixels, the al-
gorithm starts comparing all regions with their neighbor regions and merge the ones that
are similar. It is an algorithm computationally fast.

Figure 2.7: Split process of the Split and Merge algorithm [oUDoB].

2.4.2.2 Region Growing

The region growing method works in the opposite way relative to the split and merge
method. It begins by selecting n seed pixels. The algorithm will then try to merge each of
these pixels with similar neighbors (pixels with similar intensities) so creating a region of
multiple pixels. An illustration of this process is shown in Figures 2.8 and 2.9.

R. M. Haralick and L. G. Shapiro have proposed a variant of this technique [SH01].
Basically the mean and variance of a region are used now to decide if a pixel belongs or
not to that region.

The seed pixel can be selected manually or automatically. One algorithm that has
been proposed to do so is the Converging Square algorithm [OS83]. However, images with
too much noise might cause the algorithm to produce undesired segmentation.

15

2. RELATED WORK 2.4. Generic Segmentation Algorithms

Figure 2.8: Region Growing algorithm: Start of a growing region [oCSI].

Figure 2.9: Region Growing algorithm: Growing process after a few iterations [oCSI].

2.4.3 Edge-based Segmentation

Edge-based segmentation algorithms use edge detectors to create segments in a given
image. This helps to distinguish the multiple structures in an image. Examples of such
algorithms, presented below, are the gradient magnitude filter and the canny edge detec-
tor.

2.4.3.1 Gradient Magnitude

The magnitude of the image gradient is extensively used in image analysis, mainly to
help the determination of object contours and the separation of homogeneous regions.
A gradient magnitude operator detects the amplitude edges at which pixels change their
gray-level suddenly. For an image volume, the magnitude of the gradient vector assumes
a local maximum at an amplitude edge. The magnitude is zero if the volume is constant.
Equation 2.3 can be used to calculate the magnitude for a volume f(x).

|∇f | =

√
(
∂f

∂x
)2 + (

∂f

∂y
)2 + (

∂f

∂z
)2 (2.3)

The algorithm can assume a discrete differentiation approach based on the Prewitt
operator [HJJtISC13] (other operators can be used). This operator computes an approxi-
mation of the gradient of the image intensity function. By applying the operator at each

16

2. RELATED WORK 2.4. Generic Segmentation Algorithms

point in the image, the result is either the corresponding gradient vector or the norm of
this vector.

In the case of 2D, the operator uses two 3x3 matrices (masks), which are applied to
the original image to calculate the approximations of the derivatives. One of the matrices
is used for horizontal changes and the other one for vertical. Let A be the source image,
Gx andGy the images that contain the horizontal and vertical derivative approximations:

Gx =

−1 0 +1

−1 0 +1

−1 0 +1

 and Gy =

+1 +1 +1

0 0 0

−1 −1 +1

 (2.4)

Both images, (Gx and Gy), can be combined using equation 2.5.

G =
√
G2
x +G2

y (2.5)

2.4.3.2 Canny Edge detector

An example of detector is the Canny Edge detector [Can86], which uses a double thresh-
olding technique. After going through a smoothing step, the algorithm finds the edge
strength by taking the gradient of the image. The Prewitt operator (see Equation 2.4) can
be used to approximate the absolute gradient magnitude (edge strength). The edge di-
rection must also be calculated. To do this we can simply use Equation 2.6, where θ is the
angle (which corresponds to the edge direction) and Arctan() is the arctangent. Finally, a
threshold t1 is used to detect edges by comparing the pixels in the image with the thresh-
old. Any pixel that has a greater value than t1 is presumed to be an edge pixel. Another
threshold t2 is defined as a criterion to connect possible edges to the already defined edge
pixel. Any pixels that are connected to the edge pixels defined by t1 and have a greater
value than t2 are also selected as edge pixels. Figure 2.10 shows a result of this detector.

θ = Arctan(Gy/Gx) (2.6)

Edge-based segmentation algorithms tend to find edges which are irrelevant to the
object, and the contours of the object sometimes are disjointed. Edge-based segmenta-
tion algorithms usually have low computational complexity.

2.4.4 Graph-based Segmentation

Graph-based segmentation consists in the formation of a weighted graph, where each
vertex corresponds to a region in the image. The edges are weighted with respect to
some measure. Graph-based algorithms often try to minimize cost functions such as a cut
function. For example, given an image I, a graph G is constructed where the connection

17

2. RELATED WORK 2.5. Common Segmentation Algorithms for Medical Imaging

Figure 2.10: Example of result of the Canny Edge detector [vddcAUp].

i.e., the edge in the graph between two similar pixels (which will be represented by two
vertexes) will have a high weight value and the connection between two very distinct
pixels will have low weight, i.e., G = (V,E) where V is the set of vertexes and E the set of
edges and A and B two disjoint sets of V, we have the cut function:

cut(A,B) =
∑

a∈A, b∈B
w(a, b) (2.7)

Because similar pixels are connected with high weight edges and the distinct ones are
connected by low weight edges, by minimizing the cut function, the partitions A and B
are created and will represent two segments in the image.

Graph-based segmentation algorithms usually find global optimal solutions. As ex-
pected, these algorithms are computationally expensive.

2.4.5 Discussion

The segmentation methods we have presented in this section are all very similar when
it comes to complexity, with the exception of graph-based segmentation, a complex one.
While region-based and graph-based methods can cause over segmentation, edge-based
can create disjoint edges and thresholding depends on the intensity distribution.

Despite all that, these algorithms can be tailored and combined together to achieve
better results in medical image segmentation. But if generic implementations are used,
then the boundaries obtained will not necessarily correspond to the real boundaries we
aim to find out.

2.5 Common Segmentation Algorithms for Medical Imaging

Medical images might pose specific needs and challenges when comparing to other type
of images. Above all, we need to understand which type of algorithms are more helpful
for our work and which ones are less helpful.

On that basis, and despite some generic segmentation algorithms have already been
presented, we focus now on some segmentation algorithms commonly used in medical
imaging. Namely, we draw attention to the active contour model, the active shape mode and

18

2. RELATED WORK 2.5. Common Segmentation Algorithms for Medical Imaging

the atlas-based segmentation. We expect that other methods with similar characteristics will
deliver similar efficiency and quality.

2.5.1 Active Contour Model

Active contour model, or snakes, proposed by Kass et al. [WT88], consists of a deformable
geometric spline which is influenced by image forces and other constraint forces. These
forces pull the spline towards object contours. A snake can be defined parametrically as

v = v(s) = (x(s), y(s)), s ∈ [0, 1]. (2.8)

The matching between the snake and the image is made by means of energy mini-
mization. The total energy of the snake can be written as

E∗snake =

1∫
0

Esnake(v(s))ds =

1∫
0

(Einternal(v(s)) + Eimage(v(s)) + Econ(v(s)))ds (2.9)

where Einternal represents the internal energy, Eimage represents the image forces and
Econ represents the external constraint forces. The internal energy can be written as

Eint = (α(s)|vs(s)|2 + β(s)|vss(s)|2)/2. (2.10)

The first order term represents the stretching force of the snake and the second order term
represents its bending force. Large values of α(s) will increase the internal energy of the
snake the more it stretches, if the value of α(s) is small, the energy function will be insen-
sitive to the amount of stretch. Simillarly, large values of β(s) will increase the internal
energy of the snake the curves it has, if the value of β(s) is small, the energy function will
be insensitive to curves in the snake.

The image energy can be written as

Eimage = wlineEline + wedgeEedge + wtermEterm (2.11)

Adjusting the weights will determine which features will be considered by the snake.
Eline is the intensity of the image, which can represented by Eline = I(x, y). Adjusting
the sign of wline will make the line attracted to dark lines of light lines. Edges in the im-
age can be found by following an energy function which makes the snake attract towards
contours with large image gradients. Eedge can be represented by Eedge = −|∇I(x, y)|2.
The constraint energy Econ can be used to interactively guide the snake.

Jia Liang et al. [LDW08] used a more sophisticated implementation of the snakes
model, called Gradient Vector Flow (GVF), in the work of segmentation of the left ventri-
cle. GVF allows the snake to start at a position far from the object and GVF can handle

19

2. RELATED WORK 2.5. Common Segmentation Algorithms for Medical Imaging

broken edges and subjective contours. While the original snake model cannot converge
well to concave features, GVF also solves this problem.

The values of α and β of the internal energy are chosen subjectively. Gao et al. [JGK98]
proposed a solution to define these values in the extraction of the liver boundary. After a
preprocessing phase, which include steps like removing the noise of the original images,
the liver boundary is refined by snake algorithm. The value of α is proportional to the
distance of adjacent control points, and β is inversely proportional to the curvature value.

2.5.2 Level set methods

Level sets were firstly introduced by Osher and Sethian [OS88] and have been widely used
in medical image segmentation. This is mainly due to their ability to track the boundaries
of the biological structures of interest. It is worth to point out that active contours can be
implemented using level sets.

The level sets method creates a contour Γ(t), which evolves towards the boundaries of
the desired object. It is defined as the zero levo set of and embedding function φ(x, y, t) :

R3 → R as given in equation 2.12.

Γ(t) = {(x, y)|φ(x, y, t) = 0} (2.12)

Using the contour defined in equation 2.12, we can define two domains: Ω+ = {(x, y)|φ(x, y, t) >

0}, which is the interior of the contour, and Ω− = {(x, y)|φ(x, y, t) < 0}, the exterior.

The level set function φ(x, y, t) can be defined using the euclidean distance function.
Equation 2.13 shows a possible definition. The distance d(x, y, t) is defined as the length
of the shortest path from point (x, y) to the desired contour.

φ(x, y, t) =

−d(x, y) : (x, y) ∈ Ω−

0 : (x, y) ∈ Γ(t)

d(x, y) : (x, y) ∈ Ω+

(2.13)

With the level set function defined, we can now introduce the outer unit normal vector
−→
N (equation 2.14)

−→
N = − δφ

|δφ|
(2.14)

The contour will evolve in time due to several artificial forces, which makes the con-
tour move in the normal direction.

2.5.2.1 Fast Marching

The fast marching is an example of a level set method. It is a numerical method for solving
boundary value problems of the Eikonal equation [Tsi95] (see equation 2.15), which is
commonly used in problems of wave propagation. A boundary value problem usually

20

2. RELATED WORK 2.5. Common Segmentation Algorithms for Medical Imaging

describes the evolution of a closed curve as a function of time T with speed F (x) in the
normal direction at a point x on the curve. Concerning the time function in the equation,
the user can specify at which time the algorithm stops (this is used to save computational
time). The user must also provide at least one seed point with an initial value.

F (x)|∇T (x)| = 1 (2.15)

The speed function values are usually obtained from a speed image. The main pur-
pose of this image is to use it as an indicator of where the level sets function should grow
faster and where it should grow slower. Suppose we have an image which intensities are
between the values 0.0 and 1.0. Ideally the speed value should be 1.0 in homogeneous
regions of anatomical structures and the values should decay rapidly to 0.0 around the
edges of structures. There are several methods to produce a speed image. For instance,
we can use the sigmoid filter. The sigmoid filter gives us more control over the resulting
speed image because of its parameters α and β.

The sigmoid filter is based on the sigmoid intensity transformation (see equation 2.16).
This filter is commonly used as an intensity transform: It maps a specific range of inten-
sity values into a new intensity. Because the sigmoid is a non linear function, it is possible
to focus attention on a particular set of values, while progressively attenuating the values
outside that range. The parameter α in equation 2.16 defines the width of the input in-
tensity range and β defines the intensity around which the range is centered (see Figure
2.11).

I ′ = (Max−Min) ∗ 1

1 + exp(−(I−βα))
+Min (2.16)

Figure 2.11: Influence of the alpha and beta parameters in the sigmoid func-
tion [HJJtISC13].

Since we want to create a speed image, the parameters Min and Max are set to 0.0
and 1.0 respectively. Alpha (α) and Beta(β) can be set by the user.

21

2. RELATED WORK 2.5. Common Segmentation Algorithms for Medical Imaging

2.5.3 Active Shape Model

Organs and other biological structures in medical images have a tendency towards some
average shape. This tendency can be very useful when proposing algorithms.

Cootes el al. [TFCJ94] proposed to use Active Shape Models in order to locate structures
in medical images. This method requires a training phase in order to take advantage of
the average shape of a biological structure.

Once the training phase is finished, the algorithm applies Principal Component Analysis
(PCA) to identify the relevant shapes. After this step, it is possible to create an arbitrary
shape by the linear combination of these identified shapes. The outcome can then be
deformed by changing the coefficients used in the linear combination. A similar method
was used by Gleason et al. [SSGM02] to detect poly cystic kidney disease in CT images.
The main disadvantage of this algorithm is to require of a lot of training samples.

2.5.4 Atlas-based Segmentation

In some applications, a clinical expert can manually label several images and so seg-
menting unseen images is a matter of extrapolating from these manually labeled training
images. Methods like this are referred to as atlas-based segmentation methods.

The atlas construction can be based on a single object. The training images are used
separately to construct the atlas, but this poses several problems. Since the selection of
a sample is arbitrary, it means that the selected object may not be a typical one. Fur-
thermore, the fact that only one sample is used, means that no information about the
variability of the object is available so it is impossible to determine if the resulting shape
is acceptable. To solve these problems, probabilistic atlas has been proposed [PBM03]. This
method uses a spatial distribution of probabilities to determine if a pixel belongs or not
to an organ. To obtain the probability distribution, multiple samples are used. Usually
it is required the use of image registration in order to align the atlas images (the sam-
ples) to a new image. Similarly to the active shape model (which can be considered as a
probabilistic atlas), the disadvantage of probabilistic atlas is that it requires a large set of
training samples in order to work properly.

2.5.5 Discussion

The main disadvantage of atlas-based and active shape model methods is that they both
require a large set of training samples. Active contour model is a good choice if we are
dealing with soft tissues [SSGM02]. Furthermore, it also provides some interactivity if
energy constraint parameters are to be changed. Atlas-based segmentation and active
shape model are usually less sensitive to noise in comparison to active contour model or
other methods that don’t require training. Because of this, a preprocessing step may be
necessary before applying an active contour method. Considering our problem, active
contour models and region based algorithms are the most appropriate types of segmen-
tation since we don’t have enough data to use as training data. Region based algorithms

22

2. RELATED WORK 2.6. Volume Rendering

and active contour models also provide a greater level of interactivity since they don’t re-
quire as much time to execute as atlas-based segmentation or other methods that require
training.

2.6 Volume Rendering

Volume rendering is a rendering technique aiming to display a 3D sampled data set en-
tirely, therefore laying emphasis on the overall as opposed to the detail. Usually, the
data set is a group of 2D slice images acquired by a CT or MRI scanner. These slices
are taken following a regular pattern (e.g. one slice every milimeter) thus allowing us to
reconstruct the complete volume.

In the following we present the most important techniques used in volume rendering.

2.6.1 Ray Casting

Ray Casting was introduced in 1988 by Marc Levoy [Lev88] and, as we can see in Fig-
ure 2.12, it generates high-quality images. In medical imaging, we can use ray casting in
the field of virtual endoscopy [HO00] for example.

In this technique, a ray is generated for each desired image pixel. Originating from
the camera position, multiple rays are traced through the data volume. Along the part
of the ray that lies within the volume, equidistant samples are selected. If the volume
is not aligned with the ray, sampling points will be located between voxels and it will
be necessary to interpolate the values of the samples from its surrounding voxels. After
all sampling points have been shaded, then the final color for the pixel currently being
processed is computed. To do so, the sampling points are combined along the ray. In
general, this composition starts with the samples farthest from the viewer and ends with
the one nearest to him, in a blending fashion of layers. Masked parts of the volume do
not affect the resulting pixel.

Ray casting used to be demanding technique, in particularly priori to recent advances
in graphic cards technology. Several techniques have been proposed in the past to speed
up the technique [RAW94, RGY98].

It is worth to point out that ray casting nowadays should be parallelized, that is,
instead of casting rays in a sequential fashion, multiple rays should be casted at the same
time, in parallel. Thanks to this, ray casting is now considered as an interactive technique.

2.6.2 Shear Warp

The shear warp approach was popularized by Philippe Lacroute and Marc Levoy in 1994
[LL94]. In this technique, the voxels in the computer’s memory are rearranged with the
purpose of allowing an optimized ray traversal (shearing of the volume data set). It is a
fact that the viewing position is independent of the way data was initially stored in the

23

2. RELATED WORK 2.6. Volume Rendering

Figure 2.12: Volume ray casting applied to CT data of a crocodile. The image was ren-
dered by Fovia’s High Definition Volume Rendering engine [Wikb].

computer’s memory. Because the pixels have to be rearranged, the image is distorted and
a final correction step is necessary (warping the image).

This technique is relatively fast in software at the cost of less accurate sampling and
worse image quality when compared to ray casting. Nevertheless, the reasonable trade-
off between speed and quality made it an interesting choice for implementation in special
hardware architectures.

2.6.3 Splatting

The splatting technique was proposed by Lee Westover in 1991 [WW91]. This technique
is meant to trade quality for speed. With splatting, volume rendering displays are com-
posed by accumulating splatted data voxels on the viewing surface in back to front order.
The degree of influence of each voxel is defined by a reconstruction filter.

The all process resembles the result of throwing snow balls on a wall.

2.6.4 Maximum Intensity Projection

Unlike the accumulation process of other volume rendering techniques, the maximum in-
tensity projection method only picks out and projects the voxels with maximum intensity
that fall in the way of parallel rays traced, from the viewpoint to the plane projection.

This technique is a widely used technique in medical visualization. For example,
it is the rendering technique of choice when it comes to the investigation of vascular
structures [CWQ+06]. However, we must draw attention to the quality of images we can
obtain. They are not the most accurate ones if compared to the ones generated by other
methods. Being the area of medical visualization of particular concerned as far as quality
imaging is concerned, we wonder if this status quo should be changed for the sake of the
well-being of patients.

24

2. RELATED WORK 2.7. Surface Rendering

2.7 Surface Rendering

While volume rendering is concerned with the display of the data sets in their entirety,
surface-based rendering techniques focus on depicting surfaces within the volume. Hence,
it is a useful technique to emphasize material transitions within the volume, as depicted
in Figure 2.13.

In the following we present the common surface-based rendering techniques. In par-
ticular, iso-surface extraction and segmentation masks.

As a historical note, we should make reference to the technique called contour ap-
proaches. They were widely before the introduction of iso-surfacing techniques but not
anymore. Basically, in a semi-automatic or manual way, the 2D contours (points of same
value but in a 2D slice) of the structures of interest were identified on single slices. Then
geometric algorithms were used to connect the contours of adjacent slices in order to
form a closed surface [KSSe00].

Figure 2.13: An example of a surface-rendered human skull [Ren].

2.7.1 Iso-surface extraction

Iso-surface extraction aims to represent all points within a volume with the same property
or value. The Marching Cubes (MC) technique is the best established iso-surface extrac-
tion approach. It was introduced by W.E. Lorensen and H.E. Cline in 1987 [LC87] and
since then it has been broadly used in various domains.

With the rectangular volume data defined as a set of voxels, the algorithm starts by
examining each of these voxels, one by one. Each voxel has eight neighbor locations, thus
forming an imaginary cube. Then the algorithm determines the polygon or polygons
needed to represent part of the isosurface that passes through the cube. The polygons are
then used to produce the desired surface.

There is a total of 256 possible polygon configurations (see Figure 2.14). To determine
the polygon(s), the 8 scalar values (neighbors) are compared to a pre-defined iso-value:
If the scalar value is greater, then the appropriate bit is set to one; if it is lower, the bit is
set to zero. The final value after all 8 scalars were checked leads to a particular case of a
lookup table. The vertex of the generated polygons is placed in the appropriate position

25

2. RELATED WORK 2.8. Time-Varying Visualization

along the cube’s edge by linearly interpolating the two scalar values that are connected
by that edge. This time consuming process motivated researchers to come up with sev-
eral acceleration strategies [IK94, LA98]. Moreover, there were some issues related to the
accuracy of the initial solution, which led to further research work [LB03].

Figure 2.14: The original 15 MC configurations, considering both rotational and reflective
symmetry. These configurations led to further research to address issues of accuracy so
they have been extended [Wika].

2.7.2 Segmentation Masks

This technique simply consists of displaying regions of the data volume which have been
identified by segmentation techniques. Therefore it is just a matter of representing graph-
ically the points already identified. Unlike iso-surface extraction, there is no need to
process the all volume data. But in this surface-rendering method, special smoothing
techniques have to be employed because segmentation masks usually originate staircase
artifacts.

2.8 Time-Varying Visualization

Most of the applications in 3D visualization use a single data set that corresponds to a
single instant of time of its domain of interest. Such data set is of dimension width ×
height× depth.

However, when referring to time-varying visualization, as it happens in medical vi-
sualisation, we have to deal with an extra dimension: The time. As a consequence, the
data set dimension is now width× height× depth× time.

The main main challenge in this situation is to update the data structures, from one
time frame to the next one but in real-time, so users can visualize data both in space and
time. Most of the research in time-varying data visualization deals with massive data
volume, which is very common in engineering problems

26

2. RELATED WORK 2.8. Time-Varying Visualization

Philip Sutton and Charles D. Hansen proposed the use of Temporal Branch-on-Need
Trees (T-BON [SH99b]. In the preprocessing step, a branch-on-need octree for each time
step in the data, the tree infrastructure is stored to disk. Before any isovalue queries, the
tree infrastructure is read from disk and recreated in main memory. After this, queries are
accepted in the form (timestep, isoval). The values of the nodes corresponding to timestep
are first read. If the values span isoval (i.e. greater than the isoval), the children of these
nodes are read. If a lead node spans isoval, the disk block containing the data for the cells
in that leaf is added to a list. Once the necessary portions of the tree have been brought
into memory, all blocks in the list are read from disk. This was proposed in 1999, when
the memory capacity and computer power was much lower then it is today, which means
that this algorithm can be tailored to read less data from the disk.

Han-Wai Shen et al. proposed a volume rendering technique which uses a time-space
partitioning (TSP) tree [SH99a]. A TSP tree is similar to a regular octree. The difference is
that the TSP tree node contains both spatial and temporal information about the under-
lying data in the subvolume, while a regular octree only contains the spatial information.

Zhe Fang et al. [FMHC07] suggested that the goal of medical diagnosis is not to ob-
serve dynamic in real time as much as to differentiate healthy from diseased tissue. Hence
it is not so important to provide interactive selection of arbitrary time-slices, but rather
the comprehensive evaluation of the time-behaviour of each tissue sample and its classi-
fication into different tissue types and tissue behaviours.

Zhe Fang et al. [FMHC07] also proposed a way of rendering time-varying medical im-
ages by analyzing the time activity curve (TAC) of the voxels within a given volume. The
TAC of each voxel is compared to a template TAC, which can be obtained by interactively
probing the underlying data by specifying an arbitrary voxel via its spatial location, or
it can also be generated from the result of some previous analysis, such as finding the
average of a region of interest. The comparison between the template TAC and the other
TACs results in a scalar value (i.e. each voxel associated with one scalar distance). The
volume can then be rendered using classical (scalar) volume rendering algorithms.

Ma et al. have provided a survey of different time-varying data visualization tech-
niques used in large-scale data visualization [ML05].

S. Silva et al. [SSM13] proposed a real-time offline segmentation technique for the vo-
cal tract. The segmentation starts with the definition of a region of interest (ROI) over just
one of the image frames. This is possible because there is spatial coherence among im-
ages, which means the ROI can be replicated. A ROI is defined for each of the anatomical
structures we want to identify. Since we are dealing with real-time MRI, the segmenta-
tion technique used must be computationally fast. The authors applied region growing
(which is a fairly simple algorithm) to each of the ROIs to obtain the desired quick seg-
mentation. The ROIs previously defined also help the region growing algorithm to not
spread beyond the desired regions, which means the algorithm will be faster than a stan-
dard region growing (without the ROIs).

27

2. RELATED WORK 2.9. Development Toolkits for Medical Visualization

Finally, it is worth mentioning that most of the research in type-varying visualization
is more common in areas other than medicine. For instance, in chemistry, mechanical
engineering and other areas with various types of simulations. In medical visualization,
the data sets tend to be smaller when it comes to time, because patients usually can not
be exposed to PET or CT scanners for a long period of time.

2.9 Development Toolkits for Medical Visualization

In the following we present some of the most popular toolkits used to develop medi-
cal visualization applications. This section ends with a brief discussion and comparison
between such toolkits.

2.9.1 ITK – Insight Segmentation and Registration Toolkit

The Insight Segmentation and Registration Toolkit [ITK] is an open-source toolkit, de-
veloped in C++ by several institutions and funded by the National Library of Medicine.
It was developed mainly for image processing, segmentation and registration. ITK pro-
vides a large number of segmentation algorithms such as thresholding, edge detection,
region growing, active contour and watershed. Image visualization, manipulation or
analysis features are not provided by ITK and so other libraries have to be used to cover
these aspects. Also, ITK does not support 3D image rendering. But because of this, ITK
provides interfaces to the Visualization Toolkit (VTK) [VTK], which can handle 3D image
rendering.

2.9.2 MITK – Medical Imaging Interaction Toolkit

The Medical Imaging Interaction Toolkit (MITK) [MITb], developed at he German Cancer
Research Center, combines ITK and VTK, thus easing the effort required to create applica-
tions for medical image analysis. Notice that, as it was previously stated in Section 2.9.1,
ITK requires additional visualization and interaction features. The MITK community
provides good documentation, as well as multiple tutorials and installation instructions
to combine with Qt[Qt], a convenient tool to build graphical interfaces with MITK. Since
MITK is derived from ITK and VTK, most of the ITK’s and VTK’s documentation can be
used as well.

2.9.3 IGSTK – Image-Guided Surgery Toolkit

The Image-Guided Surgery Toolkit (IGSTK) [IGS], developed by the Insight Software
Consortium, also combines ITK and VTK. As for the user interface, it uses the Fast Light
Toolkit (FLTK) [FLT]. IGSTK provides a set of modules which allow the representation
of objects such as needles (see Figure 2.15). The IGSTK community also provides good
documentation.

28

2. RELATED WORK 2.9. Development Toolkits for Medical Visualization

Figure 2.15: User interface of an application developed using IGSTK for robot-assisted
needle placement in biopsies [AEC07].

2.9.4 User interface Development

As we can conclude from the sections above, it is necessary to use an additional library to
build the user interface. The libraries wxWidgets [wxW], Fast Light Toolkit (TLTK) [FLT]
and KWWidgets[KWW] are examples of open-source libraries which can be successfully
used to build user interface for medical imaging applications. Even though not being
open-source, Qt [Qt] provides a free version which can be used alongside ITK and VTK.

2.9.5 Application Builders

Multiple application builders and/or Problem Solving Environments (PSEs) have also
been developed in the past. Such tools allow users to interactively design solutions to a
certain class of problems, by providing a graphical interface where it is possible to build
a processing pipeline. This is achieved by adding different modules and establishing a
network of connections among them.

In this section we present some of the application builders that can support medical
image analysis, processing and visualization.

DeVIDE. The Delft Visualization and Image processing Development Environments
(DeVIDE) [DeV] provides several visualization and image processing features by inte-
grating several libraries, such as VTK [VTK] and ITK [ITK]. It provides a higher-level
function to ease their usage.

It is also possible to add new features to DeVIDE, by including new modules or
adding code to existing ones in order to modify their behavior.

MeVisLab. MeVisLab[MeV] was developed by Mevis Medical Solutions AG and
Fraunhofer MEVIS, Bremen, Germany, and integrates the libraries VTK and ITK. Mevis-
Lab allows the usage of these two libraries without the need of knowing a programming
language. It is also possible to create networks where multiple modules are combined to
achieve the desirable result.

29

2. RELATED WORK 2.9. Development Toolkits for Medical Visualization

We notice that MeVisLab provides a helpful documentation tutorial.

SCIRun. SCIRun [SCI] is a problem solving environment developed at the Scien-
tific Computing and Imaging Institute, University of Utah. Similarly to the application
builders already mentioned, a user selects software modules and connected them in a
visual programing environment in order to create a high level workflow. The modules
include several ITK functionalities for image segmentation and registration, as well as it
provides MATLAB integration.

It is worth mentioning that some of the applications developed at University of Utah
have evolved from SciRun’s features, namely, Seg3D [Seg] and ImageVis3D [Ima].

2.9.6 Discussion

ITK is a great tool for image processing and segmentation, even though it lacks visual-
ization features. This can be fixed by also using VTK, MITK and IGSTK. We therefore can
put together image processing methods, visualization and interface design, all in a single
toolkit. With such framework, the developer’s effort is minimized. IGSTK seems to be a
good choice when it comes to image-guided surgery.

Regarding the application builders, overall they are very similar to each other and
have great potential. The main difference between them is the availability of documen-
tation. Both SCIRun and DeVIDE lack developer documentation. On the other hand,
MeVisLab provides both user and developer documentation. DeVIDE also lacks the abil-
ity of building user interface for the software modules.

30

3
Lumbar Segmentation

The lumbar region of the human body is one of the places where epidural anaesthesia
is performed (see Figure 3.1). There are several structures in this region that we believe
are relevant during epidural anaesthesia, namely, the spinal canal, the vertebral body, the
intervertebral disc, the abdominal aorta and the inferior vena cava.

Figure 3.1: Lumbar region of a human body.

In this chapter we discuss the multiple stages of the pipeline we have set up to seg-
ment images of the lumbar region. First, we introduce the pipeline, the data sets and the
toolkits we have used. Then we discuss the various stages and associated results, ranging

31

3. LUMBAR SEGMENTATION 3.1. Segmentation Pipeline

from image pre-processing to the segmentation itself. We evaluate results for the case of
spinal canal, abdominal aorta, vertebral body and back muscles. This chapters ends with
major conclusions we can draw from the tests carried out.

3.1 Segmentation Pipeline

The segmentation pipeline we set up for the purpose of image segmentation is depicted
in Figure 3.2. Hereafter we just consider MRI images.

Figure 3.2: Segmentation pipeline for a 3D MRI dataset.

After loading the MRI dataset to be analysed, the process starts with pre-processing
of the images, having in mind the reduction of noise and the enhancement of the features
of interest.

The next step is the related to initilization of algorithms. Actually, some segmentation
algorithms require the use of additional filters to work properly.

The following step is the proper segmentation. At this point, we have used two types
of algorithms, namely, the region growing and the level sets algorithm.

We should point out that there is usually an additional step at the end, where the
obtained segmentation can be edited. However, as an interactive one, we have decided
not to address it in this chapter.

Table 3.1 presents information about the datasets of the lumbar region that have been
used in these experiments. They were taken from the lumbosacral region. The back
muscles in these images are represented with low intensity values (notice that muscles
can also be represented with high intensity values).

Name Size Inclination
MRIX LUMBAR 512 x 512 x 26 Axial

R66y (901) 321 x 334 x 20 Axial
R66y (801) 321 x 334 x 20 Axial

MRIX LUMBAR 512 x 512 x 12 Sagittal
LOMBIX 660 x 644 x 25 Sagittal
LOMBIX 770 x 770 x 12 Sagittal

A10y 435 x 432 x 11 Sagittal

Table 3.1: 3D MRI data sets of the lumbar region to be segmented. These images are all
in the DICOM format.2

2The datasets R66y and A10y were obtained from the portuguese hospital "Santa Maria". MRIX LUMBAR

32

3. LUMBAR SEGMENTATION 3.2. Image Pre-processing

As far as toolkits to help carrying out the experiments, and following the discussion
presented in Section 2.9, we have decided to use the Medical Imaging Interaction Toolkit
(MITK) [MITb]. As mentioned, MITK is a free open-source software system for develop-
ment of interactive medical image processing software. We will be also using the Insight
Toolkit (ITK) [ITK] and the Visualization Toolkit (VTK) [VTK], since MITK combines both
ITK and VTK as an application framework.

3.2 Image Pre-processing

As previously stated, the image pre-processing stage is used mainly to reduce noise and
enhance image features. To denoise the image, we have used two main techniques: Me-
dian filter and anisotropic diffusion filter (as edge preserving smoothing). Both techniques
are described in Section 2.3. The images presented in this section are from the dataset
MRIX LUMBAR[Osi] Axial.

3.2.1 Comparison

We have tested both methods with different parameters and values. The signal-to-noise
ratio was used to compare both methods, although it doesn’t take into account edge
preserving characteristics. The equation 3.1 sets the computation of the sinal-to-noise ratio,
where µ is the mean of the intensities in the image, and σ the standard deviation.

SNR =
µ

σ
(3.1)

Table 3.2 shows the results obtained for the median filter and for the anisotropic diffu-
sion filter. The signal-to-noise ratios obtained with the median filter are lower than those
obtained with anisotropic diffusion filter, as illustrated in Figure 3.3. The median filter was
used with the radius value of 1 to avoid damaging structure boundaries too much. The
anisotropic diffusion filter was used with conductance parameter of 1.0.

In this particular image, the fact that anisotropic diffusion filter doesn’t change the mean
of the image, helps the signal-to-ratio ratio to grow faster than the one obtained with the
median filter.

Note that if we kept increasing the number of iterations, the signal-to-noise ratio ob-
tained with the median filter would eventually surpass the signal-to-noise ratio obtained
with the anisotropic diffusion. This is because median filter is a linear smoothing filter and
doesn’t take into account the boundaries of the structures in the figure, even though we
can obtain good edge preserving results in some cases.

Figure 3.4 show the images obtained for each of the filters using 35 iterations. The
boundaries in the image obtained by the median filter were damaged and some have
disappeared. Hence, we conclude that the median filter works better when there is less

and LOMBIX were obtained from OsiriX [Osi].

33

3. LUMBAR SEGMENTATION 3.3. Initialization

Median filter Anisotropic diffusion filter
Iterations µ SNR µ SNR

5 162.978 1.144 168.318 1.155
10 161.636 1.149 168.318 1.188
15 160.791 1.153 168.318 1.209
20 160.153 1.156 168.318 1.225
25 159.628 1.158 168.318 1.238
30 159.189 1.160 168.318 1.250
35 158.820 1.162 168.318 1.260

Table 3.2: Mean and SNR results for both median and anisotropic diffusion filters.

Figure 3.3: Median filter vs. anisotropic diffusion filter.

noise in the image. If so, less iterations are needed to smooth the image, which means
that there is a greater chance to preserve the boundaries of the structures.

Anisotropic diffusion usually takes longer to execute than the median filter. It may be
an issue if there are time constraints at the segmentation stage.

On the basis on the results gathered, we are in favour of using anisotropic diffusion in
our experiments.

3.3 Initialization

Some segmentation algorithms, namely level sets, require additional initialization other
than applying smoothing methods. The level sets method usually requires a speed image
to be provided at the beginning. The intensity values in a speed image are interpreted as
the values of a speed function used by the level sets (see Section 2.5.2.1).

The speed image must provide high intensity values in homogeneous areas and low
intensity values at the edges of the anatomical structures. This way the level sets method

34

3. LUMBAR SEGMENTATION 3.3. Initialization

Figure 3.4: Original image (left). Use of median filter with 35 iterations and radius 1
(center), and anisotropic diffusion filter with 35 iterations and 1.0 as conductance parameter
(right).

can easily stop when the values start dropping to low intensity values.

3.3.1 Edge Detection Filters

The task ahead of obtaing the speed image itself is to apply edge detection filters. We
have used two filters for that purpose: the gradient magnitude filter and the canny edge
detector.

3.3.1.1 Gradient Magnitude Filter

The gradient magnitude filter can be used as an edge detecting filter. Unless we use
the gradient magnitude filter with smoothing, no additional parameters are required.
Since we already went through a smoothing process, we have decided to use the gradient
magnitude filter with no additional smoothing.

Figure 3.5 shows the resulting image after applying the gradient magnitude filter to
the smoothed image of the lumbar region. But if no smoothing is applied, then the edges
become mixed with the noise, as depicted in Figure 3.6.

3.3.1.2 Canny Edge Detector Filter

Another algorithm we have used to detect the edges was the canny edge detector. This
method requires both a low threshold value and a high threshold value. The values must
be less than 1 and negatives values will not work, which means that low < high < 1.

As depicted in Figure 3.7, we have tested multiple threshold values. If both values are
too close to 0, more unwanted edges are shown in the resulting image. On the other hand,
if the values become closer to 1, less edges are shown in the final image. This outcome
is true for most of the images. The best threshold values for this particular image under
analysis are 0 and 0.1, respectively for low and high threshold values.

35

3. LUMBAR SEGMENTATION 3.3. Initialization

Figure 3.5: Gradient magnitude filter applied after smoothing the image.

Figure 3.6: Gradient magnitude applied but without smoothing the image first.

3.3.1.3 Comparison

Regarding the execution time, it is a non-issue for both methods. Indeed, they both exe-
cute very fast and so execution time is negligible.

The canny edge detector filter fails to completely connect some of the edges, while
the gradient magnitude does this very well.

Another advantage of the gradient magnitude is that it represents edges in differ-
ent intensities. This is good because the unwanted edges are usually represented with a
lower intensity, sometimes very similar to the one used in the homogeneous areas. Fur-
thermore, the gradient magnitude filter doesn’t require the setting of any parameters,

36

3. LUMBAR SEGMENTATION 3.3. Initialization

Figure 3.7: Canny edge detector results.

which simplifies the whole process.

3.3.2 Speed Image

As mentioned, a speed image is an image which values are interpreted as values of a
speed function. Its main purpose is to be used as an indicator of where the level sets
function should grow faster and where it should grow slower. Suppose we have an image
which intensities are between the values 0.0 and 1.0. Ideally, the speed value should be
1.0 in homogeneous regions of anatomical structures and the values should decay rapidly
to 0.0 around the edges of structures.

There are several methods to produce a speed image. For instance, we can use a sig-
moid filter and, as an alternative, a reciprocal filter. We have used both for that purpose.

3.3.2.1 Sigmoid Filter

The sigmoid filter maps a specific range of intensity values into a new intensity. Because
the sigmoid is a non linear function, it is possible to focus on a particular set of values,
while progressively attenuating the values outside that range.

We can approach the problem of creating the speed image in two different ways: we
can focus attention on the values of edges or alternatively on the values of homogeneous
areas. The parameter β is used for this purpose. To simplify the choice of the value, we
have rescaled the intensities in the edge image to values between 0.0 and 1.0. The edge
intensity values are closer to 1.0 and the intensity values in the homogeneous areas are
closer to 0.0. Since we want the homogeneous areas to become brighter and the edges
to become darker, but we have currently the opposite, we must provide a negative value
for α in order to invert the intensities.

Figure 3.8, shows multiple images obtained with different β values and a negative α
value. Figure 3.9 shows the difference between the use of a negative α and a positive one.

The last decision to be taken is the choice of the absolute value of the parameter α,
that is, |α|. The greater the |α|, the greater variety of intensity values we have. If we’re

37

3. LUMBAR SEGMENTATION 3.3. Initialization

Figure 3.8: Left image was obtained with the parameters α = −1.0 and β = 10.0. Right
image was obtained with the parameters α = −1.0 and β = 0.0.

Figure 3.9: Left image was obtained with a positive α value and the righ image with a
negative one.

aiming for a speed image with just the values 0.0 and 1.0, then |α| should be closer to 0.0.

Although a binary speed function (with two possible values only, 0 and 1) may be
desirable, it is not effective in some cases. For example, some of the edges may not be
well defined, and these are usually the cause for leakages during the segmentation stage.
These edges are also represented with lower intensity values than the ones that are well
defined. If we provide a small |α| (close to zero), the edges that are not well defined will
completely disappear. On the other hand, if we provide a bigger |α|, we can represent
these edges with a lower intensity value (despite not being the desirable zero) and it
slows down the speed function.

3.3.2.2 Reciprocal Filter

Since a speed image has low intensity values for the edges and high intensity values for
the homogeneous areas but we want the opposite, we can apply a filter that changes

38

3. LUMBAR SEGMENTATION 3.3. Initialization

intensities I for their reciprocal values. This filter follows Equation 3.2.

I ′ =
1

1 + I
(3.2)

Figure 3.10 shows the resulting image after applying the reciprocal filter. The intensi-
ties are lower (darker) than the ones obtained by using the sigmoid filter. This means that
the speed function will be slower if we use the image obtained by using the reciprocal
filter.

Figure 3.10: Resulting image after applying the reciprocal filter to the gradient magnitude
image.

3.3.2.3 Comparison

We have applied both methods 5 times with different sized datasets and, even though
the sigmoid filter always took longer to finish, their execution times are fairly similar
considering that the segmentation and smoothing times are much superior (see Table 3.3).
This result was expected because they both work by computing an equation for each
pixel of the image. By changing the α and β parameters in the sigmoid filter, we have
a greater control over the resulting speed image. We can even create similar images to
those obtained using the reciprocal filter. On the other hand, the reciprocal filter doesn’t
need any user input to obtain a satisfactory speed image. Since none of the methods has
a clear advantage over the other, both will be used at the segmentation stage.

Reciprocal filter (ms) Sigmoid filter (ms) Dataset size
125 203 512 x 512 x 26
46 79 320 x 320 x 36

375 687 512 x 512 x 76
31 63 166 x 195 x 25

1875 3313 512 x 512 x 355

Table 3.3: Reciprocal and sigmoid filters average execution times in ms.3

39

3. LUMBAR SEGMENTATION 3.4. Segmentation

3.4 Segmentation

As it was mentioned at the beginning of this chapter, there are several structures of in-
terest in the lumbar region. In this section we describe how each of these structures can
be segmented, given pre-processed images obtained by applying one of the methods de-
scribed in Section 2.3.1. It is important to mention that additional filters were applied to
the images for a proper initialization of the segmentation.

As far as segmentation algorithms are concerned, the Insight Segmentation and Reg-
istration Toolkit (ITK) offers three main types of algorithms: Region growing, watersheds
and level sets.

3.4.1 Spinal Canal

The spinal canal is one of the easiest structures to segment, mainly because its range of
intensities is very different from the rest of the image. It is fair to mention that the data
set we have used had a problem with its intensities. As can be seen in Figure 3.11, as we
move upwards the darker the image becomes. This means that some undesirable regions
will be in the threshold result, so this has to be taken into account when choosing the
segmentation algorithm.

Figure 3.11: MRI with intensities going darker/brighter as you move upward/down-
ward.

We have decided to start the experiments using a region growing algorithm. This is
due to the fact that this algorithm is one of the simplest approach provided by ITK. There
are multiple variations for this algorithm, namely, the connected threshold, the neighbor
connected and the confidence connected [HJJtISC13].

The connected threshold is the basic one. A seed point is provided alongside a lower
threshold value and an upper threshold value. The algorithm will include in the segmen-
tation any pixel (or voxel) that is connected to the seed point and it has intensity between
the lower and upper threshold values (see Equation 3.3).

I(X) ∈ [lower, upper] (3.3)

3Times obtained using a computer with a 4 Core processor at 2.50GHz and 8192 MB of memory.

40

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.12 shows the results obtained with this variant of the region growing algo-
rithm. The problem about the intensities in the image we have mentioned before makes
the use of this algorithm very difficult. A wider range between the threshold values must
be provided in order to include the whole spinal canal. Unfortunately this means that un-
desired parts of the image will be included in the segmentation. Notice that the inclusion
criteria in this method is trivial.

Figure 3.12: Connected threshold region growing results.

On top of the seed point and the lower and upper threshold values, the neighbor con-
nected method requires the input of a radius for the pixel (or voxel) neighborhood. The
algorithm will include the pixel in the segmentation result if and only if all the neighbors
of that pixel have a value inside the threshold range. This means that the segmented
structure will be smaller, depending on the radius provided. That is, if the radius is too
large the resulting structure becomes smaller or may even be nonexistent.

Figure 3.13 shows results obtained with this variant of the region growing algorithm.
The resulting structure is very similar to the one in the original image.

Figure 3.13: Neighbor connected region growing results.

We have decided to try one more region growing variant. The confidence connected
doesn’t need the user to provide two threshold values. Instead, the user must provide a
factor, a number of iterations and a radius.

The method starts by computing the mean and standard deviation of intensity values
for all voxels inside the region set by the radius and the seed point. The user-provided

41

3. LUMBAR SEGMENTATION 3.4. Segmentation

factor is used to multiply the standard deviation and to define a range around the mean.
Neighbor pixels whose intensity fall inside the range are accepted and included in the
region. Before any iteration, the algorithm will recalculate the mean and the standard
deviation for all the pixels that were included in previous iterations.

Equation 3.4 shows the range used as the inclusion criterion, where I is the image, X
is the position of the neighbor pixel to be included in the region, µ is the mean, f is the
factor defined by the user and σ is the standard deviation.

I(X) ∈ [µ− fσ, µ+ fσ] (3.4)

Figure 3.14 shows the results obtained with this variant of the region growing algo-
rithm.

Figure 3.14: Confidence connected region growing results.

We can now draw some conclusions. When comparing the confidence connected algo-
rithm with the neighborhood connected, we realise that both are very similar and any of
the two can be used to segment the spinal canal. The only downside to the confidence
connected is that it only accepts one seed point.

3.4.2 Abdominal Aorta

The segmentation process of the abdominal aorta we present is similar to the one sug-
gested by Bjørn Sollie citebjorn2002. Figure 3.15 shows the underlying pipeline.

As mentioned before, we have to smooth the image prior to creating the appropriate
speed image. Some tests concerning the filters to create speed images were made in
Section 3.3.2. The key point is that the wanted speed image must provide sufficient data
about the boundaries of the abdominal aorta.

Given that we started by using the sigmoid filter and in some data slices under anal-
ysis the boundaries of the abdominal aorta are not well defined, we must provide a |α|
value sufficiently large so that the speed function can slow down in some areas. If this
accomplished, we have a greater control over the evolution of the level sets. The β value
can taken from the tests made in Section 3.3.2.

42

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.15: Abdominal aorta segmentation pipeline.

Having generated the speed image we then applied the fast marching method. This
method requires the user to provide seed points and two parameters – the initial distance
and the stopping time. The initial distance is the value at which the initial contour should
be relative to the defined seed points. Since the contour will propagate continuously over
time, it is desirable to stop the process once a certain processing time has been reached.
In this case, we save computation time.

Figure 3.16 shows the results obtained after applying the fast marching method, using
the parameters and related values shown in Table 3.4. The speed image we have used
was generated by the sigmoid filter. We should point out that a threshold was applied
because the images obtained were too dark (the colors were inverted).

Figure 3.16: Fast marching method applied to the sigmoid filter speed image. Table 3.4
lists the values of parameters used.

In respect to Figure 3.16, images A, B and C have a lot of leakage. Image D, although
not with as much leakage as the others, has another problem. By using a lower stopping
value we have limited the growth of the level . This means that the level didn’t spread to
some of the slices, thus the segmentation was incomplete. To solve this, we can simply
add more seed points.

43

3. LUMBAR SEGMENTATION 3.4. Segmentation

Image Initial Distance Stopping Value Sigmoid time (ms) Reciprocal time (ms)
A 0 100 1031 1015
B 50 100 2688 2734
C 50 50 984 1047
D 0 50 500 546

Table 3.4: Parameters used to generate the images in Figure 3.16 and Figure 3.17. Also,
the computation time using the sigmoid and the reciprocal filters, for speed images.

Figure 3.17 shows the results obtained when using the speed image generated by the
reciprocal filter. The parameters used in each of the images are listed in Table3.4.

Figure 3.17: Fast marching method applied to the reciprocal filter speed image. Table 3.4
shows the parameters used.

There is less leakage in the second set of images of Figure 3.17. It may be because the
reciprocal speed image is "slower" than the sigmoid speed image. Nevertheless, there is
still some leakage in the results obtained and because of this, we have decided to apply a
shape detection algorithm.

The algorithm we have used for shape detection is based on the one presented by
Malladi et al. [RMV95]. This choice is due to the fact that it is the simplest shape detection
algorithm that ITK provides. Moreover, it gives us great control with the adjustment of
its parameters.

The algorithm requires the user to provide two parameters, the propagation scaling and
the curvature scaling. The propagation parameter controls the expansion or propagation
of the front (see Figure 3.18). The curvature scaling controls the curvature smoothing.
The larger the curvature scaling the smoother the resulting segmentation. However, this
parameter shouldn’t be too large, as it will misrepresent the shape boundaries. These two
parameters compete with each other so the user just provides their relative weighting.

Figure 3.18: Propagation of the front.

44

3. LUMBAR SEGMENTATION 3.4. Segmentation

The level set evolution will stop if the convergence criteria or the maximum number
of iterations is reached. The root mean squared (RMS) is used to define the convergence
criteria: The evolution is said to have converged if the RMS change between two itera-
tions is below a certain value.

Concerning the image input of the shape detection algorithm, it requires an initial
level set (which is provided by the fast marching method) and an edge potential image.
The speed image used in the fast marching method can also be used as the edge potential
image for this method.

Figure 3.19 shows the results, after applying the shape detection algorithm using the
parameters and related values listed in Table 3.5.

Figure 3.19: Results after applying the shape detection algorithm using the parameters
listed in Table 3.5.

Image Iterations Initial Distance Propagation Scaling Curvature Scaling Time
A 800/800 5 5 1 52515
B 40/800 5 5 1.2 12375
C 800/800 5 100 0.5 49891
D 1/1 100 1.0 1.0 18016

Table 3.5: Parameters and values used to generate the images in Figure 3.19, using a
shape detection algorithm.

Regarding Figure 3.19 and Table 3.5, the parameters’ values used in the images A, B
and C highly depend on the seed position. By changing the curvature scaling by only 0.2,
we obtain a very different image (images A and B). Because of these two factors, we are
in favor of two parameters like the ones used in image D. Even though there are some
leakages in image D, these can be mitigated using a mask generated by a threshold filter
or a region growing algorithm.

Figure 3.20 shows a mask generated with the help of a region growing algorithm.
The mask is represented with color red. Figure 3.21 shows the situations before and after
applying the mask.

45

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.20: Mask obtained using the neighborhood connected region growing algorithm.

Figure 3.21: Before and after applying the mask.

3.4.3 Vertebral Body

As a first attempt to segment the vertebral, we have used several region growing algo-
rithms. Figure 3.22 shows the results (the red color represents the achieved segmenta-
tion).

46

3. LUMBAR SEGMENTATION 3.4. Segmentation

Considering Figure 3.22, the left image is the resulting segmentation from a simple
connected threshold region growing algorithm. There is a lot of leakages using this method
and that’s the main reason we’ve decided to try the neighbor connected and confidence con-
nected region growing algorithms. The neighbor connected resulting segmentation is dis-
played in the middle image. With this method, we were able to reduce leakage (compared
to previously), but the segmentation still spreads to many unwanted regions. The right
image shows the resulting segmentation with the confidence connected region growing.
Overall, there is no clear improvement relative to the previous method and some of the
areas of interest have shrinked.

Figure 3.22: Three region growing algorithms applied to a RMI dataset of the lumbar
region. From left to right: connected threshold, neighbor connected and confidence con-
nected.

Having observed the results in the left and middle images, we have decided to apply
a region of interest (ROI) mask (that has to be defined by the user). The user only needs to
define the ROI in one of the slices, because the vertebral body stays in the same position
in all slices. It means that the ROI can be propagated through all slices. This works
well in the sagittal and coronal perspectives, but if dealing with the axial perspective, we
would have to take into account the normal curvature of the human vertebral column.
The results obtained using the ROI mask are displayed in Figure 3.23.

Since the structure obtained is not very accurate, we have decided to take a different
approach, using level sets. The initial steps are similar to the ones used at the time of
segmenting the abdominal aorta, described in Section 3.4.2.

Figure 3.24 shows the pipeline used for the segmentation of the vertebral body. Fig-
ure 3.25 shows the intermediate results, after applying some of the filters established in
the pipeline.

The first level of the fast marching method coincides with the area occupied by the
vertebral body. Since the first level is represented by a darker color, we can simply apply
a threshold filter and avoiding to waste computational time applying a shape detection
algorithm. Figure 3.26 shows the results after applying the threshold filter to the fast
marching image.

47

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.23: Results after applying a region of interest mask.

Figure 3.24: Segmentation pipeline used to segment the vertebral body.

We compared the execution time of both methods (shown in Table 3.6), region grow-
ing and level sets. Unfortunately, all the datasets taken from a sagittal perspective had
the same dimension. The smoothing stage was not considered, since both methods use
a smoothing algorithm in the pre-processing stage. As expected, the region growing
method is faster but, as we have seen before, it provides lower quality results. The
parameters’ values used in the fast marching method were initialdistance = 100 and
stoppingvalue = 100.

Region Growing (ms) Fast Marching (ms) Dataset size
1703 5125 512x512x12
1422 5172 512x512x12
1519 5033 512x512x12

Table 3.6: Parameters and values used to generate images in Figures 3.16 and 3.17. Also,
the computation time using the sigmoid and the reciprocal filters for speed images.

48

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.25: Top-left image shows the results after applying the gradient magnitude filter.
The top-right image shows the results after applying the reciprocal filter and the bottom
left image shows the fast marching results.

3.4.4 Back Muscles

Muscles in MRI images can be represented with high intensity or low intensity values. In
the datasets we have used, the muscles are represented with low intensity values.

The first segmentation algorithm we have tested was the region growing. Several pa-
rameters’s values were tested but the obtained results were similar. Even more, in some
cases the segmentation didn’t spread sufficiently so that the whole anatomical structure
could not included in the final result. Figure 3.27 shows some of the resulting images.

49

3. LUMBAR SEGMENTATION 3.4. Segmentation

Figure 3.26: Thresholded fast marching results.

Figure 3.27: Region growing applied to the interior back muscles.

Having achieved poor results with region growing methods, we have decided to try
a level sets method. Unfortunately, the results were not better. Figure 3.28 shows that
there is least a leakage problem (i.e. the segmentation spreads too much).

A similar approach to the one used in Section 3.4.2 – when we were segmenting the
abdominal aorta and a mask generated by threshold or region growing to reduce leak-
age was applied – would not work. This is because the leakages in the region growing
method coincide with the leakages in the level sets method.

Having obtained poor results with the methods above, we have decided to take a
different approach. Since the problem were the leakages, we can define a ROI around the
area that the muscle will appear throughout the dataset. Of course, we have to take into
account that the muscle will be in a different position in a different slice. This is because
we are dealing with the axial perspective of the lumbar region.

Figure 3.29 shows a possible ROI. Having defined the ROI, we have two options:

50

3. LUMBAR SEGMENTATION 3.5. Conclusions

Figure 3.28: Fast marching method applied to the interior back muscles.

Either using the region growing results or the level sets results. If we decide to use the
region growing results, the user may have to define several threshold values for different
slices in the dataset. This is related to the quality of the dataset being used. On the other
hand, a level sets edge based algorithm will not have problems addressing this issue. But
we have decided to test both methods.

Figure 3.30 shows the results after applying the fast marching method masked with a
ROI and Figure 3.31 shows the results after applying a region growing method (with mul-
tiple threshold values) masked with a ROI. A time comparison between region growing
and fast marching was already made in Section 3.4.3.

The region growing algorithms have a tendency to spread all over the image instead
of a "localized" spread. Because of this, the spread created by the fast marching method
is easier to control. Furthermore, the region growing algorithms require the user to input
more data and adequate threshold values may be hard to find. Still, we consider both
approaches as useful segmentation strategies.

3.5 Conclusions

Having tested various algorithms and variants to segment structures of the lumbar re-
gion, we are now in a position to draw some conclusions about segmentation.

First, regarding the pre-processing phase, the median filter is ideal when dealing with
images that have little noise but still need some smoothing. This is because images with

51

3. LUMBAR SEGMENTATION 3.5. Conclusions

Figure 3.29: A possible region of interest to use in the segmentation of interior back mus-
cles.

Figure 3.30: ROI mask applied with the fast marching method.

less noise require less iterations. If the median filter is applied too many times, the bound-
aries in the images start to get damaged, which will harm the segmentation phase. On
the other hand, anisotropic diffusion is ideal when there is too much noise. Otherwise,
the median filter is preferable due to its simplicity.

In Section 3.4.1, neighborhood connected region growing and confidence connected
were presented. Both methods can deliver good results, but the confidence connected
algorithm may be less intuitive to use, which makes it more difficult to find the right
parameters’ values. The radius in both methods can not be too large otherwise it slow
down the process too much. This is particularly relevant when dealing with 3D images.

52

3. LUMBAR SEGMENTATION 3.5. Conclusions

Figure 3.31: ROI mask applied with a region growing algorithm.

Another important aspect is that images should be smoothed before applying the
gradient magnitude filter. If the image is not smoothed, the speed image filter will return
bad quality results, which then harms the segmentation process.

We have used two types of segmentation algorithms: Region growing and level sets 4.
We consider that it is preferable to use region growing (if the results are satisfactory) in-
stead of level sets. Furthermore, level sets require additional intermediate steps to initial-
ize the algorithm, using gradient magnitude filter, sigmoid filter, etc. The two methods
can be combined together in order to obtain better results. It is worth mentioning, that
after the segmentation step, the user can make his own adjustments to further improve
the segmentation results. Chapter 5 address some of these possible adjustments.

Figure 3.32 shows the rendering results of all the structures mentioned in this chapter.
No smoothing algorithm was applied.

4Although ITK also provides segmentation based on watersheds, we have decide not to use it because it
takes too long to show results when applied to 3D datasets.

53

3. LUMBAR SEGMENTATION 3.5. Conclusions

Figure 3.32: Rendering of all the structures mentioned in this chapter.

54

4
Time-Dependent Rendering

One of the objectives we set out in this dissertation was the representation of anaesthesia
movements inside the body. Therefore the datasets have to be time-dependent, that is,
the data under analysis varies will vary in time.

Unfortunately, we were not able to obtain datasets related to anaesthesia movements.
In relation to the datasets used in Chapter 3, it was missing the time dimension. We have
to recognise that it is difficult to establish a case study where patients are exposed to
image scanners for a long period of time. That was precisely what happened when we
asked some professionals in a national hospital to help us with this issue. Not only there
were some medical and ethical concerns to deal with but financial ones as well.

Giving this scenario, we looked at other regions of the human body as the processes
are somehow similar. Hence, we have used a 4D dataset of a human lung, depicting its
functioning in time [ea13]. Notice that anaesthesia movements are essentially influenced
by human organs, which means that representing organ movements is a fairly analogous
process to representing anaesthesia movements.

In this chapter, after setting the proper framework, we present two approaches to
represent time-dependent datasets: With multiple 3D datasets and with one 4D dataset.
The number of 3D datasets used was 10 with the dimensions 50 × 224 × 224 (thus 10 ×
50× 224× 224) and were taken from the sagittal inclination. In the end we compare both
approaches and discuss the results obtained.

4.1 Framework

Regardless of being time-dependent or not, the rendering of data has to go through a pre-
processing step, a segmentation step and a rendering step. The main difference now with

55

4. TIME-DEPENDENT RENDERING 4.2. 4D Dataset

time-dependent data is that we no longer have just one resulting model – the segmented
parts – but multiple models as time evolves. On that basis, for similar quality, we will
need to spend, on average, more time to accomplish all these steps.

In respect to user interactivity, we have two situations: Models are changed by user
or by the application. If it is the user’s responsibility, they may be more focused on
details. On the other hand, if the application is changing the models for the user (movie
or animation analogy), the user may not notice enough model details. Of course, it also
depends on the frame rate achieved or set.

To summarise, we have three main objectives in time-dependent rendering:

• To maintain interactivity to some degree.

• To achieve a reasonable quality in the resulting models.

• To deal with memory usage efficiently.

4.2 4D Dataset

In this approach we start by joining multiple 3D datasets, representing the same organ
but at different times, into one 4D dataset to simplify the programming process.

When joining the 3D datasets, we must make sure they are correctly ordered (relative
to their timeline). After obtaining the 4D dataset, we go through the multiple stages
of segmentation mentioned in Chapter 3. The main problem here is the size of the 4D
dataset. The pre-processing and segmentation stages will take more time to finish.

Knowing that this approach will be slow, and by slow we mean the user has to wait
longer to see any visual representation of results, we may infer that time is not an is-
sue if the user decides to use this method. If that is the case, then slower segmentation
algorithms can be used if needed to obtain good quality rendering.

Figure 4.1 shows the pipeline used in this approach.

The rendering encompass multiple 3D models as we operate segmentation on multi-
ple 3D datasets. In this particular approach we are not able to render the models sepa-
rately. That is, since we have only one data set, MITK will render the whole dataset. Even
though we will not be able to see all the 3D models at the same time, they are stored in
memory. Creating a 3D model using the marching cubes algorithm is very efficient and
so the time spent building the 3D models is negligible when compared to the time spent
on segmentation.

To change between models, we simply have to select a different time slice of the
dataset. If we want to create an animation with various models, there will be some lim-
itations related to the frame rate. As all 3D models are stored in memory, the frame rate
will depend mostly on loading the models from memory and displaying them.

56

4. TIME-DEPENDENT RENDERING 4.3. Multiple 3D Datasets

Figure 4.1: Pipeline for time-dependent rendering using multiple 3D datasets.

4.3 Multiple 3D Datasets

This approach relies on processing each of the 3D Datasets separately.

By doing this, we can process multiple slices independently. Furthermore, there is
the possibility of frame skipping if the user wishes to do so, which means that some time
slices will not be segmented nor renderer at all.

In this context, we have decided to use a similar strategy as the one proposed by S.
Silva et al. [SSM13]. Figure 4.3, shows the pipeline we have set.

We start by defining a Region Of Interest (ROI) around the lung (see Figure 4.2). This
ROI is used to set the boundaries for the region growing algorithm to a certain area. Also,
we provide a seed point for the region growing algorithm.

Given that we are dealing with multiple 3D datasets, the defined ROI and seed point
must be the same in the remaining datasets. Also, when defining the seed point, the user
must take care not to select a seed point too close to the boundaries of the anatomical
structure (in this case the lung) because it might shrink (for example, when exhaling the
lungs shrink).

Regarding the pre-processing stage, and taking into account conclusions drawn in
Chapter 3, we have decided to use the median filter for smoothing as it is faster than
anisotropic diffusion.

Table 4.1 shows the time spent to execute the median filter with 5 iterations, radius of
1 (in all three dimensions, X , Y and Z) and with different number of threads. Unfortu-
nately, the maximum number of threads allowed by ITK equals the number of processor
cores available in our computer.

Since one of the objectives of this approach is allowing offline real-time segmenta-
tion, (even though not needed, since the tool being developed is going to be used as a
learning tool), we have used region growing because it is one of the fastest segmentation
algorithms. Table 4.2 shows the average time spent to execute the algorithm for each 3D

57

4. TIME-DEPENDENT RENDERING 4.3. Multiple 3D Datasets

Figure 4.2: Region of interest around the lungs.

dataset (or time slice).

Threads Time (ms)
1 31107
2 17749
3 12118
4 9687

Table 4.1: Execution time for applying the median filter to a dataset of size 50×224×224,
and variable number of threads.

As mentioned before, the time spent building the 3D models is negligible when com-
pared to the segmentation time. Because of this, we did not include a table with such
data.

This approach also has the advantage of being able to create multiple 3D models one
at a time. It means we can avoid storing all 3D models simultaneously but only the ones
currently used. Moreover, since the marching cubes algorithm is very fast, we can discard
a 3D model after using. If we need a 3D model already discarded, we can simply use the
marching cubes algorithm again without too much delay.

Figure 4.4 shows some of the 3D models obtained.

58

4. TIME-DEPENDENT RENDERING 4.3. Multiple 3D Datasets

Slice number Region growing (ms)
1 812
2 650
3 799
4 927
5 853
6 817
7 822
8 719
9 633

10 895

Table 4.2: Execution time for applying the region growing algorithm to different (time)
slices.

Figure 4.3: Pipeline for time-dependent rendering using 4D dataset.

Figure 4.4: Rendering results for two different time slices.

59

4. TIME-DEPENDENT RENDERING 4.4. Conclusions

4.4 Conclusions

Overall, when comparing both approaches presented above, we prefer the Multiple 3D
Datasets approach, mainly because it gives more processing options.

The tests we made point out that a considerable amount of time is spent during the
pre-processing and segmentation stages. As expected, the amount of time, besides de-
pending on the size of the dataset under consideration, also depends on the number of
threads used (in our case, limited by the computer processor).

Our tests have shown that the pre-processing step takes beyond 3 seconds. However,
it is worth mentioning that the number of iterations used in the median filter depends on
the quality of the dataset being used. Moreover, the execution time heavily depends on
the radius parameter being set.

As a final note in relation to changing between 3D models, one can apply an interpo-
lation technique to provide smoother transitions and to avoid processing of some time
slices.

60

5
Prototype

The research described in the last two chapters relied on the prototype we have imple-
mented. As mentioned at the time, we have used MITK, putting together ITK, VTK and
Qt. Again, these toolkits are widely used in medical visualization applications, have
good documentation and there is a variety of helpful algorithms available.

In this chapter, we start with a general overview of the prototype. Then we discuss
its underlying software architecture and finally we take a close look at its graphical user
interface.

5.1 Overview

Apart from the chosen toolkits mentioned above – mostly open-source and suitable for
medical visualization – the prototype was designed under the following assumptions:

1. To be able to process 3D and 4D datasets, namely DICOM images, as this format is
very common in medical visualization.

2. To provide user navigation in the displayed image along any data axis – axial, sagit-
tal, coronal and time – commonly used in medical visualisation tools.

3. To provide various smoothing and segmentation algorithms, according to the tech-
niques discussed in Chapter 3.

4. To save segmentation results, to which names and colors can be assigned for better
organization.

5. To create a 3D model after segmentation of an anatomical structure.

61

5. PROTOTYPE 5.2. Software Architecture

6. To render segmentations and to update parametrization values of chosen algo-
rithms on-the-fly. Users should grasp immediately the outcome of changes they
have made. They should not proceed to next operations without assurance of pre-
vious results. As an example, they have to figure out if additional image smoothing
is required or not.

7. To allow the creation of annotations in the images. The prototype can be used as a
learning tool so the user must be able to associate annotations with the image and
its anatomical structures. Moreover, if it is a time-dependent dataset, time-framed
annotations should be allowed as well.

8. To change working 3D model from multiple 3D models available.

9. To allow the visualization of animated sequences of 3D models.

5.2 Software Architecture

The prototype’s software architecture is based on the Model-View-Controller (MVC) archi-
tecture. The component Model represents the data, which in our case are MRI images
stored in disk. The View component is associated with the graphical user interface. Fi-
nally, the Controller processes the requested operations. For example, opening a file, ap-
plying a filter over an image, etc.

Figure 5.1 shows the component diagram of the software architecture. The imple-
mentation of these components rely on the toolkits already mentioned, as follows:

• ITK provides the implementation of a wide range of image processing algorithms,
some of which mentioned in Chapter 3.

• VTK is mainly used for the marching cubes algorithms, alongside other 3D op-
erations such as decimation (a technique to reduce the geometric complexity of a
surface).

• MITK is used for loading images from disk. Usually these images are in a differ-
ent format from the one used in ITK. MITK handles conversion between different
formats, as well as it provides graphical widgets for data visualization.

• Qt framework provides the basic elements usually found in graphical user inter-
faces: Windows, buttons, labels, lists etc.

To build this MVC based architecture we have followed the object-oriented program-
ming paradigm. Not only it was suitable for our purposes but we were familiar and
comfortable with. Three main packages were created, with the names Model, View and
Controller. They were structured in the following way:

62

5. PROTOTYPE 5.3. Graphical User Interface

Model
This package contains the classes that represent data. The main types of data we
have are project data, datasets, segmentation data and 3D models.

Controller
This package contains the classes used to apply segmentation, smoothing and ren-
dering algorithms. Also, it includes data loaders.

View
This package contains the graphical user interface classes. These are responsible for
allowing the user to issue commands to the application, as well as the visualization
of results after executing such commands.

Figure 5.2 shows a class diagram with the most important classes.

5.3 Graphical User Interface

Graphical user interface plays an important role in the acceptance of the prototype. We
now introduce the main interface and how it works. It is also an opportunity to see how
segmentation experiments described in Chapter 3 can be worked out by users.

The main window is the root window of the prototype. This window was designed so
that the user easily understands how to start using the prototype. Figure 5.3 shows this
window, with numbers superimposed in the image to identified its major widget areas.

The list below describes each of these widgets, from 1 to 4:

1. In this widget the user can visualize datasets. Each of the square areas in the widget
offers a different viewing perspective: axial, sagittal, coronal and 3D. The user can
interact with each square area to navigate through the dataset or to visualize the 3D
image from a different viewing point.

2. This widget allows the user to navigate through the dataset, in axial, sagittal and
coronal perspective, but in a more precise way. If it is a 4D dataset, then the navi-
gation can be operated through time slices.

3. In this widget the user can select a specific segmentation to interact with. As various
segmentations can be created, the purpose here is to allow the user to modify a
particular one if he wants to achieve some modification.

4. In the top menu the user can access most of the functionalities of the prototype.
For example, opening a project, to run smoothing and segmentation algorithms, to
render a surface, etc.

In order to have a better understanding about how the interface works, we present a
use case.

63

5. PROTOTYPE 5.3. Graphical User Interface

The goal in this use case is to create a 3D model of the spinal canal. First, the user
selects the option File > OpenDataset > LoadDICOM (Figure 5.4). After that, a folder
selection window will pop up and then the folder where the DICOM files are is selected.

The dataset is then displayed in the visualization widget (identified by 1 in Fig-
ure 5.3). Now, the user can open the segmentation window by selecting Segmentation >
RegionGrowing. It will opens the window shown in Figure 5.5. In this new window, the
user can select a smoothing algorithm if he wants to smooth the image. In this particular
case, the Median Filter was selected. Then, the widgets to input the parameters’ values
of the selected algorithm become enabled. To apply the algorithm, the user pushes the
button Run and, by pushing the button Accept, it proceeds to the next step.

Since the user has chosen Region Growing, a window with a panel containing multi-
ple region growing methods is shown (Figure 5.6). The selected option was Neighbour
Connected. Once again, the widgets related to the parameters of the selected algorithm
become enabled. To set the seed points for the region growing the user simply press Shift
key and click in the targeted region for the seed point. To apply the selected region grow-
ing method, the user pushes the button Run and results are sent to to the main window
by pushing the button Accept.

Instead of directly choosing the region growing method, the user can select Segmentation >
Pre − defined > SpinalCanal. This option provides some pre-defined parameters’ val-
ues for this particular segmentation. Hence, the user does not need to care about region
growing.

Another interesting use case is the creation of a 3D model. Considering the example
above, the user can select the segmentation already obtained and then selectRendering >
RenderSurface. Figure 5.7 shows the results.

Once the segmentation is selected, the user is able to modify the obtained results
from the region growing method. The prototype provides some tools to do so. Figure 5.8
shows the results of using the Add Contour tool, accessible via the menu path Edit >

Tools > AddContour. The green line in the image is the contour to be added.
Finally, if there are multiple 3D models of the same anatomical structure, the user can

see an "animated" visualization of the models. This is achieved by selectingRendering >
Play. This option only works with 4D datasets and the 3D models must correspond to
each time slice.

64

5. PROTOTYPE 5.3. Graphical User Interface

Fi
gu

re
5.

1:
C

om
po

ne
nt

di
ag

ra
m

of
th

e
pr

ot
ot

yp
e’

s
so

ft
w

ar
e

ar
ch

it
ec

tu
re

.

65

5. PROTOTYPE 5.3. Graphical User Interface

Figure
5.2:C

lasses
diagram

associated
w

ith
the

im
plem

entation
ofthe

prototype.

66

5. PROTOTYPE 5.3. Graphical User Interface

Figure 5.3: The main window of the prototype.

Figure 5.4: Loading a DICOM dataset.

67

5. PROTOTYPE 5.3. Graphical User Interface

Figure 5.5: Smoothing window.

68

5. PROTOTYPE 5.3. Graphical User Interface

Figure 5.6: Region growing window.

69

5. PROTOTYPE 5.3. Graphical User Interface

Figure 5.7: Rendering a 3D model.

Figure 5.8: Adding contour to the segmentation results.

70

6
Conclusions

In this final Chapter we summarize and discuss the most important research contribu-
tions of our work. We conclude with some suggestions for further work.

6.1 Summary

In this dissertation, a standalone prototype has been developed with the purpose of
allowing users to successfully segment the multiple anatomical structures in the lum-
bosacral region of a human body. Additionally, there was the goal of providing young
medical practitioners a learning tool to analyse and evaluate anesthesia acts performed
in that region.

The focus was just on using MRI imaging techniques. As these techniques provide
lower resolutions when compared to CT imaging, the implemented algorithms have to
cope with problems associated with lack of resolution. Hence, some tests were made to
find suitable methods to remove noise in MRI scans. In that respect, the median filter was
compared to the anisotropic diffusion filter. Both methods were good at removing noise
but each one has shown its own advantages and disadvantages. Two notes are worth
to be singled out: (a) By applying the median filter too many times the boundaries of
the anatomical structures may be damaged; and (b) Anisotropic diffusion filter is much
slower that the median filter.

As far as 3D segmentation of the multiple anatomical structures in the lumbosacral
region is concerned, two methods were used: Region growing and level sets methods.

The level sets method requires initialization so a gradient magnitude filter alongside
a reciprocal/sigmoid filter were used.

Both segmentation algorithms were tested using multiple 3D images. Some of them

71

6. CONCLUSIONS

were taken in the axial position, others in the sagittal position.
Regarding time-dependent rendering, the ability to render an anatomical structure

in real-time highly depends on the pre-processing and segmentation steps. Because of
this, these steps must be executed as fast as possible. Having that situation in mind, we
have to recognise that sometimes it is necessary to use simpler methods for segmentation
and smoothing (e.g. median filter and region growing). Moreover, the algorithm to be
used may also need additional user input to further reduce the time spent during these
steps. As additional input we are particularly referring to user-defined regions of interest.
Somehow we have to consider the all process as a semi-automatic one.

In respect to analysing the anatomical structures, we highlight the fact that the spinal
canal segmentation and the vertebral body segmentation have shown very good results.
The interior back muscles were successfully segmented but if providing a region of in-
terest area and using a level sets method. In the case of the abdominal aorta, there were
some leakages. These leakages were mitigated by applying a mask filter as result of a
region growing method.

6.2 Further Work

Despite some comprehensive study and analysis about segmentation of the anatomical
structures has been done, further work is required to improve the algorithms. In partic-
ular, we draw attention to the following aspects:

• Some of the datasets had an issue with their intensities (the same anatomical struc-
ture would become darker). Therefore the problem of quality of datasets should be
addressed. As it stands now, it poses some problems when region based algorithms
are used.

• New edge enhancement techniques can be very useful. For instance, at the moment
there are some issues when it comes to distinguish the inferior vena cava from the
abdominal aorta.

• Volume interpolation techniques should be incorporated in the prototype. Then
smoother transitions when visualizing multiple models can be obtained.

• Execution time can be an issue under certain circumstances. The more quality of
results we pursue the more time the algorithms take to perform their tasks. So the
use of parallel programming is worth to be considered for that matter. Not only
personal computers have nowadays potentialities to be explored in that area but
also some proprieties of datasets and the algorithms themselves can be adequate
for parallel programming.

72

Bibliography

[AB94] Rolf Adams and Leanne Bischof. Seeded Region Growing. IEEE Transaction
on Pattern analysts an Machine Intelligence, 16(6):641–647, 1994.

[AEC07] K. Gary L. Ibanez D. Gobbi F. Lindseth Z. Yoniv S. Aylward J. Jomier A. En-
quobahrie, P. Cheng and K. Cleary. The Image-Guided Surgery Toolkit
IGSTK: An Open Source C++ Sofware Toolkit. Digital Imaging, 2007.

[Blo] My Gerg Life Blog. Salt-And-Pepper noise. http://www.gergltd.com/.
accessed on December 2013.

[BS09] K J. Batenburg and J. Sijbers. Optimal Threshold Selection for Tomogram
Segmentation by Projection Distance Minimization. IEEE Transactions on
Medical imaging, 28(5):676–686, 2009.

[Can86] J. Canny. A computational approach to edge detection. IEEE transactions on
pattern analysis and machine intelligence, 8(6):679–98, June 1986.

[CL98] Jinhai Cai and Zhi-Qiang Liu. A new thresholding algorithm based on all-
pole model. Pattern Recognition, International Conference, pages 34–36, 1998.

[cp] Information Visualization community platform. Visualization Pipeline.
http://www.infovis-wiki.net/. accessed on December 2013.

[CP80] P. Chen and T. Pavlidis. Image segmentation as an estimation problem. Com-
puter Graphics and Image Processing, 12:153–172, 1980.

[CWQ+06] Ming-yuen Chan, Yingcai Wu, Huamin Qu, Albert C S Chung, and
Wilbur C K Wong. MIP-Guided Vascular Image Visualization with Multi-
Dimensional Transfer Function. pages 372–384, 2006.

[DeV] DeVIDE. The Delft Visualisation and Image processing Development En-
vironment. http://graphics.tudelft.nl/Projects/DeVIDE. ac-
cessed on February 2013.

73

http://www.gergltd.com/
http://www.infovis-wiki.net/
http://graphics.tudelft.nl/Projects/DeVIDE

BIBLIOGRAPHY

[ea13] D. Boye et al. Population based modeling of respiratory lung motion and
prediction from partial information. Proc. SPIE 8669, Medical Imaging 2013:
Image Processing, 8, 2013.

[FLT] FLTK. Fast Light Toolkit. http://www.fltk.org/. accessed on February
2013.

[FMHC07] Zhe Fang, Torsten Möller, Ghassan Hamarneh, and Anna Celler. Visualiza-
tion and exploration of time-varying medical image data sets. Proceedings of
Graphics Interface 2007 on - GI ’07, page 281, 2007.

[HJJtISC13] L. Ibáñez H. J. Johnson, M. McCormick and the Insight Software Consor-
tium. The ITK Software Guide, Fourth Edition, 2013.

[HO00] R. Hietala and J. Oikarinen. A visibility determination algorithm for inter-
active virtual endoscopy. Proceedings of the Conference on Visualization (Vis)
2000, 2000.

[Hos] Lady Willigdon Hospital. CT Scan. http://www.manalihospital.

com/. accessed on December 2013.

[IGS] IGSTK. The Image-Guided Surgery Toolkit. http://www.igstk.org/.
accessed on February 2013.

[IK94] T. Itoh and K. Koyamada. Isosurface generation by using extrema graphs.
Proceedings of the Conference on Visualization, pages 77–84, 1994.

[Ima] ImageVis3D. A volume rendering program developed by the NIH/NIGMS.
http://www.sci.utah.edu/cibc/software/41-imagevis3d.

html. accessed on February 2013.

[ITK] ITK. Insight segmenttion and registration toolkit. http://www.itk.org/.
accessed on February 2013.

[JGK98] A. Kosaka J. Gao and A. Kak. A deformable model for human organ ex-
traction. Proceedings 1998 International Conference on Image Processing. ICIP98
(Cat. No.98CB36269), 3:323–327, 1998.

[KSSe00] Reinhard Klein, Andreas Schilling, and Wolfgang Straß er. Reconstruction
and Simplification of Surfaces from Contours. Graphical Models, 62(6):429–
443, November 2000.

[KWW] KWWidgets. A free, cross-platform and open-license GUI Toolkit. http:

//www.kwwidgets.org/. accessed on February 2013.

[LA98] Jianping Li and Pan Agathoklis. An efficiency enhanced isosurface gener-
ation algorithm for volume visualization. The Visual Computer, 13:391–400,
1998.

74

http://www.fltk.org/
http://www.manalihospital.com/
http://www.manalihospital.com/
http://www.igstk.org/
http://www.sci.utah.edu/cibc/software/41-imagevis3d.html
http://www.sci.utah.edu/cibc/software/41-imagevis3d.html
http://www.itk.org/
http://www.kwwidgets.org/
http://www.kwwidgets.org/

BIBLIOGRAPHY

[LB03] A. Lopes and K. Brodlie. Improving the Robustness and Accuracy of the
Marching Cubes Algorithm for Isosurfacing. IEEE Transactions on visualiza-
tion and computer graphics, 9(1), January-March 2003.

[LC87] William E Lorensen and Harvey E Cline. Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm. 21(4):163–169, 1987.

[LDW08] Jia Liang, Gangyi Ding, and Yuwei Wu. Segmentation of the Left Ventricle
from Cardiac MR Images Based on Radial GVF Snake. 2008 International Con-
ference on BioMedical Engineering and Informatics, pages 238–242, May 2008.

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29–37, May 1988.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. Proceedings of the 21st an-
nual conference on Computer graphics and interactive techniques - SIGGRAPH
’94, pages 451–458, 1994.

[MeV] MeVisLab. Medical Image Processing and Visualization. http://www.

mevislab.de. accessed on February 2013.

[MITa] MIT/CSAIL. MIT Computer science and artificial intelligence laboratory.
http://www.csail.mit.edu/. accessed on December 2013.

[MITb] MITK. The Medical Imaging Interaction Toolkit. http://www.mitk.

org/. accessed on February 2013.

[ML05] Kwan Liu Ma and Eric B. Lum. Techniques for visualizing timevarying vol-
ume data. The Visualization Handbook, pages 511–531, 2005.

[oCSI] Cardiff School of Computer Science and Informatics. Region Grow-
ing. http://www.cs.cf.ac.uk/Dave/Vision_lecture/node35.

html. accessed on December 2013.

[oE] IOWA State University/College of Engineering. Segmentation. http://

www.engineering.iastate.edu/. accessed on December 2013.

[OS83] L. O’Gorman and A. C. Sanderson. The converging squares algorithm: An
efficient multidimensional peak picking method. International Conference on
Acoustics, Speech, and Signal Processing, 8:112–115, May 1983.

[OS88] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations". J. Comput.
Phys., 79:12—-49, 1988.

[Osi] OsiriX. OsiriX Imaging Software. http://www.osirix-viewer.com/.
accessed on December 2013.

75

http://www.mevislab.de
http://www.mevislab.de
http://www.csail.mit.edu/
http://www.mitk.org/
http://www.mitk.org/
http://www.cs.cf.ac.uk/Dave/Vision_lecture/node35.html
http://www.cs.cf.ac.uk/Dave/Vision_lecture/node35.html
http://www.engineering.iastate.edu/
http://www.engineering.iastate.edu/
http://www.osirix-viewer.com/

BIBLIOGRAPHY

[oUDoB] The University of Utah Department of Bioengineering. Region Based Seg-
mentation. http://www.bioen.utah.edu/wiki/index.php?title=
Region-Based_Segmentation. accessed on December 2013.

[oUSoc] The University of Utah School of computing. Image Processing. http:

//www.cs.utah.edu/~croberts/courses/cs7966/project3/. ac-
cessed on December 2013.

[PBM03] Hyunjin Park, Peyton H Bland, and Charles R Meyer. Construction of an ab-
dominal probabilistic atlas and its application in segmentation. IEEE trans-
actions on medical imaging, 22(4):483–92, April 2003.

[PM90] P. Perona and J. Malik. Scale-space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis Machine Intelligence, 12:629–
639, 1990.

[PSY97] Carrye Wilkins Prasanna Sahho and Jerry Yeager. Threshold selection using
renyi’s entropy. Pattern Recognition, 30:71–84, 1997.

[Qt] Qt. A cross-platform application and UI framework. http://qt.digia.
com/. accessed on February 2013.

[RAW94] L. Hong A. Kaufman H. Pfister C. Silva L. Sobierajski R. Avila, T. He and
S. Wang. VolVis: A diversified volume visualization system. Proceedings of
the Conference on Visualization, pages 31–39, 1994.

[Ren] Illustrative Volume Rendering. Point-based surface rendering.
http://bmia.bmt.tue.nl/Research/MVIAV/IVR/ivrsb/index.

php?Page=Stippling. accessed on December 2013.

[RGY98] Ch. Henn R. Grzeszczuk and R. Yagel. Advanced Geometric Techniques for
Ray Casting Volumes. SIGGRAPH 98 course 4, 1998.

[RMV95] J. A. Sethian R. Malladi and B. C. Vermuri. Shape modeling with front prop-
agation: A level set approach. IEEE Trans. on Pattern Analysis andMachine
Intelligence, 17(2):158—-174, 1995.

[SCI] SCIRun. A problem solving environment. http://www.sci.utah.edu/
cibc-software/scirun.html. accessed on February 2013.

[Seg] Seg3D. A free volume segmentation and processing tool. http://www.

sci.utah.edu/cibc-software/seg3d.html. accessed on February
2013.

[SH99a] Philip Sutton and Charles D. Hansen. A fast volume rendering algorithm
for time-varying fields using a time-space partitioning (tsp) tree. IEEE Visu-
alization ’99, pages 371–378, 1999.

76

http://www.bioen.utah.edu/wiki/index.php?title=Region-Based_Segmentation
http://www.bioen.utah.edu/wiki/index.php?title=Region-Based_Segmentation
http://www.cs.utah.edu/~croberts/courses/cs7966/project3/
http://www.cs.utah.edu/~croberts/courses/cs7966/project3/
http://qt.digia.com/
http://qt.digia.com/
http://bmia.bmt.tue.nl/Research/MVIAV/IVR/ivrsb/index.php?Page=Stippling
http://bmia.bmt.tue.nl/Research/MVIAV/IVR/ivrsb/index.php?Page=Stippling
http://www.sci.utah.edu/cibc-software/scirun.html
http://www.sci.utah.edu/cibc-software/scirun.html
http://www.sci.utah.edu/cibc-software/seg3d.html
http://www.sci.utah.edu/cibc-software/seg3d.html

BIBLIOGRAPHY

[SH99b] Philip Sutton and Charles D. Hansen. Isosurface extraction in timevarying
fields using a temporal branch-on-need tree (T-BON). Proceedings of IEEE
Visualization ’99, pages 147–153, 1999.

[SH01] L. G. Shapiro and R. M. Haralick. Computer Vision. 2001.

[SS04] Mehmet Sezgin and Bülent Sankur. Survey over image thresholding tech-
niques and quantitative performance evaluation. Journal of Electronic Imag-
ing, 13(1):220, 2004.

[SSGM02] M. A. Abidi O. Karakashian S. S. Gleason, H. Sari-Sarraf and F. Morandi. A
new deformable model for analysis of X-Ray CT images in preclinical studies
of mice for polycystic kidney disease. IEEE Transactions on Medical Imaging,
21(10):355–366, 2002.

[SSM13] C. Oliveira S. Silva, A. Teixeira and P. Martins. Towards a Systematic and
Quantitative Analysis of Vocal Tract Data. Proc. InterSpeech 2013, pages 1307–
1311, August 2013.

[TFCJ94] C. J. Taylor T. F. Cootes, A. Hill and J.Haslam. The use of active shape mod-
els for locating structures in medical images. Image and Vision computing,
12(6):355–366, 1994.

[Tsi95] J. N. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. IEEE
Transactions on Automatic Control, 40(9):1528–1538, 1995.

[vdB] Walter van den Broek. New Kind of Brain Stimulation for Treatment Re-
sistant Depression. http://www.shockmd.com/. accessed on December
2013.

[vddcAUp] Cat vs. dog drawings categorization. A University project. Canny edge de-
tector. https://jeena.net/catdog. accessed on December 2013.

[VTK] VTK. The Visualization Toolkit. http://www.vtk.org/. accessed on
February 2013.

[Wika] Wikipedia. Marching Cubes. http://en.wikipedia.org/wiki/

Marching_cubes. accessed on December 2013.

[Wikb] Wikipedia. Volume Rendering. http://en.wikipedia.org/wiki/

Volume_rendering. accessed on December 2013.

[WT88] M. Kass. A. Witkin and D. Terzopoulos. Snakes: Active Contour Models.
International Journal of Computer Vision, pages 321–331, 1988.

[WW91] Lee Alan Westover and Lee Alan Westover. SPLATTING : A Parallel ,
Feed-Forward Volume Rendering Algorithm SPLATTING : A Parallel , Feed-
Forward Volume Rendering Algorithm by. 1991.

77

http://www.shockmd.com/
https://jeena.net/catdog
http://www.vtk.org/
http://en.wikipedia.org/wiki/Marching_cubes
http://en.wikipedia.org/wiki/Marching_cubes
http://en.wikipedia.org/wiki/Volume_rendering
http://en.wikipedia.org/wiki/Volume_rendering

BIBLIOGRAPHY

[wxW] wxWidgets. Cross-Platform GUI Library. http://www.wxwidgets.org/.
accessed on February 2013.

78

http://www.wxwidgets.org/

	Introduction
	Visualization Overview
	Problem Description
	Dissertation Organization

	Related Work
	Data Visualization Process
	Data Acquisition
	Computed Tomography
	Magnetic Resonance Imaging
	Positron Emission Tomography
	Discussion

	Image Pre-processing
	Edge Preserving Smoothing
	Median Filter

	Generic Segmentation Algorithms
	Thresholding
	Region-based Segmentation
	Edge-based Segmentation
	Graph-based Segmentation
	Discussion

	Common Segmentation Algorithms for Medical Imaging
	Active Contour Model
	Level set methods
	Active Shape Model
	Atlas-based Segmentation
	Discussion

	Volume Rendering
	Ray Casting
	Shear Warp
	Splatting
	Maximum Intensity Projection

	Surface Rendering
	Iso-surface extraction
	Segmentation Masks

	Time-Varying Visualization
	Development Toolkits for Medical Visualization
	ITK – Insight Segmentation and Registration Toolkit
	MITK – Medical Imaging Interaction Toolkit
	IGSTK – Image-Guided Surgery Toolkit
	User interface Development
	Application Builders
	Discussion

	Lumbar Segmentation
	Segmentation Pipeline
	Image Pre-processing
	Comparison

	Initialization
	Edge Detection Filters
	Speed Image

	Segmentation
	Spinal Canal
	Abdominal Aorta
	Vertebral Body
	Back Muscles

	Conclusions

	Time-Dependent Rendering
	Framework
	4D Dataset
	Multiple 3D Datasets
	Conclusions

	Prototype
	Overview
	Software Architecture
	Graphical User Interface

	Conclusions
	Summary
	Further Work

