360 research outputs found

    A Study of V2V Communication on VANET: Characteristic, Challenges and Research Trends

    Get PDF
    Vehicle to Vehicle (V2V) communication is a specific type of communication on Vehicular Ad Hoc Network (VANET)  that attracts the great interest of researchers, industries, and government attention in due to its essential application to improve safety driving purposes for the next generation of vehicles. Our paper is a systematic study of V2V communication in VANET that cover the particular research issue, and trends from the recent works of literature. We begin the article with a brief V2V communication concept and the V2V application to safety purposes and non-safety purposes; then, we analyze several problems of V2V communication for VANET related to safety issues and non-safety issues. Next, we provide the trends of the V2V communication application for VANET. Finally, provide SWOT analysis as a discussion to identify opportunities and challenges of V2V communication for VANET in the future. The paper does not include a technical explanation. Still, the article describes the general perspective of VANET to the reader, especially for the beginner reader, who intends to learn about the topic

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Clustering and 5G-enabled smart cities: a survey of clustering schemes in VANETs

    Get PDF
    This chapter highlights the importance of Vehicular Ad-hoc Networks (VANETs) in the context of the 5Genabled smarter cities and roads, a topic that attracts significant interest. In order for VANETs and its associated applications to become a reality, a very promising avenue is to bring together multiple wireless technologies in the architectural design. 5G is envisioned to have a heterogeneous network architecture. Clustering is employed in designing optimal VANET architectures that successfully use different technologies, therefore clustering has the potential to play an important role in the 5G-VANET enabled solutions. This chapter presents a survey of clustering approaches in the VANET research area. The survey provides a general classification of the clustering algorithms, presents some of the most advanced and latest algorithms in VANETs, and it is among the fewest works in the literature that reviews the performance assessment of clustering algorithms

    A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH OPTIMIZATION IN URBAN ENVIRONMENTS

    Get PDF
    Road traffic management in metropolitan cities and urban areas, in general, is an important component of Intelligent Transportation Systems (ITS). With the increasing number of world population and vehicles, a dramatic increase in road traffic is expected to put pressure on the transportation infrastructure. Therefore, there is a pressing need to devise new ways to optimize the traffic flow in order to accommodate the growing needs of transportation systems. This work proposes to use an Artificial Intelligent (AI) method based on reinforcement learning techniques for computing near-optimal vehicle itineraries applied to Vehicular Ad-hoc Networks (VANETs). These itineraries are optimized based on the vehicle’s travel distance, travel time, and traffic road congestion. The problem of traffic density is formulated as a Markov Decision Process (MDP). In particular, this work introduces a new reward function that takes into account the traffic congestion when learning about the vehicle’s best action (best turn) to take in different situations. To learn the effect of this approach, the work investigated different learning algorithms such as Q-Learning and SARSA in conjunction with two exploration strategies: (a) e-greedy and (b) Softmax. A comparative performance study of these methods is presented to determine the most effective solution that enables the vehicles to find a fast and reliable path. Simulation experiments illustrate the effectiveness of proposed methods in computing optimal itineraries allowing vehicles to avoid traffic congestion while maintaining reasonable travel times and distances

    ADM : A Density And Priority Levels Aware Protocol For Broadcasting In Vehicular Ad-Hoc Networks

    No full text
    The broadcasting communication mode is widely used in Vehicular Ad~hoc Networks (VANETs). It is used for sending emergency messages, road-traffic information or to help routing protocols to determine routes. This communication mode is known to be hard to achieve efficiently since it depends on the network density. Indeed, broadcasting methods may cause network congestion if they are not well designed. This paper introduces a novel Autonomic Dissemination Method (ADM) which delivers messages in accordance with given message classes and network density levels. The proposed approach is based on two steps: an offline optimization process and an online adaptation to the network characteristics. ADM allows each node to dynamically adapt its broadcasting strategy not only with respect to the network density, but also according to the class of the message to send: emergency (high-priority), road-traffic (medium-priority) or either comfort message (low-priority). The ultimate goal of ADM is to make effective use of radio resources when there are many messages to send simultaneously. This approach increases the efficiency of the broadcast process in terms of message delivery ratio, latency and interferences reduction. The autonomic computing paradigm improves the robustness of protocols

    A Distributed Ledger based infrastructure for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITS) are proposed as an efficient way to improve performances in transportation systems applying information, communication, and sensor technologies to vehicles and transportation infrastructures. The great amount of vehicles produced data, indeed, can potentially lead to a revolution in ITS development, making them more powerful multifunctional systems. To this purpose, the use of Vehicular Ad-hoc Networks (VANETs) can provide comfort and security to drivers through reliable communications. Meanwhile, distributed ledgers have emerged in recent years radically evolving the way that we used to consider finance, trust in communication and even renewing the concept of data sharing and allowing to establish autonomous, secured, trusted and decentralized systems. In this work an ITS infrastructure based on the combination of different emerging Distributed Ledger Technologies (DLTs) and VANETs is proposed, resulting in a transparent, self-managed and self-regulated system, that is not fully managed by a central authority. The intended design is focused on the user ability to use any type of DLT-based application and to transact using Smart Contracts, but also on the access control and verification over user’s vehicle produced data. Users "smart" transactions are achieved thanks to the Ethereum blockchain, widely used for distributed trusted computation, whilst data sharing and data access is possible thanks to the use of IOTA, a DLT fully designed to operate in the Internet of Things landscape, and IPFS, a protocol and a network that allows to work in a distributed file system. The aim of this thesis is to create a ready-to-work infrastructure based on the hypothesis that every user in the ITS must be able to participate. To evaluate the proposal, an infrastructure implementation is used in different real world use cases, common in Smart Cities and related to the ITS, and performance measurements are carried out for DLTs used

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Managing emergency situations in VANET through heterogeneous technologies cooperation

    Get PDF
    Nowadays, the research on vehicular computing enhanced a very huge amount of services and protocols, aimed to vehicles security and comfort. The investigation of the IEEE802.11p, Wireless Access in Vehicular Environments (WAVE) and Dedicated Short Range Communication (DSRC) standards gave to the scientific world the chance to integrate new services, protocols, algorithms and devices inside vehicles. This opportunity attracted the attention of private/public organizations, which spent lot of resources and money to promote vehicular technologies. In this paper, the attention is focused on the design of a new approach for vehicular environments able to gather information during mobile node trips, for advising dangerous or emergency situations by exploiting on-board sensors. It is assumed that each vehicle has an integrated on-board unit composed of several sensors and Global Position System (GPS) device, able to spread alerting messages around the network, regarding warning and dangerous situations/conditions. On-board units, based on the standard communication protocols, share the collected information with the surrounding road-side units, while the sensing platform is able to recognize the environment that vehicles are passing through (obstacles, accidents, emergencies, dangerous situations, etc.). Finally, through the use of the GPS receiver, the exact location of the caught event is determined and spread along the network. In this way, if an accident occurs, the arriving cars will, probably, avoid delay and danger situations
    corecore