
United Arab Emirates University United Arab Emirates University

Scholarworks@UAEU Scholarworks@UAEU

Theses Electronic Theses and Dissertations

6-2021

A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH

OPTIMIZATION IN URBAN ENVIRONMENTS OPTIMIZATION IN URBAN ENVIRONMENTS

Shamsa Abdulla Al Hassani

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Al Hassani, Shamsa Abdulla, "A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH
OPTIMIZATION IN URBAN ENVIRONMENTS" (2021). Theses. 810.
https://scholarworks.uaeu.ac.ae/all_theses/810

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at
Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of
Scholarworks@UAEU. For more information, please contact mariam_aljaberi@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae/
https://scholarworks.uaeu.ac.ae/all_theses
https://scholarworks.uaeu.ac.ae/etds
https://scholarworks.uaeu.ac.ae/all_theses?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/all_theses/810?utm_source=scholarworks.uaeu.ac.ae%2Fall_theses%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mariam_aljaberi@uaeu.ac.ae

ii

Declaration of Original Work

I, Shamsa Abdulla Al Hassani, the undersigned, a graduate student at the United

Arab Emirates University (UAEU), and the author of this thesis entitled “A

Reinforcement Learning Approach to Vehicle Path Optimization in Urban

Environments”, hereby, solemnly declare that this thesis is my own original research

work that has been done and prepared by me under the supervision of Professor

Abderrahmane Lakas, in the College of Information Technology at UAEU. This

work has not previously formed the basis for the award of any academic degree,

diploma or a similar title at this or any other university. Any materials borrowed

from other sources (whether published or unpublished) and relied upon or included

in my thesis have been properly cited and acknowledged in accordance with

appropriate academic conventions. I further declare that there is no potential conflict

of interest with respect to the research, data collection, authorship, presentation

and/or publication of this thesis.

Student’s Signature: Date: ________________ 24-06-2021

iii

Copyright

Copyright © 2021 Shamsa Abdulla Al Hassani

All Rights Reserved

iv

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Prof. Abderrahmane Lakas

Title: Professor

Department of Computer and Network Engineering

College of Information Technology

Signature Date 13/06/2021

2) Member: Dr. Amir Ahmad

Title: Assistant Professor

Department of Information Systems and Security

College of Information Technology

Signature Date 13/06/2021

3) Member: Dr. Adel Khelifi

Title: Associate Professor

Department of Computer Science and Information Technology

Institution: Abu Dhabi University, UAE

Signature Date 13/06/2021

v

This Master Thesis is accepted by:

Dean of the College of Information Technology: Professor Taieb Znati

Signature Date

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature Date

Copy ____ of ____

 30/07/2021

30/07/2021

vi

Abstract

Road traffic management in metropolitan cities and urban areas in general is

an important component of Intelligent Transportation Systems (ITS). With the

increasing number of world population and vehicles, a dramatic increase in the road

traffic is expected putting pressure on the transportation infrastructure. Therefore,

there is a pressing need to devise new ways to optimize the traffic flow in order to

accommodate the growing needs of transportation systems. This work proposes to use

an Artificial Intelligent (AI) method based on reinforcement learning techniques for

computing near-optimal vehicle itineraries applied to Vehicular Ad-hoc Networks

(VANETs). These itineraries are optimized based on the vehicle’s travel distance,

travel time, and traffic road congestion. The problem of traffic density formulated as

a Markov Decision Process (MDP). In particular, this work introduce a new reward

function that takes into account the traffic congestion when learning about the

vehicle’s best action (best turn) to take in different situations. To learn the effect of

this approach, the work investigated different learning algorithms such as Q-Learning

and SARSA in conjunction with two exploration strategies: (a) e-greedy, and (b)

Softmax. A comparative performance study of these methods is presented to determine

the most effective solution that enables the vehicles to find a fast and reliable path.

Simulation experiments illustrate the effectiveness of proposed methods in computing

optimal itineraries allowing vehicles to avoid traffic congestion while maintaining

reasonable travel times and distances.

Keywords: VANET, reinforcement learning, markov decision process, road traffic

congestion.

vii

Title and Abstract (in Arabic)

 نهج التعلم المعزز لإيجاد المسار شبه الأمثل في البيئات الحضرية

 صالملخ

في الوقت الحاضر، تعتبر إدارة حركة المرور أحد أهم جوانب المناطق والمدن الحضرية.

مع التزايد السريع في عدد السكان والمركبات في جميع أنحاء العالم، من المتوقع أن يزداد الحمل

 المروري على البنية التحتية للنقل بشكل كبير. وبالتالي، هناك حاجة لتحسين تدفق حركة المرور

من أجل تلبية الاحتياجات المتزايدة لأنظمة النقل. في هذا العمل، اقترحنا استخدام تقنية التعلم

لتحديد المسار شبه الأمثل في شبكة النقل من حيث أقل مسافة، أقل وقت VANETالمعزز مع

سفر وازدحام على الطريق. على وجه الخصوص، نقدم وظيفة مكافأة جديدة تأخذ الازدحام

ري في عين الاعتبار لتعليم السيارة أفضل إجراء يمكن اتخاذه في المواقف المختلفة. تم المرو

جنباً إلى SARSAو Q-Learningتطبيق هذا الحل باستخدام خوارزميات تعليمية مختلفة،

𝜖 :جنب مع استراتيجيتين للاستكشاف − 𝑔𝑟𝑒𝑒𝑑𝑦 و𝑠𝑜𝑓𝑡𝑚𝑎𝑥 تم مقارنة أداء هذه الطرق .

الحل الأكثر فعالية الذي يمكّن السيارة من العثور على مسار سريع وموثوق. أظهرت لتحديد

التجارب التي تم إجراؤها أن السيارة تختار مسار الرحلة شبه الأمثل مع ازدحام مروري طفيف

 ووقت سفر أقل مقارنة بالمسارات الأخرى.

لمعزز، عملية اتخاذ القرار شبكة المركبات المخصصة، التعلم ا: مفاهيم البحث الرئيسية

 .ماركوف، الازدحام المروري على الطرق

viii

Acknowledgements

Throughout the writing of this thesis, I have received a great deal of support

and assistance.

I would like to thank my supervisor, Professor Abderrahmane Lakas, for

providing invaluable guidance throughout this research. His constructive feedback

pushed me to sharpen my thinking and brought my work to a higher level. It was a

great privilege and honor to work and study under his guidance.

My thanks go to the examining committee members Dr. Adel Khelifi and Dr.

Amir Ahmad for their valuable comments that developed this thesis.

I would like to acknowledge all College of Information Technology members

at the United Arab Emirates University for the invaluable assistance during my study,

especially Dr. Salah Bouktif.

Nobody has been more important to me in the pursuit of this research than my

family members. I would like to thank my parents for their wise counsel and

sympathetic ear. A special thanks to my sister Amal and brother Khaled for the

persistent help all the time. They are always there for me. Finally, I would like to thank

my friends, Meera and Nouf, who provided stimulating discussions and happy

distractions to rest my mind outside of my research.

ix

Dedication

To my beloved parents and family

x

Table of Contents

Title ... i

Declaration of Original Work .. ii

Copyright .. iii

Approval of the Master Thesis .. iv

Abstract ... vi

Title and Abstract (in Arabic) .. vii

Acknowledgements ... viii

Dedication ... ix

Table of Contents ... x

List of Tables ... xii

List of Figures ... xiii

List of Abbreviations .. xiv

Chapter 1: Introduction .. 1

1.1 Statement of the Problem ... 3

1.2 Research Questions .. 4

1.3 Methodology .. 4

1.4 Structure of the Thesis ... 5

Chapter 2: Literature Review ... 6

2.1 Reinforcement Learning .. 6

2.2 Road Traffic Congestion Systems .. 7

2.3 Route Planning Algorithms .. 10

Chapter 3: Reinforcement Learning ... 14

3.1 Machine Learning .. 14

3.2 Markov Decision Process ... 16

3.3 Policies and Value Functions ... 17

3.4 Optimal Policy ... 18

3.5 Q-learning and Sarsa Algorithms ... 19

3.6 Exploration-Exploitation Trade-off ... 21

Chapter 4: System Design .. 24

4.1 Road Traffic Model .. 24

4.2 Reinforcement Learning .. 26

4.2.1 State Space... 27

4.2.2 Action Space .. 28

4.2.3 Reward Function ... 29

4.2.4 RL Algorithms ... 31

xi

Chapter 5: Evaluation and Performance Analysis ... 34

5.1 Experimental Environment .. 34

5.2 Tuning Learning Parameters .. 38

5.3 Comparisons ... 43

5.3.1 Comparing the Length of the Path and Traffic Load 43

5.3.2 Comparing the Average Cumulative Rewards 45

5.3.3 Comparing the Average Training Times ... 48

5.3.4 Comparing the Average Visited State ... 49

5.4 Discussion .. 50

Chapter 6: Conclusion .. 52

References .. 53

xii

List of Tables

Table 1: Example of Q-Table ... 20

Table 2: Simulation and learning parameters... 33

Table 3: Simulation parameters of 6×6, 10×10, and 20×20,

respectively .. 34

Table 4: Optimal parameters for each type of experiment ... 43

Table 5: Comparison of the path length and load on three

different experimental setups ... 44

Table 6: Different performances obtains from different

weight factors in 20×20 map ... 45

Table 7: Comparison of average cumulative rewards .. 47

Table 8: Comparison of average training times ... 48

Table 9: Comparison of average visited states ... 50

xiii

List of Figures

Figure 1: Machine Learning Types .. 14

Figure 2: Reinforcement learning schema ... 15

Figure 3: Example of road network environment .. 24

Figure 4: A virtual environment divided into cells .. 27

Figure 5: Four possible actions .. 28

Figure 6: 6×6 map ... 35

Figure 7: 10×10 map ... 36

Figure 8: 20×20 map ... 37

Figure 9: Comparison of parameters for Q-learning- e-greedy in term of

cumulative reward with the three different experimental setups 39

Figure 10: Comparison of parameters for Sarsa- e-greedy in term of

cumulative reward with the three different experimental setups 40

Figure 11: Comparison of parameters for Q-learning-softmax in term of

cumulative reward with the three different experimental setups 41

Figure 12: Comparison of parameters for Sarsa- softmax in term of

cumulative reward with the three different experimental setups 42

Figure 13: Learning curve of the proposed algorithms tested in 6×6 map 46

Figure 14: Learning curve of the proposed algorithms tested in 10×10 map 46

Figure 15: Learning curve of the proposed algorithms tested in 20×20 map 47

Figure 16: Average training time of the proposed algorithms tested in 6×6,

10×10 and 20×20 map .. 49

xiv

List of Abbreviations

AI Artificial Intelligence

ML Machine Learning

MDP Markov Decision Process

RL Reinforcement Learning

SARSA State–Action–Reward–State–Action

VANET Vehicular Ad Hoc Network

1

Chapter 1: Introduction

In recent decades, the majority of the world's population has been heading to

the urban environment, which has directly impacted every aspect of life. The rate of

automobile growth is outpacing the expansion of the road network infrastructure in

urban areas due to space and budget limitations. This situation causes severe traffic

congestion on the road and increases the vehicle's travel time. As a result, excessive

carbon emissions pollute cities and degrade the quality of human life. Intelligent

Transportation Systems (ITS) have emerged as a potential solution to improve

highway efficiency. It uses several communication channels and networks, such as

Vehicular Ad-hoc Network (VANET), to monitor and regulate vehicular traffic in an

intelligent manner. VANET is a special class of Mobile ad-hoc Networks (MANET)

in which moving vehicles act as either a node or a router to exchange data between

them to create an extremely large scale mobile network. It is aimed to support both

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications (Sheikh

& Liang, 2019).

Another technique that used recently to optimize the traffic management is

Reinforcement learning. RL is a subfield of machine learning in which an agent

(decision maker) learns to make sequential decisions by interacting with an

environment (Gottesman et al., 2018). The learning strategy of RL follows the method

of “trial and error” to learn an optimal policy by perceiving states from the

environment, taking an action based on the current states, and receiving penalty or

rewards from the environment. The policy that selects the best action at each state to

maximize the expected long-term cumulative reward is considered as the optimal one.

RL algorithms can be found implemented in robot control (Kober et al., 2013) and

2

board games like Tic-tac-toe, and chess. In these kinds of problems, agent is modeled

to learn through frequent interactions with their environment and the returns signal of

these interactions; it learns from past experience. These tasks deal with one learning

agent only (single-agent). However, various real- world decision problems such as

swarm robot and traffic are inherently composed of several tasks which demand

models with multiple agents. Multi-agent models can simplify the complex problem

by dividing knowledge among the agents.

The family of RL has different algorithms such as Q-Learning (Ho et al., 2006),

State Action Reward State Action (SARSA) (Chen & Wei, 2008). The most important

feature of these algorithms is that they do not require knowledge of the environment

with which they interact. In 2013, Google Deepmind team have proposed the first

successful Deep Q-network (DQN) framework that combines deep learning with

reinforcement learning. The authors used a Deep Q-network (DQN) to estimate the Q-

function for Q-learning. The combination of neural networks and reinforcement

learning is capable of solving more complex tasks as all have been witnessed in many

applications ranging from Google1, Uber2, and Tesla3 autonomous car to Google's

DeepMind AlphaGo4 algorithm that defeated the World Champion in the game of Go.

1 https://www.google.com/selfdrivingcar/

2 https://www.uber.com/en-BE/

3 https://www.tesla.com/autopilot

4 https://deepmind.com/research/case-studies/alphago-the-story-so-far

https://www.google.com/selfdrivingcar/
https://www.uber.com/en-BE/
https://www.tesla.com/autopilot
https://deepmind.com/research/case-studies/alphago-the-story-so-far

3

1.1 Statement of the Problem

Transportation and traffic systems are the backbones of any city. It is regarded

as an essential component of the town's growth, development and fulfills users

presumed social and economic needs. However, as the population and automobiles

grow, the traffic demand on transportation infrastructure grows, making it difficult for

the transportation system to serve the public interest. Traffic congestion is the term for

this problem, and it consists of incremental delay in travel time, vehicle operating costs

such as fuel consumption, pollution emissions due to CO2 emissions (Peters et al.,

2004). Furthermore, it causes more stress and inconvenience to drivers for additional

time spent and delaying their work and interests. In this circumstance, traffic

congestion becomes an ever-increasing problem in urban development.

According to the Ohio Department of Transportation (Azimian, 2011), traffic

congestion stops Honda's employees from arriving on schedule, threatening Honda's

low-inventory strategy in Ohio. There are always concerns that traffic load could cause

emergency services to be delayed at crucial times when they need to arrive as soon as

possible. In 2018, recent research stated that the drivers spent an average of 50 during

peak traffic in Abu Dhabi. Simultaneously, the congestion increased in Dubai as the

time spent reached an average of 80 hours stuck in traffic jams (Cleofe, 2019) .

Designing efficient real-time path planning can efficiently relieve traffic

congestion in urban scenarios. Thus, this thesis aims to investigate the use of

Reinforcement Learning techniques in the computation of the best vehicle trajectories

in Vehicular Ad hoc Networks (VANET) for the purpose of avoiding and dissipating

road traffic congestion. Since the reinforcement learning not always provide the

optimal paths in the network, this work focuses on computing the near-optimal

4

trajectories which are close to the optimum solution. These itineraries are optimized

based on the vehicle’s travel distance, travel time, and traffic road congestion. The

congestion state on the road is assumed to be collected and exchanged using VANET.

This information will then be used by reinforcement learning for path planning based

on the road traffic congestion. Based on that, the vehicles will be distributed

proportionally to the road’s capacity in the network environment. Therefore, the driver

will achieve reasonable travel times from his current location to his destination.

1.2 Research Questions

The research questions that will guide this thesis are as follows:

1. How to model a road environment, road traffic and determine the state and action

space that characterize the environment?

2. What are the optimal learning parameters that compute efficient vehicle

trajectories?

3. How to design an efficient reward function that encompasses different road and

congestion metrics in calculating the near-optimal paths?

4. How does the type of learning algorithms and exploration strategies affect

learning performance?

1.3 Methodology

1. Build an efficient reward function which captures the driving environment and

accelerates the learning speed.

2. Evaluate and compare the performance of Q-learning and Sarsa in conjunction

with two exploration strategies: (a) e-greedy, and (b) Softmax.

5

3. Study the impact of the learning rate and the discount factor on the quality of

the computed solutions.

1.4 Structure of the Thesis

Following this introductory chapter, this thesis is structured in 6 main chapters

that briefly describe now:

• Chapter 2 provides a systematic review of the previous research on which the work

is based.

• Chapter 3 introduces background on basic mathematical formalism for

Reinforcement Learning, which is the Markov Decision Processes. The chapter

also discusses RL methods and exploration strategies.

• Chapter 4, the system design and methods used during the testing, is presented in

this chapter.

• Chapter 5 discusses the results obtained from the experiments as well as the

comparative evaluation of proposed methods.

• Chapter 6 summarize the conclusions and present ideas for future work.

6

Chapter 2: Literature Review

2.1 Reinforcement Learning

Reinforcement learning is a general-purpose learning framework that can

address many important aspects of Artificial Intelligence (AI). The Tamilselvi et al.

(2011) work has implemented Reinforcement learning, Q-Learning algorithm for

mobile robot navigation in an indoor environment. The robot was operated in grid

(10×10) environment with different positions in the environment to find the optimum

path between source and destination.

Sichkar (2019) deployed and evaluated the performance of Q-learning and

SARSA algorithms for guiding the mobile robot to the desired goal while avoiding

obstacles. Experiments were performed in the 2-dimensional virtual environment. The

obtained results showed differences between the two Reinforcement Learning

algorithms in learning time and the methods of building a path to avoid obstacles until

reach a destination point.

Path and motion planning for a robot in the real world was presented in Babu

et al. (2016). The main objective of this work is to develop an autonomous robot that

uses Q-learning for navigation in an unknown environment. These were achieved by

calculating the shortest path from the current state to the goal state through analyzing

the captured images of the environment.

The work in Gao et al. (2019) utilized a new global planning algorithm

combined with Q-Learning to find the global path for robots. The experiments were

conducted in both physical and simulation environments with various scenarios. To

evaluate the effectiveness of the proposed algorithm, authors compared their algorithm

with the Best First Search (BFS) and Rapidly-exploring Random Trees (RRT)

7

algorithm. The analyzed results show the shorter and smoother paths obtained by the

proposed algorithm compared to the BFS algorithm and RRT algorithm.

A novel end-to-end mobile robot path planning using deep reinforcement

learning is proposed in Xin et al. (2017). Using the original visual perception without

any hand-crafted features and feature matching, the suggested planning approach can

decide the optimal action to make the mobile robot reach the target point while

avoiding obstacles.

The work presented in Luo et al. (2018) proposed the Deep-Sarsa approach for

autonomous path planning as well as avoiding obstacles for Unmanned Aerial

Vehicles (UAVs). The model is trained in a grid environment before being deployed

in an environment in ROS-Gazebo for UAVs. Results of the experiments show the

success of the trained Deep-Sarsa model in guiding the UAVs to the target without any

collisions.

2.2 Road Traffic Congestion Systems

Researchers have paid considerable attention to the issue of traffic congestion

in recent years. Many road traffic congestion systems have been introduced using

different techniques to manage the traffic challenge in cities and overcome the

limitation of the traditional systems. Cooperative Intelligent Transport Systems or C-

ITS (Festag, 2014; Sjoberg et al., 2017) is a new transportation system that allows

vehicles to communicate with other vehicles (V2V) and infrastructure (V2X) such as

traffic signals and roadside, that are fitted with the same system at a carrier frequency

of 5.9 GHz. It provides intelligent solutions for a variety of road traffic problems by

applying advanced technologies and service levels via transmit real-time traffic

information using wireless technology. Drivers then receive alerts about upcoming

8

hazards and act accordingly in order to increase traffic safety and efficiency in road

transport.

The work in Rahman et al. (2014) presented a traffic management system based

on Wireless Sensor Networks (WSN) with a dynamic mathematical model for the

management of road traffic at important city intersections. This system detects the road

congestion and broadcasts the information to drivers so that they can take a detour to

avoid the traffic.

In Jayapal and Roy (2016) authors proposed a mobile-enabled VANET

technology to reduce traffic congestion and divert vehicles. The system is a distributed,

collaborative traffic congestion detection and dissemination system. It uses smart

phones of drivers that equipped with a Traffic App to detect location through

Geographic Position based System (GPS) to be sent to a remote server that predicts

traffic congestion. Once congestion is confirmed, it is passed on to the end user's phone

through RSUs.

In Akhtar et al. (2020), the authors proposed a congestion level-based dynamic

traffic management system using IoT. The system regulates the duration of traffic

lights according to the real-time congestion level measured at the road crossings by

using ultrasonic sensors. Similarly, Javaid et al. (2018) has provided a solution to

optimize traffic flow on roads by exploiting the concepts of IoT and Artificial

Intelligence together.

The work in Walraven et al. (2016), proposed a new method to address the

issue of traffic congestion by using reinforcement learning. It formulates the traffic

flow optimization problem as a Markov Decision Process and uses Q-learning to find

policies to assign speed limits of the vehicles that are allowed on a highway, such that

traffic congestion is reduced. This can be estimated according to the attributes of the

9

highway as well as demand volumes filling the highway and predictions regarding

future traffic conditions.

Deep Reinforcement Learning has been also studied to address one of the most

pressing problems in road traffic management, namely that of Traffic Light

Optimization (TLO). The TLO problem aims to improve traffic light timings in order

to optimize the overall travel time of the vehicles that traverse the road network and

reduce fuel consumption. In Coskun et al. (2018) authors introduce a new reward

function that takes the traffic flow and traffic delay into account to provide a solution

to traffic light optimization which in turn decreases travel time. They use both Deep

Q-Learning and Policy Gradient approaches to solve the resulting reinforcement

learning problem.

In Liang et al. (2019), a deep reinforcement learning, in particular, Double

Dueling Deep Q Network (3DQN) was proposed to decide the duration of the traffic

signals based on the collected data from different sensors and vehicular networks. In

the model, the states are two-dimension values with the position of vehicles and speed

information. The actions are modeled as a Markov decision process and the rewards

are the cumulative waiting time difference between two cycles.

Van der Pol and Oliehoek (2016) presented the learning control policies for

traffic lights by the use of the DQN algorithm with transfer planning as a promising

and scalable multi-agent approach to deep reinforcement learning. The combination

between DQN and the transfer planning approach allows for faster and more scalable

learning. The obtained results show how the proposed approach reduces the travel

times of vehicles compared to earlier work on reinforcement learning methods for

traffic light control.

10

2.3 Route Planning Algorithms

 Dijkstra (1959), proposed a static algorithm to find the path with the lowest

cost (i.e., usually refers to the shortest path) from the source node to all other nodes

without considering external parameters such as congestion, vehicle amount, etc. In

Zhan and Noon (1998), authors state that it is worthwhile to consider the Dijkstra

algorithm to find the shortest path from the one-to-one shortest path problem since this

algorithm is terminated as soon as the destination node is permanently labeled which

implies that the shortest path is found. However, the optimal route is not always the

shortest path between two nodes due to the continuous changes in the road traffic

network. Thus, vehicle routing optimization should take into account the latest state

of the transportation network and make real-time adjustments in order to arrive at their

destination in the shortest time possible.

The A* route planning algorithm employs a heuristic function instead of the

optimized search mechanism used by the Dijkstra algorithm. Dere amd Durdu (2018)

proposed the use of the A-Star algorithm for finding the shortest path between a

starting-point and ending-point on the Google Map that segmented as grid-cells. In

addition, the traffic intensity of various roads was constructed on the map so that the

algorithm takes the traffic density into consideration when it finds the shortest route.

A Vehicular Ad-hoc Network (VANET) based A∗ (VBA∗) for enhanced route

planning is designed in Chang et al. (2013). The proposed solution aims to dynamically

calculate the optimum route that meets the shortest travel time or the least fuel

consumption using information from Google Map.

Nafi et al. (2014) proposed a predictive road traffic management system named

PRTMS based on the Vehicular Ad-hoc Network (VANET) architecture. The PRTMS

11

uses a modified linear prediction algorithm to estimate the future traffic intensities at

intersections point on road. The vehicles are re-routing based on this prediction to

reduce the congestion level and minimize the traveling time of the individual.

In Toulni et al. (2014), a new approach based on VANETs has been proposed

to addresses the problem of the optimal path in road networks in order to reduce travel

time and fuel consumption. More specifically, the authors applied Dijkstra’s algorithm

to determine the optimal route from the current vehicle position to the destination point

based on the analyzed collected traffic data in real-time. Having this data will not only

reduce the travel time but also avoid congestion queues in more efficient and optimal

use of existing road infrastructure. The experiment has been conducted by using

SUMO as a platform to provide dynamic simulation Traffic Control Interface (TraCI)

to allows the change of scenario when running.

Machine learning techniques are used in Chhatpar et al. (2018) to predicts the

traffic densities in a given area. In particular, the authors used Supervised Learning

techniques such as Back Propagation Neural Network (BPN) via an android

application which makes use of real-time traffic data and provides a predictive analysis

of traffic in an offline mode. Based on this information, the best route from source to

destination is provided in order to reduce the congestion on roads.

A group routing suggestion algorithm is proposed in Sang et al. (2017) based

on Markov Decision Process (MDP) (Smelser & Baltes, 2001). Instead of optimizing

the routing path for individual vehicles, a routing group of vehicles will be suggested

based on vehicles' or drivers' similarities in a specific urban’s transportation

environment. The authors discussed the design of the general flow of group routing

method and studied how it is going to work with their proposed prototype.

12

The authors in Mejdoubi et al. (2020), applied a reinforcement learning

approach based on VANET to enable efficient flow management by providing optimal

paths suggestion and minimizing the total traveling time for drivers. In particular, they

employed Q-learning to learn the best action to take in various traffic situations. They

also highlight vehicle-to-vehicle and vehicle-to-roadside unit communications in order

to collect and exchange the real-time traffic status.

Koh et al. (2018) conducted an experience to perform a reinforcement learning

approach to optimize the route of a single vehicle in a network. The proposed

experience uses an open-source simulator called Simulation of Urban Mobility (or

SUMO for short). It offers promising results in finding the optimal route to reach the

destination and avoiding the congestion path.

In Koh et al. (2020), a novel Deep Reinforcement Learning (DRL) based

vehicle routing optimization method was proposed to re-route vehicles to their goals

in complex urban transportation networks. A nine realistic traffic scenarios are

simulated using the SUMO simulator to test the proposed navigation method.

The work of Lee et al. (2020), proposed a framework for an Electric Vehicle

Charging Navigation System (EVCNS) based on model-free Deep Reinforcement

Learning (DRL). This framework aims to reduce the total travel time of Electric

Vehicles (EV) charging requests from a start point to the end point by selecting the

optimal route and charging station taking into account the continuous changing of

traffic conditions and unknown future requests.

Authors in Geng et al. (2020) applied a route planning algorithm based on Deep

Reinforcement Learning (DRL) for pedestrians. They plan the route by predicting

pedestrian flow in the road network and the travel time consumption was used as the

metric. This experiment was conducted using an intelligent robot on a virtual map

13

where the robot acts as a pedestrian and assuming that it does not require any prior

knowledge of road networks.

14

Chapter 3: Reinforcement Learning

3.1 Machine Learning

Machine learning is a branch of Artificial Intelligence (AI) focused on

developing applications with the ability to learn from data and improve automatically

through the experience without being explicitly programmed (Ayodele, 2010). The

learning algorithms of ML are organized into a taxonomy based on the amount and

type of supervision they get during training. Figure 1 shows common algorithms types.

Figure 1: Machine Learning Types

Supervised Learning: is the task of feeding the algorithm with the training data

that includes the desired solutions, called labels. Typical supervised learning tasks

could be a classification if the output is a class or category of the data such as email

spam classification. Another typical task is regression, where the expected result from

the model is a numerical value, such as the price of a car.

15

Unsupervised Learning: is based on the absence of any supervisor or training

data. In other words, the training data is unlabeled which means that the system must

learn while not receiving any feedback. In this case, an unsupervised learning

technique is useful when it's necessary to learn how a set of elements can be grouped

based on their similarity (i.e. clustering).

Reinforcement learning: is a learning system, called an agent in this context,

evaluates its performance according to the feedback responses and reacts accordingly.

More precisely, the agent observes the environment, selects and performs actions, then

gets feedback called reward which can be either positive or negative. This learning

strategy follows the method of “trial and error” as the agent is not explicitly told which

action to take to receive positive rewards. It must then continually interact with the

environment and learn by itself the best strategy, called a policy, with regard to the

rewards it gets. This is summarized by Figure 2.

Figure 2: Reinforcement learning schema

16

3.2 Markov Decision Process

Markov Decision Processe (Puterman, 1990), referred to as MDP, offers a

standard formalism for describing sequential decision making.

Definition 3.2.1: A Markov decision process is a tuple ⟨S, A, T, R⟩ (Van Otterlo &

Wiering, 2012) in which:

- S is a finite set of states,

- A is a finite set of actions,

- T is a transition function defined as T: S×A×S → [0,1],

- R is a reward function defined as R: S×A×S → ℝ

At each time step 𝑡 = 0, 1, 2, .. the decision-maker, called an agent receives

some representation of the environment’s state 𝑠𝑡 ∈ 𝑆. Based on this state, the agent

performs an action 𝑎𝑡 ∈ 𝐴 which gives the pair of state-action (𝑆𝑡, 𝐴𝑡). The time is

then incremented to the next time step t+1and the environment changes such that it is

in a next state 𝑠𝑡 + 1 ∈ 𝑆. At this time, the agent gets an immediate numerical reward

denoted by 𝑟𝑡 + 1 for the action At taken from state St.

The probability to end up in 𝑠𝑡 + 1 is influenced by the chosen action. In math,

it is given by the state transition function. Precisely, the state transitions of a Markov

decision process satisfy the Markov property: the next state 𝑠𝑡 + 1 is dependent only

on the current state s and the performed action a. Accordingly, the reward function 𝑅

can be defined as 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ (Van Otterlo & Wiering, 2012).

17

The goal of an agent in an MDP is to maximize its cumulative rewards. Indeed,

there is a way to aggregate and formalize these cumulative rewards, a concept of

expected return is introduced to sum all rewards obtained by the agent at a given time

step. Mathematically, the return 𝐺 at time t can be define as (Fragkiadaki, 2018):

 𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑇 (3.1)

However, in some type of task (i.e. continuing tasks) the agent continues to

interact in the environment without limit which makes the final time step 𝑇 = ∞ in

Equation 3.1, and therefore the return itself could be infinite. To avoid infinite returns

in continuing tasks, the discount factor 0 ≤ 𝛾 < 1 is used to influence the future

rewards, in which the rewards obtained later are discounted more than rewards

obtained earlier. This function can be defined as (Fragkiadaki, 2018):

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+2 + ⋯ = ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘 (3.2)

Where 𝑡 and 𝛾 represent the time step and discount factor, respectively.

3.3 Policies and Value Functions

The selection of actions is modeled as a map called strategy or policy. A policy

is an agent’s behavior function 𝜋: 𝑆 → 𝐴, where it specifies the action that the agent

should take based on the current state. In order to determine this action, the agent needs

to estimate how good it is for an agent to be in a certain state, or how good it is for the

agent to perform a given action in a particular state. The notion of "how good" a state

is the value function. The value of a state 𝑠 under policy 𝜋, denoted 𝑉𝜋 (𝑠) is the

expected sum of rewards that the agent will receive at any given state s while following

a policy 𝜋. The value function, 𝑉𝜋(𝑠) for policy 𝜋 is given by (Rastogi, 2017):

18

𝑉𝜋(𝑠) = 𝐸𝜋 {∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠} (3.3)

Where E is the expectation, γ is the discounting factor, Rt is the reward at time

𝑡 and 𝑆𝑡 is the state at time 𝑡. It can define, in a similar way, the action-value function,

also known as the Q-function, as the expected sum of rewards while taking an action

𝑎 in state 𝑠 and, thereafter, following policy 𝜋. Mathematically, it define 𝑄𝜋(𝑠, 𝑎) as

(Rastogi, 2017):

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋 {∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} (3.4)

3.4 Optimal Policy

The goal for any given MDP is to find the optimal policy that maximizes the

cumulative rewards. Concerning return, a policy 𝜋 is considered to be better than

another policy 𝜋′ if the expected return of that policy is greater than the expected return

of for all states, which implies, 𝑉 𝜋(𝑠) ≥ 𝑉 𝜋′ (𝑠) for all 𝑠 ∈ 𝑆. Thus, the optimal

policy 𝜋 ∗ can be computing by defined the optimal value function 𝑉 ∗ (𝑠) (Rastogi,

2017):

𝑉∗(𝑠) = max
𝜋

𝑉𝜋(𝑠), ∀ 𝑠 ∈ 𝑆. (3.5)

Similarly, the optimal action value function, Q∗(s,a) can be defined as (Rastogi, 2017):

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋(𝑠, 𝑎), ∀ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴. (3.6)

19

One fundamental property of both 𝑉 ∗ and 𝑄 ∗ is that they satisfy certain

recursive properties. Hence, the expression in Equations 3.7 and 3.8 can recursively

defined in a special form called Bellman Equation (Rastogi, 2017):

𝑉∗(𝑠) = max
𝑎

∑ 𝑝(𝑠′| 𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)]

𝑠′

 (3.7)

𝑄∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)]

𝑠′

 (3.8)

3.5 Q-learning and Sarsa Algorithms

After illustrating the key concepts and ideas behind Markov Decision

Processes, the term of Reinforcement Learning (Sutton & Barto, 1998) can be

introduce to solve the MDPs.

RL algorithms can be found implemented in robot control and board games

like Tic-tac-toe, and chess. In these kinds of problems, the agent is modeled to learn

through frequent interactions with their environment and the returns signal of these

interactions; it learns from experience. These tasks deal with one learning agent only

(single-agent). However, various real-world decision problems such as swarm robots

and traffic are inherently composed of several tasks which demand models with

multiple agents. Multi-agent models can simplify the complex problem by dividing

knowledge among the agents.

Popular methods in RL are Q-Learning (Ho et al., 2006), and State Action

Reward State Action (SARSA) (Chen & Wei, 2008). Q-learning is a model-free

reinforcement learning method used for learning the optimal policy to select the best

action in a Markov Decision Process.

20

More specific, Q-Learning estimate Q-Values for each state-action

combination under policy π and update them frequently during the training process

based on the Formula 3.9. Hence, these values describe the quality of an action taken

from that state.

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + ∝ [𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (3.9)

In Q-Learning, a Q-Table is built to store Q-Values for all possible

combinations of state and action pairs, which is a matrix with the vertical axis

represents the states and the horizontal axis represents the actions. Table 1 shows an

example of Q-table.

Table 1: Example of Q-Table

Q-Learning can be broken down into steps that make things much clearer. This

is what it will seem to be:

1. Initialize all Q-values in the Q-table to 0.

2. For each time-step in each episode:

2.1 Pick an action a, from the set of actions defined for that state (considering

the exploration-exploitation trade-off)

2.2 Perform action a

2.3 Observe reward R and the next state 𝑠’

2.4 Update the Q-value function using the Formula 3.9.

21

Similar to Q-learning, SARSA is a model-free RL technique that does not learn

the policy function of the agent explicitly. The main difference between SARSA and

Q-learning is that Q-learning is an off-policy method, while SARSA is an on-policy

method. The effective difference between the two algorithms happens in the step

where the Q-table is updated. The Q-Learning explores the action-values function (Q-

value) for all possible actions in the given state then selects the maximum action value

among them. On the other hand, SARSA uses the action-value function for the action

𝑎𝑡 in state 𝑠𝑡 according to the following updated formula:

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + ∝ [𝑟 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (3.10)

Sarsa’s steps can be summarize as:

1. Initialize all Q-values in the Q-table to 0.

2. For each time-step in each episode:

2.1 Pick an action a, from the set of actions defined for that state (considering

the exploration-exploitation trade-off)

2.2 Perform action a

2.3 Observe reward R and the next state 𝑠’

2.4 Update the Q-value function using the Formula 3.10.

3.6 Exploration-Exploitation Trade-off

As previously stated, the agent should follow an optimal policy that dictates

the selection of action 𝑎𝑡 in the state 𝑠𝑡. In Q-learning, there exists a tradeoff between

selecting random actions with a uniform distribution over the action space or selecting

the currently expected optimal action. These two opposite behaviors are called

exploration and exploitation tradeoff (Thrun, 1992; Wiering, 1999; Yahyaa, 2015).

Initially, the agent must choose mainly random actions, regardless if they are not the

22

best possible actions. This enhances the agent to explore parts of the state space and

actions that might be more rewarding than the ones that have not been encountered

before. As the learning progresses, the agent will starts exploit the current knowledge

which probably converged to a policy that is close to the optimal one in order to

maximize the obtained reward. However, excessive exploration yields a lower

accumulated reward, whereas excessive exploitation will trap the agent in a local

optimum. Thus, it is important to find a balance between these two extremes. Popular

existing strategies that attempt to deal with this dilemma are 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 method and

𝑠𝑜𝑓𝑡𝑚𝑎𝑥.

The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy uses 0 ≤ 𝜖 ≤ 1 as a parameter of exploration

where the probability to select random actions is decreases linearly from 1 to 0 (Tijsma

et al., 2016).

With a probability (1 − 𝜖), the agent will choose the optimal action 𝑎∗ that

indicates the highest Q-value for the current state from the Q-table, while it will choose

action randomly if the probability is (𝜖). One drawback of 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 exploration is

that non-optimal actions are all considered the same during exploration. Therefore, it

is better to assign a probability to the actions to be chosen that translates to its estimated

value. One way to do that is by using a 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑜𝑟 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 exploration that uses

the Gibbs or Boltzmann distribution function. At each time step 𝑡, the agent will select

an action 𝑎 with a probability (Tijsma et al., 2016):

𝜋(𝑠𝑡 , 𝑎) =
𝑒𝑄𝑡(𝑠𝑡 , 𝑎)/𝑇

∑ 𝑒𝑄𝑡(𝑠𝑡 , 𝑎𝑖)/𝑇𝑚
𝑖=1

 (3.12)

𝑎𝑡 = {
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑡(𝑎) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖
 (3.11)

23

where 𝜋(𝑠𝑡 , 𝑎) denotes the probability when the agent selects action 𝑎 in state

𝑠𝑡 and 𝑇 ≥ 0 is a positive parameter called temperature that controls exploration and

exploitation tradeoff. When 𝑇 = 0 the agent does not explore at all, instead it always

acts greedily and selects the strategy corresponding to the maximum Q–value.

Whereas when 𝑇 → ∞ the agent selects random actions.

24

Chapter 4: System Design

4.1 Road Traffic Model

Figure 3 shows an example of the road network, where all possible positions

for a vehicle on the road are represented by nodes. The 𝑁 contains nodes that

represente junctions 𝐽 which involves a crossing over of two or more road segments

𝑅, where j ∈ J and 𝑟 ∈ 𝑅, thus 𝑁 is defined as 𝑁 = (𝐽, 𝑅).

Figure 3: Example of road network environment

25

Assuming each road segment connected between two junctions j1 and j2, the

road segment can be defined as r = (j1, j2). Since the road segments 𝑅 depend on the

number of rows 𝑁𝑅 and the number of columns 𝑁𝐶, the 𝑅 can be calculated using this

equation:

𝑅 = (𝑁𝐶 − 1 ∗ 𝑁𝑅) + (𝑁𝑅 − 1 ∗ 𝑁𝐶) ∗ 2 (4.1)

After explaining how the junctions, road segments, and road networks are

defined, the congestion can now be generated. In other words, there is a need to define

how vehicle arrives at goal by avoiding the traffic density to minimize the travel time

it takes. When it comes to how the vehicle arrives, it refers to which time step and

which segment it has to select in the environment. For this purpose, a new parameter

is defined called traffic congestion, denoted 𝑙𝑜𝑎𝑑, that serves as the number the

vehicles generated for each road segment.

Basically, the congestion can be generated for a whole region or a specific road

segment. When the vehicle is on the road, it collects information continuously about

the state of traffic density of the road segment traveled through. Hence, a number of

vehicles are distributed among the whole road segments and generate extreme traffic

load on particular segments based on Algorithm 1, where N is the number of vehicles.

26

Accordingly, the vehicle itinerary will be the sum of all passed road segments

from the starting point to the destination point. The traffic load will be calculated as

the sum of vehicles available in these segments. After calculation, the vehicle will

compare all routes results to find the best one to guide it through less traffic load. The

lower the result of steps and traffic load, the lower the travel time it takes by vehicle

to reach its goal.

Since the selected path may be either the shortest path with high load and vice

versa, a new factor is defined called "weight," denoted as w, where it indicates the

importance weight giving to the path length and traffic load in the measure. Thus, they

can be calculated it in one formula:

F = w ∗ ∑ R

N

i=0

+ (1 − w) ∗ ∑ V

N

i=0

 (4.2)

Where ∑ 𝑅𝑁
𝑖=0 is the sum of passed road segments in the selected path, and

∑ 𝑉𝑁
𝑖=0 is the sum of vehicles in this path.

4.2 Reinforcement Learning

Reinforcement learning strategy that concerns learning agents to maximize the

cumulative reward they receive from the environment. RL is modeled as a Markov

Decision Processes (MDPs), which is a mathematical framework that models

sequential decision-making problems. As previously stated, the MDP consist of a finite

set of states 𝑆, a finite set of actions A, transition function 𝑇 which is a probability of

making transitions between states, and reward function 𝑅. Thus, the road traffic

congestion problem is formulated as a Markov Decision Process (MDP).

27

4.2.1 State Space

The set of environmental states 𝑆 is defined as the finite set [𝑠𝑡 , 𝑠𝑁] where

𝑁 is the size of the state space, i.e. |𝑆| = 𝑁. As stated earlier, junctions represent all

possible locations vehicle could inhabit at the road. These positions are called "states"

in the reinforcement learning system, that present an agent in a particular instance of

time. Thus, all junctions are mapped as states in the system. Figure 4 present a virtual

environment that has been divided into cells, in which obstacles and congestions are

occupied some of these cells. Each cell represents a state of the road with information

about what is in the cell at that moment. If the agent falls into the obstacle, it counts as

a collision. While if the agent falls into congestion, it will receive a penalty with a

negative value.

Figure 4: A virtual environment divided into cells

28

Assuming that the position of the vehicle obtained through Vehicular Ad-hoc

Network (VANET) and the vehicle will transmit from the current state 𝑠 to a new state

𝑠’ based on a "discrete" action being passed. At each time step, the vehicle will pass

through a segment which will be occupied with a number of vehicles 𝑁 𝑉 𝑟.

4.2.2 Action Space

Now there is a need to define the possible actions that the vehicle can take. It

is obvious that a particular action should lead to one move, and vice versa; one move

is the result of only one action. As shown in Figure 5, the vehicle can move diagonally

by choosing between moving forward, moving backward, moving left, moving right.

However, in certain cases, some actions can be “impossible”. Precisely, if an action’s

corresponding move is forbidden in the system, the vehicle will disregard this action

by considering another one. A forbidden move is a situation where the vehicle attempts

to move beyond the walls or boundary of the environment.

Figure 5: Four possible actions

The key purpose of the system is to reduce the travel time of vehicles by

selecting the optimal path with the least traffic congestion. One way to achieve this

intention is by letting the agent learn how to avoid collision with obstacles in the

29

environment. It should not choose a move whose outcome is an accident. As an

alternative, it will select the move in their preference order that leads to reaching the

destination.

 The strategy of selection actions could be either exploration by selecting

random action or exploitation through choosing the action with the highest Q-value

for its current state from the Q-table. To get a balance between exploitation and

exploration, two widely strategies are used in this work; 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥.

At the first stage, it is necessary to investigate the environment as best as

possible by choosing a random action. As the vehicle moves from one state to another,

the Q-table will be updated based on the obtained values from the selected actions.

Then, the vehicle exploits the knowledge that it has found for the current state 𝑠 by

choosing the most prioritize action that maximizes 𝑄[𝑠, 𝑎].

4.2.3 Reward Function

In Reinforcement Learning algorithms, the purpose for the agent is to learn an

optimal or nearly-optimal policy that maximizes the cumulative rewards. The state

reward function is defined as 𝑅: 𝑆 ⟶ ℝ, and it identifies the reward obtained by the

agent based on the taken action. R is the most important factor in the RL system since

it provides feedback to a reinforcement learning model about the performance of the

chosen actions to converge to an optimal policy. Hence, defining an appropriate reward

value is critical to guide the learning process accurately, which in turn helps to take

the best action policy.

A reward function is designed that encompassing different road and congestion

metrics in calculating the near-optimal paths. When the vehicle passes across road

segments, it will observe a load that represents the negative reward (penalty). Thus,

30

the vehicle's objective is to move towards junctions’ states by selecting the optimal

road segments to its destination in order to reduce the travel time. The reward function

is designed as:

• If the vehicle reaches the goal, it will receive a reward of 500.

• If the vehicle crashed into a wall or obstacle it will be given a penalty of -500.

• At each time of step, the vehicle will receive a penalty of - 𝑁 𝑉 𝑟 for each passed

segment, where 𝑁𝑉𝑟 indicates the number of vehicles in one segment r.

The possible outcomes are called goal; if the vehicle reaches its goal and it

called obstacles; if it crashes with obstacles. In case the agent reaches one of these

outcomes, the episode will be terminated and the reward value will be given

immediately. While the agent moves to cells occupied with low or large congestion,

the reward function will be calculated and the agent will complete moving until the

episode is done. The explanation of the pseudo-code is presented in Algorithm 2.

31

4.2.4 RL Algorithms

Most of the previous works used the q-learning and sarsa algorithms in a

successful way to deal with the problem of robot path planning and navigation in either

simulated or real environments. Thus, Q-learning, and Sarsa will be use, with two

exploration strategies 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. Then, a performance comparison of

each algorithm based on different criteria. The algorithms of each technique are

illustrated below:

32

Then, the simulation parameters have to define to characterize the road network

environment and the learning parameters that influence the performance of each

proposed algorithms. These parameters can be independently modified to achieve the

best performances on computing the optimized vehicle routes. The simulation and

learning parameters are presented in Table 2.

33

Table 2: Simulation and learning parameters

Simulation Parameters Learning Parameters

State space Reward

Action space Number of episodes

Number of goals Learning rate/alpha

Number of objects Discount factor/gamma

Number of segments Epsilon and Temperature

Number of congestion segments Epsilon decay

Number of vehicles

34

Chapter 5: Evaluation and Performance Analysis

Inference about the performance and validity of proposed algorithms was

conducted with a set of experiments described in this chapter. Besides, a comparison

of the performance analysis is thoroughly described for each experiment.

5.1 Experimental Environment

To evaluate the performance of each proposed algorithms, various

experimental scenarios were conducted in 2-dimensional virtual environments; 6×6,

10×10, and 20×20. The program was written in Python 3 with specific libraries. Table

3 shows the configuration of the simulated parameters for considered environments.

For a simulation, each of these parameters can be modified individually. However,

some of them must be consistent: for example, the maximum number of congestion

segments that can fit in the maze can't exceed the total number of road segments 𝑅.

Table 3: Simulation parameters of 6×6, 10×10, and 20×20, respectively

35

The maps vary in size, placement of the goal, number of blocks, vehicles, and

road congestion. Figure 6, Figure 7 and Figure 8 present the three environments in

which experiments were conducted. The agent's goal is to learn a near-optimal route

from the start junction, yellow, to the goal junction, green. It has to avoid the gray

junctions representing the obstacles, and the extreme traffic load appears as red

segments. The blue and green arrows present the shortest path and least traffic

congestion path, respectively.

Figure 6: 6×6 map

36

Figure 7: 10×10 map

P

3
7

Figure 8: 20×20 map

38

For each simulation, will evaluate:

1. The length of the path and its traffic load.

2. The average cumulative rewards.

3. The average visited states.

4. The average training times.

5.2 Tuning Learning Parameters

Setting the correct values for parameters of reinforcement learning algorithms

is critical to ensure good performance in its execution and convergence. Thus,

adjustment of these parameters is done manually at the initial stage of training. An

evaluation of three distinct values of learning rate 𝛼, reward discount 𝛾 , epsilon 𝜖, and

temperature 𝑇 for each proposed algorithm is done. This was accomplished by running

the program for 500 episodes and repeat it five times to compute the average. Figures

9-12 show comparison of the cumulative reward per episode using Sarsa and Q-

learning in conjunction with: (a) ε-greedy, (b) Softmax. It is observable from the

graphs that different parameter values obtained different behavior in each exploration

method. The best found parameters based on cumulative rewards for all algorithms

with the three different experimental setups are shown in Table 4.

P

3
9

Figure 9: Comparison of parameters for Q-learning- e-greedy in term of cumulative reward with the three different experimental setups

P

4
0

Figure 10: Comparison of parameters for Sarsa- e-greedy in term of cumulative reward with the three different experimental setups

P

4
1

Figure 11: Comparison of parameters for Q-learning-softmax in term of cumulative reward with the three different experimental setups

P

4
2

Figure 12: Comparison of parameters for Sarsa- softmax in term of cumulative reward with the three different experimental setups

43

Table 4: Optimal parameters for each type of experiment

After finding the best parameters for each proposed methods, the

measurements are calculated by running the code for 10 repetitions. Each repetition

has 500 episodes that make the algorithms converge.

5.3 Comparisons

5.3.1 Comparing the Length of the Path and Traffic Load

As stated earlier, the first objective is to select the near-optimal route for the

vehicle to its destination in terms of the minor steps, trip time, and traffic load. Table

5 represents a comparison performance for each proposed algorithm in terms of the

most frequently occurring itinerary distance and its load in three different

environments.

44

Table 5: Comparison of the path length and load on three different experimental

setups

The table shows that all learning algorithms obtained the same number of steps

and load in a 6×6 map. On the other hand, in the 10×10 environment, the Sarsa in

conjunction with 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy significantly outperforms other strategies to

determine the near-optimal route with the least congestion. Interestingly, in 20×20

map it have been notice that 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 in both Q-learning and Sarsa selects a shorter

route with 17 steps but with a higher traffic load compared to 𝜖−𝑔𝑟𝑒𝑒𝑑𝑦. Hence, the

Formula 4.1 was used by giving different importance weight for the route length and

congestion as shown in Table 6. When the weight assigns to = 0.1, it means that the

high priority is assigns to traffic load and low advantage to the length of the route. As

the value of weight increases, the preference to select the path based on the distance is

increased. Based on that, different performances are obtained for each method when

the weight changed. The lower the results, the lower the travel time it takes by vehicle

to reach its goal.

45

Table 6: Different performances obtains from different weight factors in 20×20 map

5.3.2 Comparing the Average Cumulative Rewards

An efficient way to observe and analyze an agent's success during training is

to plot its cumulative reward at the end of each episode. Figures 13-15 show the

training process of each considered algorithm in 6×6, 10×10, and 20×20 maps,

respectively.

The plots demonstrate almost no performance difference is observable when

using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 policies in a 6×6 environment. However, the 𝜖 −

𝑔𝑟𝑒𝑒𝑑𝑦 converges faster than the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy when using Q-learning and Sarsa

in 10×10 and 20×20 maps. The agent finds the destination point with the least number

of episodes compared to 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, and its award for committed actions grows. The

average reward sums obtained in the three tested maps are presented in Table 7.

46

Figure 13: Learning curve of the proposed algorithms tested in 6×6 map

Figure 14: Learning curve of the proposed algorithms tested in 10×10 map

47

Figure 15: Learning curve of the proposed algorithms tested in 20×20 map

Table 7: Comparison of average cumulative rewards

The table shows that 𝑄 − 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 consistently performs best in most

cases, while 𝑆𝑎𝑟𝑠𝑎 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 gives the worst-case reward/episode.

48

5.3.3 Comparing the Average Training Times

A comparison of the average training time in milliseconds needed for training

Sarsa and Q-learning in conjunction with: (a) ε-greedy, (b) Softmax is shown in Table

8.

Table 8: Comparison of average training times

The table's data is transformed into a chart to observe with greater insight, as

illustrated in Figure 16. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy seems is better optimized compared to

𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦, although there is a less clear difference between 𝑄 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 −

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 and 𝑆𝑎𝑟𝑠𝑎 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥.

49

Figure 16: Average training time of the proposed algorithms tested in 6×6, 10×10 and

20×20 map

5.3.4 Comparing the Average Visited State

As the agent visits states and tries different actions, it keeps exploring different

paths and learns the optimal Q-values for all possible state-action pairs. Based on that,

there is a need to make sure that the agent continues exploring enough to figure out

which route is considered the optimal one. Table 9 presents the average number of

visited states for each exploration strategy. In 6×6, 10×10, and 20×20 maps, When

Q-learning or Sarsa combined with e-greedy, they discover almost the same average

of visited states in all experimental environments. Similarly, when they combined with

softmax. However, softmax strategy explores almost all states in the three tested

environments.

50

Table 9: Comparison of average visited states

5.4 Discussion

The proposed model has three road network environments to mimic the

behavior of traffic in which junctions’ states represent the state space, and the process

of selecting road segments across the junctions represents the action. Traffic

congestion was then generated and distributed among particular road segments based

on a specific algorithm. The objective of the vehicle is to select the minor traffic load

segments and least path distance to the destination in order to reduce the total traveling

time.

This work studied the impact of having different values for learning parameters

of each reinforcement learning algorithm on computing efficient vehicle trajectories.

These parameters are learning rate α, discounted rate γ, epsilon ϵ, and temperature T.

Finally, the efficiency of obtained results was compared, and the optimal parameters

of the considered algorithms for the tested environments were found.

An efficient reward function was designed to capture the driving environment

and encompass different road and congestion metrics in calculating the near-optimal

paths. This reward function has been evaluated in four proposed algorithms; Q-

51

Learning-ϵ-greedy, Q-Learning-softmax, Sarsa-ϵ-greedy, and Sarsa-softmax.

Experiments for comparison of each type of learning algorithm and strategies were

also done in order to visualize the difference in the behavior of the agent. From

simulation results, it has been found that Sarsa in conjunction with softmax is better

optimized compared to other algorithms concerning finding the least congested road

and distance in all tested maps. The same holds for taking the least training time and

highest number of visited states. However, it performs worst-case in terms of

cumulative rewards. On the contrary, Q-learning-e-greedy consistently outperforms

all other algorithms in most cases.

52

Chapter 6: Conclusion

Traffic congestion is a major contemporary issue in many urban areas. Many

conventional traffic management methods have been designed to manage the traffic

load. An efficient way to solve this problem is to let the vehicle learn how to determine

the optimal route based on current traffic conditions. This thesis investigated the use

of reinforcement learning methods on calculating the optimized vehicle itineraries in

VANET. An efficient reward function was built and evaluated using different

techniques and policies. The analysis results show that sarsa-softmax outperforms

other strategies to find the optimized path, take the least training time, and explore

more states. In contrast, Q-e-greedy performs the best in maximizing the cumulative

rewards. During the experiments, the best learning parameters of each approach were

discovered, and their effectiveness in maximizing cumulative rewards was compared.

In future work, an experiment will be conducting it on a real simple

environment to verify the effectiveness of the proposed system. Also, the use of deep

reinforcement learning on computing the optimized trajectories in more complex and

more extensive environments will be investigated. In addition, study the effects of

other exploration strategies such as UCB-1 and pursuit on the learning performance.

53

References

Akhtar, M., Raffeh, M., Zaman, F. ul, Ramzan, A., Aslam, S., & Usman, F. (2020).

Development of Congestion Level Based Dynamic Traffic Management

System Using IoT. 2020 International Conference on Electrical,

Communication, and Computer Engineering (ICECCE), 1–6.

https://doi.org/10.1109/ICECCE49384.2020.9179375

Ayodele, T. O. (2010). Machine Learning Overview. New Advances in Machine

Learning, 9-19. https://doi.org/10.5772/9374

Azimian, A. (2011). Design of an Intelligent Traffic Management System (Doctoral

dissertation, University of Dayton). Retrieved from https://etd.ohiolink.edu

Babu, V. M., Krishna, U. V., & Shahensha, S. K. (2016). An Autonomous Path

Finding Robot Using Q-learning. 2016 10th International Conference on

Intelligent Systems and Control (ISCO), 1–6.

https://doi.org/10.1109/ISCO.2016.7727034

Chang, I.-C., Tai, H.-T., Yeh, F.-H., Hsieh, D.-L., & Chang, S.-H. (2013). A

VANET-Based A* Route Planning Algorithm for Travelling Time- and

Energy-Efficient GPS Navigation App. International Journal of Distributed

Sensor Networks, 9(7), 794521. https://doi.org/10.1155/2013/794521

Chen, S., & Wei, Y. (2008). Least-Squares SARSA(Lambda) Algorithms for

Reinforcement Learning. 2008 Fourth International Conference on Natural

Computation, 2, 632–636. https://doi.org/10.1109/ICNC.2008.694

Chhatpar, P., Doolani, N., Shahani, S., & Priya, R. L. (2018). Machine Learning

Solutions to Vehicular Traffic Congestion. 2018 International Conference on

Smart City and Emerging Technology (ICSCET), 1–4.

https://doi.org/10.1109/ICSCET.2018.8537260

Coskun, M., Baggag, A., & Chawla, S. (2018). Deep Reinforcement Learning for

Traffic Light Optimization. 2018 IEEE International Conference on Data

Mining Workshops (ICDMW), 564–571.

https://doi.org/10.1109/ICDMW.2018.00088

Cleofe, M. (2021). Dubai Drivers Spend 80 Hours Stuck In Traffic Jams In One

Year, According To New Inrix Scorecard. Gulf News. Retrieved 29 January

2021, from https://gulfnews.com/uae/dubai-drivers-spend-80-hours-stuck-in-

traffic-jams-in-one-year-according-to-new-inrix-scorecard-

1.1550387107128#:~:text=UAE's%20Hope%20Probe-

54

,Dubai%20drivers%20spend%2080%20hours%20stuck%20in%20traffic%20

jams%20in,according%20to%20new%20Inrix%20scorecard&text=The%20r

eport%2C%20released%20by%20traffic,and%2079th%20in%20the%20worl

d.

Dere, E., & Durdu, A. (2018). Usage of the A* Algorithm to Find the Shortest Path

in Transportation Systems. International Conference on Advanced

Technologies, Computer Engineering and Science (ICATCES 2018), 415–

417. Retrieved from

https://www.icatces.org/2018/home_files/proceeding_book_2018.pdf

Dijkstra, E. W. (1959). A Note On Two Problems In Connexion With Graphs.

Numerische Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390

Festag, A. (2014). Cooperative Intelligent Transport Systems Standards In Europe.

IEEE Communications Magazine, 52(12), 166–172.

https://doi.org/10.1109/MCOM.2014.6979970

Fragkiadaki, K. (2018). Markov Decision Processes [PowerPoint slides]. Retrieved

from https://www.andrew.cmu.edu/course/10-703/

Gao, P., Liu, Z., Wu, Z., & Wang, D. (2019). A Global Path Planning Algorithm for

Robots Using Reinforcement Learning. 2019 IEEE International Conference

on Robotics and Biomimetics (ROBIO), 1693–1698.

https://doi.org/10.1109/ROBIO49542.2019.8961753

Geng, Y., Liu, E., Wang, R., & Liu, Y. (2020). Deep Reinforcement Learning Based

Dynamic Route Planning for Minimizing Travel Time. ArXiv:2011.01771

[Cs, Eess]. http://arxiv.org/abs/2011.01771

Gottesman, O., Johansson, F., Meier, J., Dent, J., Lee, D., Srinivasan, S., Zhang, L.,

Ding, Y., Wihl, D., Peng, X., Yao, J., Lage, I., Mosch, C., Lehman, L. H.,

Komorowski, M., Komorowski, M., Faisal, A., Celi, L. A., Sontag, D., &

Doshi-Velez, F. (2018). Evaluating Reinforcement Learning Algorithms in

Observational Health Settings. ArXiv:1805.12298 [Cs, Stat].

http://arxiv.org/abs/1805.12298

Ho, J., Engels, D. W., & Sarma, S. E. (2006). HiQ: A Hierarchical Q-Learning

Algorithm To Solve The Reader Collision Problem. International Symposium

on Applications and the Internet Workshops (SAINTW’06), 4–91.

https://doi.org/10.1109/SAINT-W.2006.20

55

Javaid, S., Sufian, A., Pervaiz, S., & Tanveer, M. (2018). Smart Traffic Management

System Using Internet Of Things. 2018 20th International Conference on

Advanced Communication Technology (ICACT), 393–398.

https://doi.org/10.23919/ICACT.2018.8323770

Jayapal, C., & Roy, S. S. (2016). Road Traffic Congestion Management Using

VANET. 2016 International Conference on Advances in Human Machine

Interaction (HMI), 1–7. https://doi.org/10.1109/HMI.2016.7449188

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement Learning In Robotics: A

Survey. The International Journal of Robotics Research, 32(11), 1238–1274.

https://doi.org/10.1177/0278364913495721

Koh, S. S., Zhou, B., Yang, P., Yang, Z., Fang, H., & Feng, J. (2018). Reinforcement

Learning for Vehicle Route Optimization in SUMO. 2018 IEEE 20th

International Conference on High Performance Computing and

Communications; IEEE 16th International Conference on Smart City; IEEE

4th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), 1468–1473.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00242

Koh, S., Zhou, B., Fang, H., Yang, P., Yang, Z., Yang, Q., Guan, L., & Ji, Z. (2020).

Real-Time Deep Reinforcement Learning Based Vehicle Navigation. Applied

Soft Computing, 96, 106694. https://doi.org/10.1016/j.asoc.2020.106694

Lee, K.-B., A. Ahmed, M., Kang, D.-K., & Kim, Y.-C. (2020). Deep Reinforcement

Learning Based Optimal Route and Charging Station Selection. Energies,

13(23), 6255. https://doi.org/10.3390/en13236255

Liang, X., Du, X., Wang, G., & Han, Z. (2019). Deep Reinforcement Learning for

Traffic Light Control in Vehicular Networks. IEEE Transactions on

Vehicular Technology, 68(2), 1243–1253.

https://doi.org/10.1109/TVT.2018.2890726

Luo, W., Tang, Q., Fu, C., & Eberhard, P. (2018). Deep-Sarsa Based Multi-UAV

Path Planning and Obstacle Avoidance in a Dynamic Environment. In Y.

Tan, Y. Shi, & Q. Tang (Eds.), Advances in Swarm Intelligence (Vol. 10942,

pp. 102–111). Springer International Publishing. https://doi.org/10.1007/978-

3-319-93818-9_10

56

Mejdoubi, A., Zytoune, O., Fouchal, H., & Ouadou, M. (2020). A Learning

Approach for Road Traffic Optimization in Urban Environments. In S.

Boumerdassi, É. Renault, & P. Mühlethaler (Eds.), Machine Learning for

Networking (Vol. 12081, pp. 355–366). Springer International Publishing.

https://doi.org/10.1007/978-3-030-45778-5_24

Nafi, N. S., Khan, R. H., Khan, J. Y., & Gregory, M. (2014). A Predictive Road

Traffic Management System Based On Vehicular Ad-Hoc Network. 2014

Australasian Telecommunication Networks and Applications Conference

(ATNAC), 135–140. https://doi.org/10.1109/ATNAC.2014.7020887

Peters, A., Von Klot, S., Heier, M., Trentinaglia, I., Hörmann, A., Wichmann, H. E.,

& Löwel, H. (2004). Exposure To Traffic And The Onset Of Myocardial

Infarction. New England Journal of Medicine, 351(17), 1721-1730.

https://doi.org/10.1056/nejmoa040203

Puterman, M. L. (1990). Markov decision processes. Handbooks in operations

research and management science, 2, 331-434.

https://doi.org/10.1016/S0927-0507(05)80172-0

Rahman, M., Ahmed, N. U., & Mouftah, H. T. (2014). City Traffic Management

Model Using Wireless Sensor Networks. 2014 IEEE 27th Canadian

Conference on Electrical and Computer Engineering (CCECE), 1–6.

https://doi.org/10.1109/CCECE.2014.6901145

Rastogi, D. (2017). Deep Reinforcement Learning for Bipedal Robots (Master

Thesis, Delft University of Technology). Retrieved from

https://repository.tudelft.nl

Sang, K. S., Zhou, B., Yang, P., & Yang, Z. (2017). Study of Group Route

Optimization for IoT Enabled Urban Transportation Network. 2017 IEEE

International Conference on Internet of Things (IThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical and

Social Computing (CPSCom) and IEEE Smart Data (SmartData), 888–893.

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.137

Sheikh, M. S., & Liang, J. (2019). A Comprehensive Survey on VANET Security

Services in Traffic Management System. Wireless Communications and

Mobile Computing, 2019, 1–23. https://doi.org/10.1155/2019/2423915

57

Sichkar, V. N. (2019). Reinforcement Learning Algorithms in Global Path Planning

for Mobile Robot. 2019 International Conference on Industrial Engineering,

Applications and Manufacturing (ICIEAM), 1–5.

https://doi.org/10.1109/ICIEAM.2019.8742915

Sjoberg, K., Andres, P., Buburuzan, T., & Brakemeier, A. (2017). Cooperative

Intelligent Transport Systems in Europe: Current Deployment Status and

Outlook. IEEE Vehicular Technology Magazine, 12(2), 89–97.

https://doi.org/10.1109/MVT.2017.2670018

Smelser, N. J., & Baltes, P. B. (Eds.). (2001). International encyclopedia of the social

& behavioral sciences (Vol. 11). Amsterdam: Elsevier.

Sutton, R. S., & Barto, A. G. (1998). Introduction to Reinforcement Learning (Vol.

135). Cambridge: MIT press. https://doi.org/10.1109/TNN.1998.712192

Tamilselvi, D., Shalinie, S. M., & Nirmala, G. (2011). Q Learning For Mobile Robot

Navigation In Indoor Environment. 2011 International Conference on Recent

Trends in Information Technology (ICRTIT), 324–329.

https://doi.org/10.1109/ICRTIT.2011.5972477

Thrun, S. B. (1992). The role of exploration in learning control. In White, D. A., &

Sofge, D. A. (Eds.), Handbook of Intel ligent Control: Neural, Fuzzy, and

Adaptive Approaches. Van Nostrand Reinhold, New York, NY.

Tijsma, A. D., Drugan, M. M., & Wiering, M. A. (2016). Comparing Exploration

Strategies For Q-Learning In Random Stochastic Mazes. 2016 IEEE

Symposium Series on Computational Intelligence (SSCI), 1–8.

https://doi.org/10.1109/SSCI.2016.7849366

Toulni, H., Nsiri, B., Boulmalf, M., Bakhouya, M., & Sadiki, T. (2014). An

Approach To Avoid Traffic Congestion Using VANET. 2014 International

Conference on Next Generation Networks and Services (NGNS), 154–159.

https://doi.org/10.1109/NGNS.2014.6990245

Van der Pol, E., & Oliehoek, F. A. (2016). Coordinated deep reinforcement learners

for traffic light control. Proceedings of Learning, Inference and Control of

Multi-Agent Systems (at NIPS 2016). Retrieved from https://pure.uva.nl

Van Otterlo, M., & Wiering, M. (2012). Reinforcement Learning and Markov

Decision Processes. In M. Wiering & M. van Otterlo (Eds.), Reinforcement

Learning (Vol. 12, pp. 3–42). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-27645-3_1

58

Walraven, E., Spaan, M. T. J., & Bakker, B. (2016). Traffic Flow Optimization: A

Reinforcement Learning Approach. Engineering Applications of Artificial

Intelligence, 52, 203–212. https://doi.org/10.1016/j.engappai.2016.01.001

Wiering, M. A. (1999, February 17). Explorations in Efficient Reinforcement

Learning [Dissertation]. University of Amsterdam.

http://localhost/handle/1874/20822

Xin, J., Zhao, H., Liu, D., & Li, M. (2017). Application Of Deep Reinforcement

Learning In Mobile Robot Path Planning. 2017 Chinese Automation

Congress (CAC), 7112–7116. https://doi.org/10.1109/CAC.2017.8244061

Yahyaa, S. Q. (2015). Explorations in Reinforcement Learning: Online Action

Selection and Value Function Approximation (Doctoral Dissertation, Vrije

Universiteit Brussel). Retrieved from https://www.researchgate.net

Zhan, F. B., & Noon, C. E. (1998). Shortest Path Algorithms: An Evaluation Using

Real Road Networks. Transportation Science, 32(1), 65–73.

https://doi.org/10.1287/trsc.32.1.65

	A REINFORCEMENT LEARNING APPROACH TO VEHICLE PATH OPTIMIZATION IN URBAN ENVIRONMENTS
	Recommended Citation

	Sample Thesis Template

		2021-08-16T10:24:18+0400
	Shrieen

