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Abstract 

 

Road traffic management in metropolitan cities and urban areas in general is 

an important component of Intelligent Transportation Systems (ITS). With the 

increasing number of world population and vehicles, a dramatic increase in the road 

traffic is expected putting pressure on the transportation infrastructure. Therefore, 

there is a pressing need to devise new ways to optimize the traffic flow in order to 

accommodate the growing needs of transportation systems. This work proposes to use 

an Artificial Intelligent (AI) method based on reinforcement learning techniques for 

computing near-optimal vehicle itineraries applied to Vehicular Ad-hoc Networks 

(VANETs). These itineraries are optimized based on the vehicle’s travel distance, 

travel time, and traffic road congestion. The problem of traffic density formulated as 

a Markov Decision Process (MDP). In particular, this work introduce a new reward 

function that takes into account the traffic congestion when learning about the 

vehicle’s best action (best turn) to take in different situations. To learn the effect of 

this approach, the work investigated different learning algorithms such as Q-Learning 

and SARSA in conjunction with two exploration strategies: (a) e-greedy, and (b) 

Softmax. A comparative performance study of these methods is presented to determine 

the most effective solution that enables the vehicles to find a fast and reliable path. 

Simulation experiments illustrate the effectiveness of proposed methods in computing 

optimal itineraries allowing vehicles to avoid traffic congestion while maintaining 

reasonable travel times and distances. 

 

Keywords: VANET, reinforcement learning, markov decision process, road traffic 

congestion. 
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Title and Abstract (in Arabic) 

 

 نهج التعلم المعزز لإيجاد المسار شبه الأمثل في البيئات الحضرية

 صالملخ

 

في الوقت الحاضر، تعتبر إدارة حركة المرور أحد أهم جوانب المناطق والمدن الحضرية. 

مع التزايد السريع في عدد السكان والمركبات في جميع أنحاء العالم، من المتوقع أن يزداد الحمل 

 المروري على البنية التحتية للنقل بشكل كبير. وبالتالي، هناك حاجة لتحسين تدفق حركة المرور

من أجل تلبية الاحتياجات المتزايدة لأنظمة النقل. في هذا العمل، اقترحنا استخدام تقنية التعلم 

لتحديد المسار شبه الأمثل في شبكة النقل من حيث أقل مسافة، أقل وقت  VANETالمعزز مع 

سفر وازدحام على الطريق. على وجه الخصوص، نقدم وظيفة مكافأة جديدة تأخذ الازدحام 

ري في عين الاعتبار لتعليم السيارة أفضل إجراء يمكن اتخاذه في المواقف المختلفة. تم المرو

جنباً إلى  SARSAو  Q-Learningتطبيق هذا الحل باستخدام خوارزميات تعليمية مختلفة، 

𝜖 :جنب مع استراتيجيتين للاستكشاف − 𝑔𝑟𝑒𝑒𝑑𝑦  و𝑠𝑜𝑓𝑡𝑚𝑎𝑥 تم مقارنة أداء هذه الطرق .

الحل الأكثر فعالية الذي يمكّن السيارة من العثور على مسار سريع وموثوق. أظهرت  لتحديد

التجارب التي تم إجراؤها أن السيارة تختار مسار الرحلة شبه الأمثل مع ازدحام مروري طفيف 

 ووقت سفر أقل مقارنة بالمسارات الأخرى. 

 

لمعزز، عملية اتخاذ القرار شبكة المركبات المخصصة، التعلم ا: مفاهيم البحث الرئيسية

 .ماركوف، الازدحام المروري على الطرق
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Chapter 1: Introduction 

In recent decades, the majority of the world's population has been heading to 

the urban environment, which has directly impacted every aspect of life. The rate of 

automobile growth is outpacing the expansion of the road network infrastructure in 

urban areas due to space and budget limitations. This situation causes severe traffic 

congestion on the road and increases the vehicle's travel time. As a result, excessive 

carbon emissions pollute cities and degrade the quality of human life. Intelligent 

Transportation Systems (ITS) have emerged as a potential solution to improve 

highway efficiency. It uses several communication channels and networks, such as 

Vehicular Ad-hoc Network (VANET), to monitor and regulate vehicular traffic in an 

intelligent manner. VANET is a special class of Mobile ad-hoc Networks (MANET) 

in which moving vehicles act as either a node or a router to exchange data between 

them to create an extremely large scale mobile network. It is aimed to support both 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications (Sheikh 

& Liang, 2019).  

Another technique that used recently to optimize the traffic management is 

Reinforcement learning.  RL is a subfield of machine learning in which an agent 

(decision maker) learns to make sequential decisions by interacting with an 

environment (Gottesman et al., 2018). The learning strategy of RL follows the method 

of “trial and error” to learn an optimal policy by perceiving states from the 

environment, taking an action based on the current states, and receiving penalty or 

rewards from the environment. The policy that selects the best action at each state to 

maximize the expected long-term cumulative reward is considered as the optimal one. 

RL algorithms can be found implemented in robot control (Kober et al., 2013) and 
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board games like Tic-tac-toe, and chess. In these kinds of problems, agent is modeled 

to learn through frequent interactions with their environment and the returns signal of 

these interactions; it learns from past experience. These tasks deal with one learning 

agent only (single-agent). However, various real- world decision problems such as 

swarm robot and traffic are inherently composed of several tasks which demand 

models with multiple agents. Multi-agent models can simplify the complex problem 

by dividing knowledge among the agents.  

The family of RL has different algorithms such as Q-Learning (Ho et al., 2006), 

State Action Reward State Action (SARSA) (Chen & Wei, 2008). The most important 

feature of these algorithms is that they do not require knowledge of the environment 

with which they interact. In 2013, Google Deepmind team have proposed the first 

successful Deep Q-network (DQN) framework that combines deep learning with 

reinforcement learning. The authors used a Deep Q-network (DQN) to estimate the Q-

function for Q-learning. The combination of neural networks and reinforcement 

learning is capable of solving more complex tasks as all have been witnessed in many 

applications ranging from Google1, Uber2, and Tesla3 autonomous car to Google's 

DeepMind AlphaGo4 algorithm that defeated the World Champion in the game of Go. 

 

1 https://www.google.com/selfdrivingcar/  

2 https://www.uber.com/en-BE/  

3 https://www.tesla.com/autopilot  

4 https://deepmind.com/research/case-studies/alphago-the-story-so-far  

https://www.google.com/selfdrivingcar/
https://www.uber.com/en-BE/
https://www.tesla.com/autopilot
https://deepmind.com/research/case-studies/alphago-the-story-so-far
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1.1 Statement of the Problem 

Transportation and traffic systems are the backbones of any city. It is regarded 

as an essential component of the town's growth, development and fulfills users 

presumed social and economic needs. However, as the population and automobiles 

grow, the traffic demand on transportation infrastructure grows, making it difficult for 

the transportation system to serve the public interest. Traffic congestion is the term for 

this problem, and it consists of incremental delay in travel time, vehicle operating costs 

such as fuel consumption, pollution emissions due to CO2 emissions (Peters et al., 

2004).  Furthermore, it causes more stress and inconvenience to drivers for additional 

time spent and delaying their work and interests. In this circumstance, traffic 

congestion becomes an ever-increasing problem in urban development. 

According to the Ohio Department of Transportation (Azimian, 2011), traffic 

congestion stops Honda's employees from arriving on schedule, threatening Honda's 

low-inventory strategy in Ohio. There are always concerns that traffic load could cause 

emergency services to be delayed at crucial times when they need to arrive as soon as 

possible.  In 2018, recent research stated that the drivers spent an average of 50 during 

peak traffic in Abu Dhabi. Simultaneously, the congestion increased in Dubai as the 

time spent reached an average of 80 hours stuck in traffic jams (Cleofe, 2019) .  

Designing efficient real-time path planning can efficiently relieve traffic 

congestion in urban scenarios. Thus, this thesis aims to investigate the use of 

Reinforcement Learning techniques in the computation of the best vehicle trajectories 

in Vehicular Ad hoc Networks (VANET) for the purpose of avoiding and dissipating 

road traffic congestion. Since the reinforcement learning not always provide the 

optimal paths in the network, this work focuses on computing the near-optimal 
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trajectories which are close to the optimum solution. These itineraries are optimized 

based on the vehicle’s travel distance, travel time, and traffic road congestion. The 

congestion state on the road is assumed to be collected and exchanged using VANET.  

This information will then be used by reinforcement learning for path planning based 

on the road traffic congestion. Based on that, the vehicles will be distributed 

proportionally to the road’s capacity in the network environment. Therefore, the driver 

will achieve reasonable travel times from his current location to his destination. 

1.2 Research Questions  

The research questions that will guide this thesis are as follows: 

1. How to model a road environment, road traffic and determine the state and action 

space that characterize the environment? 

2. What are the optimal learning parameters that compute efficient vehicle 

trajectories? 

3. How to design an efficient reward function that encompasses different road and 

congestion metrics in calculating the near-optimal paths?  

4. How does the type of learning algorithms and exploration strategies affect 

learning performance?  

1.3 Methodology  

1. Build an efficient reward function which captures the driving environment and 

accelerates the learning speed.  

2. Evaluate and compare the performance of Q-learning and Sarsa in conjunction 

with two exploration strategies: (a) e-greedy, and (b) Softmax. 
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3. Study the impact of the learning rate and the discount factor on the quality of 

the computed solutions.  

1.4 Structure of the Thesis 

Following this introductory chapter, this thesis is structured in 6 main chapters 

that briefly describe now: 

• Chapter 2 provides a systematic review of the previous research on which the work 

is based.  

• Chapter 3 introduces background on basic mathematical formalism for 

Reinforcement Learning, which is the Markov Decision Processes.  The chapter 

also discusses RL methods and exploration strategies.  

• Chapter 4, the system design and methods used during the testing, is presented in 

this chapter. 

• Chapter 5 discusses the results obtained from the experiments as well as the 

comparative evaluation of proposed methods.  

• Chapter 6 summarize the conclusions and present ideas for future work.  
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Chapter 2: Literature Review 

 

2.1 Reinforcement Learning  

Reinforcement learning is a general-purpose learning framework that can 

address many important aspects of Artificial Intelligence (AI).  The Tamilselvi et al. 

(2011) work has implemented Reinforcement learning, Q-Learning algorithm for 

mobile robot navigation in an indoor environment. The robot was operated in grid 

(10×10) environment with different positions in the environment to find the optimum 

path between source and destination. 

Sichkar (2019) deployed and evaluated the performance of Q-learning and 

SARSA algorithms for guiding the mobile robot to the desired goal while avoiding 

obstacles.  Experiments were performed in the 2-dimensional virtual environment. The 

obtained results showed differences between the two Reinforcement Learning 

algorithms in learning time and the methods of building a path to avoid obstacles until 

reach a destination point. 

Path and motion planning for a robot in the real world was presented in Babu 

et al. (2016). The main objective of this work is to develop an autonomous robot that 

uses Q-learning for navigation in an unknown environment. These were achieved by 

calculating the shortest path from the current state to the goal state through analyzing 

the captured images of the environment. 

The work in Gao et al. (2019) utilized a new global planning algorithm 

combined with Q-Learning to find the global path for robots. The experiments were 

conducted in both physical and simulation environments with various scenarios. To 

evaluate the effectiveness of the proposed algorithm, authors compared their algorithm 

with the Best First Search (BFS) and Rapidly-exploring Random Trees (RRT) 
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algorithm. The analyzed results show the shorter and smoother paths obtained by the 

proposed algorithm compared to the BFS algorithm and RRT algorithm. 

A novel end-to-end mobile robot path planning using deep reinforcement 

learning is proposed in Xin et al. (2017). Using the original visual perception without 

any hand-crafted features and feature matching, the suggested planning approach can 

decide the optimal action to make the mobile robot reach the target point while 

avoiding obstacles. 

The work presented in Luo et al. (2018) proposed the Deep-Sarsa approach for 

autonomous path planning as well as avoiding obstacles for Unmanned Aerial 

Vehicles (UAVs). The model is trained in a grid environment before being deployed 

in an environment in ROS-Gazebo for UAVs. Results of the experiments show the 

success of the trained Deep-Sarsa model in guiding the UAVs to the target without any 

collisions. 

2.2 Road Traffic Congestion Systems 

Researchers have paid considerable attention to the issue of traffic congestion 

in recent years. Many road traffic congestion systems have been introduced using 

different techniques to manage the traffic challenge in cities and overcome the 

limitation of the traditional systems. Cooperative Intelligent Transport Systems or C-

ITS (Festag, 2014; Sjoberg et al., 2017) is a new transportation system that allows 

vehicles to communicate with other vehicles (V2V) and infrastructure (V2X) such as 

traffic signals and roadside, that are fitted with the same system at a carrier frequency 

of 5.9 GHz. It provides intelligent solutions for a variety of road traffic problems by 

applying advanced technologies and service levels via transmit real-time traffic 

information using wireless technology. Drivers then receive alerts about upcoming 
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hazards and act accordingly in order to increase traffic safety and efficiency in road 

transport.  

The work in Rahman et al. (2014) presented a traffic management system based 

on Wireless Sensor Networks (WSN) with a dynamic mathematical model for the 

management of road traffic at important city intersections. This system detects the road 

congestion and broadcasts the information to drivers so that they can take a detour to 

avoid the traffic.  

In Jayapal and Roy (2016) authors proposed a mobile-enabled VANET 

technology to reduce traffic congestion and divert vehicles. The system is a distributed, 

collaborative traffic congestion detection and dissemination system. It uses smart 

phones of drivers that equipped with a Traffic App to detect location through 

Geographic Position based System (GPS) to be sent to a remote server that predicts 

traffic congestion. Once congestion is confirmed, it is passed on to the end user's phone 

through RSUs.   

In Akhtar et al. (2020), the authors proposed a congestion level-based dynamic 

traffic management system using IoT. The system regulates the duration of traffic 

lights according to the real-time congestion level measured at the road crossings by 

using ultrasonic sensors. Similarly, Javaid et al. (2018) has provided a solution to 

optimize traffic flow on roads by exploiting the concepts of IoT and Artificial 

Intelligence together. 

The work in Walraven et al. (2016), proposed a new method to address the 

issue of traffic congestion by using reinforcement learning. It formulates the traffic 

flow optimization problem as a Markov Decision Process and uses Q-learning to find 

policies to assign speed limits of the vehicles that are allowed on a highway, such that 

traffic congestion is reduced. This can be estimated according to the attributes of the 
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highway as well as demand volumes filling the highway and predictions regarding 

future traffic conditions. 

Deep Reinforcement Learning has been also studied to address one of the most 

pressing problems in road traffic management, namely that of Traffic Light 

Optimization (TLO). The TLO problem aims to improve traffic light timings in order 

to optimize the overall travel time of the vehicles that traverse the road network and 

reduce fuel consumption.  In Coskun et al. (2018) authors introduce a new reward 

function that takes the traffic flow and traffic delay into account to provide a solution 

to traffic light optimization which in turn decreases travel time. They use both Deep 

Q-Learning and Policy Gradient approaches to solve the resulting reinforcement 

learning problem. 

In Liang et al. (2019), a deep reinforcement learning, in particular, Double 

Dueling Deep Q Network (3DQN) was proposed to decide the duration of the traffic 

signals based on the collected data from different sensors and vehicular networks. In 

the model, the states are two-dimension values with the position of vehicles and speed 

information. The actions are modeled as a Markov decision process and the rewards 

are the cumulative waiting time difference between two cycles.  

Van der Pol and Oliehoek (2016) presented the learning control policies for 

traffic lights by the use of the DQN algorithm with transfer planning as a promising 

and scalable multi-agent approach to deep reinforcement learning. The combination 

between DQN and the transfer planning approach allows for faster and more scalable 

learning. The obtained results show how the proposed approach reduces the travel 

times of vehicles compared to earlier work on reinforcement learning methods for 

traffic light control. 
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2.3 Route Planning Algorithms 

 Dijkstra (1959), proposed a static algorithm to find the path with the lowest 

cost (i.e., usually refers to the shortest path) from the source node to all other nodes 

without considering external parameters such as congestion, vehicle amount, etc. In 

Zhan and Noon (1998),  authors state that it is worthwhile to consider the Dijkstra 

algorithm to find the shortest path from the one-to-one shortest path problem since this 

algorithm is terminated as soon as the destination node is permanently labeled which 

implies that the shortest path is found. However, the optimal route is not always the 

shortest path between two nodes due to the continuous changes in the road traffic 

network.  Thus, vehicle routing optimization should take into account the latest state 

of the transportation network and make real-time adjustments in order to arrive at their 

destination in the shortest time possible. 

The A* route planning algorithm employs a heuristic function instead of the 

optimized search mechanism used by the Dijkstra algorithm. Dere amd Durdu (2018) 

proposed the use of the A-Star algorithm for finding the shortest path between a 

starting-point and ending-point on the Google Map that segmented as grid-cells. In 

addition, the traffic intensity of various roads was constructed on the map so that the 

algorithm takes the traffic density into consideration when it finds the shortest route. 

A Vehicular Ad-hoc Network (VANET) based A∗ (VBA∗) for enhanced route 

planning is designed in Chang et al. (2013). The proposed solution aims to dynamically 

calculate the optimum route that meets the shortest travel time or the least fuel 

consumption using information from Google Map. 

Nafi et al. (2014) proposed a predictive road traffic management system named 

PRTMS based on the Vehicular Ad-hoc Network (VANET) architecture. The PRTMS 
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uses a modified linear prediction algorithm to estimate the future traffic intensities at 

intersections point on road. The vehicles are re-routing based on this prediction to 

reduce the congestion level and minimize the traveling time of the individual. 

In Toulni et al. (2014), a new approach based on VANETs has been proposed 

to addresses the problem of the optimal path in road networks in order to reduce travel 

time and fuel consumption.  More specifically, the authors applied Dijkstra’s algorithm 

to determine the optimal route from the current vehicle position to the destination point 

based on the analyzed collected traffic data in real-time.  Having this data will not only 

reduce the travel time but also avoid congestion queues in more efficient and optimal 

use of existing road infrastructure. The experiment has been conducted by using 

SUMO as a platform to provide dynamic simulation Traffic Control Interface (TraCI) 

to allows the change of scenario when running.  

Machine learning techniques are used in Chhatpar et al. (2018) to predicts the 

traffic densities in a given area. In particular, the authors used Supervised Learning 

techniques such as Back Propagation Neural Network (BPN) via an android 

application which makes use of real-time traffic data and provides a predictive analysis 

of traffic in an offline mode. Based on this information, the best route from source to 

destination is provided in order to reduce the congestion on roads. 

A group routing suggestion algorithm is proposed in Sang et al. (2017) based 

on Markov Decision Process (MDP) (Smelser & Baltes, 2001). Instead of optimizing 

the routing path for individual vehicles, a routing group of vehicles will be suggested 

based on vehicles' or drivers' similarities in a specific urban’s transportation 

environment. The authors discussed the design of the general flow of group routing 

method and studied how it is going to work with their proposed prototype. 
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The authors in Mejdoubi et al. (2020), applied a reinforcement learning 

approach based on VANET to enable efficient flow management by providing optimal 

paths suggestion and minimizing the total traveling time for drivers.  In particular, they 

employed Q-learning to learn the best action to take in various traffic situations. They 

also highlight vehicle-to-vehicle and vehicle-to-roadside unit communications in order 

to collect and exchange the real-time traffic status. 

Koh et al. (2018) conducted an experience to perform a reinforcement learning 

approach to optimize the route of a single vehicle in a network. The proposed 

experience uses an open-source simulator called Simulation of Urban Mobility (or 

SUMO for short). It offers promising results in finding the optimal route to reach the 

destination and avoiding the congestion path. 

In Koh et al. (2020), a novel Deep Reinforcement Learning (DRL) based 

vehicle routing optimization method was proposed to re-route vehicles to their goals 

in complex urban transportation networks. A nine realistic traffic scenarios are 

simulated using the SUMO simulator to test the proposed navigation method. 

The work of  Lee et al. (2020), proposed a framework for an Electric Vehicle 

Charging Navigation System (EVCNS) based on model-free Deep Reinforcement 

Learning (DRL). This framework aims to reduce the total travel time of Electric 

Vehicles (EV) charging requests from a start point to the end point by selecting the 

optimal route and charging station taking into account the continuous changing of 

traffic conditions and unknown future requests. 

Authors in Geng et al. (2020) applied a route planning algorithm based on Deep 

Reinforcement Learning (DRL) for pedestrians. They plan the route by predicting 

pedestrian flow in the road network and the travel time consumption was used as the 

metric. This experiment was conducted using an intelligent robot on a virtual map 
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where the robot acts as a pedestrian and assuming that it does not require any prior 

knowledge of road networks. 
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Chapter 3: Reinforcement Learning  

 

3.1 Machine Learning  

Machine learning is a branch of Artificial Intelligence (AI) focused on 

developing applications with the ability to learn from data and improve automatically 

through the experience without being explicitly programmed (Ayodele, 2010). The 

learning algorithms of ML are organized into a taxonomy based on the amount and 

type of supervision they get during training. Figure 1 shows common algorithms types.  

 

Figure 1: Machine Learning Types 

Supervised Learning: is the task of feeding the algorithm with the training data 

that includes the desired solutions, called labels. Typical supervised learning tasks 

could be a classification if the output is a class or category of the data such as email 

spam classification. Another typical task is regression, where the expected result from 

the model is a numerical value, such as the price of a car. 



15 

 

 

 

 

Unsupervised Learning: is based on the absence of any supervisor or training 

data. In other words, the training data is unlabeled which means that the system must 

learn while not receiving any feedback. In this case, an unsupervised learning 

technique is useful when it's necessary to learn how a set of elements can be grouped 

based on their similarity (i.e. clustering).  

Reinforcement learning: is a learning system, called an agent in this context, 

evaluates its performance according to the feedback responses and reacts accordingly. 

More precisely, the agent observes the environment, selects and performs actions, then 

gets feedback called reward which can be either positive or negative. This learning 

strategy follows the method of “trial and error” as the agent is not explicitly told which 

action to take to receive positive rewards. It must then continually interact with the 

environment and learn by itself the best strategy, called a policy, with regard to the 

rewards it gets. This is summarized by Figure 2.  

 

Figure 2: Reinforcement learning schema 
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3.2 Markov Decision Process 

Markov Decision Processe (Puterman, 1990), referred to as MDP, offers a 

standard formalism for describing sequential decision making. 

 

Definition 3.2.1: A Markov decision process is a tuple ⟨S, A, T, R⟩ (Van Otterlo & 

Wiering, 2012) in which:  

- S is a finite set of states,  

- A is a finite set of actions,  

- T is a transition function defined as T: S×A×S → [0,1],  

- R is a reward function defined as R: S×A×S → ℝ  

At each time step 𝑡 = 0, 1, 2, .. the decision-maker, called an agent receives 

some representation of the environment’s state 𝑠𝑡 ∈ 𝑆. Based on this state, the agent 

performs an action 𝑎𝑡 ∈  𝐴 which gives the pair of state-action (𝑆𝑡, 𝐴𝑡). The time is 

then incremented to the next time step t+1and the environment changes such that it is 

in a next state 𝑠𝑡 + 1 ∈  𝑆. At this time, the agent gets an immediate numerical reward 

denoted by 𝑟𝑡 + 1 for the action At taken from state St.  

The probability to end up in 𝑠𝑡 + 1 is influenced by the chosen action. In math, 

it is given by the state transition function. Precisely, the state transitions of a Markov 

decision process satisfy the Markov property: the next state 𝑠𝑡 + 1 is dependent only 

on the current state s and the performed action a. Accordingly, the reward function 𝑅 

can be defined as 𝑅: 𝑆 × 𝐴 × 𝑆 →  ℝ (Van Otterlo & Wiering, 2012). 
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The goal of an agent in an MDP is to maximize its cumulative rewards. Indeed, 

there is a way to aggregate and formalize these cumulative rewards, a concept of 

expected return is introduced to sum all rewards obtained by the agent at a given time 

step. Mathematically, the return 𝐺 at time t can be define as (Fragkiadaki, 2018): 

             𝐺𝑡 =  𝑅𝑡+1 + 𝑅𝑡+2 + ⋯ + 𝑅𝑇     (3.1)                                     

However, in some type of task (i.e. continuing tasks) the agent continues to 

interact in the environment without limit which makes the final time step 𝑇 = ∞ in 

Equation 3.1, and therefore the return itself could be infinite. To avoid infinite returns 

in continuing tasks, the discount factor 0 ≤  𝛾 <  1 is used to influence the future 

rewards, in which the rewards obtained later are discounted more than rewards 

obtained earlier. This function can be defined as (Fragkiadaki, 2018): 

𝐺𝑡 =  𝑅𝑡 +  𝛾𝑅𝑡+2 + ⋯ =  ∑ 𝛾𝑘∞
𝑘=0 𝑟𝑡+𝑘   (3.2)                    

Where 𝑡 and 𝛾 represent the time step and discount factor, respectively. 

3.3 Policies and Value Functions 

The selection of actions is modeled as a map called strategy or policy. A policy 

is an agent’s behavior function 𝜋: 𝑆 →  𝐴, where it specifies the action that the agent 

should take based on the current state. In order to determine this action, the agent needs 

to estimate how good it is for an agent to be in a certain state, or how good it is for the 

agent to perform a given action in a particular state. The notion of "how good" a state 

is the value function. The value of a state 𝑠 under policy 𝜋, denoted 𝑉𝜋 (𝑠) is the 

expected sum of rewards that the agent will receive at any given state s while following 

a policy 𝜋. The value function, 𝑉𝜋(𝑠) for policy 𝜋 is given by (Rastogi, 2017): 
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𝑉𝜋(𝑠) = 𝐸𝜋 {∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠}       (3.3) 

Where E is the expectation, γ is the discounting factor, Rt is the reward at time 

𝑡 and 𝑆𝑡 is the state at time 𝑡. It can define, in a similar way, the action-value function, 

also known as the Q-function, as the expected sum of rewards while taking an action 

𝑎 in state 𝑠 and, thereafter, following policy 𝜋. Mathematically, it define 𝑄𝜋(𝑠, 𝑎) as 

(Rastogi, 2017): 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋 {∑ 𝛾𝑘

∞

𝑘=0

𝑟𝑡+𝑘 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}   (3.4)  

3.4 Optimal Policy 

The goal for any given MDP is to find the optimal policy that maximizes the 

cumulative rewards. Concerning return, a policy 𝜋 is considered to be better than 

another policy 𝜋′ if the expected return of that policy is greater than the expected return 

of for all states, which implies, 𝑉 𝜋(𝑠)  ≥  𝑉 𝜋′ (𝑠) for all 𝑠 ∈  𝑆. Thus, the optimal 

policy 𝜋 ∗ can be computing by defined the optimal value function 𝑉 ∗ (𝑠) (Rastogi, 

2017): 

𝑉∗(𝑠) =  max
𝜋

𝑉𝜋(𝑠), ∀ 𝑠 ∈  𝑆.   (3.5) 

Similarly, the optimal action value function, Q∗(s,a) can be defined as (Rastogi, 2017): 

𝑄∗(𝑠, 𝑎) =  max
𝜋

𝑄𝜋(𝑠, 𝑎), ∀ 𝑠 ∈  𝑆, 𝑎 ∈ 𝐴.   (3.6) 
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One fundamental property of both 𝑉 ∗ and 𝑄 ∗ is that they satisfy certain 

recursive properties. Hence, the expression in Equations 3.7 and 3.8 can recursively 

defined in a special form called Bellman Equation (Rastogi, 2017): 

𝑉∗(𝑠) =  max
𝑎

∑ 𝑝(𝑠′| 𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉∗(𝑠′)]

𝑠′

   (3.7) 

𝑄∗(𝑠, 𝑎) =  ∑ 𝑝(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) +  𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)]

𝑠′

   (3.8) 

3.5 Q-learning and Sarsa Algorithms  

After illustrating the key concepts and ideas behind Markov Decision 

Processes, the term of Reinforcement Learning  (Sutton & Barto, 1998) can be 

introduce to solve the MDPs.  

RL algorithms can be found implemented in robot control and board games 

like Tic-tac-toe, and chess. In these kinds of problems, the agent is modeled to learn 

through frequent interactions with their environment and the returns signal of these 

interactions; it learns from experience. These tasks deal with one learning agent only 

(single-agent). However, various real-world decision problems such as swarm robots 

and traffic are inherently composed of several tasks which demand models with 

multiple agents. Multi-agent models can simplify the complex problem by dividing 

knowledge among the agents.  

Popular methods in RL are Q-Learning (Ho et al., 2006), and State Action 

Reward State Action (SARSA) (Chen & Wei, 2008). Q-learning is a model-free 

reinforcement learning method used for learning the optimal policy to select the best 

action in a Markov Decision Process. 
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More specific, Q-Learning estimate Q-Values for each state-action 

combination under policy π and update them frequently during the training process 

based on the Formula 3.9. Hence, these values describe the quality of an action taken 

from that state. 

𝑄(𝑠𝑡 , 𝑎𝑡) ←   𝑄(𝑠𝑡 , 𝑎𝑡) +  ∝ [𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠𝑡+1, 𝑎𝑡) −  𝑄(𝑠𝑡 , 𝑎𝑡)]     (3.9) 

In Q-Learning, a Q-Table is built to store Q-Values for all possible 

combinations of state and action pairs, which is a matrix with the vertical axis 

represents the states and the horizontal axis represents the actions. Table 1 shows an 

example of Q-table.   

Table 1: Example of Q-Table 

 

 

Q-Learning can be broken down into steps that make things much clearer. This 

is what it will seem to be: 

1. Initialize all Q-values in the Q-table to 0. 

2. For each time-step in each episode: 

2.1 Pick an action a, from the set of actions defined for that state (considering 

the exploration-exploitation trade-off) 

2.2 Perform action a 

2.3 Observe reward R and the next state 𝑠’ 

2.4 Update the Q-value function using the Formula 3.9. 
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Similar to Q-learning, SARSA is a model-free RL technique that does not learn 

the policy function of the agent explicitly. The main difference between SARSA and 

Q-learning is that Q-learning is an off-policy method, while SARSA is an on-policy 

method. The effective difference between the two algorithms happens in the step 

where the Q-table is updated. The Q-Learning explores the action-values function (Q-

value) for all possible actions in the given state then selects the maximum action value 

among them. On the other hand, SARSA uses the action-value function for the action 

𝑎𝑡 in state 𝑠𝑡 according to the following updated formula:  

  𝑄(𝑠𝑡 , 𝑎𝑡) ←   𝑄(𝑠𝑡 , 𝑎𝑡) +  ∝ [𝑟 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) −  𝑄(𝑠𝑡 , 𝑎𝑡)]         (3.10) 

Sarsa’s steps can be summarize as:  

1. Initialize all Q-values in the Q-table to 0. 

2. For each time-step in each episode: 

2.1 Pick an action a, from the set of actions defined for that state (considering 

the exploration-exploitation trade-off) 

2.2 Perform action a 

2.3 Observe reward R and the next state 𝑠’ 

2.4 Update the Q-value function using the Formula 3.10. 

3.6 Exploration-Exploitation Trade-off  

As previously stated, the agent should follow an optimal policy that dictates 

the selection of action 𝑎𝑡  in the state 𝑠𝑡. In Q-learning, there exists a tradeoff between 

selecting random actions with a uniform distribution over the action space or selecting 

the currently expected optimal action. These two opposite behaviors are called 

exploration and exploitation tradeoff (Thrun, 1992; Wiering, 1999; Yahyaa, 2015). 

Initially, the agent must choose mainly random actions, regardless if they are not the 
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best possible actions. This enhances the agent to explore parts of the state space and 

actions that might be more rewarding than the ones that have not been encountered 

before. As the learning progresses, the agent will starts exploit the current knowledge 

which probably converged to a policy that is close to the optimal one in order to 

maximize the obtained reward. However, excessive exploration yields a lower 

accumulated reward, whereas excessive exploitation will trap the agent in a local 

optimum. Thus, it is important to find a balance between these two extremes. Popular 

existing strategies that attempt to deal with this dilemma are 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 method and 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥. 

The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy uses 0 ≤  𝜖 ≤  1 as a parameter of exploration 

where the probability to select random actions is decreases linearly from 1 to 0 (Tijsma 

et al., 2016).  

 

 

With a probability (1 −  𝜖), the agent will choose the optimal action 𝑎∗ that 

indicates the highest Q-value for the current state from the Q-table, while it will choose 

action randomly if the probability is (𝜖). One drawback of 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 exploration is 

that non-optimal actions are all considered the same during exploration. Therefore, it 

is better to assign a probability to the actions to be chosen that translates to its estimated 

value. One way to do that is by using a 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑜𝑟 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 exploration that uses 

the Gibbs or Boltzmann distribution function. At each time step 𝑡, the agent will select 

an action 𝑎 with a probability (Tijsma et al., 2016):  

𝜋(𝑠𝑡 ,  𝑎) =  
𝑒𝑄𝑡(𝑠𝑡 ,  𝑎)/𝑇

∑ 𝑒𝑄𝑡(𝑠𝑡 ,  𝑎𝑖)/𝑇𝑚
𝑖=1

         (3.12) 

𝑎𝑡 = {
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑡(𝑎)         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛         𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖
        (3.11) 
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where 𝜋(𝑠𝑡 , 𝑎) denotes the probability when the agent selects action 𝑎 in state 

𝑠𝑡 and 𝑇 ≥  0 is a positive parameter called temperature that controls exploration and 

exploitation tradeoff. When 𝑇 = 0 the agent does not explore at all, instead it always 

acts greedily and selects the strategy corresponding to the maximum Q–value. 

Whereas when 𝑇 → ∞ the agent selects random actions. 
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Chapter 4: System Design 

4.1 Road Traffic Model  

Figure 3 shows an example of the road network, where all possible positions 

for a vehicle on the road are represented by nodes. The 𝑁 contains nodes that 

represente junctions 𝐽 which involves a crossing over of two or more road segments 

𝑅, where j ∈ J and 𝑟 ∈  𝑅, thus 𝑁 is defined as 𝑁 =  (𝐽, 𝑅).  

 

Figure 3: Example of road network environment 
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Assuming each road segment connected between two junctions j1 and j2, the 

road segment can be defined as r =  (j1, j2). Since the road segments 𝑅 depend on the 

number of rows 𝑁𝑅 and the number of columns 𝑁𝐶, the 𝑅 can be calculated using this 

equation:  

𝑅 =  (𝑁𝐶 −  1 ∗  𝑁𝑅) +  (𝑁𝑅 − 1 ∗  𝑁𝐶) ∗ 2        (4.1) 

After explaining how the junctions, road segments, and road networks are 

defined, the congestion can now be generated. In other words, there is a need to define 

how vehicle arrives at goal by avoiding the traffic density to minimize the travel time 

it takes. When it comes to how the vehicle arrives, it refers to which time step and 

which segment it has to select in the environment. For this purpose, a new parameter 

is defined called traffic congestion, denoted 𝑙𝑜𝑎𝑑, that serves as the number the 

vehicles generated for each road segment.  

Basically, the congestion can be generated for a whole region or a specific road 

segment. When the vehicle is on the road, it collects information continuously about 

the state of traffic density of the road segment traveled through. Hence, a number of 

vehicles are distributed among the whole road segments and generate extreme traffic 

load on particular segments based on Algorithm 1, where N is the number of vehicles.  
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Accordingly, the vehicle itinerary will be the sum of all passed road segments 

from the starting point to the destination point. The traffic load will be calculated as 

the sum of vehicles available in these segments. After calculation, the vehicle will 

compare all routes results to find the best one to guide it through less traffic load. The 

lower the result of steps and traffic load, the lower the travel time it takes by vehicle 

to reach its goal. 

Since the selected path may be either the shortest path with high load and vice 

versa, a new factor is defined called "weight," denoted as w, where it indicates the 

importance weight giving to the path length and traffic load in the measure. Thus, they 

can be calculated it in one formula:  

F =  w ∗  ∑ R

N

i=0

+  (1 − w) ∗  ∑ V

N

i=0

         (4.2) 

 

Where ∑ 𝑅𝑁
𝑖=0  is the sum of passed road segments in the selected path, and 

∑ 𝑉𝑁
𝑖=0  is the sum of vehicles in this path.  

4.2 Reinforcement Learning  

Reinforcement learning strategy that concerns learning agents to maximize the 

cumulative reward they receive from the environment. RL is modeled as a Markov 

Decision Processes (MDPs), which is a mathematical framework that models 

sequential decision-making problems. As previously stated, the MDP consist of a finite 

set of states 𝑆, a finite set of actions A, transition function 𝑇 which is a probability of 

making transitions between states, and reward function 𝑅. Thus, the road traffic 

congestion problem is formulated as a Markov Decision Process (MDP).  
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4.2.1 State Space 

The set of environmental states 𝑆 is defined as the finite set [𝑠𝑡 . . . . , 𝑠𝑁 ] where 

𝑁 is the size of the state space, i.e. |𝑆|  =  𝑁. As stated earlier, junctions represent all 

possible locations vehicle could inhabit at the road. These positions are called "states" 

in the reinforcement learning system, that present an agent in a particular instance of 

time. Thus, all junctions are mapped as states in the system. Figure 4 present a virtual 

environment that has been divided into cells, in which obstacles and congestions are 

occupied some of these cells. Each cell represents a state of the road with information 

about what is in the cell at that moment. If the agent falls into the obstacle, it counts as 

a collision. While if the agent falls into congestion, it will receive a penalty with a 

negative value.  

 

Figure 4: A virtual environment divided into cells 
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Assuming that the position of the vehicle obtained through Vehicular Ad-hoc 

Network (VANET) and the vehicle will transmit from the current state 𝑠 to a new state 

𝑠’ based on a "discrete" action being passed. At each time step, the vehicle will pass 

through a segment which will be occupied with a number of vehicles 𝑁 𝑉 𝑟.  

4.2.2 Action Space 

Now there is a need to define the possible actions that the vehicle can take. It 

is obvious that a particular action should lead to one move, and vice versa; one move 

is the result of only one action. As shown in Figure 5, the vehicle can move diagonally 

by choosing between moving forward, moving backward, moving left, moving right. 

However, in certain cases, some actions can be “impossible”. Precisely, if an action’s 

corresponding move is forbidden in the system, the vehicle will disregard this action 

by considering another one. A forbidden move is a situation where the vehicle attempts 

to move beyond the walls or boundary of the environment.   

 

Figure 5: Four possible actions 

The key purpose of the system is to reduce the travel time of vehicles by 

selecting the optimal path with the least traffic congestion.  One way to achieve this 

intention is by letting the agent learn how to avoid collision with obstacles in the 
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environment. It should not choose a move whose outcome is an accident. As an 

alternative, it will select the move in their preference order that leads to reaching the 

destination. 

 The strategy of selection actions could be either exploration by selecting 

random action or exploitation through choosing the action with the highest Q-value 

for its current state from the Q-table. To get a balance between exploitation and 

exploration, two widely strategies are used in this work; 𝜖 −  𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. 

At the first stage, it is necessary to investigate the environment as best as 

possible by choosing a random action. As the vehicle moves from one state to another, 

the Q-table will be updated based on the obtained values from the selected actions. 

Then, the vehicle exploits the knowledge that it has found for the current state 𝑠 by 

choosing the most prioritize action that maximizes 𝑄[𝑠, 𝑎].   

4.2.3 Reward Function 

In Reinforcement Learning algorithms, the purpose for the agent is to learn an 

optimal or nearly-optimal policy that maximizes the cumulative rewards. The state 

reward function is defined as 𝑅: 𝑆 ⟶ ℝ, and it identifies the reward obtained by the 

agent based on the taken action. R is the most important factor in the RL system since 

it provides feedback to a reinforcement learning model about the performance of the 

chosen actions to converge to an optimal policy. Hence, defining an appropriate reward 

value is critical to guide the learning process accurately, which in turn helps to take 

the best action policy.  

A reward function is designed that encompassing different road and congestion 

metrics in calculating the near-optimal paths. When the vehicle passes across road 

segments, it will observe a load that represents the negative reward (penalty). Thus, 
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the vehicle's objective is to move towards junctions’ states by selecting the optimal 

road segments to its destination in order to reduce the travel time. The reward function 

is designed as:  

• If the vehicle reaches the goal, it will receive a reward of 500.  

• If the vehicle crashed into a wall or obstacle it will be given a penalty of -500.  

• At each time of step, the vehicle will receive a penalty of  - 𝑁 𝑉 𝑟  for each passed 

segment, where 𝑁𝑉𝑟 indicates the number of vehicles in one segment r.  

The possible outcomes are called goal; if the vehicle reaches its goal and it 

called obstacles; if it crashes with obstacles. In case the agent reaches one of these 

outcomes, the episode will be terminated and the reward value will be given 

immediately. While the agent moves to cells occupied with low or large congestion, 

the reward function will be calculated and the agent will complete moving until the 

episode is done. The explanation of the pseudo-code is presented in Algorithm 2.  
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4.2.4 RL Algorithms 

Most of the previous works used the q-learning and sarsa algorithms in a 

successful way to deal with the problem of robot path planning and navigation in either 

simulated or real environments. Thus, Q-learning, and Sarsa will be use, with two 

exploration strategies 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. Then, a performance comparison of 

each algorithm based on different criteria. The algorithms of each technique are 

illustrated below: 
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Then, the simulation parameters have to define to characterize the road network 

environment and the learning parameters that influence the performance of each 

proposed algorithms. These parameters can be independently modified to achieve the 

best performances on computing the optimized vehicle routes. The simulation and 

learning parameters are presented in Table 2.   
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Table 2: Simulation and learning parameters 

 

Simulation Parameters Learning Parameters 

State space Reward 

Action space Number of episodes 

Number of goals Learning rate/alpha 

Number of objects Discount factor/gamma 

Number of segments  Epsilon and Temperature 

Number of congestion segments Epsilon decay 

Number of vehicles  
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Chapter 5: Evaluation and Performance Analysis  

 

Inference about the performance and validity of proposed algorithms was 

conducted with a set of experiments described in this chapter. Besides, a comparison 

of the performance analysis is thoroughly described for each experiment.   

5.1 Experimental Environment 

To evaluate the performance of each proposed algorithms, various 

experimental scenarios were conducted in 2-dimensional virtual environments; 6×6, 

10×10, and 20×20. The program was written in Python 3 with specific libraries. Table 

3 shows the configuration of the simulated parameters for considered environments. 

For a simulation, each of these parameters can be modified individually. However, 

some of them must be consistent: for example, the maximum number of congestion 

segments that can fit in the maze can't exceed the total number of road segments 𝑅.  

Table 3: Simulation parameters of 6×6, 10×10, and 20×20, respectively 
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The maps vary in size, placement of the goal, number of blocks, vehicles, and 

road congestion. Figure 6, Figure 7 and Figure 8 present the three environments in 

which experiments were conducted. The agent's goal is to learn a near-optimal route 

from the start junction, yellow, to the goal junction, green.  It has to avoid the gray 

junctions representing the obstacles, and the extreme traffic load appears as red 

segments. The blue and green arrows present the shortest path and least traffic 

congestion path, respectively.   

 

Figure 6: 6×6 map 
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Figure 7: 10×10 map
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Figure 8: 20×20 map
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For each simulation, will evaluate: 

1. The length of the path and its traffic load. 

2. The average cumulative rewards. 

3. The average visited states. 

4. The average training times.  

5.2 Tuning Learning Parameters  

Setting the correct values for parameters of reinforcement learning algorithms 

is critical to ensure good performance in its execution and convergence. Thus, 

adjustment of these parameters is done manually at the initial stage of training. An 

evaluation of three distinct values of learning rate 𝛼, reward discount 𝛾 , epsilon 𝜖, and 

temperature 𝑇 for each proposed algorithm is done. This was accomplished by running 

the program for 500 episodes and repeat it five times to compute the average. Figures 

9-12 show comparison of the cumulative reward per episode using Sarsa and Q-

learning in conjunction with: (a) ε-greedy, (b) Softmax. It is observable from the 

graphs that different parameter values obtained different behavior in each exploration 

method. The best found parameters based on cumulative rewards for all algorithms 

with the three different experimental setups are shown in Table 4.  
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Figure 9: Comparison of parameters for Q-learning- e-greedy in term of cumulative reward with the three different experimental setups 
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Figure 10: Comparison of parameters for Sarsa- e-greedy in term of cumulative reward with the three different experimental setups            
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Figure 11: Comparison of parameters for Q-learning-softmax in term of cumulative reward with the three different experimental setups       
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Figure 12: Comparison of parameters for Sarsa- softmax in term of cumulative reward with the three different experimental setups          
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Table 4: Optimal parameters for each type of experiment 

 

After finding the best parameters for each proposed methods, the 

measurements are calculated by running the code for 10 repetitions. Each repetition 

has 500 episodes that make the algorithms converge. 

5.3 Comparisons 

5.3.1 Comparing the Length of the Path and Traffic Load 

As stated earlier, the first objective is to select the near-optimal route for the 

vehicle to its destination in terms of the minor steps, trip time, and traffic load. Table 

5 represents a comparison performance for each proposed algorithm in terms of the 

most frequently occurring itinerary distance and its load in three different 

environments.  
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Table 5: Comparison of the path length and load on three different experimental 

setups 

 

 

The table shows that all learning algorithms obtained the same number of steps 

and load in a 6×6 map. On the other hand, in the 10×10 environment, the Sarsa in 

conjunction with 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy significantly outperforms other strategies to 

determine the near-optimal route with the least congestion. Interestingly, in 20×20 

map it have been notice that 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 in both Q-learning and Sarsa selects a shorter 

route with 17 steps but with a higher traffic load compared to 𝜖−𝑔𝑟𝑒𝑒𝑑𝑦. Hence, the 

Formula 4.1 was used by giving different importance weight for the route length and 

congestion as shown in Table 6. When the weight assigns to = 0.1, it means that the 

high priority is assigns to traffic load and low advantage to the length of the route. As 

the value of weight increases, the preference to select the path based on the distance is 

increased. Based on that, different performances are obtained for each method when 

the weight changed. The lower the results, the lower the travel time it takes by vehicle 

to reach its goal.  
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Table 6: Different performances obtains from different weight factors in 20×20 map 

 

 

5.3.2 Comparing the Average Cumulative Rewards 

An efficient way to observe and analyze an agent's success during training is 

to plot its cumulative reward at the end of each episode. Figures 13-15 show the 

training process of each considered algorithm in 6×6, 10×10, and 20×20 maps, 

respectively.  

The plots demonstrate almost no performance difference is observable when 

using 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 and 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 policies in a 6×6 environment. However, the 𝜖 − 

𝑔𝑟𝑒𝑒𝑑𝑦 converges faster than the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy when using Q-learning and Sarsa 

in 10×10 and 20×20 maps. The agent finds the destination point with the least number 

of episodes compared to 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, and its award for committed actions grows. The 

average reward sums obtained in the three tested maps are presented in Table 7.  



46 

 

 

 

 

 

Figure 13: Learning curve of the proposed algorithms tested in 6×6 map 

 

 

Figure 14: Learning curve of the proposed algorithms tested in 10×10 map 
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Figure 15: Learning curve of the proposed algorithms tested in 20×20 map 

 

 

Table 7: Comparison of average cumulative rewards 

 

 

The table shows that 𝑄 − 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 consistently performs best in most 

cases, while 𝑆𝑎𝑟𝑠𝑎 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 gives the worst-case reward/episode.  
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5.3.3 Comparing the Average Training Times 

A comparison of the average training time in milliseconds needed for training 

Sarsa and Q-learning in conjunction with: (a) ε-greedy, (b) Softmax is shown in Table 

8.  

Table 8: Comparison of average training times 

 

The table's data is transformed into a chart to observe with greater insight, as 

illustrated in Figure 16. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 policy seems is better optimized compared to 

𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦,  although there is a less clear difference between 𝑄 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 −

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 and 𝑆𝑎𝑟𝑠𝑎 − 𝑠𝑜𝑓𝑡𝑚𝑎𝑥. 
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Figure 16: Average training time of the proposed algorithms tested in 6×6, 10×10 and 

20×20 map 

 

5.3.4 Comparing the Average Visited State 

As the agent visits states and tries different actions, it keeps exploring different 

paths and learns the optimal Q-values for all possible state-action pairs. Based on that, 

there is a need to make sure that the agent continues exploring enough to figure out 

which route is considered the optimal one. Table 9 presents the average number of 

visited states for each exploration strategy. In 6×6, 10×10, and 20×20 maps, When 

Q-learning or Sarsa combined with e-greedy, they discover almost the same average 

of visited states in all experimental environments. Similarly, when they combined with 

softmax. However, softmax strategy explores almost all states in the three tested 

environments.  
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Table 9: Comparison of average visited states 

 

 

5.4 Discussion  

The proposed model has three road network environments to mimic the 

behavior of traffic in which junctions’ states represent the state space, and the process 

of selecting road segments across the junctions represents the action. Traffic 

congestion was then generated and distributed among particular road segments based 

on a specific algorithm. The objective of the vehicle is to select the minor traffic load 

segments and least path distance to the destination in order to reduce the total traveling 

time.  

This work studied the impact of having different values for learning parameters 

of each reinforcement learning algorithm on computing efficient vehicle trajectories. 

These parameters are learning rate α, discounted rate γ, epsilon ϵ, and temperature T. 

Finally, the efficiency of obtained results was compared, and the optimal parameters 

of the considered algorithms for the tested environments were found.  

An efficient reward function was designed to capture the driving environment 

and encompass different road and congestion metrics in calculating the near-optimal 

paths. This reward function has been evaluated in four proposed algorithms; Q-
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Learning-ϵ-greedy, Q-Learning-softmax, Sarsa-ϵ-greedy, and Sarsa-softmax. 

Experiments for comparison of each type of learning algorithm and strategies were 

also done in order to visualize the difference in the behavior of the agent. From 

simulation results, it has been found that Sarsa in conjunction with softmax is better 

optimized compared to other algorithms concerning finding the least congested road 

and distance in all tested maps. The same holds for taking the least training time and 

highest number of visited states. However, it performs worst-case in terms of 

cumulative rewards. On the contrary, Q-learning-e-greedy consistently outperforms 

all other algorithms in most cases.  
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Chapter 6: Conclusion 

 

Traffic congestion is a major contemporary issue in many urban areas. Many 

conventional traffic management methods have been designed to manage the traffic 

load. An efficient way to solve this problem is to let the vehicle learn how to determine 

the optimal route based on current traffic conditions. This thesis investigated the use 

of reinforcement learning methods on calculating the optimized vehicle itineraries in 

VANET. An efficient reward function was built and evaluated using different 

techniques and policies. The analysis results show that sarsa-softmax outperforms 

other strategies to find the optimized path, take the least training time, and explore 

more states. In contrast, Q-e-greedy performs the best in maximizing the cumulative 

rewards.  During the experiments, the best learning parameters of each approach were 

discovered, and their effectiveness in maximizing cumulative rewards was compared. 

In future work, an experiment will be conducting it on a real simple 

environment to verify the effectiveness of the proposed system.  Also, the use of deep 

reinforcement learning on computing the optimized trajectories in more complex and 

more extensive environments will be investigated. In addition, study the effects of 

other exploration strategies such as UCB-1 and pursuit on the learning performance. 
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