1,848 research outputs found

    Spacelab system analysis: The modified free access protocol: An access protocol for communication systems with periodic and Poisson traffic

    Get PDF
    The protocol definition and terminal hardware for the modified free access protocol, a communications protocol similar to Ethernet, are developed. A MFA protocol simulator and a CSMA/CD math model are also developed. The protocol is tailored to communication systems where the total traffic may be divided into scheduled traffic and Poisson traffic. The scheduled traffic should occur on a periodic basis but may occur after a given event such as a request for data from a large number of stations. The Poisson traffic will include alarms and other random traffic. The purpose of the protocol is to guarantee that scheduled packets will be delivered without collision. This is required in many control and data collection systems. The protocol uses standard Ethernet hardware and software requiring minimum modifications to an existing system. The modification to the protocol only affects the Ethernet transmission privileges and does not effect the Ethernet receiver

    Quality of service modeling and analysis for carrier ethernet

    Get PDF
    Today, Ethernet is moving into the mainstream evolving into a carrier grade technology. Termed as Carrier Ethernet it is expected to overcome most of the\ud shortcomings of native Ethernet. It is envisioned to carry services end-to-end serving corporate data networking and broadband access demands as well as backhauling wireless traffic. As the penetration of Ethernet increases, the offered Quality of Service (QoS) will become increasingly important and a distinguishing factor between different service providers. The challenge is to meet the QoS requirements of end applications such as response times, throughput, delay and jitter by managing the network resources at hand. Since Ethernet was not designed to operate in large public networks it does not possess functionalities to address this issue. In this thesis we propose and analyze mechanisms which improve the QoS performance of Ethernet enabling it to meet the demands of the current and next generation services and applications.\u

    Defy the Game: Automated Market Making using Deep Reinforcement Learning

    Get PDF
    Automated market makers have gained popularity in the financial market for their ability to provide liquidity without needing a centralized intermediary (market maker). However, they suffer from the problems of slippage and impermanent loss, which can lead to losses for both liquidity providers and takers. This work implements a pseudo-arbitrage rule to solve the impermanent loss issues related to arbitrage opportunities. The mechanism implements a trusted external oracle to get the market conditions, put them on the automated market maker, and match the bonding curve to them. Next, the application of a Double Deep Q-Learning reinforcement learning algorithm is proposed to reduce these issues in automated market makers. The algorithm adjusts the curvature of the bonding curve function to adapt to market conditions quickly. This work describes the model, the simulation environment used to learn and test the proposed approach, and the metrics used to evaluate its performance. Finally, it explains the results of the experiments and analysis of their implications. The approach shows promise in reducing slippage and impermanent loss and recommending improvements and future works

    Congestion control protocols in wireless sensor networks: A survey

    Get PDF
    The performance of wireless sensor networks (WSN) is affected by the lossy communication medium, application diversity, dense deployment, limited processing power and storage capacity, frequent topology change. All these limitations provide significant and unique design challenges to data transport control in wireless sensor networks. An effective transport protocol should consider reliable message delivery, energy-efficiency, quality of service and congestion control. The latter is vital for achieving a high throughput and a long network lifetime. Despite the huge number of protocols proposed in the literature, congestion control in WSN remains challenging. A review and taxonomy of the state-of-the-art protocols from the literature up to 2013 is provided in this paper. First, depending on the control policy, the protocols are divided into resource control vs. traffic control. Traffic control protocols are either reactive or preventive (avoiding). Reactive solutions are classified following the reaction scale, while preventive solutions are split up into buffer limitation vs. interference control. Resource control protocols are classified according to the type of resource to be tuned. © 2014 IEEE

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore