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Abstract 
Automated market makers have gained popularity in the financial market for their ability to provide 
liquidity without needing a centralized intermediary (market maker). However, they suffer from the 
problems of slippage and impermanent loss, which can lead to losses for both liquidity providers and takers. 
This work implements a pseudo-arbitrage rule to solve the impermanent loss issues related to arbitrage 
opportunities. The mechanism implements a trusted external oracle to get the market conditions, put them 
on the automated market maker, and match the bonding curve to them. Next, the application of a Double 
Deep Q-Learning reinforcement learning algorithm is proposed to reduce these issues in automated market 
makers. The algorithm adjusts the curvature of the bonding curve function to adapt to market conditions 
quickly. This work describes the model, the simulation environment used to learn and test the proposed 
approach, and the metrics used to evaluate its performance. Finally, it explains the results of the experiments 
and analysis of their implications. The approach shows promise in reducing slippage and impermanent loss 
and recommending improvements and future works. 
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1. Introduction 
In recent years, along with the emergence, evolution, and global adoption of the blockchain ecosystem and 
cryptocurrencies, Decentralized Finance (DeFi) applications have been gaining popularity. Currently there 
are about 6.68 million users, with a growth of 34% compared to January 2022 and more than 400% 
compared to January 2021. Regarding the market size, the Total Value Locked (TVL) is USD 77.29 billion, 
peaking at the end of 2021, with a value of USD 165.47 billion (Raynor de Best, 2023).  

DeFi's rise preserves the general principles of scalability, security, and decentralization, which are 
supported by smart contracts on public blockchains, allowing the creation of an entire financial system in 
which different parties can operate under shared data and assumptions without trust issues caused by the 
institutional intervention (Lim, 2022). 

1.1. Decentralized Exchanges 

Decentralized Exchanges (DEXs) are an essential component of the DeFi ecosystem. A DEX is a 
cryptocurrency exchange type that operates on a decentralized platform, typically on a blockchain network. 
In a DEX, trades are executed through a smart contract that usually operates as an automated market maker. 
Unlike centralized exchanges (CEXs), DEXs do not rely on a central authority to maintain an order book. 
Instead, they allow users to trade crypto assets using a peer-to-peer mechanism without the need for 
intermediaries (Bartoletti et al., 2022). 

In a CEX, trades are executed through an intermediary that acts as a trusted third party, controlling the 
exchange and its users. Clear examples of these exchanges are Binance, CoinBase, and Bitfinex. CEXs 
typically have a higher trading volume and liquidity than DEXs, as they allow for faster transaction speeds 
and can support a more significant number of trading pairs. However, centralized exchanges are also more 
susceptible to hacks and security breaches, as the centralization of control creates a single point of failure. 
Furthermore, CEX exchanges often require users to provide sensitive personal information, such as identity 
verification, which can compromise their privacy and security. There have been numerous events in the last 
years where the security of these CEXs was compromised, resulting in millions of dollars in losses and 
theft of information. 

DEXs offer several advantages over CEXs, including increased security and privacy, as trades are executed 
through a trustless system that does not rely on intermediaries or require users to provide personal 
information. DEXs also enable users to control their funds, as they typically use non-custodial wallets that 
allow users to hold their private keys.  
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1.2. Automated Market Makers 

Similar to centralized exchanges like Binance, FTX, and Coinbase, decentralized exchanges started 
employing the Limit Order Book to facilitate trades (Khakhar & Chen, 2022). These books maintain two 
lists of sorted information, one for buying (bid) and one for selling (ask), including the prices and amount 
that traders are willing to buy or sell (Biais et al., 1995). Liquidity for these books is accomplished by 
market participants adding orders to the book, such as a bid order to buy a certain number of shares at a 
certain price or an ask order to sell a specified number of shares at a certain price. The market participant 
who adds liquidity to the Limit Order Book is a Market Maker (MM).  

Once an order is placed, another participant has the option to accept the entire offer or only a portion of the 
shares. The participant who accepts the bid or ask and removes liquidity from the Limit Order Book is 
referred to as the Market Taker. Due to the high fees associated with maintaining a Limit Order Book on 
the Ethereum chain, placing and updating orders on the book became excessively costly. As a result, a new 
solution was introduced: Automated Market Makers (AMMs), which have primarily replaced Limit Order 
Books in most DEXs (Khakhar & Chen, 2022). In an AMM-based DEX, individual buy and sell orders are 
not required because traders interact directly with protocol smart contracts so that trades execute 
automatically against a liquidity pool. The AMM system uses a mathematical formula known as a bonding 
curve or conservation function to determine the price of a given asset based on its supply and demand.  

AMM systems have become popular in DEXs due to their ability to provide liquidity without 
intermediaries. They offer several benefits, including decentralization, automation, and continuous 
liquidity. In a traditional Order Book-based exchange, the market price of an asset is determined by the last 
matched buy and sell orders, which are driven by the supply and demand of the asset. However, in an 
AMM-based DEX, a liquidity pool acts as a single counterparty for each transaction. Asset pricing is 
algorithmically given by the bonding curve function, which only allows the price to move along predefined 
trajectories. This means that users can obtain immediate liquidity without finding an exchange counterparty, 
while liquidity providers (LPs) can profit from asset supply with exchange fees from users (traders). 
Additionally, since AMMs use a conservation function for price setting, maintaining an order book on a 
distributed ledger is unnecessary (Xu et al., 2022). 

When a user wants to trade a cryptocurrency asset, the AMM system automatically matches the trade with 
the liquidity provided by other users. The AMM system uses the bonding curve to calculate the asset price 
based on the ratio of the assets in the pool and the trading fees charged by the system. As the number of 
users and trades increases, the asset's price adjusts accordingly, ensuring the market remains liquid and 
efficient. 

AMMs offer accessible liquidity provision and exchange for illiquid assets to benefit liquidity providers 
(LPs) and traders. However, they come with implicit economic risks such as high slippage and divergence 
loss, which can result in losses for exchange users and LPs, respectively. Additionally, AMM-based 
Decentralized Exchanges (DEXs) face numerous security and privacy issues. Over the past few years, new 
protocols have been introduced with incremental improvements to address these issues and cater to new 
use cases. Despite their innovative features, most AMM protocols share a similar structure consisting of 
composed mechanisms allowing multiple system functionalities. The main differences between these 
protocols are parameter choices and mechanism adaptations (Xu et al., 2022). 
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There are numerous AMM-based DEXs currently in operation, with new ones emerging regularly: 

• Uniswap: Uniswap is a DEX that uses an automated market maker (AMM) to facilitate trades. It 
allows users to trade any ERC-20 token on the Ethereum blockchain. Uniswap is one of the most 
popular DEX, with a daily trading volume of around $1 billion (Uniswap, 2023). 

• SushiSwap: SushiSwap is a fork of Uniswap that aims to offer more features and incentives to 
users. It also uses an AMM model and rewards liquidity providers in its native token, SUSHI. 

• PancakeSwap: PancakeSwap is built on the Binance Smart Chain, which offers lower fees and 
faster transactions than Ethereum. It uses an AMM model and allows users to stake and farm its 
native token, CAKE. 

• Curve Finance: Curve specializes in stablecoins trading, providing low-slippage trades for 
stablecoin pairs. It uses a Hybrid Function Market Maker protocol. 

• Balancer: Balancer is a multi-token AMM that allows users to create custom pools with up to eight 
tokens with customizable weights. It also offers liquidity providers incentives in its native token, 
BAL. 

1.3. AMM participants 

Market participants in an Automated Market Maker (AMM) can be broadly divided into two categories: 

• Liquidity taker 
• Liquidity provider 

1.3.1. Liquidity taker or trader 

A trader is any user that exchanges assets by taking liquidity from the market supplied by liquidity makers. 
The price of an asset is determined by the bounding curve that defines the relationship between the 
quantities of each asset in the pool. AMM protocols execute trades through liquidity pools for each pair of 
tradable tokens reserved in their respective smart contracts. A trader seeking to exchange X tokens for Y 
tokens can deposit X tokens in the liquidity pool and receive Y tokens in an atomic swap, ensuring that the 
pool's aggregate liquidity remains unchanged, as defined by the bonding curve. This pricing function 
determines the exchange rate at which the tokens are swapped (Lim, 2022). 

The traders anticipate that the market will reflect the actual value of assets, with little price change during 
trade execution (or slippage) and the ability to exchange assets on demand. When a trader makes a trade, 
they pay a fee to the liquidity pool proportional to their trade size. In return, the pool provides the trader 
with the desired asset at the current market price.  

There is a type of trader known as an arbitrageur. These arbitrageurs identify asset pricing differentials 
between different exchanges and trade these differentials to profit. When the exchange rate of a token pair 
differs from other exchange quoted prices, AMM protocols allow arbitrageurs to execute arbitrage trades 
to bring the exchange rate back into line with general market conditions (Aoyagi, 2020). 
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1.3.2. Liquidity provider 

Liquidity providers contribute assets to liquidity pools that are used to facilitate trading on the AMM. They 
establish an efficient market in which liquidity takers can trade assets. Liquidity providers contribute pairs 
of X and Y crypto-assets to the pool so traders can buy or sell X and Y crypto-assets. In exchange for their 
contribution, LPs receive a portion of the trading fees charged on the exchange as the incentive mechanism. 
The fees earned by LPs are proportional to the amount of liquidity they provide to the pool. LPs can 
withdraw their liquidity at any time, subject to a penalty fee in some cases. LPs help to ensure that there is 
sufficient liquidity in the pool to facilitate trades. In contrast, traders help to establish the market price of 
assets by engaging in buying and selling activities. 

Figure 1 shows a general diagram of the AMM and its participants. 

 

Figure 1. Diagram of an Automated Market Maker and its relationship with participants (own 
figure). 

1.4. Common issues with AMMs 

There are common issues among the existing AMMs that affect the stakeholders. One of them is the low 
capital efficiency, which is a function of the capital needed for efficient market making. Generally, it 
requires high capital to achieve the same performance as an order book-based exchange. This is because a 
significant portion of AMM liquidity is only available when the pricing curve starts to turn exponential. 
Consequently, rational traders will never utilize most liquidity due to the extreme price impact. 

Another issue is the slippage loss. It refers to the implicit cost incurred by a liquidity taker when the actual 
execution price of a trade deviates from the expected price. This deviation can occur due to market volatility 
or when the trade sizes are relatively large compared to the size of the liquidity pool. Although it is 
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impossible to eliminate slippage, reducing this market inefficiency to the lowest possible level is to the 
benefit of liquidity takers. 

Finally, the impermanent loss is a cost that liquidity providers incur. It occurs when the price of the two 
assets in the liquidity pool changes. If the price of one asset increases relative to the other, traders will buy 
more of the first asset and sell more of the second asset, causing the liquidity pool to become unbalanced. 
As a result, the liquidity provider's share of the pool shifts towards the less valuable asset than the value of 
the initially deposited assets, leading to a temporary loss of value. This loss is impermanent because it is 
only realized if the liquidity provider decides to withdraw their liquidity from the pool when the asset prices 
are not in balance. Impermanent loss is a significant concern for liquidity providers because it can result in 
them earning less than if they had held the two assets separately, even if the liquidity pool has earned fees 
from trades. 

1.5. Reinforcement Learning 

Reinforcement learning (RL) is a subfield of machine learning, which has gained increasing relevance in 
recent years in various studies applied to the field of finance, particularly in the context of optimal market 
making (Carlsson & Regnell, 2022). The algorithm involves an agent learning how to make decisions 
through interactions with an environment. The goal of a reinforcement learning algorithm is to find the 
optimal actions that the agent can take in order to maximize a long-term cumulative reward signal. Unlike 
other machine learning techniques, reinforcement learning interacts in a trial-and-error way with its 
environment. Given a state of the world, the agent takes actions in the environment, which response with a 
reward signal that depends on the agent's actions. The agent's goal is to learn a policy that maps observations 
of the environment to actions that maximize the cumulative reward over time. Reinforcement learning is 
especially useful in situations where the optimal solution is not known, and the agent must learn through 
exploration. In finance, RL has been applied to a variety of tasks, including portfolio optimization, 
algorithmic trading, risk management, and fraud detection. While considering an economic problem, 
traditional approaches may not consistently achieve optimal performance.  

One of the critical components is the reinforcement signal, known as a reward. This reward is a numerical 
value that the agent receives from the environment, representing the action's quality. The reinforcement 
signal can be positive or negative, depending on whether the action the agent takes leads to a desired 
outcome. The agent's objective is to maximize the cumulative reward it receives over time. To achieve this, 
reinforcement learning algorithms typically use a value function or a policy function. The value function 
estimates the expected long-term reward for a given state and action, while the policy function maps states 
to actions. The agent uses these functions to select the action most likely to lead to the highest reward. 

However, while reinforcement learning methods it has seen success in recent years, its scalability is limited, 
and it struggles with high-dimensional problems. This is where Deep Reinforcement Learning (DRL) 
comes in, which combines reinforcement learning with Deep Learning (DL). DL utilizes the robust function 
approximation and representation learning properties of deep neural networks (DNNs) to handle complex 
and nonlinear patterns in data. By incorporating these methods, DRL can efficiently overcome the 
limitations of traditional RL approaches (Singh et al., 2022). 
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Despite its successes, many challenges must be addressed. One of the main ones is the issue of exploration 
versus exploitation. The agent must balance the desire to explore new actions with the need to exploit the 
actions that leads to high rewards. Another challenge is the issue of generalization. The agent must be able 
to generalize their knowledge to new situations rather than simply memorizing the actions that led to high 
rewards in specific situations. Reinforcement learning is a powerful approach to machine learning that has 
shown great promise in a wide range of applications. By learning from experience, reinforcement learning 
algorithms can adapt to changing environments and learn how to make decisions that lead to the highest 
reward. As the field continues to develop, reinforcement learning is likely to become a more crucial tool 
for solving complex problems. 

1.6. Objective 

The objective of this work is to solve impermanent loss and slippage issues within a generic AMM 
framework. First, it adopts from the existing literature the application of a pseudo-arbitrage rule to resolve 
the impermanent loss issues associated with arbitrage opportunities. The mechanism implements a trusted 
external oracle to get the market conditions on the AMM and match the bonding curve to them. Next, it 
implements a Double Deep Q-Network (D-DQN) reinforcement learning algorithm to price swaps orders, 
aiming to minimize the remaining impermanent loss and slippage concerns within the AMM. 

This work starts by providing an overview of related studies in the AMM and RL fields, establishing a 
comprehensive understanding of the existing knowledge gaps. Then, it exposes the methodology adopted 
and the proposed D-DQB developed system, with the main findings and results. Finally, it discusses and 
concludes the work. 
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2. Literature Review 
Although there is limited research that applies RL models to AMMs, some studies have emerged in the past 
two years. However, a number of studies have explored the different challenges in AMM and reinforcement 
learning separately. 

2.1. AMM models 

Xu et al. (2022) described the economics of an AMM, formalized the system's state-space representations, 
proposed a general framework, and compared it to the existing protocols, including fees system and implicit 
costs such as divergence and slippage losses. Wang (2020) compared mathematical models for AMM, such 
as the logarithmic market scoring rule (LMSR), liquidity-sensitive LMSR (LS-LMSR), and constant 
product/mean/sum, and proposed a constant ellipse-based cost function.  

Bartoletti et al. (2022) formalized the fundamental properties of the AMMs, characterizing both structural 
and economic aspects. He also devised a general solution to the arbitrage problem.  

Aoyagi (2020) analyzed the coexistence between a centralized limit-order book and an AMM and proposed 
an equilibrium valuation point for more accurate pricing in the AMM.  

Engel and Herlihy (2021) investigated how an AMM's formula affects the interests of liquidity providers, 
providing an analysis of how equilibrium valuation price and divergence, and slippage losses can be 
minimized. They also formally defined these costs and demonstrated that while they could be moved 
around, they could never be eliminated.  

Using input from a market price oracle to change the mathematical relationship between the assets, 
Krishnamachari et al. (2021) proposed a new method to build an AMM with the idea of dynamic curves. 
As a result, the pool price continuously and automatically adjusts to be the same as the market price. 

2.2. Deep Reinforcement Learning on MM 

Most applications of Reinforcement Learning and Deep Reinforcement Learning algorithms for market-
making optimization are on CEXs. These studies try to get optimal bidding and pricing strategies in limit-
order books. 

Sadighian (2020) developed a policy-based model-free Reinforcement Learning algorithm trained from 
order book data using an event-based environment, where an event is defined as a change in price greater 
or less than a given threshold, as opposed to by tick or time-based events. Bakshaev (2020) applied a 
continuous action space soft actor-critic Reinforcement Learning model using Open AI. Spooner (2020) 
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developed an Adversarial Reinforcement Learning to produce market-making agents that are robust to 
adversarial and adaptively-chosen market conditions. These cases are not helpful when applying them in 
AMM since they operate algorithmically in a deterministic way. 

2.3. Deep Reinforcement Learning on AMM 

The research on this specific area is relatively sparse. Most studies apply Reinforcement Learning for 
automatic trading from an investment management perspective. For example, Lucarelli & Borrotti (2019) 
compared Double and Dueling DQN to trade Bitcoin, using the Sharpe ratio and profit as reward functions. 

Lim (2022) utilized a deep hybrid Long Short-Term Memory (LSTM) and a Double Deep Q-Learning 
algorithm to reduce divergence loss for liquidity providers, reduce slippage for liquidity takers and improve 
market efficiency through better forecasts liquidity concentration ranges. In a different-scoped study, 
Churiwala and Krishnamachari (2022) proposed a Q-Learning model to optimize the fees collected by the 
liquidity providers on an AMM protocol, varying fee rates, and leverage coefficients with different market 
conditions.  

However, to date, no model has comprehensively generically addressed the problem. Lim proposed a 
solution to reduce slippage and impermanent loss in the Uniswap v3 protocol, which uses CPMM. This 
paper builds upon Lim's work and extends it to the case of a Hybrid Flexible Market Maker (HFMM). 
Specifically, the proposed approach is an alternative Double Deep Q-Learning model that adjusts the 
leverage coefficient C. 
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3. Empirical Development 

3.1. Background on AMM 

3.1.1. Conservation Function 

The bonding curve is defined by a conservation function, which is the mathematical expression determining 
the asset price in an AMM. This function follows an invariant property (Churiwala & Krishnamachari, 
2022). 

Constant Sum Market Maker 

The Constant Sum Market Maker (CSMM) is a simple exchange function not commonly utilized due to its 
notable drawbacks. The CSMM maintains the sum of token reserves, denoted by (x, y), as a constant value, 
which is expressed as this equation: 

(𝑥! − ∆") + (𝑦! + ∆#) = 𝑘 

Where: 

• 𝑥! and 𝑦! are the reserves of X and Y tokens at a fixed time t, respectively, 
• ∆𝒙 and ∆𝒚 are the changes of X and Y tokens on a trade, respectively, 
• 𝑘 is a constant defined by the AMM. 

Generalizing to multiple tokens: 

.𝑖!

&

'()

= 𝑘 

Where: 

• 𝑛 is the number of tokens in the pool. 

The equation implies that the exchange rate between tokens is constant. In contrast, it is vulnerable to 
arbitrage opportunities: when there is an imbalance or volatility in the market and given that the exchange 
rate does not change, any arbitrageur would drain one of the reserves. 
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Constant Product Market Maker 

Due to its robustness under different market conditions, the canonical conservation function is the Constant 
Product Market Maker (CPMM). It assumes that the product of the amounts of each token in the pool is 
constant. For token reserves (x, y), consider: 

(𝑥! − ∆"). (𝑥! + ∆#) = 𝑘 

Generalizing to multiple tokens: 

2𝑖!

&

'()

= 𝑘 

In this case, exchange rate changes at every state, which causes a series of issues such as slippage or 
impermanent loss but are always able to provide liquidity. 

Hybrid Function Market Maker 

The Hybrid Function Market Maker (HFMM) combines CSMM and CPMM. While the CSMM maintains 
a constant sum of reserves, meaning there is no price slippage, the CPMM provides liquidity even in limited 
markets. The HFMM is designed to achieve no price slippage, even in illiquid markets, and always provide 
liquidity. By merging the exchange functions of CSMM and CPMM, the HFMM curves lie between them, 
with the curvature controlled by a leverage coefficient C. This coefficient determines the curvature of the 
HFMM, which can be adjusted to lean towards either the CPMM or the CSMM curve.  

This function is inspired mainly by the whitepaper for Curve Finance (Egorov, 2021). The protocol's 
underlying exchange function can dynamically shift from a constant-product invariant to a constant-sum 
invariant. This shift is accomplished by interpolating between the two invariants, controlled by the C 
leverage coefficient. 

When 𝐶 → 0, the exchange behaviors as a CPMM, and when 𝐶 → ∞, it does it as a CSMM. From the first 
version of Curve Finance (Egorov, 2019), the invariant equation becomes: 

𝐶. 𝑛&..𝑖!

&

'()

+ 𝐷 = 𝐶.𝐷. 𝑛& +
𝐷&*)

𝑛&. ∏ 𝑖!&
'()

 

Where: 
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• C is the leverage coefficient, 
• n is the number of tokens available at the pool, 
• 𝑖! is the available amount of token i at a fixed time t, 
• D the constant sum invariant defined by ∑ 𝑖!&

'() . 

Figure 2 shows the three types of bonding curves. 

 

Figure 2. Types of bonding curves: Constant Product Market Maker, Constant Sum Market Maker, 
and Hybrid Function Market Maker (own figure). 

3.1.2. Price and Bonding Curve 

It is noted on every AMM function that every associated curve is convex and monotonically decreasing. 
This ensures that the price of the token x is monotonically decreasing as a function of its availability in the 
pool, as should be expected of a typical supply curve (Krishnamachari et al., 2021). 

For token reserves (x, y) and given an AMM function, the price of token x, measured in terms of y, is: 

𝑝"(𝑥, 𝑦) = −	
𝑑𝑦
𝑑𝑥
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For example, for the CPMM, it gets 𝑝"(𝑥, 𝑦) = 	
+
"!
 , and it is noted that the price of token x varies with its 

supply in the liquidity pool. 

Then, the value of the pool is: 

𝑉,(𝑥, 𝑦) = 𝑝" . 𝑥 + 𝑦 

 

3.1.3. Slippage 

Slippage refers to the financial loss suffered by a trader due to a discrepancy between the pool price at 
which a trade is initiated and the actual price achieved during the trade. Given a trader who wants to buy 
∆" units of token X, then the liquidity pool goes from (𝑥-, 𝑦-) to (𝑥! , 𝑦!) = (𝑥- − ∆" , 𝑦- + ∆#). If the pool 
price at t=0 was 𝑝-, then the buyer would have to pay ∆#"= 𝑝-∆". The difference between ∆# and ∆#" is 
defined as the slippage loss 𝑆(𝑥-, 𝑦-, ∆"). Similarly, on a sell of X token, the slippage results: 
𝑆(𝑥-, 𝑦-, −∆"). 

On a CSMM, the slippage loss is always 0 because the price is constant at all points on the curve. However, 
for any strictly convex curve, such as CPMM or HFMM, the slippage loss is always a positive quantity, 
given that the tangent line will be below the curve. This implies that traders will always incur a penalty. 
Moreover, as the size of the trade increases, the total slippage will also increase, which can serve as a 
disincentive for traders to conduct large trades with the liquidity provider.  

Figure 3 presents a bonding curve from a CPMM, showing slippage on a sample trade. 
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Figure 3. Bounding curve defined from a CPMM. It is shown the slippage on a trade (adopted from 
Krishnamachari et al., 2021). 

3.1.4. Impermanent Loss 

Generally, when a trade is made, the price changes and moves from (𝑥-, 𝑦-) to (𝑥! , 𝑦!), resulting in a new 
price. This causes the value of a liquidity pool could decrease after the trade. This decrease is defined as 
impermanent loss, as follows: 

𝛿 =
𝑉,#(𝑥! , 𝑦!) − 𝑉,#(𝑥-, 𝑦-)

𝑉,#(𝑥-, 𝑦-)
 

For a CPMM, this results in the following: 

𝛿 =
2B𝜌	− 1 − 𝜌

1 + 𝜌
 

For a CSMM, as the price does not change, 𝛿 = 0 
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3.1.5. Dynamic Curves 

In the original CPMM, the curve has a fixed form and is determined by the initial total liquidity, suppose 
𝑥-. 𝑦- = 𝑘. The curve can only change if the liquidity provider add/remove tokens of the pool, but not from 
trading activity. 

Suppose an AMM learns from an external Oracle service that its assets market valuation has moved from 
the current stable value, from (𝑥-, 𝑦-) to (𝑥-′, 𝑦-′). This leaves the liquidity providers exposed to arbitrage 
trades and, in consequence, to substantial impermanent loss, moving (𝑥-, 𝑦-) to (𝑥-′, 𝑦-′) (Engel and 
Herlihy, 2021). 

The AMM can eliminate this opportunity by moving the curve, as a pseudo arbitrage. Suppose  𝑥- > 𝑥-’ 
and 𝑦-′ > 𝑦-, the transformed AMM curve becomes (𝑥, 𝑓(𝑥 − (𝑥- − 𝑥-′) − (𝑦-′ − 𝑦-)). The current state 
(𝑥-, 𝑦-) still lies on the new curve, but now with a different slope, e.g., price that matches the new valuation. 

The main advantage of this is that the AMM is no longer exposed to impermanent loss from arbitrage trades. 
The disadvantage is that the equation does not satisfy the boundary conditions:  

• lim
"→/

𝑓(𝑥) = 0 and 
• lim

"→-
𝑓(𝑥) = ∞ .  

This means now the AMM contains more units of token x and a shortage of token y to cover all possible. 
Although the imbalance is usually minor, given that small tick changes typically drive price movements in 
an efficient market, it can accumulate over time and become problematic. Therefore, the AMM will need 
to address this shortfall by making minor adjustments to liquidity provisions to rebalance the pool. As part 
of liquidity provision, liquidity providers must deposit additional tokens of either x or y, as the AMM states. 
Incentives will be provided for all tokens deposited, including the additional X or Y tokens. This result 
generalizes to the dynamic version of any strictly convex curve (Krishnamachari et al., 2021). 

3.2. Background on Reinforcement Learning 

3.2.1. Key Elements 

Although there is a wide range of algorithms in reinforcement learning, they all have the same essential 
components (Ravichandiran, 2020; Dixon et al., 2020): 

• Agent. An agent, also called a learner, is a software program that learns to make decisions in a 
settled environment. For instance, in a financial trading environment, the agent could be a trader 
making decisions on order executions. 
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• Environment. The environment is everything outside of the agent. In a more general sense, it is 
the universe except for the agent, but technically it is simplified and modeled. In the financial 
trading example, the environment could be the market, including orders, tokens, prices, and the rest 
of the traders. 

• State. A state is a representation of  the position in the modeled environment that the agent can be 
in. For example, a state of the environment could be the current orders, tokens, and prices at a 
specific moment. The agent, as it evolves, will go through different states of the environment. The 
environment is denoted by 𝑠. 

• Action. The agent interacts with the environment and moves from one state to another by 
performing an action. For example, at every step, the trader places an order on the market with a 
buy or sell price. The order, with its details, is the action. It is denoted by 𝑎. 

• Reward. The agent receives a reward based on the action executed by the agent and the new state 
of the environment. This is nothing but a numerical value based on the performance of the action. 
For the provided example, if the trader (agent) places an order (action) and gets a positive profit, 
the agent receives a positive reward. In contrast, if the agent loses money on the trade, it receives a 
penalization of a negative reward. Modeling a reward function is one of the main components that 
drive a reinforcement learning algorithm, affecting every decision the agent makes and can lead to 
excellent results or poor performance in a sensible way. 

Figure 4 shows the interaction between the agent and the environment. Given a state, the agent performs 
and action on the environment, which outputs a new state and the corresponding reward. 

3.2.2. Algorithm 

The basic steps for a reinforcement learning algorithm are: 

1. At the step 𝑡, the agent gets the state of the environment 𝑠! and executes and action 𝑎! 
2. By performing an action, the environment moves to state 𝑠!*) 
3. Based on this new state, the agent receives a reward 𝑟!*) 
4. Given this reward, the agent will interpretate if the executed action was good or not and will learn 

from this with the purpose of receive positive rewards on the next steps. 

There are a lot of considerations in each of these steps, which will be explained and detailed in the following 
sections. 
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Figure 4. Agent-Environment interaction in a reinforcement learning model (adopted from Sutton 
and Burton, 2020) 

3.2.3. Other Elements 

Action Space 

In each state, the agent can perform a determined range of actions on the environment. This set of actions 
is called action space. There are two types: 

• Discrete action space 
• Continuous action space 

The first one consists of actions that are discrete. For the trading example, the action space could consist of 
a sell order and a buy order. On the other hand, continuous action space is suited when actions are 
continuous. For example, the amount of the placed order could be a continuous variable. 

Policy 

The policy is the core of the agent. It tells the agent which action to perform in each state. In its most basic 
form, the policy is a table that maps each state to an action. The table is initialized with random values, and 
over the series of iterations, it will be learned from the rewards, and values will be updated. The optimal 
policy is the policy that gets the agent the best reward. It can be classified as: 

• Deterministic policy 
• Stochastic policy 
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The first one maps each state to one particular action. It does not mean that it will not change over iterations, 
but it is, at each step, fully determined. Unlike a deterministic policy, a stochastic policy maps the state to 
a probability distribution over an action space. 

Episode 

The model evolves over the advancement of the states of the environment. The agent-environment 
interaction starting from one state until a final state is called an episode, and the agent will act over episodic 
tasks. This is the generic case in games, where the agent dies and is not able to continue executing new 
actions. Sometimes, the model cannot have a final state so that the agent will act over a continuous task. 
This case can be applied to the example of the trader, given that it acts on the market, which does not have 
an ending state. 

3.2.4. Markov Decision Process 

The foundation of reinforcement learning is the Markov Decision Process (MDP). It provides a 
mathematical model used to generate decision-making problems in situations where the outcome of an 
action is uncertain. In its discrete form, an MDP consists of a set of states and a set of actions that can be 
taken in each state, a reward function that determines the immediate reward obtained for each action, and a 
transition function that specifies the probability of moving from one state to another after taking an action.  

The MDP framework assumes that the future depends only on the current state and not any previous states 
or actions. Reinforcement learning uses MDP as a framework to model the decision-making problem, and 
the agent's goal is to learn the optimal policy by maximizing the expected cumulative reward (Rao & Jelvis, 
2022).  

To formalize this process, the notation provided by Liu (2020) is introduced: 

• Event: 𝑡 
• State: 𝑠! 
• Action: 𝑎! 
• Next state from state 𝑠! following action 𝑎!: 𝑠!*), with probability: 

 
𝑃(𝑠!*)|𝑠! , 𝑎!) 

 
• Reward given to the agent while it transits to 𝑠!*): 𝑟!, with probability: 

 
𝑃(𝑠!*), 𝑟!|𝑠! , 𝑎!) 

 
• Policy of the agent, which is probability of taking action 𝑎! from state 	𝑠!: 𝜋(𝑠! , 𝑎!) 
• The objective is to maximize cumulative discounted return: 
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𝐺! = . 𝛾+
01!1)

+(-

. 𝑟!*+*) 

 
including the possibility of 𝑇 → ∞ or 𝛾 = 1 but not both. 𝛾 is the discounted factor and is applied 
so the agent can learn to sacrifice the short-term reward for a bigger long-term benefit. 

The analysis reveals the presence of multiple integral components, including the agent, the environment, 
the reward signal, and the policy or value function. The agent is the entity that interacts with the 
environment and makes decisions based on the current state. The environment is the entity that the agent 
interacts with and provides feedback in the form of a reward signal. The reward signal is a scalar value that 
indicates the quality of the agent's action in the current state. The policy or value function is the function 
that the agent learns to make decisions based on the current state.  

The probability for each possible pair of (𝑟, 𝑠′) to transition from state 𝑠 after action 𝑎: 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) = 𝑃(𝑠!*) = 𝑠′, 𝑅!*) = 𝑟|𝑠! = 𝑠, 𝑎! = 𝑎) 

Then, the policy is defined: 

𝜋(𝑎|𝑠) = 𝑃(𝑎! = 𝑎|𝑠! = 𝑠) 

Given a policy, the value of state or value function is defined as: 

𝑉2(𝑠) = 𝐸2[𝐺!|𝑠! = 𝑠] = 𝐸2[. 𝛾+
/

+(-

. 𝑟!*+*)|𝑠! = 𝑠] 

Notice that this value of state is dependent on the policy. The value function denotes the expected return 
starting from that state and following the policy 𝜋. 

Similarly, for a state-action pair, the Q value of a state-action pair or Q function is defined as: 

𝑄2(𝑠, 𝑎) = 𝐸2[𝐺!|𝑠! = 𝑠, 𝑎! = 𝑎] = 𝐸2[.𝛾+
/

+(-

. 𝑟!*+*)|𝑠! = 𝑠, 𝑎! = 𝑎] 

In this case, the Q function represents the expected return starting from a given state-action pair and 
following the policy 𝜋. 
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3.2.5. The Bellman Equation 

The Bellman equation simplifies the state value or state-action value calculation. 

The value function has a recursive property (Liu, 2020): 

𝑉2(𝑠) = 𝐸2[.𝛾+
/

+(-

. 𝑟!*+*)|𝑆! = 𝑠] 

= 𝐸2[𝑅!*) +.𝛾+
/

+(-

. 𝑟!*+*3|𝑆! = 𝑠] 

=. 𝜋(𝑎|𝑠)
4

. . 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
567

[𝑟 + 𝛾. 𝑉2(𝑠′)] 

This equation presents a recursive method to compute the value function at time 𝑡 in terms of its future 
values at time 𝑡 + 1 by going backward in time. This equation type is known as Bellman Equation. It was 
proposed in 1950s by Richard Bellman in the context of his pioneering work on dynamic programming 
(Bellman, 1952). 

Similarly, the Bellman equation of the Q-function is: 

𝑄2(𝑠, 𝑎) =. 𝜋(𝑎|𝑠)
4

. . 𝑝(𝑠7, 𝑟|𝑠, 𝑎)
56$

[𝑟 + 𝛾. 𝑄2(𝑠7, 𝑎′)] 

3.2.6. The Optimal Bellman Equation 

Is it known that the value function depends on the policy, i.e., the value of a given state varies based on the 
chosen policy? Thus, there can be many different value functions according to different policies. The 
optimal value function denoted as 𝑉∗(𝑠) is the one that yields the maximum value compared to all other 
value functions. In a more general sense, the optimal Bellman equation is the one that has the maximum 
value (Ravichandiran, 2020).  

The problem is that it needs to be known which action gives the maximum value. The solution is, instead 
of using a policy to select the action, compute the value of the state using all possible actions and then select 
the maximum value as the value of the state. 
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Given this, the expectation over the policy can be removed from the equation, and add the max over the 
action to express the optimal Bellman equation:  

𝑉∗(𝑠) = 𝑚𝑎𝑥4. . 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
567

[𝑟 + 𝛾. 𝑉∗(𝑠′)] 

Similarly, for the Q function, instead of using the policy 𝜋 to select action 𝑎′ in the next state 𝑠′, it is given 
by choosing all possible actions in that state 𝑠′ and computing the maximum Q value: 

𝑄∗(𝑠, 𝑎) =. . 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
567

[𝑟 + 𝛾.𝑚𝑎𝑥47𝑄∗(𝑠7, 𝑎′)] 

The relationship with these two identities is given as follows: 

𝑉∗(𝑠) = 𝑚𝑎𝑥4𝑄∗(𝑠, 𝑎) 

Using the Bellman equations: 

𝑄∗(𝑠, 𝑎) =. . 𝑝(𝑠′, 𝑟|𝑠, 𝑎)
567

[𝑟 + 𝛾. 𝑉∗(𝑠′)] 

If this relation is reversed, starting from a value function 𝑉(𝑠), or a state-action function 𝑞(𝑠, 𝑎), an optimal 
policy is obtained: 

𝜋9(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥4.𝑝(𝑠′|𝑠, 𝑎). 𝑉(𝑠′)
67

 

𝜋:(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥4𝑄(𝑠, 𝑎) 

3.2.7. Policy-based vs Value-based models 

Given the previous equations, it is noted that there are two approaches to learn the policy: 

• Policy-based methods: where the policy function is directly trained, using the p-function (𝜋9(𝑠)). 
It is also called P-Learning. 

• Value-based methods: where the policy function is learned indirectly. First, the agent learns which 
state is more valuable, and then take the action that leads to the more valuable states. It is also called 
Q-Learning. 
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In policy-based reinforcement learning, the agent learns a policy function that maps states to actions, e.g., 
selecting what action to take given a state (or a probability distribution over actions at that state). The policy 
function can be represented by a neural network or a lookup table. The policy can be deterministic, meaning 
that each output corresponds to one action given a state. It can also be a stochastic policy that outputs a 
probability distribution over actions. Consequently, it is not defined by hand the behavior of the policy, and 
so is the training that will define it. The most common policy-based algorithm is the policy gradient 
algorithm, which learns the optimal policy by updating the parameters of the policy function in the direction 
of the gradient of the expected cumulative reward with respect to the parameters.  

On the other hand, in value-based reinforcement learning, the agent learns a value function that estimates 
the expected long-term reward for taking a particular action in a particular state. The most common value-
based algorithm is Q-learning, which uses a table or function to store the Q-values for each state-action 
pair. The Q-value represents the expected cumulative reward of taking action in a particular state and then 
following the optimal policy from that point on. 

This means that a value function is trained, which outputs the value of a state-action pair. Given this, the 
policy then takes action. Since the policy is not trained, its behavior must be specified. The most common 
policy is the Greedy Policy, which, given the value function, will take actions that always lead to the biggest 
reward.  

3.2.8. The exploration-exploitation trade-off 

In order to maximize its cumulative reward, a reinforcement learning agent must balance its decisions 
between exploiting its past experiences and exploring new options. Exploitation allows the agent to make 
use of its existing knowledge to make decisions, while exploration presents opportunities to discover new, 
potentially better choices. However, excessive exploration can be time-consuming and computationally 
expensive, while pure exploitation can result in suboptimal solutions. Therefore, finding the appropriate 
balance between the two is critical for designing successful RL algorithms (Liu, 2020).  

The exploration-exploitation dilemma is a common challenge in many decision-making processes that 
involve a feedback loop between data gathering and decision-making. An efficient approach to this problem 
is essential for optimizing performance.  

The most basic method is called 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 action selection. In this method, whenever action is selected, 
there is a probability of 𝜀 that this selection is entirely random, regardless of what the current policy model 
outputs. The optimal action based on the current learning is selected with only the probability of 1 − 𝜀. 
This parameter of 𝜀 is usually decreased over time, starting at one at the beginning of the training, such that 
the agent can fully explore different actions. As the slowly decreases to 5% or even to 0, the agent can 
explore some variations based on the current policy. 
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3.2.9. Monte Carlo vs Temporal Difference Learning 

Monte Carlo and Temporal Difference Learning (TD) are two different strategies for training the value or 
policy functions. Both methods use the experience to train the algorithms (Rao, 2022). 

Basically, Monte Carlo uses an entire episode of experience before learning. On the other hand, Temporal 
Difference uses only a step to learn.  

Following the Monte Carlo approach, given a policy 𝜋, generate a number of full episodes. For each state-
action pair in these generated episodes, update the values according to discounted rewards from the full 
episode. This approach can be particularly valuable in situations where the understanding of the 
environment's dynamics is limited (Liu, 2020). 

𝑉(𝑆!) = 𝑉(𝑆!) + 𝛼. [𝐺! − 𝑉(𝑆!)] 

Where 𝐺! is the discounted return from an episode. 

This method carries a limitation: if the length of the episode is large, this could result in a significant 
variance. 

Alternative, the Temporal Difference method update the 𝑉(𝑆!) at each step: 

𝑉(𝑆!) = 𝑉(𝑆!) + 𝛼. 𝛿 

Where 𝛿 is the TD error, defined as: 

𝛿 = 𝑅!*) + 𝛾. 𝑉(𝑆!*)) − 𝑉(𝑆!) 

While in Monte Carlo the update factor is 𝐺!, in Temporal Difference it is estimated using 𝑅!*) +
𝛾. 𝑉(𝑆!*)). According to Liu (2020), studies show that Temporal Difference improves performance 
compared to Monte Carlo. 

3.2.10. Types of Reinforcement Learning algorithms 

Another category for reinforcement learning algorithms is based on whether the agent has access to a model 
of the environment, which is a function that predicts state transitions and rewards (Kanwar, 2019).  
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Model-Based algorithms 

Model-based algorithms enable the agent to engage in proactive planning by forecasting potential outcomes 
for various choices and consciously selecting the best option through this process. Afterward, the agent can 
extract insights from this proactive planning and incorporate them into a learned policy (Kanwar, 2019).  

However, one major drawback is that the agent usually lacks access to an accurate model of the 
environment. If the agent seeks to use a model in such a scenario, it must derive it solely from experience, 
which poses various challenges. The most significant obstacle is that the agent may exploit biases in the 
model, resulting in an agent that performs well based on the learned model but exhibits suboptimal behavior 
in the real environment.  

Model-Free algorithms 

Reinforcement learning methods that are model-free operate without using an environment model (Kanwar, 
2019). They do not attempt to learn the fundamental principles that regulate an agent’s interaction with its 
environment. In contrast to model-based approaches, model-free methods prioritize being simpler to 
implement and tune. Model-free algorithms, such as policy iteration or value iteration, directly calculate 
the optimal policy or value function. This is substantially more computationally efficient. As a result, 
model-free algorithms have garnered considerably more attention than their model-based counterparts. As 
it was explained, there are two main approaches to representing and training agents with model-free 
algorithms: 

• Policy-based methods, or policy optimization methods. 
• Value-based methods, or Q-Learning. 

Off-Policy vs On-Policy models 

Another categorization of reinforcement learning algorithms relies upon terms of the policy. Off-policy 
methods use a different policy for acting (inference) and updating (training), while on-policy models use 
the same one for acting and updating (Kanwar, 2019). 

Overall, the choice between on-policy and off-policy algorithms depends on the specific problem and the 
available resources. On-policy algorithms are preferred in situations where the policy changes frequently 
or the data collection process is expensive, and stability is a major concern. Off-policy algorithms are 
preferred when a significant amount of historical data is available, or the acting policy can be designed to 
cover the state-action space efficiently (Lapan, 2020). 
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3.2.11. The Q-Learning Algorithm 

Q-Learning is an off-policy, value-based method that uses a Temporal Difference approach to train its 
action-value function. It uses an 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy for acting, while a greedy policy for updating values. 

The process is as follows: 

1. Initialize an empty table of 𝑄(𝑠, 𝑎) for all pairs of (𝑠, 𝑎) 
2. Interact with the environment and obtain the state (𝑠, 𝑎, 𝑟, 𝑠′). It is recommended to apply a 

exploration-exploitation technique in this step. 
3. Update the Q value based on the Bellman equation: 
4. 𝑄∗(𝑠, 𝑎) = ∑ ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)567 [𝑟 + 𝛾.𝑚𝑎𝑥47𝑄∗(𝑠7, 𝑎′)] 
5. Check convergence condition and repeat from step 2. 

It is noted that the optimal Q function is used, which may not be optimal in the firsts iterations as Q values 
are not known, and the table is initialized with zero values.  

3.2.12. The Deep Q-Network (DQN) 

Deep neural networks can also be applied to solve reinforcement learning algorithms. Deep Q-Learning or 
Deep Q-Networks (DQNs) was introduced by Mnih et al. (2015).  

The tabular Q-Learning algorithm iterates over a complete set of states, while this becomes computationally 
expensive when the state space becomes more extensive or even continuous. The idea of Deep Q-Learning 
is to build a neural network 𝑄;(𝑠, 𝑎) to approximate 𝑄(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝑎, 𝜃) (Liu, 2020). The simplest form 
of this algorithm is: 

1. Initialize a neural network 𝑄;(𝑠, 𝑎)	with parameter 𝜃 as random to approximate 𝑄(𝑠, 𝑎). The 
dimension of the input and output of the network should be the same as the dimension of state space 
and size of action space.  

2. Interact with the environment and obtain the state (𝑠, 𝑎, 𝑟, 𝑠′). 
3. Calculate the loss given the Temporal Difference method. 
4. Update 𝑄;(𝑠, 𝑎) paremeter 𝜃 using stochastic gradient descent algorithm. 
5. Repeat from step 2 until converged. 

Replay memory 

However, this algorithm is not highly effective. If it selects actions randomly, the chances of hitting and 
earning rewards are quite low. Thus, the program learns very slowly. To address this issue, it is common to 
utilize a replay memory to collect the agent’s experience and, based on that, train the network.  
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The replay memory or replay memory, denoted as D, saves the agent’s previous experience, which is every 
tuple (𝑠, 𝑎, 𝑟, 𝑠7). The replay memory stores these transitions in a memory buffer and samples them 
randomly to update the Q-values. This allows the network to learn from past experiences and reduce the 
correlation between the samples used for updates, which can improve the learning speed and stability of 
the algorithm. 

 

Figure 5. Replay memory schema. It contains all the previous experience of the agent (adopted from 
Ravichandiran, 2021). 

This works as follows: 

1. Initialize the replay memory 𝐷 
2. For each step in the episode: 

a. Make a transition, that is, perform an action 𝑎 in the state 𝑠, move to the next state 𝑠′ and 
receive a reward 𝑟. 

b. Store the transition (𝑠, 𝑎, 𝑟, 𝑠7) in the replay memory 𝐷. 

A schema of a replay memory is shown in Figure 5. For the algorithm to have stable behavior, the replay 
memory should be large enough to contain a wide range of experiences, but it may only sometimes be good 
to keep everything. If it only uses the very-most recent data, you will be overfitted to that. In contrast, using 
too much experience may slow down learning (Kanwar, 2019).  
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Loss function 

The loss function that is generally applied is the Mean Squared Error (MSE) (Ravichandiran, 2021): 

𝑀𝑆𝐸 =	
1
𝐾
.(𝑦' − 𝑦e')3
<

'()

 

Where: 

• 𝑦 is the target value, 
• 𝑦e is the predicted value, 
• 𝐾 is the number of training samples. 

Using the optimal Q value as the target value and the predicted Q value as the predicted value, then the loss 
function 𝐿 is defined: 

𝐿(𝜃) = 𝑄∗(𝑠, 𝑎) − 𝑄;(𝑠, 𝑎) 

𝐿(𝜃) = 𝑟 + 𝛾.𝑚𝑎𝑥47𝑄(𝑠7, 𝑎′) − 𝑄;(𝑠, 𝑎) 

The Q value of the next state 𝑄(𝑠7, 𝑎′) can be calculated using the same DQN 𝑄;: 

𝐿(𝜃) = 𝑟 + 𝛾.𝑚𝑎𝑥47𝑄;(𝑠7, 𝑎′) − 𝑄;(𝑠, 𝑎) 

On every iteration, it is randomly sampled a minibatch of 𝐾 transitions (𝑠, 𝑎, 𝑟, 𝑠7) from the replay memory 
𝐷 so that: 

𝐿(𝜃) = 	
1
𝐾
.(𝑟' + 	𝛾.𝑚𝑎𝑥47𝑄;(𝑠'7, 𝑎′) − 𝑄;(𝑠' , 𝑎))3
<

'()

 

The network is trained by minimizing the loss function. Then, the parameter is trained using gradient 
descent: 

𝜃 = 𝜃 − 𝛼𝛻;𝐿(𝜃) 

Where 𝛼 is the learning rate and is an hyperparameter of the model. 
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Target network 

There is an issue when calculating the loss function. As noted, both the predicted and target values using 
the network 𝑄; . This causes instability in the function, and the network learns poorly. It also drives 
divergence during training, given that the target value is not a source of truth and changes on every iteration 
(Ravichandiran, 2021).  

To prevent this, an accepted solution is to use two separate neural networks: one is used to select the best 
action, and the other is used to estimate its Q-value. The first one, 𝑄;, known as the predictive network, 
is updated at each iteration of the algorithm to approximate the optimal policy better. The second network, 
𝑄;7 parametrized by parameter 𝜃′ and known as the target network, is used to compute the Q-value of the 
selected action, but its weights are frozen for a fixed number of iterations, and its parameters are copied 
from the original network once every fixed number of steps 𝐹, usually 100. 

Then, the loss function is: 

𝐿(𝜃) = 	
1
𝐾
.(𝑟' + 	𝛾.𝑚𝑎𝑥47𝑄;7(𝑠'7, 𝑎′) − 𝑄;(𝑠' , 𝑎))3
<

'()

 

3.2.13. The Double Deep Q-Network (DDQN) 

One of the issues of the DQN is the overestimation of the Q value of the next state-action in the target due 
to the max operator in the equation (Mosavi et al., 2020): 

𝑦 = 𝑟 + 𝛾.𝑚𝑎𝑥47𝑄;7(𝑠7, 𝑎′) 

The optimization procedure is imprecise because the Q values are not determined and are estimated by 
stochastic samples. Then, the network tends to propagate errors from selecting the maximum Q-value to 
estimating its value. In the end, it leads to poor policy performance. To address this issue, Hasselt et al. 
(2016) proposed Double Deep Q-Networks (DDQNs) by just modifying the target value computation: 

𝑦 = 𝑟 + 𝛾. 𝑄;$(𝑠7, 𝑎𝑟𝑔𝑚𝑎𝑥47𝑄;(𝑠7, 𝑎′)) 

Now, the two Q functions are present in the target value equation. The predictive network 𝑄; is used for 
action selection, and the target network 𝑄;$ is used for Q value computation. 
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The algorithm 

Finally, the algorithm for the Double Deep Q-Network is given as follows (Ravichandiran, 2021): 

1. Initialize the main neural network 𝑄;(𝑠, 𝑎)	with parameter 𝜃 with random values. 
2. Initialize the target neural network 𝑄;7(𝑠, 𝑎)	with parameter 𝜃7 = 𝜃. 
3. Initialize the replay memory 𝐷. 
4. For N number of episodes and for T number of steps in each episode: 

a. Get state 𝑠 
b. Select action 𝑎 using the epsilon-greedy policy, which selects: 

i. A random action with probability 𝜀 
ii. Action 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥4𝑄;(𝑠, 𝑎) 

c. Execute the action and move to next state 𝑠′ 
d. Obtain the reward 𝑟 
e. Store the transition (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐷 
f. Randomly sample a minibatch of 𝐾 transitions from 𝐷 
g. Calculate the target values: 

𝑦' = 𝑟' + 𝛾. 𝑄;$(𝑠'7, 𝑎𝑟𝑔𝑚𝑎𝑥47𝑄;(𝑠'7, 𝑎′)) 
h. Calculate the loss: 

𝐿(𝜃) = 	
1
𝐾
.(𝑦' − 𝑄;(𝑠' , 𝑎))3
<

'()

 

i. Update the parameter 𝜃: 
𝜃 = 𝜃 − 𝛼𝛻;𝐿(𝜃) 

j. Freeze the target network parameter 𝜃7 for a fixed subset of steps 𝐹 , and then update it by 
copying the values from 𝜃 

5. Interact with the environment and obtain the state (𝑠, 𝑎, 𝑟, 𝑠′). 
6. Calculate the loss given the Temporal Difference method: 

𝑉(𝑆!) = 𝑉(𝑆!) + 𝛼. 𝛿 
7. Update 𝑄;(𝑠, 𝑎) paremeter 𝜃 using stochastic gradient descent algorithm. 
8. Repeat from step 2 until converged. 

Figure 6 presents a generic diagram for the DDQN model.  
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Figure 6. Double Deep Q-Network model (own figure). 

DDQN has been shown to outperform Q-Learning in many tasks, particularly in tasks with high-
dimensional state spaces and complex action spaces. However, DDQN is still subject to some limitations, 
such as the need for a large amount of training data and difficulty tuning the hyperparameters. Nevertheless, 
DDQN remains a promising approach for addressing the challenges of reinforcement learning in complex 
environments (Hasselt et al., 2015).  

3.2.14. The DQN with prioritized experience replay 

The conventional DQN model randomly samples a minibatch of K transitions from the replay memory 𝐷. 
This technique can be improved by assigning some priority to each transition in the replay memory and 
sampling the transitions with the best priority values for learning (Ravichandiran, 2021).  

Retaking the Temporal Difference Learning error: 
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𝛿 = 𝑟 + 𝛾.𝑚𝑎𝑥47𝑄;7(𝑠7, 𝑎′) − 𝑄;(𝑠, 𝑎) 

It is noted that a transition with a higher 𝛿 implies that the transition is not good enough. Thus, learning 
more about that transition is more convenient for minimizing the error than those with a lower error. 

Given that, for every transition, the tuple (𝑠, 𝑎, 𝑟, 𝑠7, 𝑝), where 𝑝 is the priority, is added to the replay 
memory 𝐷. 

One of the famous methods to prioritize transitions is proportional prioritization. With this technique, the 
priority 𝑝, to select the transition 𝑖, measured in terms of probability, is: 

𝑃(𝑖) =
𝑝'
=

∑ 	𝑝++
 

Where: 

• 𝑝' is the priority 𝑝' = |𝛿'| + 𝜏, 
• 𝜏 is a parameter to considerate transitions with null errors, 𝜏 ≪ 1, 
• 𝜇 is a parameter to considerate random samples. For 𝜇 ≈ 1, the buffer samples only transitions with 

high priority, and for 𝜇 ≈ 0, it samples random transitions. 

One of the problems of this technique is that the model learns significantly from the samples with high 
priority. This may lead to the issue of overfitting, biasing the model to those transitions with high errors. 
This can be solved by adding the importance weight 𝑤, which tends to reduce the weights of transitions 
that have occurred many times: 

𝑤' = m
1

𝑁. 𝑃(𝑖)o
>
 

Where: 

• N is the length of the replay memory 𝐷, 
• 𝜑 is a parameter to control the importance weight. 

This weight is added when calculating the loss for the temporal difference method: 

𝑉(𝑆!) = 𝑉(𝑆!) + 𝛼.𝑤. 𝛿 
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4. Solution proposal 
Some measures have been proposed based on related work to address the issues of impermanent loss and 
slippage in an AMM. On the one hand, the use of dynamic curves aims to mitigate the issue of impermanent 
loss resulting from arbitrage trades. On the other hand, the application of a Deep Q-Learning reinforcement 
learning model and its variants can adjust the leverage coefficient of the price curve, which can help to 
reduce both slippage and any remaining impermanent loss. Even though the exposed solution comes after 
a series of iterations on each variable, there is room for improvement in the model performance.  

4.1. Application of dynamic curves and changes on liquidity 

This work takes the study's conclusions from Engel and Herlihy (2021) and Krishnamachari et al. (2021), 
proposing the construction of an AMM using dynamic curves to eliminate arbitrage opportunities and 
minimize impermanent loss for the liquidity providers while maintaining liquidity and total value over a 
wide range of market prices. This implementation is called pseudo-arbitrage, which objective is to 
implement a dynamic curve using an external market oracle to match the pool pricing to the market pricing 
continuously, modifying the mathematical relationship between the assets (conservation function) so that 
the pool price continuously and automatically adjusts to be identical to the market price. 

This fact can also be applied to an HFMM since it depends on CPMM. Now, with this dynamic 
implementation in the AMM, the traders still experience slippage, which is not reduced. However, this loss 
for the traders is entirely gained by the liquidity providers, which can be considered a slippage gain for 
them. Furthermore, since there is no change in the market price, the pool price remains unchanged in the 
dynamic CPMM, leading to no impermanent loss. In consequence, each trade generates a net income for 
the LP, resulting in a clear benefit from the LP's perspective.  

4.2. Application of Reinforcement Learning 

4.2.1. Description of the Events 

In finance, reinforcement learning is often used to model financial time series, with the agent typically 
taking a step through the environment at regular time intervals (time-based). Depending on the trading 
strategy, the interval of time can be anywhere from seconds to days. However, for market making, tick 
events involved by buy and sell orders are used to trigger the agent to interact with its environment. This 
tick-based approach differs from a time-based one as events occur irregularly and more frequently. High 
frequency could be a problem, particularly concerning external factors such as noisy data and latency. To 
address this challenge, a price-based event approach is proposed.  

In this study, the implementation suggested by Sadighian (2020) and followed by Lim (2022) is taken. The 
price-based approach defines an event as a change in the price, which in this case is the equilibrium 
valuation, using a sensitive threshold 𝛽,. The agent then acts on events as they occur. The action space is 
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based on a typical market-making strategy where the agent cannot exit the market and is restricted to 
executing a single order. The events imply that actions are not regularly spaced in time. 

This is, if there is a change in the equilibrium valuation (a change in the AMM price with respect to the 
market price provided by the oracle), and if this is greater than or less than 𝛽,, the event is raised. 𝛽, is the 
threshold and will be an hyperparameter of the model. These price change events are not regularly spaced 
in time, and 𝛽, can be modified to reduce the time required to train the agent per episode, i.e. to execute a 
trading action. 

It is important to note that in the present work, the index 𝑡 is used to denote not the time step, but the event 
step. 

The algorithm to create events, based on market prices and AMM deviation prices, is: 

1. Get valuation 𝑣! for every time 𝑡 = 0 
2. Set 𝛽, threshold 
3. Set 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡	 = 	𝑣! ∗ w1 + 𝛽,x 
4. Set 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡	 = 	𝑣! ∗ w1 − 𝛽,x 
5. For every 𝒕, evaluate if 𝑢𝑝𝑝𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 < 𝑣! < 𝑙𝑜𝑤𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 
6. If the valuation accomplishes the condition, register it as an event. 
7. If not, ignore it. 
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Figure 7. The procedure of the algorithm from Oracle price to model iteration (own figure). 

Figure 7 shows an overview of the procedure. Given oracle prices, an event is raised for any significative 
price deviation.  This event is denominated with 𝑡 and represents the step in the model algorithm. Then, 
several trades are simulated from this event price, conforming to the state observation. 

This state is the agent's input, which first selects the action according to its Q function. It uses the epsilon-
greedy policy, so there is an epsilon probability of selecting a random action, which decays with advancing 
steps. The reward function is calculated with the action and the new state generated, and the new transition 
is stored. Finally, the model is updated according to the algorithm previously exposed. 

4.2.2. Description of the Reward Function 

Since the study aims to reduce divergence loss to liquidity providers and slippage loss to liquidity takers, 
the reward function needs to consider both factors.  
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First, the load function, provided by Engel and Herlihy (2021), is defined. Suppose that there is a change 
in the AMM price from 𝑣! = 𝑓(𝑥! , 𝑦!) to 𝑣!′ = 𝑓(𝑥!′, 𝑦!′), which define the prices of tokens in terms of X. 
Then the load is: 

𝑙𝑜𝑎𝑑(𝑣! , 𝑣!′) = 𝑠𝑙𝑖𝑝𝐿𝑜𝑠𝑠(𝑣! , 𝑣!′)	. 𝑑𝑖𝑣𝐿𝑜𝑠𝑠(𝑣! , 𝑣!′) 

Where: 

• 𝑠𝑙𝑖𝑝𝐿𝑜𝑠𝑠(𝑣! , 𝑣!′) is the slippage loss for an HFMM from 𝑣! to 𝑣!′, 
• 𝑠𝑙𝑖𝑝𝐿𝑜𝑠𝑠(𝑣! , 𝑣!′) is the impermanent loss for an HFMM from 𝑣! to 𝑣!′. 

The main objective is to minimize this function, by reducing both slippage and impermanent loss. 

The cumulative reward is: 

𝑅! = . 𝛾+
01!1)

+(-

. 𝑟!*+*) 

Where 𝛾 is the discount rate, another hyperparameter of the model. 

The reward function 𝑟 is defined, at each step 𝑡: 

𝑟!*+ =	|
𝑙𝑜𝑎𝑑, 𝑖𝑓	𝑙𝑜𝑎𝑑	 ≤ 𝛽?

−2 ∗ 𝑙𝑜𝑎𝑑, 𝑖𝑓	𝑙𝑜𝑎𝑑 > 	𝛽?
 

Where 𝛽? is a hyperparameter to adjust the threshold within which load can be tolerated, determining the 
sensitivity of the reward function to the loss function. In this case, the proposal is to double penalize if the 
load exceeds the threshold. 

4.2.3. Description of the Action Space 

The agent controls the protocol´s leverage coefficient 𝐶  with two possible actions: 

𝐴! = |
(1 − 𝛽4). 𝐴!1),														𝑖𝑓	𝑙𝑜𝑎𝑑	 ≤ 𝛽?
(1 + 𝛽4). 𝐴!1),										𝑖𝑓	𝑙𝑜𝑎𝑑	 > 𝛽?
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Where 𝛽4 ∈ (0,1) is a hyperparameter to adjust the magnitud of the change of the leverage coefficient 𝐶 
from last action. This coefficient is also doubly bound: 

• Lower limit: 𝐶 = 0, representing the Uniswap coefficient. 
• Upper limit: 𝐶 = 85, representing the Curve Finance coefficient. 

These limits were proposed by Churiwala and Krishnamachari (2022). They are not completely necessaries 
since 𝐶 ∈ (0,∞). However, considering that a CSMM does not have enough value in a real-world 
application, it is better, for training purposes, to limit the range of this parameter. 

4.2.4. Description of the State Space 

At each decision epoch, 𝑡, provided by the event-driven algorithm, the state-space for the system can be 
characterized by: 

𝑆! = (𝑣! , 𝑣!′, 𝑥! , 𝑦! , 𝑈, 𝑙! , 𝐶!	) 

Where: 

• 𝑣!: market valuation provided by a trusted external oracle. This is the AMM price value before the 
significant difference that raised the price event, measured in terms of X token. 

• 𝑣!′: new AMM price, moved by the trades on the protocol, measured in terms of X token. 
• (𝑥! , 𝑦!): number of tokens of X and Y available in the pool, 
• 𝑈 = {𝑈), 𝑈3, . . . , 𝑈@}: set of traders interacting in the pool, 
• 𝑙!: summarized load for the event, given all the trades occurred on the period, 
• 𝐶! = 𝐴!: leverage coefficient value which controls the bonding curve´s curvature. 

4.3. Hypothesis and Assumptions 

While the underlying process can be extrapolated for multiple tokens, the current study focuses on a dual-
token context. This approach aligns from reality as many AMMs, such as Uniswap, operate with pools 
consisting of two tokens. 

It is also noted that every exchange charges fees for each trade back to the asset pool, which in part is used 
to incentivize the liquidity providers. In this case, the effect of this fee is ignored, as they have minimal 
effect on costs. However, in most cases, fees can cause a minor decrease in the impermanent loss for 
liquidity providers and an increase in slippage cost for liquidity takers. 

This work proposes a Q-Learning algorithm. This implies a model-free, off-policy algorithm. The 
environment is modeled as a Markov Decision Process (MDP) with discrete states and actions. Q-learning 
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is a model-free, off-policy reinforcement learning algorithm that can be used to learn the optimal action-
selection policy for any given environment. 

Particularly, the algorithm is composed of neural networks. In this case, additional assumptions, such as 
the function approximator being able to converge to the optimal Q-values and the data being stationary and 
independent, need to be satisfied. 

4.4. Implementation Details 

4.4.1. Simulation Setup 

Events 

The events were obtained based on the algorithm exposed in section 3.3.2. Given the oracle price, the events 
are raised from a significant deviation. The hyperparameter used was: 

• Price threshold: 𝛽, = 0.01 

Users 

The number of simulated users was 𝑁 = 10	000. Each of them started with a set of tokens (𝑥+ , 𝑦+) with a 
total sum of 1000 tokens each. 

The environment generates trades on each step and assigns them to random users. One crucial configuration 
is that if the balance of the token to sell is less than 0.2 of the other token, the swap is inverted. This 
mechanism prevents the drying up of either token's balance. This configuration is proposed by Churiwala 
and Krishnamachari (2022). 

Price Data 

Given that the AMM follows the trusted external Oracle price, a dataset from a Centralized Exchange was 
used. Notably, data was downloaded from Binance, for the ETH/USDT swap, at the hour level, from 2018-
01-01 to 2022-12-12. 

• Token X: USDT 
• Token Y: ETH 
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Agent 

Three models were trained: 

• A simple DQN model, 
• A Double DQN model, 
• A Double DQN with prioritized experience replay model. 

Following recommendations suggested by diverse authors, the models were trained with the following 
hyperparameters configuration. 

For the neural network: 

• For every learner, the network is composed of 2 CNN layers with 100 neurons each, followed by 2 
fully connected layer streams with 50 neurons each (Lim, 2022), 

• Batch Size: 50, 
• Steps: 7000, 
• Weight optimization algorithm: Gradient descent was tried, but Adam was finally selected, 
• Activation function: ReLu, 
• Learning rate: ∝= 0.08. 

Figure 8 shows a general diagram of the used network.  

This is a central part of the model, and due to its complexity, it can be designed in many different ways. 
Some authors use LSTM or RNN. It should be noted that there is much room for improvement and 
experimentation in this section of the algorithm. 

For the rest of the agent's components: 

• Discounted factor: 𝛾 = 0.98 (Lucarelli & Borrotti, 2019), 
• Action threshold: 𝛽4 = 0.02, with 𝐶 ∈ [0, 85], 
• Loss threshold: 𝛽? = 0.01, 
• F steps: 𝐹 = 100, 
• Exploration-exploitation strategy: 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦. 

For the DQN with prioritized experience replay: 

• Null values prioritization 𝜏 = 0.001, 
• Random sample parameter: 𝜇 = 0.5, 
• Importance weight parameter: 𝜑 = 0.5, 
• Length of the replay memory: 𝑁 = 1000. 
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Figure 8. Neural network for the DQN, DDQN and DDQN with prioritized experience replay models. 

4.4.2. Libraries and frameworks 

To train the model, the following tools were used: 

• Processor: Intel Core i7, 2.6 GHz 
• RAM: 16 GB 
• Programming language: python v3.11.2 
• Neural network framework:  pytorch v1.11.0 

The reinforcement learning model was developed and trained with the Pytorch library. Tensorflow python 
library was also used, but it was finally selected considering that Pytorch is better when the CPU does the 
process. 
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5. Results 

5.1. Deep Q-Network 

Figure 9 exposes the total cumulative reward over iterations for the DQN model. In red are the rewards at 
every step, and in black is the 10-step window moving average. The unit measure of the total reward is in 
terms of the load. 

 

Figure 9. Performance of the basic Deep Q-Network model. 

First, it is observed that the agent at the beginning has much variability, which indicates that it performs 
trial and error. This is consistent with the epsilon-greedy policy applied and that the network parameters 
were initialized randomly. Even though the variability seems to decay over iterations, the moving average 
still contains it.  

As the iterations progress, the algorithm learns and accumulates a higher total reward. However, 
performance peaks and then does not improve. Something interesting to emphasize is that the algorithm 
follows trends. This may indicate that it is prioritizing experiences close in time. 
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5.2. Double Deep Q-Network 

Figure 10 exposes the total cumulative reward over iterations for the DDQN model. In blue are the rewards 
at every step, and in black is the 10-step window moving average. 

 

Figure 10. Performance of the Double Deep Q-Network model. 

The image shows a significant improvement over the previous model. First, although high, the variability 
of the curve is much lower. On the other hand, the model converges to a value, unlike the DQN, where the 
model varies while it is already evolved. 

Another feature to highlight is that the algorithm converges more slowly, despite the learning rate being the 
same. This is related to the fact that the algorithm does not overestimate the values, which is why it takes 
time to evolve.  

Lastly, no noticeable tendencies of priority to the last events are observed, something that did happen in the 
previous model. 

5.3. Double DQN with prioritized experience replay model 

Figure 11 shows the total cumulative reward over iterations for the DDQN model. In green are the rewards 
at each iteration, and in black is the 10-step window moving average. 
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Figure 11. Performance of the Double Deep Q-Network with prioritized experience replay model. 

In this case, it is seen that the accumulated total reward is higher in this case compared to the previous 
model. This may be because it learns faster based on large differences in transitions. However, no 
significant difference is observed in the other variables, such as variability. 

Figure 12 shows the moving average of slippage and impermanent loss for the Double Deep Q-Network 
model, measured in terms of % of token X. 

 



 
48 

 

Figure 12. Slippage and Impermanent Loss, measured in terms of token X. 

It is observed that both curves are correlated, and it makes sense to consider that, given a leverage 
coefficient C, before a trade and the price changes, the movement on the curve generates both slippage and 
impermanent loss. 

In general, a decrease in both curves is observed with the advancement of the steps, generating a lower load 
for the model. However, the variability is significant. This can be explained by the same reason as in the 
reward curves of the different models. The variability in the choice of action for the agent, mainly in the 
first steps where the actions are mainly chosen randomly, generates this variation. 

 

5.4. Hyperparameters Optimization 

In this section, some of the primary hyperparameters and their implication for the model's performance are 
exposed. The model used to show the results is the Double Deep Q-Network with prioritized experience 
replay, which performs the best results in terms of performance. 

It is important to note that the hyperparameter space is vast, and there is room for improvement in most of 
them. In this section, only some of them are detailed for reference, considering that those related to the 
reward function are the ones that tend to have the most significant importance. 
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Since the total reward has variability, it would be wrong to compare the performance of different models 
using only their maximum value. For this reason, an average of the last 2000 steps was used as a 
performance metric to compare the different models. Figure 13 shows the average reward of steps 5000 to 
7000 over three hyperparameters. 

In particular, Figure 13.a shows performance variation over the discounted factor 𝛾. Although oscillating 
values are observed, the performance generally tends to increase with the increase in 𝛾, reaching its 
maximum value at 0.98. This value is susceptible to the reward function, so it would be interesting to 
analyze its variation combined with the function used. 

Figure 13.b exposes performance versus variation of the parameter 𝛽4, which controls the action space. The 
best value is reached at 0.02 and then decreases. A significant cut of 0.05 is observed. As previously stated, 
these values significantly depend on the rest of the parameters, especially the reward function used. Here 
its variation is exposed only with the best model reached and maintaining the rest of the variables. 

Finally, Figure 13.c shows performance over the parameter 𝛽?, which is the threshold of the load tolerated. 
The total reward decreases with the increase of this parameter, which makes sense considering that, being 
more permissive, the algorithm usually makes higher losses. The highest value reached is at 0.01. However, 
minor values were not analyzed, indicating that there may be room for improvement in this parameter. 
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Figure 13. Performance over some hyperparameters variation. Average reward over the last 2000 
steps versus a) discounted factor 𝜸, b) 𝜷𝑨 threshold variation of the leverage coefficient and c) 𝜷𝑪 
threshold variation of the load. 
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6. Conclusions and further research 
In the last few years, Decentralized Finance applications have been gaining popularity. In addition, 
Automated Market Makers are a relatively new phenomenon that is in its early stages of growth. Although 
the current market solutions are innovative, there is still significant room for improvement. In fact, 
numerous studies in the area have emerged in the last two years. As the DeFi industry continues to expand 
and gain more attention, the need for DEXs to compete with CEXs becomes increasingly crucial. However, 
the exigency to rectify the challenges specific to DEXs remains a prerequisite for accomplishing this 
objective. These issues, ranging from high slippage and impermanent loss to security, privacy, and user 
experience concerns, can damage the image and limit the potential growth of DEXs. 

This work formalizes and exposes the implicit costs to a liquidity taker and provider and the use of a deep 
reinforcement learning mechanism for market making. Its primary objective is to solve the slippage and 
impermanent loss problems in AMMs. Considering the rapid evolution of the industry, a generic AMM 
framework is selected as the basis for investigation, which means the use of a Hybrid Function Market 
Maker conservation function.  

The work implements a pseudo-arbitrage rule, in order to tackle impermanent loss concerns arising from 
arbitrage opportunities, which can severely damage the AMM’s economy.  Following previous studies on 
this subject, the mechanism implements a trusted external oracle to get the market conditions on the AMM 
and match the bonding curve to them. Next, to solve the remanent impermanent loss and slippage, the work 
proposes a deep reinforcement learning algorithm, which aims to keep control of the leverage coefficient 
of the HFMM conservation function. The work also proposes a price-based event, where each event is 
identified when a significant price difference occurs, given existing AMM trades that shift the current 
market price.  

Specifically, three Deep Q-Learning models are implemented: a conventional Deep Q-Learning, a Double 
Deep Q-Learning, and a Double Deep Q-Learning with a prioritized experience replay model. The last one, 
which applies a proportional prioritization technique, presents the best performance over the load metric. 
In general, both Double DQN models present a better convergence and more stable curve compared to the 
traditional DQN model.  

Furthermore, one of the findings is that this type of models typically exhibits a substantial degree of 
variability. Despite potential convergence, they tend to manifest a high sensitivity to both the training data 
and the own model experience. Another notable aspect is that algorithms tend to follow trends, which can 
be attributed to their prioritization of short-term occurrences. These issues are partially solved through the 
development of more complex models, such as the ones proposed in this study. Although the obtained 
performance is good, the sensitivity to the trained model's environment and initial conditions does not yield 
a sufficiently robust and replicable model. 

This work also presents the performance in response to variation in the hyperparameters that modify the 
discount factor (𝛾), action space (𝛽C), and tolerable load (𝛽D). Optimal performance was achieved with 𝛾 =
0.98, 𝛽C = 0.02 and 𝛽D = 0.01. However, it is important to clarify that the hyperparameter space is vast, 
and there is room for improvement in most of them. 
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There are several aspects that could be further enhanced in future research. One of them with particular 
interest is the incorporation of the fee parameter in the model. This can be accomplished by including it as 
a constant term that can be easily added to the reward function. Alternatively, an agent could be designed 
to control the fee's value, aiming to either maximize profits or minimize the losses incurred by liquidity 
providers and takers. Another potential area of improvement is related to the implementation of a liquidity 
pool that handles a more significant number of tokens, with a corresponding analysis of the resulting 
variance. Other possibilities include the implementation of a multi-agent algorithm. In these types of 
models, multiple learning agents coexist in a unique environment. Each agent is motivated by its own 
reward and does actions for its own interest, resulting in complex group dynamics (Dixon et al., 2020). In 
this case, each agent could be a liquidity pool for a different pair of tokens or a different DEX. Another 
potential improvement would be to dive deeper with hyperparameter tuning of the presented model to 
improve performance and make it more robust. It is also essential to try different methods in the reward 
function due to the high dependence of the model on it. Finally, it would be interesting to explore the 
implementation of policy-base models to apply a probability distribution over actions. 
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8. Data and code 
The data and code for this project are available at https://github.com/agustinparrotta/drl-in-amm. Follow 
instructions from the README.md file located in the root folder to replicate results. 




