66 research outputs found

    A bayesian approach to adaptive detection in nonhomogeneous environments

    Get PDF
    We consider the adaptive detection of a signal of interest embedded in colored noise, when the environment is nonhomogeneous, i.e., when the training samples used for adaptation do not share the same covariance matrix as the vector under test. A Bayesian framework is proposed where the covariance matrices of the primary and the secondary data are assumed to be random, with some appropriate joint distribution. The prior distributions of these matrices require a rough knowledge about the environment. This provides a flexible, yet simple, knowledge-aided model where the degree of nonhomogeneity can be tuned through some scalar variables. Within this framework, an approximate generalized likelihood ratio test is formulated. Accordingly, two Bayesian versions of the adaptive matched filter are presented, where the conventional maximum likelihood estimate of the primary data covariance matrix is replaced either by its minimum mean-square error estimate or by its maximum a posteriori estimate. Two detectors require generating samples distributed according to the joint posterior distribution of primary and secondary data covariance matrices. This is achieved through the use of a Gibbs sampling strategy. Numerical simulations illustrate the performances of these detectors, and compare them with those of the conventional adaptive matched filter

    Numerical performances of low rank stap based on different heterogeneous clutter subspace estimators

    Get PDF
    International audienceSpace time Adaptive Processing (STAP) for airborne RADAR fits the context of a disturbance composed of a Low Rank (LR) clutter, here modeled by a Compound Gaussian (CG) process, plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters used to detect a target require less training vectors than classical methods to reach equivalent performance. Unlike the classical filter which is based on the Covariance Matrix (CM) of the noise, the LR filter is based on the clutter subspace projector, which is usually derived from a Singular Value Decomposition (SVD) of a noise CM estimate. Regarding to the considered model of LR-CG plus WGN, recent results are providing both direct estimators of the clutter subspace [1][2] and an exact MLE of the noise CM [3]. To promote the use of these new estimation methods, this paper proposes to apply them to realistic STAP simulations

    CFAR property and robustness of the lowrank adaptive normalized matched filters detectors in low rank compound gaussian context

    Get PDF
    International audienceIn the context of an heterogeneous disturbance with a Low Rank (LR) structure (referred to as clutter), one may use the LR approximation for detection process. Indeed, in such context, adaptive LR schemes have been shown to require less secondary data to reach equivalent performances as classical ones. The LR approximation consists on cancelling the clutter rather than whitening the whole noise. The main problem is then the estimation of the clutter subspace instead of the noise covariance matrix itself. Maximum Likelihood estimators (MLE), under different hypothesis [1][2][3], of the clutter subspace have been recently proposed for a noise composed of a LR Compound Gaussian (CG) clutter plus a white Gaussian Noise (WGN). This paper focuses on the performances of the LR Adaptive Normalized Matched Filter (LR-ANMF) detector based on these different clutter subspace estimators. Numerical simulations illustrate its CFAR property and robustness to outliers

    Regularized Covariance Matrix Estimation in Complex Elliptically Symmetric Distributions Using the Expected Likelihood Approach - Part 1: The Over-Sampled Case

    Get PDF
    In \cite{Abramovich04}, it was demonstrated that the likelihood ratio (LR) for multivariate complex Gaussian distribution has the invariance property that can be exploited in many applications. Specifically, the probability density function (p.d.f.) of this LR for the (unknown) actual covariance matrix R0\R_{0} does not depend on this matrix and is fully specified by the matrix dimension MM and the number of independent training samples TT. Since this p.d.f. could therefore be pre-calculated for any a priori known (M,T)(M,T), one gets a possibility to compare the LR of any derived covariance matrix estimate against this p.d.f., and eventually get an estimate that is statistically ``as likely'' as the a priori unknown actual covariance matrix. This ``expected likelihood'' (EL) quality assessment allows for significant improvement of MUSIC DOA estimation performance in the so-called ``threshold area'' \cite{Abramovich04,Abramovich07d}, and for diagonal loading and TVAR model order selection in adaptive detectors \cite{Abramovich07,Abramovich07b}. Recently, a broad class of the so-called complex elliptically symmetric (CES) distributions has been introduced for description of highly in-homogeneous clutter returns. The aim of this series of two papers is to extend the EL approach to this class of CES distributions as well as to a particularly important derivative of CES, namely the complex angular central distribution (ACG). For both cases, we demonstrate a similar invariance property for the LR associated with the true scatter matrix \mSigma_{0}. Furthermore, we derive fixed point regularized covariance matrix estimates using the generalized expected likelihood methodology. This first part is devoted to the conventional scenario (T≄MT \geq M) while Part 2 deals with the under-sampled scenario (T≀MT \leq M)

    Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context

    Get PDF
    International audienceThis paper addresses the problem of the Clutter Subspace Projector (CSP) estimation in the context of a disturbance composed of a Low Rank (LR) heterogeneous clutter , modeled here by a Spherically Invariant Random Vector (SIRV), plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters and detectors require less training vectors than classical methods to reach equivalent performance. Unlike classical adaptive processes, which are based on an estimate of the noise Covariance Matrix (CM), the LR processes are based on a CSP estimate. This CSP estimate is usually derived from a Singular Value Decomposition (SVD) of the CM estimate. However, no Maximum Likelihood Estimator (MLE) of the CM has been derived for the considered disturbance model. In this paper, we introduce the fixed point equation that MLE of the CSP satisfies for a disturbance composed of a LR-SIRV clutter plus a zero mean WGN. A recursive algorithm is proposed to compute this solution. Numerical simulations validate the introduced estimator and illustrate its interest compared to the current state of art

    Detection of a signal in linear subspace with bounded mismatch

    Get PDF
    We consider the problem of detecting a signal of interest in a background of noise with unknown covariance matrix, taking into account a possible mismatch between the actual steering vector and the presumed one. We assume that the former belongs to a known linear subspace, up to a fraction of its energy. When the subspace of interest consists of the presumed steering vector, this amounts to assuming that the angle between the actual steering vector and the presumed steering vector is upper bounded. Within this framework, we derive the generalized likelihood ratio test (GLRT). We show that it involves solving a minimization problem with the constraint that the signal of interest lies inside a cone. We present a computationally efficient algorithm to find the maximum likelihood estimator (MLE) based on the Lagrange multiplier technique. Numerical simulations illustrate the performance and the robustness of this new detector, and compare it with the adaptive coherence estimator which assumes that the steering vector lies entirely in a subspace

    On the Maximal Invariant Statistic for Adaptive Radar Detection in Partially-Homogeneous Disturbance with Persymmetric Covariance

    Full text link
    This letter deals with the problem of adaptive signal detection in partially-homogeneous and persymmetric Gaussian disturbance within the framework of invariance theory. First, a suitable group of transformations leaving the problem invariant is introduced and the Maximal Invariant Statistic (MIS) is derived. Then, it is shown that the (Two-step) Generalized-Likelihood Ratio test, Rao and Wald tests can be all expressed in terms of the MIS, thus proving that they all ensure a Constant False-Alarm Rate (CFAR).Comment: submitted for journal publicatio

    Unit Circle Roots Based Sensor Array Signal Processing

    Get PDF
    As technology continues to rapidly evolve, the presence of sensor arrays and the algorithms processing the data they generate take an ever-increasing role in modern human life. From remote sensing to wireless communications, the importance of sensor signal processing cannot be understated. Capon\u27s pioneering work on minimum variance distortionless response (MVDR) beamforming forms the basis of many modern sensor array signal processing (SASP) algorithms. In 2004, Steinhardt and Guerci proved that the roots of the polynomial corresponding to the optimal MVDR beamformer must lie on the unit circle, but this result was limited to only the MVDR. This dissertation contains a new proof of the unit circle roots property which generalizes to other SASP algorithms. Motivated by this result, a unit circle roots constrained (UCRC) framework for SASP is established and includes MVDR as well as single-input single-output (SISO) and distributed multiple-input multiple-output (MIMO) radar moving target detection. Through extensive simulation examples, it will be shown that the UCRC-based SASP algorithms achieve higher output gains and detection probabilities than their non-UCRC counterparts. Additional robustness to signal contamination and limited secondary data will be shown for the UCRC-based beamforming and target detection applications, respectively

    Toward Data-Driven Radar STAP

    Full text link
    Catalyzed by the recent emergence of site-specific, high-fidelity radio frequency (RF) modeling and simulation tools purposed for radar, data-driven formulations of classical methods in radar have rapidly grown in popularity over the past decade. Despite this surge, limited focus has been directed toward the theoretical foundations of these classical methods. In this regard, as part of our ongoing data-driven approach to radar space-time adaptive processing (STAP), we analyze the asymptotic performance guarantees of select subspace separation methods in the context of radar target localization, and augment this analysis through a proposed deep learning framework for target location estimation. In our approach, we generate comprehensive datasets by randomly placing targets of variable strengths in predetermined constrained areas using RFView, a site-specific RF modeling and simulation tool developed by ISL Inc. For each radar return signal from these constrained areas, we generate heatmap tensors in range, azimuth, and elevation of the normalized adaptive matched filter (NAMF) test statistic, and of the output power of a generalized sidelobe canceller (GSC). Using our deep learning framework, we estimate target locations from these heatmap tensors to demonstrate the feasibility of and significant improvements provided by our data-driven approach in matched and mismatched settings.Comment: 39 pages, 24 figures. Submitted to IEEE Transactions on Aerospace and Electronic Systems. This article supersedes arXiv:2201.1071
    • 

    corecore