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Regularized Covariance Matrix Estimation in

Complex Elliptically Symmetric Distributions

Using the Expected Likelihood Approach—

Part 1: The Over-Sampled Case
Yuri I. Abramovich, Fellow, IEEE, and Olivier Besson, Senior Member, IEEE

Abstract—In Abramovich et al. [“Bounds on Maximum

Likelihood Ratio—Part I: Application to Antenna Array Detec-

tion-EstimationWith Perfect Wavefront Coherence,” IEEE Trans.

Signal Process., vol. 52, pp. 1524–1536, June 2004], it was demon-

strated, for multivariate complex Gaussian distribution, that the

probability density function (p.d.f.) of the likelihood ratio (LR) for

the (unknown) actual covariance matrix does not depend on

this matrix and is fully speciÞed by the matrix dimension and

the number of independent training samples . This invariance

property hence enables one to compare the LR of any derived

covariance matrix estimate against this p.d.f., and eventually get

an estimate that is statistically “as likely” as . This “expected

likelihood” quality assessment allowed signiÞcant improvement of

MUSIC DOA estimation performance in the so-called “threshold

area,” and for diagonal loading and TVAR model order selection

in adaptive detectors. Recently, the so-called complex elliptically

symmetric (CES) distributions have been introduced for descrip-

tion of highly in-homogeneous clutter returns. The aim of this

series of two papers is to extend the EL approach to this class of

CES distributions as well as to a particularly important derivative,

namely the complex angular central distribution (ACG). For both

cases, we demonstrate a similar invariance property for the LR

associated with the true scatter matrix . Furthermore, we

derive Þxed point regularized covariance matrix estimates using

the generalized expected likelihood methodology. This Þrst part is

devoted to the conventional scenario ( ) while Part II deals

with the undersampled scenario ( ).

Index Terms—Covariance matrix estimation, elliptically

symmetric distributions, expected likelihood, likelihood ratio,

regularization.

I. INTRODUCTION

I N A LARGE NUMBER OF RADAR APPLICATIONS,

the traditional assumption on training data being a set of

independent identically distributed (i.i.d) complex Gaussian

random samples is strongly violated due to a signiÞcant

in-homogeneity of this data. Examples from airborne moving
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target indicator or ship-borne radars with strongly in-ho-

mogeneous clutter are well-known [1]. For high-frequency

over-the-horizon radars, and speciÞcally for mode-selective

multiple input multiple output (MIMO) radars, similar scenario

takes place when adaptive MIMO beamformers are trained

using Doppler-processed training data [2], [3]. If ignored,

signiÞcant non-homogeneity of training data has an adverse

effect on adaptive processing since it signiÞcantly reduces the

effective number of training data and more generally, makes the

Gaussian model-based inference inaccurate. In most studies,

such in-homogeneous set of data is modeled as a set of spheri-

cally invariant random vectors (SIRV) [4]–[6]. A SIRV can be

viewed as a special case of a broader class, complex elliptically

symmetric (CES) distributions which are considered in the

sequel. While this model describes in-homogeneous clutter,

in-discriminatory application of this model that ignores additive

white Gaussian noise, may lead to a number of problems, as

demonstrated in [7]. In other words, this approach is suitable

in “clutter-limited” applications, where the clutter-only covari-

ance matrix is a full-rank matrix with the minimal eigenvalue

that signiÞcantly exceeds the additive white noise power. In

such a case, the latter may be ignored and the training data

that contains energetic clutter may be described as a set of i.i.d

SIRV or CES data.

Yet, so far, the Gaussian assumption has been predominating

and much attention has focused on the problem of maximum

likelihood (ML) covariance matrix estimation and, more gener-

ically, on adaptive detection based on ML principles in the

Gaussian case. Within this framework, it was demonstrated

that for a limited number of i.i.d training data , a number of

adaptive detection-estimation techniques properties, derived

under the for ML principle asymptotic

condition, are not true. Typical example is provided by MUSIC

direction of arrival (DOA) estimation technique proven to be

asymptotically efÞcient [8], [9]. However, as demonstrated

in [10], for a certain small enough sample support MUSIC

“breaks down” i.e., it starts to generate severely erroneous

DOA estimates. Another well-known problem is a relatively

poor performance of adaptive Þlters (antennas) and adaptive

detectors that adopt the ML covariance matrix estimate under

a limited sample support [11]. It has been evidenced in various

studies that regularization (“shrinkage”) of the covariance

matrix estimate, such as diagonal loading [13], [14] can sig-

niÞcantly improve detection performance, if the shrinkage

parameters are properly chosen. To address these and similar

issues that occur under small sample support, in [10]–[12]



the technique called “Expected Likelihood” (EL) has been

proposed. This technique is based on the invariance of the

likelihood ratio (LR), constructed for the multivariate complex

Gaussian data. More speciÞcally, it uses the fact that the p.d.f.

of (where is the true (actual) covariance matrix)

does not depend on and is fully speciÞed by matrix dimen-

sion and the i.i.d sample volume . This invariance makes

it possible to evaluate the “quality” of any (possibly parametric

or regularized) covariance matrix estimate by comparing

its likelihood ratio against the p.d.f. for .

The estimate is then treated as appropriate if

is within the support of p.d.f., pre-calculated for given

and . In other words, if is statistically as likely

as , the EL approach deems it properly regularized. Recall

that the unrestricted ML covariance matrix estimate produces

the ultimate equal to one LR value irrespective of sample

support , while the LR value generated by the true

covariance matrix is signiÞcantly smaller for realistic

– sample support volumes [10], [11]. The EL

approach was shown to be effective in identifying “broken”

MUSIC-produced DOA estimates (“breakdown prediction) and

rectifying the set of these estimates to meet the expected likeli-

hood ratio values (“breakdown cure”) [10], [12]. Accordingly,

its ability to improve adaptive Þlters has been proved in [11].

Obviously, this EL methodology could be quite useful in

addressing similar problems when dealing with non-Gaussian

data. For this reason, the extension of the EL principles over

the broader class of complex elliptically symmetric (CES)

multivariate random variables constitutes the focus of this

study. CES distributions are parameterized by the scatter ma-

trix and a one-dimensional function called the density

generator [15]. Since the latter is usually unknown in practice,

we also consider complex angular central Gaussian (ACG)

distributions which depend on the scatter matrix only.

The paper is organized as follows. In Section II we intro-

duce the discussed above likelihood ratios and

for conventional training conditions

and derive their respective invariance properties. In Section III

we derive the Þxed point ML covariance matrix

estimate, while in Section IV we discuss the application of

the EL methodology to selection of the loading factor and

order in diagonally loaded and

covariance matrix estimates. In Section V we present the

results of Monte-Carlo simulations that demonstrate signiÞcant

superiority of the regularized Þxed point estimates with respect

to the unconstrained (Þxed point) ML estimates for adaptive

Þlters (antennas) applications. The summary and conclusions

are given in Section VI.

II. LIKELIHOOD RATIO AND ITS INVARIANCE FOR DATAWITH

COMPLEX ELLIPTICALLY SYMMETRIC DISTRIBUTION

A. Complex Elliptically Symmetric Distributions

Description of CES distributions and their properties can be

found e.g., in [16]–[19]. A very comprehensive review along

with application of CES distributions to a number of array pro-

cessing problems can be found in the recent paper [15]. We

refer the reader to this paper for details that could be skipped

in the short review to be presented now and which is inspired

by the presentation in [15]. Herein we consider the special ab-

solutely continuous case with zero mean, when the p.d.f. of the

r.v. is of the form

(1)

for a positive deÞnite Hermitian (PDH) matrix

called the scatter matrix, and function called

density generator that satisÞes Þnite moment condition

to ensure integrability of .

Above is a normalization constant ensuring that in-

tegrates to 1 and is given by where

is the surface area of the unit complex

-sphere . We adopt the fol-

lowing notation in the following . Some

important properties of CES distributions will be of use in the

sequel [15]–[19]. First, admits the following stochastic repre-

sentation

(2)

where the non-negative real random variable , called

the modular variate, is independent of the complex random

vector possessing a uniform distribution on denoted as

. Here, means “has the same distribution as”.

Second, the p.d.f. of the modular variate is given by

(3)

which is also the p.d.f. of the Hermitian form as fol-

lows from (2). The complex normal distribution is

obtained for the particular , yielding

as the normalizing constant. Note that if

admits Þnite -th order moments, and

. Thus, the scatter matrix is proportional to the co-

variance matrix under Þnite 2nd-order moment assumption.

Given (1), for a set of i.i.d r.v. , we

get for

(4)

For , the maximum likelihood estimator (MLE) of the

scatter matrix is the matrix that minimizes over the set

of PDH matrices the negative log-likelihood function:

(5)

and hence is the solution (assuming that is continuously

differentiable) to the estimating equation [15], [20], [21]

(6a)

(6b)

where . For where

and from (6) follows the

well-known sample covariance matrix estimate. In general



case, where the weight function is not a constant, the esti-

mation equation is implicit and an algorithm to Þnd its solution

is needed. In [[15], Theorem 6] based on the results of Kent

and Tyler [22], [23] for the real case, the uniqueness and con-

vergence of the Þxed point iterations

to the unique solution of (6), for any initial estimate of , has

been proven under certain technical conditions on , see

[15] for further details.

For distributions that meet these condi-

tions, let us consider the likelihood ratio for any parametric

scatter matrix model where is a set of param-

eters that uniquely specify the scatter matrix model. This

may be found as usual [24]:

(7)

From (4), we get

(8)

With respect to (2) the “expected likelihood”, i.e., the LR value

for the actual (true) scatter matrix may be presented as

(9)

where and . Now, due

to the invariance of the MLE under non singular data transfor-

mations, is theMLE of the scatter matrix from a

distribution. Consequently, does not depend on , only on

. This could also be seen by pre and post-multiplying (6)

by and using (2) to get

(10)

Therefore, the p.d.f. of is invariant with re-

spect to (w.r.t) the true scatter matrix , and is explicitly spec-

iÞed by in (3) and parameters and .

B. Angular Central Gaussian Distribution

For all cases where is accurately known a priori

and only the scatter matrix (or its parameters) is to be esti-

mated, the EL principle can be applied since the p.d.f. for

could be pre-calculated for the given

, using Monte-Carlo simulations at least. As dis-

cussed in the introduction, in many cases the distribution

is not known a priori, and hence are often

treated as unknown deterministic parameters. For unknown

, the input vectors are often being transformed to the

set of normalized vectors

(11)

If , then the distribution of its projection

onto the unit complex -sphere is said to have a com-

plex angular elliptic distribution. In particular, if the CES dis-

tribution is a central complex Gaussian, i.e.,

then the distribution of is said to have a complex

angular central Gaussian (ACG) distribution, which we denote

as . For non-singular , the p.d.f. of is

given by [15], [25]

(12)

Note that thematrix can be only identiÞed up to a scale, since

and yield the same distribution for any . Note also

that for a central (zero mean) case, the central Gaussian distribu-

tion for could be replaced by any central CES distribution and

the resulting angular distribution would be the same. That is, if

then . Note that

although the density in (12) looks like the generic density of a

complex elliptical distribution in (1), it does not have a CES dis-

tribution itself and does not possess the characterizing stochastic

representation (2) [15]. Yet, the non-singular ACG distribution

can be generated using the r.v. as

for and non-singular .

Assuming independence of the , the joint distribution of

is thus given by

(13)

In [25] it was demonstrated that the MLE for in this case still

corresponds to a solution to (6) with the weight function being

simply . In other words, in the ACG case

satisÞes

(14)

Moreover in [26] it was demonstrated that the estimate

(14) being the ML estimate of under assumption

for is also the ML esti-

mate for a more general case when

with the functions being given but not necessarily the same.

Clearly this quite a universal property of the complex Tyler’s

M-estimator, along with the invariance of the likelihood ratio

(see below) makes this estimate very attrac-

tive. Note that with respect to (14), the Þxed point iterations

(15)

converge to which exists and is unique up to a positive

scalar [23], [27]–[29]. For uniqueness, one may want to restrict

in a suitable way, e.g., by assuming (or

).

For a (possibly parameterized) scatter matrix , the like-

lihood ratio in the ACG case is given by

(16)



We can now specify . Since

where or , it follows

that

(17)

where veriÞes

(18)

Consequently is distribution-free and therefore, for any

given and we can pre-calculate the p.d.f. for

with any required accuracy and use it as the

expected likelihood p.d.f. for quality assessment of any given

scatter matrix model .

III. ML COVARIANCE MATRIX ESTIMATION FOR

COMPLEX ANGULAR CENTRAL GAUSSIAN DISTRIBUTION

Let us consider a set of i.i.d -variate complex angular

central Gaussian vectors generated by

an arbitrary complex central elliptical distribution. Let

be an identiÞed scatter matrix parameterized by a set of param-

eters . Then the likelihood function (LF) can be introduced

as follows

(19)

For a model , we have to

Þnd the maximum of this LF over the class of structured pos-

itive deÞnite (p.d.) Hermitian matrices with

which according to [30], is the only necessary

condition for a p.d. matrix to serve as the scatter matrix

of a process. Let with

for . Then, up to an additive constant,

(20)

Since only are subject to optimization, the

ML equation may be presented as

(21a)

(21b)

Using the fact that [31]

(22a)

(22b)

it follows that the MLE of in the model

satisÞes

(23a)

(23b)

The latter means that the ML estimate of the scatter

matrix satisÞes the estimation equation

(24)

where is the Dym-Gohberg band-inverse transforma-

tion of a Hermitian non negative deÞnite matrix, deÞned as [30]

(25a)

(25b)

Note that is invariant to scaling since

. In order to obtain in (24), we propose to

resort to the Þxed point iterations

(26a)

(26b)

At this stage, we were unable to prove convergence of the iter-

ative scheme (26) to a unique solution: therefore, this is still an

open issue to be solved.

IV. APPLICATION OF THE EXPECTED LIKELIHOOD APPROACH

FOR SCATTER MATRIX ESTIMATION

The unrestricted (unstructured) MLE Tyler’s M-esti-

mator (Þxed point solution) for provides the

globally optimal solution that yields the ultimate value

. Hence, even

for conventional training conditions this esti-

mate, may not be that effective for adaptive processing

applications. For this reason, initially in [32] and then in

[33], [34] the “shrinkage” Þxed point (diagonally loaded)



estimator has been proposed, where

is obtained from the following iterative procedure:

(27a)

(27b)

The proof of convergence of this iterative routine to a unique

solution has been recently introduced in [33] based on

Perron-Frobenius theory. We refer to as FP-DL in the se-

quel. Yet, the problem of selecting the shrinkage (loading factor)

is open and crucial. In [33] the authors suggested to specify

the optimal loading factor as the stochastic approximation of

the Oracle (clairvoyant) scatter matrix , found as the min-

imum of the Frobenius norm of the error, i.e.,

(28)

where

(29)

We would like to investigate how this Oracle estimator com-

pares with the EL approach for selecting : for conventional

scenario the EL approach selects the loading factor

such that

(30)

where is the true p.d.f. of the

is the complex Tyler’s M-estimate (15) and

stands for the median value. Comparative

analysis of the loading factor selection rules (28), (30) is

introduced in the next section.

Let us now consider our Þxed point so-

lution (26). Similarly to (27), we may introduce the

diagonally loaded Þxed point solution as

(provided that this limit

exists and is unique, which so far is still an open problem)

where is obtained from

(31a)

(31b)

In the sequel, we refer to as FP-DG-DL. It is note-

worthy that for conventional Gaussian model ,

the loaded covariance matrix estimate proved quite

an impressive improvement when applied to realistic data [35].

There are all reasons to expect similar improvement delivered

by diagonal loading in (31). Yet, for this model two parameters

should be properly selected. Similarly to (30), param-

eters or may be treated as being properly selected

if the likelihood ratio of the scatter matrices in (24)

and in (31) meet the expected likelihood condition.

Finally, observe that while convergence of the Þxed point

iterations is an important theoretical issue, practically though,

the EL criterion (30) may be used as a “stopping rule” for

iterates that approach the EL threshold. Actual improvement

in adaptive processing performance delivered by the suggested

EL-supported regularized estimators is analyzed in the next

section.

V. PERFORMANCE ANALYSIS. SIMULATION RESULTS

Let us consider the case of data distributed according to a

multivariate Student -distribution with degrees of freedom,

deÞned herein as

(32)

The r.v. where stands for the complex

chi-square distribution with degrees of freedom, whose p.d.f.

is deÞned as . In all simulations below, we

set . All algorithms will use the normalized data

. Dimension of uniform linear array (ULA) with half

wavelength spacing was chosen to be and the true

scatter matrix was considered to be as per process

Instead of mean-square error in covariance matrix estimation,

we assess the quality of our estimates by analyzing the statistical

properties of the SNR loss factor deÞned as [36], [37]

(33)

where stands for

the steering vector corresponding to the looked direction . In

our simulations, we choose and so that the

SNR gain provided by the optimal Wiener Þlter

compared to a conventional beamformer is about

12 dB. In (33), is a notation for a generic covariance matrix

estimate considered in the sequel.

A. Distribution of the Likelihood Ratio

Let us Þrst illustrate the theoretical results about the distribu-

tions of and : both of them

are independent of . The latter depends on and only

while the former also depends on . The median value of

, for both a Gaussian and a Student -distri-

bution with degree of freedom, as well as the median

value of are plotted in Fig. 1. Additionally,

the p.d.f. of the above likelihood ratios is displayed in Fig. 2 for

. The following comments can be made:

• The p.d.f. of are seen to be nearly iden-

tical and seem to depend weakly on : they are the

same for (Gaussian case) and



Fig. 1. Median value of and versus .

.

Fig. 2. Probability density function of and

. and .

(Student case). Moreover, they are very

close to the p.d.f. of . Therefore, the p.d.f.

of the LR for the true scatter matrix shows quite an in-

variance with respect to the distribution of the data. Note

that asymptotically, it is known that

converges to a distribution, which obviously does not

depend on the data distribution: therefore, as , the

distribution of the log likelihood ratio should not depend

on . It turns out that this is also approximately true in

Þnite sample, although the Þnite sample distribution is not

close to the asymptotic one.

• The median values are seen to be much inferior to 1, the

value obtained with the MLE. These median values in-

crease when increases (for a Þxed ) and when de-

creases (for a Þxed ). For large values of the LR take

very small values.

B. Diagonally Loaded Estimates

We now study diagonally loaded regularized estimates, and

more particularly the inßuence of the shrinkage factor on both

the LR values and the SNR loss. We consider here the estimate

based on shrinkage of the normalized sample covariance matrix

(NSCM) , i.e.,

(34)

(referred to as DL in the Þgures), its Þxed-point version in (27)

and their Dym-Gohberg regularization

(35)

(referred to as DG-DL in the Þgures) and the Þxed-point

TVAR(1) estimate (31). The value of is set to . For the

sake of convenience the following table relates the acronyms

used in the Þgures with their corresponding estimators:

In Figs. 3–4 we investigate the inßuence of and the re-

lation between LR and SNR loss. The solid line there repre-

sents . These Þgures illustrate the fact that

selecting the loading factor from the EL principle results in a

SNR very close to that of the optimal (clairvoyant) Þlter. There-

fore, this validates selection of the loading factor using the EL

approach. Observe that selecting is a crucial issue for some

estimates which are very sensitive to variations in : this is par-

ticularly so for estimates. In such cases, EL principle

offers a quite efÞcient solution to the problem of selecting .

On the other hand, FP-DL is seen to be less sensitive to varia-

tions of in terms of SNR loss: but this is also the case for the

corresponding LR. Finally, note (and this will be observed in all

simulations) that Þxed-point estimates always outperform their

non-iterative counterparts.

We now turn to performance analysis versus . As before, we

consider the shrinkage estimate (34) and its Þxed-point iterative

version in (27). For both of them, the loading factor is chosen

according to the EL principle in (30), viz

(36)

that is the value of for which is closest

to the median value of . For comparison pur-

poses, we compare the EL-based estimates with the estimate of

[33]. The latter corresponds to the FP-DL estimate of (31) where

the loading factor is chosen as in (28), and is given by

(37)



Fig. 3. Performance of diagonally loaded estimates versus .

and . (a) SNR loss (b) Mean value of .

We refer to as the Oracle estimate. In Fig. 5 we dis-

play the average SNR loss, the mean value of the LR and the

mean value of the loading factor selected by each method (DL

and FP-DL correspond to the choice (36) of ). Interestingly

enough, it appears that the Oracle loading factor in (37) re-

sults in a matrix whose LR closely matches that of .

As a result, the SNR loss achieved by the Oracle estimate is very

high. More interesting is the fact that the EL approach yields

the same LR value as the Oracle estimate, but slightly different

values of the loading factor . Yet, the EL and the Oracle esti-

mate yields the same output SNR. This is because, as illustrated

in Fig. 3(a), the FP-DL estimate is not very sensitive to varia-

tions in . To summarize, this simulation shows that the Oracle

estimate results in a LR value which matches .

Since the EL approach selects the loading factor so that the re-

sulting LR is also , the EL approach performs

Fig. 4. Performance of diagonally loaded estimates versus .

and . (a) SNR loss (b) Mean value of .

as well as the Oracle. It should also be stressed that FP-DL sig-

niÞcantly outperforms the MLE, especially in low sample sup-

port, demonstrating the interest of regularization in this regime.

C. Regularization

We now consider simulations with estimates.

In Fig. 6, we compare the estimates

, and the estimates in (31) and (35). When

shrinkage is used in conjunction with Dym-Gohberg approxi-

mation, the value of is selected according to the EL principle,

i.e.,

(38)



Fig. 5. Performance of diagonally loaded estimates versus number of snapshots

. and . (a) SNR loss (b) Mean value of

(c) Mean value of loading factor.

The value of is set to in this simulation. As can

be observed, the Þxed-point diagonally loaded TVAR estimate

Fig. 6. Performance of estimates versus number of snapshots .

and .

offers the highest output SNR (average SNR loss of about

dB for ), followed by a Dym-Gohberg approximation

of Tyler’s MLE. It appears that shrinkage (or diagonal loading)

associated with modeling is not useful. This is further

investigated now.

D. Comparison Between DL and Estimates

Our next simulation explores the inßuence of the true under-

lying model for onto regularized schemes which are based

on a model . More precisely, we study the respective

performance of “shrinkage to the structure” (i.e.,

only without diagonal loading), diagonal loading, and their

combination, i.e., Þxed-point diagonally loaded

estimates. We still consider the case of an scatter

matrix : in this case, we wish to study if

only is better than FP-DL, and if diagonal loading

can improve estimation. We also consider a case

where the element of corresponds to the -th

correlation lag of an process whose spectrum

(correlation) is close to but different from that of the

process considered so far. In any case, is not longer a

banded matrix and does not correspond to the covariance

matrix of a process. The Þxed-point diagonal

loading will be tested with two different choices of the loading

factor : either is selected according to (36) or it is chosen so

that . In the latter

case, we thus compare only and diagonal loading

with the same likelihood ratio. Figs. 7–8 consider

while in Figs. 9–10. The following conclusions can

be drawn from observation of these Þgures. First, note that if

the true scatter matrix belongs to the class , in the

instance , shrinkage to the structure alone

(i.e., without DL) performs better than FP-DL even if the two

estimates have the same LR, see Fig. 7. However, even in this

case, a further reduction of LR to the median value leads to

additional gains, i.e., is found to be better than

alone. In contrast, in the case of an



Fig. 7. Comparison between , Þxed point diagonal loading and Þxed

point diagonally loaded estimates in the case.

and .

Fig. 8. Comparison between , Þxed point diagonal loading and Þxed

point diagonally loaded estimates in the case.

and .

scatter matrix, when is not as per a model, diag-

onal loading performs better than . It even performs

better than diagonally loaded , as if when the two

are used jointly, shrinkage to the structure is predominant.

Therefore, there is no universally “best” regularization scheme:

all depends on how close is the selected model to the true one.

If we know or are lucky to select such one that the true matrix

belongs to the restricted set, we get best results. If the restricted

class does not include the true matrix, this “shrinkage to the

structure” may be less efÞcient, and another shrinkage (actually

FP-DL) may be more efÞcient.

So far, the order of our estimates was Þxed.

We now consider joint estimation of and according to

the EL principle. When estimating for Þxed , we fol-

lowed the rule in (38), i.e., we looked for the matrix

Fig. 9. Comparison between , Þxed point diagonal loading and Þxed

point diagonally loaded estimates in the case.

and .

Fig. 10. Comparison between , Þxed point diagonal loading and

Þxed point diagonally loaded estimates in the case.

and .

whose LR is closest to the median LR. If the same strategy

is adopted for estimation of both and , i.e., if we select

the couple so that is closest to

, then high orders are likely to be chosen.

In order to favor models with minimal order, we estimate

as the minimal order for which

complies with [11]. More precisely, is esti-

mated as

(39)

where is the 10% quantile of , i.e.,

.



Fig. 11. Performance of estimates versus number of snapshots

with an -type scatter matrix. and . (a) SNR loss (b) Mean

value of .

For comparison purposes, we also display the performance

achieved when is Þxed to some value. The results are re-

ported in Figs. 11–12 where we compare the performance of

and in terms of SNR loss. In

these Þgures, the black solid lines represent the threshold and

the median value. Additionally, we display in Tables I–II an his-

togram of the values of . As can be seen, in the -type

scatter matrix , the estimated order is nearly always ,

which is the true underlying model order. However for this case

all models yield LR values compliant with that of

the true scatter matrix, i.e., at least above the threshold . In

the case, as increases, one has with

high probability: this appears to be the best choice as least for

large enough. In fact the estimate results in a LR

which is below the threshold, which explains why one has to go

to at least . These two simulations show that selecting

Fig. 12. Performance of estimates versus number of snapshots

with an -type scatter matrix. and . (a) SNR loss

(b) Mean value of .

according to the EL principle yields a close to optimal solution.

The is shown to perform quite well, at least it does

not penalize too much performance compared to Þxing . In

this case, the optimal value of is but the SNR

loss of is within 0.4 dB. To summarize, whatever

the case, in practice one does not know which value of is op-

timal, and hence the latter must be set somehow arbitrarily. The

EL principle offers an automatic way of estimating which,

in most situations, is very efÞcient. Accordingly, selection of

only for the FP-DL estimate according to the EL principle is

very efÞcient.

VI. SUMMARY AND CONCLUSIONS

In this paper, we extended the expected likelihood method-

ology introduced in [10], [11] over the i.i.d. training samples



TABLE I

HISTOGRAMS OF TVAR MODEL ORDER ESTIMATED FROM THE EL PRINCIPLE

VERSUS NUMBER OF SNAPSHOTS IN THE CASE. AND

TABLE II

HISTOGRAMS OF TVAR MODEL ORDER ESTIMATED FROM THE

EL PRINCIPLE VERSUS NUMBER OF SNAPSHOTS IN THE

CASE. AND

with complex elliptically symmetric distributions, and partic-

ularly over the class of samples with complex angular central

Gaussian distribution. These distributions are appropriate for

non-homogeneous clutter description when the covariance

(scatter) matrix of this clutter is of full rank and the additive

Gaussian internal noise may be ignored. In this Þrst part, for

conventional (over-sampled) training conditions, we demon-

strated that for the true (a priori unknown) scatter matrix, the

p.d.f. of the likelihood ratio does not depend on this matrix.

For angular central Gaussian complex data, this p.d.f. is fully

speciÞed by the sample volume and matrix dimension ,

and does not depend on the density generator as per complex

elliptically symmetric data. In those cases where the density

generator is not accurately known a priori, it is therefore more

appropriate to operate with the normalized training data that are

described by the complex ACG distribution. While closed-form

analytical formulas for the scenario-invariant p.d.f. have not

been derived, Monte-Carlo simulations with i.i.d. white noise

Gaussian random vectors could be used to pre-calculate these

p.d.f. with any required accuracy. The particular quantiles of

these p.d.f., such as median value, are then used as thresholds or

target value for appropriate selection of shrinkage parameters

in Þxed-point scatter matrix estimation.

In particular, the EL approach was proposed for diagonal

loading factor selection in the Þxed-point regularized scatter

matrix estimation scheme of [32]–[34]. Interestingly enough,

we observed that the Oracle estimator (which minimizes the

MSE) yields a value of the likelihood ratio which is very close

to the median LR for the true scatter matrix. Since the latter is

the target value for the EL approach, it demonstrates that the

EL approach is statistically sound. Furthermore, we explored in

this paper another type of regularization, different from diagonal

loading, often referred to as shrinkage to the structure. SpeciÞ-

cally, we introduced the Þxed-point ML scatter ma-

trix estimate, along with a diagonally loaded version of it. We

showed that for autoregressive experimental data, es-

timates perform better than Þxed-point diagonal loading: yet,

introduction of DL in conjunction with shows im-

provement with respect to only.When the true scatter

matrix does not belong to the class, then Þxed-point

diagonal loading was shown to outperform -based

estimates, while the difference is not large. It was also demon-

strated that the EL approach allows for an accurate estimation

of the best model order.

Hence, the EL approach offers a systematic, statistically

sound and efÞcient way of Þxing the regularization parameters

in regularized covariance matrix estimation schemes. More-

over, the extension to CES and ACG distributions presented in

this paper expand our ability to address problems with severe

in-homogeneity of training data in adaptive processing applica-

tions. Regularized covariance matrix estimates, well developed

and proven to be highly effective in adaptive antenna (Þlter)

applications with multivariate complex Gaussian data, now got

extended over a broader class of CES and ACG distributions.
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