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Detection of a Signal in Linear Subspace with
Bounded Mismatch

We consider the problem of detecting a signal of interest in a

background of noise with unknown covariance matrix, taking into

account a possible mismatch between the actual steering vector

and the presumed one. We assume that the former belongs to a

known linear subspace, up to a fraction of its energy. When the

subspace of interest consists of the presumed steering vector, this

amounts to assuming that the angle between the actual steering

vector and the presumed steering vector is upper bounded.

Within this framework, we derive the generalized likelihood ratio

test (GLRT). We show that it involves solving a minimization

problem with the constraint that the signal of interest lies inside

a cone. We present a computationally efficient algorithm to

find the maximum likelihood estimator (MLE) based on the

Lagrange multiplier technique. Numerical simulations illustrate

the performance and the robustness of this new detector, and

compare it with the adaptive coherence estimator which assumes

that the steering vector lies entirely in a subspace.
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I. INTRODUCTION

Detecting a signal of interest in a background of
noise is a fundamental task in many array processing
applications, notably in radar systems whose core
task is to detect a target against clutter and thermal
noise (and possibly jamming). Usually, the presence
of a target with given space or space-time signature
is sought in a vector under test, using secondary data
which consists of noise only. This problem has been
extensively studied and a large number of solutions
have appeared in the literature, that depend on the
assumptions made on the statistical properties of the
noise, see e.g. [1] for a very good list of references.
Under the Gaussian assumption, the most celebrated
detectors are Kelly’s generalized likelihood ratio
test (GLRT) [2] and the adaptive matched filter
(AMF) of Robey et al. [3]. Both detectors assume a
homogeneous environment, i.e., the noise covariance
matrix of the primary vector is identical to the noise
covariance matrix of the secondary data. Kelly’s
detector is based on the GLRT principle using the
whole data, viz. the primary and secondary data. In
contrast, the AMF first proceeds with the primary
data, assuming that the noise covariance matrix is
known. Then, the latter is substituted for its maximum
likelihood estimate (MLE) using the secondary data.
The performances of these two detectors have been
evaluated thoroughly on simulated data in [2] and
[3] as well as on real data, see e.g. [4, 5]. In the
partially homogeneous case, i.e., when the noise
covariance matrices in the primary and secondary
data have the same structure but possibly different
levels, a benchmark detector is the adaptive coherence
estimator (ACE). The ACE was originally proposed
in [6] and [7] as an adaptive version of the constant
false-alarm rate (CFAR) matched subspace detectors
of [8]. It was also independently developed in [9]
and [10] in the case of compound-Gaussian noise.
It turns out that, under the Gaussian assumption,
the ACE is the GLRT for the problem at hand [11].
Furthermore, it was shown to be the uniformly most
powerful invariant (UMPI) test [12—14].
All detectors above, and in general most

detectors, assume a precise knowledge of the space
or space-time signature of interest (we’ll refer to it
as the steering vector in the sequel). However, in
practice, there potentially exist many reasons for this
assumption not to hold. These include uncalibrated
arrays, pointing errors, spatially dispersed targets,
wavefront distorsions, etc. When the presumed
steering vector, that is the steering vector whose
presence is to be detected, differs from the actual
steering vector, detection performance loss is incurred
[3, 15, 16].1 Quoting from [15] this loss may be

1Performance analysis of some detection schemes under general
types of mismatch (notably covariance mismatches between the test
vector and the training samples) can be found in [17]—[20].
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more significant than expected from the sidelobes
levels of the adapted pattern. Therefore, it is of
interest to take into account the possible steering
vector mismatch at the design stage of the detector.
This approach is relatively scarce in the literature,
at least for detection problems. In contrast, it has
received considerable attention recently in the field
of adaptive beamforming, see e.g. [21—24], where
worst case approaches are advocated to make the
Capon beamformer more robust to steering vector
errors. Obviously, taking into account steering
vector uncertainties requires modeling of the latter.
A possible approach is to assume that the steering
vector belongs to a known linear subspace. This is
essentially what the multi-rank ACE of [6] does, see
also [25] for an extension to multiple observations in
the primary data. The interest of this modeling is that
it leads to closed-form and rather simple detectors,
which additionally possess the CFAR property. The
only drawback concerns the choice of the subspace
as one should ensure that the actual steering vector
belongs to it, which is not obvious a priori. Of course,
the size of the subspace can be increased, but at the
detriment of detection performance. Another option
is proposed in [26] where the actual steering vector
is assumed to belong to a cone whose axis is the
presumed steering vector. One-step and two-step
GLRTs are derived in [26]. Unfortunately, maximum
likelihood estimation of the steering vector leads to an
optimization problem which is not convex. In order
to remedy this pitfall, the problem is reformulated
as four optimization problems, each of them being
convex. Then, second-order cone programming
techniques are used to compute the solution. However,
the overall complexity of the detector is relatively
high. In this work, we combine the two ideas above
by assuming that the steering vector belongs to a
linear subspace with bounded mismatch. In other
words, most of its energy is inside a subspace but
a fraction of it can lie outside the subspace. This
modeling allows more flexibility than the pure
subspace approach and also eases the choice of the
subspace, as we allow the steering vector not to be
strictly in a subspace. The model used here belongs
to the general framework of cone classes [27] and
is thus related to [26]. However, it will be shown
that the MLE of the steering vector can be obtained
using the technique of Lagrange multipliers, which
results in a less complicated detector. Furthermore,
the case of a partially homogeneous environment is
considered here, i.e., the covariance matrix of the
primary and secondary data have the same structure
but a possibly different level. This is to be contrasted
with [26] where a homogeneous environment is
considered.

II. GENERALIZED LIKELIHOOD RATIO TEST

We assume that data are collected from m sensors
and denote z the m-length vector under test. We also
assume that K training samples zk, which contain
noise only, are available. The detection problem
considered here is that of deciding between the
following two hypotheses

H0 :
½
z= n

zk = nk; k = 1, : : : ,K

H1 :
½
z= s+n

zk = nk; k = 1, : : : ,K:

(1)

In (1), n and nk are proper zero-mean independent
and Gaussian distributed noise vectors with covariance
matrices

EfnnHg= °M (2a)

EfnknHk g=M: (2b)

Hence, we consider a partially homogeneous
environment in which the covariance matrices of
the primary and the secondary data have the same
structure, but possibly different power. We assume
that the steering vector of interest s belongs to a
linear subspace, spanned by the columns of the m£p
matrix Ā, with a bounded mismatch. In other words,
the fraction of energy of s outside R(Ā) is bounded,
which can be formulated mathematically as

s 2 C =
(
s;
sHPĀs
sHs

¸ ½
)

(3)

where PĀ is the orthogonal projection onto R(Ā), and
0< ½ < 1 is a scalar that sets how much of the energy
is allowed to be outside R(Ā). In the limiting case
½= 1, s 2R(Ā). Of special interest to us is the case
p= 1 where Ā= ā is the presumed steering vector. In
this case, (3) can be rewritten as

s 2 C =
½
s;

jsH āj2
(sHs)(āH ā)

¸ ½
¾
: (4)

The constraint (4) means that the square of the cosine
angle between s and ā must be above ½. Again, when
½= 1, the actual steering vector is aligned with the
presumed steering vector.
In the sequel, we derive the GLRT for the problem

described in (1). Let Z= [z1, : : : ,zK] denote the
secondary data matrix. Under the assumptions made,
the joint probability density function (pdf) of z and Z
is given by [8]

f(z,Z) =
expf¡°¡1(z¡¹s)HM¡1(z¡¹s)g

¼m°mjMj £ expf¡
PK

k=1 z
H
k M

¡1zkg
¼mK jMjK

=

½
e¡TrfM¡1Tg

¼m°m=(K+1)jMj

¾K+1
(5)
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with

T=
1

K +1

(
°¡1(z¡¹s)(z¡¹s)H +

KX
k=1

zkz
H
k

)
: (6)

In the previous equations, Trf:g and j:j stand for the
trace and the determinant, respectively, and ¹= 0
under H0, ¹= 1 under H1. It is well known [2] that the
MLE of M is M̂= T. Substituting this value in (5), it
follows that

max
M
f(z,Z) = f(e¼)mjTj°m=(K+1)g¡(K+1): (7)

Let us note

S=
KX
k=1

zkz
H
k (8)

the sample covariance matrix of the secondary data.
Using the fact that

jTj= jSj
(K +1)m

f1+ °¡1(z¡¹s)HS¡1(z¡¹s)g (9)

it is straightforward to show that the maximum of the
right-hand side of (7) with respect to ° is attained (see
[11] for a similar derivation) when

° = °0 =
K +1¡m

m
(z¡¹s)HS¡1(z¡¹s): (10)

With this value of °, jTj becomes a constant, and
therefore

max
°,M

f(z,Z)/ f(z¡¹s)HS¡1(z¡¹s)g¡m: (11)

Consequently, the generalized likelihood ratio (GLR)
can be written as

GLR=
½

zHS¡1z
mins2C(z¡ s)HS¡1(z¡ s)

¾m
: (12)

The last step to complete the derivation of the GLRT
consists of solving the minimization problem at the
denominator of (12). When s completely belongs to
R(Ā), this minimization problem admits a closed-form
solution, namely

ŝ1 = arg min
s2R(Ā)

(z¡ s)HS¡1(z¡ s)

= Ā(ĀHS¡1Ā)¡1ĀHS¡1z: (13)

In contrast, when s 2 C, a closed-form solution cannot
generally be found. At least two cases should be
considered. First, if z 2 C then z is necessarily the
solution. In this case, the vector under test is close
to the presumed steering vector. The denominator
in (12) is zero and a detection is always declared.
This is not an issue under H1. In fact, in high signal
to noise ratio, z= s+n may be close to s, and thus
can belong to the cone. In such a case the signal is
detected, which is the desired result. In contrast, under
the null hypothesis, the fact that z 2 C is a problem

as it causes a false alarm. In Appendix A, we derive
the probability that, under H0, the vector under test
z is inside the cone. It appears that this probability
is very small, and indeed much smaller than the
probabilities of false alarm usually considered. The
probability that z 2 C under H0 mostly depends on
the cone angle µc. Therefore, attention should be
paid not to choose a too large µc; at least, one must
ensure that the probability of false alarm chosen is
larger than Pr(z 2 C jH0). In any case, the latter is
a lower bound on the the probability of false alarm.
We now concentrate on the case where z =2 C. In such
a situation, there is no closed-from solution to the
minimization problem and we resort to the Lagrange
multiplier technique to solve it [28]. The Lagrangian
can be written as

L(s,¸) = (z¡ s)HS¡1(z¡ s) +¸(½sHs¡ sHPĀs)
(14)

where ¸¸ 0 is the real-valued Lagrange multiplier.
For the sake of notational convenience, let us define

Q= ½I¡PĀ (15a)

W= S¡1 +¸Q: (15b)

In the present case, with a single inequality constraint,
if there is a strictly feasible point, i.e., a vector s such
that ½sHs¡ sHPĀs< 0, there is a zero duality gap
between the primal and the dual problem [28]. In
our case, there exists a vector that is strictly feasible,
for instance any vector in R(Ā). This means that the
optimal value of the initial minimization problem in
(12) will be the same as the optimal value of the dual
problem. Therefore, we consider the dual problem.
Completing the squares, we can rewrite (14) as

L(s,¸) = [s¡W¡1S¡1z]HW[s¡W¡1S¡1z]

+ zHS¡1z¡ zHS¡1W¡1S¡1z: (16)

Hence, the dual function is [28]

g(¸) = min
s
L(s,¸)

= zHS¡1z¡ zHS¡1W¡1S¡1z (17)

provided that W= S¡1 +¸Q> 0. Otherwise, the dual
function is unbounded below and takes the value ¡1.
The vector s which minimizes L(s,¸) is given by

ŝ(¸) =W¡1S¡1z (18)

where we emphasize that ¸ is still to be determined.
In order to obtain the latter, we need to maximize the
dual function [28], which amounts to minimizing

f(¸) = zHS¡1W¡1S¡1z (19)

with respect to ¸¸ 0. Let ¸0 be the minimizer of f(¸)
and ŝ0 = ŝ(¸0). Setting the derivative of f(¸) to zero
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yields

f 0(¸) = zHS¡1
@W¡1

@¸
S¡1z

=¡zHS¡1W¡1QW¡1S¡1z= 0: (20)

Observing that f 0(¸) = ŝH(¸)Qŝ(¸), it follows that
minimization of f(¸) will yield a vector ŝ0 which
lies on the boundary of the cone, and hence ŝ0 is the
sought solution; see also Remark 1 below. In order
to minimize f(¸), we rewrite it in a more convenient
form. Let

S1=2QS1=2 =U¡UH (21)

be the eigenvalue decomposition of S1=2QS1=2 with
S1=2 a square root of S, and where the eigenvalues are
arranged in decreasing order. Then we have

f(¸) = zHS¡1[S¡1 +¸Q]¡1S¡1z

= zHS¡1=2[I+¸S1=2QS1=2]¡1S¡1=2z

= zHS¡1=2U[I+¸¡ ]¡1UHS¡1=2z

= xH[I+¸¡ ]¡1x

=
mX
k=1

jxkj2
1+¸°k

: (22)

We now show how to minimize f(¸). First, note
that Q has m¡p positive eigenvalues equal to ½
and p negative eigenvalues equal to ½¡1. Since Q
and S1=2QS1=2 have the same inertia [29], we have
°1 > ¢ ¢ ¢> °m¡p > 0> °m¡p+1 > ¢ ¢ ¢> °m. Moreover,
since S¡1 +¸Q= S¡1=2(I+¸S1=2QS1=2)S¡1=2 must
be positive, we must have 1+¸°k > 0, 8k, and hence
0· ¸ <¡1=°m. Therefore, f(¸) should be minimized
in the interval [0,¡°¡1m ]. We now show that, in this
interval, there exists a unique value of ¸ for which
f 0(¸) = 0. Observe that

f 00(¸) = 2
mX
k=1

°2k jxkj2
(1+¸°k)3

(23)

is positive in [0,¡°¡1m ], and therefore f 0(¸) is
monotonically increasing in this interval. Moreover,
for ¸= 0, W= S¡1 and then, according to (20)

f 0(0) =¡zHQz< 0 (24)

as z =2 C. Additionally,
lim

¸!(¡°¡1m )¡
f 0(¸) = +1: (25)

Hence, there exists a unique value ¸0 2 [0,¡°¡1m ]
for which f 0(¸0) = 0. This unique value provides
the solution ŝ0 = ŝ(¸0) of the minimization problem
of (12). Additionally, since f 0(¸) is monotonically
increasing and has a unique zero, computationally
efficient techniques such as the Newton method can
be used to find ¸0.

REMARK 1 An alternative but similar route can be
taken to obtain the MLE of s. First, note that, at the
solution, the inequality constraint is active, i.e., the
solution lies on the boundary of the cone. To see this,
assume that the solution s0 is strictly inside the cone,
i.e., sH0 Qs0 < 0. Then, consider s1 = s0 +¹(z¡ s0) with
0· ¹· 1. Obviously

(z¡ s1)HS¡1(z¡ s1) = (1¡¹)2(z¡ s0)HS¡1(z¡ s0)
· (z¡ s0)HS¡1(z¡ s0):

Furthermore, we can always find a ¹ 2 [0,1] such that
sH1 Qs1 = 0. Indeed,

h(¹) = sH1 Qs1 = [s0 +¹(z¡ s0)]HQ[s0 +¹(z¡ s0)]
is a continuous function of ¹. Additionally, h(0) =
sH0 Qs0 < 0 and h(1) = z

HQz> 0. Therefore, there
exists a ¹ such that h(¹) = 0. This is in contradiction
with the fact that s0 is the solution. Hence, the
inequality constraint may be replaced by an equality
constraint. The Lagrangian is still given by (14).
Solving for the stationary point of L(s,¸) yields the
solution ŝ(¸) =W¡1S¡1z of (18). Next, ¸ is obtained
by enforcing the equality constraint, i.e., ŝH(¸)Qŝ(¸)
= 0, which leads to (20). Then, ¸ is obtained via the
procedure described above.

The minimization problem is pictorially
depicted in Fig. 1 in the simple case m= 2 (and
with real-valued s, z, etc. : : :). The contours of
(z¡ s)HS¡1(z¡ s) are ellipses centered at z while
the boundaries of C are lines. The size of the ellipse
is increased (via ¸) until the gradient of the ellipse
becomes orthogonal to the border line of the cone
[30]. We also display the trajectory of ŝ(¸) as ¸ goes
from 0–in which case ŝ(0) = z–and is progressively
increased. The solution is found when ¸ is such
that the ellipse becomes tangent to the border
line of the cone. Note that the solution ŝ0 satisfies
(z¡ ŝ0)HS¡1ŝ0 = 0 [27]; in other words, S¡1=2ŝ0 is the
projection of S¡1=2z onto the surface of the (whitened)
cone.
Once the MLE of s is obtained, it can be

substituted in (12) to yield the GLRT. Using the fact
that

(z¡ ŝ0)HS¡1(z¡ ŝ0) = zHS¡1z¡ zHS¡1ŝ0
it ensues that the GLRT can be rewritten in the
following equivalent form

zHS¡1ŝ0
zHS¡1z

H1
?
H0

´GLRT: (26)

A few observations are in order regarding the
invariances of the problem considered here, and those
of the corresponding problem when s is known to
belong to R(Ā). For the sake of simplicity, consider
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Fig. 1. Geometry of minimization problem mins2C(z¡ s)HS¡1(z¡ s) when m = 2.

the case p= 1. Then, see [11], the ACE is the GLRT
for the detection problem

H0 :
½
z= n

zk = nk; k = 1, : : : ,K

H1 :
½
z= s+n; s/ ā
zk = nk; k = 1, : : : ,K:

(27)

The detection problem (27) is invariant under the
group of transformations [12, 14]

G = fg : [z Z]! [¯Tz TZVH]g (28)

where ¯ is an arbitrary scalar, V is an K £K unitary
matrix, and T is an m£m full-rank matrix such that

Tā/ ā: (29)

The specific form of this group can be briefly
explained as follows. Since all data vectors are
Gaussian distributed, attention should be restricted
to linear transformations. The unitary matrix V
preserves independence of the columns of Z. The
presence of the arbitrary scalar ¯ is due to the fact
that one does not know the scaling factor between
the covariance matrix of z and that of the columns
of Z. Finally, the matrix T should be full rank, in
order for the transformed covariance matrix to be full
rank. Moreover, the mean of z under H1 should be
proportional to ā, which explains why Tā/ ā. The
ACE is invariant to this group of transformations.
Moreover, for the detection problem stated in (27),
the ACE is the uniformly most powerful test within all
tests that are invariant to G [14].
In contrast, the detector in (26) is not invariant

to G, at least when Tā/ ā. On the other hand, the
transformations in (28)—(29) are not the invariances

for the problem at hand, and it is not expressly
required that a detector for the problem in (1) be
invariant to them. This rises the question of the
invariances of (1). Given the similarity between
(1) and (27), the group of transformations under
which (1) is invariant is still given by (28), except
that the matrix T is now required to leave the
cone invariant, instead of only leaving ā invariant.
However, the natural invariances of a cone are scaling,
rotation around its axis and symmetry with respect
to the hyperplane orthogonal to ā. Therefore, the
transformations T that leave the cone invariant are of
the form [8]

T= ®[Pā+U
?̄
a QU

?H
ā ] (30)

where ® is an arbitrary scalar, Pā is the orthogonal
projection onto ā, U?̄a is an m£ (m¡ 1) matrix whose
columns form an orthonormal basis for R(ā)?, and
Q is a unitary matrix. The matrix T above (ignoring
the scaling factor ®) retains the component of s
along ā, while the orthogonal component is rotated
around ā. To summarize, the invariances of the present
detection problem are described by (28) and (30). It
is straightforward to show that the GLRT is indeed
invariant to these transformations. Indeed, if z and
Z are transformed as in (28) with T given by (30),
then S! j¯j2TSTH , ŝ0! ¯Tŝ0 and thus the GLRT
is invariant. However, the detector in (26) cannot be
claimed to possess the CFAR property with respect to
the noise covariance matrix. Finally, observe that even
if it happens that s/ ā, the ACE is not necessarily
optimal for the detection problem considered herein,
unless the invariance to the transformations in
(28)—(29) is enforced.
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Fig. 2. Probability of detection versus SNR. µ = 0± and µc = 12
±.

As a final remark, notice that the ACE is given by

zHS¡1ŝ1
zHS¡1z

H1
?
H0

´ACE: (31)

However, since ŝ1 2 C,
(z¡ ŝ0)HS¡1(z¡ ŝ0)· (z¡ ŝ1)HS¡1(z¡ ŝ1) (32)

which implies that

zHS¡1ŝ0
zHS¡1z

¸ z
HS¡1ŝ1
zHS¡1z

: (33)

The GLRT with a signal in the cone is thus lower
bounded by the multi-rank ACE.

III. NUMERICAL ILLUSTRATIONS

In this section, we assess the performance of the
GLRT as well as its robustness, and compare it with
the ACE. We focus on the case p= 1 and let ā denote
the presumed steering vector. We let µ denote the
angle between s and ā while µc denotes the angle of
the cone in which s is assumed to lie, i.e., cos2 µc = ½.
In order to test the performance and the robustness of
the GLRT and the ACE, we consider two scenarios,
namely µ = 0, i.e., the actual signal of interest is
aligned with ā, and µ6= 0.
In all simulations, we consider an array with

m= 8 elements and an exponentially-shaped noise
covariance matrix, viz. the (k,`)th element of M is

Mk,` = ®
jk¡`j (34)

and ®= 0:9 in the simulations below. In order to set
the thresholds ´GLRT and ´ACE for a given probability
of false alarm Pfa, we resorted to Monte-Carlo

counting techniques. More precisely, 106 simulations
of the data under the null hypothesis were run, and
the test statistics in (26) and (31) were computed
and sorted. The thresholds were set from the 1¡Pfa
quantile. In the simulations shown below, Pfa = 10

¡3.
Note that this Pfa is well above the probability
that the test vector z belongs to the cone under H0.
Indeed, assuming white Gaussian noise, it is shown
in Appendix A that Pr(z 2 C jH0) = 2:82 10¡10 when
the cone angle is µc = 12

±, as is the case in the
simulations presented below. To obtain the probability
of detection, 105 independent trials were run, and
the test statistics are compared with the thresholds
in order to obtain Pd. The probability of detection Pd
is plotted as a function of the signal-to-noise-ratio,
which is defined as SNR = °¡1sHs. The number
of snapshots in the secondary data is set to
K = 20.
We first consider a scenario in which µ = 0±, i.e.,

the actual and presumed steering vectors are perfectly
aligned. The cone angle is chosen as µc = 12

±. The
probability of detection for the two detectors is shown
in Fig. 2. Even in this situation where the ACE is
expected to be very performant, the GLRT shows an
improvement compared with the ACE; the difference
is about 0.9 dB at Pd = 0:8. Note that this seemingly
bewildering result does not contradict the theory of
[14] as the GLRT is not invariant to G when Tā/ ā.
Hence, the GLRT performs better than the ACE,
certainly, but does not enjoy the natural invariances
of the problem, which are given by (28)—(29) when
µ = 0. Nevertheless, it is an interesting feature that
the GLRT does better than the ACE in the case of no
mismatch.
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Fig. 3. Probability of detection versus SNR. µ = 12± and µc = 12
±.

Next, we assess the robustness of the detectors
in the case of a mismatch between the actual and
the presumed steering vectors. Towards this end,
the actual steering vector is such that its angle with
ā is µ = 12±. Similarly to the previous scenario, we
have µc = 12

±. The results are plotted in Fig. 3. From
inspection of this figure, it can be seen that the GLRT
outperforms the ACE; the difference at Pd = 0:8 is
now about 2 dB. Therefore, in case of a steering
vector mismatch, the GLRT offers an improved
robustness compared with the ACE.

IV. CONCLUSIONS

We considered the problem of designing an
adaptive detector that can take into account possible
mismatches between the presumed steering vector
and its actual value. Towards this end, we assumed
that the steering vector of interest mostly belongs to
a known linear subspace, but that a small fraction
of its energy can lie outside this subspace. Using
this modeling, we derived the GLRT and proposed
a computationally efficient implementation of the
MLE, using the theory of Lagrange multipliers. The
proposed detector was shown to perform better than
the ACE (at the price of an increased computational
complexity), and offers additional robustness as it
can accommodate deviations from the presumed
steering vector. Further work should be devoted
to robustness analysis of this detector under other
types of mismatch. As a final remark, observe that
increased robustness is usually traded for an increased
sensitivity to unaccounted sidelobe targets. This
issue is important and deserves further examination.
A possible solution to mitigate this drawback is

proposed in [31] where a detector decides whether a
signal in the cone, or in its complement, is present.

APPENDIX A. PROBABILITY THAT z BELONGS TO
THE CONE UNDER THE NULL HYPOTHESIS

In this appendix, we derive an expression for the
probability that the test vector z lies inside the cone,
when H0 holds. For mathematical tractability, we
assume that the covariance matrix of z is the identity
matrix. Then, we have

Pr(z 2 C jH0) = Pr
Ã
zHPĀz
zHz

¸ ½
!

= Pr

Ã
zHPĀz
zHP?̄

A
z
¸ ½

1¡ ½ = ³
!
: (35)

However, under the assumption that z»N (0,I),
zHPĀz and z

HP?̄
A
z are independent random

variables, distributed as Â2p and Â
2
m¡p. Therefore,

f = (zHPĀz)=(z
HP?̄

A
z) has an F distribution and its pdf

is given by

fF(f) =
¡ (m)

¡ (p)¡ (m¡p)
fp¡1

(1+f)m
: (36)

Consequently,

Pr(z 2 C jH0) =
¡ (m)

¡ (p)¡ (m¡p)
Z 1

³

fp¡1

(1+f)m
df

=
¡ (m)

¡ (p)¡ (m¡p)
³p¡m

m¡p

£ 2F1

µ
m,m¡p;m¡p+1;¡1

³

¶
(37)
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TABLE I
Pr(z 2 C jH0) Versus Cone Angle

µc 3± 6± 9± 12± 15± 18±

1.157
10¡18

1.859
10¡14

5.256
10¡12

2.82
10¡10

6.053
10¡9

7.24
10¡8

Note: m= 8, p= 1, z»N (0,I).

where, to obtain the last expression, we made use of
[32, eqn 3.194.2], with 2F1(¡,¡;¡;¡) denoting the
hypergeometric function. Table I provides numerical
values of this probability for different values of µc.
It can be observed that this probability is much

smaller than the usual Pfa considered. However, it
should be reminded that Pfa cannot be chosen lower
than Pr(z 2 C jH0), which in turn implies that the cone
angle µc should not be chosen too large.
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Multisensor Target Tracking Performance with Bias
Compensation

In this paper, multisensor-multitarget tracking performance

with bias estimation and compensation is investigated when only

moving targets of opportunity are available. First, we discuss

the tracking performance improvement with bias estimation and

compensation for synchronous biased sensors, and then a novel

bias estimation method is proposed for asynchronous sensors with

time-varying biases. The performance analysis and simulations

show that asynchronous sensors have a slightly degraded

performance compared with the “equivalent” synchronous ones.

The bias estimates as well as the corresponding Cramer-Rao

lower bound (CRLB) on the covariance of the bias estimates,

i.e., the quantification of the available information on the sensor

biases in any scenario are also given. Tracking performance

evaluations with different sources of biases–offset biases, scale

biases, and sensor location uncertainties, are also presented and

we show that tracking performance is significantly improved

with bias estimation and compensation compared with the

target tracking using the original biased measurements. The

performance is also close to the lower bound obtained in the

absence of biases.

I. INTRODUCTION

Registration error compensation is vital in
multiple sensor systems in order to carry out data
fusion. This requires estimation of the unknown
sensor measurement biases. It is important to correct
for these bias errors so that the multiple sensor
measurements and/or tracks can be referenced
as accurately as possible to a common tracking
coordinate system (frame). If uncorrected, registration
error can lead to large tracking errors and potentially
to the formation of multiple tracks (ghosts) for the
same target.
To estimate the bias vector, the classical approach

is to augment the system state to include the bias
vector as part of the state, then implement an
augmented state Kalman filter (ASKF) by stacking
the state of all the targets and the sensor biases into
a single vector. The problem with this approach
is that the implementation of this ASKF can be
computationally infeasible. In addition, numerical
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