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ABSTRACT

Smith, Jared P. Ph.D., Department of Electrical Engineering, Wright State University, 2022. Unit
Circle Roots Based Sensor Array Signal Processing.

As technology continues to rapidly evolve, the presence of sensor arrays and the algo-

rithms processing the data they generate take an ever-increasing role in modern human life.

From remote sensing to wireless communications, the importance of sensor signal process-

ing cannot be understated. Capon’s pioneering work on minimum variance distortionless

response (MVDR) beamforming forms the basis of many modern sensor array signal pro-

cessing (SASP) algorithms. In 2004, Steinhardt and Guerci proved that the roots of the

polynomial corresponding to the optimal MVDR beamformer must lie on the unit circle,

but this result was limited to only the MVDR. This dissertation contains a new proof of

the unit circle roots property which generalizes to other SASP algorithms. Motivated by

this result, a unit circle roots constrained (UCRC) framework for SASP is established and

includes MVDR as well as single-input single-output (SISO) and distributed multiple-input

multiple-output (MIMO) radar moving target detection. Through extensive simulation ex-

amples, it will be shown that the UCRC-based SASP algorithms achieve higher output

gains and detection probabilities than their non-UCRC counterparts. Additional robustness

to signal contamination and limited secondary data will be shown for the UCRC-based

beamforming and target detection applications, respectively.

iii
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Introduction

With the advent of modern technology, sensors are ubiquitous in human daily life in di-

verse applications including home appliances, buildings, smart phones, transportation etc.

Sensor arrays are utilized in many scientific and engineering fields that use some form of

wave propagation such as, radar, sonar, communication, astronomy, navigation, medical

diagnosis, and seismic exploration, etc. The main purpose of processing signals received

by an array of sensors is to extract important source signal or target information by ana-

lyzing the received signal to perform various useful tasks such as, source localization and

target recognition in radar, sonar, communication, astronomy, and seismology.

The seminal work on Minimum-Variance Distortionless Response (MVDR) by Capon

[13] largely forms the fundamental basis for much of the theoretical and practical devel-

opment in Sensor Array Signal Processing (SASP) over the past five decades. MVDR and

related extensions remain the backbone of Beamforming, STAP, adaptive target detection,

MIMO, and many other SASP algorithms.

A key theoretical property of the MVDR beamformer proven by Steinhardt and Guerci

[97] states that the roots of the MVDR array polynomial for a uniform linear array (ULA)

ideally fall on the unit circle. An important contribution of this work is to extend and gen-

eralize the Steinhardt-Guerci unit-circle theorem for MVDR to prove that the unit circle

roots property is also valid for ideal Adaptive Matched Filters (AMF) and a broad class

of other important statistical adaptive detectors with vast practical applications. Previously

reported proofs for MVDR utilized the Wiener-Khinchin theorem to transform the MVDR

1



optimization problem to the frequency-domain. In this work, Carathèodory’s theorem on

positive definite, Toeplitz matrices and Vandermonde steering vectors are leveraged to de-

rive a new spatial-domain proof of this fundamental property. However, to the best of our

knowledge, existing MVDR or adaptive detection algorithms fail to enforce this theoreti-

cally fundamental unit circle roots property during array design, detector optimization or

in their practical implementations. Hence, existing SASP algorithms as currently imple-

mented are at best suboptimal, and fail to attain their true underlying potential when the

requisite mathematical structure exists to justify unit circle root enforcement.

The analytical expressions of the theoretically optimal MVDR beamformer and AMF

weights depend on the ideal covariance matrix of the underlying noise, interference and

clutter. The data collected by the sensors almost always include some level of noise, clutter,

interference, multipath, or jamming signals and it may also be contaminated by the signal-

of-interest (SOI) that exist in the theater of operation. For wide sense stationary signals, the

covariance matrix ideally has a Toeplitz structure. However, in practice, the true covariance

matrices are never available, and the sample covariance matrix (SCM) estimated using

the observed sensor array data is used instead. The SCM does not possess the desired

Toeplitz structure, and it typically differs significantly from the true covariance matrix,

especially when the data set used to compute the SCM is as small as the dimension of

the SOI. Consequently, the array or detector polynomials estimated with the noisy SCM

do not possess unit circle roots, i.e. zeros on the unit-circle. It is well-recognized that

zeros on the unit circle cause deep nulls and lower sidelobes in the frequency spectrum of a

filter, enabling suppression or nullification of noise, interference, multipath and jamming,

if present. However, lack of unit-circle roots of the designed filter the associated noise

suppression and nulling ability is lost, partly explaining the relatively poor performance of

almost all existing SCM-based SASP algorithms.

This work will leverage polynomial theory in mathematical literature to enforce unit

circle roots [65, 89] on filter polynomials for sensor array design for adaptive beamform-
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ing and for adaptive target detection. Specifically, two constraints must be satisfied for a

polynomial to have unit circle roots [65],

• C1: The polynomial coefficients have conjugate symmetry and

• C2: The roots of the derivative polynomial lie on or inside the unit circle.

The first condition C1 is relatively easy to satisfy and has been used by many researchers

in different fields of SASP [46], [109], [115]. However, imposing C1 on a polynomial

will not guarantee UC roots and it typically produces one or more pairs of reciprocal roots.

Furthermore, imposing C2 requires non-linear optimization that may be impractical [89,

54, 55].

Interestingly, for a 1st-order polynomial, conjugate symmetry (C1) is sufficient to

guarantee a UC root because the derivative required in C2 is a scalar. The key idea be-

hind the proposed novel concept is that the optimization criterion for MVDR and detectors

will be reformulated to optimize each root separately by splitting the N -dimensional prob-

lems into multiple 1-D optimization problems [89]. This approach effectively utilizes the

condition-C1 repeatedly to achieve unit circle root for each first-order factor. Conjugate

symmetry will be imposed on each 1st-order factor to guarantee UC root in each case.

Since the algorithm works with first-order factors only, condition-C2 becomes inconse-

quential. The proposed method initializes each 1-D root optimization step with the sample

matrix inversion (SMI) roots. The proposed UC roots constrained approach is non-iterative

and has a closed-form solution. The approach also works well with limited number of

snapshots.

Regarding past work on exploiting unit circle roots in SASP, it is noted that inspired

by Steinhardt et. al’s [97] unit circle roots theorem for the ideal MVDR beamformer poly-

nomial, Tuladhar et. al [101, 102] had proposed UC-MVDR where the SMI-based roots

were radially projected onto the unit circle in an ad-hoc manner. Even with this relatively

simple modification, some beamforming performance improvement were achieved in their
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work. However, no attempt was made to optimize the underlying MVDR criterion while

updating the original SMI-based roots, and in that sense, UC-MVDR may be considered

suboptimal. Furthermore, their work was limited to MVDR only, and no consideration was

given to broadening the scope of the unit-circle roots property by extending it to the mov-

ing target detection problem and other areas considered in this work. To the best of our

knowledge, no other published work has explicitly studied the efficacy of unit circle roots

in beamformer and detector polynomials although there have been some notable indirect

connections as discussed next.

In the context of array pattern synthesis, due to the seminal work on linear arrays

by Schelkunoff in the early 1940’s [83] it has been known for sometime that array null

positions can be controlled by placing the array polynomial roots on the unit circle [26].

Indeed, the well-known conventional beamformer (CBF) which is essentially an ideal spa-

tial lowpass filter (or bandpass, in case of steered arrays) with all its roots on the unit circle

producing deep nulls in the sidelobe regions while passing the SOI in the mainbeam di-

rection. However, these methods are deterministic and lack adaptivity to the presence of

interference. Capon’s MVDR was developed to bring adaptivity to array patterns for the

purpose of nullifying the effects of directional interference and jamming. Steinhardt et al’s

unit circle theorem [97] is important because it proved that ideally even Capon’s MVDR

should also possess unit circle roots. The new unit circle proof in Chapter 2 further broad-

ens the scope of this key property to a larger class of SASP problems, and the rest of the

chapters algorithmically enforce this important property to radar moving target detection

for SISO and MIMO scenarios in homogeneous and heterogeneous clutter.

Capon’s method and traditional statistical detectors rely on the covariance matrix

which must be estimated in practice from observed array data or radar pulses using the

SCM, and the resulting array polynomials lack the unit circle zeros. Recognizing the infe-

rior covariance estimates provided by the SCM, especially for low sample support, many

researchers have proposed a variety of strategies to improve the quality of covariance es-
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timates. These include the use of forward-backward SCM (FB-SCM) covariance estimate

that effectively doubles the size of the data. In case of MVDR, it has been shown in liter-

ature that the performance of the forward-backward SMI (FB-SMI) is superior to that of

the SMI-based solution, and FB-SMI based array coefficients possess conjugate-symmetry

property [109], [46],[115], satisfying condition-C1 for UC roots. However, the FB-SMI

based polynomial does not guarantee UC roots as it does not satisfy condition C2, and it

typically produces one or more pairs of reciprocal roots. Other researchers have recognized

certain properties of the ideal covariance matrices, such as persymmetry and the Toeplitz

property and these important underlying structures have been enforced during MVDR and

detector designs to achieve improved results [30, 28]. Similar to the use of FB-SCM, in

order to overcome the need for large amount of secondary data, the persymmetry prop-

erty has been used for both MVDR beamforming [63] and Adaptive Matched Filtering

(PS-AMF) for moving target detection [69] to achieve improved beamforming and detec-

tion performance, respectively. Interestingly, it has been shown recently that FB-SMI and

persymmetry are essentially equivalent properties via a unitary transformation and their

performances are exactly identical in practice [92].

Structured covariance matrix estimation has been a very active research field where

the eigen-decomposition properties or Vandermonde decomposition structures of the co-

variance matrices are utilized for improved covariance estimates [112, 111, 90]. Some of

these algorithms have been used for robust beamforming and/or detection [35, 30, 28] to

improve performance.

MVDR and detector polynomials estimated using forward-backward or persymme-

teric covariance matrices possess conjugate symmetry property that satisfy UC condition-

C1. Accordingly, most of the roots produced by those methods do fall on the unit circle

although some roots appear in reciprocals pairs as well because the condition-C2 is not sat-

isfied. Furthermore, according to the general unit circle theorem proven in this dissertation

(see also [93]) all roots of any MVDR or detector polynomial estimated using Toeplitz rec-
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tified covariance matrix will lie on the unit circle. However, to the best of our knowledge,

this important connection between FB (or persymmetric) and Toeplitz matrices to unit cir-

cle roots has not been recognized in the literature, except for the work reported in [97, 102]

with limited scope in MVDR. The unit circle roots constrained approach developed for

a comprehensive set of SASP algorithms in this dissertation demonstrate that enforcing

unit-circle roots in designing beamformer and detector polynomials can be a powerful tool

to achieve improved performance than the current state of the art in the respective fields.

This work further shows that although the unit-circle proofs in [97] and Chapter 2 require

the Hermitian Toeplitz property of the ideal covariance matrix, the proposed algorithmic

framework presented in this work achieves the desired unit-circle roots and associated ben-

efits using the sample covariance matrix (SCM) algorithmically even though SCM does not

possess Toeplitz structure.

The primary objective of this research is to enforce the theoretically necessary unit cir-

cle roots property to theoretically reformulate a broad class of advanced SASP algorithms

to guarantee unit-circle roots during theoretical design and practical implementations. The

overall objective is to attain significant performance improvement at relatively low addi-

tional computational cost from existing state-of-the-art SASP algorithms by addressing a

significant gap that appears to have remained in the SASP field.

This dissertation develops a novel Unit Circle Roots Constrained (UCRC) SASP Frame-

work that will leverage polynomial theory in mathematical [65] and signal processing [89]

literature to enforce unit-circle roots on sensor array polynomials that appear in beam-

forming using uniform linear arrays (ULA), adaptive detection in Gaussian and compound

Gaussian clutter in single-input single output (SISO) and multiple-input multiple output

(MIMO) problems. In all cases, the proposed novel concept is to reformulate the underly-

ing SASP optimization criteria by splitting the respective multidimensional problems into

multiple 1-D optimization problems to optimize each root separately. It will be shown

with comprehensive simulation studies that the proposed algorithms consistently outper-
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form conventional methods at relatively low additional computational cost. In addition,

a new Toeplitz reconstruction method is also presented that utilizes the unit circle roots

estimates in combination with Carathèodory’s theorem on full-rank Toeplitz matrices.

In Chapter 3, we propose the unit circle roots constrained MVDR algorithm (UCRC-

MVDR). Coupling the unit circle roots constraint into the MVDR optimization problem

by exploiting polynomial conjugate symmetry, the resulting root updates can be found in

closed form, and it is further shown that UCRC-MVDR has a computational complexity

proportional to the sample matrix inversion (SMI) technique. Through extensive simu-

lation examples, it is shown that the UCRC-MVDR drastically outperforms conventional

techniques, including a recently proposed UC-MVDR approach [102].

In Chapter 4, the unit circle roots constraint is applied to the radar moving target

detection problem using symmetrically spaced pulse trains. It is shown that the derivation

of the AMF is similar to the MVDR and thus, the unit circle roots constraint can be applied

in the same way. The UCRC-AMF is shown to outperform the SMI-based AMF for limited

secondary data. A modified version of the UCRC-AMF based on the forward-backward

covariance estimate is also proposed, called the M-UCRC-AMF, which displays drastically

improved performance over the UCRC-AMF and persymmetric AMF (PS-AMF).

In Chapter 5 radar moving target detection in low rank clutter is considered, and the

unit circle approach is extended to accommodate this scenario. Specifically, analyzing the

roots of the classical eigenvector-based adaptive filter shows that many of the roots occur

near their Clairvoyant counterparts on the unit circle. Hence, we enforce the unit circle

constraint by radially projecting the roots of the eigenvector-based adaptive filter onto the

unit circle. The unit circle generalized likelihood ratio test is derived by combining the pri-

mary and secondary data under the null and alternative hypotheses, and offers dramatically

improved performance over the GLRT based soley on the eigenvectors.

Capitalizing on the proof the unit circle property and the connection to Carathèodory’s

Vandermonde matrix decomposition, a Toeplitz-structured covariance matrix estimate can
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be obtained from the roots at the output of the UCRC algorithm. Unlike the approach in

Chapters 3, 4, and 5, enforcing Hermitian Toeplitz structure naturally provides unit circle

roots, instead of imposing them directly upon the filter design. The improved performance

of detectors using this new estimate will be demonstrated in Chapters 6 and 7.

1.1 Main Contributions

1.1.1 New Proof of the Unit Circle Roots Property

As mentioned above, the new proof of the unit circle roots property broadens the scope of

the unit circle enforcement to other SASP applications. The new proof is the foundation of

the proposed UCRC framework, and differs from previous proofs of this claim available in

the literature which only pertain to the MVDR problem.

1.1.2 The Unit Circle Roots Constrained MVDR Algorithm (UCRC-

MVDR)

The UCRC-MVDR algorithm drastically enhances the performance and robustness of the

conventional sample matrix inversion based MVDR by enforcing the unit circle roots con-

straint. Additionally, the UCRC-MVDR outperforms the recently proposed UC-MVDR

[102], providing higher output gain at lower input signal to noise ratio and for smaller

aperture sizes.
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1.1.3 The Unit Circle Roots Constrained AMF Algorithm (UCRC-

AMF)

The UCRC-AMF and its modified version the M-UCRC-AMF outperform the SMI-based

and persymmetric versions of the AMF, respectively. The UCRC-AMF and M-UCRC-

AMF also demonstrate improved performance in the case of unknown target Doppler fre-

quency when compared against the AMF and persymmetric AMF. It will be shown in

Chapter 4 that both algorithms have approximate constant false alarm rate with respect to

the unknown covariance matrix.

1.1.4 Unit Circle Roots Generalized Likelihood Ratio Test

The unit circle generalized likelihood ratio test (UC-GLRT) enhances the performance of

principle components inverse (PCI)-based adaptive techniques by radially projecting the

roots of the eigenvector-based filter onto the unit circle. Unlike radial projection for the

SMI roots, the roots of the PCI-based filter are much closer to the unit circle, meaning

their radial projection is much closer to their clairvoyant counterpart. The UC-GLRT out-

performs the eigenvector-based detector and displays improved robustness in the case of

unknown Doppler frequency and clutter rank.

1.1.5 Unit Circle Roots Based Toeplitz Rectification

The new UCRC-based Toeplitz rectified estimate enforces the unit circle constraint upon

adaptive detector design implicitly instead of directly as is the case in Chapters 4 and 5.

Unlike conventional Toeplitz rectification approaches [35, 28], this new estimate explicitly

makes use of the theoretical necessity of unit circle roots and drastically improves the

performance of robust detectors in compound-Gaussian clutter.
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1.3 Organization of Dissertation

This document is organized in the following way. In Chapter 2, the proof of the unit circle

roots property is derived and the connection to general sensor signal processing applica-

tions is established. The proof is central to the work contained in this document, and is

the foundation of the unit circle roots constrained approach. In Chapter 3, we develop the

unit circle roots constrained MVDR algorithm for minimum variance beamforming with

uniform linear arrays. In Chapter 4, the unit circle roots constrained adaptive matched filter

and modified unit circle roots constrained AMF are proposed and analyzed using exten-

sive simulation examples for moving target detection in homogeneous Gaussian clutter. In

Chapter 5, we extend the unit circle approach to moving target detection in low-rank Gaus-

sian clutter, where we apply the unit circle roots constraint to the principle components

inverse (PCI) technique to develop the unit circle GLRT. In Chapter 6, we depart from

the assumption of homogeneous Gaussian clutter and consider moving target detection in

compound-Gaussian clutter using unit circle roots based Toeplitz rectification. Chapter 7

examines the extension of the Toeplitz rectification based detector to moving target de-

tection in compound-Gaussian clutter using an active distributed multiple-input-multiple-

output (MIMO) radar network. Finally, Chapter 8 offers concluding remarks and potential

directions for future work.
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A New Proof of the Unit Circle Roots

Property

2.1 Introduction

In this chapter, the theoretical basis for imposing the unit circle roots constraint is estab-

lished and extended for more general sensor array signal processing applications. The

specific goal is to unite different SASP applications under one specific criteria: the unit

circle roots property. It will be demonstrated that the mathematical structures which are

common-place for applications such as beamforming with uniform linear arrays (ULAs)

and moving target detection with symmetrically spaced pulse trains both share this practi-

cally impactful property.

From a practical perspective, unit circle roots are desirable in finite impulse response

(FIR) filters due to their associated impact upon the filter’s frequency response. Unit cir-

cle zeros cause deep nulls in the frequency response which can enhance interference sup-

pression, and for adaptive filtering applications; more unit circle zeros implies improved

suppression of unwanted signals.

Historically, in a 2004 conference paper Steinhardt and Guerci established the the-

oretical necessity of unit circle roots for the minimum variance distortionless response

(MVDR) beamformer [97] for ULAs. Despite this theoretical development, the Stein-
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hardt’s proof was coupled to the MVDR optimization problem, and no attempt was made

to generalize this proof to other SASP applications.

In this chapter, we provide a new proof of a critical property pertaining to both the

MVDR beamformer [13] and adaptive matched filter [76]: the roots of the filter polynomial

computed using the true covariance matrix ideally fall on the unit circle when the data are

uniformly sampled (i.e., via uniform linear array (ULA) or symmetrically spaced pulse

train).

The proof in this chapter is based on the covariance matrix and steering vector struc-

ture, does not make use of either the Weiner-Khinchin or implicit function theorems used in

[97], and generalizes to other sensor array signal processing approaches. Our proof lever-

ages Carathèodory’s theorem on positive definite, Toeplitz matrices, a well-known theorem

in spectrum estimation [14].

2.2 General Linearly Constrained SASP Optimization

The solution of linearly constrained quadratic minimization problems feature prominently

in the signal processing community. Specifically, in the context of beamforming with uni-

form linear arrays and pulsed radar using symmetrically spaced pulse trains, the solution to

the following general SASP minimization

min
w

wHΣw s.t. wHg (f0) = c (2.1)

is the optimal filter

wopt = c
Σ−1g(f0)

gH(f0)Σ
−1g(f0)

, (2.2)
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where g (f0) is referred to as the steering vector:

g (f0) ≜
[
1, ej2πf0 , . . . , ej2π(J−1)f0

]T
. (2.3)

The optimal filter has different interpretations depending upon the intended application.

For example, in array processing, the w is the minimum variance distortionless response

(MVDR) beamformer [13] when c = 1. For radar target detection, w is the adaptive

matched filter (AMF) [76] when c =
√

gH (f0)Σ
−1g (f0).

2.3 Proof of Unit Circle Roots

A few key assumptions are that the covariance matrix Σ is Hermitian positive definite, c is

a real scalar, and g (f0) is a steering vector corresponding to the frequency f0, which can

be interpreted as either a spatial or temporal frequency. Additionally, we assume that the

matrix and steering vector have Toeplitz and and Vandermonde structure, respectively.

The filter w can be interpreted as a (J − 1)-degree polynomial in the complex z-

domain after applying the forward z-transform,

W (z) = w(0) + w(1)z−1 + . . .+ w(J − 1)z−(J−1) (2.4)

where w(i) represents the i-th element of the filter w. The matrix Σ is assumed to be

positive definite with Hermitian Toeplitz structure. Due to the definiteness of the matrix,

the optimization in (2.1) has a unique optimum given in (2.2).

Theorem 1. W (z) has J − 1 unit circle roots.

Proof. Carathèodory’s theorem states that if Σ is a positive semi-definite, Toeplitz matrix,

with rank r < J then there exists a unique decomposition for Σ consisting of a matrix
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G ∈ CJ×r and a diagonal matrix D ∈ Cr×r such that [14],

Σ = GDGH =
r∑

i=1

dig (fi)g
H (fi) . (2.5)

G = [g (f1) , . . . ,g (fr)] is a Vandermonde matrix with columns consisting of r Vander-

monde vectors. The fi ∈ (−0.5, 0.5) are distinct for i = 1, . . . , r, fi ̸= fj, i ̸= j while

D = diag{d0, d1, . . . , dr} is a diagonal matrix with di > 0, ∀i.

If the matrix Σ is full rank the decomposition in (2.5) exists but is no longer unique

[112]. We now proceed by assuming that Σ is full rank in (2.5). Due to the non-uniqueness

of the decomposition in (2.5) we are free to include the steering vector g (f0) among the

columns of G as long as f0 is distinct from the other fi for i = 1, . . . , J . The updated ma-

trices are G = [g (f0) , . . . ,g (fJ−1)], D = diag{d0, d1, . . . , dJ−1}, and the decomposition

now becomes

Σ =
J−1∑
i=0

dig (fi)g
H (fi) . (2.6)

Since it is assumed that each of the fi is distinct, the columns of the G are linearly

independent and span the J-dimensional column space.

Left multiplying (2.2) by (2.6) yields,

Σwopt = d0g (f0)
(
gH (f0)wopt

)
+

J−1∑
i=1

dig (fi)
(
gH (fi)wopt

)
=

c
g (f0)

gH (f0)Σ
−1g (f0)

. (2.7)
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Using the linear constraint in (2.1) and aggregating like terms produces,

c
(
d0 −

1

gH (f0)Σ
−1g (f0)

)
g (f0) +

J−1∑
i=1

dig (fi)
(
gH (fi)wopt

)
= 0 (2.8)

where 0 is the J × 1 zero vector and the parenthetical terms on the left-hand side of (2.8)

are constants. Let β be a J × 1 vector with

β(0) = c

(
d0 −

1

gH (f0)Σ
−1g (f0)

)
(2.9)

as the first element and β(i) = dig
H (fi)wopt for i = 1, . . . , J − 1 as the remaining

elements. Equation (2.8) can now be written compactly as,

Gβ = 0. (2.10)

Since the columns of G are linearly independent and G is full-rank, null (G) = ∅ and

therefore, β = 0,

d0 =
1

gH (f0)Σ
−1g (f0)

, (2.11)

and gH (fi)wopt = 0 for all i = 1, . . . , J − 1.

The quantity gH (fi)wopt is equivalent to evaluating (2.4) on the unit circle at z =

ej2πfi and therefore, z−1 = e−j2πfi , i = 1, . . . , J − 1 are the J − 1 unit circle roots of

W (z).

As a consequence of Theorem 1, we may also prove the following claim.

Corollary 1. dj =
(
gH (fj)Σ

−1g (fj)
)−1 for j = 0, 1, . . . , J − 1.
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Proof. The case for d0 has already been shown, so without loss of generality, we will

consider the case for dj , j = 1, . . . , J − 1. Left multiplying the matrix-vector product

Σ−1g (fj) by Σ and using (2.6) to expand

Σ
(
Σ−1g (fj)

)
=

J−1∑
i=0

dig (fi)
(
gH (fi)Σ

−1g (fj)
)
= g (fj) . (2.12)

By the same linear independence argument from the proof of Theorem 1, it must be the

case that every parenthetical i ̸= j term within the summation must be identically zero.

Hence, we are left with the following equality,

dj(g
H (fj)Σ

−1g (fj) ) = 1 (2.13)

which leads to

dj =
1

gH (fj)Σ
−1g (fj)

(2.14)

for j = 1, . . . , J − 1.

2.4 Conclusion

Theorem 1 establishes the theoretical necessity of unit circle roots for any filter of the

form of (2.2), assuming that Σ and g(f0) have Toeplitz and Vandermonde structure, re-

spectively. Such structures typically arise when the data are uniformly sampled such as

for beamforming with uniform linear arrays [85, 86] or using symmetrically spaced pulse

trains for moving target detection [94].

However, Theorem 1 does not provide a means to enforce the unit circle roots prop-
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erty, and in the proceeding chapters we develop the unit circle roots constrained (UCRC)

algorithm to bridge this gap between theory and implementation. By exploiting polyno-

mial symmetry, it will be shown that unit circle roots can be imposed in a practical way by

manipulating the optimization in (2.1).

Possible applications beyond the AMF and beamforming include bi-static or dis-

tributed multiple-input multiple-output (MIMO) radar networks [106, 95]. Additionally,

detectors such as the normalized adaptive matched filter (NAMF) [19] (or ACE [81]) are

proportional to the AMF, and can benefit from imposing unit circle roots on the respec-

tive filter polynomials. Joint domain applications, such as space-time adaptive processing

(STAP) [66], may also benefit by exploiting the unit circle roots property in either the

spatial or temporal domains.

18



Unit Circle Roots Constrained MVDR

Beamformer Design for Uniform Linear

Arrays

3.1 Introduction

Beamforming is ubiquitous in the field of coherent signal processing with specific applica-

tions in the fields of radar [113], sonar[96], space-time adaptive processing (STAP) [97, 66],

audio signal processing [4], and radio astronomy [57]. Beamforming is applied in the con-

text of array signal processing to exploit the structure of the received signals (e.g. narrow-

band sources) and geometry of the array (e.g. uniform linear array) to achieve a coherent

processing gain greater than that achievable when using a single receiver. The purpose

of beamforming is to isolate a signal of interest (SOI) from a known direction of arrival

(DOA) while simultaneously suppressing interference and noise due to other mechanisms

(i.e. jamming or environmental effects).

The beamformer can be designed using a variety of criterion, and the seminal work

on Minimum-Variance Distortionless Response (MVDR) by Capon [13] in the late 1960’s

largely forms the basis for much of the theoretical and practical development in sensor

array signal processing (SASP) over the past five decades. As such, MVDR and related
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extensions remain the backbone of many SASP algorithms and applications.

Although it has received scant attention in the field, an important theoretical property

on the roots of the classical Capon-MVDR beamformer was developed relatively recently in

a brief note by Steinhardt et al [97]. For the case of a uniform linear array (ULA) receiving

narrowband planewave sources, it was proven that the roots of the MVDR array polynomial

computed using the true covariance matrix ideally fall on the unit circle. The interested

reader is referred to the appendices of [97] and [102] for detailed derivation of the proof of

this claim. To the best of our knowledge, except for an ad-hoc approach [102] in a specific

sonar application, no other existing SASP technique has exploited Steinhardt’s important

and theoretically fundamental contribution to the theory of array polynomials that occur

throughout the SASP field. Algorithmic enforcement of this key property for ideal ULAs

by optimizing the MVDR criterion forms the basis for the work presented in this chapter.

Although Steinhardt’s unit-circle proof uses Weiner-Khinchin theorem which requires the

Hermitian Toeplitz property of the ideal covariance matrix, the proposed algorithm achieves

the desired unit-circle roots using the sample covariance matrix (SCM) even though SCM

does not possess Toeplitz structure.

The MVDR requires knowledge of the interference plus noise covariance matrix which

is not known in practice and must be estimated from secondary observations. The conven-

tional approach is to use the sample covariance matrix (SCM) which results in the well-

known sample matrix inversion [74] (SMI) MVDR beamformer. While simple to com-

pute, the SMI has several undesirable properties - most notably poor performance when

the number of secondary snapshots used to estimate the SCM is low. Furthermore, array

polynomials estimated with the noisy SCM do not possess unit circle roots, i.e. zeros on

the unit-circle.

A recent unit circle MVDR (UC-MVDR) approach [102] radially moved the SMI

roots to the unit circle. In addition, any SMI root located inside the mainbeam was moved

to the edges of the mainbeam in order to avoid mainbeam source attenuation. The com-
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bined effect of these two modifications was shown to attain improved output signal-to-

interference-plus-noise ratio (SINR) and lower sidelobes over the conventional SMI beam-

former. In [78], UC-MVDR was further extended in the snapshot deficient case using

diagonal loading (DL). Despite these desirable attributes, the radial projection approach

used in [102, 78, 101] may be considered ad-hoc or sub-optimal because it does not strictly

adhere to the minimum variance criterion specified by Capon [13].

There has been extensive research on roots of polynomials in the mathematical liter-

ature, and the necessary and sufficient conditions to guarantee unit-circle roots have been

developed in [65]. Specifically, two constraints must be satisfied for a polynomial to have

unit circle roots: the polynomial coefficients must exhibit conjugate symmetry and the

roots of the derivative polynomial must lie on or inside the unit circle. The conjugate sym-

metry constraint was utilized in [89, 54, 11, 87, 55] for maximum-likelihood estimation

(MLE) of frequencies and Directions of Arrival (DOA) of narrowband sources to produce

UC roots. However, reciprocal roots occurred at low signal-to-noise ratio (SNR) as the

second condition was not enforced [89].

It was observed in [89] that for a first-order polynomial, conjugate symmetry is suf-

ficient to guarantee a UC root because the derivative is a scalar. Based on this fact, a UC

constrained MLE solution was presented in [89] that uses polynomial factorization in the

z-domain. Specifically, if the initial MLE optimization produced any non-UC roots, then

the MLE was further optimized w.r.t. individual first-order factors to algorithmically place

each root on the unit circle. This resulted in resolving closely spaced frequencies or DOAs

that produced merged roots at low SNR. A similar factorization of the MVDR polynomial

into 1st-order factors with conjugate-symmetric coefficients will be used in this work to

constrain all the MVDR polynomial roots to the unit circle. It should be noted here that

the MLE approach reported in [89] and the proposed MVDR solution address distinct op-

timization problems with entirely different objectives. Specifically, the MLE in [89] does

not offer any mechanism to minimize the variance of the signal at the output of a beam-
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former. Also, unlike MVDR, the MLE cannot control the array look angle as it does not

impose a linearity constraint within its optimization. Accordingly, the MLE is not used for

estimating interference and noise components in this work as it is not appropriate in the

MVDR optimization context. The proposed approach adaptively estimates the unknown

interference angles, and the corresponding zeros of the MVDR polynomial are typically

placed on the unit-circle very close to the interference angles helping suppress or attenuate

the interference. The other unit-circle zeros are also adaptively determined by optimizing

the MVDR criterion to attenuate noise at non-interference regions, improving the overall

output SINR.

The primary motivation of this work is to reformulate MVDR to guarantee UC roots

during theoretical development and in practical implementations. The overall objective is

to attain performance improvement by addressing a significant gap that appears to have

remained in MVDR-based algorithm development. The focus of this chapter is designing

beamformers that satisfy MVDR criteria while simultaneously enforcing UC roots con-

straint on the array polynomial, satisfying the theoretical property established in [97]. This

work will leverage the concept presented in [89] to update any SMI-based root that is not on

the unit-circle, while minimizing the variance. Unlike the work in [89], MVDR’s linearity

constraint on the weight vector will also need to be imposed at every step of optimization.

Accordingly, a new derivation of unit-circle constrained Capon beamformer is presented.

The mainbeam protection approach of [102] will be incorporated to ensure the corrected

roots do not appear within the mainbeam region.

To the best of our knowledge, there has not been any systematic attempt to incor-

porate UC roots constraints during optimization of the MVDR-beamformer polynomial

coefficients to take full advantage of the theoretically fundamental and practically impact-

ful property derived in [97]. Notably, the ad-hoc approach of [102], [78] and [101] enforces

UC roots without minimizing the output variance, as required by MVDR. Therefore, the

proposed UCRC-MVDR approach constitutes a novel contribution to the field of array sig-
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nal processing that may be beneficial in potentially vast applications where Capon’s MVDR

beamformer is routinely used in practice.

From a historical perspective, the proposed algorithm that splits the multi-parameter

MVDR optimization problem into multiple independent first-order problems, belongs to a

class of algorithms where individual parameters are estimated independently while comply-

ing with the underlying optimization criterion. Such algorithms have appeared in the past

in astronomy for aperture synthesis [43], high-resolution frequency and DOA estimation

[89], [88], [117], [34], [59], and chirp parameter estimation using Compressive Sensing

[44], among many others.

This work essentially treats the ULA based MVDR beamformer weights as a special

class of FIR filters with all its roots, i.e., zeros located on the unit-circle. A key feature

of the proposed MVDR approach is that it has the in-built capability to adaptively esti-

mate the interference angles and place zeros on the unit-circle near the interference angles

in an attempt to suppress the interference without requiring any additional zero-forcing

mechanism. The unknown zero locations on the unit-circle are adaptively and algorithmi-

cally determined by minimizing the output variance at every step via constrained optimiza-

tion. The proposed MVDR beamformer with unit circle roots are shown to exhibit lower

sidelobes and deeper nulls than traditional SMI-based MVDR weights which typically do

not possess any unit circle roots. Since the resulting MVDR FIR filters are conjugate-

symmetric by design, they possess certain desirable properties such as linear phase with

constant group-delay.

The superior performance of the proposed UC-roots based approach is demonstrated

using a variety of simulation experiments. Specifically, the performance of the proposed

beamformer is compared against the ad-hoc unit circle method of [102] as well as several

existing techniques. It is shown that the proposed approach produces UC roots that exhibit

lower sidelobes than the beamformer of [102]. The output SINR versus input SNR will

be used to demonstrate the improved gain and robust performance of the proposed method
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when SOI is present in the snapshots used to estimate the covariance matrix. Additional

simulations examples demonstrate the robust performance of the proposed approach in the

presence of coherent as well as spatially distributed interference sources. Simulation stud-

ies further show that the proposed approach results in lower output variance as each root is

corrected, resulting in a higher output SINR over the beamformer of [102]. Furthermore,

the proposed beamformer exhibits improved performance in the snapshot limited scenario

when diagonal loading is used to regularize the covariance matrix to avoid numerical diffi-

culties when inverting the SCM. Distribution analysis will show that the proposed approach

performs closer to the optimum than existing methods, including the unit circle approach

of [102]. Finally, it will be demonstrated that the proposed beamformer has the same or-

der of computational complexity as SMI, and it achieves superior performance at a smaller

aperture size than that attainable by the method of [102], or the conventional approaches.

The remainder of this chapter is organized as follows. In Section 3.2, the MVDR

beamforming problem is stated, and conventional SMI approach is discussed. In Sec-

tion 3.3, the proposed UCRC-MVDR beamformer is derived. Section 3.4 contains sim-

ulation results and related discussion. Finally, Section 3.5 summarizes conclusions and

possible future work.

3.2 The MVDR Beamformer

Consider a uniform linear array (ULA) of Ns = N + 1 sensors, where N is the number of

array polynomial roots, each separated by a distance d. The vector of narrowband data at

the array input can be expressed as,

x = β0v (θ0)︸ ︷︷ ︸
SOI

+
M∑
i=1

βiv (θi) + n︸ ︷︷ ︸
Interference + noise

∈ CNs×1 (3.1)
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where β0 is the unknown amplitude of the SOI with variance σ2
0 , θ0 is the DOA of the

SOI, θi and βi, i = 1, . . . ,M denote the unknown DOAs and coefficients, respectively, of

the i-th interference signals, n ∼ CN(0, σ2
nI) is spatially white Gaussian noise with zero

mean and variance σ2
n, and v (θ0) and v (θi) are the steering vectors of the SOI and the i-th

interference, respectively. The coefficients βi, i = 1, . . . ,M are assumed to be zero-mean

complex-Gaussian scalars with variances σ2
i , i = 1, . . . ,M .

In equation (3.1), The steering vector associated with an arbitrary direction θ is defined

as [1]:

v(θ)=
[
1 ej

2πd
λ

sin(θ) . . . ej
2πd
λ

sin(θ)(N)
]T
∈CNs×1 (3.2)

where (·)T represents the transpose operation and λ is the operating wavelength of the

array.

From equation (3.1), the interference pulse noise term is expressed as

xi+n =
M∑
i=1

βiv (θi) + n ∈ CNs×1, (3.3)

and the corresponding interference plus noise covariance matrix is given by

Σ = E
{
xi+nx

H
i+n

}
∈ CNs×Ns

=
M∑

m=1

σ2
i v (θm)v

H (θm) + σ2
nI, (3.4)

where E{ · } is the expectation operation.

The purpose of beamforming is to design a filter w, to extract the desired SOI from

angle θ0 while maximally suppressing interference and noise. The beamformer output is

y = wHx (3.5)

25



where (·)H represents conjugate-transpose. It is typical to design the beamformer weight

vector w to minimize the distortion in the direction of the SOI while minimizing the vari-

ance at the beamformer output. This is the well-known minimum-variance distortionless

response beamforming problem [13],

min
w

wHΣw s.t. wHv(θ0) = 1. (3.6)

The solution to equation (3.6) is the well-known MVDR beamformer and can be ex-

pressed in closed form, that is

wopt =
Σ−1v(θ0)

vH(θ0)Σ
−1v(θ0)

∈ CNs×1. (3.7)

Equation (3.7) will hereafter be referred to as the clairvoyant, or optimal, beamformer as it

assumes perfect knowledge of the data covariance matrix.

The non-adaptive counterpart of the clairvoyant beamformer in equation (3.7) can be

found by assuming the interference and noise are spatially white resulting in the conven-

tional beamformer (CBF) [51],

wCBF =
v (θ0)

Ns

∈ CNs×1. (3.8)

Figure 3.1 shows the magnitude response of the CBF and clairvoyant beamformers for array

size Ns=11 in the presence of one interference at angle θ1=16◦≈ sin−1(3/Ns) (i.e., the

location of the first sidelobe maximum) with INR=40 dB. A deep null in the clairvoyant

response illustrates the advantage of the adaptive approach to suppress interference if prior

knowledge about noise and interference is available. Furthermore, Figure 3.1 illustrates that

when strong interference is present near the first sidelobe maximum of the CBF, the optimal

adaptive beamformer places a null near this direction to reduce the overall interference and

noise power at the expense of increasing the sidelobe level in other locations.
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In practice however, the covariance matrix Σ is unknown and is replaced by the sample

covariance matrix (SCM) which is computed from a set of secondary snapshots,

Σ̂ =
1

L

L∑
j=1

xjx
H
j (3.9)

where xj is the j-th secondary snapshot, and L is the number of secondary snapshots

available. The resulting weight vector which satisfies equation (3.6) is known as the sample

matrix inversion (SMI) beamformer,

wSMI =
Σ̂

−1
v(θ0)

vH(θ0)Σ̂
−1
v(θ0)

∈ CNs×1. (3.10)

While the beamformer in equation (3.10) is functional, it is limited by the fidelity of

the covariance matrix estimate which is known to be poor when the secondary data are

limited [74]. Additionally, the polynomial induced by the beamformer weights in equa-

tion (3.10) rarely satisfies the unit circle constraint [97, 102, 101] discussed in the next

section, and thus, additional structure is needed to design a beamformer which both satis-

fies the optimization in equation (3.6) and also has unit circle roots.

3.2.1 Conditions for Unit Circle Roots

The weights of the beamformer w can be interpreted as the coefficients of a polynomial in

the complex z-domain [83],

W (z) = w(0) + . . .+ w(N)z−N = Z{w} (3.11)

where w(i) is the i-th element of the beamformer weight vector w and Z{·} represents the

z-transform operation.
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Figure 3.1: Magnitude response of the CBF and clairvoyant beamformers.

It is important to emphasize here that it has been proven theoretically in [97] that if

W (z) is formed using the true w-vector computed using known Σ matrix in equation (3.7)

then its roots lie upon the unit circle. However, in practice, W (z) is formed using wSMI

in equation (3.10) and the UC-roots property is lost, causing the conventional MVDR to

perform poorly. The overall objective of this work is to derive optimal wUCRC−MVDR that

minimizes variance while constraining the roots of W (z) to be on the unit circle, satisfying

the fundamental property proven in [97].

The two conditions that must be satisfied for a polynomial to have UC roots were de-

veloped in the mathematical literature [65], and were later invoked for maximum-likelihood

estimation of frequencies and DOAs in [89, 54, 55]:

C1: The coefficients exhibit conjugate symmetry

w(k) = w∗(N − k) for k = 0, . . . , N (3.12)
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and

C2: For N > 1, the derivative of W (z), the polynomial with coefficients w, must

have roots either on or inside the unit circle.

As stated in [89, 54, 55], imposing C2 requires non-linear optimization that may be

impractical. It was argued in [89] that if N = 1, i.e., the derivative in C2 is a scalar, C2

is inconsequential. Therefore, satisfying C1 is sufficient to guarantee a unit circle root

if the polynomial is order one. Accordingly, in [89] the MLE optimization problem was

reformulated and split into multiple 1st-order MLE optimization problems to ensure unit

circle roots in each case. An equivalent tactic will be used for the MVDR optimization

problem to guarantee unit-circle roots, as described next.

3.3 Unit Circle Roots Constrained MVDR Beamformer

In designing the Unit Circle Roots Constrained MVDR (UCRC-MVDR) beamformer, the

N -th order MVDR polynomial is factored into N 1st-order factors to split the MVDR

criterion into multiple 1-st order optimization problems. Conjugate-symmetry is incorpo-

rated in defining the MVDR polynomial and the individual 1-st order factors to satisfy

C1 in equation (3.12). The reformulated MVDR criterion is then optimized to determine

the coefficients of individual complex-conjugate 1st-order factors, yielding UC roots. The

SMI-based MVDR solution in equation (3.10) is used as the starting point and individual

1st-order factors with UC roots are optimized independently under MVDR.
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3.3.1 UCRC-MVDR Design with Conjugate Symmetry

Applying the conjugate symmetry conditions of equation (3.12) to the array polynomial in

equation (3.11),

W (z) = w(0) + w(1)z−1 + . . .+ w∗(1)z−(N−1) + w∗(0)z−N . (3.13)

In this form, the roots of W (z) are either on the unit circle or they appear in reciprocal

pairs. However, equation (3.13) can be further rewritten in factored conjugate-symmetric

form as,

W (z) = (w1 − w∗
1z

−1)(w2 − w∗
2z

−1) . . . (wN − w∗
Nz

−1)

=
N∏
i=1

(wi − w∗
i z

−1) = w(0)
N∏
i=1

(1− ζiz
−1), (3.14)

where ζi =
w∗

i

wi
are the roots of W (z) and w(0) =

∏N
i=1wi. Several interesting observations

regarding the factored form of W (z) in equation (3.14) are in order. Firstly, the product of

conjugate-symmetric 1st-order factors is also conjugate symmetric, satisfying the necessary

condition C1 stipulated in equation (3.12). Secondly, the roots of each 1st-order conjugate-

symmetric factor are located on the unit circle. Therefore, estimating the coefficients of the

individual 1st-order conjugate symmetric factors, (wi − w∗
i z

−1) for 1 ≤ i ≤ N , while

minimizing the output variance under the linear constraint in equation (3.6) will yield the

desired unit circle roots of W (z) under MVDR, as called for in [97].
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3.3.2 Splitting the Multidimensional MVDR Problem into Multiple 1-

D MVDR Optimization Problems

In order to impose the conjugate symmetry constraints on the first order factors, the pro-

posed approach splits the N -th order MVDR problem stated in equation (3.6) into N in-

dependent 1st-order MVDR problems. The derivation for optimizing the MVDR criterion

w.r.t. individual 1st-order factors is described next.

Rewriting W (z) in equation (3.11) in factored form [89],

W(i)(z) = WN−(i)(z)wi(z); 1 ≤ i ≤ N (3.15)

where wi(z) = wi − w∗
i z

−1 and WN−(i)(z) is a (N − 1)-th order polynomial formed with

N − 1 roots excluding the i-th root. wi(z) represents the i-th first-order factor whose root

needs to be placed on the unit-circle. The factored weight vector corresponding to W(i)(z)

in equation (3.15) can be written as a convolution matrix-vector product [89],

w(i) = WN−(i)wi; 1 ≤ i ≤ N (3.16)

where wi = [wi w∗
i ]

T ∈ C2×1.

The columns of the convolution matrix,

WN−(i) =



wN−(i)(0) 0

wN−(i)(1) wN−(i)(0)

wN−(i)(2) wN−(i)(1)

. . . . . .

wN−(i)(N − 1) wN−(i)(N − 2)

0 wN−(i)(N − 1)


∈ CNs×2 (3.17)
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consist of the coefficients of WN−(i)(z). Using this factorization in equation (3.16), the

reformulated 1st-order MVDR optimization problems can be re-written as,

(3.18)
min
wi

wH
i W

H
N−(i)ΣWN−(i)wi

s.t. wH
i W

H
N−(i)v (θ0) = 1; 1 ≤ i ≤ N.

Equation (3.18) theoretically splits the N -dimensional MVDR problem in equation (3.6)

into N 1-dimensional problems. In practice, the true Σ’s and WN−(i)’s are not known and

are replaced by corresponding SMI-based estimates using equation (3.10) to yield,

(3.19)
min
wi

wH
i Ŵ

H
N−(i)Σ̂ŴN−(i)wi

s.t. wH
i Ŵ

H
N−(i)v (θ0) = 1; 1 ≤ i ≤ N

where this optimization is performed N times to place individual SMI-based MVDR roots

onto the unit circle.

Optimizing equation (3.19) with conjugate symmetric wi’s will guarantee unit-circle

root in each case, satisfying the theoretical MVDR property proven in [97]. The key ad-

vantage of estimating the complex-conjugate coefficients of individual factors is that the

derivative of a first order polynomial is a constant, bypassing the need for imposing the

derivative constraint in C2.

Splitting a multi-dimensional optimization problem into multiple independent first-

order problems have appeared in literature before. See [89], [43], [88], [117], [34], [59]

and [44], among many others.
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Algorithm 1: UCRC-MVDR
INPUT: x1, . . . ,xL, v (θ0), u0 = sin (θ0)

start: wSMI =
ˆΣ

−1

v(θ0)

vH(θ0)
ˆΣ

−1

v(θ0)
, Σ̂ = 1

L

∑L
i=1 xix

H
i

ζSMI ← roots{Z{wSMI}} ▷ I
i = 1 up to i = N

W SMI
N−(i)(z) =

∏
j ̸=i(1− ζSMI

j z−1)

ΣC
i = CHWH

N−(i)Σ̂WN−(i)C ▷ II
ṽi (θ0) = CHWH

N−(i)v (θ0) ▷ III

ŵi =
CRe(Σ

C

i )
−1

ṽi(θ0)

ṽT
i (θ0)Re(Σ

C

i )
−1

ṽi(θ0)
▷ IV

ζ̂i =
ŵ∗

i

ŵi

if |ω̂i − πu0| < 2π/(Ns) then
ζ̂i = ej(πu0+sgn{ω̂i−πu0}(2π/(Ns))) ▷ = ejω̂i

ŵi = e−jω̂i/2

(ŵi − ŵ∗
i z

−1) =
(ŵi−ŵ∗

i z
−1)

(ŵi−ŵ∗
i e

−jθ0 )

end
end
OUTPUT:

ŴUCRC−MVDR(z) =
N∏
i=1

(ŵi − ŵ∗
i z

−1)→ ŵUCRC−MVDR

3.3.3 Imposing Complex Conjugate Constraints on 1-D MVDR Opti-

mization Problems

The conjugate symmetry of wi is ensured by rewriting wi mathematically as a matrix-

vector product [89],

wi =

1 j

1 −j


Real[wi]

Imag[wi]

 ≜ Cwr
i ; 1 ≤ i ≤ N (3.20)
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where C ∈ C2×2 is a constant matrix and wr
i ∈ R2×1 is a real vector. Using equation (3.20)

in equation (3.19) results in,

min
wr

i

wrT
i ΣC

i w
r
i s.t. wrT

i ṽi (θ0) = 1; 1 ≤ i ≤ N (3.21)

where ΣC
i = CHŴH

N−(i)Σ̂ŴN−(i)C ∈ C2×2 and ṽi (θ0) = CHŴH
N−(i)v (θ0) ∈ C2×1 are

the transformed covariance matrix and look direction vector, respectively. The solution to

this structured optimization can be found using Lagrange multipliers where,

L (wr
i ) = wrT

i ΣC
i w

r
i + λi

(
wrT

i ṽi (θ0)− 1
)
; 1 ≤ i ≤ N (3.22)

is the Lagrangian and λi is the associated multiplier. Taking the derivative of equation (3.22)

and making use of the Hermitian property of ΣC
i produces,

∂L (wr
i )

∂wr
i

= 2Re
(
ΣC

i

)
wrT

i + λiṽi (θ0) = 0; 1 ≤ i ≤ N. (3.23)

Solving for wrT
i yields,

wr
i = −2λi Re

(
ΣC

i

)−1
ṽi (θ0) ∈ R2×1; 1 ≤ i ≤ N (3.24)

where Re (·) represents the real part of a complex quantity. Substituting equation (3.24)

into the linear constraint of equation (3.21) and solving for λi results in,

λi =
−1/2

ṽT
i (θ0) Re

(
ΣC

i

)−1
ṽi (θ0)

; 1 ≤ i ≤ N (3.25)
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which, upon re-substituting into equation (3.24) and left multiplying by C, yields a closed-

form expression for the conjugate symmetric beamformer factors,

ŵi =
CRe

(
ΣC

i

)−1
ṽi (θ0)

ṽT
i (θ0) Re

(
ΣC

i

)−1
ṽi (θ0)

∈ C2×1; 1 ≤ i ≤ N. (3.26)

An alternate version of this algorithm that utilizes a persymmetric version of the covariance

matrix to yield a conjugate-symmetric polynomial [46], and gives equivalent results [94].

3.3.4 Preserving the Mainbeam and Linear Constraint

The unit-circle roots of the array polynomial cause nulls in the array response |W (z)|2. The

approach of Section 3.3.3 may produce some roots in the CBF mainbeam (i.e. |ω̂i−πu0| <

2π/(Ns), where ω̂i = arg{ζ̂i} and u0 = sin (θ0) is the look direction sine; see Figure

3.1). These mainbeam roots may cause beam distortion and SOI attenuation [20]. Any

UC root within the mainbeam that are not part of any specific design requirements, such

as 3 dB or noise bandwidth, etc., must be moved to avoid performance degradation in

the resulting beamformer. Following [102], the proposed approach maintains mainbeam

integrity by moving mainbeam roots to the nearest CBF mainbeam null (i.e. arg{ζ̂i} =

πu0 + sgn{ω̂i − πu0}(2π/(Ns)), where sgn{·} and arg{·} are the sign and complex ar-

gument operations). The conjugate-symmetric weights at the CBF nulls can be found as,

ŵi(0) = e−jω̂i/2 = ŵ∗
i (1). Next, the linear constraint specified in equation (3.19) will be

satisfied by normalizing the corresponding array factor as,

(ŵi − ŵ∗
i z

−1) =
(ŵi(0)− ŵi(1)z

−1)

(ŵi(0)− ŵi(1)e−jθ0)
(3.27)

where θ0 is the look angle. Note that for a given N , the polynomial factors at the two CBF

nulls can be pre-computed and stored in memory, and retrieved as needed, if any undesired

root does fall within the mainbeam.
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The final step of the proposed approach constructs the beamformer polynomial using

the estimated 1st-order factors found using equation (3.26) and equation (3.27),

ŴUCRC−MVDR(z) =
N∏
i=1

(ŵi − ŵ∗
i z

−1) (3.28)

Finally, ŵUCRC−MVDR = Z−1{ŴUCRC−MVDR(z)} where Z−1{·} represents the inverse

z-transform.

3.3.5 Spatial Prefiltering Interpretation of the Proposed Algorithm

Assuming ideal scenario with perfectly known Σ, the MVDR optimization of equation (3.6)

can be re-written using the factorization in equation (3.16) as,

(3.29)
min
wi

wH
i W

H
N−(i)ΣWN−(i)wi

s.t. wH
i W

H
N−(i)v (θ0) = 1; 1 ≤ i ≤ N

For large L, replacing Σ by equation (3.9),

(3.30)

wH
i W

H
N−(i)ΣWN−(i)wi

= wH
i

(
1

L

L∑
j=1

WH
N−(i)xjx

H
j WN−(i)

)
wi

= wH
i

(
1

L

L∑
j=1

x(j)x
H
(j)

)
wi = wH

i Σiwi; 1 ≤ i ≤ N

where, x(j) = WH
N−(i)xj ∈ C2×1 can be interpreted as spatially pre-filtered array snap-

shots. Assuming WN−(i) is formed with N − 1 known true (clairvoyant) roots, only one

unknown root needs to be estimated from the pre-filtered array data x(j) and correspond-

ing Σi. Equation (3.30) theoretically splits the original N -dimensional MVDR problem

in equation (3.6) into N 1-dimensional problems. The key advantage of optimizing equa-

tion (3.30) is that imposing conjugate symmetry on the wi’s guarantees unit-circle root in

each case.
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In practice, however, the true roots are not known, L is finite and the observed array

data is not noise-free. In that case, the Σ’s and x(j)’s are replaced by their correspond-

ing estimates. Consequently, initial roots were estimated from the traditional SCM-based

MVDR roots in Algorithm 1.

3.3.6 Choice of Initial Estimates

It is recommended that the SMI beamformer in equation (3.10) be used to provide the es-

timated roots to initiate the proposed method, i.e., in forming WN−(i), the weight matrices

in equation (3.17). It has been shown in literature that the performance of the forward-

backward SMI (FB-SMI) is superior to that of the SMI-based solution, and FB-SMI based

array coefficients possess conjugate-symmetry [46], [109], [115], satisfying condition C1

for UC roots in equation (3.12). However, FB-SMI based polynomial does not guarantee

UC roots and it typically produces one or more pairs of reciprocal roots, as can be observed

in Figure 3.2. Accordingly, the angular locations of the FB-SMI based roots on the unit-

circle may not be close to the true or optimal roots, and may cause incorrect deep nulls

and higher sidelobes (See corresponding magnitude response in Figure 3.4a). On the other

hand, although the SMI-based roots are not on the unit-circle they are usually more spread

out around the unit-circle and their angles are closer to the clairvoyant roots, providing

better initial estimates for the proposed method than FB-SMI would.

3.3.7 Implementation and Computational Complexity Issues

The individual root-updates in equation (3.26) are non-iterative, closed-form, and require

2 × 2 matrix inverses, the computation cost of which is relatively trivial. Also, since the

coefficients in each ŵi are complex-conjugate of each other by design, the roots of the

individual 1st-order polynomials, ŵi(z) = ŵi − ŵ∗
i z

−1 are guaranteed to lie on the unit

circle. Then the N -th order conjugate-symmetric ŴUCRC−MVDR(z) in equation (3.28) will
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also have the desired UC roots that are obtained by minimizing the MVDR criterion at

every step. More importantly, the UC roots property of [97] is achieved without resorting

to complex iterative optimization procedure or special-purpose optimization software as

would be needed if the derivative constraint in C2 were to be optimized for the N -th order

polynomial instead.

The proposed method leverages the SMI solution as its starting point, and the algorith-

mic steps to constrain each i-th root to lie on the unit-circle rely only on the SMI roots. The

SMI roots are placed onto the unit circle in the order they are computed, and no ordering is

applied when initializing Algorithm 1.

The SMI beamformer has a computational complexity on the order of O(N3
s ) due

to the inversion of the SCM [74]. Since the proposed approach requires computing the

SMI beamformer, the same O(N3
s ) cost will be incurred. To constrain all of the roots

to lie on the unit-circle requires an additional N matrix inversions (see step-IV and step-

V in Algorithm 1, respectively). However, these matrices are of size 2 × 2 hence, the

operations required to correct all roots is on the order of O(N), or linear in the number

of roots. Therefore, it can be concluded that the UCRC-MVDR beamformer possesses a

computational complexity on the order of the SMI at O(N3
s ).

Finally, in a multicore hardware-based or software-based implementation, all roots in

Algorithm-1 can be rectified during concurrent clock cycles. Therefore, parallel implemen-

tation is feasible.

The Effect of Repeated Iterations

In this section, we address the effect of repeated iterations of the UCRC algorithm. For the

following discussion, consider only the unit circle enforcement in Algorithm 1, and that no

mainbeam preservation is enacted or signal contamination is present.

For the 0-th iteration, we apply the UCRC algorithm using the roots of the SMI beam-

former, and use the unit circle roots at the output to reconstruct the covariance matrix
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using (2.6) from Chapter 2,

Σ̃ =
Ns−1∑
i=0

d̂iv
(
f̃i

)
vH
(
f̃i

)
, (3.31)

where Σ̃ is the reconstructed matrix and the f̃i are the spatial frequencies corresponding to

each of the UC roots and the look direction spatial frequency. The d̂i values are estimated

using (2.14),

d̂i =
1

vH
(
f̃i

)
Σ̂

−1
v
(
f̃i

) (3.32)

with the SCM in place of the true covariance matrix. Once the covariance has been re-

constructed using the obtained roots, the spatial filter is created in the same way described

earlier in this chapter. At the t-th iteration, the UCRC algorithm is repeated using roots

from the previous iteration and the matrix is again reconstructed from these roots.

The preceding steps were followed for, Ns=16 elements and L=17 secondary data.

Without loss of generality, we selected the true interference plus noise covariance matrix as

Σ = I and the look direction θ0=0◦. Computing the Euclidean distances between the filter

at the t-th and the filter at the t − 1-th iteration for t=20 iterations, the distance between

each filter was less than 10−5. Since the distance between subsequent filters is near zero, it

follows that the filter at iteration t is roughly equal to the filter at iteration t − 1 for t > 0.

Hence, repeated iterations of Algorithm 1 are not useful, and the UCRC-MVDR approach

should only be applied once to compute the beamformer.

3.4 Simulation Results

In this section, the results of several simulation experiments are given to demonstrate the

properties and performance of the proposed approach. All experiments in this section are

conducted using simulated uniform linear array data where λ=0.3 m and d = λ/2 are the
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center wavelength and inter-element spacing of the array, respectively. Unless mentioned

otherwise, most experiments included here are for the low-sample case, where the number

of secondary snapshots used to compute the SCM is L = Ns + 1.

3.4.1 Experiment 1- Array Polynomial Roots and Magnitude Response

This experiment examines the array polynomial root locations for various beamforming

approaches and the associated array magnitude responses. For Figure 3.2, the array con-

sists of Ns=11 elements with L=12 secondary snapshots to compute the SCM. The array

is steered toward broadside look direction, θ0 =0◦ in the presence of a single interferer at

angle θ1=16◦ with an interference to noise ratio (INR) of 10 dB, corresponding to an angle

u1 = π sin (θ1) in the complex plane. No SOI is present in this case. The array polynomial

roots of the SMI and FB-SMI [46], [109], [115], respectively, are shown in Figure 3.2. The

roots for the clairvoyant case of equation (3.7) are also plotted for reference. The interferer

location is denoted by a black dashed line while the mainbeam is shown as a shaded area.

Figure 3.3 shows the roots for Ns=21 elements and L=22 snapshots with similar signal,

interference and noise configuration.

Figures 3.2 and 3.3 show that all roots for the clairvoyant case fall on the unit circle, as

postulated in [97], whereas none of the SMI roots are on the unit circle, which may explain

its poor performance and justify the need for imposing the unit-circle roots constraint.

Most roots of FB-SMI, a commonly used method [46], [109], [115], fall on the unit-circle,

explaining its superior performance compared to SMI. However, FB-SMI satisfies C1 only,

and it does not guarantee unit-circle roots that require satisfying C2 as well. For the FB-

SMI, an isolated root at approximately 50◦ and a reciprocal pair of roots at around−75◦ are

angularly apart from the clairvoyant roots. Figures 3.2 and 3.3 further show that none of

the clairvoyant roots lie inside the mainbeam, justifying the need for mainbeam protection.
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Figure 3.2: Array polynomial roots for clairvoyant, conventional and unit-circle beamform-
ers with (a) Ns=11.

Figure 3.3: Array polynomial roots for clairvoyant, conventional and unit-circle beamform-
ers with Ns=21 elements.
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(a) Ns = 11 elements.

(b) Ns = 21 elements.

Figure 3.4: Array magnitude response for proposed, method of [102], and SMI with (a)
Ns = 11 elements and (b) Ns = 21 elements.
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The array polynomial roots for the proposed method and the method of [102] after

protecting the mainbeam are also included in Figures 3.2 and 3.3 for the same data. All

roots in both cases lie on the unit-circle, as designed. The UC roots of the method in [102]

were obtained by radially moving the SMI roots to the unit circle, whereas the proposed

conjugate symmetric beamformer method estimates the UC roots by optimizing the MVDR

criterion in equation (3.26).

Figure 3.4a illustrates the magnitude responses corresponding to all the cases in Fig-

ure 3.2 for the same data. All approaches place a null at the interference location. Most

of the nulls of FB-SMI are close to those of the unit-circle based methods explaining its

effectiveness compared to SMI. It can be seen that for the Ns=11 case, FB-SMI also shows

nulls at around −75◦ and 50◦ that are away from the clairvoyant nulls, and it also shows

higher sidelobes in some regions.

Figure 3.4b illustrates the magnitude response of the array versus angle for Ns =

21 elements. Lower side-lobe performance of the proposed method over that of [102] is

evident, especially in the Ns=21 case of Figure 3.4b.

3.4.2 Experiment 2- Robustness to SOI: Output SINR vs. SNR

This experiment highlights the robustness of the UCRC-MVDR when the SOI contami-

nates the snapshots used to compute the SCM by comparing the performance of various

beamformers in terms of the output SINR versus SNR. In all cases, the performance of the

proposed approach is compared against the traditional SMI, FB-SMI [46], [109], [115],

the unit-circle based method of [102], as well as the shrinkage [37], [25], and Toeplitz

rectification [28] methods. The simpler case with no contamination is also considered.

The output SINR is given by [66],

SINR =
σ2
0|wHv (θ0) |2

wHΣw
(3.33)
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where σ2
0 represents power of the SOI, respectively. The presence of the SOI in the snap-

shots used to compute the SCM results in a contaminated covariance estimate [9],

Σ̂X = σ2
0v (θ0)v

H (θ0) + Σ̂. (3.34)

For this experiment, this contaminated SCM is used to determine the beamformer weights

w for all approaches, where SNR = σ2
0/σ

2
n is varied while keeping INR = σ2

1/σ
2
n fixed.

Figures 3.5a and 3.5b compare the performance of the proposed approach with those

of the existing methods for a single interferer at angle θ1 = 16◦ with INR = 10 dB, and

Ns=11, and 21 elements, respectively.

Figure 3.5 demonstrates the performance of the proposed approach when no SOI is

present in the secondary snapshots. The figure compares the SINR vs. SNR performance of

all beamformers for Ns=21 elements using the same interference parameters used to gen-

erate figures 3.5a and 3.5b. While this represents an idealized scenario, the UCRC-MVDR

beamformer demonstrates superior performance over the SMI, FB-SMI, and Toeplitz rec-

tification methods, and follows the performance of the shrinkage-based beamformer.

Overall, the UCRC-MVDR beamformer outperforms the UC-MVDR beamformer in

[102] as well as the conventional SMI, FB-SMI, and the Toeplitz rectification approach,

showing consistent performance across all input SNR values. The UCRC-MVDR fol-

lows the performance of the shrinkage-based beamformer at low SNR, but the perfor-

mance of shrinkage degrades after roughly SNR = −8 dB and SNR = −14 dB for the

Ns = 11 and Ns = 21 element cases, respectively, suffering from self-cancellation in the

SOI-contaminated case.
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(a) SINR vs. SNR for Ns=11 elements.

(b) SINR vs. SNR for Ns=21 elements.
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Figure 3.5: SINR vs. SNR for Ns = 21 elements without SOI contamination.

3.4.3 Experiment 3-Robustness to Correlated Interference

In many practical scenarios, e.g., multipath propagation, the interference in equation (3.3)

may be correlated with the SOI. The conventional MVDR performs poorly in the presence

of correlated signals, resulting in spatial distortion and signal cancellation [2]. For this

experiment, the performance of the UCRC-MVDR is examined and compared with the

existing methods in the presence of both correlated and uncorrelated interference.

For this experiment, the array size is Ns =21 elements with L=22 secondary snap-

shots used to compute the SCM. M =3 discrete interferers are present at angles θ1=16◦,

θ2=30◦, and θ3=−43◦ at INR=45, 30, and 20 dB, respectively. The interferer at angle θ1

is perfectly correlated with the SOI while the remaining two are uncorrelated with respect

to both each other and the SOI. SOI contamination is assumed while generating Figure 3.6a

while no SOI contamination is present for figures 3.6b and 3.7.

Comparing figures 3.5b and 3.6a, it is evident that the presence of additional and

correlated interference has a deleterious effect upon the performance of all beamformers.
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The UCRC-MVDR beamformer again outperforms the SMI, FB-SMI, Toeplitz rectifica-

tion, and UC-MVDR beamformers, but is marginally outperformed by the shrinkage-based

method at low SNR. However, as the input SNR increases, past roughly −20 dB, the

UCRC-MVDR outperforms all the other beamformers. Self-cancellation is evident for

all beamformers at higher SNR values, but the UCRC-MVDR displays the most robust

performance.

Figures 3.6b and 3.7 show the root locations and corresponding magnitude response

for the clairvoyant, SMI, and UCRC-MVDR beamformers using the same parameters used

to generate Figure 3.6a. The dashed lines in both Figures 3.6b and 3.7 show the locations

of the interference sources, where the red and black colorations correspond to correlated

and uncorrelated sources, respectively, and ui = π sin(θi) for i = 1, . . . ,M . By examining

Figures 3.6b and 3.7 it is clear that all three beamformers place roots at or very close to the

roots corresponding to the interference location, resulting in deep nulls in the respective

magnitude responses.

3.4.4 Experiment 4-Robustness to Spatially Distributed Interference

For spatially distributed interference, the interference spectrum is continuous over an an-

gular extent and the adaptive beamformer must judiciously use the available degrees of

freedom to suppress the interference. From this perspective, it is illuminating to examine

the performance and root locations of both the proposed and clairvoyant beamformers.

Spatially distributed interference is modeled using equation (3.3) assuming M≫Ns

sources present at uniformly spaced angles θi ∈ [θL, θH] for i = 1, . . . ,M . For this ex-

periment, M = 100 sources are present at uniformly spaced angles between θL = 15◦ and

θH=30◦ and scaled to ensure a total per element INR=40 dB. The array size is Ns=21 el-

ements with L=22 secondary snapshots. No SOI contamination is assumed while gener-

ating Figures 3.9 and 3.8b while SOI contamination is used to generate Figure 3.8a.
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(a) SINR vs. SNR with coherent interference.

(b) Beamformer roots with coherent interference.

Figure 3.6: (a) SINR vs. SNR and (b) root locations with coherent interference and Ns =
21 elements.
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Figure 3.7: Magnitude response with coherent interference and Ns = 21 elements.

Figures 3.8b and 3.9 show the root locations and associated magnitude responses of

the clairvoyant, SMI, and UCRC-MVDR beamformers. Figure 3.8b illustrates that despite

the number of interference sources being greater than the number of degrees of freedom,

all of the clairvoyant roots appear on the unit circle, satisfying the theoretical property. The

clairvoyant and UCRC-MVDR beamformers allocate six and five roots, respectively, to the

interference sector of the unit circle, resulting in a deep notch in their respective magnitude

responses.

Figure 3.8a illustrates the SINR vs. SNR performance of all beamformers, where it is

immediately clear that the UCRC-MVDR beamformer outperforms all other approaches.

Close examination of Figure 3.8a shows that the UCRC-MVDR provides a roughly 4 dB

increase in performance over the UC-MVDR approach and nearly 10 dB improvement over

the shrinkage beamformer below SNR=0 dB.
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(a) SINR vs. SNR performance.

(b) Beamformer root locations.

Figure 3.8: (a) SINR vs. SNR and (b) root locations for distributed interference.
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Figure 3.9: Normalized filter and distributed interference magnitude responses.

3.4.5 Experiment 5-Robustness to Limited Snapshots using Diagonal

Loading

This experiment examines the robustness of the UCRC-MVDR beamformer in the extreme

snapshot-limited scenario (L << Ns) when the computed SCM is not full-rank. In such

cases, regularization via diagonal loading is typically used to ensure that the resulting di-

agonally loaded SCM (DL-SCM) is invertible. The DL-SCM takes the following form,

Σ̂DL−SCM = Σ̂+ γI (3.35)

where γ is the DL factor and I is an Ns×Ns identity matrix. Many approaches for choosing

the DL factor exist in the literature [21], [68]. For comparing various diagonally loaded

beamforming methods, the empirically optimal [105] γ = 2σ2
n is used as the DL factor.

The diagonally loaded variants of the SMI, FB-SMI, proposed method, UC-MVDR of

[102], and Toeplitz rectification are implemented by replacing the SCM of equation (3.9)
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with the DL-SCM of equation (3.35). Diagonal loading is not applied for the shrinkage

case since shrinkage itself is a form of diagonal loading [37].

For these experiments, the array size is Ns = 21 elements with L = 11 secondary

snapshots. The SOI and a single interferer at θ1=16◦ with INR=10 dB were present in all

cases. Each point in Figure 3.10 is the result of averaging over 5000 trials.

Figure 3.10: Output SINR vs. SNR with DL.

Figure 3.10 illustrates the performance of all the diagonally loaded beamformers in-

cluding shrinkage. All approaches show consistent performance at lower SNR values, but

both the UCRC-MVDR and method of [102] diverge from the others as the SNR increases,

indicating robust performance in the presence of strong SOI contamination even with lim-

ited snapshots. Furthermore, the proposed approach outperforms all methods and its per-

formance is closer to the clairvoyant case at all SNR levels.
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3.4.6 Experiment 6- Output SINR Empirical Cumulative Distribution

Section 3.4.2 highlights the mean output SINR performance of the UCRC-MVDR ap-

proach. However, to obtain a better understanding of the overall performance of the pro-

posed technique, the distribution of the output SINR should also be taken into account. For

this experiment, one minus the empirical cumulative distribution function (CDF) is used to

compute the probability that a particular beamformer exceeds a prescribed output SINR.

The array size is Ns =21 elements with L=22 secondary snapshots are used to compute

the SCM. A single interference is present at angle θ1=16◦ with INR=40 dB. SOI contam-

ination is also present with SNR=10 dB at angle θ0=0◦. A total of 100, 000 Monte Carlo

runs are used to compute the results shown in Figure 3.11.

Figure 3.11 illustrates the performance probabilities for the UCRC-MVDR along with

the existing methods, where the output SINR range is the horizontal axis. One minus

the theoretical CDF of the clairvoyant beamformer is depicted in black and serves as a

performance benchmark. The closer the curves are to the clairvoyant performance, there is

a higher probability that method will achieve near optimal performance.

Figure 3.11 quantifies the probability that a particular method exceeds a prescribed

output SINR gain. For example, the probabilities that UCRC-MVDR or UC-MVDR exceed

an SINR= 20 dB are roughly 0.61 and 0.14, respectively, demonstrating that the UCRC-

MVDR beamformer is more likely to outperform the UC-MVDR approach of [102] in this

scenario.

3.4.7 Experiment 7- Study of Ensemble Output Variance and Output

SINR vs. Number of Corrected Roots

The objective of the MVDR algorithm is to minimize the variance, which consequentially

maximizes the output SINR. In an attempt to empirically verify if these goals are achieved
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Figure 3.11: One minus the empirical CDF of the output SINR for various approaches

by the algorithm, this experiment studies the effect of placing beamformer polynomial roots

on the unit circle on the output variance and SINR by the proposed method. The results

are compared with those of [102], as well as the clairvoyant case. The effect of protecting

the mainbeam is also analyzed. For generating the plots, Ns=11 sensors are used and the

SMI beamformers are constructed using SCMs computed with L = Ns + 1 snapshots that

included a single interferer with INR=10 dB. No SOI contamination is present however,

for the purposes of calculating the output SINR, an SOI with SNR=0 dB is assumed. Each

point on the plots was generated by averaging the corresponding variance and SINR over

50,000 independent Monte-Carlo trials.

For this experiment, the output variance defined in equation (3.7) and the output SINR

defined in equation (3.33) are computed using estimated quantities and the performance in

terms of ensemble averages are shown in figures 3.12a and 3.12b, respectively. To generate

the plots, the 1-st through k-th root are placed onto the unit circle for k = 1, . . . , N , using

either the proposed approach or the method of [102], while leaving the remaining N − k

54



(i.e. k+1 through N -th) roots undisturbed. The theoretical output variance wH
optΣwopt and

SINR corresponding to the benchmark clairvoyant beamformer, is depicted in all figures as

a horizontal dashed line.

To study the effect of mainbeam protection, if any of the 1 through k corrected UC

roots lie within the mainbeam, then they were moved to the nearest CBF null. The proposed

beamformer was also implemented without mainbeam protection and the corresponding

results are shown by the blue dashed lines in figures 3.12a and 3.12b.

The far-left and far-right points of both figures correspond to the SMI-roots only (i.e.

no roots have been corrected) and all roots corrected cases, respectively. It can be seen that

the left-most points representing SMI-based quantities without any correction are farthest

from the benchmarks, whereas the right-most points representing all roots corrected cases

are the closest to the corresponding benchmarks, justifying the need for these corrective

steps.

It is interesting to note that the ensemble variance without any correction, as shown

by the left-most point on Figure 3.12a, is lower than the corresponding clairvoyant vari-

ance. Likewise, the leftmost output SINR in Figure 3.12b is higher than the corresponding

benchmark. This may be explained by the fact that unlike the clairvoyant case, the con-

ventional SMI solution is entirely unconstrained with no restrictions on its root locations.

The right-most points in Figure 3.12a and 3.12b further show that the proposed approach is

unbiased and converges towards the clairvoyant theoretical variance and theoretical output

SINR, respectively, in the limit when all roots are corrected and the mainbeam is protected,

further justifying the need for the corrections presented in this work.
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(a) Output variance.

(b) Output SINR.

Figure 3.12: Ensemble output (a) variance and (b) SINR vs. corrected roots.
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3.4.8 Experiment 8- Aperture Size Analysis: Output SINR vs. Array

Size

This experiment investigates the output SINR versus array size for all beamformers. Fig-

ure 3.13 illustrates the performance of the proposed beamformer, that of [102], SMI and

FB-SMI, in terms of the output SINR versus the array size where the clairvoyant case is

again included as a performance baseline. For this experiment, one interferer is present at

θ1 = 16◦ with INR= 10 dB. No signal contamination is present in the L = Ns + 1 snap-

shots used to compute the SCM in this experiment but, SNR= 10 dB is used to calculate

the SINR. For each point on the horizontal axis, the performance is averaged over 10, 000

independent trials.

To study the aperture size requirements for various beamformers a black horizontal

line is included at constant SINR= 19 dB. The intersections of the horizontal line on the

various performance curves represent the array size required to achieve that level of SINR

gain. From Figure 3.13, the array sizes required to achieve an output SINR of 19 dB are

roughly: Ns = 11 elements for the proposed method, Ns = 13 for FB-SMI, and Ns = 19

elements for the method of [102]. The SMI performs the worst and never achieves this

level of output SINR. Aperture size advantage of the proposed method is even starker if

higher SINR gain requirement is to be met.

A vertical line at constant array size of Ns=21 elements is also superimposed on the

performance curves, and an analogous conclusion follows from examining the intersections

of the vertical black line with the various performance curves where it is evident that the

proposed beamformer dominates over the other approaches.

When considering the size, weight, and power (SWAP) requirements for deploying an

array with limited aperture size, Figure 3.13 demonstrates that considerable performance

improvement can be achieved by using the proposed beamformer with lower array size, or

higher performance gains can be attained at a fixed array size.
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Figure 3.13: Output SINR vs. Array Size.

3.5 Discussions and Conclusions

This chapter proposes a shift in the way MVDR beamformer is designed by reformulating

the classical MVDR problem as a unit-circle roots constrained optimization problem. The

proposed UCRC-MVDR beamformer is developed by enforcing the theoretically necessary

unit-circle roots constraint [97] onto the SMI solution of Capon’s MVDR beamformer [13].

Although additional research will be needed to fully establish its general efficacy, based on

the extensive results reported in this work, it may be argued that enforcing unit-circle roots

on the MVDR polynomial provides a level of robustness and structure to the MVDR solu-

tion that may be able to overcome many of the ill effects of the SCM and other beamformer

issues requiring robust solutions [105], [31], [32].

The proposed method differs from the ad-hoc radial projection approach of [102], as

the unit-circle rectification is performed algorithmically where the N -dimensional MVDR

problem is split into N 1-dimensional MVDR problems. Conjugate-symmetry is imposed
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upon individual first-order factors independently to ensure unit-circle roots. Each of the

estimated factors is expressed in closed-form, minimizes the variance, and preserves the

linear constraint. The proposed beamformer was shown to have same order of computa-

tional complexity as that of the SMI and its implementation is modular and parallelizable

as all roots can be updated concurrently.

The superior performance of the proposed unit-circle approach was demonstrated us-

ing simulation experiments where the performance of the proposed beamformer was com-

pared against the method of [102] along with existing techniques. It was shown that the

proposed approach produces UC roots as well as lower sidelobes than the beamformer of

[102] and conventional methods. The output SINR versus SNR demonstrated the improved

gain and robust performance of the proposed method in the presence of SOI contamination.

Additional simulations examples demonstrated the robust performance of the proposed ap-

proach in the presence of coherent as well as spatially distributed interference sources. It

was observed that the proposed approach results in lower output variance as each root is

corrected resulting in a higher output SINR over the beamformer of [102]. It was shown

that the proposed beamformer has improved performance over all of the previously men-

tioned approaches in the snapshot limited scenario where diagonal loading was used to

regularize the estimated covariance matrix. Distribution analysis via the empirical CDF

concluded that the proposed approach outperforms the approach of [102] with higher prob-

ability in the presence of SOI contamination and strong interference. Finally, the proposed

beamformer showed comparable performance at a smaller aperture size than that achieved

by other methods at larger array sizes.

The UC root constraint is a fundamental and impactful property of the MVDR beam-

former which can be practically imposed to improve spatial filtering performance. Possible

avenues where this work can be applied include STAP [66], multiple-input multiple-output

(MIMO) radar systems [60], and DOA estimation [13]. Future extensions of this work

can include further processing to accommodate coherent sources as well as imposing the
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unit-circle constraint upon sequential beamforming approaches.

As per general applicability of the proposed unit-circle roots based approach, any ex-

isting MVDR-related design for which the roots of the array polynomial are not already on

the unit-circle, may benefit from applying the tools developed in this chapter. Specifically,

regardless of how the original weight vector was arrived at, any non unit-circle roots can

be optimally moved on to the unit-circle by using the proposed algorithm while further

minimizing the variance. In addition, the proposed root updates can improve beamformer

performance while improving computational efficiency by removing the need to invert the

SCM by replacing the SMI-based roots with those of the CBF. This relatively simple up-

date step with little additional computational cost can be expected to produce deeper nulls

and lower sidelobes to potentially reduce the effects of noise and interference compared to

SMI-based MVDR. Furthermore, if a current design produces a MVDR polynomial with

any root inside the mainbeam, then signal fidelity may potentially be improved by moving

out the mainbeam roots using the steps given in section 3.3.4 to reduce self-nulling effect.

Further investigation is worth pursuing in these directions.
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Unit Circle Roots Constrained Adaptive

Matched Filter for Improved Moving

Target Detection

4.1 Introduction

Target detection in homogeneous clutter with unknown covariance matrix is a well-studied

problem in the field of radar signal processing. Conventional approaches such as the gener-

alized likelihood ratio test (GLRT) [48], and adaptive matched filter (AMF) [76] substitute

the sample covariance matrix (SCM) estimate in place of the unknown covariance matrix,

which requires a set of target-free secondary data. However, SCM-based detectors expe-

rience performance degradation unless the secondary data are abundant [75], which is not

always a practical assumption [3]. To overcome the need for copious amounts of secondary

data, the persymmetric AMF (PS-AMF) [69] has been proposed, which exploits the math-

ematical structure of the signal and covariance matrix to improve detection performance.

In [97], Steinhardt had proved that the roots of the minimum-variance distortionless

response (MVDR) beamformer array polynomial for a uniform linear array (ULA) with

plane-wave sources must, theoretically, lie on the unit-circle. Despite establishing the the-

oretical necessity of unit circle roots, no method of enforcing this property was provided.
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Inspired by Steinhardt’s proof, we have previously developed a unit circle roots constrained

MVDR (UCRC-MVDR) beamformer design approach that has shown significantly im-

proved performance compared to state-of-the-art beamforming methods [85],[86].

It is important to note that the unit-circle roots property proven in [97] is valid for the

MVDR optimization problem only. In this chapter, we present a new and general proof that

the roots of the filter polynomial corresponding to the AMF must all occur on the unit circle

in the known-covariance case. Our proof leverages the Toeplitz structure of the covariance

matrix and the Vandermonde structure of the steering vector, decoupling the proof of this

property from the optimization required to obtain the optimum filter. The proof does not

require the use of either the Weiner-Khinchin or implicit function theorems, as described

in both [97] and [102], and includes both the AMF and MVDR solutions as special cases.

We use this new proof as the theoretical justification for enforcing unit circle roots upon

the conventional AMF.

Intuitively, the proposed UCRC-based approaches treat the AMF detector z-polynomial

as an FIR filter polynomial, where unit circle roots are desirable because of their associated

effect upon the filter frequency response. It is well known that zeros on the unit circle will

produce deep nulls and low sidelobes in the filter frequency response, resulting in improved

interference suppression. This observation, coupled with the theoretical necessity of unit

circle roots, compels the exploitation of this property for adaptive clutter suppression.

The unit circle roots constrained adaptive matched filter (UCRC-AMF) proposed in

this chapter exploits the theoretical necessity of unit circle roots in the known-covariance

case to improve detection performance over the conventional AMF when the secondary

data are limited. However, the unit circle root estimates of the UCRC-AMF are based on the

SCM and thus, will be adversely impacted by limited secondary data. In order to overcome

this limitation , in this chapter, we also propose a modified UCRC-AMF (M-UCRC-AMF),

which alleviates the aforementioned issue with the UCRC-AMF by judiciously incorporat-

ing the forward-backward averaged SCM (FB-SCM) within the UCRC-AMF algorithm,
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resulting in significant performance improvement over the preliminary results reported in

[94].

The UCRC-approaches proposed in this chapter enforce unit circle roots in a manner

similar to [89] by breaking the multidimensional optimization specific to the AMF into

multiple one-dimensional optimization problems while holding all other parameters fixed.

Unit circle roots are guaranteed by enforcing conjugate-symmetry on first-order polynomi-

als and each root estimate is computed in closed form. To the best of our knowledge, no

approach for designing the AMF exists which makes use of this fundamental unit-circle

roots property.

Simulation examples will be used to demonstrate the improved performance of the

UCRC-AMF and M-UCRC-AMF detectors compared to the conventional AMF and PS-

AMF. Using the proposed root estimation technique, it will be shown that both the UCRC-

AMF and M-UCRC-AMF have roots on the unit circle whereas the AMF does not. Addi-

tionally, the improved detection performance of the UCRC-AMF and M-UCRC-AMF will

be demonstrated via the receiver operating characteristic (ROC) and probability of detec-

tion versus signal-to-interference-plus-noise ratio (SINR) curves. The limited secondary

data scenario is the focus of this chapter, and the detection performance will be examined

assuming the number of secondary data are slightly greater than the coherent processing

interval (CPI) length. The average SINR performance improvement as the number of roots

of the AMF are placed onto the unit circle using the proposed algorithm will also be ana-

lyzed, where it will be shown that the proposed algorithm results in a monotonic increase in

the average output SINR as more roots are placed onto the unit circle. It will be shown that

the M-UCRC-AMF and UCRC-AMF consistently achieve higher output SINR with less

secondary data than the PS-AMF or AMF. The SINR loss of the M-UCRC-AMF will be

examined, where it will be shown that this approach achieves near optimum performance

over the non-UC approaches. Finally, evidence that the proposed approach has constant

false-alarm rate (CFAR) will also be presented.
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The remainder of this chapter is organized as follows. In Section 4.2, a description

of the target detection problem, signal, and clutter model are given. In Section 4.3, the

conventional AMF is derived. The UCRC-AMF and M-UCRC-AMF are derived and dis-

cussed in Section 4.4. Section 4.5 contains simulation results of the proposed detectors.

Finally, Section 4.6 provides discussion and concluding remarks.

4.2 Signal Model

Consider a co-located transmitter and receiver mounted on a stationary platform. The trans-

mitter emits Kp periodic, pulses over a coherent processing interval. Pulse-compression is

performed at the receiver to isolate the reflected returns originating from a particular range

bin. The received slow-time data are stacked into a vector x ∈ CKp×1, where each row

corresponds to an individual slow-time snapshot.

The received data is modeled as,

x = iαa(f0) + c+ n. (4.1)

where c and n are the clutter and noise components, respectively, while a(f0) is the target

temporal steering vector. α ∈ C is the complex amplitude of the moving target return and

i = 0, 1 corresponds to either the presence or absence of the target. α is an unknown scalar

determined by the target radar cross section (RCS) and also captures the effects of signal

propagation through the environment.

The target steering vector is defined as,

a(f0) ≜ [1, e−j2πf0 , . . . , e−j2πf0(Kp−1)]T (4.2)

where (·)T is the transpose operator. The normalized Doppler frequency f0 induced by the
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motion of the target is,

f0 =
2TPRI

λ

(
vx cos (θr) + vy sin (θr)

)
(4.3)

where λ is the operating wavelength of the radar, TPRI is the pulse-repetition interval, vt ≜

[vx vy] is the target velocity vector, and θr is the angle with respect to the positive x-axis

of the receiver relative to the target. The target-centric geometry with relevant labels is

depicted in Fig. 4.1.

Figure 4.1: Target-centric geometry for moving target detection problem.

4.2.1 Clutter Characterization

The clutter are assumed to be temporally correlated due to the effects of internal clutter mo-

tion during the CPI (i.e. windblown trees or grasslands) which is described by the clutter

power spectral density (PSD). The Gaussian spectral shape has been shown to approxi-

mately model measured ground clutter [36] and has been previously used in the moving

target detection literature [42],[106] hence, we adopt this approach to model our simulated
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clutter. Mathematically, the clutter PSD is,

Pc(f) =
σ2
c

2
√

2πδ2v
e
− f2λ2

8δ2v (4.4)

where, σ2
c is the clutter power, f is the Doppler frequency, and δv represents the root mean

square (RMS) clutter velocity [42], [106].

Following [42],[106], the clutter covariance matrix is generated by sampling the cor-

responding clutter autocorrelation function (ACF),

ϕ(τ) = σ2
ce

−8π2τ2
δ2v
λ2 (4.5)

at times τ = kTPRI for k = 0, . . . , Kp − 1. The sampled ACF are arranged to form the

clutter covariance matrix,

ΣC = σ2
c



ρ(0) ρ(1) . . . ρ(Kp − 1)

ρ(1) ρ(0) . . .
...

. . . . . .
. . . ρ(1)

ρ(Kp − 1) . . . ρ(1) ρ(0)


(4.6)

where, ρ(k) = ϕ(kTPRI) are the sampled ACF values.

Both the clutter and noise are independent, complex, zero-mean, Gaussian random

vectors and are assumed to be the result of environmental factors such as background noise

and reflections unrelated to the target of interest. The total clutter-plus-noise covariance

matrix is,

Σ = ΣC + σ2
nI (4.7)

where σ2
n is the noise variance.
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4.2.2 Problem Statement

Moving target detection consists of declaring either the presence or absence of a moving

target within the range bin of interest, represented by hypothesises H1 and H0, respectively.

The hypothesis test can be described mathematically as,

H0 : x = c+ n (4.8)

H1 : x = αa(f0) + c+ n (4.9)

The radar output is the filtered slow-time data,

y = wHx (4.10)

where w ∈ CKp×1 is a filter which has been designed, according to some performance

metric, to cancel the clutter and noise while retaining the target signal.

The test statistic for the moving target detection problem can be interpreted as the

square of the filter output [66],

|y|2
H1

≷
H0

γ (4.11)

where γ is a threshold used to satisfy a prescribed probability of false alarm.

The focus of this chapter is to improve moving target detection performance by incor-

porating the unit circle roots constraint within the design of the filter w.

4.3 The Adaptive Matched Filter

The optimum filter maximizes the signal-to-interference-plus-noise ratio (SINR) [75], [99],

[94],

SINR =
σ2
s |wHa (f0) |2

wHΣw
(4.12)
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where σ2
s is the variance or power of the complex target amplitude α. The optimal AMF can

be derived in a variety of ways: via Lagrange multipliers [99], or by the Cauchy-Schwarz

inequality [66]. Regardless of the means of derivation, the optimal filter takes the form

wopt ∝ κΣ−1a(f0) (4.13)

where, κ is an arbitrary constant.

In this chapter, the AMF is derived by minimizing the expected output clutter-plus-

noise power wHΣw subject to the linear constraint wHa (f0) = c, where c is a real con-

stant. Since the SINR is unchanged by scaling the filter w, the specific constant is arbitrary.

However, selecting

c =

√
aH (f0)Σ

−1a (f0) (4.14)

has been shown to provide CFAR behavior when the covariance matrix is unknown and

results in the limiting case of the GLRT for a large number of secondary data [76]. Hence,

we use this constant when deriving the AMF and the proposed unit-circle roots constrained

AMF detector in the sequel.

In order to motivate the development of the proposed unit circle rectification approach,

we first derive the AMF in the same way as the MVDR beamformer [13]. This will help

establish the background and terminologies necessary to prove the claim that the AMF

with perfectly known covariance matrix must also have unit circle roots. The necessary

optimization is

min
w

wHΣw s.t. wHa(f0) = c. (4.15)

This optimization can be solved using Lagrange multipliers where

L(w) = wHΣw + λ
(
wHa (f0)− c

)
(4.16)
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is the Lagrangian and λ is the associated multiplier. Taking the derivative of (4.16) and

equating to zero results in,

∂L (w)

∂w
= (Σw)∗ + λa∗ (f0) = 0 (4.17)

where (·)∗ is the conjugation operator. Conjugating and solving for w yields,

w = −λ∗Σ−1a (f0) . (4.18)

Substituting (4.18) into the linear constraint in (4.15) produces,

λ = −1

c
(4.19)

which, upon substitution back into (4.18), results in,

wopt =
Σ−1a (f0)√

aH (f0)Σ
−1a (f0)

(4.20)

as the optimum. Since (4.20) assumes perfect knowledge of the clutter-plus-noise covari-

ance matrix, this filter will be referred to as the Clairvoyant, or optimal, for the remainder

of this chapter.

Typically, the covariance matrix is unknown and is replaced by the SCM, which is

computed from a set of target-free secondary data,

Σ̂SCM =
1

L

L∑
i=1

xix
H
i (4.21)

where xi is the i-th secondary data vector and L is the number of secondary data. The SCM

can be improved by incorporating forward-backward averaging resulting in the forward-
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backward SCM (FB-SCM) [46],

Σ̂FB−SCM =
1

2

(
Σ̂SCM + JΣ̂

∗
SCMJ

)
(4.22)

where J ∈ RKp×Kp is the exchange matrix with ones along the anti-diagonal.

The target Doppler frequency is also unknown in practice and must be estimated.

However, it is common in practice to segment the Doppler space into a number of cells and

perform detection in each. Therefore, we assume perfect knowledge of f0.

The conventional AMF replaces the true clutter-plus-noise covariance matrix in (4.20)

with the SCM [76],

wAMF =
Σ̂

−1

SCMa (f0)√
aH (f0) Σ̂

−1

SCMa (f0)

(4.23)

and will be hereafter referred to as the AMF.

4.4 Unit Circle Roots Constrained AMF

Theorem 1 establishes the theoretical necessity of unit circle roots for the Clairvoyant AMF.

However, when the SCM is used to compute the filter, the roots rarely occur on the unit

circle.

For a polynomial to have unit circle roots, two conditions must be satisfied [89], [65]:

C1: The coefficients exhibit conjugate-symmetry

w(k) = w∗(K − k) for k = 0, . . . , K (4.24)

and

C2: The derivative of W (z) must have roots either on or inside the unit circle.

C2 requires non-linear optimization to impose [89] and is, therefore, too restrictive
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Algorithm 2: UCRC-AMF

INPUT: Σ̂SCM, a (f0), c

start: wAMF =
ˆΣ

−1

SCMa(f0)√
aH(f0)

ˆΣ
−1

SCMa(f0)

ζ ← roots{Z{wAMF}} ▷ I
i = 1 up to i = K

WK−(i)(z) =
∏

j ̸=i(1− ζjz
−1)

ΣW
i = WH

K−(i)Σ̂SCMWK−(i) ▷ II
Σ̃i =

1
2

(
ΣW

i + JΣW∗
i J

)
▷ III

qi = WH
K−(i)a (f0) ▷ IV

ŵi = Σ̃
−1

i qi ▷ V
ζi = ŵi(1)/ŵi(0) ▷ VI

end
OUTPUT:

WUC(z) =
K∏
i=1

(1− ζiz
−1)

Z−1

−→ ŵ

wUCRC−AMF = c ŵ
aH(f0)ŵ

for the present application. When K = 1, the derivative of W (z) is a scalar rendering

C2 negligible and C1 is sufficient to ensure unit circle roots [89]. Hence, we enforce unit

circle roots by imposing C1 onto the order-one factors of W (z).

The UCRC-AMF derivation described below closely follows the one for UCRC-MVDR

given in Chapter 3, but is included here for completeness’ sake. There are some key differ-

ences in the implementation steps, as will be pointed out later in this Chapter.

Rewriting W (z) in factored form [89],

W(i)(z) = WK−(i)(z)wi(z); 1 ≤ i ≤ K (4.25)

where wi(z) = wi − w∗
i z

−1 and WK−(i)(z) is a (K − 1)-th order polynomial formed with

K − 1 known roots excluding the i-th root. wi(z) represents the i-th first-order factor

whose root needs to be placed on the unit-circle. The factored weight vector corresponding
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to W(i)(z) in (4.25) can be written as a convolution matrix-vector product [89],

w(i) = WK−(i)wi; 1 ≤ i ≤ K (4.26)

where wi = [wi w∗
i ]

T ∈ C2×1. Using this factorization, the Kp-dimensional optimization

in (4.15) can be split into K 1-dimensional optimization problems. The columns of the

convolution matrix,

WK−(i) =



wK−(i)(0) 0

wK−(i)(1) wK−(i)(0)

. . . . . .

0 wK−(i)(K − 1)


∈ CKp×2 (4.27)

consist of the coefficients of WK−(i)(z). However, unlike in Chapter 3, WK−(i)(z) for

UCRC-AMF is a (K − 1)-th order polynomial formed using the i − 1 previously esti-

mated unit circle roots and the K − i remaining SMI-based AMF roots while excluding

the i-th root that is being updated. The reformulated 1st-order AMF optimization problem

becomes,

(4.28)
min
wi

wH
i W

H
K−(i)ΣWK−(i)wi

s.t. wH
i W

H
K−(i)a (f0) = c; 1 ≤ i ≤ K

where this optimization is performed K times to place individual roots onto the unit circle.

Call ΣW
i = WH

K−(i)ΣWK−(i) ∈ C2×2 and qi = WH
K−(i)a (f0) ∈ C2×1, the weighted

covariance matrix and weighted steering vector, respectively. The optimizations in (4.28)

can now be written compactly,

min
wi

wH
i Σ

W
i wi s.t. wH

i qi = c; 1 ≤ i ≤ K. (4.29)

Interestingly, forward-backward averaging the weighted covariance matrix ΣW
i will en-
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sure that the wi are conjugate-symmetric [46]. The forward-backward averaged weighted

covariance matrix is defined as [46],

Σ̃i =
1

2

(
ΣW

i + JΣW∗
i J

)
∈ C2×2; 1 ≤ i ≤ K (4.30)

where, J ∈ R2×2 is the exchange matrix with ones along the anti-diagonal. Substitut-

ing (4.30) into (4.29),

min
wi

wH
i Σ̃iwi s.t. wH

i qi = c; 1 ≤ i ≤ K. (4.31)

This minimization can be solved by invoking the theory of Lagrange multipliers where the

Lagrangian is

L(wi) = wH
i Σ̃iwi + λi(w

H
i qi − c); 1 ≤ i ≤ K (4.32)

and λi is the associated multiplier. Taking the derivative with respect to wi and equating to

zero results in,
∂L(wi)

∂wi

= (Σ̃iwi)
∗ + λiq

∗
i = 0; 1 ≤ i ≤ K. (4.33)

The root of the polynomial wi(z) is unaffected by scaling the coefficients hence, we solve

(4.33) for wi and disregard the constant λi to retain

ŵi = Σ̃
−1

i qi; 1 ≤ i ≤ K. (4.34)

The root estimate is ζi = ŵi(1)/ŵi(0). The filter polynomial with unit circle roots is

WUC(z) =
K∏
i=1

(
1− ζiz

−1
)
. (4.35)

To construct the filter vector which satisfies the linear constraint in (4.15), define the aux-
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iliary vector ŵ = Z−1{WUC(z)}, where Z−1{·} is the inverse z-transform. Scaling ŵ

produces [101],

wUCRC−AMF = c
ŵ

aH (f0) ŵ
(4.36)

which satisfies the linear constraint.

In practice, the true covariance matrix is not known and must be estimated. Conse-

quently, ΣW
i , c, and WK−(i) are replaced with their empirical counterparts based on the

SCM and AMF roots, respectively. Each of the ŵi can be computed in closed form, and

correspond to a unit circle root. Pseudocode of the UCRC-AMF is provided in Algorithm-

2.

4.4.1 The Modified UCRC-AMF

The Modified UCRC-AMF (M-UCRC-AMF) is distinct from the UCRC-AMF, where the

primary modification is the use of the FB-SCM to compute the constant c in (4.14) and

within step-II of Algorithm 2. Σ̂FB−SCM has complex persymmetric structure and in liter-

ature, such structure have been extensively used in time-series modelling [103], spectrum

estimation [56], MVDR beamforming [46], adaptive matched filtering [69], and many other

related fields to achieve improved performance. For the proposed M-UCRC-AMF algo-

rithm, using Σ̂FB−SCM over Σ̂SCM in step-II of Algorithm 2 and in evaluating the constant

c drastically improves the estimated unit circle root locations and detection performance

without requiring any additional steps or complexity to the UCRC-AMF algorithm. More

importantly, M-UCRC-AMF provides improved detection performance and output SINR

over the UCRC-AMF, as will be shown in the simulation section. It is worth noting that de-

spite these minor changes between the UCRC-AMF and modified UCRC-AMF, the choice

of initial estimates remains the same, as explained in the following subsection.
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4.4.2 Differences Between UCRC-MVDR and M-UCRC/UCRC-AMF

Unlike the UCRC-MVDR discussed in Chapter 3, the roots of the UCRC-AMF are up-

dated in series instead of in parallel. In this way, the i-th root, ζi, is updated based on the

previously estimated roots ζi−1, ζi−2, etc, that are already on the unit circle.

Both the M-UCRC/UCRC-AMF and UCRC-MVDR are initialized using the roots

of the SMI-based adaptive filter (see step-I in algorithms 1 and 2). However, for M-

UCRC/UCRC-AMF the i-th root estimate is computed based on the i − 1 previously es-

timated unit circle roots and the remaining K − i − 1 SMI roots. All roots except the

i-th are assumed to be constant, and encapsulated in the matrix (4.27). Furthermore, M-

UCRC/UCRC-AMF enforce conjugate symmetry implicitly via forward backward averag-

ing of the weighted covariance matrix, instead of explicitly enforcing this property using

the C matrix described in Chapter 3, although the latter can be used instead and will pro-

duce the same results.

The other notable difference between the proposed detectors and the UCRC-MVDR

is the constant c used to normalize the output filter. For UCRC-MVDR, c = 1 preserves

the distortionless response constraint. The normalization of the M-UCRC/UCRC-AMF us-

ing c =
√

aH (f0)Σ
−1a (f0) (see (4.14)) results in the same output at the target Doppler

frequency for the AMF and FB-AMF, which we hypothesis is the reason why the M-

UCRC/UCRC-AMF have approximate CFAR behaviour. It will be shown empirically that

the proposed detectors have approximate CFAR later in this chapter.

The final difference between M-UCRC/UCRC-AMF and UCRC-MVDR is the former

do not implement the mainbeam protection strategy described in Chapter 3. Mainbeam

protection is not applicable for moving target detection since target contamination in the

secondary snapshots is not assumed in this chapter. However, the same strategy could be

used to accommodate target-contaminated secondary data in the same way as described for

the UCRC-MVDR.
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4.4.3 Choice of Initial Estimates and Computational Complexity Is-

sues

Proper choice of initializing the UCRC-AMF and M-UCRC-AMF algorithm is important

for achieving desirable performance. Using the SCM to compute AMF will be shown

to result in roots that are well distributed around the unit circle. Therefore, conventional

SCM-based AMF roots serve as a good initial choice for the proposed M-UCRC-AMF

and UCRC-AMF algorithms. It may be further noted that using the FB-SCM to compute

the AMF results in a conjugate symmetric filter [46] that satisfies condition C1 in (4.24).

However, in that case, the roots occur either on the unit circle or in conjugate pairs. This

angular redundancy reduces the overall degrees of freedom and makes FB-SCM a poor

choice for initiating the proposed algorithms.

Essentially, the SCM provides good initial root estimates in step-I of both UCRC-

AMF and M-UCRC-AMF, while the FB-SCM is a superior covariance matrix estimate to

use in step-II of M-UCRC-AMF for the subsequent unit circle root estimates.

Equation (4.34) expresses the 2 × 1 estimated weight vector wi in closed-form and

requires only a 2× 2 matrix inverse, which can be computed algebraically and has a trivial

computational cost. Consequentially, each root estimate ζi can be obtained with computa-

tional ease.

Also, since the coefficients in each ŵi are complex-conjugate of each other by design,

the roots of the individual 1st-order polynomials, ŵi(z) = ŵi− ŵ∗
i z

−1 are guaranteed to lie

on the unit circle. Then the K-th order conjugate-symmetric polynomial WUCRC−AMF(z)

corresponding to (4.36) will also have UC roots that are obtained by minimizing the out-

put clutter and noise power at every step. More importantly, the UC roots property of

Theorem 1 is achieved without resorting to complex iterative optimization procedure or

special-purpose optimization software as would be needed if the derivative constraint in

C2 were to be optimized for the Kp-th order polynomial instead.
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Both the UCRC-AMF and M-UCRC-AMF leverage the SMI-based AMF as their

starting point, where the algorithm places each i-th root on the unit-circle using the AMF

roots. Due to the inversion of the SCM, the AMF has a computational complexity on the

order of O(K3
p) [75]. Since the proposed approach requires computing the conventional

AMF, the same O(K3
p) cost will be incurred.

Step-II is the most computationally complex after computing the AMF, and requires

2(2Kp− 1)Kp+4(2Kp− 1) flops (i.e., complex multiplications and additions) to compute

the Hermitian form. Step-IV requires 2(2Kp−1) flops to compute the transformed steering

vector qi. Steps III, V, and VI are performed using either scalars or 2x2 matrices which

are independent of the number of pulses Kp and are therefore omitted from the analysis. In

total, to place one root on the unit circle requires 2(2Kp − 1)(Kp + 3) flops. This process

must be performed Kp − 1 times to place all roots there and hence, the total flop count is

2(2Kp − 1)(Kp + 3)(Kp − 1) = 4K3
p + 6K2

p − 16Kp + 6 flops or O(K3
p).

The UCRC-AMF and M-UCRC-AMF are initialized using the SMI-based AMF, and

based on the previous analysis placing all roots onto the unit circle has a proportional

complexity. Therefore, it can be concluded that O(K3
p) is the asymptotic complexity of

both the UCRC-AMF and M-UCRC-AMF.

4.5 Simulation Examples

The efficacy of the UCRC-AMF and M-UCRC-AMF are demonstrated using several sim-

ulation examples where the simulation parameters are described as follows. A radar oper-

ating frequency of fc =1 GHz is used with a pulse repetition frequency (PRF) of 500 Hz.

A single moving target is moving along a linear trajectory with constant velocity |vt|=

108 km/h and heading 30◦ with respect to the positive x-axis. The angle of the receiver/-

transmitter with respect to the target is θr = 10◦ (see Fig. 4.1). The normalized target

Doppler frequency is f0 = 0.3761. Both the clutter-plus-noise covariance matrix Σ and
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complex target amplitude α are assumed unknown.

The detection performance is quantified using the receiver operating characteristic

(ROC) for fixed clutter-to-noise ratio (CNR) and signal-to-noise ratio (SNR). Probability

of detection versus SINR curves are also generated assuming a fixed probability of false

alarm.

The CNR,

CNR = Kp
σ2
c

σ2
n

(4.37)

is fixed at 40 dB for all examples, unless stated otherwise. We define the SNR as,

SNR = Kp
σ2
s

σ2
n

(4.38)

where σ2
n is the noise variance. Unless noted otherwise, the secondary data are assumed to

be limited with L = Kp + 1 snapshots, i.e., barely sufficient to invert the SCM.

The thresholds used in (4.11) for the AMF, PS-AMF, M-UCRC-AMF, and UCRC-

AMF detectors are computed empirically using the simulation data. Each of the curves

in Figs. 4.4, 4.5, 4.6, and 4.7 are computed using Monte-Carlo-based simulations, where

PFA and NMC=100/PFA are the minimum probability of false alarm and number of trials,

respectively.

4.5.1 Example 1 : AMF Root Locations and Magnitude Response

Fig. 4.2a shows the roots of the AMF, Clairvoyant, UCRC-AMF, and M-UCRC-AMF plot-

ted in the complex plane, where the number of pulses is Kp=16 to ensure that the plot is

not too populated. The CNR=40 dB with an RMS clutter velocity of δv =1.5 m/s. Note

that in Fig. 4.2a all roots for the Clairvoyant AMF lie on the unit circle, satisfying Theo-

rem 1. On the other hand, none of roots for conventional AMF fall on the unit circle and

only a few of the AMF roots come close to the unit circle near (1, 0). This may explain the
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relatively poor performance of the AMF for the limited data case. Both the UCRC-AMF

and M-UCRC-AMF have unit circle roots, as designed.

Fig. 4.3 depicts the normalized filter magnitude responses corresponding to the roots

depicted in Fig. 4.2a, where the normalized clutter power spectral density has also been

superimposed. Fig. 4.3 shows that the majority of the clutter energy is concentrated around

zero-Doppler. Therefore, it is not surprising that the Clairvoyant, AMF, UCRC-AMF, and

M-UCRC-AMF place multiple roots, i.e., zeros, in the zero-Doppler frequency region.

However, since both the UCRC-AMF and M-UCRC-AMF enforce the unit circle roots

constraint while the AMF does not, deeper nulls in the frequency response of the UCRC-

AMF and M-UCRC-AMF can be expected, which will suppress more of the clutter than

the AMF. This observation is corroborated by Fig. 4.3, which also shows that strong peaks

at the known target Doppler frequency were produced by all the adaptive detectors. It can

be observed however that for the traditional AMF case, the peak at the target Doppler is

slightly weaker than all other cases, indicating potential signal attenuation, further explain-

ing its poor detection performance for the limited secondary data scenario.

The roots of the PS-AMF [69, 62] are shown in Fig. 4.2b for both the Clairvoyant and

estimated versions of this filter. It is clear that the PS-AMF does not produce unit circle

roots even in the Clairvoyant case and therefore, enforcing the unit circle roots constraint

is impractical for this filter. The roots of the FB-AMF (i.e., the AMF with the FB-SCM

used in place of the SCM) are also shown in Fig. 4.2b. Some FB-AMF roots appear on

the unit circle however, others appear in conjugate pairs, which is an inefficient usage of

the available degrees of freedom. It is hypothesized that this root behaviour is the rea-

son the FB-AMF roots are a poor starting point for the UCRC-AMF and M-UCRC-AMF

algorithms.

Fig. 4.3 also plots the magnitude response for PS-AMF, where the magnitude response

of the PS-AMF in Fig. 4.3 is the filter output power at the frequency f corresponding to

transformed steering vector s(f) = Ta(f). Since the PS-AMF is applied to the trans-
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formed real data, the filter output is evaluated on an image of the unit circle under the

transformation T which is defined in [69].

4.5.2 Example 2 : Non-Fluctuating Target Detection

In this example, the detection performance of the M-UCRC-AMF and UCRC-AMF are

compared to the AMF and PS-AMF for a non-fluctuating target using a CPI length of

Kp = 32 in clutter with δv = 1.5 m/s. SNR = 13 dB is used to generate the receiver

operating characteristics shown in Fig. 4.4. We also generate the probability of detection

versus SINR shown in Fig. 4.5, where a minimum probability PFA =10−3 is used to ease

the computational burden.

In Figs. 4.4 and 4.5, the AMF performance is unsurprisingly poor due to the lack of

substantial secondary data whereas the UCRC-AMF is not as adversely impacted. This

observation implies that judicious enforcement of the unit circle constraint can improve

the robustness of the AMF to limited secondary data. The M-UCRC-AMF performance

is superior to the PS-AMF, showing a roughly 40% improvement in PD at the lowest

PFA = 10−4 and approximately 2 dB SINR improvement over the PS-AMF in Fig. 4.5.

The M-UCRC-AMF dramatically outperforms the UCRC-AMF, showcasing the utility of

the proposed modification, which utilizes FB-SCM as described in Section 4.4.1. The re-

sults of Figs. 4.4 and 4.5 demonstrate that the M-UCRC-AMF is the practical choice in

limited data circumstances over both the PS-AMF and conventional AMF.

The FB-AMF performance is included in Figures 4.4 and 4.5 to draw comparisons

with the PS-AMF. The two detectors have identical performance as shown in the figures,

and this is not surprising since the FB-SCM and transformation T are both designed to ex-

ploit the symmetry present in the true covariance matrix. However, examining Figure 4.2b

shows that the two detectors have different roots. We speculate that the PS-AMF is the

image of the FB-AMF under the unitary transformation T, at least in the Clairvoyant case.
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(a) M-UCRC-AMF, UCRC-AMF, and AMF roots.

(b) PS-AMF roots.

Figure 4.2: Root locations in the complex plane.
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Figure 4.3: Normalized filter responses and clutter PSD

Therefore, it could be that the roots of the PS-AMF are the image of the FB-AMF roots un-

der this same transformation. The FB-AMF performance is excluded from the proceeding

figures due to the identical performance with the PS-AMF.

4.5.3 Example 3 : Fluctuating Target Detection

In this example, the performance of the M-UCRC-AMF and UCRC-AMF are examined

assuming a fluctuating target amplitude. The target amplitude α is modeled as complex

Gaussian with variance σ2
s scaled to meet a prescribed SINR or SNR. The parameters for

this example are identical to those used in Example 2 with the exception of SNR=10 dB

used to generate Fig. 4.6. Minimum probability PFA=10−3 is used to generate Fig. 4.7.

Figs. 4.6 and 4.7 demonstrate the performance of the AMF, PS-AMF, M-UCRC-AMF,

UCRC-AMF, and Clairvoyant detectors in terms of the probability of detection versus false
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Figure 4.4: ROC with limited secondary data.

Figure 4.5: Probability of detection vs. SINR with limited secondary data.
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alarm rate and SINR, respectively. From both figures it is evident that the random nature of

the target amplitude has impacted the performance of all detectors. However, despite the

deleterious effects of the fluctuating amplitude and limited secondary data, the M-UCRC-

AMF and UCRC-AMF show superior detection performance when compared to the PS-

AMF and AMF, respectively. These results further emphasize the utility of the proposed

unit circle approach in practical target detection scenarios.

Figure 4.6: ROC for fluctuating target with limited secondary data.

4.5.4 Example 4 : SINR Improvement vs. Number of Corrected Roots

Since the focus of this chapter is the impact of enforcing unit circle roots upon the AMF, it

is illustrative to examine the output SINR performance as the subsequent roots are placed

onto the unit circle using Algorithm 2 and the proposed modification wherein the SCM is

replaced by the FB-SCM.
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Figure 4.7: Probability of detection vs. SINR for fluctuating target with limited secondary
data.

As each of the i roots are corrected, the remaining K − i roots are left as the AMF

roots for i = 0, . . . K. For this example, the true covariance matrix is set as Σ = I so that

the Clairvoyant filter is wopt = a(f0)/
√

Kp and the optimal SINR is Kp. The CPI length

is Kp = 32 and a hypothetical target is assumed to be present with SNR = 0 dB for the

purposes of computing the SINR.

The horizontal axis of Fig. 4.8 shows the number of roots corrected, where the far left

point corresponds to the zero roots corrected case (i.e., the AMF) while the far right point

corresponds to the case where all roots have been placed on the unit circle (i.e., UCRC-

AMF or M-UCRC-AMF). The Clairvoyant, PS-AMF, and AMF are shown as benchmarks

and limiting cases. Finally, for each point in Fig. 4.8, the computed SINR is averaged over

104 Monte-Carlo trials and displayed in dB on the vertical axis.

It is evident from Fig. 4.8 that as the number of roots placed onto the unit circle

increases, the average SINR also increases, further justifying the imposition of the unit
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circle constraint. The SINR improvement of the M-UCRC-AMF over the UCRC-AMF as

more roots are corrected is evidence of the improved root estimates provided by using the

FB-SCM over the SCM. Furthermore, since the SINR is invariant to the filter scaling, it is

hypothesized that the increase in SINR performance of the proposed approach is due to the

unit circle structure alone.

Figure 4.8: Average SINR vs. number of roots placed on the unit circle.

4.5.5 Example 5 : SINR vs. Number of Secondary Data

Fig. 4.9 shows the average output SINR versus the number of secondary data for the M-

UCRC-AMF, UCRC-AMF, PS-AMF, and AMF using a CPI length of Kp=32 pulses. The

average SINR is computed using (4.12) by averaging over 2000 independent trials. For this

example, the clutter plus noise covariance matrix is Σ = I so that the optimal output SINR

is Kp which is shown in black in Fig. 4.9 as a performance benchmark.

The two UCRC-based approaches outperform both the PS-AMF and AMF for limited
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secondary data, providing nearly 2 dB SINR improvement over the PS-AMF. Addition-

ally, both the M-UCRC-AMF and UCRC-AMF show consistent performance across all

secondary dataset sizes.

Because of the dramatic detection performance of the M-UCRC-AMF over the UCRC-

AMF, only the M-UCRC-AMF will be considered for the remaining two examples.

Figure 4.9: Output SINR vs. secondary data.

4.5.6 Example 6 : SINR Loss

The SINR loss is a common metric used to quantify moving target detection performance

[66]. Defined as the ratio of the clutter-limited performance with respect to the optimal

output SNR, SINR loss characterizes the minimum detection velocity offered by a a moving

target detection approach. The optimal output SNR is obtained by substituting (4.20) into
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(a) SINR loss for δv = 1.5 m/s.

(b) SINR loss for δv = 3 m/s.

Figure 4.10: SINR loss for varying RMS clutter velocity.

88



(4.12) and by replacing Σ with I,

SNRopt =
σ2
s

σ2
n

KP (4.39)

where σ2
s is the variance or power of the complex target amplitude α. The SINR loss is the

ratio of (4.12) and (4.39) [66],[40],

SINRL(fd) = SINR/
(σ2

s

σ2
n

KP

)
(4.40)

where fd is a normalized Doppler frequency.

Figs 4.10a and 4.10b demonstrate the SINR loss of the M-UCRC-AMF, PS-AMF, and

AMF for RMS clutter velocities δv = 1.5 and δv = 3 m/s, respectively. The CPI length

is Kp = 32 pulses and L = 33 secondary snapshots are used to compute the SCM. The

Clairvoyant results are included in both figures as performance benchmarks.

In both figures, the M-UCRC-AMF achieves near optimal SINR loss. The PS-AMF

also performs well, but it is evident from both figures that the proposed unit circle root

constrained approach outperforms the PS-AMF. It is clear that the increased clutter spread

provided by δv = 3 m/s shown in Fig. 4.10b has little impact upon the M-UCRC-AMF

performance, where the AMF performance is impacted by this parameter. The near opti-

mal M-UCRC-AMF SINR loss demonstrates that the proposed detector can detect slower

moving targets than the PS-AMF or conventional AMF.

4.5.7 Example 7 : Detection Performance with Unknown Target Doppler

Frequency

In practice, the target Doppler frequency is unknown and must be estimated from the pri-

mary data. The maximum likelihood estimate of the normalized frequency can be found
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by maximizing

f̂0 = max
f

|aH (f) Σ̂
−1
x|2

aH (f) Σ̂
−1
a (f)

, (4.41)

where Σ̂ is an estimate of the clutter covariance matrix. This maximization can be per-

formed efficiently by applying a length NFT discrete Fourier transform to the whitened

primary data and searching for the peak.

For this example, we consider the detection performance of the M-UCRC and UCRC

AMF approaches when the target Doppler frequency is unknown, and we will estimate f0

using (4.41) and a length NFT = 1024 Fourier transform. We will use Σ̂FB−SCM as the

covariance estimate in (4.41), in order to provide the most accurate estimate of f0 given

the secondary data. All of the parameters for this example are identical to those used in

Section 4.5.2 with the exception of the unknown target frequency.

The performance curves are shown in Figs. 4.11a and 4.11b, where again PFA=10−3

is used in generating Fig. 4.11b to ease the computational burden. The known f0 per-

formances are included in both figures as a benchmark. The most dramatic performance

impact is depicted in Fig. 4.11a, where the unknown frequency results in a roughly 35

percent reduction in the probability of detection of the M-UCRC-AMF versus when f0 is

known at PFA = 10−4. Despite the performance degradation of the M-UCRC-AMF, this

detector consistently outperforms in the UCRC-AMF at all false alarm rates. Additionally,

closely examining Fig. 4.11b shows a roughly 2.5 dB performance loss between the two

M-UCRC-AMF curves and roughly 4 dB performance loss for the UCRC-AMF around the

PD=0.5 level.
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(a)

(b)

Figure 4.11: Detection performance with unknown f0 (a) ROC curves (b) PD vs. SINR
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4.5.8 Example 8 : Numerical Evidence of Approximate CFAR Perfor-

mance

A detector is said to have constant false-alarm rate with respect to a particular parameter if

the probability density function of the test statistic is invariant to changes in that parameter.

Classical detectors such as the AMF and GLRT allow for algebraic manipulations of the

test statistics to show that the detectors are CFAR with respect to the unknown covariance

matrix. However, the M-UCRC and UCRC approaches are algorithmic and hence, alge-

braic manipulations such as those described in [48] and [76] will be of little use. Instead,

we provide numerical evidence of this property for the UCRC-AMF and M-UCRC-AMF.

In this example, we analyze the CFAR behavior by estimating the probability of false

alarm using a fixed threshold for the M-UCRC-AMF and UCRC-AMF while varying the

covariance matrix structure. Specifically, we employ the exponentially shaped covariance

matrix model, where the (i, j)-th element is defined as [15],

Σ(i,j) = ρ|i−j| (4.42)

and ρ is the first lag correlation coefficient. We vary the correlation coefficient 0 ≤ ρ < 1

and estimate the probability of false alarm using 105 independent trails for each value of

ρ. The exponentially shaped covariance matrix replaces the clutter plus noise covariance

matrix used in the previous examples, and we set Kp =16 pulses with L=17 for the CPI

and secondary data, respectively.

Figure 4.5.8 illustrates the estimated probability of false alarm versus the covariance

structure parameter ρ. The constant thresholds for the M-UCRC-AMF and UCRC-AMF

were computed numerically using a fixed value of ρ for a PFA=10−2 and held constant for

each trial as ρ was varied. Remarkably, the false alarm rate for M-UCRC-AMF and UCRC-

AMF remains approximately fixed as the covariance structure is varied, demonstrating that
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the proposed detectors have approximate CFAR with respect to the unknown covariance

matrix.

Figure 4.12: PFA vs. ρ showing approximate CFAR behavior

4.5.9 Example 9 : Detection Performance with Mismatched Covari-

ance Structure

For this example, we deviate the Hermitian Toeplitz covariance structure necessary for

unit circle roots per Theorem 1, and investigate the impact upon the M-UCRC-AMF and

UCRC-AMF performance, using a CPI length of Kp = 32 pulses. We will examine two

cases in detail: one where the true covariance matrix (CM) Σ is exponentially shaped as

in (4.42) with ρ = 0.9, and in the other we set the true covariance matrix as a random

draw from a Wishart distribution with an exponentially shaped mean with ρ = 0.9 and

2Kp degrees of freedom. The latter case ensures that the true covariance does not have
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Hermitian Toeplitz structure and hence, unit circle roots are not theoretically necessary.

The purpose of this example is to show the practical utility of UC root enforcement in

more adverse scenarios where the required covariance structure may not exist.

The roots of the Clairvoyant filter computed using the two matrices are depicted in

Fig. 4.5.9. We see that when the Hermitian Toeplitz matrix is used, Theorem 1 applies, and

the roots must all occur on the unit circle. However, when the random covariance matrix is

used instead the Clairvoyant filter roots occur randomly around but not exactly on the unit

circle boundary. Hence, the M-UCRC and UCRC-AMF performance is expected to suffer

in this case compared to when the Toeplitz matrix is used.

Figures 4.14a and 4.14b show the performance of all detectors for the Hermitian

Toeplitz structured matrix and the mismatched case, where we set SINR = 13 dB in

Fig. 4.14a to scale the non-fluctuating target amplitude.

Figure 4.13: Clairvoyant filter root locations for Toeplitz and random covariance matrix
models.
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(a)

(b)

Figure 4.14: Detection performance with covariance mismatch (a) ROC (b) PD vs. SINR
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4.6 Conclusion

This chapter proposes the M-UCRC-AMF and UCRC-AMF for adaptive radar moving

target detection in homogeneous clutter with limited secondary data. This work utilizes

the new proof given in Chapter 2 that the AMF z-polynomial ideally possesses unit circle

roots when the underlying covariance matrix is known. Motivated by this new proof, we

proposed a potentially transformative means of designing the adaptive matched filter by

enforcing the theoretically necessary unit circle roots constraints. Two versions of unit

circle roots constrained AMF algorithm are presented: UCRC-AMF uses the conventional

SCM to initialize the algorithm as well as to impose unit circle property on each AMF root

by optimizing the output clutter-plus-noise power. The M-UCRC-AMF is initialized in the

same manner using the conventional AMF, but the FB-SCM is used in the second stage

for enforcing the unit circle property. Both UCRC-AMF and M-UCRC-AMF approaches

estimate each root in closed-form by enforcing conjugate-symmetry upon the first-order

polynomial factors. The M-UCRC-AMF enhances the performance of the UCRC-AMF

significantly with negligible additional computational overhead by incorporating the FB-

SCM within the proposed root estimation scheme.

Through extensive simulation examples it was shown that judicious enforcement of

the unit circle roots property can result in drastically improved moving target detection per-

formance. Specifically, the M-UCRC-AMF and UCRC-AMF show improved probability

of detection at lower false alarm rates and output SINR. When the number of secondary data

are limited, the UCRC-AMF outperformed the conventional AMF and the M-UCRC-AMF

outperformed the PS-AMF, achieving higher probability of detection at lower output SINR

and false alarm rate, demonstrating the superiority of the proposed unit circle approach. It

was further shown that the M-UCRC-AMF and UCRC-AMF consistently achieve higher

output SINR with less secondary data than what is attainable using the PS-AMF or AMF.

We showed that rectifying the individual roots using the UCRC algorithm consistently pro-

vides higher average output SINR as more roots are placed on the unit circle. The near
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optimal SINR loss of the M-UCRC-AMF ensures a lower minimum detectable velocity for

moving target detection applications. Finally, the approximate CFAR performance of the

M-UCRC-AMF and UCRC-AMF with respect to the unknown clutter covariance matrix

was shown numerically.

In the following chapters, extensions of unit-circle enforcement for moving target

detection will be considered; including for low-rank homogeneous clutter, compound-

Gaussian clutter, and distributed MIMO radar in compound-Gaussian clutter. Regarding

potential future extensions of the proposed unit-circle enforcement framework, it has been

noted in Chapter 2 that constrained optimization under similar mathematical structures

arise in many other sensor array signal processing applications beyond the AMF and beam-

forming. These include bi-static or distributed MIMO radar networks [106, 95], statistical

detectors such as the NAMF for non-homogeneous clutter [19], and STAP [66]. Based on

the demonstrated success of the unit-circle based approach thus far, it is fair to postulate

that these methods may also benefit from unit circle roots enforcement at the design stage

and attain significant performance gains over the current state of the art in the respective

fields.
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Exploiting Unit Circle Roots for Moving

Target Detection in Low-Rank Clutter

5.1 Introduction

Adaptive target detection is an integral component in the field of remote sensing, whether

using radar/sonar [66, 81], or hyperspectral [99]. For radar in particular, adaptive moving

target detection is of significant interest, and has a rich history within the radar literature.

Since the seminal work of Reed, Mallat, and Brennan [75] in the later half of the twentieth

century, followed by the classical generalized likelihood ratio test (GLRT) of Kelly [48]

and the adaptive matched filter (AMF) [76], moving target detection continues to garner

significant research interest.

The radar attempts to detect a target embedded in clutter and noise the statistics of

which are unknown at the receiver, and must be estimated. The standard estimation tech-

nique is the sample covariance matrix (SCM) which is computed from a set of homoge-

neous, target-free secondary data, resulting in the sample matrix inversion (SMI) based

detector [75]. However, it is well known that to achieve satisfactory performance from the

SMI detector the number of secondary data must be at least twice the dimension of the

signal of interest [75]. This constraint can be overly restrictive for practical radar systems,

especially in space-time adaptive processing applications (STAP) [66]. Additionally, detec-
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tion performance can be further impacted when the secondary data are not homogeneous,

as is the case when observing sea-clutter using high-resolution radar [79]

Recently, it was theoretically proven that the polynomial corresponding to the known-

covariance, or Clairvoyant, AMF must have unit circle roots [93] for radar using sym-

metrically spaced pulse trains. The unit-circle roots property was previously proven for

minimum variance distortionless response (MVDR) beamforming with uniform linear ar-

rays (ULA) [97]. MVDR beamformer design for ULAs with unit circle roots have also

been developed in [102],[85]. The equivalent mathematical structure resulting from the

use of symmetrically spaced pulse trains and uniform linear arrays has been noted before

in the literature [23],[15]. However, barring a few recent exceptions [94] [92], to the best

of our knowledge, no other technique explicitly enforces the unit circle roots property for

practical adaptive filter design for moving target detection.

In [94] and [92] two algorithms to enforce the unit circle roots constraint were pro-

vided: the unit circle roots constrained AMF (UCRC-AMF) and the modified UCRC-AMF

(M-UCRC-AMF). However, both the UCRC-AMF and M-UCRC-AMF are algorithmic

and lacked an algebraic closed-form expression for the test statistic. Despite demonstrating

the efficacy of enforcing unit circle roots via simulations, no discussion of the statistical

properties of detectors with unit circle roots was provided. Additionally, the work in [94]

did not address low rank clutter, which is the primary focus of this work. This chapter

presents an alternative moving target detector with unit circle roots that exploits the low-

rank characteristics of typical clutter. The proposed design provides a closed-form test

statistic that is conducive to statistical performance analysis, as developed in this work.

In practice, and especially in the context of (STAP), the clutter often occupy a low-

dimensional subspace relative to the signal dimension [108],[10]. This low-rank structure

can be advantageous for reducing the required number of secondary data [49]. Based on

this low-rank assumption, we derive the generalized likelihood ratio test (GLRT) by first

assuming that the clutter subspace is known. The GLRT derivation closely follows that pre-
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sented in [106] for distributed multiple input multiple ouput (MIMO) radar, where only the

primary data was utilized and the clutter subspace were modeled as Vandermonde vectors.

In this work, the dominant eigenvectors of the clutter subspace are used to model homo-

geneous clutter and we use both primary and secondary data when deriving the GLRT for

monostatic radar, although straight-forward extension to MIMO radar is feasible.

In order to analyze the limiting performance of the proposed algorithm, we derive the

known clutter subspace GLRT under the assumption that the roots of the Clairvoyant fil-

ter polynomial are known. The purpose is to show the limiting performance of a detector

which explicitly enforces the unit circle roots property when the roots can be estimated to

an arbitrary degree of accuracy. Through distribution analysis and simulation studies it will

be shown that the known-roots GLRT has CFAR, but is outperformed by the known clutter

subspace GLRT. A possible explanation may be attributed to eigen-subspaces incorporat-

ing more complete information on the underlying clutter phenomenon than what could be

modeled by a finite number of unit circle roots. Because of this performance disparity, we

propose a modification to the known-roots GLRT: estimating the white noise power based

on the known subspace instead of based on the known roots. The modified GLRT will also

be shown to have CFAR with respect to the clutter and noise parameters. It may be noted

here that incorporating clutter eigen-subspaces within the GLRT itself is not sufficient, be-

cause this approach does not guarantee unit circle roots as required by the theorem derived

in [93]. Additional performance improvement of the proposed UC-GLRT is achieved when

the roots generated by eigen-subspace GLRT are moved onto the unit circle in simulations,

satisfying the unit circle theorem [93].

For practical implementation of the subspace GLRT, we estimate the unknown clutter

subspace using the dominant eigenvectors of the sample covariance matrix, amounting to

a scaled variation of the principle components inverse (PCI) based adaptive filter [100].

Eigenvector-based techniques are commonly used to address low-rank clutter (see [72, 73]

among others) and are commonly used within the signal processing community as a whole
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[38],[116]. For practically imposing unit circle roots, we start with the roots of the filter

corresponding the subspace GLRT described earlier and radially project those roots onto

the unit circle. This unit circle approach, hereafter referred to as the unit circle GLRT (UC-

GLRT), uses the properties of orthogonal projection matrices to enforce the unit circle roots

constraint, resulting in an algebraic expression for the test statistic, something which was

not present in other unit circle roots based detectors such as the UCRC-AMF [94] and

M-UCRC-AMF [92].

Simulation examples will be used to demonstrate the superiority of the proposed UC-

GLRT over several existing methods, as well as the eigenvector-based GLRT. It will be

shown that the UC-GLRT has unit circle roots, as designed, while the other practical de-

tectors do not. The UC-GLRT will be shown to achieve higher probability of detection

at lower false alarm rates in low-rank clutter than the eigenvector-based approach, which

does not guarantee unit circle roots. We will also consider the impact of rank mismatch

upon the UC-GLRT, and compare its effectiveness with several methods for same data set.

The rapid convergence of the UC-GLRT in terms of the normalized signal-to-interference

plus noise ratio (NSINR) will also be demonstrated. All simulations are conducted using

limited secondary data, when the number of secondary data is barely sufficient to invert the

SCM.

This Chapter is organized as follows: In Section 5.2, the signal and clutter model

are defined and the standard hypothesis testing framework for both primary and secondary

data are stated. In Section 5.4, the Clairvoyant GLRT for Known Subspace (eigen) and

Known roots cases, and the motivation behind combining primary and secondary data are

presented. Section 5.5 derives the distributions for the Known Subspace and Known Roots

GLRTs. In Section 5.6, we derive the unit circle GLRT. Section 5.7 contains simulation ex-

amples and discussion related to the performance of the UC-GLRT under various operating

conditions. Section 5.8 provides concluding remarks and potential future applications.
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5.2 Signal Model

Consider a co-located transmitter and receiver mounted on a stationary platform. The trans-

mitter emits Kp periodic, pulses over a coherent processing interval. Pulse-compression is

performed at the receiver to isolate the reflected returns originating from a particular range

bin. The received slow-time data are stacked into a vector x ∈ CKp×1, where each row

corresponds to an individual slow-time snapshot.

The received data are modeled as,

x = αa(f0) + c+ n (5.1)

where c and n are the clutter and noise vectors, respectively. The vector

a(f0) ≜ [1, e−j2πf0 , . . . , e−j2πf0(Kp−1)]T (5.2)

is the target temporal steering vector corresponding to a normalized Doppler frequency,

f0 =
2TPRI

λ
kT
r vt (5.3)

where kr ≜ [cos (θr) sin (θr)] is the unit vector in the direction of the receiver relative to

the target, θr is the angle of the receiver relative to the target, vt ≜ [vx vy] is the target

velocity vector, λ is the wavelength of the radar, and TPRI is the pulse-repetition interval.

α ∈ C is the unknown complex amplitude of the moving target return determined by the

target radar cross section (RCS) and also captures the effects of signal propagation through

the environment.
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5.2.1 Subspace Clutter Model

In many practical scenarios, the clutter can be appropriately modeled using a low-rank

subspace [108]. In [106], a linear model for the clutter was proposed, which received great

attention within the research community (see [39],[41],[40],[114], and [58] among others).

We adopt the same approach in this chapter, and the clutter vectors are modeled as,

c = Hβ (5.4)

where H = [h1, . . . ,hr] ∈ CKp×r, r ≪ Kp is a matrix of clutter basis vectors and β ∈

Cr×1 are the clutter coefficients. The clutter coefficients are modeled as β ∼ CN (0, σ2
cI),

where σ2
c is the variance of the clutter coefficients.

5.2.2 Problem Statement

Moving target detection consists of declaring either the presence or absence of a moving

target within the range bin of interest, represented by hypothesises H1 and H0, respectively.

The hypothesis test can be described mathematically as,

H0 :


x0 = c+ n

xℓ = cℓ + nℓ ℓ = 1 . . . , L

(5.5)

H1 :


x0 = αa(f0) + c+ n

xℓ = cℓ + nℓ ℓ = 1 . . . , L

(5.6)

where x0 and xℓ’s represent the primary and secondary data under each hypothesis.

The radar output is the filtered slow-time data,

y = wHx (5.7)
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where w ∈ CKp×1 is a filter which has been designed, according to some performance

metric, to cancel the clutter and noise while retaining the target signal.

The test statistic is the square of the filter output [66],

|y|2
H1

≷
H0

τ (5.8)

where τ is a threshold used to satisfy a prescribed probability of false alarm.

5.3 The Clairvoyant Filter

For this chapter, we compare the performance of the proposed approach against the known-

covariance adaptive matched filter test statistic,

|aH (f0)Σ
−1x0|2

aH (f0)Σ
−1a (f0)

H1

≷
H0

τopt (5.9)

where Σ = E
[
(c+ n) (c+ n)H

]
is the clutter plus noise covariance matrix, τopt is the

threshold, and x0 the testing data for the range cell under test. To express (5.9) in the same

form as (5.8), define the filter

wopt =
Σ−1aH (f0)√

aH (f0)Σ
−1a (f0)

(5.10)

which we refer to as the Clairvoyant or optimal filter for the remainder of this chapter.

In practice, the covariance matrix is unknown, and must be estimated using the sample

covariance matrix (SCM), which is computed from a set of L target-free secondary data,

Σ̂ =
L∑

ℓ=1

xℓx
H
ℓ . (5.11)
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It is well known that when the L < 2Kp the SCM is a poor estimate and can adversely

impact detection performance [75]. Therefore, other approaches are necessary which make

use of mathematical structure in the clutter and noise to enhance detection performance

when the secondary data are limited.

In general, any filter w can be interpreted as a (Kp − 1)-degree polynomial in the

complex z-domain after applying the forward z-transform,

W (z) = w(0) + w(1)z−1 + . . .+ w(Kp − 1)z−(Kp−1) (5.12)

where w(i) represents the i-th element of the filter w. It was proven in [93] that when the

coefficients of (5.12) correspond to the elements of the filter wopt, then W (z) must have

exactly Kp − 1 unit circle roots. In the following sections, we explain how the unit circle

roots property can be exploited to improve the performance of the GLRT.

5.4 The GLRT

The derivation of the GLRT proceeds using the joint PDF of the primary and secondary

data.

This section is divided into two subsections: the GLRT derivation supposing a known

clutter basis’ H, and the GLRT derivation assuming the unit circle roots of the Clairvoyant

filter are known. The latter represents the limiting case if the Clairvoyant filter roots can be

estimated to an arbitrary degree of accuracy, while the former is the limiting case when the

clutter subspace is known.
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5.4.1 Known Subspace GLRT

For mathematical expediency, we define

J (X,B|H0) = ||x0 −Hβ0||22+
L∑

ℓ=1

||xℓ −Hβℓ||22 (5.13)

for H0 and

J (X, α,B|H1) = ||x0 − αa (f0)−Hβ0||22 +
L∑

ℓ=1

||xℓ −Hβℓ||22 (5.14)

for H1. X = {xℓ}Lℓ=0 is the combined set of primary (ℓ=0) and secondary (ℓ = 1, . . . , L)

data vectors and B = {βℓ}Lℓ=0 is the combined set of clutter coefficients for the primary,

ℓ=0, and secondary, ℓ = 1, . . . , L, data.

The joint likelihood of the primary and secondary data may now be expressed as

p (X;σ,B|H0) =
(
πσ2
)−K(L+1)

exp

[
−J (X,B, H0)

σ2

]
(5.15)

under H0, and

p (X;α, σ,B|H1) =
(
πσ2
)−K(L+1)

exp

[
−J (X, α,B, H1)

σ2

]
(5.16)

under H1. The parameters α, B, f0, and σ are unknown hence, we form the generalized

likelihood ratio (GLR) by maximizing over these unknown parameters under H0 and H1,

respectively,

GLR =
maxα,B,f0,σ p (X;α, σ,B|H1)

maxα,B,f0,σ p (X;σ,B|H0)
. (5.17)

The MLEs of the unknown parameters are listed here, but the necessary derivations are

omitted from this section and can be found in Appendix 5.9.
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Under H1:

f̂0 = max
f

|aH (f)P⊥
Hx0|2

aH (f)P⊥
Ha (f)

(5.18)

α̂ =
|aH (f0)P

⊥
Hx0|2

aH (f0)P⊥
Ha (f0)

, (5.19)

β̂0 = (HH)−1HH (x0 − α̂a (f0)) (5.20)

β̂ℓ = (HH)−1HHx0; ℓ = 1, . . . , L, (5.21)

and

σ̂2
1 =

1

K(L+ 1)

[
−α̂ +

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ

]
(5.22)

while under H0:

β̂ℓ = (HH)−1HHx0; ℓ = 0, . . . , L, (5.23)

and

σ̂2
0 =

1

K(L+ 1)

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ (5.24)

Let PH = H (HH)−1HH , then the matrix

P⊥
H = I−PH (5.25)

is the projection onto the subspace orthogonal to the column space of H.

After substitution of the maximum likelihood estimates, it is straightforward to show

that the generalized likelihood ratio becomes,

GLR =

(
σ̂2
0

σ̂2
1

)K(L+1)

(5.26)

which, after neglecting the K(L + 1) exponent and using the monotone property of the
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function 1/(1− x) becomes,

TGLR =
|aH (f0)P

⊥
Hx0|2(

aH (f0)P⊥
Ha (f0)

) (∑L
ℓ=0 x

H
ℓ P

⊥
Hxℓ

) . (5.27)

Similar to (5.8), the known subspace GLRT can be expressed as the squared output of

a filter wt and the test data x0,

|wH
t x0|2

H1

≷
H0

τt (5.28)

where

wt =
P⊥

Ha (f0)√(
aH (f0)P⊥

Ha (f0)
) (∑L

ℓ=0 x
H
ℓ P

⊥
Hxℓ

) (5.29)

and τt is the threshold.

5.4.2 Known Roots GLRT

Assuming that the roots of the Clairvoyant filter polynomial are known or can be estimated

to an arbitrary degree of accuracy, the GLRT can be derived similar to Section 5.4.1.

Let {zk = ej2πfk}Kp−1
k=1 denote the roots of the Clairvoyant filter polynomial. Note that

these roots must appear on the unit circle [93]. Hence, let {fi}Kp−1
k=1 be the set of distinct

frequencies fk ∈ (−0.5, 0.5), k = 1, . . . , Kp−1 corresponding to each of the Kp−1 roots.

Construct a matrix

A =
[
a (f1) , . . . , a

(
fKp−1

)]
∈ CKp×(Kp−1), (5.30)

where each column is a Vandermonde vector in the form of (5.2) and define PA = A
(
AHA

)−1
AH
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as the projection onto the column space of A. Consequently,

P⊥
A = I−PA (5.31)

is the rank-1 projection onto the complementary subspace. Let A and A⊥ denote the col-

umn space of A and the orthogonal complement of A, respectively.

The estimates in (5.18)-(5.24) and (5.21)-(5.22) can be modified to reflect knowledge

of the Clairvoyant roots by replacing H and P⊥
H with A and P⊥

A, respectively.

After substituting the estimates and following the steps for the GLRT in Section 5.4.1,

generalized likelihood ratio becomes

SGLR =
|aH (f0)P

⊥
Ax0|2(

aH (f0)P⊥
Aa (f0)

) (∑L
ℓ=0 x

H
ℓ P

⊥
Axℓ

) . (5.32)

The known roots GLRT may also be expressed as the squared output of a filter and

test data,

|wH
s x0|2

H1

≷
H0

τs (5.33)

where

ws =
P⊥

Aa (f0)√(
aH (f0)P⊥

Aa (f0)
) (∑L

ℓ=0 x
H
ℓ P

⊥
Axℓ

) (5.34)

and τs is the threshold.

We can now prove the following claim regarding the roots of filter polynomial corre-

sponding to (5.34).

Theorem 2. The polynomial Ws(z) whose coefficients are the elements of the vector ws

has Kp − 1 unit circle roots.

Proof. The proof of this property follows directly from the fact that the columns of A =
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{a (fk)}Kp−1
k=1 ∈ A, and it must be that

aH (fk)w = 0; k = 1, . . . , Kp − 1. (5.35)

Since the above equation is equivalent to evaluating the polynomial Ws(z) at z = ej2πfk , it

follows that the zk = ej2πfk are the Kp − 1 unit circle roots of Ws(z).

5.4.3 Motivation for Combining Primary and Secondary Data

Equations (5.27) and (5.32) incorporate the primary data and secondary data into the final

test statistic, and there are two reasons why we have adopted this approach. The first is

to improve the estimation accuracy of the unknown white noise power. From both clutter

models described Section 5.4, the white noise power is identical between the secondary data

vectors as well as the primary data. Hence, we may exploit this statistical homogeneity to

improve the detection performance of the GLRT.

The second reason is to avoid mathematical difficulties when enforcing unit circle

roots using a rank-1 projection matrix. Specifically, we have that

|aH (f0)P
⊥
Ax0|2

aH (f0)P⊥
Aa (f0)

= xH
0 P

⊥
Ax0. (5.36)

To see why this is the case, let the eigenvalue decomposition of P be

P⊥
A = EΛEH =

Kp∑
k=1

λkeke
H
k (5.37)

where E =
[
e1, . . . , eKp

]
is the matrix of eigenvectors, and Λ = diag{λ1, . . . , λK} is the

matrix of eigenvalues. Now λ1 = 1 and λk = 0 for k = 2, . . . , Kp because we assume

P is a rank-1 projection. Let e1 = Pa(f0)√
aH(f0)Pa(f0)

be the eigenvector corresponding to λ1.
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The remaining eigenvectors are arbitrary so long as they are mutually orthogonal to one

another.

From the left hand side of (5.36), it is straightforward to show that

|aH (f0)Px0|2

aH (f0)Pa (f0)
= xH

0 e1e
H
1 x0. (5.38)

To show the equivalence, rewrite the right hand side of (5.36) using the EVD of P

xH
0 P

⊥
Ax0 =

Kp∑
k=1

λkx
H
0 eke

H
k x0 = xH

0 e1e
H
1 x0. (5.39)

The above derivations show that using the primary data alone (i.e., xH
0 P

⊥
Ax0) in the

denominator of (5.32) would result in SGLR=1, and no useful test statistic can be obtained.

Therefore, in order to obtain a useful test statistic we must use the primary and secondary

data within the denominator of SGLR.

5.5 Performance Analysis

The theoretical performance of each detector is determined by the probability density under

the null and alternative hypotheses.

Theorem 3. The distributions of (5.27) are:

TGLR ∼


β1,(L+1)(Kp−r)−1 under H0

β′
1,(L+1)(Kp−r)−1(γt) under H1

(5.40)

where β1,(L+1)(Kp−r)−1 and β1,(L+1)(Kp−r)−1(γt) are the central and noncentral beta distribu-

tions, respectively, with parameters 1 and (L+1)(Kp−r)−1, and noncentrality parameter

111



[106].

γt =
2

σ2
|α|2
(
aH (f0)P

⊥
Ha (f0)

)
(5.41)

Theorem 4. The distributions of (5.32) are:

SGLR ∼


β1,L under H0

β′
1,L(γs) under H1

(5.42)

where the noncentrality parameter is,

γs =
2

σ2
|α|2
(
aH (f0)P

⊥
Aa (f0)

)
. (5.43)

The proofs of Theorems 3 and 4 can be found in Appendices 5.10 and 5.11, respec-

tively. The two proofs are similar to those derived in [106], where the focus is upon dis-

tributed MIMO radar and only the testing data are utilized. For our proofs, we include both

the training and testing data and focus on monostatic radar case.

5.5.1 Performance Differences between the Two Cases

The distributions for (5.27) and (5.32) are both independent of the clutter and noise pa-

rameters and are therefore CFAR detectors. However, the detection performance can be

expected to be different based on the difference in rank between the two projection matri-

ces P⊥
H and P⊥

A. Hence, we propose the following modification to (5.32).

Replacing the white noise power estimate using P⊥
A with the estimate based on P⊥

H
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from (5.24), the known-roots GLR in (5.32) can be modified such that,

GGLR =
|aH (f0)P

⊥
Ax0|2(

aH (f0)P⊥
Aa (f0)

) (∑L
ℓ=0 x

H
ℓ P

⊥
Hxℓ

) . (5.44)

The following partial claim can be made about the performance of (5.44):

Theorem 5. The distribution of (5.44) is

GGLR ∼ β1,(L+1)(Kp−r)−1 under H0 (5.45)

Under H1, the distribution of (5.44) is complicated by the different noncentrality pa-

rameters present in the numerator and the denominator. Hence, we only analyze the distri-

bution of GGLR under H0, which is enough to prove CFAR in the case when the Clairvoyant

roots and P⊥
H are known. The proof of Theorem 5 can be found in Appendix 5.12.

Figure 5.1 illustrates the simulated and analytical performance of (5.27) and (5.32),

where Kp=32 pulses, L=32 secondary data, and with clutter rank r= 11, CNR=30 dB,

and SNR = 10 dB. The performance is computed using Monte Carlo simulations where

300/PFA trials were used for minimum probability of false alarm PFA = 10−4. From this

figure, it can be seen that the simulated performances of (5.27),(5.32), and (5.44) closely

match the theoretical performances predicted using Theorems 3,4, and 5, respectively.

However, the performance of (5.32) is worse than that for (5.27) due to the aforementioned

rank difference.
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Figure 5.1: Simulated and Theoretical performance of the GLRT’s and Clairvoyant Detec-
tor

Algorithm 3: UC-GLRT

INPUT: P̂⊥, a (f0) , {xℓ}Lℓ=0

start: w = P̂⊥a (f0)

{ξ}Kp−1
i=1 ← roots{Z{w}} ▷ I

i = 1 up to i = Kp − 1

f̂i = arg{ξi}/2π ▷ II

gi =
[
1, e−j2πf̂i , . . . , e−j2πf̂i(Kp−1)

]T
end
G =

[
g1, . . . ,gKp−1

]
▷ III

P⊥
G = I−G

(
GHG

)−1
GH ▷ IV

OUTPUT:
wg =

P⊥
Ga(f0)√

(aH(f0)P⊥
Ga(f0))(

∑L
ℓ=0 x

H
ℓ P̂⊥xℓ)
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5.6 Unit Circle GLRT

At high CNR, the inverse covariance is well approximated using r dominant eigenvectors

of the covariance matrix [50],[73],

Σ−1 ≈ 1

σ2
(I−P) (5.46)

where P =
∑r

i=1 uiu
H
i is the rank-r projection onto the clutter subspace and {ui}ri=1 are

the r dominant eigenvectors.

In the absence of the true covariance matrix, detectors such as the low-rank normalized

adaptive matched filter (LR-NAMF) [72, 73] substitute the r dominant eigenvectors of the

SCM to compute,

P̂ =
r∑

i=1

ûiû
H
i (5.47)

where the ûi are the r dominant eigenvectors of the SCM. Let P̂⊥ = I− P̂ be the comple-

mentary projection. In this way, the filter in (5.29) may be estimated as,

ŵt =
P̂⊥a (f0)√(

aH (f0) P̂⊥a (f0)
)(∑L

ℓ=0 x
H
ℓ P̂

⊥xℓ

) (5.48)

when the clutter subspace is unknown. The corresponding GLRT is,

|ŵH
t x0|2

H1

≷
H0

τt. (5.49)

This filter wt is analogous to the LR-NAMF [73] with the exception that the secondary data

have been incorporated into the denominator of (5.48).

Despite the accuracy of the approximation in (5.46), the filter in (5.48) is not guaran-

teed to have unit circle roots. However, for high CNR, we can assume that the approxima-
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tion in (5.46) will be better than sample matrix inversion [75]. Hence, we suppose that the

roots of any filter w ∝ P̂⊥a (f0) will be near the unit circle and therefore, close to their

Clairvoyant counterparts.

For the proposed approach, we radially project the roots of eigenvector-based filter

in (5.48) onto the unit circle to enforce the theoretically necessary property [93].

Let {ζ}Kp−1
i=1 be the roots of the filter polynomial corresponding to a filter w =

P̂⊥a (f0) (see step-I in Algorithm 3). For each of the i roots, we estimate the normal-

ized frequencies as f̂i = arg{ζi}/2π. Next, construct the Vandermonde-structured column

vectors gi from the discrete frequencies and assemble the matrix G = [g1, . . . ,gKp−1] ∈

CKp×(Kp−1) (see steps II and III in Algorithm 3). Next, compute the projection onto the

orthogonal complement of the columns space of G. Finally, construct the filter,

wg =
P⊥

Ga (f0)√(
aH (f0)P⊥

Ga (f0)
) (∑L

ℓ=0 x
H
ℓ P̂

⊥xℓ

) , (5.50)

and the GLRT becomes,

|wH
g x0|2

H1

≷
H0

τg. (5.51)

From Theorem 2, the polynomial corresponding to (5.50) clearly has Kp−1 unit circle roots

located at angles 2πf̂i. Note that the projection P̂⊥ is used in the normalization of (5.50)

instead of P⊥
G. This done to avoid model mismatch, when estimating the white noise power

σ2. The purpose of P⊥
G in the numerator of (5.50) is to enforce unit circle roots, which are

invariant to scaling of the filter vector.

Pseudocode of the UC-GLRT algorithm is provided in Algorithm 3.
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5.7 Simulation Results

Consider a single moving target with a linear trajectory in the x, y-plane and heading θt=

10◦ with velocity |vt|= 108 km/h. The radar uses a PRF = 500 Hz and center frequency

fc = 1 GHz for detection. The direction of the receiver relative to the target is θr = 30◦.

Using these parameters results in a target normalized Doppler frequency of f0 = 0.376.

Unless stated otherwise, it is assumed that the number of secondary data is limited with

L = Kp.

The target signal is assumed to be nonfluctuating for each example in this section,

specifically we set |α|2=1.125 when computing the probability of detection versus proba-

bility of false alarm plots. We define the CNR and SNR as,

CNR =
Kp

σ2
E
[
βHβ

]
, (5.52)

and

SNR = Kp
|α|2

σ2
(5.53)

where E [·] is the expectation operator. The output SINR is [66],

SINR =
|α|2|wHa (f0) |2

wHΣ−1w
. (5.54)

where the output SINR is computed with respect to the Clairvoyant filter wopt to allow for

scaling to a particular SINR level.

For computing the detection performances we use Monte-Carlo simulations with 100/PFA

trials, where PFA is the minimum probability of false alarm. The detection thresholds for

the considered detectors are computed numerically using the simulation data.

Two clutter models will be considered in this section: continuous clutter with an ex-

ponential (PSD) and low-rank clutter generated using (5.4). In the latter case, the columns
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of H in (5.4) are selected as the top r eigenvectors of the exponential Toeplitz covariance

matrix model [15],

ΣC (i, j) = ρ|i−j| (5.55)

where 0 ≤ ρ < 1 is the correlation coefficient which also controls the clutter bandwidth.

We will consider two mismatched cases: where the assumed clutter rank r′ is different

from the true clutter rank r and when full rank clutter are used instead of low-rank.

5.7.1 Example 1: Root Locations in the Complex Plane

Figure 5.2a shows the roots of the Clairvoyant, (5.50), and (5.48) filters in the complex

plane. In each case, CNR= 30 dB and Kp = 16 pulses with L= 16 secondary data. The

clutter rank is r=6 and the assumed rank is r′=r.

In Fig. 5.2a, the columns of the clutter matrix H are the top r = 6 eigenvectors of

the AR(1) covariance matrix. The clutter in this case cannot be appropriately modeled as

discrete frequencies, but the Clairvoyant filter roots must still occur on the unit circle. The

roots of (5.48) occur near but not entirely on the unit circle, especially near (1, 0) where

the clutter energy is most concentrated.

Figure 5.2b shows the magnitude responses for the UC-GLRT filter, along with the

responses for the other detectors. The clutter spectrum, computed using Capon’s method,

is also included in this figure, where it can be seen that the majority of the clutter energy

resides near zero-Doppler with a total bandwidth of approximately 200 Hz. The target

Doppler frequency is assumed to be known in this case, and r=11 is the true clutter rank

with an assumed clutter rank of r′=11. The clutter basis’ are the top r eigenvectors of the

AR(1) matrix with ρ=0.8. CNR=30 dB and all filters were generated under H0, without

the target present. Depicted on the right hand side of Fig. 5.2b, is the peak in the spectra

corresponding to the target Doppler frequency.

Closely examining Fig. 5.2b shows that the greatest agreement between the eigenvector-
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(a) Root locations with rank r=6 AR(1) clutter

(b) Magnitude response figure with r=11 and r′=11

Figure 5.2: (a) Root locations and (b) Filter magnitude responses
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based filter and the UC-based filter responses occurs at the outer edges of the spectrum,

mirroring the behaviour shown by the roots in Fig. 5.2a. Closer to zero-Doppler the great-

est differences between the eigenvector-based filter and the UC-GLRT can be seen since

the UC-GLRT enforces unit circle roots in this location while the eigenvector-based GLRT

does not. Intuitively, one can expect greater performance from a filter that enforces unit

circle zeros over one that does not. Since unit circle zeros cause deep nulls in the filter

magnitude response, it is expected that by enforcing the unit circle root constraint we may

achieve better clutter cancellation and hence, improved detection performance.

5.7.2 Example 2: Detection Performance in Low-Rank Clutter

Figures 5.3a and 5.3b illustrate the detection performance of the considered approaches

in low-rank clutter for the cases where the clutter rank is assumed known and unknown,

respectively. In both cases the clutter rank is r == 11, CNR= 30 dB, and SNR= 10 dB.

Each discrete clutter component is assumed to have identical clutter power σ2
c .

In Fig. 5.3a, the clutter rank is assumed to be perfectly known to gauge the perfor-

mance of the UC-GLRT. From this figure it is evident that the proposed approach outper-

forms all others, achieving a higher probability of false alarm than the other considered

approaches. Here, we also see that the performance of the eigenvector-based GLRT (5.49),

diagonally loaded GLRT (L-GLRT) [5], and M-UCRC-AMF display similar performance.

For the L-GLRT, the diagonal loading factor is 7, roughly the average of the clutter and

white noise variances.

In practice, the clutter rank cannot be known a priori, and mismatch between the true

clutter rank r and assumed clutter rank r′ may occur. In that case, the performance of the

proposed approach will suffer, as it is dependent upon the clutter rank. This is the case

depicted in Fig. 5.3b where the assumed clutter rank is r′=14 and the true rank is r=11.

As expected the performance of the UC-GLRT is impacted by this rank mismatch compared
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(a) ROC with low rank clutter, known rank r′=11, and known f0.

(b) ROC with low rank clutter, mismatched rank r′=14, and known
f0.

Figure 5.3: Detection performance with low-rank clutter (a) r′=11 (b) r′=14
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to the ideal case shown in Fig. 5.3a. Overestimating the rank will result in modeling noise

eigenvectors as interference eigenvectors. In the context of root positioning, modeling noise

eigenvectors as clutter eigenvectors will negatively affect the corresponding root position

in the complex plane (see Fig. 5.2a).

5.7.3 Example 3: Detection Performance in Continuous Clutter

In this example, we consider the case where the clutter is full-rank, which is a mismatch

from the low-rank assumption used to derive the UC-GLRT and eigenvector-based GLRT.

The clutter covariance matrix is the exponential model described in (5.55) with ρ= 0.95.

When choosing the assumed rank, we preserve the top r′ of eigenvectors such that the ratio

of the sum of the r′ eigenvalues to the total eigenvalue sum equal to 0.95 [40]. For ρ=0.95,

the number of necessary eigenvectors is r′=7.

Figure 5.4a shows the detection performance for Kp=32, SNR=13 dB, and CNR=

30 dB with an assumed clutter rank of r′ = 7. The UC-GLRT exhibits the best detection

performance, followed by the eigenvector-based GLRT, M-UCRC-AMF, and L-GLRT, re-

spectively. The L-GLRT was implemented with α = 1.63 in this example, roughly the

midpoint between the minimum eigenvector of the clutter covariance matrix and the white

noise power.

Figure 5.4b shows the detection performance under the same parameters used to gen-

erate Fig. 5.4a with the exception that now the assumed clutter rank is r′=11. The detec-

tion performances of the UC-GLRT and eigenvector-based GLRT have been perceptively

impacted by the increased rank, while the L-GLRT and M-UCRC-AMF remain unaltered.

Clearly, the UC-GLRT is sensitive to overestimation of the clutter rank, and similar

results were seen in Section 5.7.2. While retaining r′ = 7 eigenvectors captures roughly

95 percent of the clutter energy for ρ=0.95, increasing to r′ =11 only increases the ratio

of captured clutter energy to roughly 97 percent. Hence, there exists a point of diminishing
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(a) ROC for full rank clutter with r′=7 and known f0.

(b) ROC for full rank clutter with r′=11 and known f0.

Figure 5.4: Full rank clutter detection performance (a) r′=7 (b) r′=11
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returns when increasing the assumed rank to try and cancel more clutter. We hypothesize

that increasing the clutter rank results in modeling noise eigenvectors as clutter eigenvec-

tors, resulting in roots that may occur far from its proper location on the unit circle (see

Fig. 5.2a). This will adversely impact radial root placement after applying the UC-GLRT

algorithm.

5.7.4 Example 4: Detection Performance with Unknown Target Doppler

Frequency

Algorithm 3 requires an estimate of the target Doppler frequency to initialize the UC ap-

proach. However, in practice it is not representative to assume that f0 is known, and this

quantity must be estimated before the UC-GLRT can be applied.

A means for estimating the target Doppler frequency is outside of the scope of this

chapter. However, the UC-GLRT does require an eigendecomposition of the sample co-

variance matrix to initialize the algorithm. Hence, we are free to use P̂⊥ in the following

way to compute the maximum likelihood estimate of the target Doppler,

f̂0 = max
f

|aH (f) P̂⊥x0|2

aH (f) P̂⊥a (f)
(5.56)

where the maximization takes place over the set of normalized Doppler frequencies f ∈

(−0.5, 0.5). In practice, we implement this estimate by pre-whitening the test data x0 using

P̂⊥, taking a length NFT discrete Fourier transform and searching for the maximum.

Figure 5.5a shows the performance of the UC-GLRT (5.51) and eigenvector-based

GLRT (5.49) when the target Doppler frequency is unknown. The unknown frequency is

estimated using (5.56) with a length NFT=1024 Fourier transform. The known frequency

curves are included as a benchmark. As expected, the performance of the two detectors

suffers when the target Doppler is unknown however, the UC-GLRT exhibits superior de-
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tection performance over the eigenvector approach, providing consistent performance for

PFA < 10−1.

Figure 5.5b shows the probability of detection versus SINR when the Doppler fre-

quency is unknown, where the known frequency cases are included again as benchmarks.

From this figure, it is clear that the UC-GLRT outperforms the eigenvector-based approach,

attaining a 2 dB performance improvement over the latter around the PD= .45 level.

5.7.5 Example 5: Normalized SINR versus Secondary Data

In this section, we examine the convergence properties of the UC-GLRT for difference

CPI lengths. We assess the convergence of the proposed approach using the normalized

SINR as a function of the number of available i.i.d. secondary data. The normalized SINR

(NSINR) is [48],

NSINR =
|ŵHa (f0) |2(

aH (f0)Σ
−1a (f0)

)
(ŵHΣŵ)

(5.57)

where ŵ is an arbitrary filter. For the purposes of this example, we define acceptable

performance as the point where NSINR=3 dB.

In this example, r=11 is used throughout with CNR=30 dB and there is no mismatch

between the assumed target steering vector and the true steering vector. The number of

secondary data ranges from 8 up to 3r. For each point on the horizontal axes of Figs. 5.6a

and 5.6b, the average NSINR is computed using 5000 Monte-Carlo trials.

Figure 5.6a illustrates the performance of the UC-GLRT filter (5.50), the eigenvector-

based filter (5.48), and the L-GLRT for Kp = 32 pulses. The point on the horizontal axis

where the performance curves intersect the black line shows the number of secondary data

required to achieve a 3 dB performance relative to the Clairvoyant filter. The eigenvector

approach achieves this this performance at roughly 21 secondary data, which is approxi-

mately what is predicted for eigenvector-based techniques [66]. The UC-GLRT displays the

fastest convergence out of all of the other approaches, achieving roughly 2 dB performance
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(a) ROC

(b) PD vs. SINR

Figure 5.5: Low rank clutter detection performance with known clutter rank r′ = 11 and
unknown f0 (a) ROC curve (b) PD vs. SINR.
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improvement over the eigenvector approach at 2r secondary data. The same observations

persist for the Kp = 64 pulses case shown in Fig. 5.6b. The UC-GLRT approach again

displays rapid convergence compared to the other three approaches.

Extrapolating the results shown in Figs. 5.6a and 5.6b, we can assert that enforcing

the unit circle roots constraint using Algorithm 3 decreases the amount of secondary data

necessary to achieve 3 dB performance by more than half of that required when using a

PCI-based technique. Furthermore, since the NSINR is invariant to scaling of the filter, we

hypothesis that the NSINR gains of the proposed approach are due only to enforcement of

the unit circle roots constraint.

5.7.6 Example 6: Detection Performance with Extremely Limited Sec-

ondary Data

In this example, we consider the impact of extremely limited sample support upon the

proposed detectors. The same clutter model that was used in Section 5.7.2 is used here,

where the ρ = 0.8 is used for the covariance matrix and r = 11 dominant eigenvectors

are retained to generate the low-rank clutter. We assume that the clutter rank and Doppler

frequency are known in this example. The number of secondary data is L=22=2r < Kp

and hence, we only examine the performance of the UC-GLRT, eigenvector-GLRT, and L-

GLRT. The loading factor for the L-GLRT is α=7, which is the same from Section 5.7.2.

The number of pulses per CPI is Kp=32.

Figures 5.7a and 5.7b show the receiver operating characteristics and probability of

detection PD versus SINR curves. For Fig. 5.7a, we set SNR=10 dB and CNR=30 dB.

To ease the computational burden, we set the probability of false alarm to PFA = 10−3 in

Fig. 5.7b.
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(a) NSINR Kp=32 pulses.

(b) NSINR Kp=64 pulses.

Figure 5.6: NSINR performance (a) Kp=32 pulses (b) Kp=64 pulses
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(a) ROC with known r and known f0.

(b) PD vs. SINR with known r and known f0.

Figure 5.7: Low sample support detection performance in low rank clutter (a) ROC curve
(b) PD vs. SINR
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5.8 Conclusion

In this chapter, the UC-GLRT was proposed for moving target detection in low rank Gaus-

sian clutter. Under the assumption that the clutter occupy a fixed low-rank subspace, a

GLRT based on explicitly enforcing unit circle roots was proposed and its asymptotic de-

tection performance was derived. It was shown that although the unit circle roots based de-

tector has CFAR with respect to the clutter coefficients and noise power, its performance is

inferior to the GLRT derived under the assumption that the true clutter subspace is known.

To rectify this performance disparity, it was proposed to modify the known roots GLRT by

incorporating knowledge of the true clutter subspace within the detector structure. Finally,

we showed that after this modification, the GLRT retains CFAR with respect to the clutter

coefficients and noise power.

In the absence of either the true clutter subspace or the roots of the Clairvoyant filter,

we estimated the clutter subspace using the dominant eigenvectors of the SCM. To obtain

a set of unit circle roots, we radially projected the roots of the eigenvector-based detector

onto the unit circle.

Through simulation examples, it was shown that the UC-GLRT achieves a higher

probability of detection at lower false alarm rates with limited secondary data than the L-

GLRT or eigenvector-based GLRT. The rapid convergence of the UC-GLRT in terms of

the normalized signal-to-interference plus noise ratio was demonstrated, where we showed

empirically that the proposed UC roots approach converges in performance with less than

half of the data necessary for the eigenvector-based detector.

5.9 Appendix-I: MLE Derivations

In this appendix, the maximum likelihood estimates (5.18)-(5.24) are derived under H1 and

H0, respectively.
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5.9.1 Parameter Estimation under H1 :

Under H1, the MLEs of f0, α, β0, βℓ, and σ are required. The MLE of the clutter coeffi-

cients for the primary data can be found by minimizing (5.14) with respect to β0. Expand-

ing (5.14), taking the derivative, conjugating, and equating to zero yields,

∂J

∂β0

=
(
HHH

)
β0 + αHHa (f0)−HHx0 = 0. (5.58)

After solving for β0 we arrive at

β̂0 =
(
HHH

)−1
HH (x0 − αa (f0)) , (5.59)

The MLEs for βℓ, ℓ = 1, . . . , L can also be found by minimizing (5.14). After

expanding, differentiating, conjugating, and equating to zero we have

∂J

∂βℓ

=
(
HHH

)
βℓ −HHx0 = 0. (5.60)

Solving for βℓ produces,

β̂ℓ =
(
HHH

)−1
HHxℓ; ℓ = 1, . . . , L. (5.61)

Note that we may eliminate the clutter coefficients from (5.14) by substituting the

MLEs. Consequently, (5.14) may be expressed as

J
(
X, α, B̂|H1

)
= (x0 − αa (f0))

H P⊥
H (x0 − αa (f0)) +

L∑
ℓ=1

xH
ℓ P

⊥
Hxℓ (5.62)

where P⊥
H is the orthogonal projection from (5.25).

The MLE of α can found by minimizing (5.62). Expanding, taking the derivative with
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respect to α, conjugating, and equating to zero we have

∂J

∂α
= α

(
aH (f0)P

⊥
Ha (f0)

)
− aH (f0)P

⊥
Hx0 = 0, (5.63)

which leads to

α̂ =
|aH (f0)P

⊥
Hx0|2

aH (f0)P⊥
Ha (f0)

. (5.64)

We may now further rewrite (5.62) as,

J
(
X, α̂, B̂|H1

)
= − |a

H (f0)P
⊥
Hx0|2

aH (f0)P⊥
Ha

H (f0)
+

L∑
ℓ=1

xH
ℓ P

⊥
Hxℓ. (5.65)

The MLE of the target Doppler frequency can be found by maximizing (5.65) and dropping

the extraneous terms,

f̂0 = max
f

|aH (f)P⊥
Hx0|2

aH (f)P⊥
Ha (f)

. (5.66)

To find the MLE of σ, form the log-likelihood function

L
(
X; α̂, σ, B̂|H1

)
= −K(L+ 1) log(πσ2)− 1

σ2

(
−α̂ +

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ

)
, (5.67)

Taking the derivative with respect to σ produces

∂L
∂σ

= −2K(L+ 1)

σ2
+

2

σ3

[
−α̂ +

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ

]
= 0. (5.68)

Solving the above equation gives the MLE of the white noise variance under H1:

σ̂2
1 =

1

K(L+ 1)

[
−α̂ +

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ

]
. (5.69)
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5.9.2 Parameter Estimation under H0 :

The only necessary estimates under H1 are the clutter coefficients of the primary and sec-

ondary data βℓ; ℓ = 0, . . . , L and the white noise power σ.

The MLEs for βℓ, ℓ = 0, . . . , L can also be found by minimizing (5.13). After

expanding, differentiating, conjugating, and equating to zero we have

∂J

∂βℓ

=
(
HHH

)
βℓ −HHx0 = 0. (5.70)

Solving for βℓ produces,

β̂ℓ =
(
HHH

)−1
HHxℓ; ℓ = 0, . . . , L. (5.71)

Again, we may eliminate the clutter coefficients from (5.13) by substituting the MLEs.

Consequently, (5.13) may be expressed as

J
(
X, α, B̂|H0

)
=

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ. (5.72)

All that remains is to find the MLE of σ. Under H0, the log-likelihood function is

L
(
X;σ, B̂|H0

)
= −K(L+ 1) log(πσ2)− 1

σ2

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ. (5.73)

Taking the derivative of (5.73) with respect to σ produces

∂L
∂σ

= −2K(L+ 1)

σ2
+

2

σ3

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ = 0. (5.74)
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Solving the above equation gives the MLE of the white noise variance under H0:

σ̂2
0 =

1

K(L+ 1)

L∑
ℓ=0

xH
ℓ P

⊥
Hxℓ. (5.75)

5.10 Appendix II: Proof of Theorem 2

In this section, the performance of the known clutter subspace GLRT (5.27) is derived. To

facilitate the proof, define

tN =
|a (f0)P⊥

Hx0|2

aH (f0)P⊥
Ha (f0)

, (5.76)

and

tD =
L∑

ℓ=0

xH
ℓ P

⊥
Hxℓ (5.77)

as the numerator and denominator of (5.27), respectively. The statistical properties of

the (5.27) can now be analysed by examining the distributions of (5.76) and (5.77) sep-

arately, under H0 and H1.

5.10.1 Performance Under H0

Lemma 1. 2
σ2 tN ∼ χ2

2

Proof. Note that

P⊥
Hx0 = P⊥

Hn0, (5.78)

so we may rewrite (5.76) as,

tN =
|a (f0)P⊥

Hn0|2

aH (f0)P⊥
Ha (f0)

. (5.79)
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Define the unit vector

e =
P⊥

Ha (f0)√(
aH (f0)P⊥

Ha (f0)
) , (5.80)

and simplifying further produces

tN = nH
0 ee

Hn0. (5.81)

The matrix eeH is a rank-1 projection onto the subspace spanned by the vector e. Define

the eigenvalue decomposition of this matrix as,

eeH = Qdiag{1, 0, . . . , 0}QH (5.82)

where Q =
[
q1, . . . ,qKp

]
is the matrix of eigenvectors. For convenience, let q1 = e.

Substituting (5.82) into (5.81) we obtain

tN = ηH
0 diag{1, 0, . . . , 0}η0 = |η0,1|2 (5.83)

where η0 = QHn0 is the transformed noise vector, and η0,1 is the first element of the this

vector. Since n ∼ CN (0, σ2I) it follows that η0 ∼ CN (0, σ2I) under the orthogonal

transformation. Therefore, 2
σ2 |η0,1|2= 2

σ2 tN ∼ χ2
2 after scaling for the noise variance.

Lemma 2. 2
σ2 tD ∼ χ2

2(L+1)(Kp−r)

Proof. From (5.78), we may rewrite

xH
ℓ P

⊥
Hxℓ = nH

ℓ P
⊥
Hnℓ. (5.84)
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Let the eigenvalue decomposition of P⊥
H be,

P⊥
H = Udiag{1, . . . , 1︸ ︷︷ ︸

Kp−r

, 0, . . . , 0︸ ︷︷ ︸
r

}UH , (5.85)

where U = [u1, . . . ,uKp ] is the matrix of eigenvectors. Following the logic in [106],

we conveniently choose u1 = q1, uk ∈ H⊥ for k = 1, . . . , Kp − r, and uk ∈ H for

k = Kp − r + 1, . . . , Kp, where H and H⊥ represent the column space of H and its

orthogonal complement, respectively.

Let ηℓ = UHnℓ be the ℓ-th transformed noise vector, and further rewrite (5.84) as

nH
ℓ P

⊥
Hnℓ =

Kp−r∑
k=1

|ηℓ,k|2 (5.86)

where ηℓ,k is the k-th element of the ℓ-th transformed data vector.

Equation (5.77) can now be rewritten as,

tD =
L∑

ℓ=0

Kp−r∑
k=1

|ηℓ,k|2. (5.87)

Since nℓ ∼ CN (0, σ2I), it follows that ηℓ ∼ CN (0, σ2I) due to invariance under the or-

thogonal transformations. Hence, the independent scalars ηℓ,k ∼ CN (0, σ2), and 2
σ2 |ηℓ,k|2∼

χ2
2 after accounting for scaling by the noise variance. It follows that the interior summation

in (5.87) must also be a scaled chi square random variable with Kp− r degrees of freedom.

Since each of the xℓ are drawn i.i.d., their orthogonal transformations are also inde-

pendent and therefore, the exterior summation in (5.87) is sum of independent L+1 scaled
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chi squared random variables. Hence, 2
σ2 tD ∼ χ2

2(L+1)(Kp−r) and the proof is complete.

Note that (5.87) can be rewritten as,

tD = |η0,1|2+
Kp−r∑
k=2

|η0,k|2+
L∑

ℓ=1

Kp−r∑
k=2

|ηℓ,k|2 = tN +

Kp−r∑
k=2

|ηℓ,k|2+
L∑

ℓ=1

Kp−r∑
k=1

|ηℓ,k|2 (5.88)

without affecting the final distribution. Consequently, TGLR may also be rewritten as

TGLR =
tN

tN +
∑Kp−r

k=2 |η0,k|2+
∑L

ℓ=1

∑Kp−r
k=1 |ηℓ,k|2

=
1

1 + t0
, (5.89)

where

t0 ≜

∑Kp−r
k=2 |η0,k|2+

∑L
ℓ=1

∑Kp−r
k=2 |ηℓ,k|2

tN
. (5.90)

Since t0 is the ratio of two central chi squared random variables, t0 follows a central F

distribution and therefore, TGLR has a central Beta distribution with parameters 1 and (L+

1)(Kp − r)− 1, respectively [106].

5.10.2 Performance Under H1

Lemma 3. 2
σ2 tN ∼ χ2

2 (γt)

Proof. From (5.78), under H1 we have that

P⊥
Hx0 = P⊥

H (αa (f0) + c+ n) = P⊥
H (αa (f0) + n) = P⊥

Hz0, (5.91)

where z0 = αa (f0) + n. Since n ∼ CN (0, σ2I), it follows that z0 ∼ CN (αa (f0) , σ
2I).
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From (5.81), we may express tN in the following way

tN = zH0 ee
Hz0 = |eHz0|2. (5.92)

By the properties of linear transformations of a complex Gaussian random variable and the

definition of e, it follows that the quantity eHz0 is also Gaussian with mean

E
[
eHz0

]
= α

(
aH (f0)P

⊥
Ha (f0)

)
, (5.93)

and variance σ2. Therefore, tN can be expressed as the magnitude squared of a complex

Gaussian random variable and hence, 2
σ2 tN ∼ χ2

2 (γt) after scaling by the variance. The

noncentrality parameter is

γt = 2
|α|2

σ2

(
aH (f0)P

⊥
Ha (f0)

)
. (5.94)

Lemma 4. 2
σ2 tD ∼ χ2

2(Kp−r)(L+1) (γt)

Proof. We begin the proof by separating the tD into its primary and secondary components,

tD =
L∑

ℓ=0

xH
ℓ P

⊥
Hxℓ = zH0 P

⊥
Hz0 +

L∑
ℓ=1

xH
ℓ P

⊥
Hxℓ, (5.95)

where we have made use of the definition of z0 from the proof of Lemma 3. Noting that xℓ
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contain no target for ℓ = 1, . . . , L we may further write

tD = zH0 P
⊥
Hz0 +

L∑
ℓ=1

nH
ℓ P

⊥
Hnℓ. (5.96)

From (5.86), we can expand the sum term in (5.96)

tD = zH0 P
⊥
Hz0 +

L∑
ℓ=1

Kp−r∑
k=1

|ηℓ,k|2, (5.97)

where the ηℓ,k are the same as in the proof of Lemma 2. From the proof of Lemma 2, it

follows that the summation in (5.97) is a scaled central chi squared random variable with

L (Kp − r) degrees of freedom.

The proof now proceeds by analyzing the quantity

zH0 P
⊥
Hz0. (5.98)

Substituting the EVD of P⊥
H from (5.85) into (5.98) produces,

zH0 P
⊥
Hz0 =

Kp−r∑
k=1

zH0 uku
H
k z0 =

Kp−r∑
k=1

|uH
k z0|2, (5.99)

where uk are the eigenvectors of P⊥
H. Since z0 ∼ CN (αa (f0) , σ

2I), it follows that the

quantities uH
k z0 are also complex Gaussian with mean

E
[
uH
k z0
]
= αuH

k a (f0) ; k = 1, . . . , Kp − r (5.100)
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each with variance σ2. Equation (5.98) can now be seen as a scaled noncentral chi squared

random variable with noncentrality parameter

2
|α|2

σ2

Kp−r∑
k=1

(
aH (f0)uku

H
k a (f0)

)
. (5.101)

However, in the proof of Lemma 2 we assumed that u1 = e =
P⊥

Ha(f0)

aH(f0)P⊥
Ha(f0)

and that

uk ∈ H⊥; k = 2, . . . , Kp − r so that uk = P⊥
Huk. Therefore, by the orthogonality of

the eigenvectors, aH (f0)uk = aH (f0)P
⊥
Huk = 0 and aH (f0)u1 = aH (f0)P

⊥
Ha (f0).

Equation (5.101) now reduces to γt.

We may now assert that (5.98) is a scaled noncentral chi squared random variable

with Kp − r degrees of freedom and noncentrality parameter γt. Finally, tD can be seen as

the summation of a scaled noncentral and scaled central chi squared random variables and

hence, 2
σ2 tD ∼ χ2

2(L+1)(Kp−r).

Our previous observations can be used to expand (5.99):

zH0 P
⊥
Hz0 = |eHz0|2+

Kp−r∑
k=2

|η0,k|2, (5.102)

where we have made use off u1 = e and the orthogonality uH
k a (f0)=0. Substituting back

into (5.95)

tD = |eHz0|2+
Kp−r∑
k=2

|η0,k|2+
L∑

ℓ=1

|ηℓ,k|2 = tN +

Kp−r∑
k=2

|η0,k|2+
L∑

ℓ=1

Kp−r∑
k=1

|ηℓ,k|2. (5.103)
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Now, TGLR can be expressed as

TGLR =
tN

tN +
∑Kp−r

k=2 |η0,k|2+
∑L

ℓ=1

∑Kp−r
k=1 |ηℓ,k|2

=
t1

t1 + 1
, (5.104)

where

t1 ≜
tN∑Kp−r

k=2 |η0,k|2+
∑L

ℓ=1

∑Kp−r
k=1 |ηℓ,k|2

. (5.105)

Equation 5.105 is the ratio of a noncentral chi squared with 2 degrees of freedom to a

central chi squared random variable with 2 ((L+ 1) (Kp − r)− 1). Hence, t1 follows a

noncentral F distribution and TGLR follows a noncentral Beta distribution with parameters

1 and (L+ 1) (Kp − r)− 1 [106].

5.11 Appendix III: Proof of Theorem 3

Following Appendix 5.10, we define

sN =
|a (f0)P⊥

Ax0|2

aH (f0)P⊥
Aa (f0)

, (5.106)

and

sD =
L∑

ℓ=0

xH
ℓ P

⊥
Axℓ (5.107)

to be the numerator and denominator of (5.32), respectively.

We must note that in the known roots case, P⊥
Axℓ ̸= P⊥

Anℓ; ℓ = 1, . . . , L due to the

imperfect clutter cancellation caused by subspace mismatch between A and H. However,

we assert that reasonable clutter cancellation is achieved and thus we approximate

P⊥
Axℓ ≈ P⊥

Anℓ; ℓ = 1, . . . , L (5.108)
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for the purposes of determining the statistical performance.

5.11.1 Performance Under H0

Lemma 5. 2
σ2 sN ∼ χ2

2

Proof. Using (5.108), we may write sN as

sN =
|a (f0)P⊥

An0|2

aH (f0)P⊥
Aa (f0)

. (5.109)

We will use the eigenvalue decomposition of P⊥
A given in Section 5.4.3, which is

repeated here for clarity

P⊥
A = EΛEH =

Kp∑
k=1

λkeke
H
k (5.110)

where λ1 = 1, λk = 0 for k = 2, . . . , Kp, and e1 =
P⊥

Aa(f0)√
aH(f0)P⊥

Aa(f0)
. As shown in Sec-

tion 5.4.3, we may write sN in terms of e1 and thus,

sN = nH
0 e1e

H
1 n0 = nH

0 EΛEHn0, (5.111)

from the EVD of P⊥
A. Let ξ0 = EHn0 = eH1 n0 be the transformed noise vector. Then, (5.111)

can be rewritten as,

sN = ξH0 Λξ0 = |ξ0,1|2, (5.112)

where ξ0,1 is the first element of the vector ξ0. Since n0 ∼ CN (0, σ2I), it follows that ξ0 ∼

CN (0, σ2I) under the orthogonal transformation. Therefore, ξ0,1 is zero-mean complex

Gaussian with variance σ2, and from this it follows that 2
σ2 sN ∼ χ2

2.
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Lemma 6. 2
σ2 sD ∼ χ2

2(L+1)

Proof. Using the approximation in (5.108), rewrite (5.107) as

sD =
L∑

ℓ=0

nH
ℓ P

⊥
Anℓ. (5.113)

Substituting the eigenvalue decomposition (5.110) into (5.113), we may further rewrite (5.113)

as

sD =
L∑

ℓ=0

nH
ℓ EΛEHnℓ =

L∑
ℓ=0

ξHℓ Λξℓ (5.114)

where ξℓ = EHnℓ is the ℓ-th transformed noise vector.

Equation (5.114) can now be expressed as

sD =
L∑

ℓ=0

|ξℓ,1|2, (5.115)

where ξℓ,1 is the first element of the vector ξℓ.

Since it is assumed that the nℓ are independent and nℓ ∼ CN (0, σ2I), it follows that

the ξℓ are also independent with ξℓ ∼ CN (0, σ2I) under the orthogonal transformation.

Hence, ξℓ,1 ∼ CN (0, σ2), and (5.115) is the sum of independent scaled chi squared random

variables. Finally, 2
σ2 sD ∼ χ2

2(L+1).

As was the case in Appendix 5.10, it is possible to write

sD = |ξ0,1|2+
L∑

ℓ=1

|ξℓ,1|2= sN +
L∑

ℓ=1

|ξℓ,1|2. (5.116)
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Hence, the GLR of (5.32) may be expressed as

SGLR =
sN

sN +
∑L

ℓ=1|ξℓ,1|2
=

1

1 + s0
, (5.117)

where

s0 ≜

∑L
ℓ=1|ξℓ,k|2

sN
. (5.118)

Equation (5.118) must also follow a central F distribution and hence, SGLR is central Beta

distributed with parameters 1 and L [106].

5.11.2 Performance Under H1

Lemma 7. 2
σ2 sN ∼ χ2

2(γs)

Proof. Using (5.108), we note that under H1 we have

P⊥
Ax0 = P⊥

A (αa (f0) + c+ n) = P⊥
A (αa (f0) + n) = P⊥

Ay0, (5.119)

where y0 = αa (f0)+n. Since n ∼ CN (0, σ2I), we must have that y0 ∼ CN (αa (f0) , σ
2I).

We will again make use of the eigenvalue decomposition of P⊥
A given in (5.37) specif-

ically the unit vector e1 =
P⊥

Aa(f0)√
aH(f0)P⊥

Aa(f0)
. In Section 5.4.3, it was shown sN may be

expressed in the following way

sN = yH
0 e1e

H
1 y0 = |eH1 y0|2. (5.120)

If follows from the properties of linear transformations of a complex Gaussian random
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vector that eH1 y0 is also complex Gaussian with mean

E
[
eH1 y

]
= α

(
aH (f0)P

⊥
Aa (f0)

)
(5.121)

and variance σ2. Hence, the quantity sN is the square of a complex Gaussian with non-zero

mean and variance σ2, and therefore, after scaling the random variable, 2
σ2 sN ∼ χ2

2 (γs).

The non-centrality parameter is

γs = 2
|α|2

σ2

(
aH (f0)P

⊥
Aa (f0)

)
(5.122)

Lemma 8. 2
σ2 sD ∼ χ2

2(L+1) (γs)

Proof. We start the proof by expanding the quantity

sD =
L∑

ℓ=0

xH
ℓ P

⊥
Axℓ = yH

0 P
⊥
Ay0 +

L∑
ℓ=1

xH
ℓ P

⊥
Axℓ (5.123)

where we have separated the sum into primary and secondary data components, and used

the variable y0 from the proof of Lemma 5.

We invoke the equality proven in Section 5.4.3 to assert that

sN = yH
0 P

⊥
Ay0. (5.124)

Noting that the secondary data {xℓ}Lℓ=1 contain no target signal and P⊥
Axℓ ≈ P⊥

Anℓ
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we may write (5.123) as,

sD = sN +
L∑

ℓ=1

nH
ℓ P

⊥
Anℓ = sN +

L∑
ℓ=1

|ξℓ,1|2, (5.125)

where we have used the eigenvalue decomposition of P⊥
A and the transformed noise vector

definition from Lemma 4.

In Lemma 4, it was shown that the ξℓ,1 are independent and ξℓ,1 ∼ CN (0, σ2) and

therefore the sum on the last line of (5.125) is a scaled central chi squared random variable

with L degrees of freedom. In Lemma 5, it was shown that sN is a scaled non-central chi

squared random variable. Since the sum independent chi squared random variables is also

chi squared, 2
σ2 sD ∼ χ2

2(L+1) (γs).

Using (5.125), it is possible to write

SGLR =
sN

sN +
∑L

ℓ=1|ξℓ,1|2
=

s1
s1 + 1

, (5.126)

where

s1 ≜
sN∑L

ℓ=1|ξℓ,1|2
. (5.127)

Equation (5.127) is the ratio of a non-central chi squared random variable with 2 degrees

of freedom and non-centrality parameter γs to a central chi squared random variable with

2L degrees of freedom. Hence, s1 follows a non-central F distribution, and SGLR follows a

non-central Beta distribution with parameters 1 and L [106].
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5.12 Appendix IV: Proof of Theorem 4

As in the previous appendices, let

gN = sN =
|a (f0)P⊥

Ax0|2

aH (f0)P⊥
Aa (f0)

, (5.128)

and

gD =
L∑

ℓ=0

xH
ℓ P

⊥
Hxℓ (5.129)

be the numerator and denominator of (5.44), respectively. We will now analyze the perfor-

mance of (5.44) under H0 by examining the distributions of gN and gD separately.

From Lemma 5, it is clear that 2
σ2 gN ∼ χ2

2, and this can be proven in an identical way

to Lemma 5. The same statement is also true for gD where gD ∼ 2
σ2 gD ∼ χ2

2(L+1)((Kp−r),

and this follows directly from Lemma 2. From the proofs of Lemmas 5 and 2 (specifically,

equations (5.112) and (5.88)), respectively, we have that

gN = ξH0 Λξ0 = |ξ0,1|2, (5.130)

and

gD = |η0,1|2+
Kp−r∑
k=2

|η0,k|2+
L∑

ℓ=1

Kp−r∑
k=2

|ηℓ,k|2. (5.131)

Unlike for Theorems 3 and 4 we cannot assert the equivalence gN = |ζ0,1|2= |η0,1|2

and express the ratio GGLR = gN/gD in a convenient way. However, we know that |ζ0,1|2

and |η0,1|2 are scaled chi squared random variables with two degrees of freedom, and if we

let

gD = gD1 + gD2 (5.132)
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where gD1 = |η0,1|2 and

gD2 =

Kp−r∑
k=2

|η0,k|2+
L∑

ℓ=1

Kp−r∑
k=2

|ηℓ,k|2, (5.133)

it is straightforward to show that gD2 is a scaled chi squared random variable with 2(L +

1) (Kp − r)− 2 degrees of freedom. Hence, we may express

GGLR =
χ2
2

χ2
2 + χ2

2((L+1)(Kp−r)−1)

. (5.134)

Therefore, GGLR must follow a central Beta distribution with parameters 1 and (L +

1) (Kp − r)− 1, and the proof is now complete.
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Moving Target Detection in

K-Distributed Clutter using Unit Circle

Toeplitz Rectification with Limited

Secondary Data

6.1 Introduction

Moving target detection in heterogeneous clutter is a classic problem in the radar literature,

and many detection and estimation strategies have been proposed over the years to address

this challenge [17, 19, 45, 82]. The family of distributions known as compound-Gaussian

encompasses a wide range of clutter models, which have been used to theoretically repre-

sent empirical radar data. Of these clutter models, the K-distribution has been shown to fit

observed sea clutter for high resolution radar with low grazing angle [80]. Optimal detec-

tors have been derived for K-distributed clutter, but they are computationally complex, and

expressed in terms of modified Bessel functions. In the context of this thesis, these detec-

tors do not admit the unit circle interpretation from Chapter 2. The normalized adaptive

matched filter (NAMF) and its persymmetric counterpart the PS-NAMF [16],[69], have
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also been proposed for compound-Gaussian clutter [19], and have been shown to retain the

CFAR property along with scale invariance [53].

Similar to previous chapters, this chapter’s theme is moving target detection by ex-

ploiting the unit circle property. However, the proposed approach differs from that de-

scribed in Chapters 4 and 5 namely; the roots are used to design a Hermitian Toeplitz

structured covariance estimate which retains the UC roots property instead of directly de-

signing the filter itself. Toeplitz rectification [12, 28, 30, 35, 104] is not new, and has been

applied to many signal processing applications; including beamforming and adaptive de-

tection. However, to the best of our knowledge, no current approach exploits the unit circle

roots property for Toeplitz rectification.

Simulation examples will be used to investigate the properties of the proposed Toeplitz

rectification approach and to demonstrate its superiority when used in conjunction with the

normalized adaptive matched filter detector. Specifically, we examine the false alarm rate

characteristics of the NAMF utilizing the UCRC Toeplitz estimate. It will be shown that

use of the proposed estimate in the normalized adaptive matched filter retains the con-

stant false alarm rate (CFAR) property with respect to the texture’s scale parameter, but

this property is not preserved with respect to the clutter covariance matrix structure pa-

rameter. The detection performance will also be examined for a non-fluctuating target in

K-distributed clutter with limited secondary data. It will be shown that the NAMF with

the UCRC Toeplitz estimate outperforms the NAMF and PS-NAMF using the fixed point

covariance estimator (FPE) [17], and the NAMF using conventional Toeplitz rectification

by averaging the diagonals of the FPE.

This chapter is organized in the following way. In Section 6.2, the received signal

model, K-distribution clutter model, and detection problem are described in detail. In

Section 6.3, the known-covariance detector is derived and its adaptive counterpart are dis-

cussed. In Section 6.4, a detailed discussion of the proposed unit circle roots based Toeplitz

rectification method is provided. Section 6.5 contains simulation examples, and Section 6.6
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provides closing remarks and discussions on future work.

6.2 Signal Model

Consider a co-located transmitter and receiver mounted on a stationary platform. The trans-

mitter emits Kp periodic, pulses over a coherent processing interval. Pulse-compression is

performed at the receiver to isolate the reflected returns originating from a particular range

bin. The received slow-time data are stacked into a vector x ∈ CKp×1, where each row

corresponds to an individual slow-time snapshot.

The received data is modeled as,

x = αa(f0) + ζ. (6.1)

where ζ clutter component, and a(f0) is the target temporal steering vector. α ∈ C is the

unknown complex amplitude of the moving target return.

The temporal steering vector is,

a(f0) ≜ [1, e−j2πf0 , . . . , e−j2πf0(Kp−1)]T (6.2)

where (·)T is the transpose operator. The normalized Doppler frequency f0 induced by the

motion of the target is,

f0 =
2TPRI

λ

(
vx cos (θr) + vy sin (θr)

)
(6.3)

where λ is the operating wavelength of the radar, TPRI is the pulse-repetition interval, vt ≜

[vx vy] is the target velocity vector, and θr is the angle with respect to the positive x-axis of

the receiver relative to the target.
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6.2.1 Clutter Model

The clutter vectors are modeled as SIRV, which can be modeled in product form [110]:

ζ = σg, (6.4)

where σ is the texture component, and g is the coherent speckle component. The g are

modeled as g ∼ CN (0,Σc), while σ ∼ pσ (σ) is a non-negative random variable [24]. We

assume K-distributed clutter in this chapter, where the texture distribution is given by

pσ(σ) =
2

βνΓ(ν)
σ2ν−1e−

σ2

β (6.5)

where we use scale parameter ν and shape parameter β = 1/ν to normalize E [σ2]=1 [24].

The total clutter probability distribution is,

pζ (ζ) =
1

πKp |Σ|

∫ ∞

0

1

σ2Kp
e

1

σ2ζHΣ−1ζ pσ (σ) dσ, (6.6)

which is dependent upon the texture pdf. The above integration does not admit a closed

form PDF for the clutter distribution when (6.5) is substituted into (6.6). However, it will

be shown in a later chapter that another choices of texture pdf will result in a closed form

distribution which can then be used in the derivation of the generalized likelihood ratio test

when the pdf parameters are known.

The covariance matrix Σ is normalized such that tr (Σ) = Kp and controls the slow-

time spectral properties of the clutter. We employ the exponentially shaped covariance

model for Σ:

Σ(i, j) = ρ|i−j|; i ≤ Kp, j ≤ Kp (6.7)

where 0 ≤ ρ < 1 is the correlation coefficient.
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6.2.2 Problem Statement

Identical to Chapters 4 and 5, the moving target detection problem consists of declaring

either the presence or absence of a moving target within the resolution cell of interest. The

binary hypothesis test is,

H0 :


x0 = ζ

xℓ = ζℓ ℓ = 1 . . . , L

(6.8)

H1 :


x0 = αa(f0) + ζ

xℓ = ζℓ ℓ = 1 . . . , L

(6.9)

where H0 and H1 correspond to the target absent and target present hypotheses, respec-

tively. The vectors x0 and xℓ’s represent the primary and secondary data, respectively,

under each hypothesis.

Following the methodology described in Chapter 4, we express the radar output as the

inner product,

y = wHx0 (6.10)

where w ∈ CKp×1 is a filter specific to the detector.

The test statistic is the square of the filter output [66],

|y|2
H1

≷
H0

τ (6.11)

where τ is a threshold used to satisfy a prescribed probability of false alarm.
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6.3 The Normalized Matched Filter

In this section, the normalized matched filter (NMF) is derived in the same way as the

generalized likelihood ratio test. Concordantly, the derivation follows a two-step approach,

where the covariance matrix is assumed to be known and is then replaced by an estimate

once the test statistic is derived. For the remainder of this chapter, it is assumed that the

target Doppler frequency is known to gauge the impact of the unknown covariance matrix

and heterogeneous clutter power upon the detectors.

Conditioning with respect to the textures and treating σ0 and σ1 as deterministic but

unknown scalars, the pdf of the primary data is,

p (x0|σ0, H0) = π−Kpσ
−2Kp

0 |Σ|−1exp

[
−xH

0 Σ
−1x0

σ2
0

]
(6.12)

under H0, and

p (x0;α|σ1, H1) = π−Kpσ
−2Kp

1 |Σ|−1exp

[
−(x0 − αa (f0))

H Σ−1 (x0 − αa (f0))

σ2
1

]
(6.13)

under H1. Taking the logarithm of (6.12) and (6.13) produces the following log-likelihood

functions:

L (x0|σ0, H0) = − log
(
πKp|Σ|

)
− 2Kp log (σ0)−

xH
0 Σ

−1x0

σ2
0

, (6.14)

and

L (x0|σ1, H1) = − log
(
πKp |Σ|

)
− 2Kp log (σ1)−

(x0 − αa (f0))
H Σ−1 (x0 − αa (f0))

σ2
1

(6.15)

for H0 and H1, respectively.
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The generalized likelihood ratio is expressed as

ΛGLR =
maxα,σ1 p (x0;α|σ1, H1)

maxσ1 p (x0|σ0, H0)
, (6.16)

and it is now possible to compute the maximum likelihood estimates (MLEs) for α, σ0, and

σ1 under the two hypotheses to determine the desired test statistic.

6.3.1 Parameter Estimation Under H0

The only estimate necessary is the MLE of σ0. Taking the derivative of (6.14) with respect

to σ0 and equating to zero results in,

∂L (x0|σ0, H0)

∂σ0

= −2Kp

σ0

+ 2
xH
0 Σ

−1x0

σ3
0

= 0. (6.17)

Solving the above equation produces the MLE of σ2
0 under H0:

σ̂2
0 =

xH
0 Σ

−1x0

Kp

(6.18)

6.3.2 Parameter Estimation Under H1

Under H1, the MLEs of α and σ1 must be found. To find the MLE of α, take the derivative

of (6.15) with respect to this term and equate to zero, producing

∂L (x0;α|σ1, H1)

∂α
= α∗ (aH (f0)Σ

−1a (f0)
)
− xH

0 Σ
−1a (f0) = 0. (6.19)
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Conjugating the above equation and solving for α yields the MLE:

α̂ =
aH (f0)Σ

−1x0

aH (f0)Σ
−1a (f0)

. (6.20)

To find the MLE of σ1, take the derivative of (6.15) with respect to this term and equate

to zero,

∂L (x0;α|σ1, H1)

∂σ1

= −2Kp

σ1

+ 2
(x0 − αa (f0))

H Σ−1 (x0 − αa (f0))

σ3
1

= 0. (6.21)

Substituting α̂ into the above equation and solving for σ1 produces the MLE

σ̂2
1 =

(x0 − α̂a (f0))
H Σ−1 (x0 − α̂a (f0))

Kp

. (6.22)

Note that σ̂2
1 may be expanded to give,

σ̂2
1 =

xH
0 Σ

−1x0

Kp

− |aH (f0)Σ
−1x0|2

KpaH (f0)Σ
−1a (f0)

. (6.23)

Substituting the MLEs (6.18), (6.20), and (6.22) into (6.16), it is straightforward to

show that the likelihood ratio simplifies to,

ΛGLR =

(
σ̂2
0

σ̂2
1

)Kp

. (6.24)

Noting that σ̂2
1 is a function of σ̂2

0 , the GLR can be expressed as

ΛGLR =

(
1

1− TGLR

)Kp

, (6.25)
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where

TGLR =
|aH (f0)Σ

−1x0|2(
xH
0 Σ

−1x0

) (
aH (f0)Σ

−1a (f0)
) (6.26)

after dividing the numerator and denominator of (6.24) by σ̂2
0 . After dropping the Kp power

in (6.25) and making use of the monotone property of the function f(x) = 1/(1 − x), the

final test statistic is,
|aH (f0)Σ

−1x0|2(
xH
0 Σ

−1x0

) (
aH (f0)Σ

−1a (f0)
)H1

≷
H0

τ (6.27)

where τ is the detection threshold.

To express (6.27) in the form of (6.10), let

wNMF =
Σ−1a (f0)√(

xH
0 Σ

−1x0

) (
aH (f0)Σ

−1a (f0)
) , (6.28)

and the corresponding test statistic will be,

|wH
NMFx0|2

H1

≷
H0

τNMF. (6.29)

Equation (6.28) is known as the normalized matched filter (NMF) and is proportional

to (2.2). Hence, the unit circle roots constraint applies when Σ and a (f0) have the ap-

propriate structure.

In practice, Σ is unknown and must be estimated from the secondary data. Let Σ̂ be

one such estimate, and substitute into (6.28) to get,

wNAMF =
Σ̂

−1
a (f0)√(

xH
0 Σ̂

−1
x0

)(
aH (f0) Σ̂

−1
a (f0)

) , (6.30)

which is known as the normalized adaptive matched filter (NAMF) (or GLRT-LQ) [19].
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The corresponding test statistic will be,

|wH
NAMFx0|2

H1

≷
H0

τNAMF. (6.31)

With limited secondary data, the estimation performance of unstructured covariance

estimators will be adversely impacted, leading to poor detection performance. To avoid

this, we combine the theory in Chapter 2 with the unit circle roots at the output of the

UCRC algorithm to develop the UCRC Toeplitz rectification estimate. Aside from impos-

ing crucial structure upon the covariance estimate, using a Toeplitz-structured covariance

matrix to compute the adaptive detector in (6.30) will also satisfy the unit circle roots con-

straint per Theorem 1. In the following sections, different possibilities for the covariance

estimate will be introduced, and their impact upon the detection performance will by ex-

amined using simulations examples.

6.4 UCRC Toeplitz Rectification

In this section, a new covariance estimate is proposed which preserves the Toeplitz struc-

ture of the true covariance matrix and hence, retains the unit circle roots property when

substituted into the adaptive detector (6.30).

The new Toeplitz rectified estimate is based on the roots at the output of the UCRC-

AMF algorithm described in Chapter 4, which requires an initial covariance estimate. How-

ever, unlike in Chapter 4, the secondary data have heterogeneous clutter power, and there-

fore; the sample covariance matrix is a poor initial estimate. Fortunately, the following

estimate has been proposed in the radar literature specifically for SIRP clutter called the

fixed point estimator (FPE) [17]:

Σ̂
(t+1)

FPE =
Kp

L

L−1∑
ℓ=0

xℓx
H
ℓ

xH
ℓ Σ̂

−(t)

FPExℓ

. (6.32)
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The FPE is an iterative approximate maximum likelihood estimate in compound-Gaussian

clutter, hence we use this matrix instead of the SCM when using the UCRC-AMF algo-

rithm.

Let {fi}Kp−1
i=0 be the set of normalized frequencies fi ∈ (−0.5, 0.5); i = 0, . . . , Kp−1

corresponding to the unit circle roots returned by the UCRC-AMF algorithm, including the

target normalized Doppler frequency f0. Also, let {a (fi)}; i = 0, . . . , Kp − 1 be the

set of Vandermonde vectors in the form of (6.2) corresponding to these frequencies. From

Theorem 1, a Hermitian Toeplitz structured matrix may be constructed from the roots and

a set of real constants {d̂i}Kp−1
i=0 ,

Kp−1∑
i=0

d̂ia (fi) a
H (fi) = d0a (f0) a

H (f0) +ADAH , (6.33)

where A = [a (f1) , . . . , a
(
fKp−1

)
] ∈ CKp×(Kp−1) and D = diag{d̂1, . . . , d̂Kp−1} ∈

R(Kp−1)×(Kp−1). The d̂i are estimated as,

d̂i =
1

aH (fi) Σ̂
−1

FPEa (fi)
; i = 0, . . . , Kp − 1. (6.34)

In practice, trying to invert (6.33) directly is numerically unstable, especially when the

secondary data are limited. This is because the roots returned by the UCRC algorithm may

be in close proximity to one another on the unit circle, resulting in co-linearity between the

a (fi)’s. Therefore, the following ad-hoc regularization is proposed. Let κ ∈ R be a real

scalar and writing the approximation

Σ̂FPE ≈ d̂0a (f0) a
H (f0) +ADAH + κI (6.35)

where I ∈ RKp×Kp is the identity matrix. When Σ̂FPE is replaced with the true covariance

on the right hand side of (6.35), κ vanishes. Define the rank one projection matrix onto the

159



orthogonal complement of the column space of A,

P = I−A
(
AHA

)−1
AH , (6.36)

and note that due to the aforementioned numerical instability, (6.36) would be computed

by first orthonormalizing the columns of A. Left multiplying by P in (6.35) and applying

the trace operator results in

tr{PΣ̂FPE} = d̂0tr{aH (f0)Pa (f0)}+ κ, (6.37)

where the cyclic property of the trace operator has been used, tr{P}=1, and the approxi-

mation is replaced with equality to allow solving for κ̂,

κ̂ = tr{PΣ̂FPE} − d̂0tr{aH (f0)Pa (f0)}. (6.38)

The UCRC-based Toeplitz rectified estimate is,

Σ̂UCRC−TR =

Kp−1∑
i=0

[
d̂ia (fi) a

H (fi)
]
+ κ̂I. (6.39)

As the number of secondary data increases, Σ̂FPE becomes more accurate, and κ ap-

proaches zero. When the secondary data are limited, κ regularizes the estimate based on

the roots and ensures an invertible estimate.

6.5 Simulation Results

Simulation examples are used to show the performance of the UCRC Toeplitz rectification

estimate. For consistency, the same radar parameters as described in Chapters 4 and 5 are
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used in this section, and are repeated for additional clarity. A radar operating frequency of

fc = 1 GHz is used with a pulse repetition frequency (PRF) of 500 Hz. A single moving

target with a linear trajectory, constant velocity |vt|= 108 km/h, and heading 30◦ with

respect to the positive x-axis. The angle of the receiver/transmitter with respect to the

target is θr = 10◦. The normalized target Doppler frequency is f0 = 0.3761. The clutter

covariance matrix Σ, texture σ, and target amplitude α are assumed unknown. Unless

stated otherwise, a constant ρ=0.9 is used in (6.7) to construct the covariance matrix.

The detection performance is quantified using the receiver operating characteristic

(ROC) for fixed signal-to-clutter ratio. Probability of detection versus SCR curves are also

generated assuming a fixed false rate PFA =10−3 to limit the computational burden when

conducting the simulations.

We define the signal-to-clutter ratio,

SCR =
|α|2

KpE [σ2]

(
aH (f0)Σ

−1a (f0)
)

(6.40)

to allow for scaling the target amplitude |α|2 to meet a prescribed SCR value.

The benchmark detector in this section is this optimal K-distribution detector (OKD)

[45, 80]:

ΛOKD =

(
q0
q1

)(Kp−ν)/2 KKp−ν

(
2
√
νq1
)

KKp−ν

(
2
√
νq0
)H1

≷
H0

τOKD, (6.41)

where

q0 = xH
0 Σ

−1x0, (6.42)

q1 = |aH(f0)Σ
−1

x0|2

aH(f0)Σ
−1

a(f0)
, (6.43)

and KKp−ν(·) is the modified Bessel function of the second kind. For all detectors, the

performance is computed using Monte-Carlo simulations where the number of independent
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trials is 100/PFA, where PFA is the minimum probability of false alarm. Unless stated

otherwise, the scale parameter for the texture distribution is fixed ν=0.5.

6.5.1 Example 1 :Detection Performance in K-Distributed Clutter with

Limited Secondary Data

For this example, the detection performance of the NAMF using the UCRC Toeplitz rectifi-

cation estimate is demonstrated using the receiver operating characteristics and probability

of detection versus the SCR. The coherent processing interval consists of Kp = 16 pulses

with L= 17 secondary data, barely enough to invert the FPE. The detection performance

using the proposed estimate is compared against the NAMF and the PS-NAMF using the

FPE only and conventional Toeplitz rectification applied to the FPE. The FPE is computed

using t=8 iterations.

Figures 6.1a and 6.1b illustrate the performances for the aforementioned detectors. An

SCR=−5 dB is used to compute the ROC curves shown in Fig. 6.1a. It is clear from both

figures that the NAMF using the proposed estimate outperforms all other detectors while

the NAMF in conjunction with conventional Toeplitz rectification [35] applied to the FPE

performs the worst. The PS-NAMF with the FPE has the most competitive performance

and the NAMF with the FPE comes in nearly second to last in all cases. The performance

disparity between the UCRC Toeplitz rectification and the conventional one is interesting

since, according to Theorem 1, the former should also correspond to a set of unit circle

roots. However, the diagonal loading present in the UCRC Toeplitz rectification could be

positively impacting the performance.
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(a) PD vs. PFA

(b) PD vs. SCR

Figure 6.1: Detection performance (a) PD vs. PFA (b) PD vs. SCR
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6.5.2 Example 2 : Numerical CFAR Evaluation

In this example, we examine the behavior of the estimated probability of false alarm versus

the clutter parameters for a fixed threshold using the UCRC Toeplitz rectification estimate

in the NAMF detector. In each case, Kp = 16 pulses with L = 17 secondary data. The

constant thresholds were computed numerically using the simulation data and selected to

provide and set PFA=10−1 to reduce the computational complexity of each simulation. To

calculate the false alarm probabilities, 100, 000 trials were conducted for each parameter

value.

Fig. 6.2a, shows the estimated probability of false alarm versus the scale parameter of

the SIRP texture distribution in (6.5). For this figure, ρ=0.9 is constant while ν varies. The

scale parameter controls how ”spikey” the clutter power is, and so invariance to this param-

eter determines how robust the detector will be in the presence of impulsive clutter. The

uniform false alarm rate exhibited by the detector as ν is varied demonstrates that NAMF

using the proposed estimate has approximate CFAR with respect to the scale parameter.

Fig. 6.2b, shows the estimated probability of false alarm versus the covariance struc-

ture parameter in (6.7). For this figure, ν=0.5 is fixed. The correlation ρ controls the clutter

bandwidth about zero Doppler, with lower values indicating a wider bandwidth. The false

alarm rate is not uniform as it was in Fig. 6.2a, indicating that using the proposed estimate

in the NAMF does not preserve CFAR with respect to the clutter covariance matrix.

6.6 Conclusion

In this chapter, the UCRC Toeplitz rectification approach was developed and applied to

moving target detection in K-distributed clutter with limited secondary data. Numerical

examples demonstrated the properties of the proposed Toeplitz rectification approach when

used in normalized adaptive matched filter detector. It was shown that use of the proposed
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(a) PFA vs. ν

(b) PFA vs. ρ

Figure 6.2: Numerical CFAR evaluation (a) PFA vs. SIRP scale parameter (b) PFA vs.
covariance structure parameter ρ.
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estimate retains the CFAR property with respect to the clutter scale parameter, but CFAR

is not maintained with respect to the clutter covariance matrix. Despite the loss of this

property, the UCRC based approach still outperformed the NAMF and PS-NAMF using

the FPE alone, and the NAMF when using conventional Toeplitz rectification applied to

the FPE.

Clearly, more work is necessary to correct for the loss of CFAR with respect to the

clutter covariance matrix in the NAMF when using UCRC Toeplitz rectification. The loss

of covariance CFAR severely limits the applicability of the UCRC Toeplitz estimate for

adaptive detection. However, the detector still achieved remarkable performance improve-

ment over the other detectors. Therefore, further research is warranted to refine the perfor-

mance of this estimator.

In the following chapter, UCRC Toeplitz rectification is applied to moving target de-

tection in compound-Gaussian clutter using a distributed active MIMO radar network.
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Distributed MIMO Radar Moving

Target Detection in

Compound-Gaussian Clutter

7.1 Introduction

Multiple-input multiple-output (MIMO) radar utilizing multiple orthogonal waveforms of-

fers numerous advantages over traditional phased array radar including: improved spatial

coverage [29] and diversity gain [27]. Two classes of MIMO radar exist in the literature

namely, colocated and distributed [107]. The focus of this chapter is strictly upon the latter

and is hereafter referred to as MIMO radar.

Adaptive detectors require an estimate of the unknown clutter covariance matrix which

is computed from a set of target-free secondary data collected from cells adjacent to the res-

olution cell of interest [77],[48]. The maximum likelihood estimate (MLE) of the clutter

covariance matrix assuming i.i.d complex Gaussian clutter is the well-known sample co-

variance matrix (SCM) [33], which requires that the number of available secondary data

must be at least as large as the dimensionality of the signal of interest or the resulting es-

timate will be singular. To circumvent the need for extensive amounts of secondary data,

estimation techniques such as the rank-constrained maximum likelihood (RCML) [47] and
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its extension [91] have been developed for use when specific structure can be imposed upon

the underlying clutter covariance matrix (e.g., airborne radar [108]).

Certain environments (e.g. sea-clutter) are not well-modeled by Gaussian processes

due to the non-stationary nature of the clutter power across resolution cells. Such clutter

can be theoretically modeled as a spherically invariant random process (SIRP) [6]. In this

chapter, we focus on a sub-class of SIRP clutter with inverse-Gamma distributed power. In-

verse gamma texture has been considered before for adaptive detection, and is particularly

attractive because the generalized likelihood ratio test (GLRT) can be computed in closed

form [84].

In Chapter 6, the UCRC-based Toeplitz rectification was proposed. Making use of

Theorem 1 and Corollary 1 from Chapter 2, the improved covariance estimate was applied

to the moving target detection in a monostatic radar system in compound-Gaussian clut-

ter. In this chapter, the UCRC Toeplitz rectification approach is applied to moving target

detection in a distributed MIMO radar network in compound-Gaussian clutter. We imple-

ment two detectors namely; the SIRP-GLRT of [24] and the GLRT derived in the case of

Gaussian clutter with unknown level [52, 61] where both detectors are extended for use

within a distributed MIMO network. Through simulation examples, we will show that us-

ing the aforementioned detectors in conjunction with a covariance matrix estimate based on

UCRC Toeplitz rectification yields a performance increase over the same detectors employ-

ing the fixed point covariance matrix estimate (FPE) alone in the presence of limited and

non-homogeneous secondary data. Finally, the convergence in performance of the GLRT

toward the SIRP-GLRT as the number of pulses-per-node increases for the case where each

distinct covariance matrix is known. To the best of our knowledge, the effectiveness of ex-

ploiting unit circle roots has never been demonstrated before in the distributed MIMO radar

literature.

This chapter is organized as follows. The distributed MIMO radar signal model is

given in Section 7.2 while the clutter signal characterization is given in Section 7.3. The
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detectors are presented in Section 7.4. Section 7.6 gives the details of the covariance esti-

mators used to generate simulated results. Section 7.7 gives the simulations results while

conclusions are drawn in Section 7.8.

7.2 Signal Model

Consider a MIMO radar network consisting of M widely separated transmit antennas and

N receivers mounted upon stationary platforms in a two-dimensional (2D) plane. Each

bistatic (m,n) pair in the network interrogates a common scene of interest using a periodic

train of Kp consecutive pulses consisting of M orthogonal waveforms to facilitate separa-

tion at the receivers. The signal at the output of the n-th receiver due to the m-th transmitter

is modeled mathematically as

xm,n = αm,na (fm,n) + ζm,n (7.1)

where αm,n ∈C is the target reflection coefficient, fm,n is the target Doppler frequency,

a(fm,n) denotes the temporal steering vector associated with the target, and ζm,n ∈CKp×1

is the vector of additive disturbance signals accounting for clutter, interference, and noise,

which is assumed to be zero-mean Gaussian with covariance matrix Σm,n. The temporal

steering vector associated with an arbitrary Doppler frequency f is defined as,

a(f) ≜ [1, . . . , exp (j2πTPRI(Kp − 1)f)]T , (7.2)

where TPRI denotes the pulse repetition interval (PRI) and (·)T stands for the transpose op-

eration. It is worth noting that, the target motion will induce a differing Doppler frequency

for each transmit-receive pair of the multistatic system. Assume a hypothetical target with

velocity vector v ≜ (vx, vy) is located at the origin of a Cartesian 2D coordinate system.
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Let θm and ϕn denote the angle with respect to the positive x-axis of the m-th transmit-

ter and n-th receiver, respectively. Then, the target Doppler frequency associated with the

mn-th transmit-receive pair is defined as [107],

fm,n =
vx
λ
(cos(ϕn) + cos(θm)) +

vy
λ
(sin(ϕn) + sin(θm)) (7.3)

where, λ is the wavelength of the radar.

7.3 Clutter Characterization

Low resolution radar systems observe the contributions of many clutter scatterers within

one resolution cell, motivating the use of the Central Limit Theorem to model the resulting

data as Gaussian [71]. At higher resolution, individual clutter scatterers are not as numerous

and hence, the Gaussian model is no longer appropriate. In this case, the clutter is modeled

as a product of two independent components: a quickly evolving speckle process and a

temporally correlated texture component [18]. The clutter component of equation (7.1)

may be modeled in product form [110] as,

ζm,n = σm,ngm,n, (7.4)

where, σm,n denotes the texture component with distribution p(σm,n), and gm,n ∈ CKp×1 is

zero-mean Gaussian with covariance matrix Σm,n of dimension Kp ×Kp. In the following

discussion we assume that the texture distribution is the same across the entire network

while the covariance matrix is assumed to be distinct for each mn bistatic pair. Specifically,

suppose that the square of the texture σ2
m,n follows an inverse-Gamma distribution each with

scale and shape parameter νm,n and βm,n [84], where νm,n = ν and βm,n = β respectively.

After accounting for the random variable transformation the resulting texture distribution
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is [84]

p(σm,n) =
2/βν

Γ(ν)
σ−2ν−1
m,n exp

(
− 1/β

σ2
m,n

)
. (7.5)

where, Γ(·) is the continuous gamma function.

7.4 Generalized Likelihood Ratio Tests

We consider deterministic texture components σm,n to facilitate the derivation of the GLRT.

We follow a two-step approach to derive the GLRT, where we first assume that the mn-th

clutter covariance matrix is known and then substitute with its estimate after the test statistic

is found.

Define the variables α ∈ CMN×1, σ ∈ RMN×1, and X ∈ CKp×MN as the vector of

amplitudes, textures, and measured data, respectively across the network. The generalized

likelihood ratio test statistic will be [61],

ΛGLRT =
maxα,σp(X;α,σ)

maxσp(X;σ)
, (7.6)

where p(X;α,σ) and p(X;σ) are the likelihoods of the data X across the network of MN

nodes under H1 and H0, respectively.

Focusing on the likelihood under H1, we assume independence between the primary

data vectors xm,n to yield

p(X;α,σ) =
∏
m,n

p(xm,n;αm,n, σm,n) (7.7)

under H1, and

p(X;σ) =
∏
m,n

p(xm,n;σm,n). (7.8)

under H0.
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In general, each bistatic pair measures complex, zero-mean, Gaussian clutter with

distinct texture σm,n which varies from CPI-to-CPI and covariance matrix Σm,n resulting in

an individual likelihood from the mn-th bistatic pair,

p (xm,n;σm,n) = (πσm,n)
−2Kp |Σm,n|−1exp

[
−
xH
m,nΣ

−1
m,nxm,n

σ2
m,n

]
, (7.9)

under H0, and

p (xm,n;αm,n, σm,n) = (πσm,n)
−2Kp |Σm,n|−1exp

[
−
yH
m,nΣ

−1
m,nym,n

σ2
m,n

]
, (7.10)

under H1, where we define

ym,n = xm,n − αm,na (fm,n) (7.11)

for brevity.

7.4.1 Parameter estimation under H0

The only parameter we must estimate in this case is the individual node textures. Taking

the logarithm of (7.8) results in the log-likelihood function

log (p(X;σ)) =
∑
m,n

[
− 2Kp log (πσm,n)− log (|Σm,n|) −

xH
m,nΣ

−1
m,nxm,n

σ2
m,n

]
. (7.12)

Taking the derivative with respect to σm,n produces

∂ log (p(X;σ))

∂σm,n

= −2 Kp

σm,n

+ 2
xH
m,nΣ

−1
m,nxm,n

σ3
m,n

. (7.13)

172



Setting the above equation equal to zero and solving yields the MLE of σ2
m,n under H0,

σ̂2(H0)
m,n =

xH
m,nΣ

−1
m,nxm,n

Kp

(7.14)

7.4.2 Parameter Estimation Under H1

Under H1, we must estimate the values of αm,n and σm,n. We begin by estimating αm,n

first and then estimating σm,n. Taking the logarithm of (7.7) produces the log-likelihood

function

log (p(X;α,σ)) =
∑
m,n

−2Kp log (πσm,n)− log (|Σm,n|) −
yH
m,nΣ

−1
m,nym,n

σ2
m,n

. (7.15)

Taking the derivative of the above equation with respect to αm,n yields,

∂ log (p(X;α,σ))

∂αm,n

= α∗
m,n

(
aH (fm,n)Σ

−1
m,na (fm,n)

)
− xm,nΣ

−1
m,na (fm,n) . (7.16)

Equating to zero, conjugating, and solving the above equation produces the MLE of αm,n,

α̂m,n =
aH(fm,n)Σ

−1
m,nxm,n

aH(fm,n)Σ
−1
m,na(fm,n)

. (7.17)

To find the MLE of σm,n under H1, take the derivative of (7.15) with respect to σm,n,

∂ log (p(X;α,σ))

∂σm,n

= −2Kp

σm,n

+ 2
yH
m,nΣ

−1
m,nym,n

σ3
m,n

. (7.18)

Setting the above equation equal to zero and solving results in the MLE of σm,n under H1,

σ̂2(H1)
m,n =

yH
m,nΣ

−1
m,nym,n

Kp

. (7.19)
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Substituting the MLEs into (7.6), it is straight forward to show that the generalized

likelihood ratio simplifies to

ΛGLR =
∏
m,n

(
σ̂
2(H0)
m,n

σ̂
2(H1)
m,n

)Kp

. (7.20)

Notice that σ̂2(H1)
m,n may be written in the following way

σ̂2(H1)
m,n = σ̂2(H0)

m,n −
|aH(fm,n)Σ

−1
m,nxm,n|2

Kp

(
aH(fm,n)Σ

−1
m,na(fm,n)

) . (7.21)

So after substituting the above equation into the expression for the GLR, and dropping the

exponent, we achieve the GLRT test statistic

ΛGLRT =
NM∏
m,n

(
1

1− T
(m,n)
GLR

)
H1

≷
H0

γGLRT, (7.22)

where

T
(m,n)
GLR =

|aH(fm,n)Σ
−1
m,nxm,n|2(

xH
m,nΣ

−1
m,nxm,n

) (
aH(fm,n)Σ

−1
m,na(fm,n)

) , (7.23)

and γGLRT is chosen to satisfy a specified probability of false-alarm.

7.5 SIRP-GLRT

In [24], the SIRP-GLRT was developed by expressing the likelihood of the clutter in terms

of the texture probability distribution and clutter probability conditioned upon the texture

component,

p(xm,n; iαm,n|Hi)=

∫ ∞

0

p(xm,n; iαm,n|σm,n)p(σm,n)dσm,n (7.24)
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with i = 0, 1 corresponding to H0 and H1, respectively. The joint distribution for the entire

network can be expressed as,

p(X; iα|Hi) =
∏
m,n

∫ ∞

0

p(xm,n; iαm,n|σm,n)p(σm,n)dσm,n (7.25)

which is independent of the texture. It is straight forward to show that the integration

in (7.24) results in the likelihood,

p(xm,n; iαm,n|Hi) =
β
(Hi)ν̃
m,n Γ(ν̃)

βνΓ(ν)πK |Σm,n|
, (7.26)

where, ν̃ = ν +K. Following [84] and our previous notation, we define

β(H0)
m,n =

1

xH
m,nΣ

−1
m,nxm,n + 1/β

, (7.27)

under H0 and

β(H0)
m,n =

1

yH
m,nΣ

−1
m,nym,n + 1/β

, (7.28)

under H1. Substituting (7.26) into equation (7.25) results in the joint distribution

p(X; iα|Hi) =
∏
m,n

β
(Hi)ν̃
m,n Γ(ν̃)

βνΓ(ν)πK |Σm,n|
, (7.29)

where the only remaining step is to find the MLE of αm,n. Fortunately, it is simple to show

that this MLE is same as the one in (7.17). Noting this, we may write the likelihood ratio

as,

ΛSIRP−GLR =
∏
m,n

(
β
(H1)
m,n

β
(H0)
m,n

)ν̃
H1

≷
H0

γSIRP−GLRT (7.30)

where, γSIRP−GLRT is the detection threshold chosen to satisfy a specified probability of

false alarm.
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Similar to the GLRT, we may simplify (7.30) by noting that

β(H1)
m,n =

(
xH
m,nΣ

−1
m,nxm,n + 1/β −

|aH(fm,n)Σ
−1
m,nxm,n|2

Kp

(
aH(fm,n)Σ

−1
m,na(fm,n)

))−1

, (7.31)

and therefore, after dropping the exponent, the test statistic in (7.30) can be expressed as

ΛSIRP−GLRT =
NM∏
m,n

(
1

1− S
(m,n)
GLR

)
H1

≷
H0

γSIRP−GLRT (7.32)

where

S
(m,n)
GLR =

|aH(fm,n)Σ
−1
m,nxm,n|2(

xH
m,nΣ

−1
m,nxm,n + 1/β

) (
aH(fm,n)Σ

−1
m,na(fm,n)

) , (7.33)

7.5.1 Clairvoyant Detector

In evaluating the performance of the above detectors, it will be useful to have a benchmark

to compare against. The natural choice for this benchmark is the clairvoyant detector where

the covariance matrix assumed to be known at each receiver. In this case we assume that the

complex amplitude αm,n is still unknown for each path and that the texture is also unknown.

Hence, we select the GLRT of (7.22) with the true covariance as the clairvoyant detector.

As a final note, unlike previous chapters, the detectors derived here do not take the

form of a linear operation applied to the received data (i.e., wHx). However, the GLRT (7.22)

and SIRP-GLRT (7.32) test statistics are both function of quantities T (m,n)
GLR and S

(m,n)
GLR , re-

spectively, which have been shown in previous chapters can be written as a linear filter

applied to the received data for each node. Therefore, under this interpretation, the GLRT

and SIRP-GLRT for inverse gamma texture are both functions of the output of a filter with

unit circle roots in the known covariance case. Hence, imposition of the unit circle prop-

erty is justified in the practical case, and we are free to design filters which enforce the unit

circle roots constraint for each node.
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7.6 Covariance Matrix Estimation

The covariance matrix of the clutter speckle component is assumed to be unknown and

must be estimated to transform the detectors into their adaptive counterparts. Assuming

a set of L target-free secondary data are available at each receiver, the sample covariance

matrix is a poor estimate due to the heterogeneous SIRP clutter power. Instead, we will use

an estimate which is more robust to outliers in the secondary data: the fixed point estimator

(FPE) [17]:

Σ̂
t+1

FPE =
Kp

L

L−1∑
ℓ=0

xℓx
H
ℓ

xH
ℓ Σ̂

t

FPExℓ

, (7.34)

where Σ̂
t

FPE is the t-th estimate. The FPE is an approximate maximum likelihood estimate

for the covariance structure and is an unbiased estimator [70]. For the initialization, we set

Σ̂
0

FPE = I.

The FPE minimizes the affect of non-homogeneous clutter power upon the covariance

estimates, but does not take into account any additional structure in the true covariance ma-

trix. For the proposed approach, we will will employ the UCRC-based Toeplitz rectification

approach described in Chapter 6, substituting each node’s rectified covariance estimate in

place of the true covariance in (7.22) and (7.32).

Figure 7.1: Target-centered simulation geometry
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7.7 Simulation Setup

In this section, we describe the computer simulation used to evaluate the performance of the

above mentioned detectors in compound-Gaussian clutter with inverse gamma distributed

texture. A simulated MIMO radar network consisting of N = M = 2 transmitters and

receivers operates at fc = 1 GHz and pulse-repetition frequency (PRF) of 500 Hz. A

target moves linearly with a starting direction θ = 30◦ at a radial velocity of |v|= 108

km/h within the plane. The simulation geometry depicted in Fig. 7.1 is centered upon the

moving target and the angles of the transmitters and receivers with respect to the positive

x-axis are: ϕ1 = −30◦, ϕ2 = 40◦ and θ1 = 0◦, θ2 = 65◦. The target Doppler frequencies

fm,n are assumed known at the N receivers. The scale and shape parameters of the texture

distribution were chosen such that E[σ2
m,n] = 1 which can be achieved using ν = 2 and

β = 1, respectively, and the texture distribution is assumed to be identical for each bistatic

pair in the network.

The complex amplitudes αm,n are assumed to be non-fluctuating, equal constants

across all nodes, allowing the signal-to-clutter ratio (SCR) to be scaled across the entire

network. Noting this, we define the average SCR across the entire network to be,

SCR =
|α|2

KpMN

∑
m

∑
n

aH (fm,n)Σ
−1
m,na (fm,n) . (7.35)

The thresholds corresponding to the GLRT, SIRP-GLRT, and clairvoyant detectors

along with the resulting statistics are computed using Monte-Carlo-based numerical inte-

gration and simulations, respectively, where NMC = 100
PFA

and PFA is the minimum proba-

bility of false-alarm.

Each clutter covariance matrix Σm,n is distinct for each mn-th bistatic pair and defined

according to the exponentially tapered matrix model [8] with the (i, j) element defined as,

Σm,n(i, j) = ρ|i−j|
m,n (7.36)
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Table 7.1: MIMO Simulation Parameters
(m, n) (1,1) (1,2) (2,1) (2,2)
ρm,n 0.9 0.8 0.7 0.85
fm,n 0.2732 0.2638 0.3702 0.3608

where, the exponential parameters ρm,n and normalized Doppler frequencies are given in

Table 7.1. Finally, t=8 iterations when implementing the FPE.

7.7.1 Example 1 : Distributed MIMO Moving Target Detection

Figures 7.2a and 7.2b illustrate the performance of the SIRP-GLRT and GLRT for Kp=12

pulses per node and L = 24 secondary data at each receiver. For Fig. 7.2a, a network

SCR=−5 dB is used to compute the performance, and for Fig. 7.2b; the minimum false

alarm rate is PFA=10−3 to ease the computational burden.

Slight performance contrast between the SIRP-GLRT and GLRT is evident in Figs. 7.2a

and 7.2b, where the inclusion of prior knowledge about the clutter power distribution re-

sults in a slight performance improvement when the UCRC Toeplitz rectification is used.

Conventional Topelitz rectification is also included in these results, where the resulting rec-

tified covariance estimate is obtained by averaging along the diagonals [35] and substituted

into the GLRT in (7.22). Evidently, this approach suffers severe performance degrada-

tion and erratic performance at varying false alarm rates shown in Fig. 7.2a. The GLRT

and SIRP-GLRT using only the FPE perform second best, and the performance constrast

between the two detectors is not as clear as when the UCRC Toeplitz rectification is used.

179



(a) ROC

(b) PD vs. SCR

Figure 7.2: Detection performance with Kp = 12 and L= 13 secondary data (a) ROC (b)
PD vs. SCR.
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7.7.2 Example 2 : MIMO Moving Target Detection with Limited Sec-

ondary Data

In this example, the performance of the distributed MIMO GLRT and SIRP-GLRT are

considered where the number of secondary data are limited. Again, the receiver operating

characteristics are computed using a constant network SCR=−5 dB and the probability of

the detection versus SCR results are computed using PFA=10−3. Kp=12 pulses per node

are used and L=13 secondary data are present at each receiver.

Figures 7.3a and 7.3b illustrate the performance of the SIRP-GLRT and GLRT using

the different covariance estimates. Similar to the results shown in Section 7.7.1, there is a

performance contrast between the GLRT and SIRP-GLRT when the UCRC Toeplitz recti-

fication approach is used. The performance of the SIRP-GLRT/GLRT are greatly impacted

when only the FPE is used, suffering a roughly 9 dB performance loss over the same detec-

tors using the UCRC Toeplitz rectification. Additionally, comparing Figures 7.2b and 7.2a

against Figures 7.3b and 7.3a shows that the performance disparity for the SIRP-GLRT and

GLRT employing the UCRC Toeplitz rectification estimate is not as drastically impacted

by the reduction of the secondary data.

7.7.3 Example 3 : Convergence of the MIMO SIRP-GLRT and GLRT

This final example investigates the convergence of the GLRT towards the SIRP-GLRT

when the (m,n)-th covariance matrix is known for each detector. However, the textures and

complex amplitudes are assumed unknown and estimated. Figure 7.4 shows the probability

of detection versus the network SCR as the number of pulses per node increases. From this

result, it is clear that the GLRT converges to SIRP-GLRT performance, illustrating the

diminished utility of prior knowledge about the texture distribution as the number of pulses

per node increases. This is an extension of the single node result found in [24] to the case of
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(a) ROC

(b) PD vs. SCR

Figure 7.3: Detection performance with Kp = 12 and L= 13 secondary data (a) ROC (b)
PD vs. SCR
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Figure 7.4: Convergence results for SIRP-GLRT and GLRT for increasing number of
pulses per node.

distributed MIMO, where the GLRT convergence occurred around 16 pulses. Practically,

this result demonstrates that for a distributed MIMO radar network, the performance loss

of the GLRT over the SIRP-GLRT is negligible when using a smaller number of pulses per

node when compared to the single-input single-output case.

7.8 Conclusion

This chapter compares the performance of the GLRT and SIRP-GLRT for moving target

detection using an active MIMO radar network in compound-Gaussian clutter. The clutter

were modeled as SIRP where the texture component follows an inverse-Gamma distribu-

tion. Exploiting the properties of this texture distribution within the SIRP-GLRT definition

yields a closed-form expression for a detector, which explicitly accounts for the stochastic

nature of the clutter power. An estimate of the clutter covariance matrix at each node was
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computed from a set of non-homogeneous and target-free secondary data using the fixed

point estimate. The UCRC Toeplitz rectification approach described in Chapter 6 was ap-

plied using the FPE as the starting point and substituted into the corresponding GLRT and

SIRP-GLRT. It was observed that the performance of both the SIRP-GLRT and GLRT in

conjunction with the UCRC Toeplitz rectified estimate exceeds that of the same detectors

when employing the FPE alone. Additionally, the superior performance of the detectors

using the UCRC Toeplitz rectification estimate in both the SIRP-GLRT and GLRT over the

same detectors utilizing the FPE in limited secondary data was also shown. Finally, the

convergence in performance of the GLRT toward the SIRP-GLRT in the known covariance

case was demonstrated for the case of an increasing number of pulses-per-node. The latter

implies that as Kp increases beyond 8 for the case of 2x2 MIMO, the utility of prior knowl-

edge about the texture is diminished and one may forsake the complicated SIRP-GLRT in

favor of the more computationally efficient GLRT.
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Conclusions and Future Work

In this dissertation, a novel Unit Circle Roots Constrained (UCRC) SASP framework was

developed, which leverages polynomial symmetry to enforce unit-circle roots on sensor

array polynomials that appear in beamforming using uniform linear arrays (ULA), and

adaptive moving target detection using symmetrically spaced pulse trains in Gaussian and

compound-Gaussian clutter in single-input single output (SISO) and multiple-input multi-

ple output (MIMO) applications.

The new proof of the unit circle roots property for general SASP optimization with

a linear constraint forms the cornerstone of the research in this dissertation. Though the

same property was shown by Steinhardt et al. in 2004 [97], their proof was only specific for

MVDR beamforming with uniform linear arrays, and no attempt was made to generalize to

other SASP applications, such as the AMF. Our proof does generalize to the AMF, and other

proportional SASP solutions, justifying the imposition of the unit circle roots constraint to

a wider class of signal processing problems.

In Chapter 3, the unit circle roots constrained MVDR algorithm (UCRC-MVDR) was

proposed. The UCRC-MVDR is different from the radial projection approach [102], as

the unit-circle rectification is performed algorithmically; splitting the multidimensional

MVDR problem into multiple one-dimensional MVDR problems. Coupling the unit circle

roots constraint into the MVDR optimization problem by exploiting polynomial conjugate

symmetry, the resulting root updates can be found in closed form and minimize the average

output variance. It was also shown that the UCRC-MVDR has a computational complexity
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proportional to the sample matrix inversion (SMI) technique. Through extensive simu-

lation examples, it is shown that the UCRC-MVDR drastically outperforms conventional

techniques, including the recently proposed unit circle based MVDR approach [102].

In Chapter 4, based on the similarity between the derivation of the AMF and the

MVDR, the unit circle roots constraint was applied to the AMF for radar moving target

detection in homogeneous Gaussian clutter. Two versions of unit circle roots constrained

AMF algorithm were presented: UCRC-AMF and M-UCRC-AMF. The former uses the

conventional SCM to initialize the algorithm as well as to impose the unit circle property

on each AMF root, the latter is initialized in the same manner using the SMI-based AMF

roots, but the FB-SCM is used in the second stage for enforcing the unit circle property.

Both UCRC-AMF and M-UCRC-AMF approaches estimate each root in closed-form by

enforcing conjugate-symmetry upon the first-order polynomial factors. The UCRC-AMF

is shown to outperform the SMI-based AMF, and the M-UCRC-AMF drastically outper-

formed the PS-AMF and UCRC-AMF for limited secondary data. The equivalence be-

tween the FB-AMF and PS-AMF was also shown, where we argued that since both detec-

tors exploit the persymmetric structure of the clutter plus noise covariance matrix, similar

performance can be expected.

In Chapter 5, radar moving target detection in low rank clutter was considered, and the

unit circle approach was extended to accommodate this scenario. It was shown empirically

that the roots of the PCI-based adaptive filter occur near their Clairvoyant counterparts

on the unit circle. Hence, the unit circle constraint was enforced by radially projecting

the roots of the PCI-based adaptive filter onto the unit circle. Using the properties of or-

thogonal projection matrices, the unit circle GLRT is derived by combining the primary

and secondary data, and showed dramatically improved performance over the GLRT based

on the eigenvectors. Additionally, it was also shown that asymptotically, the UC-GLRT

provides constant false alarm rate with respect to the noise and clutter coefficients.

From the theory provided in Chapter 2 and Carathèodory’s Vandermonde decompo-
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sition, Chapter 6 proposed a Toeplitz-structured covariance matrix estimate obtained from

the roots at the output of the UCRC algorithm. Unlike the approach in Chapters 3, 4,

and 5, enforcing Hermitian Toeplitz structure naturally provides unit circle roots, instead

of imposing them directly upon the filter design. This new covariance estimate showed

improved detection performance in compound-Gaussian clutter when used in conjunction

with the normalized adaptive matched filter for SISO and distributed MIMO moving target

detection in Chapters 6 and 7, respectively.

8.0.1 List of Proposed Algorithms

Several algorithms have been proposed in this dissertation for temporal and spatial signal

processing applications. In this section, the proposed algorithms are listed along with their

intended area of application and differences between one another.

UCRC-MVDR

The UCRC-MVDR algorithm proposed in Chapter 3 pertains to spatial adaptive beam-

forming with uniform linear arrays. Using the UCRC algorithm, a beamformer with unit

circle roots is designed by minimizing the output variance subject to a linear constraint on

the look direction, and by enforcing conjugate symmetry upon the first-order array poly-

nomial factors. The UCRC-MVDR is initialized using the roots of the SMI-based MVDR

beamformer and each root is placed onto the unit circle boundary in parallel, i.e., each esti-

mated root is independent of the previously estimated root. Once all of the roots are found,

mainbeam preservation is performed by moving any unit circle roots that appear within the

mainbeam, i.e., the area between the two CBF nulls symmetric about the signal of interest,

to the nearest CBF null.
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UCRC-AMF

The UCRC-AMF and M-UCRC-AMF algorithms proposed in Chapter 4 pertain to adap-

tive detector design in the temporal domain using symmetrically spaced pulse trains. Like

the UCRC-MVDR, both M-UCRC-AMF and UCRC-AMF design the adaptive detector

by maximizing the output SINR subject to a linear constraint, while imposing unit circle

roots by enforcing conjugate symmetry upon the first-order filter polynomial factors. Both

UCRC-AMF and M-UCRC-AMF are initialized using the roots of the SMI-based adap-

tive matched filter. The difference between the UCRC-AMF and the M-UCRC-AMF is

that the UCRC-AMF uses the sample covariance matrix to estimate the unit circle roots

and the M-UCRC-AMF uses the forward-backward sample covariance matrix to estimate

the roots. Unlike the UCRC-MVDR, M-UCRC-AMF and UCRC-AMF estimate the roots

sequentially

UC-GLRT

The UC-GLRT algorithm proposed in Chapter 5 radially projects the roots of the PCI-based

adaptive filter onto the unit circle to improve low-rank clutter suppression. Additionally, the

UC-GLRT combines the primary and secondary data to improve detection and the white

noise power estimation performance. Unlike the M-UCRC/UCRC-AMF, the UC-GLRT

enforces the unit circle roots constraint by radially projecting the roots instead of optimizing

the output SINR. In Chapter 3, radial projection of the SMI-based roots was disregarded as

suboptimal in the beamforming context. However, in Chapter 5, it was shown that while the

SMI-based roots occur far from the unit circle boundary, a majority of the PCI-based roots

occur near the unit circle, making radial projection a more intuitively feasible approach.

Using the properties of orthogonal projection matrices, the UC-GLRT results in a closed-

form filter representation which is guaranteed to have unit circle roots.
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UCRC-Toeplitz Rectification

UCRC Toeplitz rectification (UCRC-TR) proposed in Chapter 6 uses the roots at the output

of the UCRC algorithm to reconstruct a Toeplitz-structured covariance matrix. The result-

ing structured estimate can then be used to compute an adaptive filter which is guaranteed

to have unit circle roots according to Theorem 1. Thus, an adaptive filter with unit circle

roots can be created implicitly, instead of explicitly by using the roots to design the filter.

Though the output roots of the UCRC-AMF were used in Chapter 6, UCRC-TR is

independent of spatial or temporal application, and only requires a set of unit circle roots

to create a Toeplitz-structured covariance estimate. Thus, applications in either the spatial

or temporal domian can be considered.

8.1 Stability Considerations of the UCRC Approach

The UCRC algorithm is the cornerstone of the research in this dissertation. Due to its

fundamental importance to this research, some consideration is necessary when discussing

the limitations of the UCRC approach; namely, algorithm stability when the number of

roots is large.

The number of roots the UCRC algorithm must correct grows in proportion to the array

size or CPI length. When the number of roots is large, initialization of the UCRC algorithm

can become unstable due to rooting a high-degree SMI-based polynomial at the initializa-

tion step. Additionally, numerical instabilities when computing the final filter weights can

arise after all of the roots have been estimated. Fortunately, the initial roots do not need

to be limited to the SMI, and the roots of other filters can be used instead. For example,

initializing the UCRC-MVDR with the roots of the conventional beamformer has shown

promising preliminary results.

Finally, it is necessary to mention that the computation of the weighted covariance

matrix forms a significant bottleneck in the UCRC algorithm. Therefore, more work is
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necessary to streamline the UCRC approach when correcting each individual root. It is

hypothesized that further optimizing the UCRC algorithm may improve the aforementioned

stability concerns.

8.2 Extensions and Future Work

For the remainder of this chapter, two areas of great interest for expanding the unit circle

approach described in this thesis are discussed: beamforming using array geometries other

than uniform linear arrays and radar space-time adaptive processing.

The foremost assumption in Chapter 3 for the UCRC-MVDR derivation was a uniform

linear array. In practice, arrays with ideal spacing or geometry can be difficult and costly

to design. Additionally, the MVDR is not specific to the array geometry employed, and so

the UCRC-MVDR only addresses a subclass of SASP application pertinent to MVDR with

ULAs. Uniform circular arrays (UCAs) have several advantages over ULAs, including

uniform direction of arrival performance [7]. Since the 1990’s beamspace transformations

(BT) [22, 98, 64] have been developed which transform the UCA steering vectors into

Vandermonde vectors. Therefore, one possible application of the UCRC approach to non-

ULA beamforming is to the processing of UCA data under the application of beamspace

transformations.

Since its inception over 50 years ago, space-time adaptive processing (STAP) con-

tinues to be an area of ongoing research. Integral to most modern radar systems, STAP’s

increased degrees of freedom allow for powerful adaptivity in the presence of both clutter

and jamming. The optimal space-time filter is proportional and analogous to Eq. (2.2) [67],

where the space-time covariance is of dimension NsKp ×NsKp, and the steering vector is

of dimension NsKp× 1 and is a function of the Doppler and spatial frequencies. However,

fully-adaptive STAP is limited, due to the large amount of secondary data necessary to ob-

tain near optimal performance [75]. Additionally, STAP is a joint domain approach and the
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techniques described in this dissertation can only be applied to the space or time domain

separately.

One possible method to overcome this limitation is by processing the received space-

time data in each domain separately. This approach is known as the extended factored

algorithm (EFA) or joint domain localization (JDL) and are commonly used techniques for

reduced dimension STAP [67]. Since the AMF can be utilized to perform adaptive Doppler

processing, the proposed unit circle roots approach can be readily incorporated into the

previously described single-domain method. Moreover, it is hypothesized that combining

both spatial and temporal unit circle approaches in a prudent manner will result in improved

STAP algorithm performance.

Some remarks on potential future work on specific topics have been addressed in the

concluding sections of respective Chapters and are not repeated here.

Final considerations for future work pertain to the last two chapters of this dissertation.

M-UCRC/UCRC-AMF were not included in Chapter 6 due to their poor performance in

compound-Gaussian clutter. Improvements to these algorithms are necessary to generalize

their performance to incorporate the broader class of compound-Gaussian clutter models

by developing an UCRC version of the normalized Adaptive Matched filter (NAMF) [19].

Additionally, in Chapter 7, only distributed MIMO for compound-Gaussian clutter was

considered. However, due to the superior performance of M-UCRC-AMF for homoge-

neous clutter, an extension of the M-UCRC-AMF for distributed MIMO in homogeneous

Gaussian clutter should also be considered.
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