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ABSTRACT

In the context of an heterogeneous disturbance with a Low
Rank (LR) structure (referred to as clutter), one may use the
LR approximation for detection process. Indeed, in such con-
text, adaptive LR schemes have been shown to require less
secondary data to reach equivalent performances as classical
ones. The LR approximation consists on cancelling the clut-
ter rather than whitening the whole noise. The main problem
is then the estimation of the clutter subspace instead of the
noise covariance matrix itself. Maximum Likelihood estima-
tors (MLE), under different hypothesis [1][2][3], of the clutter
subspace have been recently proposed for a noise composed
of a LR Compound Gaussian (CG) clutter plus a white Gaus-
sian Noise (WGN). This paper focuses on the performances
of the LR Adaptive Normalized Matched Filter (LR-ANMF)
detector based on these different clutter subspace estimators.
Numerical simulations illustrate its CFAR property and ro-
bustness to outliers.

Index Terms— Covariance Matrix Estimation, Maxi-
mum Likelihood, Low Rank, ANMF Detector, Compound
Gaussian, STAP.

1. INTRODUCTION
In most radar applications the additive disturbance can be
modeled by a sum of two noises: a White Gaussian Noise
(WGN), due to electronics, and the so-called clutter, the re-
sponse of the environment to the emitted signal. In some con-
texts, the clutter is known to have la Low rank (LR) struc-
tire, i.e. to have a singular Covariance Matric (CM) of rank
R�M (with M the dimension of the data). In practice, this
LR structure of the disturbance can be exploited to build LR
processes. The approach consists in canceling the clutter in-
stead of performing a classical whitening the noise. Thus LR
methods are not based on the estimated noise CM but on the
estimated clutter subspace projector (CSP) only, usually de-
rived from an SVD of a CM estimate. LR adaptive techniques
present two main advantages. Firstly, estimating the CSP re-
quires less secondary data to ensure good performance. For
example, onlyK ≥ 2R secondary data are needed to ensure a
classical 3dB loss of the output SNR compared to optimal fil-

tering [4], while classical filter requires K ≥ 2M secondary
data to reach equivalent performance [5]. Secondly, LR meth-
ods are robust to secondary data contamination by outliers [6].

Classically the LR clutter has been modeled by a corre-
lated Gaussian noise with eigenvalues that largely exceeds
the power of the WGN, leading to the Sample Covariance
Matrix (SCM) as estimator of the CM and CSP. Neverthe-
less, the SCM is not well adapted in highly heterogeneous
or impulsive clutter environment. Therefore, developing fil-
ters/detectors based on it may lead to poor performance. To
describe an heterogeneous clutter, one of the most general
model is provided by the Complex Elliptically Symmetric
distribution (CES) [7]. Among the general CES class, this
paper will focus on the Compound-Gaussian (CG) distribu-
tions1 that covers a large panel of well known heavy-tailed
distributions. Eventually, the disturbance will be modeled in
this paper as a LR-CG clutter plus WGN.

In that context, one can derive the CSP from the SVD of
a robust estimate of the CM, such as M-estimators [7] or the
Fixed Point Estimator (FPE)[8]. However, these estimators
require K > M to be computed, which does does not allow
to take fully advantage of the LR hypothesis if 2R � M .
A currently an active topic of research focuses on regulariza-
tion of the algorithms to compute these estimators in under
sampled configurations [9][10]. Nevertheless, with regard to
the considered model of LR-CG plus WGN, recent results are
providing direct CSP estimators [1][2][3]. These estimators
are derived from a intermediate matrix that is not necessarily
an estimate of the CM and can be computed when K > R.

For the considered disturbance, the LR Normalized
Matched Filter (LR-NMF) detector and its theoretical per-
formance have been introduced in [11]. Its adaptive version,
the LR-ANMF, have also been investigated [11][6]. How-
ever, the choice of the appropriate CSP estimator to perform
LR adaptive detection remains an opened question. In this
paper, we propose then to study the performance and robust-
ness of the LR-ANMF build from different CSP estimators:
derived from a classical approach (SCM, NSCM), derived

1Also referred to as Spherically Invariant Random Vectors (SIRV) in the
literature



from an MLE approach [2][3] and derived from a regularized
robust estimator [10]. The studied radar configuration is an
airborne Space Time Adaptive Processing (STAP) [12], since
the Brennan Rule [13] shows that the clutter rank is satisfying
R � M in this application. Results are derived from Monte
Carlo simulations and also an illustration from a real data set.

2. SIGNAL MODEL AND LR DETECTOR

The stated problem is to infer if the received signal z, cor-
rupted by an additive disturbance n, also contains a complex
known signal d. One also have a set of K secondary data
{z}k which are signal free realizations of the disturbance.
The two hypothesis are then:{

H0 : z = n, zk = nk k,∈ [[1,K]]
H1 : z = d + n, zk = nk, k ∈ [[1,K]]

(1)

The additive disturbance is the sum of the ground clutter c
and a thermal noise g:

n = c + g (2)

The thermal noise is modeled by a WGN of known power
σ2 i.e. n ∼ CN (0, σ2Im). The hypothesis of known σ2 is
made for describing a valid theoretical framework. In prac-
tice, presented results could be applied with a prior estimate
of σ2 used as its actual value. The ground clutter is an het-
erogeneous noise that has a different power in each cell k.
The randomness of its power is induced by spatial variation
in the radar backscattering. In such a situation, it is common
to model this kind of clutter by a CG process [7]. A real-
ization of a CG process corresponds to a Gaussian random
vector multiplied the square root of a random power factor
called the texture τ of Probability Density Function (PDF)
fτ . Moreover, in side looking STAP, the rank R of the clutter
CM can be evaluated [13] and is verifying R � M . One has
then c ∼ CG(0,Σc, fτ ). With the rank R clutter CM defined
by its eigendecomposition:

Σc =

R∑
r=1

crvrv
H
r (3)

The whole noise covariance matrix is then defined as

Σ = σ2IM + E(τ)Σc (4)

However, in a realistic STAP application, no prior information
is available on the PDF fτ . In that case, each secondary data
may be described as zk ∼ CN (0,Σk), with

Σk = σ2IM + τkΣc , (5)

where the textures of each realizations τk are considered as
unknown deterministic parameters.

Usual detection processes require the noise CM Σ. How-
ever, considering the described framework, one can exploit
the LR structure of the noise and cancel the clutter instead of
whitening it. Adaptive LR processes are therefore based on
the following LR approximation:

Σ−1 ∼ 1

σ2
Π⊥c ∝ Π⊥c (6)

where Π⊥c is the projector onto the clutter subspace com-
plementary and Πc is the rank R CSP, constructed from the
eigenvectors of the clutter CM:

Π⊥c = IM −Πc = IM −
R∑
r=1

vrv
H
r (7)

Leading to the LR-Normalized Matched Filter as detection
test:

ΛLR−NMF =
(dHΠ⊥c z)2

(dHΠ⊥c d)(zHΠ⊥c z)

H1

≷
H0

δLR−NMF (8)

In real case, the CSP is unknown and has to be estimated
with the secondary data {z}k to process adaptive detection.
The interest of the LR approximation is that it needs less
secondary data to reach equivalent performances as classical
schemes [4], typically K ∼ 2R instead of K ∼ 2M . Clas-
sically, an estimator of the CSP Π̂c is derived from the SVD
of an estimate of the noise CM Σ̂. The LR-ANMF is then
defined by:

Λ̂LR−ANMF =
(dHΠ̂⊥c z)2

(dHΠ̂⊥c d)(zHΠ̂⊥c z)

H1

≷
H0

δLR−ANMF (9)

3. CLUTTER SUBSPACE ESTIMATORS
This section simply recalls the expression of the estimators
that are going to be tested. For a more detailed review of their
related model, properties and computation methods, we refer
the reader to the associated references.

definition 1 The classical Sample Covariance Matrix (SCM),
which is the MLE of the CM in a Gaussian context is:

Σ̂SCM =
1

K

K∑
k=1

zkz
H
k (10)

The projector estimate derived from the SVD of the SCM will
be denoted Π̂SCM.

definition 2 The Normalized SCM (NSCM) is defined by:

Σ̂NSCM =
1

K

K∑
k=1

zkz
H
k

zHk zk
(11)

The NSCM is biased estimate of the CM, however it has been
shown that it provides a consistent and robust estimate of the
CSP [14][6]. The projector estimate derived from the SVD of
the NSCM will be denoted Π̂NSCM.



In this paper, since we consider the case K = 2R < M , the
FPE cannot be defined. However, it can be computed it with
a regularization algorithm:

definition 3 The Shrinkage-FPE (SFPE), also known as
Diagonnaly-Loaded FPE [9][10], is defined for β ∈]0, 1] by
the fixed point equation:

Σ̂S-FPE(β) = (1− β)
M

K

K∑
k=1

zkz
H
k

zHk Σ̂−1S-FPE(β)zk
+ βIM (12)

The projector estimate derived from the SVD of the S-FPE
will be denoted Π̂S-FPE.

definition 4 Under the assumption of equals eigenvalues of
the clutter CM, the approached MLE of the CSP (A-MLE) [2],
denoted Π̂A-MLE, is the projector onto the subspace defined by
the R strongest eigenvectors of the matrix:

R̂ =

K∑
k=1

τ̂k
σ2 + τ̂k

zkz
H
k , (13)

with the estimated textures:

τ̂k =

{
||Π̂czk||2/R− σ2 if ||Π̂czk||2 > Rσ2

0 else
(14)

This estimator’s expression stands when there is no prior in-
formation on the texture PDF, which is more realistic for a
STAP application. However, the case of known texture PDF
is treated in [1].

definition 5 Under the assumption of high CNR, the MLE of
the CSP is the projector onto the subspace defined by the R
strongest eigenvectors of the LR-FPE [3], defined for forK >
R as:

Σ̂LR-FPE =
M

K

K∑
k=1

zkz
H
k

zHk Σ̂†RLR-FPEzk
, (15)

where †R is the rankR pseudo inverse operator. The projector
estimate derived from the SVD of the LR-FPE will be denoted
Π̂LR-FPE.

For the rest of the paper, the adaptive detectors Λ̂LR will be
denoted with the same index as the CSP estimate they are
build from. For example Λ̂SCM denotes the LR-ANMF build
from Π̂SCM .

4. SIMULATION RESULTS
This section presents Monte-Carlo simulations for a realis-
tic STAP configuration. STAP is a technique used in airborne
phased array radar to detect moving target embedded in an in-
terference background such as jamming or strong clutter [12].
The radar receiver consists in an array of Q antenna elements
processing P pulses in a coherent processing interval. It is

Fig. 1. PFA versus threshold (left) and the PD versus the SNR for fixed
PFA of 10−2 (right). STAP configuration: Q = 8, P = 8,M = PQ = 64.
Center frequency f0 = 450 MHz, bandwidth B = 4 MHz. Radar velocity
v = 100 m/s. Inter-element spacing d = c

2f0
with c the celerity of light.

Pulse repetition frequency fr = 600 Hz. R = 15 computed from Brennan
rule [13].The texture PDF is a Gamma law of shape parameter ν = 1 and
scale parameter 1

ν
. CNR= 30dB. Target speed VT = 35m/s and angle

φT = 10◦. The number of secondary data is set to K = 2R.

Fig. 2. CFAR test (left): PFA versus ν for a fixed threshold. Robustness
test (right): PD versus ONR. Same STAP configuration.

important to notice that application fits the considered model
since in side looking STAP, the clutter CM is known to be
LR. Moreover, the rank can be evaluated thanks to the Bren-
nan Rule [13].

Figure 1 shows both the Probability of False Alarm (PFA)
versus the threshold of the detector and the Pobability of De-
tection (PD) versus the SNR for a fixed PFA of 10−2. These
figures illustrate that for a fixed PFA, the best PD is achieved
indifferently with Λ̂SCM , Λ̂S−FPE or Λ̂A−MLE . This shows
that the hypothesis of equals eigenvalues of the CM does not
strongly impacts the performance of Λ̂A−MLE . The perfor-
mance of Λ̂LR−FPE is below, meaning that the high CNR
hypothesis is probably not satisfied enough, but is still bet-
ter than Λ̂NSCM . Figure 2 right shows Probability of False
Alarm (PFA) versus ν for a fixed threshold: it presents an
illustration of the relatively (acceptable for ν > 0.25) CFAR
property of the LR-ANMF. In Figure 2 left, the steering vector
of the target is inserted into the secondary data. The presence
of this outlier in the data deteriorates the performance of the
detectors. In that case, Λ̂LR−FPE achieves the best robust-
ness.



Fig. 3. Output detector of Λ̂A−MLE (left up), Λ̂A−NSCM (right up),
Λ̂S−FPE (left down), Λ̂LR−FPE (right down). K = 100.

Fig. 4. Output detector of Λ̂A−MLE (left up), Λ̂A−NSCM (right up),
Λ̂S−FPE (left down), Λ̂LR−FPE (right down). K = 250 with outlier in
secondary data.

5. APPLICATION TO REAL DATA

The performance of LR-ANMF detectors is tested on a real
STAP data set. The STAP data are provided by the French
agency DGA/MI: the clutter is real but the targets are syn-
thetic. The number of sensors is Q = 4 and the number
of coherent pulses is P = 64. The center frequency and
the bandwidth are respectively equal to f0 = 10GHz and
the bandwidth B = 5MHz. The radar velocity is given by
V = 100m/s. The inter-element spacing is d = 0, 3m and the
pulse repetition frequency is fr = 1kHz. The clutter rank,
computed from Brennan Rule, is R = 45 and the CNR is
equal to 20dB. Targets with a Signal to Clutter Ratio (SCR)
of −5dB is present.

Figure 3 presents the output of the different detectors for
K = 100 ∼ 2R. It illustrates the relatively equivalent per-
formance of the detectors when there is no corruption. Figure
4 presents the output of the different detectors for K = 250
with data containing the target as an outlier and shows the
robustness of Λ̂LR−FPE .

6. CONCLUSION
In this paper, we have presented numerical performances of
LR-ANMF build from different CSP estimators. The CFAR
property of the adaptive LR detectors have been observed for
every estimator. Results show that the best performances in
terms of PD/PFA is achieved with Λ̂A−MLE , Λ̂S−FPE and
even Λ̂SCM . However robustness tests and a real data set have
also illustrated the interest of the LR-FPE, which seems to
propose a good trade off between performance and robustness
for LR adaptive detection.
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