117 research outputs found

    ROBUST OPTIMIZATION OF STOCHASTIC HYBRID JOB-SHOP SCHEDULING WITH MULTIPROCESSOR TASK

    Get PDF
    Due to the large number of uncertainties in the production workshop, the actual performance of the scheduling scheme deviated significantly from the theoretical value. In order to enhance its anti-jamming capability, this paper developed the robust optimization of stochastic hybrid job-shop scheduling with multiprocessors tasks. Firstly, predictable uncertainties were abstracted into processing time variations and described by scenario analysis in the modeling process. Secondly, based on the analysis of the advantages and disadvantages of traditional robust optimization models, a new Expected Cmax and the Worst scenario Model (ECWM) was proposed. The model improved the single-index robust optimization model and avoided the disadvantage that the Max Regret Model is computationally intensive. Finally, the effectiveness of ECWM is verified by simulation experiments. The results show that the scheduling obtained by ECWM has good average performance and anti-risk ability, which indicates that the model achieves a good balance in scheduling performance enthusiasm and risk resistance

    Discrete Particle Swarm Optimization for Flexible Flow Line Scheduling

    Get PDF
    Previous research on scheduling flexible flow lines (FFL) to minimize makespan has utilized approaches such as branch and bound, integer programming, or heuristics. Metaheuristic methods have attracted increasing interest for solving scheduling problems in the past few years. Particle swarm optimization (PSO) is a population-based metaheuristic method which finds a solution based on the analogy of sharing useful information among individuals. In the previous literature different PSO algorithms have been introduced for various applications. In this research we study some of the PSO algorithms, continuous and discrete, to identify a strong PSO algorithm in scheduling flexible flow line to minimize the makespan. Then the effectiveness of this PSO algorithm in FFL scheduling is compared to genetic algorithms. Experimental results suggest that discrete particle swarm performs better in scheduling of flexible flow line with makespan criteria compared to continuous particle swarm. Moreover, combining discrete particle swarm with a local search improves the performance of the algorithm significantly and makes it competitive with the genetic algorithm (GA)

    Energy-Efficient Flexible Flow Shop Scheduling With Due Date and Total Flow Time

    Get PDF
    One of the most significant optimization issues facing a manufacturing company is the flexible flow shop scheduling problem (FFSS). However, FFSS with uncertainty and energy-related elements has received little investigation. Additionally, in order to reduce overall waiting times and earliness/tardiness issues, the topic of flexible flow shop scheduling with shared due dates is researched. Using transmission line loadings and bus voltage magnitude variations, an unique severity function is formulated in this research. Optimize total energy consumption, total agreement index, and make span all at once. Many different meta-heuristics have been presented in the past to find near-optimal answers in an acceptable amount of computation time. To explore the potential for energy saving in shop floor management, a multi-level optimization technique for flexible flow shop scheduling and integrates power models for individual machines with cutting parameters optimisation into energy-efficient scheduling issues is proposed. However, it can be difficult and time-consuming to fine-tune algorithm-specific parameters for solving FFSP

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Modelling and Scheduling Lot Streaming Flexible Flow Lines

    Get PDF
    Although lot streaming scheduling is an active research field, lot streaming flexible flow lines problems have received far less attention than classical flow shops. This paper deals with scheduling jobs in lot streaming flexible flow line problems. The paper mathematically formulates the problem by a mixed integer linear programming model. This model solves small instances to optimality. Moreover, a novel artificial bee colony optimization is developed. This algorithm utilizes five effective mechanisms to solve the problem. To evaluate the algorithm, it is compared with adaptation of four available algorithms. The statistical analyses showed that the proposed algorithm significantly outperformed the other tested algorithms

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments

    A statistical comparison of metaheuristics for unrelated parallel machine scheduling problems with setup times

    Get PDF
    Manufacturing scheduling aims to optimize one or more performance measures by allocating a set of resources to a set of jobs or tasks over a given period of time. It is an area that considers a very important decision-making process for manufacturing and production systems. In this paper, the unrelated parallel machine scheduling problem with machine-dependent and job-sequence-dependent setup times is addressed. This problem involves the scheduling of tasks on unrelated machines with setup times in order to minimize the makespan. The genetic algorithm is used to solve small and large instances of this problem when processing and setup times are balanced (Balanced problems), when processing times are dominant (Dominant P problems), and when setup times are dominant (Dominant S problems). For small instances, most of the values achieved the optimal makespan value, and, when compared to the metaheuristic ant colony optimization (ACOII) algorithm referred to in the literature, it was found that there were no significant differences between the two methods. However, in terms of large instances, there were significant differences between the optimal makespan obtained by the two methods, revealing overall better performance by the genetic algorithm for Dominant S and Dominant P problems.FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope UIDB/00319/2020 and EXPL/EME-SIS/1224/2021 and PhD grant UI/BD/150936/2021
    corecore