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Summary 

 

The objective of the work is to deepen into hybrid flow shop environments 

and scheduling methods, in order to define theoretical aspects, and the 

practical ones with particular attention for the relationship with the course 

made by prof. Faccio named ―Impianti Industriali‖.  

Basically it consists in a first phase of research into the literature, and then 

a second phase of critical analysis, and deepen of related concepts. 

To make the research remarkable a little number of papers have been 

considered, exactly thirty, because a bigger number could be too much to 

be analyzed properly; and, more importantly, only recent papers, because 

firstly they represent the present state of art, and secondly into their 

bibliography other relevant papers can be found, helping the reader to 

understand the subjects treated, and to deepen it if he wants.  

The literature analysis should highlight instruments, methods, algorithms 

judged interesting and possible object for application and evaluation. 

The second part of the work is a critical analysis of these papers, and the 

contents, trying to understand advantages and eventual errors or problems 

or risks related to these concepts.  

Finally, after fully understand all of this, a little elaboration is proposed, with 

the goal of signal the direction took from the scientists and showed by the 

literature, and maybe some personal opinions. 
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Chapter 1: 

Introduction to scheduling in hybrid flow 

shop environments 

 

1.1 The scheduling problem 

 

Scheduling is an important tool for manufacturing and engineering, where it 

can have a major impact on the productivity of a process. In manufacturing, 

the purpose of scheduling is to minimize the production time and costs, by 

telling a production facility when to make, with which staff, and on which 

equipment. Production scheduling aims to maximize the efficiency of the 

operation and reduce costs. 

Production scheduling tools greatly outperform older manual scheduling 

methods. These provide the production scheduler with powerful graphical 

interfaces which can be used to visually optimize real-time work loads in 

various stages of production, and pattern recognition allows the software to 

automatically create scheduling opportunities which might not be apparent 

without this view into the data. For example, an airline might wish to 

minimize the number of airport gates required for its aircraft, in order to 

reduce costs, and scheduling software can allow the planners to see how 

this can be done, by analyzing time tables, aircraft usage, or the flow of 

passengers. 

Companies use backward and forward scheduling to allocate plant and 

machinery resources, plan human resources, plan production processes and 

purchase materials. 

Forward scheduling is planning the tasks from the date resources become 

available to determine the shipping date or the due date. 

Backward scheduling is planning the tasks from the due date or required-by 

date to determine the start date and/or any changes in capacity required. 

The benefits of production scheduling include: process change-over 

reduction, inventory reduction, reduced scheduling effort, increased 

production efficiency, real time information. 
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Various charts are used to help schedulers visually manage schedules and 

constraints. The Gantt chart (Pinedo, 2002) is a display that shows activities 

on a horizontal bar graph in which the bars represent the time of the 

activity. Below is an example of a Gantt chart. 

 

 

1.1.1 NP-hardness and the travelling salesman problem 

 

NP-hard (non-deterministic polynomial-time hard), in computational 

complexity theory, is a class of problems that are, informally, "at least as 

hard as the hardest problems in NP". A problem H is NP-hard if and only if 

there is an NP-complete problem L that is polynomial time Turing-reducible 

(from Alan Turing, it means that the L problem is solvable knowing H 

problem solution) to H. In other words, L can be solved in polynomial time 

by an oracle machine with an oracle for H. Informally, we can think of an 

algorithm that can call such an oracle machine as a subroutine for solving 

H, and solves L in polynomial time, if the subroutine call takes only one step 

to compute. NP-hard problems may be of any type: decision problems, 

search problems, or optimization problems (Garey & Johnson, 1979). As 

consequences of definition, we have (note that these are claims, not 

definitions): 

 Problem H is at least as hard as L, because H can be used to solve L; 

 Since NP-complete problems transform to each other by polynomial-

time many-one reduction (also called polynomial transformation), all 

NP-complete problems can be solved in polynomial time by a 

Fig 1.1: Gantt-chart for an example problem, Ruiz et al. (2008) 
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reduction to H, thus all problems in NP reduce to H; note, however, 

that this involves combining two different transformations: from NP-

complete decision problems to NP-complete problem L by polynomial 

transformation, and from L to H by polynomial Turing reduction; 

 If an optimization problem H has an NP-complete decision version L, 

then H is NP-hard. 

A common mistake is to think that the NP in NP-hard stands for non-

polynomial. Although it is widely suspected that there are no polynomial-

time algorithms for NP-hard problems, this has never been proven. 

Moreover, the class NP also contains all problems which can be solved in 

polynomial time. 

 

An historical example of NP-hard problem is the travelling salesman 

problem (TSP): Given a list of cities and their pair-wise distances, the task 

is to find a shortest possible tour that visits each city exactly once. 

The problem was first formulated as a mathematical problem in 1930 and is 

one of the most intensively studied problems in optimization. It is used as a 

benchmark for many optimization methods. Even though the problem is 

computationally difficult, a large number of heuristics and exact methods 

are known, so that some instances with tens of thousands of cities can be 

solved.The TSP has several applications even in its purest formulation, such 

as planning, logistics, and the manufacture of microchips. Slightly modified, 

it appears as a sub-problem in many areas, such as DNA sequencing. In 

these applications, the concept city represents, for example, customers, 

soldering points, or DNA fragments, and the concept distance represents 

travelling times or cost, or a similarity measure between DNA fragments. In 

many applications, additional constraints such as limited resources or time 

windows make the problem considerably harder. 

In the theory of computational complexity, the decision version of the TSP 

belongs to the class of NP-complete problems. Thus, it is likely that the 

worst case running time for any algorithm for the TSP increases 

exponentially with the number of cities. 
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1.2 Hybrid Flow Shop environments 

 

A Hybrid Flow Shop (HFS) consists of series of production stages, each of 

which has several machines operating in parallel, that can be identical, 

uniform or unrelated. Some stages may have only one machine, but at least 

one stage must have multiple machines. The flow of jobs through the shop 

is unidirectional. Each job is processed by one machine in each stage and it 

must go through one or more stage (Elmaghraby & Kamoub, 1997).  

A job consists of several operations to be performed by none, one or more 

machines on each stage. The i-th operation of a job i, to be performed at 

the i-th stage, requires  units of time and can start only after the 

completion of the previous operation from the operation sequence of this 

job. This definition is very general and is the basis of the papers reviewed 

(Ribas et al. 2010).  

The HFS problem can also be represented as a graph G(N,A), where N is a 

set of nodes corresponding to each operation, and A is a set of disjunctive 

arcs describing the set of possible paths in the graph. A solution is a graph 

G(N, S), where S is a subset of the arcs in A but with a fixed direction, i.e., 

Fig. 1. 2:  An optimal TSP tour through Germany’s 15 largest cities. It is the shortest among 
43589145600 (14!/2)  possible tours visiting each city exactly once, Central Intelligence 
Agency (2007) 
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S represents an assignment and ordering of the job operations. Several 

heuristics have been devised using these representation (Ruiz & Vazquez-

Rodriguez, 2010). 

 

1.2.1 Identical, uniform and unrelated machines 

 

In the standard situation, the machines are totally identical, despite that 

each job may have its own processing criteria on the machine.  

When the machines are not identical it should be defined that, they can be 

considered uniform if the speed in which they execute the jobs is uniform, 

i.e. machines power do not depend on the jobs they are running. In other 

words, if pij is the processing time (or weight) Ji on machine Mj, and pij' is 

the processing time on machine Mj' . For Job Ji' , pi'j is the processing time 

on machine Mj and pi'j' is the processing time on machine Mj' , then 

pij=pi'j=pij'=pi'j’.  

If the parallel machines are non-uniform they are called unrelated and and 

they execute jobs in accordance with their power, of course their speed is 

non uniform.  

These distinction is very important because the problem of scheduling is 

really different in these cases, especially in the last one. 

 

1.2.2 Batch production 

 

Batch production is the manufacturing technique of creating a group of 

components at a workstation before moving the group to the next step in 

production.  

There are several advantages of batch production; it can reduce initial 

capital outlay because a single production line can be used to produce 

several products. As shown in the example, batch production can be useful 

for small businesses who cannot afford to run continuous production lines. 

If a retailer buys a batch of a product that does not sell, then the producer 

can cease production without having to sustain huge losses.  

Batch production is also useful for a factory that makes seasonal items, 

products for which it is difficult to forecast demand, a trial run for 

production, or products that have a high profit margin. Batch production 
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also has disadvantages. There are inefficiencies associated with batch 

production as equipment must be stopped, re-configured, and its output 

tested before the next batch can be produced. Idle time between batches is 

known as downtime. The time between consecutive batches is known as 

cycle time. Cycle time variation is a Lean Manufacturing metric.  

 

1.2.3 Buffer between stages 

 

Between the various stages of an hybrid flow shop environment there can 

be a definite amount of space, called buffer. This can be a part of the 

conveyor belt, or a disarticulation in the flow, or even a defined space out of 

the same flow. This is a location in where the workflow can wait to be 

worked in the next stage; the dimension of the buffer is an index of 

efficiency and scheduling precision.  

The papers with a limited buffer dimension will be indicated into the table, 

because of their importance in the HFS scheduling future applications. It’s 

obvious that the dimension of the buffer gives an amount to the waiting 

time of the jobs, and also to the waiting jobs quantity. These is told because 

into the papers you can find the same thing (buffer) with different names. 

 

1.3 Model of paper 

 

Usually, an old model has been well tested and used for a long time so it is 

secure that it is capable to represent the real manufacturing system. Using 

old models is the easiest way in which to evaluate the performance but it 

has a low level of innovation. Developing existing old models is a better 

practice because it make possible to improve the efficiency of the model, 

usually taking into consideration factors that were not been taken into 

account previously.  

New models are the most innovative and they usually evaluate aspects 

never studied before. 

The aggregation of existing models is a good approach to have an overall 

manufacturing performance. Since each kind of model fits well only a group 

of issues, it’s difficult to use only one type of method and take into account 

all the problems.  
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1.4 Mathematical algorithms 

 

To solve a difficult problem, such as hybrid flow shop scheduling, a lot of 

very different algorithms have been developed. Some of them are 

heuristics, other are metaheuristics, and other are exact; the most 

important and significant ones are here presented, and also a definition of 

these three terms.  

 

1.4.1 Heuristic algorithms 

 

The term heuristic is used for algorithms which find solutions among all 

possible ones, but they do not guarantee that the best will be found, 

therefore they may be considered as approximately and not accurate 

algorithms. These algorithms, usually find a solution close to the best one 

and they find it fast and easily. Sometimes these algorithms can be 

accurate, that is they actually find the best solution, but the algorithm is 

still called heuristic until this best solution is proven to be the best. The 

method used from a heuristic algorithm is one of the known methods, such 

as greediness, but in order to be easy and fast the algorithm ignores or 

even suppresses some of the problem's demands.  

An example for the TSP is here given: Let's number the cities from 1 to n 

and let city 1 be the city-base of the salesman. Also let's assume that c(i,j) 

is the visiting cost from i to j. There can be c(i,j) different from c(j,i). 

pparently all the possible solutions are (n-1)!. Someone could probably 

determine them systematically, find the cost for each and everyone of these 

solutions and finally keep the one with the minimum cost. These requires at 

least (n-1)! steps.  

If for example there were 21 cities the steps required are (n-1)! = (21-

1)!=20! steps. If every step required a msec we would need about 770 

centuries of calculations. Apparently,the exhausting examination of all 

possible solutions is out of the question. Since we are not aware of any 

other quick algorithm that finds a best solution we will use a heuristic 

algorithm. According to this algorithm whenever the salesman is in town i 

he chooses as his next city, the city j for which the c(i,j) cost, is the 

minimum among all c(i,k) costs, where k are the pointers of the city the 
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salesman has not visited yet. There is also a simple rule just in case more 

than one cities give the minimum cost, for example in such a case the city 

with the smaller k will be chosen. This is a greedy algorithm which selects in 

every step the cheapest visit and does not care whether this will lead to a 

wrong result or not.  

This example shows how an heuristic is implemented, but also why an 

heuristic is used: when a solution is not required to be optimal, but just 

good, and you don’t want to lose a lot of time with exact algorithms, an 

heuristic method is the correct way to do. A lot of heuristics are used, in 

fact, to reduce computational time, in hybrid with other more accurate 

algorithms. 

 

1.4.2 Metaheuristic algorithms 

 

In computer science, metaheuristic designates a computational method that 

optimizes a problem by iteratively trying to improve a candidate solution 

with regard to a given measure of quality. Metaheuristics make few or no 

assumptions about the problem being optimized and can search very large 

spaces of candidate solutions. However, metaheuristics do not guarantee an 

optimal solution is ever found. Many metaheuristics implement some form 

of stochastic optimization.  

Metaheuristics are used for combinatorial optimization in which an optimal 

solution is sought over a discrete search-space. An example problem is the 

travelling salesman problem where the search-space of candidate solutions 

grows more than exponentially as the size of the problem increases which 

makes an exhaustive search for the optimal solution infeasible. This 

phenomenon is commonly known as the curse of dimensionality.  

Popular metaheuristics for combinatorial problems include genetic 

algorithms by Holland (1975) ant colony optimization by Dorigo (1992), 

simulated annealing by Kirkpatrick et al. (1983).  

These three are all present in some of the reviewed papers, but a lot of 

other are also present. A definition of the given algorithms is here given, 

according to a general view some algorithms are unified into nature inspired 

category, because of their origins, and most of all because their authors 

were ―nature inspired‖ when they created it. 
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1.4.3 Genetic algorithms 

 

The genetic algorithm (GA) mimics the process of natural evolution. This 

metaheuristic is routinely used to generate useful solutions to optimization 

and search problems. Genetic algorithms belong to the larger class of 

evolutionary algorithms (EA), which generate solutions to optimization 

problems using techniques inspired by natural evolution, such as 

inheritance, mutation, selection, and crossover.  

In a genetic algorithm, a population of strings (called chromosomes or the 

genotype of the genome), which encode candidate solutions (called 

individuals, creatures, or phenotypes) to an optimization problem, evolves 

toward better solutions. Traditionally, solutions are represented in binary as 

strings of 0s and 1s, but other encodings are also possible. The evolution 

usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual 

in the population is evaluated, multiple individuals are stochastically 

selected from the current population (based on their fitness), and modified 

(recombined and possibly randomly mutated) to form a new population. The 

new population is then used in the next iteration of the algorithm. 

Commonly, the algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level has been 

reached for the population. If the algorithm has terminated due to a 

maximum number of generations, a satisfactory solution may or may not 

have been reached. 

Once we have the genetic representation and the fitness function defined, 

GA proceeds to initialize a population of solutions randomly, then improve it 

through repetitive application of mutation, crossover, inversion and 

selection operators. 

Initialization: initially many individual solutions are randomly generated to 

form an initial population. The population size depends on the nature of the 

problem, but typically contains several hundreds or thousands of possible 

solutions. Traditionally, the population is generated randomly, covering the 

entire range of possible solutions (the search space). Occasionally, the 

solutions may be "seeded" in areas where optimal solutions are likely to be 

found. 
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Selection: during each successive generation, a proportion of the existing 

population is selected to breed a new generation. Individual solutions are 

selected through a fitness-based process, where fitter solutions (as 

measured by a fitness function) are typically more likely to be selected. 

Certain selection methods rate the fitness of each solution and preferentially 

select the best solutions. Other methods rate only a random sample of the 

population, as this process may be very time-consuming. 

Most functions are stochastic and designed so that a small proportion of less 

fit solutions are selected. This helps keep the diversity of the population 

large, preventing premature convergence on poor solutions. Popular and 

well-studied selection methods include roulette wheel selection and 

tournament selection. 

Reproduction: the next step is to generate a second generation population 

of solutions from those selected through genetic operators: crossover (also 

called recombination), and/or mutation. 

For each new solution to be produced, a pair of "parent" solutions is 

selected for breeding from the pool selected previously. By producing a 

"child" solution using the above methods of crossover and mutation, a new 

solution is created which typically shares many of the characteristics of its 

"parents". New parents are selected for each new child, and the process 

continues until a new population of solutions of appropriate size is 

generated. These processes ultimately result in the next generation 

population of chromosomes that is different from the initial generation. 

Generally the average fitness will have increased by this procedure for the 

population, since only the best organisms from the first generation are 

selected for breeding, along with a small proportion of less fit solutions, for 

reasons already mentioned above. 

Termination: this generational process is repeated until a termination 

condition has been reached. Common terminating conditions are:- a 

solution is found that satisfies minimum criteria; - fixed number of 

generations reached; - allocated budget (computation time/money) 

reached; - the highest ranking solution's fitness is reaching or has reached 

a plateau such that successive iterations no longer produce better results; - 

manual inspection; -combinations of the above. 
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1.4.4 Ant colony optimization 

 

Ant colony optimization (ACO) is a metaheuristic algorithm inspired from 

exploitation of food resources among ants. In the natural world, ants 

(initially) wander randomly, and upon finding food return to their colony 

while laying down pheromone trails. If other ants find such a path, they are 

likely not to keep travelling at random, but to instead follow the trail, 

returning and reinforcing it if they eventually find food. 

Over time, however, the pheromone trail starts to evaporate, thus reducing 

its attractive strength. The more time it takes for an ant to travel down the 

path and back again, the more time the pheromones have to evaporate. A 

short path, by comparison, gets marched over faster, and thus the 

pheromone density remains high as it is laid on the path as fast as it can 

evaporate. Pheromone evaporation has also the advantage of avoiding the 

convergence to a locally optimal solution. If there were no evaporation at 

Fig. 1.3: Ant colony optimization:  1) The first ant find a food source (F), Using some path (a), 
then it comes back to the nest (N), laying a pheromone trail. 2) the ants follow one of the 4 
possible paths, but the reinforcement of the trail make the shortest path more appealing. 3) 
the ants follow the shortest path, the pheromone trail of the longest ones evaporate, Dréo, 
(2006) 
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all, the paths chosen by the first ants would tend to be excessively 

attractive to the following ones. In that case, the exploration of the solution 

space would be constrained.  

Thus, when one ant finds a good (i.e., short) path from the colony to a food 

source, other ants are more likely to follow that path, and positive feedback 

eventually leads all the ants following a single path. The idea of the ant 

colony algorithm is to mimic this behavior with "simulated ants" walking 

around the graph representing the problem to solve: 

1. The first ant finds the food source (F), via any way (a), then returns 

to the nest (N), leaving behind a trail pheromone (b) (see image) 

2. Ants indiscriminately follow four possible ways, but the strengthening 

of the runway makes it more attractive as the shortest route. 

3. Ants take the shortest route, long portions of other ways lose their 

trail pheromones. 

In a series of experiments on a colony of ants with a choice between two 

unequal length paths leading to a source of food, biologists have observed 

that ants tended to use the shortest route (Goss et al., 1989;  Deneuburg 

et al. 1990). A model explaining this behaviour is as follows: 

1. An ant (called "blitz") runs more or less at random around the 

colony; 

2. If it discovers a food source, it returns more or less directly to the 

nest, leaving in its path a trail of pheromone; 

3. These pheromones are attractive, nearby ants will be inclined to 

follow, more or less directly, the track; 

4. Returning to the colony, these ants will strengthen the route; 

5. If there are two routes to reach the same food source then, in a 

given amount of time, the shorter one will be traveled by more ants 

than the long route; 

6. The short route will be increasingly enhanced, and therefore become 

more attractive; 

7. The long route will eventually disappear because pheromones are 

volatile; 

8. Eventually, all the ants have determined and therefore "chosen" the 

shortest route. 
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Ants use the environment as a medium of communication. They exchange 

information indirectly by depositing pheromones, all detailing the status of 

their "work". The information exchanged has a local scope, only an ant 

located where the pheromones were left has a notion of them. The 

mechanism to solve a problem too complex to be addressed by single ants 

is a good example of a self-organized system. This system is based on 

positive feedback (the deposit of pheromone attracts other ants that will 

strengthen it themselves) and negative (dissipation of the route by 

evaporation prevents the system from thrashing). Theoretically, if the 

quantity of pheromone remained the same over time on all edges, no route 

would be chosen. However, because of feedback, a slight variation on an 

edge will be amplified and thus allow the choice of an edge. The algorithm 

will move from an unstable state in which no edge is stronger than another, 

to a stable state where the route is composed of the strongest edges. 

The basic philosophy of the algorithm involves the movement of a colony of 

ants through the different states of the problem influenced by two local 

decision policies, trails and attractiveness. Thereby, each such ant 

incrementally constructs a solution to the problem. When an ant completes 

a solution, or during the construction phase, the ant evaluates the solution 

and modifies the trail value on the components used in its solution. This 

pheromone information will direct the search of the future ants. 

Furthermore, the algorithm also includes two more mechanisms, viz., trail 

evaporation and daemon actions. Trail evaporation reduces all trail values 

over time thereby avoiding any possibilities of getting stuck in local optima. 

The daemon actions are used to bias the search process from a non-local 

perspective. 

 

1.4.5 Simulated annealing 

 

Simulated annealing (SA) is a generic probabilistic metaheuristic for the 

global optimization problem of applied mathematics, namely locating a good 

approximation to the global optimum of a given function in a large search 

space. 

The name and inspiration come from annealing in metallurgy, a technique 

involving heating and controlled cooling of a material to increase the size of 
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its crystals and reduce their defects. The heat causes the atoms to become 

unstuck from their initial positions (a local minimum of the internal energy) 

and wander randomly through states of higher energy; the slow cooling 

gives them more chances of finding configurations with lower internal 

energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm 

replaces the current solution by a random "nearby" solution, chosen with a 

probability that depends both on the difference between the corresponding 

function values and also on a global parameter T (called the temperature), 

that is gradually decreased during the process. The dependency is such that 

the current solution changes almost randomly when T is large, but 

increasingly "downhill" as T goes to zero. The allowance for "uphill" moves 

saves the method from becoming stuck at local optima—which are the bane 

of greedier methods. 

In the simulated annealing (SA) method, each point s of the search space is 

analogous to a state of some physical system, and the function E(s) to be 

minimized is analogous to the internal energy of the system in that state. 

The goal is to bring the system, from an arbitrary initial state, to a state 

with the minimum possible energy. 

The basic iteration: at each step, the SA heuristic considers some 

neighboring state s' of the current state s, and probabilistically decides 

between moving the system to state s' or staying in state s. These 

probabilities ultimately lead the system to move to states of lower energy. 

Typically this step is repeated until the system reaches a state that is good 

enough for the application, or until a given computation budget has been 

exhausted. 

The neighbors of a state: the neighbours of a state are new states of the 

problem that are produced after altering the given state in some particular 

way. For example, in the traveling salesman problem, each state is typically 

defined as a particular permutation of the cities to be visited. The 

neighbours of some particular permutation are the permutations that are 

produced for example by interchanging a pair of adjacent cities. The action 

taken to alter the solution in order to find neighbouring solutions is called 

"move" and different "moves" give different neighbours. These moves 

usually result in minimal alterations of the solution, as the previous example 
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depicts, in order to help an algorithm to optimize the solution to the 

maximum extent and also to retain the already optimum parts of the 

solution and affect only the suboptimum parts. In the previous example, the 

parts of the solution are the parts of the tour. 

Searching for neighbors to a state is fundamental to optimization because 

the final solution will come after a tour of successive neighbors. Simple 

heuristics move by finding best neighbor after best neighbor and stop when 

they have reached a solution which has no neighbors that are better 

solutions. The problem with this approach is that a solution that does not 

have any immediate neighbors that are better solution is not necessarily the 

optimum. It would be the optimum if it was shown that any kind of 

alteration of the solution does not give a better solution and not just a 

particular kind of alteration. For this reason it is said that simple heuristics 

can only reach local optima and not the global optimum. Metaheuristics, 

although they also optimize through the neighborhood approach, differ from 

heuristics in that they can move through neighbors that are worse solutions 

than the current solution. Simulated Annealing in particular doesn't even try 

to find the best neighbor. The reason for this is that the search can no 

longer stop in a local optimum and in theory, if the metaheuristic can run 

for an infinite amount of time, the global optimum will be found. 

Acceptance probabilities: The probability of making the transition from the 

current state s to a candidate new state s' is specified by an acceptance 

probability function P(e,e',T), that depends on the energies e = E(s) and e' 

= E(s') of the two states, and on a global time-varying parameter T called 

the temperature. One essential requirement for the probability function P is 

that it must be nonzero when e' > e, meaning that the system may move to 

the new state even when it is worse (has a higher energy) than the current 

one. It is this feature that prevents the method from becoming stuck in a 

local minimum, a state that is worse than the global minimum, yet better 

than any of its neighbors. 

 

1.4.6 Exact algorithms 

 

Approximate solutions are not always allowed or wanted, sometimes even if 

a very long computational time is needed, exact algorithms are used. The 
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principal advantage of these algorithms is that they find for sure an 

optimum solution. There are a lot of exact algorithms, the two we decided 

to define are: branch and bound algorithms and linear programming. 

 

1.4.7 Branch and bound algorithms 

 

 

 

Branch and bound (BB or B&B) is a general algorithm for finding optimal 

solutions of various optimization problems, especially in discrete and 

combinatorial optimization. It consists of a systematic enumeration of all 

candidate solutions, where large subsets of fruitless candidates are 

discarded en masse, by using upper and lower estimated bounds of the 

quantity being optimized. The method was first proposed by Land & Doig 

(1960) for discrete programming. 

For definiteness, we assume that the goal is to find the minimum value of a 

function f(x), where x ranges over some set S of admissible or candidate 

solutions (the search space or feasible region). Note that one can find the 

maximum value of f(x) by finding the minimum of g(x) = −f(x). (For 

Fig. 1.4: Schematic representation of the scomposition in sub-problems used in branch and 
bound, Strocchi (2006) 
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example, S could be the set of all possible trip schedules for a bus fleet, and 

f(x) could be the expected revenue for schedule x.) 

A branch-and-bound procedure requires two tools. The first one is a 

splitting procedure that, given a set S of candidates, returns two or more 

smaller sets S1, S2, … whose union covers S. Note that the minimum of f(x) 

over S is min{v1, v2, … }, where each vi is the minimum of f(x) within Si. 

This step is called branching, since its recursive application defines a tree 

structure (the search tree) whose nodes are the subsets of S. 

Another tool is a procedure that computes upper and lower bounds for the 

minimum value of f(x) within a given subset S. This step is called bounding. 

The key idea of the BB algorithm is: if the lower bound for some tree node 

(set of candidates) A is greater than the upper bound for some other node 

B, then A may be safely discarded from the search. This step is called 

pruning, and is usually implemented by maintaining a global variable m 

(shared among all nodes of the tree) that records the minimum upper 

bound seen among all sub-regions examined so far. Any node whose lower 

bound is greater than m can be discarded. 

The recursion stops when the current candidate set S is reduced to a single 

element; or also when the upper bound for set S matches the lower bound. 

Either way, any element of S will be a minimum of the function within S. 

The efficiency of the method depends strongly on the node-splitting 

procedure and on the upper and lower bound estimators. All other things 

being equal, it is best to choose a splitting method that provides non-

overlapping subsets. 

Ideally the procedure stops when all nodes of the search tree are either 

pruned or solved. At that point, all non-pruned sub-regions will have their 

upper and lower bounds equal to the global minimum of the function. In 

practice the procedure is often terminated after a given time; at that point, 

the maximum lower bound and the minimum upper bound, among all non-

pruned sections, define a range of values that contains the global minimum. 

Alternatively, within an overriding time constraint, the algorithm may be 

terminated when some error criterion, such as (max − min)/(min + max), 

falls below a specified value. 

The efficiency of the method depends critically on the effectiveness of the 

branching and bounding algorithms used; bad choices could lead to 
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repeated branching, without any pruning, until the sub-regions become very 

small. In that case the method would be reduced to an exhaustive 

enumeration of the domain, which is often impractically large. There is no 

universal bounding algorithm that works for all problems, and there is little 

hope that one will ever be found; therefore the general paradigm needs to 

be implemented separately for each application, with branching and 

bounding algorithms that are specially designed for it. 

Branch and bound methods may be classified according to the bounding 

methods and according to the ways of creating/inspecting the search tree 

nodes. 

 

1.4.8 Linear programming 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear programming (LP) is a mathematical method for determining a way 

to achieve the best outcome (such as maximum profit or lowest cost) in a 

given mathematical model for some list of requirements represented as 

linear relationships. 

More formally, linear programming is a technique for the optimization of a 

linear objective function, subject to linear equality and linear inequality 

Fig. 1.5: A diagram showing an example of a linear programming problem and the way in 
which the feasible region is bounded by straight, Ferguson (2000) 
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constraints. Given a polytope and a real-valued affine function defined on 

this polytope, a linear programming method will find a point on the polytope 

where this function has the smallest (or largest) value if such point exists, 

by searching through the polytope vertices. 

Linear programs are problems that can be expressed in canonical form: 

Maximize cT x ; Subject to A x ≤ b. Where x represents the vector of 

variables (to be determined), c and b are vectors of (known) coefficients 

and A is a (known) matrix of coefficients. The expression to be maximized 

or minimized is called the objective function (cT x in this case). The 

equations A x ≤ b are the constraints which specify a convex polytope over 

which the objective function is to be optimized. (In this context, two vectors 

are comparable when every entry in one is less-than or equal-to the 

corresponding entry in the other. Otherwise, they are incomparable.) 

Linear programming can be applied to various fields of study. It is used 

most extensively in business and economics, but can also be utilized for 

some engineering problems. Industries that use linear programming models 

include transportation, energy, telecommunications, and manufacturing. It 

has proved useful in modeling diverse types of problems in planning, 

routing, scheduling, assignment, and design. 

 

1.4.9 Hybrid algorithms 

 

A lot of algorithms have been developed in the last century. An intelligent 

procedure to approach the HFS problem is to use the best part of some 

algorithm fuse together with best part of other algorithms. There are some 

algorithms that are quick and easy to use, some other maybe slow and 

difficult to implement, an intelligent hybridization of these algorithms can 

give optimum solutions in less time or maybe better solutions if the two 

divided algorithms give just good solutions. Another presented approach of 

the hybridization is to divide the population into sub-populations and apply 

the algorithm firstly to every sub-population, this is a method used to 

reduce the number of individuals to control, and to avoid the curse of 

dimensionality. 
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1.4.10 Reduction of computational time 

 

We have seen that some algorithms could employ a large amount of 

computational time to solve, this can be repaired or enveloped. When an 

algorithms is employed just to reduce the computational time, and it is 

assumable that the proposed method could work and reach optimum 

solution even without this algorithm, it’s interesting to type this; into the 

2.1 table this is showed with a [C] into the correct algorithm. Of  course no 

exact algorithms can be used to reduce computational time, but heuristic or 

metaheuristic, because they approximate some procedure or sub-

applications that aren’t the most important part of the method, the one that 

brings to the optimum solution, but are very slow to compute.   

 

1.5 Analysis of results 

 

In the manufacturing environment, there are a lot of factors and issues to 

be evaluated. In the papers seen typically two factors have been evaluated: 

makespan and tardiness, with the goal of minimizing them. These factors 

and problems sometimes have different nature and cannot be evaluated 

with the same tool. Since the model that allow to measure the performance 

should try to fit in the best way the problem and the factor to evaluate, 

they are available different types of models. Hence, they have to be chosen 

according to the nature of the system.  

 

1.5.1 Parameters to be minimized: makespan and tardiness 

 

Into the reviewed papers a lot of parameters have been used as the most 

important to evaluate, and most of all, to minimize. Makespan, or, in other 

words, total completion time, is the one minimized into the bigger part of 

the seen papers, and we can be sure of that seeing Ruiz & Vazquez-

Rodriguez (2010), where it’s typed that the 60% of the papers review by 

the two authors have the object of minimizing total completion time, or 

makespan (Cmax). Other parameters are connected with the makespan, such 

as total/average (weighted) completion time for example. Seeing this 

analogy between this factors into the 2.1 table we assumed that this was 
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the same parameter, but it’s just a simplification to make the table smaller. 

Another diffuse parameter to minimize is the tardiness, into a lot of papers 

the goal was to minimize the maximum tardiness, but there are other 

similar factors such as total/average (weighted) tardiness, and into the 2.1 

table we do the same thing as makespan, for the same reason. 

 

1.5.2 Statistical indexes 

 

Using statistical method it is possible to improve the quality of data with the 

design of experiments and survey sampling. Statistics also provides tools 

for prediction and forecasting using data and statistical models. Statistics is 

applicable to a wide variety of industrial measurement. Statistical methods 

can be used to summarize or describe a collection of data; this is called 

descriptive statistics. This is useful in research, when communicating the 

results of experiments. In addition, patterns in the data may be modelled in 

a way that accounts for randomness and uncertainty in the observations, 

and are then used to draw inferences about the process or population being 

studied; this is called inferential statistics. Inference is a vital element of 

scientific advance, since it provides a prediction (based in data) for where a 

theory logically leads. To further prove the guiding theory, these predictions 

are tested as well, as part of the scientific method. If the inference holds 

true, then the descriptive statistics of the new data increase the soundness 

of that hypothesis. 

New researches are trying to develop classical statistical methods in order 

to better suit the real environment and application in modern manufacturing 

environment, overcoming the old frameworks used in the past that no more 

suit the new applications.  

Into the 2.1 table the papers where clear statistical indexes have been used 

are signalled.  

 

1.5.3 Dispatching rules as a parameter of comparison 

 

Dispatching rules are specific parameters that define how to give priority to 

the works. These are the most important dispatching rules: 

http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Survey_sampling
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Descriptive_statistics
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Random
http://en.wikipedia.org/wiki/Inferential_statistics
http://en.wikipedia.org/wiki/Scientific_method
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o SPT (Shortest Processing Time): Highest priority is given to the 

waiting operation with the shortest imminent operation time. 

o LPT (Longest Processing Time): Highest priority is given to the 

waiting operation with the longest imminent operation time. 

o MWKR (Most Work Remaining): Highest priority is given to the 

waiting operation associated with the job having the most total 

processing time remaining to be done. 

o LWKR (Least Work Remaining): Highest priority is given to the 

waiting operation associated with the job having the least amount of 

total processing time remaining to be done. 

o TWORK (Total Work): Highest priority is given to the job with the 

least total processing requirement on all operations. 

o FIFO (First In First Out): Highest priority is given to the waiting 

operation that arrived at the queue first. 

o LIFO (Last In First Out): Highest priority is given to the waiting 

operation that arrived at the queue last (Dominic et al. 2004). 

 

These are not directly considerable as a parameter of comparison, but into 

the reviewed papers it was found that, the results where compared using 

the different dispatching rules, to show a more accurate and complete view 

of the results, and doing that, dispatching rules are in fact used to evaluate 

an algorithm or a method against another.  
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Chapter 2: 

Survey of the production scheduling 

methods into hybrid flow shop 

environments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 Classification table  

 

Thirty papers have been read and summarized. It is very difficult to explain 

how the works are similar and why the same works are different, so the 

simpler way to show this is a table, with a short number of factors, such as: 

model, development, problem statements, mathematical algorithms, results 

and comparation. These factors have been chosen after a long work into 

larger and more detailed other tables in order to give the better one to the 

reader. 



 31 

 



 32 

2.1.1 Legend 

 

Model: [A]  is for aggregation, it means that the paper uses a lot of other 

previous works and puts them together. [N] is for new, it means that the 

paper presents a new solution, or a new environment, for example, it 

doesn’t means that it’s totally new, but that being very different to the 

previous works it can be considered new. [D] is for development, it means 

that a previous work have been developed, maybe adapting it to other new 

or different environments, the difference  between a new and a developed 

paper is that a developed paper is more influenced from the previous 

papers.  

 

Machine:  In the multi-machine environment there are three factors, based 

on the characteristics of the parallel machines. [I] is for identical machines. 

[U] is for uniform machines. [D] is for unrelated or different or maybe 

dedicated machines.  

 

Problem statements: When a buffer between stages is considered, a 

distinction is given, based on buffer dimension. [N] is for no buffer, or very 

small buffer. [L] is for limited buffer. [U] is for unlimited buffer. 

 

Mathematical algorithms: Into the introduction chapter the 

computational time reduction problem is presented. Into some papers 

heuristics or metaheuristics algorithms are given just for reducing 

computational time. When this happens the algorithms is evidenced with 

[C]. 

 

Results: When showing the results, some papers uses index or indexes to 

evaluate, sometimes these are common statistical indexes such as average 

or average percent deviation, for example; other times these index are 

dispatching rules, it is not correct to call these rules indexes, but the use 

the authors give sometimes of it is similar and comparable with statistical 

indexes. [S] is for statistical indexes. [R] is for dispatching rules. 
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Note that for more about the legend and the parameters can be found in 

the introduction chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Reviewed and summarized papers 

 

Following there are the summarized papers. The publications have been 

selected in order to have recent and valuable researches, there are no 

papers released before 2000. For each one of them is presented a short 

summary, that presents the problem, and the solution algorithm/s given 

from the authors. In order to respect the authors works the articles have 

been shorted but the order and scope have been respected. A selection of 

interesting pictures took from the papers is also present. 
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2.2.1 H. S. Mirsanei, M. Zandieh, M. J. Moayed, M. R. Khabbazi;  A 

simulated annealing algorithm approach to hybrid flow shop 

scheduling with sequence-dependent setup times. JOURNAL OF 

INTELLIGENT MANUFACTURING, 18 January 2010 (DOI 

10.1007/s10845-009-0373-8) 

 

 

In most real industries such as chemical, textile, metallurgical, printed 

circuit board, and automobile manufacturing, hybrid flow shop problems 

have seq.-dependent setup times (SDST). In this research, the problem of 

SDST hybrid flow shop scheduling with parallel identical machines to 

minimize the makespan is studied. A novel simulated annealing (NSA) 

algorithm is developed to produce a reasonable manufacturing schedule 

within an acceptable computational time. In this study, the proposed NSA 

uses a well combination of two moving operators and a SPT Cyclic Heuristic 

of Kurz & Askin (2004)  for generating new solutions.  The obtained results 

are compared with those computed by Random Key Genetic Algorithm 

(RKGA) purposed by Kurz & Askin (2004) and with those computed by 

Immune Algorithm (IA) purposed by Zandieh et al. (2006) which are 

proposed previously, using graphics and tables, based on the relative 

percent deviation (RPG) and the average computational time. The results 

show that NSA outperforms both RKGA and IA in almost every case.  

Fig. 2.1: The pseudo-code of Simulated Annealing, Mirsanei et al. (2009) 
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2.2.2 S. M. Mousavi, M. Zandieh, M. Amiri;  An efficient bi-objective 

heuristic for scheduling of hybrid flow shops. THE INTERNATIONAL 

JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 27 

October 2010 (DOI 10.1007/s00170-010-2930-x) 

 

This paper considers the problem of scheduling n independent jobs in hybrid 

flow shop environment with sequence-dependent setup times to minimize 

the makespan and total tardiness. For the optimization problem, an 

algorithm namely bi-objective heuristic (BOH) is proposed for searching 

Pareto-optimal frontier. The term is named after Vilfredo Pareto, an Italian 

economist who used the concept in his studies of economic efficiency and 

income distribution. Given an initial allocation of goods among a set of 

individuals, a change to a different allocation that makes at least one 

individual better off without making any other individual worse off is called 

a Pareto improvement. An allocation is defined as "Pareto optimal" when no 

further Pareto improvements can be made. The aim of the proposed 

algorithm is to generate a good approximation of the set of efficient 

solutions. The BOH procedure initiates by generating a seed sequence. 

Since the output results are strongly dependent on the initial solution and in 

order to increase the quality of output results algorithm, it is considered 

how the generation of seed sequence with random way and particular 

sequencing rules. Two methods named Euclidean distance and percent error 

have been proposed to compare non-dominated solution sets obtain of each 

seed sequence. It is perceived from these methods that the generation of 

seed sequence using earliest due date rule is more effective. Then, the 

performance of the proposed BOH is compared with a simulated annealing 

(MOSA) purposed by Loukil et al. (2007) and a variable neighborhood 

search (VNS) heuristic purposed by Prandtstetter & Raidl (2007) on a set of 

test problems. The data envelopment analysis is used to evaluate the 

performance of approximation methods. From the results obtained, it can 

be seen that the proposed algorithm is efficient and effective. 
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2.2.3 A. Jouglet, C. Oguz, M. Sevaux; Hybrid Flow-Shop: a memetic 

algorithm using constraint-based scheduling for efficient search. 

JOURNAL OF MATHEMATICAL MODELLING AND ALGORITHMS, 

(2009) 8: 271–292 

 

 

 

 

 

 

 

 

 

 

 

 

 

The paper considers the hybrid flow-shop scheduling problem with 

multiprocessor tasks. Motivated by the computational complexity of the 

problem, it is proposed a memetic algorithm for this problem in the paper. 

First of all they describe the implementation details of a genetic algorithm, 

which is used in the memetic algorithm. Then they propose a constraint 

programming based branch-and-bound algorithm to be employed as the 

local search engine of the memetic algorithm. In other words memetical 

algorithm is a combination of genetical and branch-and-bound algorithms 

the same hybridization purposed by Portmann et al. (1998) . They then 

explain the computational experiments carried out to evaluate the 

performance of three algorithms (genetic algorithm of Oguz et al. (2004), 

constraint programming based branch-and-bound algorithm of Portmann et 

al. (1998) , and memetic algorithm) in terms of both the quality of the 

solutions produced and the efficiency, explaining it better they compare the 

single methods with the hybridization which the memetic algorithm uses. 

These results demonstrate that this algorithm produces better solutions and 

that it is very efficient, also because it can be used in many flow shop 

Fig. 2.2: Jouglet et al. (2009) 
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typical problems such as Fk(Pm1 , ... ,Pmk )|sizeij|Cmax and                   

Fk(Pm1 , ... , Pmk )||Cmax using the classification of Ribas et al (2009) . 

 

2.2.4 F. Jolai, S. Sheikh, M. Rabbani, B. Karimi; A genetic algorithm 

for solving no-wait flexible flow lines with due window and job 

rejection. THE INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY, (2009) 42: 523–532 

 

This paper addresses a no-wait multi-stage flexible flow shop problem. Note 

that some jobs may be rejected. A mixed integer linear programming model 

with the objective of maximizing the total profit gained from scheduled jobs 

is introduced. Since the problem is NP-hard and difficult to find an optimal 

solution in a reasonable computational time, an efficient genetic algorithm is 

presented as the solution procedure. A heuristic mechanism is proposed to 

use in each generation of the genetic algorithms to assure the feasibility 

and superior quality of the obtained solutions. This paper develop the 

production and delivery scheduling problem with time windows (PDPTW), 

the improved method is then compared with one of the previous solutions 

introduced by Garcia & Lozano (2005). Computational results show that the 

presented approach performs considerably in terms of both quality of 

solutions and required runtimes.  However there are places in industry 

where a fixed time lag between stages is mandatory. This situation may 

arise where inspection or transportation is an integral part of production. 

This leads to extension of this model to a more general case where a fixed 

Fig. 2.3:  Schematic of no-wait FSMP, Joulai et al.(2009) 
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time (greater or equal 0) enters between machine operations in subsequent 

stages, to adapt the model to a diffused situation. 

 

2.2.5 L. Tang, W. Liu, J. Liu; A neural network model and algorithm 

for the hybrid flow shop scheduling problem in a dynamic 

environment. JOURNAL OF  INTELLIGENT MANUFACTURING, (2005) 

16: 361–370 

 

 

 

 

 

 

 

 

 

 

HFS is fairly common in flexible manufacturing and in process industry. 

Because manufacturing systems often operate in a stochastic and dynamic 

environment, dynamic hybrid flow shop scheduling is frequently 

encountered in practice. This paper proposes a neural network model and 

algorithm to solve the dynamic hybrid flow shop scheduling problem. Neural 

networks (NN) are collections of mathematical models that emulate some of 

the observed properties of biological nervous systems and draw on the 

analogies of adaptive biological learning. The key element of the NN 

paradigm is the novel structure of the information processing system. The 

advantage of NN lies in their resilience against distortions in the input data 

and their capability of learning. In order to obtain training examples for the 

neural network, they first study, through simulation, the performance of 

some dispatching rules that have demonstrated effectiveness in the 

previous related researchs from Liu & Dong (1996). The results are then 

transformed into training examples. The training process is optimized by the 

delta-bar-delta (DBD) method that can speed up training convergence, all 

of this is showed with graphics and tables. The most commonly used 

Fig. 2.4: A pratical example of dynamic HFS, Tang et al. (2005) 
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dispatching rules are used as benchmarks. Simulation results show that the 

performance of the neural network approach is much better than that of the 

traditional dispatching rules. The authors of the paper type that there can 

be some other types of random events in practical dynamic production 

environment, such as machine breakdown, rush orders and order 

cancellation etc. Further research is needed to develop methods for 

problems with such events. 

 

2.2.6 M. Gholami, M. Zandieh, A. Alem-Tabriz; Scheduling hybrid 

flow shop with sequence-dependent setup times and machines with 

random breakdowns. THE INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY, (2009) 42: 189–201 

 

Pinedo (1995) cited that machine setup time is a significant factor for 

production scheduling in all flow patterns, and it may easily consume more 

than 20% of available machine capacity if not well handled. In addition, the 

completion time of production and machine setups are influenced by 

production mix and production sequence. On the one hand, processing in 

large batches may increase machine utilization and reduce the total setup 

time but would increase the flow time. There is a trade-off between flow 

time and machine utilization by selecting batch size and scheduling. 

Scheduling problems with sequence-dependent setup times are among the 

most difficult classes of scheduling problems. This paper deals with the 

hybrid flow shop scheduling problems in which there are sequence-

dependent setup times, commonly known as the SDST, and machines which 

suffer stochastic breakdown to optimize objectives based on expected 

makespan. This type of production system is found in industries such as 

chemical, textile, metallurgical, printed circuit board, and automobile 

manufacture. With the increase in manufacturing complexity, conventional 

scheduling techniques for generating a reasonable manufacturing schedule 

have become ineffective. The genetic algorithm can be used to tackle 

complex problems and produce a reasonable manufacturing schedule within 

an acceptable time. This paper describes how we can incorporate simulation 

into genetic algorithm approach to the scheduling of a SDST hybrid flow 

shop with machines that suffer stochastic breakdown. An overview of the 
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hybrid flow shops and scheduling under stochastic unavailability of 

machines are presented. The results obtained with genetic algorithm 

approach are analyzed with Taguchi experimental design. The ―parameter 

design‖ developed by Dr. Taguchi in early 1960s can be applied to process 

design. Generally, parameter design procedures can be explained as 

follows: 1. The influences of controllable factors on the S/N ratio and mean 

of the response are evaluated. In fact, they test the appropriate 

experimental design on S/N ratio and mean of the considered characteristic. 

2. For each factor which has significant impact on the S/N ratio, the level 

which increases the S/N ratio will be selected. 3. Each factor which does not 

have any significant impact on S/N ratio, and has significant impact on 

mean of the response (y), is considered as adjustment factor, and the level 

whose mean of y is closer to objective point will be selected. 4. Factors 

which have significant impact neither on S/N ratio nor on mean of y, are 

taken into consideration as economical factors, and the levels that decrease 

cost of production will be selected. Authors state that future studies can 

focus on the other features of breakdown events such as non-resumable 

case and other distributions for both time between failures (MTBF) and time 

to repair (MTTR). In addition, an experimental design considering 

interaction effects among factors for a further study may be devised. 

 

2.2.7 K. Alaykýran, O. Engin, A. Döyen; Using ant colony 

optimization to solve hybrid flow shop scheduling problems. THE 

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING 

TECHNOLOGY, (2007) 35: 541–550 

 

Ant colony optimization (ACO) is a new and encouraging group of ―nature 

inspired‖ algorithms. The ant system (AS) is the first algorithm of ACO. In 

this study, an improved ACO method is used to solve hybrid flow shop 

(HFS) problems. This algorithm is used into a lot of problems, it is 

particularly adaptable to every graph optimal route problem, the authors 

improved and adapt these methods to the HFS problem.  The operating 

parameters of AS have an important role on the quality of the solution. In 

order to achieve better results, a parameter optimization study is conducted 

in this paper. In order to evaluate the success of the algorithm on HFS 
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problems, it was been run on 63 different  benchmark problems taken from 

Carlier & Neron (2000), the same as those used Neron et al. (2001), and 

Engin & Doyen (2004). At the end of the study, there is a comparison of the 

performance : the results show that the improved ACO method is an 

effective and efficient method for solving HFS problems. In authors opinion 

the inspiration of nature in problem solving seems to be increasing its 

impact on researchers in future due to its encouraging performance and 

adaptability to other problems. Better results may be achieved by utilizing 

hybrid or parallel applications and also be fine tuning the parameters of 

these problem solving methods. The proposed method may be used in 

hybrid with other metaheuristics, such as genetic algorithms or simulated 

annealing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5: Flow chart for the improved ACO, Alaykyran et al. (2007) 
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2.2.8 E. Rashidi, M. Jahandar, M. Zandieh; An improved hybrid multi-

objective parallel genetic algorithm for hybrid flow shop scheduling 

with unrelated parallel machines. THE INTERNATIONAL JOURNAL 

OF ADVANCED MANUFACTURING TECHNOLOGY, (2010) 49: 1129–

1139 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, the authors address the hybrid flow shop scheduling problems 

with unrelated parallel machines, sequence-dependent setup times and 

processor blocking to minimize the makespan and maximum tardiness, so 

this can be called a bi-criteria. They type that this should be the first work 

that try to solve this hard situation. Since the problem is strongly NP-hard, 

they propose an effective algorithm consisting of independent parallel 

genetic algorithms by dividing the whole population into multiple 

subpopulations. Each subpopulation will be assigned with different weights 

to search for optimal solutions in different directions. To further cover the 

Pareto solutions, each algorithm is combined with a novel local search step 

and a new helpful procedure called Redirect. The proposed Redirect 

procedure tries to help the algorithm to overcome the local optimums and 

to further search the solution space. When a population stalls over a local 

optimum, at first, the algorithm tries to achieve a better solution by 

implementing the local search step based on elite chromosomes. As 

implementing the local search step is time-consuming, it’s proposed a 

Fig. 2.6: The whole population is divided into several subpopulations, Chang et al. (2007) 
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method to speed up the searching procedure and to further increase its 

efficiency. If the local search step failed to work, then the Redirect 

procedure changes the direction and refreshes the population. 

Computational experiments indicate that this improving procedures are 

thriving in achieving better solutions. The obtained results are interesting 

for the proposed algorithm considering both measures chosen. They 

purpose some improvements to the method such as, adding limited buffers 

to the situation, or working with more than two criteria. 

 

2.2.9 L. Wang, L. Zhang, D.-Z. Zheng; A class of hypothesis-test-

based genetic algorithms for flow shop scheduling with stochastic 

processing time. THE INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY, (2005) 25: 1157–1163 

 

This paper, studies a bit different problem, such as the flow shop with 

stochastic processing time. It has been decided that a different situation 

could be interesting to evaluate the solutions elaborated by genetic 

algorithm in other scheduling problems. As an important optimization 

problem with a strong engineering background, stochastic flow shop 

scheduling with uncertain processing time is difficult because of inaccurate 

objective estimation, huge search space, and multiple local minima, 

especially NP-hardness. As an effective meta-heuristic, genetic algorithms 

(GAs) have been widely studied and applied in scheduling fields, but so far 

seldom for stochastic cases. In this paper, a hypothesis-test method, an 

effective methodology in statistics, is employed and incorporated into a GA 

to solve the stochastic flow shop scheduling problem and to avoid 

premature convergence of the GA. The proposed approach is based on 

statistical performance and a hypothesis test. It not only preserves the 

global search ability of a GA, but it can also reduce repeated searches for 

those solutions with similar performance in a statistical sense so as to 

enhance population diversity and achieve better results. Simulation results 

based on some benchmarks from Pinedo (1995) demonstrate the feasibility 

and effectiveness of the proposed method by comparison with a traditional 

GA purposed by Goldberg (1989). The effects of some parameters on the 

performance of the proposed algorithms are also discussed.  
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2.2.10 B. Naderi, M. Zandieh, V. Roshanaei; Scheduling hybrid 

flowshops with sequence dependent setup times to minimize 

makespan and maximum tardiness. . THE INTERNATIONAL 

JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, (2009) 

41:1186–1198 

 

 

 

 

 

 

 

 

 

 

 

This article addresses the problem of scheduling hybrid flowshops where the 

setup times are sequence dependent to minimize makespan and maximum 

tardiness. To solve such an NP-hard problem, they introduce a novel 

simulated annealing (SA) with a new concept, called ―Migration 

mechanism‖, and a new operator, called ―Giant leap‖, to bolster the 

competitive performance of SA through striking a compromise between the 

lengths of neighborhood search structures. The authors hybridize the SA 

(HSA) with a simple local search to further equip the algorithm with a new 

strong tool to promote the quality of final solution of SA. The procedure of 

this local search is described as follows: The first job in the sequence x, 

called x1 is relocated into a new random position in the sequence v. If this 

new sequence v results in better objective function, the current solution x is 

replaced by the new sequence v. This procedure iterates at most for all the 

subsequent jobs in the sequence x, all of this is showed in fig. 6. Two 

basically different objective functions, minimization of makespan and 

maximum tardiness, are taken into consideration to evaluate the robustness 

and effectiveness of the HSA. Furthermore, they explore the effects of the 

Fig. 2.7: The procedure of the local search, Naderi et al. (2009) 
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increase in the number of jobs on the performance of the algorithm in terms 

of both the acceptability of the solution quality and robustness.  

 

2.2.11 H.-M. Wang, F.-D. Chu, F.-C. Wu; A simulated annealing for 

hybrid flow shop scheduling with multiprocessor tasks to minimize 

makespan. THE INTERNATIONAL JOURNAL OF ADVANCED 

MANUFACTURING TECHNOLOGY, 28 July 2010 (DOI 

10.1007/s00170-010-2868-z) 

 

This paper studies a hybrid flow shop scheduling problem (HFS) with 

multiprocessor tasks, in which a set of independent jobs with distinct 

processor requirements and processing times must be processed in a k-

stage flow shop to minimize the makespan criterion. This problem is known 

to be NP-hard, thus providing a challenging area for meta-heuristic 

approaches. This paper develops a simulated annealing (SA) algorithm in 

which three decode methods (list scheduling, permutation scheduling, and 

first-fit method) are used to obtain the objective function value for the 

problem. Additionally, a new neighborhood mechanism is combined with the 

proposed SA for generating neighbor solutions. The proposed SA is tested 

on two benchmark problems from the literature. The test, made against five 

algorithms: genetic and memetic algorithm (GA, MA)  from Jouglet et al. 

(2009), another genetic algorithm from Serifoglu & Ulusoy (2004), an ant 

colony system optimization (ACS) from Ying & Lin (2006), and a particle 

swarm optimization (PSO) from Tseng & Liao (2008) shows that the 

proposed SA is an efficient approach in solving hybrid FSSP with 

multiprocessor tasks, especially for large problems.  

 

2.2.12 J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, F. 

Werner; Algorithms for flexible flow shop problems with unrelated 

parallel machines, setup times, and dual criteria THE 

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING 

TECHNOLOGY, (2008) 37: 354–370 

 

In textile industries, production facilities are established as multi-stage 

production flow shop facilities, where a production stage may be made up of 
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parallel machines. This known as a flexible or hybrid flow shop environment. 

This paper considers the problem of scheduling n independent jobs in such 

an environment. In addition, they also consider the general case in which 

parallel machines at each stage may be unrelated. Each job is processed in 

ordered operations on a machine at each stage. Its release date and due 

date are given. The preemption of jobs is not permitted. They consider both 

sequence- and machine-dependent setup times. The problem is to 

determine a schedule that minimizes a convex combination of makespan 

and the number of tardy jobs. A 0–1 mixed integer program of the problem 

is formulated. Since this problem is NP-hard in the strong sense, we 

develop heuristic algorithms to solve it approximately. Firstly, several basic 

dispatching rules and well-known constructive heuristics for flow shop 

makespan scheduling problems are generalized to the problem under 

consideration. They sketch how, from a job sequence, a complete schedule 

for the flexible flow shop problem with unrelated parallel machines can be 

constructed. To improve the solutions, polynomial heuristic improvement 

methods based on shift moves of jobs are applied. Then, genetic algorithms 

are suggested.  Then they discuss the components of these algorithms and 

test their parameters.  

 

2.2.13 S. Rathinasamy, R. R; Sequencing and scheduling of 

nonuniform flow pattern in parallel hybrid flow shop. THE 

INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING 

TECHNOLOGY, (2010) 49: 213–225 

Fig. 2.8:  An example of nonuniform flow pattern in parallel HFS, Rathinasamy & R ( 2010) 
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This work is motivated by a practical need for operation scheduling for an 

automobile manufacturing industry involved with machining of different 

types of vibration dampers. This work aims to minimize the makespan time 

for relatively different types of vibration dampers with nonuniform flow 

pattern through a two-parallel inseparable hybrid flow shop. A mathematical 

model has been developed for simulation of the hybrid flow line 

performance. The simulation provides data relating to completion time, 

queue status, and machine utilization of various schedules. After analysis 

and evaluation of different possible schedules, simultaneous processing of 

two types of dampers is suggested. The model was evaluated for 

nonuniform flow pattern for any number of types of dampers for different 

sets, and a parallel solution based on completion time is suggested. At the 

end an heuristic is then purposed to provide optimal sequencing for any 

number of dampers processing in parallel. 

 

 

2.2.14 M. Haouari, L. Hidri, A. Gharbi; Optimal scheduling of a two-

stage hybrid flow shop. MATHEMATICAL METHODS OF OPERATIONS 

RESEARCH, (2006) 64: 107–124 

 

In this paper, it’s presented an effective branch-and bound algorithm which 

has been specifically designed for solving the F2(P) ||Cmax problem with an 

arbitrary number of machines in each stage; more than two (for each 

stage) to be accurate. The objective is to schedule a set of jobs so as to 

minimize the makespan. The authors type that this is the first exact 

procedure which has been specifically designed for this strongly NP-hard 

problem. Among other features, the algorithm is based on the exact 

solution of identical parallel machine scheduling problems with heads and 

tails. In order to take advantage of the symmetry of the F2(P) ||Cmax 

problem they do a cyclic implementation, which consists in iteratively 

solving the Forward and the Backward problem (the problem, and it’s 

symmetric one), If the branch-and-bound algorithm fails in finding an 

optimal solution within a given time limit for the Forward problem, then it is 

applied to the Backward. The process continues until a solution is proved 

optimal or there is no improvement of neither the lower nor the upper 
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bound. The results of extensive computational experiments show that the 

proposed algorithm solves large-scale instances in moderate CPU time. 

 

2.2.15 C. Oguz, M. Erkan; A genetic algorithm for hybrid flow shop 

scheduling with multiprocessor tasks. JOURNAL OF SCHEDULING, 

(2005) 8: 323–351 

 

The hybrid flow-shop scheduling problem with multiprocessor tasks finds its 

applications in real-time machine-vision systems among others. Motivated 

by this application and the computational complexity of the problem, a 

developed genetic algorithm is proposed. Some assumptions are 

considered, making the problem really similar to the more diffused paper of 

the HFS problem: 1. All processors and all jobs are available from time t=0; 

2. Processors used at each stage cannot process tasks corresponding to any 

other stages; 3. Each processor can process not more than one job at a 

time; 4. Preemption of jobs is not allowed. It is first described the 

implementation, which include a new crossover operator. This introduced 

new crossover operator (NXO) for the proposed genetic algorithm, capture 

some characteristics of Fk(Pm1, … , Pmk)|sizei j|Cmax problem. The aim in 

developing NXO is to keep the best characteristics of the parents in terms of 

the neighboring jobs. Then they perform a preliminary test to set the best 

values of the control parameters, namely the population size, crossover rate 

and mutation rate. Next, given these values, they carry out an extensive 

computational experiment to evaluate the performance of four versions of 

the proposed genetic algorithm in terms of the percentage deviation of the 

solution from the lower bound value. The results of the experiments 

demonstrate that the genetic algorithm performs the best when the new 

crossover operator is used along with the insertion mutation. All data for 

the computational experiments were generated randomly in line. This 

genetic algorithm also outperforms the tabu search algorithm proposed in 

the literature for the same problem by Oguz et al. (2004).  
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2.2.16 A. J. Vakharia, J. P. Moily, Y. Huang; Evaluating virtual cells 

and multistage flow shops: an analytical approach. THE 

INTERNATIONAL JOURNAL OF FLEXIBLE MANUFACTURING 

SYSTEMS, (2000) 11: 291–314 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is another different solution and perhaps totally different vision of the 

HFS problem, virtual cells are here compared with the flow shop, that’s an 

important occasion to understand and explain these confronted approaches. 

The implementation of cellular manufacturing can be carried out through 

the creation of manufacturing cells (i.e., groups of dissimilar machines 

dedicated to a set of part types that are placed in close proximity to one 

another) or virtual cells (i.e., the dedication of specific machines within the 

current departments to a prespecified set of part types). Typically, the 

former involves the reorganization of the shop floor and provides the 

operational benefit of reduced materials handling. On the other hand, the 

latter configuration is simpler to implement and easier to reconfigure in light 

of product demand changes, but it may not offer the same operational 

benefits. In this paper, they propose and validate analytical approximations 

for comparing the performance of virtual cells and multistage flow shops. 

Using these approximations and hypothetical data, some key factors that 

influence the implementation of virtual cells in a multistage flow shop 

environment are individuated. All it’s ended with an application of the 

Fig. 2.9: Vakharia et al. (2000) 
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presented approximations to industrial data, to show that the efficiency of 

the virtual cells is a function of how machines at each processing stage are 

dedicated. 

 

2.2.17 A. R. Rahimi-Vahed, S. M. Mirghorbani; A multi-objective 

particle swarm for a flow shop scheduling problem. JOURNAL  OF 

COMBINATORIAL OPTIMIZATION, (2007) 13: 79–102 

 

Flow shop problems as a typical manufacturing challenge have gained wide 

attention in academic fields. In this paper, they consider a bi-criteria 

permutation flow shop scheduling problem, where weighted mean 

completion time and weighted mean tardiness are to be minimized 

simultaneously. Since a flow shop scheduling problem has been proved to 

be NP-hard in strong sense, an effective multi-objective particle swarm 

(MOPS), exploiting a new concept of the Ideal Point and a new approach to 

specify the superior particle’s position vector in the swarm, is designed and 

used for finding locally Pareto-optimal frontier of the problem. Tabu Search 

was used to generate diverse initial solutions. A similar concept for Ideal 

Point in multi-objective optimization problems (Dynamic Ideal Point) was 

introduced and used in the initialization phase and in the main algorithm. In 

the initialization phase, the DIP was approximated using linear 

programming when finding the exact Ideal Point was a difficult task and this 

approximation was improved with regard to the better values found for each 

of the objective functions throughout the main algorithm A new method was 

applied to specify the superior particle position’s vector (Pg) in the swarm 

based on solutions’ crowding distance rather than dominance concept. In all 

test problems, the MOPS was able to improve the quality of the obtained 

solutions, especially for the large-sized problems and in five cases in the 

small sized problems, all (100%) of the available non-dominated solutions 

of the searching space obtained by enumeration was detected by MOPS. To 

prove the efficiency of the proposed algorithm, various test problems are 

solved and the reliability of the proposed algorithm, based on some 

comparison metrics, is compared with a distinguished multi-objective 

genetic algorithm, the strength Pareto evolutionary algorithm II (SPEA-II) 

proposed and presented by Zitzler et al. (2001), showing this primary 
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result: MOPS outperforms the compared GA specially in large-sized 

environments. 

 

2.2.18 H.-S. Choi, D.-H. Lee; Scheduling algorithms to minimize the 

number of tardy jobs in two-stage hybrid flow shops. COMPUTERS & 

INDUSTRIAL ENGINEERING, (2009)  56: 113–120 

 

A two-stage hybrid flow shop scheduling problem for the objective of 

minimizing the number of tardy jobs is here presented. Each job is 

processed through the two production stages in series, each of which has 

multiple identical parallel machines. The problem is to determine the 

allocation of jobs to the parallel machines as well as the sequence of the 

jobs assigned to each machine. To solve the problem, a branch and bound 

algorithm, which incorporates the methods to obtain the lower and upper 

bounds as well as the dominance properties to reduce the search space, is 

suggested to give the optimal solutions. In addition, two-phase heuristic 

algorithms are suggested to obtain good solutions for large-size problems 

within a reasonable amount of computation time. In the first phase, the 

ready time of each job at the first stage is obtained using a backward 

schedule, and then in the second phase, it is changed to a better schedule if 

any of the ready times is negative. This paper suggests six heuristic 

algorithms according to the methods used in the second phase. To show the 

performances of the optimal and heuristic algorithms suggested in this 

paper, computational experiments are done on a number of randomly 

generated test problems, and the test results are reported and compared 

with the previous works of Gupta (1988) on the heuristics. The authors 

purpose to develop the models into several directions: more than two 

stages, uniform or unrelated parallel machines, or reentrant product flow. 
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2.2.19 M. R. Amin-Naseri, M. A. Beheshti-Nia: Hybrid flow shop 

scheduling with parallel batching. INTERNATIONAL JOURNAL OF 

PRODUCTION ECONOMICS, (2009) 117:185–196 

 

There are two types of batch productions, namely, serial batches and 

parallel batches. In serial batches a number of jobs within the same batch 

are processed sequentially, while in parallel batches a group of jobs go 

through a machine and are processed simultaneously (Xuan & Tang, 2007). 

In this research the problem of parallel batch scheduling in a hybrid flow 

shop environment with minimizing Cmax is studied . In parallel batching it is 

assumed that machines in some stages are able to process a number of 

operations simultaneously. Since the problem is NP-hard, three heuristic 

algorithms called H1, H2 and H3 are developed to give near optimal 

solutions. In this section three heuristic algorithms are developed in order 

to solve the problem. The first heuristic (H1) is based on Johnson’s rule. 

The second heuristic (H2) is inspired by parallel machine scheduling 

techniques. The third heuristic (H3) is based on the theory of constraints. 

The solution process in all heuristics is implemented through two phases: 

(1) sequencing operations and (2) scheduling operations, in which 

operations are assigned to machines and their start and finish time are 

computed. Since this problem has not been studied previously, therefore, a 

lower bound is developed for evaluating the performance of the proposed 

heuristics. Several test problems have been solved using these heuristics 

and results compared. To further enhance the solution quality, a three 

dimensional genetic algorithm (3DGA) is also developed. Several test 

problems have been solved using 3DGA and the results indicate its 

superiority against an heuristic algorithm called NEH proposed by Nawaz et 

al. (1983), and the four heuristics proposed previously. A lower bound 

(branch and bound) algorithm was also implemented to compare the 

previous solutions with exact ones. The authors type that a scope for the 

future researches could be the combination of serial and parallel batching.  
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2.2.20 S. Khalouli, F. Ghedjati, A. Hamzaoui; A meta-heuristic 

approach to solve a JIT scheduling problem in hybrid flow shop. 

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,  

(2010) 23: 765–771 

 

The increase of competitiveness has motivated the implementation of just in 

time (JIT) production on scheduling problem to reduce process inventories 

and delivering goods at time. In fact, this production environment is benefit 

to both manufacturers and customers. In this paper they address a hybrid 

flow shop scheduling problem considering the minimization of the sum of 

the total earliness and tardiness penalties. Their objective is to introduce 

the problem of extra time (ET) costs into the HFS scheduling problem 

typical solution. This is proven to be NP-hard, and consequently the 

development of heuristic and meta-heuristic approaches to solve it is well 

justified. So, they propose an ant colony optimization (ACO-HFSET) method 

to deal with this problem. The proposed method has several features, 

including some heuristics that specifically take into account both earliness 

and tardiness penalties to compute the heuristic information values. The 

performance of this algorithm is tested by numerical experiments on a large 

number of randomly generated problems. A comparison with solutions 

performance obtained by some constructive heuristics (CH) is presented. 

The results show that the proposed approach performs well for this 

problem.  
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Fig. 2.10: A classification of scheduling problems based on resource environments, Zandieh   
et al. (2006) 

 

2.2.21 M. Zandieh, S. M. T. Fatemi Ghomi, S. M. Moattar Husseini; An 

immune algorithm approach to hybrid flow shops scheduling with 

sequence-dependent setup times. APPLIED MATHEMATICS AND 

COMPUTATION (2006) 180: 111–127 

 

 
 

 
Much of the research on operations scheduling problems has either ignored 

setup times or assumed that setup times on each machine are independent 

of the job sequence. This paper deals with the hybrid flow shop scheduling 

problems in which there are sequence dependent setup times, commonly 

known as the SDST hybrid flow shops, with the objective of minimizing 

makespan. This type of production system is found in industries such as 

chemical, textile, metallurgical, printed circuit board, and automobile 

manufacture. With the increase in manufacturing complexity, conventional 

scheduling techniques for generating a reasonable manufacturing schedule 

have become ineffective. An immune algorithm (IA) can be used to tackle 

complex problems and produce a reasonable manufacturing schedule within 

an acceptable time. This paper describes an immune algorithm approach to 



 55 

the scheduling of a SDST hybrid flow shop. An overview of the hybrid flow 

shops and the basic notions of an IA are first presented. The natural 

immune system is a very complex system with several mechanisms to 

defense against pathogenic organisms. However, the natural immune 

system is also a source of inspiration for solving optimization problems. 

From the information processing perspective, immune system is a 

remarkable adaptive system and can provide several important aspects in 

the field of computation (Dasgupta & Attoh-Okine, 1997). When 

incorporated with evolutionary algorithms, immune system can improve the 

search ability during the evolutionary process (Jiao & Wang, 2000).  

Subsequently, the details of an IA approach are described and 

implemented. The results obtained are compared with those computed by 

Random Key Genetic Algorithm (RKGA) presented previously by Kurz & 

Askin (2003,2004). From the results, it was established that IA 

outperformed RKGA. 

 

2.2.22 H.-T. Lin, C.-J. Liao; A case study in a two-stage hybrid flow 

shop with setup time and dedicated machines. INTERNATIONAL 

JOURNAL OF PRODUCTION ECONOMICS (2003) 86: 133–143 

 

In this paper they address a scheduling problem taken from a label sticker 

manufacturing company, so a real case. The production system is a two-

stage hybrid flow shop with the characteristics of sequence-dependent 

setup time at stage (1), dedicated machines at stage (2), and two due 

dates. The objective is to schedule one day’s mix of label stickers through 

the shop such that the weighted maximal tardiness is minimized. A heuristic 

is proposed to find the near-optimal schedule for the problem. This heuristic 

is called modified GD method, because it’s a development of the Gupta and 

Darrow heuristic algorithm (Gupta & Darrow, 1986). As the heuristic is 

based on 

the specific requirements of the system, it can effectively improve the 

performance of the system. The performance of the heuristic is evaluated 

by comparing its solution with both the optimal solution for small-sized 

problems and the solution obtained by the scheduling method currently 

used in the shop, a branch and bound (B&B), presented by Linn & Zhang 
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(1999). The management is currently developing an aggregate production 

management system, which includes order treatment, scheduling, inventory 

control, forecasting, and capacity planning modules. As the heuristic is 

beneficial to the company, it will be used in the scheduling module and 

implemented in the near future. Although the heuristic is developed for the 

specific system, it can be used, with appropriate modifications, in other 

two-stage FSMP scheduling problems with similar features. 

 

2.2.23 S. Voß, A. Witt; Hybrid flow shop scheduling as a multi-mode 

multi-project scheduling problem with batching requirements: a 

real-world application. INTERNATIONAL JOURNAL OF PRODUCTION 

ECONOMICS  (2007) 105: 445–458 

 

Due to intense performance improvements of information technology in the 

last decade quantitative models have become applicable to reasonably sized 

real-world scheduling problems. Particularly in supply chain management 

the partner-companies are in need of extensive tuning of their activities. 

Apart from a timely data transmission this also presumes extremely current 

and accurate planning results. The use of quantitative models and 

procedures lays the foundations for this purpose. To confirm and develop 

this statement they consider a real world multi-mode multi-project 

scheduling problem. Furthermore, sequence-dependent setup states arise at 

two production stages leading to a batching problem. The objective is to 

minimize the weighted tardiness. Usually, machine scheduling models do 

not include general precedence constraints between jobs. A promising way 

to focus on a more general approach is to use the well-known resource 

constrained project scheduling problem (RCPSP, sometimes referred to as a 

project shop; Morton & Pentico, 1993) with multiple modes as a basis for 

the development of an integer model with discrete time periods. The RCPSP 

is well suited because contrary to traditional models of machine scheduling 

it A mathematical model based on the well-known RCPSP is presented to 

provide a formal description of the problem. As problem instances consist of 

lots of thousands jobs a heuristic solution procedure using dispatching rules 

is also applied. They describe how these rules can be modified in order to 

adapt them to a problem with batch requirements. For the RCPSP there 
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exist two different schemes to generate schedules with dispatching rules: 

so-called serial and parallel generation schemes. First they consider some 

small test problem instances and then they turn to the real-world instances.  

 

2.2.24 M. Zandieh, E. Mozaffari, M. Gholami; A robust genetic 

algorithm for scheduling realistic hybrid flexible flow line problems. 

JOURNAL OF INTELLIGENT MANUFACTURING (2010) 21: 731–743 

 

 

This article addresses the problem of hybrid flexible flow line where some 

constraints are considered to alleviate the chasm between the real-world 

industries scheduling and the production scheduling theories. Sequence-

dependent setup times (SDST), machine release date and time lags are 

three constraints deemed to project the circumstances commonly found in 

real-world industries. A crucial property characteristic of this research topic 

is that sequence-dependent setup times exist between jobs at each stage. 

After completing processing of one job and before beginning processing of 

the next job, some sort of setup must be performed. The length of time 

required to do the setup depends on both the prior and the current job to 

be processed; that is, the setup times are sequence-dependent (Kurz & 

Askin, 2003). To tackle the complexity of the problem at hand, they 

propose an approach base on genetic algorithm (GA). However, the 

performance of most evolutionary algorithms is significantly impressed by 

the values determined for the miscellaneous parameters which these 

algorithms possess. Hence, response surface methodology is applied to set 

the parameters of GA and to estimate the proper values of GA parameters 

in continually intervals. Finally, problems of various sizes are utilized to test 

the performance of the proposed algorithm and to compare it with some 

Fig 2.11: A standard genetic algorithm in pseudo-code, Zandieh et al. (2010) 
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existing heuristic in the literature such as SPT, LPT and NEH (Nawaz et al., 

1983). 

 

2.2.25 B. Qian, L. Wang, D.-X. Wang, W.-L. Wang, X. Wang; An 

effective hybrid de-based algorithm for multi-objective flow shop 

scheduling with limited buffers. COMPUTERS & OPERATIONS 

RESEARCH (2009) 39: 209–233 

 

 

This paper proposes an effective hybrid algorithm based on differential 

evolution (DE), namely HDE, to solve multi-objective permutation flow shop 

scheduling problem (MPFSSP) with limited buffers between consecutive 

machines, which is a typical NP-hard combinatorial optimization problem 

with strong engineering background. Firstly, to make DE suitable for solving 

scheduling problems, a largest-order-value (LOV) rule is presented to 

convert the continuous values of individuals in DE to job permutations. 

Secondly, after the DE-based exploration, an efficient local search, which is 

designed based on the landscape of MPFSSP with limited buffers, is applied 

to emphasize exploitation. Thus, not only does the HDE apply the parallel 

evolution mechanism of DE to perform effective exploration (global search) 

in the whole solution space, but it also adopts problem-dependent local 

search to perform thorough exploitation (local search) in the promising sub-

regions. In addition, due to the parallel evolutionary framework of DE, local 

search is easy to embed in DE to develop effective hybrid algorithms. Next, 

we will present this local search, which is embedded in DE for solving 

Fig. 2.12: A graph model of flow shop with limited buffers, Nowicki (1999) 
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MPFSSP with limited buffers. In addition, the concept of Pareto dominance 

is used to handle the updating of solutions in sense of multi-objective 

optimization. Moreover, the convergence property of HDE is analyzed by 

using the theory of finite Markov chain (Pranzo, 2004). Finally, simulations 

and comparisons based on benchmarks demonstrate the effectiveness and 

efficiency of the proposed HDE. 

 

2.2.26 C. Kahraman, O. Engin, I. Kaya, R. E. Ozturk; Multiprocessor 

task scheduling in multistage hybrid flow-shops: a parallel greedy 

algorithm approach. APPLIED SOFT COMPUTING (2010) 10: 1293–

1300 

 

Hybrid flow shop scheduling problems have a special structure combining 

some elements of both the flow shop and the parallel machine scheduling 

problems. Multiprocessor task scheduling problem can be stated as finding a 

schedule for a general task graph to execute on a multiprocessor system so 

that the schedule length can be minimized. Hybrid Flow Shop Scheduling 

with Multiprocessor Task (HFSMT) problem is known to be NP-hard. In this 

study is presented an effective parallel greedy algorithm to solve HFSMT 

problem. Parallel greedy algorithm (PGA) is applied by two phases 

iteratively, called destruction and construction. In the destruction 

procedure; d jobs are randomly chosen in the n jobs sequence, where d is 

showing the number of subgroups. Subgroup number has a very important 

role in PGA and it helps to maintain diversity in the population. Subgroup 

number can be generated from the range (1;n−1). In this study subgroup 

number is tested for HFSMT problems using the range (1;n−1). The initial 

population size is divided by two and thus two separate subpopulations with 

equal size are obtained. For parallel calculating, exactly two subpopulations 

are chosen. The construction and destruction methods are applied to all 

subpopulations job sequence. In this study, the population size is accepted 

as the permutation (π) of n jobs. Local search algorithm is applied based on 

the insertion neighborhood, which is commonly regarded as a very good 

choice for the scheduling problem (Ruiz & Stutzle, 2007) Four constructive 

heuristic methods are proposed to solve HFSMT problems. A preliminary 

test is performed to set the best values of control parameters, namely 
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population size, subgroups number, and iteration number. The best values 

of control parameters and operators are determined by a full factorial 

experimental design using our PGA program. Computational results are 

compared with the earlier works of Oguz et al. (2004,2005) and Oguz 

(2006). The results indicate that the proposed parallel greedy algorithm 

approach is very effective in terms of reduced total completion time or 

makespan (Cmax) for the attempted problems. 

 

2.2.27 C. Koulamas, G. J. Kyparisis; A note on the two-stage 

assembly flow shop schedulino problem with uniform parallel 

machines. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 182 

(2007) 945–951 

 

The problem of minimizing the makespan in a two-stage assembly flow 

shop scheduling problem with uniform parallel machines is here presented. 

This research propose a small survey on the previous methods and papers 

that inspired their research, for example Cheng & Wang (1999) considered 

a related problem of scheduling the fabrication and assembly of components 

in a two-machine flowshop so as to minimize the makespan. Each jobs 

consists of a component unique to that job processed individually on the 

first machine and a component common to all jobs processed in batches on 

the first machine with a setup needed to form each batch. The assembly 

operation of a job is performed on the second machine. Cheng & Wang 

(1999) show that this problem is NP-complete with either batch availability 

or item availability for the common components. They also identify several 

properties of an optimal solution and some polynomially solvable cases, 

giving some base concepts for this research, that obviously develop all of 

this. This problem is a generalization of the assembly flow shop problem 

with concurrent operations in the first stage and a single assembly 

operation in the second stage. The solution method is an heuristic algorithm 

with an absolute performance bound which becomes asymptotically optimal 

as the number of jobs becomes very large. To their knowledge, this is the 

first paper in the literature which studies the AFQ||Cmax problem. The study 

is then compared with the simpler assembly flow shop problem (without 

uniform machines) and with the two-stage hybrid flow shop problem with 
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uniform machines, which is the part of the paper of our interest. When 

there is only one concurrent operation at stage 1, the AFQ||Cmax problem 

reduces to the two-stage flexible or hybrid flow shop problem with uniform 

parallel machines, denoted as HF2Q||Cmax. The H0 heurtistic algorithm can 

perform both the AFQ||Cmax and the HF2Q||Cmax, theoretical and pratical 

assumptions are presented to explain all of this more clearly, some of these 

are based on Sevastianov (2002). 

 

2.2.28 P. Caricato, A. Grieco, D. Serino; Tsp-based scheduling in a 

batch-wise hybrid flow-shop. ROBOTICS AND COMPUTER-

INTEGRATED MANUFACTURING (2007) 23: 234–241 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem presented in this paper extends the HFS scheduling problem to 

cover the case in which the system’s behavior is hardly influenced by a 

batch organization of jobs. In the past few years, flexible production 

systems have allowed an extensive exploitation of new technologies, but 

have also led to new difficulties in production planning management 

science. The model presented in this paper extends the traditional HFS 

(hybrid flowshop) scheduling problem to the case in which jobs are due to 

follow strict precedence constraints and batch assignment constraints and 

the parallel machines at a stage are served by a bottleneck machine. A 

Fig 2.13: System Layout, Caricato et al. (2005) 
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variant of the well-known travelling salesman problem (TSP) is used to 

develop an efficient heuristic solution for the problem. The effectiveness of 

the proposed approach is validated through a comparison with different 

heuristics traditionally used in HFS scheduling problems, such as: rule 

based scheduling heuristic, TSP-based simple insert heuristic and TSP-based 

GENIUS procedure from Mladenovic & Hansen (1997). A thorough analysis 

of the TSP can be found in Gutin & Punnen (2002). Furthermore, a simple 

insertion heuristic based on the TSP model of the problem is tested. Finally, 

a MIP-based approach is also explored to provide the optimum solutions 

within much larger times for comparison, for more informations about this 

last presented approach see Caricato et al. (2001).   

 

2.2.29 H.-S. Choi, J.-S. Kim, D.-H. Lee; Real-time scheduling for 

reentrant hybrid flow shops: A decision tree based mechanism and 

its application to a TFT-LCD line. EXPERT SYSTEMS WITH 

APPLICATIONS (2010) (Article in Press) 

 

Hybrid flow shops can be classified into two types according to product 

flows: (a) those with unidirectional flows; and (b) those with reentrant 

flows. Here, the unidirectional flows imply that each job starts at the first 

stage and finishes at the last stage. On the other hand, in the reentrant 

flows, each job may visit each serial stage two or more times. For example, 

semiconductor wafer fabrication and TFT-LCD manufacturing lines have the 

reentrant flows. In other words, each visit of certain specified serial 

production stage corresponds to a layer that is built up for required circuits. 

Compared with the unidirectional flows, the reentrant flows generally make 

system operations much more complicated. This paper focuses on the 

scheduling problem in hybrid flow shops with reentrant product flows, called 

reentrant hybrid flow shop scheduling in this paper. The main decisions are: 

(a) allocation of jobs to machines at each stage; and (b) sequence of the 

jobs assigned to each machine. In fact, this research was motivated from a 

TFT-LCD manufacturing system with a large number of complex processes 

and reentrant product flows. Unlike the theoretical approach on reentrant 

hybrid flow shop scheduling, a realtime scheduling mechanism with a 

decision tree when selecting appropriate dispatching rules is suggested. The 
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decision tree, one of the commonly used data mining techniques, is adopted 

to eliminate the computational burden required to carry out simulation runs 

to select dispatching rules. To illustrate the mechanism suggested in this 

study, a case study was performed on a thin film transistor-liquid crystal 

display (TFT-LCD) manufacturing line and the results are reported for 

various  system performance measures. 

 

2.2.30 T. Sawik; An Exact Approach for Batch Scheduling in Flexible  

Flow Lines with Limited Intermediate Buffers. MATHEMATICAL AND 

COMPUTER MODELLING (2002) 36: 461-471 

 

The paper presents a mixed integer programming approach for makespan 

mmimization in flexible flow lines. The line consists of several processing 

stages in series, separated by finite intermediate buffers, where each stage 

has one or more parallel identical machines. The problem objective is to 

determine a minimum length schedule for a mix of part types, where 

identical parts are scheduled consecutively. A mixed integer programming 

model is presented for batch scheduling in a flexible flow line with limited 

intermediate buffers. A unified modeling approach is adopted with the 

buffers viewed as machines with zero processing times. As a result, the 

scheduling problem with buffers can be converted into one with no buffers 

but with blocking (Sawik 2000, McCormick et al. 1989). The blocking time 

of a machine with zero processing time denotes part waiting time in the 

buffer represented by that machine. They assume that each part must be 

processed in all stages, including the buffer stages. However, zero blocking 

time in a buffer stage indicates that the corresponding part does not need 

to wait in the buffer. Let us note that for each buffer stage part completion 

time is equal to its departure time from the previous stage since the 

processing time is zero. Numerical examples modeled after real-world 

surface mount technology lines for printed wiring board assembly are 

provided and some computational results are reported to illustrate the 

approach. The presented approach (based on a MIP formulation) is capable 

of optimal scheduling of batches of different part types by using 

commercially available software for discrete programming. The 

mathematical formulation includes various cutting constraints exploiting 
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Fig. 2.14: Evolution of number of papers per year; Ruiz & Vazquez-Rodriguez (2010). 

special FFL configurations and some properties of batch processing on 

parallel machines. The cutting constraints have an impact on reducing 

computational effort required to find the optimal solution. Nevertheless, the 

CPU time required to find proven optimal schedules for realistic large size 

problems still can be very high.  

 

 

2.3 Survey and discussion of the papers 

 

 

 

First of all, is very important to underline that a research of thirty papers 

can’t give a complete survey, neither give numbers or percentage, etc.. But 

graphics and tables are very clear instruments to show what have been 

done, and what can be done to improve this work, so it have been decided 

to use a short survey to end the second part of the thesis, we will deepen 

into the simpler objects of research: algorithms and optimized parameter/s; 

using sometimes the same scheme of two important and recent surveys 

found in the literature: Review and classification of hybrid flow shop 

scheduling problems from a production system and a solutions procedure 

perspective, from Imma Ribas, Rainer Leinsten, Jose M. Framinan (see 
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Ribas et al., 2009) and The hybrid flow shop scheduling problem from 

Ruben Ruiz and Jose Antonio Vazquez-Rodriguez (see Ruiz & Vazquez-

Rodriguez, 2010). Another important paper could be Hybrid Flow Shop 

Scheduling: a survey, from Richard Linn and Wei Zhang (see Linn & Zhang, 

1999) but being wrote into 1999, the purposed procedure was not adaptive 

to the recent papers in this research, but despite that, looking at the papers 

bibliography this article is so considered from the authors and it’s correct to 

mention it.  To end this introduction we invite to focus on fig. 2.14, this 

graphic, show easily how important is this question for the literature, and 

that the number of papers grows year by year. 

 

2.3.1 Deepen about algorithms 

 

 

Graph. 1: Distribution of employed techniques 

 

This graphic shows a first division of the algorithms but a lot of other 

information should be given to estimate the state of art we can see with 

these thirty papers, despite that, this graphic give fairly good results, if 

Heuristic 20%
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Nature Inspired 
12%

Simulated 
annealing 

6%
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compared with the one from Ruiz & Vazquez-Rodriguez, the percentage of 

algorithms in a complete survey is similar to the one we purpose, note that 

this could be just a coincidence, because if the small number of articles. 

Further information is given from the table 2.2, these table gives the name 

of the algorithm paper by paper, after the table some notes about 

algorithms are also given. 

 

Nr. Algorithm Nr. Algorithm 
1 Novel simulated annealing (SA)  16 No algorithm (Analytic) 

2 Bi-objective heuristic (HE) 17 Multi Object Particle Swarm (NI) (H) 

3 Memetic algorithm (GA) (H) 18 Branch and Bound (BB) 

4 No Name (GA) (H) 19 H1,H2,H3 (HE) 

5 Neural Network (NI) 20 Ant Colony Optimization (NI) 

6 Random Key Genetic Algorithm (GA) 21 Immune Algorithm (NI) 

7 Improved Ant Sysytem (NI) 22 Approximate Algorithm 1 (HE) 

8 IHMOPGA (GA) (H) 23 R&M (HE) 

9 Hypotesis-Test-Based Genetic Algorithm (GA) 24 Genetic Algorithm (GA) 

10 Hybrid Simulated Annealing Algorithm (SA) (H) 25 Hybrid Differential Evolutionary (GA) (H) 

11 No name (SA) 26 Parallel Greedy (GA) 

12 More than one algorithm 27 Asymptotically optimal heuristic (H) 

13 No name (HE) 28 No name (GA) 

14 Branch and Bound / Lower Bound (BB) (H) 29 Iterative dichotomoser (HE) 

15 No name (GA) (H) 30 No name (LP) 
 

Table 2.2: Name and category of algorithms presented into papers 

 

Note that this last table is not the one used to calculate the graphic, which 

is the 2.1 Table presented at the beginning of chapter 2. 

When you need to put something into a category it isn’t a simple thing to 

do, some parts could bring you to category ―A‖ some other parts to 

category ―B‖, etc.; that’s why a table with all the names of presented 

algorithms should be given. Note that the Nature Inspired category was 

invented by me to represent the all algorithms that are inspired from 

nature, such as ant colony system, particle swarm, neural network etc. I 

think this can be an interesting name but into the current literature only a 

few papers use a similar name and it’s correct to say that this can’t be 

considered a proved and scientific classification. 
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2.3.2 Objective functions 

 

 
Graph. 2: Distribution of objective funcions 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Common objective functions  

 

The proposed graphic shows a very simple distribution: tardiness and 

makespan have a lot of different parameters. Common objective functions 

are presented in table 2.3, note that if the weight is 1 it’s a simple average 

Makespan 60%

Tardiness 13%

Both 23%

Other 
3%

Makespan

Tardiness

Both

Other

Notation Description Meaning 

Cmax maxj (cj) Maximum completion time 

Fmax maxj (cj - rj) Maximum flow time 

Lmax maxj (Lj) Maximum lateness 

Tmax maxj (Tj) Maximum tardiness 

Emax maxj (Ej) Maximum earliness 

      Σ (wj cj) Total/average (weighted) completion time 

      Σ (wj Fj) Total/average (weighted) flow time 

      Σ (wj Uj) Total/average (weighted) number of late jobs 

      Σ (wj Tj) Total/average (weighted) tardiness 

      Σ (wj Ej) Total/average (weighted) earliness 
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and not a weighted average, that’s why there are parenthesis. At the end 

we present table 2.4 with the objective functions used into the studied 

papers. Note that the parenthesis means that the objective function was not 

as important as the other one/s and that number of tardy jobs have been 

considered a tardiness parameter into the graphic and into the 2.1 table. 

 

Nr. Cmax Tmax                               Profit 

1 X        

2 X     X   

3 X        

4        X 

5   X X X    

6 X  X      

7 X        

8 X X       

9 X        

10 X X       

11 X        

12 X    X    

13 X        

14 X        

15 X        

16   X X     

17   X   X   

18     X    

19 X        

20      X X  

21 X  X      

22      X   

23      X   

24 X        

25 X (X)       

26 X        

27 X        

28 X        

29   (X) X X X   

30 X        

 

Table 2.4: Objective functions presented into papers  
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Chapter 3: 

Elaboration of two papers of interest 
 

3.1 H.-S. Choi, J.-S. Kim, D.-H. Lee; Real-time scheduling 

for reentrant hybrid flow shops: A decision tree based 

mechanism and its application to a TFT-LCD line. EXPERT 

SYSTEMS WITH APPLICATIONS (2010) (Article in Press) 

 

3.1.1 Introduction 

 

Most of the previous studies on reentrant hybrid flow shop scheduling are 

theoretic in the sense that sophisticated algorithms were devised after 

developing and analyzing mathematical models with various assumptions 

(See Linn and Zhang (1999) for a literature review on hybrid flow shop 

scheduling). problem. Real-time scheduling, one of practical scheduling 

approaches, is an important topic on which a number of previous researches 

have been done. Unlike the existing approaches explained above, they 

suggest a real-time scheduling mechanism in which the decision tree is 

used to select an appropriate dispatching rule at the end of each monitoring 

period so that the computational burden required for carrying out simulation 

runs can be eliminated. Here, the monitoring period is the time period 

during which a dispatching rule is maintained before considering the rule 

change. Also, the decision tree, a schematic model to determine one of the 

alternatives available to a decision maker, is constructed using the 

information obtained from preliminary data. The real-time scheduling 

mechanism suggested in this paper is illustrated with a case study on a 

TFT-LCD manufacturing line, and the test results are reported for various 

system performance measures. Although there have been a number of 

previous research articles on scheduling in semiconductor manufacturing 

systems, typical reentrant hybrid flow shops, they have limited applications 

since they are off-line in nature. Also, the existing real-time scheduling 

approaches for semiconductor manufacturing select priority dispatching 

rules using the information obtained from simulation runs and hence they 

may require significant amount of computational burden. Unlike these, they 
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suggest a real-time scheduling mechanism that increases the speed of the 

scheduling decisions using the decision tree. Note that the system 

performances are directly affected by the speed of scheduling system and 

hence scheduling decisions and actions also have to be made in real-time. 

This paper is organized as follows: in the second part, they explain the 

decision tree based real-time scheduling mechanism. The algorithm to 

construct the decision tree is also explained. The case study on the TFT-LCD 

manufacturing line is reported in the third section. Finally, the fourth section 

summarizes the main results, gives the conclusions, and describes some 

areas for further research. We will add before the second part of the 

analyzed paper another introductive part, explaining the terms and the 

methods used in the paper, that are normally considered to be easily 

known, in the papers, but to an inexpert reader could be difficult to 

understand. 

 

3.1.2 Real-time scheduling: an historical perspective 

 

A real-time system is one with explicit deterministic or probabilistic timing 

requirements. Historically, real-time systems were scheduled by cyclic 

executives, constructed in a rather ad hoc manner. During 1970s and 

1980s, there was a growing realization that this static approach to 

scheduling produced systems that were inflexible and difficult to maintain. 

Also in this period (starting in 1979), a series of meetings started that 

eventually turned in to a major annual international conference. The IEEE 

Real-Time Systems Symposium has in the last twenty-five years been the 

main forum for publishing the key results in scheduling theory. In the early 

1990s a number of other initiatives were funded, including a series of 

influencial studies commissioned by the European Space Agency. Text book 

also began to appear, for example, Burns & Wellings (1990). Later, with 

hardware and software evolution, there has been an explosion of interest in 

real-time systems, and an explosion of research and pubblication on the 

analysis of real time scheduling. There are five main categories of real-time 

scheduling: (1) fixed-priority scheduling, (2) dynamic-priority scheduling, 

(3) soft real-time scheduling, (4) feedback scheduling and (5) extended 

scheduling models. (See Sha et al. 2004) 
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3.1.3 Decision tree based real-time scheduling mechanism 

 

This section presents the decision tree based real-time scheduling  

mechanism suggested in this paper. First, the framework is explained. 

Then, the components and the algorithm to construct the decision tree are 

explained in details. Finally, the scheduling strategy, i.e., the time point to 

select a new dispatching rule, is explained. 

Fig. 3.1 shows the framework, i.e., components and necessary information 

for the real-time scheduling mechanism to work. In fact, the framework is a 

modified version of the simulation-based one of Jeong & Kim (1998) in that 

the decision tree, instead of simulation, is used to select a new dispatching 

rule at the end of each monitoring period. 

As can be seen in the figure, the real-time scheduling mechanism suggested 

in this paper consists of three main components: real-time controller,  

scheduler, and decision tree based rule selector. 

A brief explanation of each component is given below. (Details of the 

components will be explained in the next section.) 

Fig. 3.1: An overview of the decision tree based real-time scheduling, Choi et al. (2010) 
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 Real-time controller exchanges the information with the shop floor, 

monitors the system states, and dispatches jobs according to the rule 

released by the scheduler. Also, it updates the system states 

database using the system monitoring results and sends a signal to 

the scheduler if it senses the occurrence of a system disturbance. 

 Scheduler determines the point of time when a new dispatching rule 

is to be selected. If the real-time controller senses the occurrences of 

system disturbances and/or a significant difference between real and 

estimated performances, it sends a signal to the scheduler. This 

makes a decision on whether or not a new dispatching rule should be 

selected. When it is necessary to select a new dispatching rule, the 

scheduler sends a request to the decision tree based rule selector. 

 Decision tree based rule selector : when the system requests a new 

dispatching rule, the decision tree based rule selector selects the best 

dispatching rule, i.e., a rule that gives the best performances, and it 

is informed to the scheduler.  

To explain the relations among the three components, we explain three 

databases required for our real-time scheduling mechanism to work. 

o Decisions in planning stage contain the information about jobs (with  

operations), routings, processing times, due dates, performance 

measures, etc. 

o System states, updated whenever there is any change in system 

states, contain the information related to the current system states, 

i.e., number of jobs in the system, number of remaining operations 

for each job, processing states of each job, machine states (working, 

being repaired or idle), etc. 

o Data on the performances of dispatching rules contain the  

information required to build up a decision tree, i.e., system 

performances under certain system states. 

 

3.1.4 Constructing the decision tree 

 

The decision tree consists of three types of nodes: non-leaf nodes and leaf 

nodes. Here, each non-leaf node represents a choice among alternatives 

while leaf nodes represent classification or decision. Before explaining the 
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decision tree in details, an example of the data set is shown in the table, 

which is adopted from Han (2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 3.1, there are twelve objects, four conditional attributes, and one 

decision attribute. For example, object 1 implies that the decision is 1 (X = 

1) if the values of conditional attribute A, B, C, and D are 1, 2, 2, and 1, 

respectively. Using the data given in the table, various decision trees can be 

made. Among them, an example is shown in Fig. 3.2.  

 

 

 

 

 

 

 

 

 

 

Objects Conditional attributes Decision attribute 

 A B C D X 

1 1 2 2 1 1 

2 1 2 3 2 1 

3 1 2 2 3 1 

4 2 2 2 1 1 

5 2 3 2 2 2 

6 1 3 2 1 1 

7 1 2 3 1 2 

8 2 3 1 2 1 

9 1 2 2 2 1 

10 1 1 3 2 1 

11 2 1 2 2 2 

12 1 1 2 3 1 

Table 3.1: Dataset for constructing a decision tree: example, Choi et al. (2010) 

Fig. 3.2 Decision tree: example. Choi et al. (2010) 
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In Fig. 3.2, a path from the root node to each lead node corresponds to a 

decision. For example, if the values of conditional attributes A, B and C are 

2, 3, and 1, the resulting decision is 1, i.e., X = 1. Now, how the decision 

tree is used to select a dispatching rule at the end of each monitoring period 

it’s explained. In this application, conditional and decision attributes in the 

data set correspond to the system states and the selection of dispatching 

rule, respectively. If simulation is used to construct the decision tree, an 

object in the data set, i.e., each row in Table 3.1, is obtained by performing 

a simulation run under a given set of system states and identifying the best 

dispatching rule. As stated earlier, the data set can be also obtained from 

the historical data or the knowledge of experts. The system states 

considered in this study are summarized below. (Note that more variables 

can be added for other applications.) 

o Total number of remaining operations for the jobs in queue at each 

stage. 

o Total processing time of remaining operations for the jobs in queue at 

each stage. 

o Total number of remaining operations for the jobs being processed at 

each stage. 

o Total processing time of remaining operations for the jobs being 

processed at each stage. 

Note that the decision tree can be updated if there are changes in the 

cumulated data set. This shows the flexibility of our decision tree based 

real-time scheduling mechanism. There are various algorithms to construct 

the decision tree. Among them, we adopt the Iterative Dichotomiser 

algorithm of Quinlan (1986), called the ID3 algorithm in the literature, since 

it has been proved to be simple but effective to express information 

contained implicitly in discrete valued data sets.  

 

3.1.5 The iterative dichotomiser (ID3) algorithm  

 

The basic idea of the ID3 algorithm by Quinlan (1986) is stemmed from the 

information theory and the pattern recognition. Before explaining the 

algorithm, a set of objects is defined as a matrix A = [aij], where aij denotes 

the value of conditional attribute j of object i. Note that in the matrix, each 
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row vector corresponds to an object without the decision attribute. (See 

Table 3.1 for an example.) 

The ID3 algorithm uses the entropy function to select the conditional 

attributes of a decision tree, where the entropy function measures the 

impurity of an arbitrary collection of objects. More formally, the entropy 

function of conditional attribute j is defined as 

o                     
  
                    

where Cj denotes the number of different conditional attribute values, e.g., 

CA, CB, CC, and CD are, 2, 2, 3, and 3 for the example in the table. Also, 

p(wcj|j) denotes the proportion of value wcj in conditional attribute j, i.e., 

o                   

where Wcj = {i|aij = wcj, ∀i} and m denotes the number of objects. For 

example, p(1|A) = 8/12 and p(2|B) = 4/12 in Table 3.1, and hence the 

entropy value of conditional attribute A can be calculated as follows: 

o                       
 

              
 

    

The ID3 algorithm constructs the decision tree as follows. First, all the 

conditional attributes are evaluated using the entropy function and the one 

with the smallest entropy value is selected. From the root node, a partial 

decision tree is constructed with the selected conditional attribute. Second, 

a child node is generated for each conditional attribute value of the root 

node and it is connected to the root node. As in the root node, the 

conditional attribute of the child node is set to the one with the smallest 

entropy value after removing the selected conditional attribute and the 

objects with the conditional attribute value of the root node. This is done 

until there is no remaining conditional attributes to be considered. 

A detailed procedure of the ID3 algorithm is given below. 

 Step 1. Create the root node using the conditional attribute with the  

smallest entropy value and let the root node be the current node. 

 Step 2. For each conditional attribute value of the current node, 

create and connect a child node whose conditional attribute is set to 

the one with the smallest entropy value after updating the data set, 

i.e., entropy values are calculated after removing the conditional 

attribute of the current node and the objects with the conditional 

attribute value of the current node. 
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 Step 3. If all conditional attributes are considered, stop. Otherwise,  

let one of the unconsidered child nodes be the current node and go to 

Step 2. 

Afterthe decision tree is constructed, one more decision should be made on 

the time points when a new dispatching rule is to be selected, i.e., the time 

when the decision tree is called. To do this, they use the ALL strategy 

suggested by Jeong and Kim (1998) since it is better than the others. (See 

Jeong and Kim (1998) for the other scheduling strategies.) In the ALL 

strategy, the scheduler is called in the following cases. 

 Beginning of a new scheduling horizon. 

 Major system disturbances (e.g., machine breakdowns). 

 Minor system disturbances (e.g., tool breakages). 

 Getting the performances worse, i.e., certain performance value 

exceeds a pre-determined limit, at each periodic monitoring period. 

 

3.1.6 Application on a TFT-LCD line 

 

 

TFT-LCDs are high-tech display products manufactured through complex 

processes. A glass of semiconductor material is coated with a thin film of a 

chemical called photo-resist. Photo-resist coated wafers or glasses are then 

baked in an oven to remove solvents. Once the baking process is 

completed, the stepper aligns layers with mask plate and the glass is 

exposed to ultraviolet light. Then, the glass is developed in the developer. 

At the final stage, dry and wet etching processes remove thin film layers. 

The dry etching process uses reactive species, such as atoms or radicals 

from the gas plasma, to etch away a portion of the object material. When 

these species react with the material located on the plate, the open region 

Table 3.2: Product routes and processing times (in minutes) for the case studied, Choi et al. 
(2010) 
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of material is transformed into a volatile state and removed from the 

matrix. In this process, the reaction velocity is fast, and fine patterns can 

be formed uniformly. The TFT-LCD fabrication process, a typical bottleneck 

among the whole processes, is similar to the semiconductor wafer 

fabrication process in that its complexity comes from a large number of 

operations as well as reentrant flows. The TFT-LCD fabrication process 

considered in this study can be described as Fig. 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in the figure, there are five serial stages, called deposition 

(DS) with 10 machines, gate photo (GP) with 20 machines, exposure (EP) 

with 10 machines, wet etching (WE) with 15 machines, and stripping (SP) 

with 10 machines, in the line. In the TFT-LCD manufacturing line, 11 

product types are produced. The routes and processing times are 

summarized in Table 3.2 According to the operations managers of the line, 

due dates of jobs were generated from DU(2.0 ∙ Ti, 4.0 ∙ Ti), where DU(l, u) 

and T denote a discrete uniform distribution with range [l, u] and the sum 

of the operation times of the job i, respectively. Preemption is not allowed 

due to the technical problems. It is assumed that the transportation time is 

ignored since the material handling system is not the bottleneck in the line, 

and set-up times are included in the processing times. Finally, the other 

problem data are summarized below. Note that some of the data are 

Fig 3.3: TFT-LCD manufacturing process, Choi et al. (2010) 
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artificial due to the confidential problem and the difficulties to obtain the 

exact data. 

 Jobs arrive with an inter-arrival time generated from EXP(10), where 

EXP(λ) is an exponential distribution with a mean of k. 

 Major machine breakdowns occur with an inter-failure time of 

EXP(15000), and repair times were generated from EXP(500). 

 Minor breakdowns occur with an interval generated from EXP(6000) 

for each machine, and repair time follows EXP(150). 

 Buffer size, i.e., maximum number of available waiting jobs at each 

stage, was set to 200. 

 

Due to a large number of operations and reentrant flows, the TFT-LCD 

manufacturing line has low system throughput, long flow time, and bad due 

date related performance measures. Therefore, their motive is to suggest 

new and practical real-time scheduling mechanism that can help to improve 

its system performances. Multiple performance measures are considered in 

this study. They are: (a) maximizing system throughput; (b) minimizing 

mean flow time; (c) minimizing mean tardiness; and (d) minimizing the 

number of tardy jobs. 

 

3.1.7 Dispatching rules 

 

Dispatching rules are used for selecting a job among those waiting in a 

queue at each stage when a machine becomes available. The dispatching 

rules tested in the case study are summarized below. Note that other rules 

can be added since the real-time mechanism is flexible in this respect. 

 FCFS (first come first served): select an operation that arrived at the 

queue first. 

 SPT (shortest processing time): select an operation with the shortest 

operation processing time, i.e., min pj, where pj denotes the 

processing time of operation j. 

 LPT (longest processing time): select an operation with the longest 

operation processing time, i.e., max pj. 

 LOR (least operation remaining): select an operation with the least 

number of remaining operations, i.e., min oj, where oj denotes the 
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remaining operations of operation j (number of successor operations 

including itself). 

 MOR (most operation remaining): select an operation with the largest 

number of remaining operations, i.e., max oj. 

 LWR (least work remaining): select the operation with the least 

remaining work, i.e., min rj, where rj denotes the remaining work of 

operation j (sum of processing times of the successor operations 

including itself). 

 MWR (most work remaining): select the operation with the most 

remaining work, i.e., max rj. 

 PWR (processing time to work remaining): select an operation with 

the smallest ratio of the processing time to remaining work, i.e., min 

pj/rj. 

 POR (processing time to operation remaining): select an operation 

with the smallest ratio of the processing time to remaining 

operations, i.e., min pj/oj. 

 EDD (earliest due date): select an operation with the earliest due 

date, i.e., min dj, where dj denotes the due date of the job in which 

operation j is included. 

 SLACK (minimum slack): select an operation with the minimum slack 

time, i.e., min {dj - rj - t}, where t is the current time. 

 MDD (modified due date): select an operation with the minimum 

modified due date, where the modified due date of operation j is 

defined as max {dj, t + rj}. 

 S/RO (slack per remaining operations): select an operation with the 

smallest ratio of slack time to the remaining operations, i.e., (dj - rj - 

t)/oj. 

 S/RW (slack per remaining work): select an operation with the 

smallest ratio of slack time to the remaining work, i.e., (dj - rj - t)/rj. 
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3.1.8 Experimental design and results 

 

 

The main purpose of the test is to compare the decision tree based real-

time scheduling mechanism (that eliminates the computational burdens of 

simulation runs for selecting dispatching rules) with the existing simulation-

based one (that selects dispatching rules using time-consuming simulation 

results). As stated earlier, the performance measures considered in this 

study are system throughput, mean flow time, mean tardiness, and the 

number of tardy jobs. In this study, the data for constructing the decision 

tree were obtained from steady-state simulation runs because the system 

has no preliminary data. The two real-time scheduling mechanisms, 

together with the simulation model, were coded in C++ and the test was 

done on a workstation with an Intel Xeon processor operating at 3.2 GHz 

clock speed. The comparisons were done in two cases. The first case 

assumes that the shop floor is not operated during the simulation run time 

for deciding a new dispatching rule and hence the losses in system 

performances are not considered. In this case, the simulation based 

mechanism gives better results than the decision tree based one because 

the decision tree based one is an approximation of the simulation-based 

one. Nevertheless, the decision tree based mechanism has an inherent 

merit in that the simulation model needs not be required. On the other 

hand, in the second case, the shop floor is operated with the current 

dispatching rule during the simulation run time and hence the losses in 

system performances are explicitly considered. In the test, we performed 

the comparisons according to three levels of the performance limit in the 

Fig. 3.4: A part of the decision tree used in the case study, Choi et al. (2010) 
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scheduling strategy (1%, 5% and 10%). Recall that one of the scheduling 

strategies is that a new rule is selected if a certain performance value 

exceeds a predetermined performance limit at the end of each monitoring 

period. For each level of the performance limit, they performed five 

replications for each of the eight combinations for two levels for the 

simulation time for deciding a new dispatching rule in the simulation-based 

mechanism (500 and 1000) and three levels for the length of the periodic 

monitoring period (2500, 5000, and 10,000). The performance measure 

used is the relative performance ratio, which is defined as 

     
        

     
 

for the minimization objectives (mean flow time, mean tardiness and the 

number of tardy jobs), and 

     
        

     
 

for the maximization objective (system throughput), where Ca is the 

solution value obtained from real-time scheduling mechanism a and Cbest is 

the better one of the two solution values. 

 

 

Table 3.3: Results for the comparison test, Choi et al. (2010) 
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When constructing the decision tree using the preliminary simulation 

results, the conditional attributes were defined in the form of range instead 

of value. The resulting decision tree can be represented as Fig. 3.4 in which 

conditional attributes A, B, C and D denote the total number of remaining 

operations for the jobs in queue at each stage, the total processing time of 

remaining operations for the jobs in queue at each stage, the total number 

of remaining operations for the jobs being processed at each stage, and the 

total processing time of remaining operations for the jobs being processed 

at each stage, respectively. Test results on the two real-time scheduling 

mechanisms are summarized in Table 3.3. As can be seen in the table, the 

main result is that the differences in performances are not significantly 

large. (Recall that the decision tree based mechanism needs not require 

simulation runs.) In particular, for the second case in which the shop floor is 

operated with the current dispatching rule (before change) during the 

simulation time, there were no significant differences for all performance 

measures, which implies that the losses in system performances due to 

poor dispatching rules during the simulation run time are significant. Also, 

we found that the decision tree based mechanism may give better 

performances for some measures and parameter values. It was observed 

that the gaps between the two mechanisms get smaller as the performance 

limit gets increased (from 1% to 10%) because the current bad dispatching 

rule is used longer under larger performance limits. Therefore, we can see 

that the rule section mechanism plays an important role for immediate 

responses to changes in system states. In summary, we can argue that the 

decision tree based mechanism is worth to be considered for practical 

scheduling problems, especially, in the scheduling systems without 

preparing simulators. 

 

3.1.9 Conclusion remarks  

 

We considered the scheduling problem in reentrant hybrid flow shops that 

have a number of applications in various manufacturing and service 

systems. Unlike the existing theoretical approaches, they suggested a real-

time scheduling mechanism in which a decision tree is used to select an 

appropriate dispatching rule so that the computational burden required for 
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carrying out simulations can be eliminated. The decision tree based real-

time scheduling mechanism was applied to a TFT-LCD manufacturing line, 

i.e., a typical reentrant hybrid flow shop, and the test results showed that it 

is competitive to the simulation-based one with respect to various 

performance measures such as system throughput, mean flow time, mean 

tardiness, and the number of tardy jobs. As a modification of the existing 

simulation-based real-time scheduling mechanism, this research can be 

extended in several directions. First, other algorithms to construct the 

decision tree may be used. In other words, it may be needed to construct 

more sophisticated decision trees. Second, more case studies that 

incorporate specific system characteristics are worth to be performed. Note 

that this work was supported by Brain Korea 21 Grant funded by Korean 

Government. 

 

3.2 T. Sawik; An Exact Approach for Batch Scheduling in 

Flexible  Flow Lines with Limited Intermediate Buffers. 

MATHEMATICAL AND COMPUTER MODELLING (2002) 36: 

461-471 

 

3.2.1 Introduction 

 

First of all, a little nomenclature of the abbreviations that the author will use 

into the paper: 

 System parameters 

o G : batch (part type), g ∈ G = {I,…, v) 

o i : processing stage, i ∈ I = { 1,…, m} 

o j : processor in stage i, j ∈ Ji = {1,…, mi} 

o k : part, k ∈ K ={1,..., n} 

 Input Parameters 

o bg : size of batch g (number of parts of type g) 

o m : number of processing stages 

o mt : number of parallel processors in stage t 

o n : total number of parts 

o rig : processing time in stage i of part type g 
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o v : number of batches (part types) 

o Kg : subset of parts of type g 

o Qifg : large numbers not less than the schedule length 

 Decision Variables 

o Cmax : schedule length 

o cik : completion time of part k in stage i 

o dik : departure time of part k from stage i 

o xijk  : if part k is assigned to processor j ∈ Ji, in stage i ∈ I; 

otherwise xijk = 0 

o yfg : 1, if batch f precedes batch g; otherwise yfg = 0 

 

Now an introduction about the work and the case study is given. A  flexible 

flow line (FFL) consists of several processing stages in series, separated by 

finite intermediate buffers, where each stage has one or more parallel 

identical machines. The line produces several different part types. Each part 

must be processed by at most one machine in each stage. A part which has 

completed processing on a machine in some stage is transferred either 

directly to an available machine in the next stage or to a buffer ahead of 

that stage. The limited intermediate buffers between the stages result in a 

blocking scheduling problem, (see McCormick et al.,1989) where a 

completed part may remain on a machine and block it until a downstream 

machine becomes available. This prevents another part from being 

processed on the blocked machine. A practical example of an FFL is an 

automated surface mount technology (SMT) line for printed wiring boards 

assembly, which includes three different processes in the following 

sequence: solder printing, component placement, and solder reflow. An 

example of an SMT line with parallel stations is shown in Figure 3.5. The 

line consists of a board loader, a solder printer, two parallel placement 

machines for small components, and two additional shuttles routing the 

board to the next available placement machine, one placement machine for 

fine pitch components, and a reflow oven. The assembly process is as 

follows: a tote of bare (preassembly) boards is brought to the beginning of 

the line, and a material loader loads each board separately on the conveyor. 

Each board is transported by the conveyor system through each processing 

stage in the line and then is stored again in a tote box. The loader and the 
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tote box are used as the input and output buffers of the line. There are 

external buffers in front of and behind each placement machine, except the 

last one. In addition, every placement machine has its own internal input 

and output buffers of a fixed capacity. 

 

 

The objective of an FFL scheduling is to determine the detailed sequencing 

and timing of all processing tasks for each individual part, so as to 

maximize the line’s productivity, which may be defined in terms of 

throughput or the schedule length (makespan) for a mix of part types. The 

problem of minimizing makespan in an FFL line is clearly NP-hard. An FFL 

line is a generalization of a multistage hybrid flowshop with parallel identical 

machines in each stage and unlimited intermediate buffers. Minimizing 

makespan in the hybrid flowshop is NP-hard, e.g., (Also, the m-machine 

flowshop with finite intermediate buffers is NP-hard even for m = 2). 

Furthermore, well solvable special cases such as two-machine flowshops 

with unlimited buffers or with no buffers are not directly applicable in the 

FFL environment. In practice, scheduling of an FFL is often based on daily 

demands and a simple approach to executing daily production plan is the 

use of batch scheduling, where parts of one type are processed 

consecutively. Since the batch sequencing problem in the two-machine 

flowshop with a finite intermediate buffer is NP-hard, minimizing makespan 

in the batch scheduling of a flexible flow line is NP-hard as well. In high-

volume production, the production plan is often split into several identical 

sets of smaller batches of parts that are scheduled repeatedly. The smallest 

possible set of parts in the same proportion as the daily part mix 

requirements is called the minimal part set (MPS) (Wittrock, 1985). 

Research on scheduling algorithms for FFL is mostly restricted to heuristics 

Fig. 3.5: An SMT line with parallel stations, Sawik (2002) 
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which seek good solutions within reasonable computation times (Kim et al., 

1996). This paper, however, provides the reader with an exact approach 

based on a mixed integer programming formulation of the FFL scheduling 

problem. The formulation can be applied for constructing optimal batch 

schedules for small size batches of different part types (e.g., for MPS) and 

for various FFL configurations by using commercially available software for 

mixed integer programming. This has been illustrated in the paper with 

numerical examples that have been modeled after real-world  SMT lines 

using an advanced algebraic modeling language AMPL and the CPLEX 

solver. The paper is organized as follows. In the next section, a mixed 

integer programming formulation is presented for batch scheduling in a 

flexible flow line with machine blocking. Numerical examples modeled after 

real-world SMT lines and some computational results are provided and 

conclusions are given in the last section. 

 

3.2.2 Mixed integer program for batch scheduling  in a flexible flow 

line with machine blocking 

 

In this section, a mixed integer programming model is presented for batch 

scheduling in a flexible flow line with limited intermediate buffers. A unified 

modeling approach is adopted with the buffers viewed as machines with 

zero processing times. As a result, the scheduling problem with buffers can 

be converted into one with no buffers but with blocking, see McCormick et 

al. 1989. The blocking time of a machine with zero processing time denotes 

part waiting time in the buffer represented by that machine. We assume 

that each part must be processed in all stages, including the buffer stages. 

However, zero blocking time in a buffer stage indicates that the 

corresponding part does not need to wait in the buffer. Let us note that for 

each buffer stage part completion time is equal to its departure time from 

the previous stage since the processing time is zero. 

Notation used to formulate the problem is shown in the nomenclature, 

where buffers and machines are referred to as processors. 

The flexible flow line under study consists of m processing stages in series. 

Each stage i (i = 1,...,m) is made up of mi≥1 identical parallel processors. 

Let Ji, be the circular set of indices of parallel processors in stage i. The 
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system produces various types of parts. Let G = {1,…,v}, K = {1,…,n} and 

Kg = {    ∈         ,…,     ∈           } be the ordered sets of indices, 

respectively, of all batches of parts, all individual parts, and all parts of type 

g ∈ G. (bg , n =    
 
    and v, denote respectively the number of parts of 

type g, the total number of parts, and the number of batches in the 

schedule.) 

All parts are scheduled in batches of parts of the same type and within the 

batch individual parts are processed consecutively part-by-part. No setups 

are required between different parts or different batches of parts. Each part 

must be processed without preemption on exactly one processor in each of 

the stages sequentially. That is, each part must be processed in Stage 1 

through Stage m in that order. The order of processing the parts in every 

stage is identical and determined by an input sequence in which the parts 

enter the line, i.e., a so-called permutation flowshop is considered.  

For every part k, denote by cik its completion time in each Stage i, and by 

dik the departure time from stage i ). 

Let rig ≥ 0, be the processing time in Stage i of each part type g ∈ G. 

Processing without preemption indicates that part k ∈ Kg  completed in 

Stage i at time cik starts its processing in that stage at time cik – rig. Part k ∈ 

Kg completed in Stage i at time cik departs at time dik ≥  cik to an available 

processor in the next Stage i + 1. If at time cik all mi+1 processors in Stage i 

+ 1are occupied, then the processor in Stage i is blocked by part k until 

time dik = ci+1k - ri+1g when part k ∈ Kg starts processing on an available 

processor in Stage i + 1. 

The objective is to determine an input sequence of batches and an 

assignment of parts to processors in each stage over a scheduling horizon 

to complete all the parts in minimum time, that is, to minimize the 

makespan Cmax = maxk∈K (Cmk), where Cmk denotes the completion time of 

part k in the last stage m. The mixed integer program for batch scheduling 

in a flexible fiow line with finite in-process buffers is presented below. 

 

Minimize: 

Cmax (1) 
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Subject to: 

o part assignment constraints 

 

      ∈  
  ; i ∈ I, k ∈ K, (2) 

         ∈       ; i ∈ I, j ∈ Ji, g ∈ G, k ∈ Kg : k < last(Kg), mi>1; (3) 

 

o part completion constraints 

 

c1k ≥ r1g; g ∈ G, k ∈ Kg (4) 

cik – ci-1k ≥ rig; i ∈ I, g ∈ G, k ∈ Kg : i > 1; (5) 

 

o part departure constraints 

 

cik ≤ dik; i ∈ I, k ∈ K : i < m, (6) 

cmk = dmk; k ∈ K; (7) 

 

o part noninterference constraints 

 

c1k + Qifg (2 + yfg – xijk - xijl ) ≥ dil + r1f 

i ∈ I, j ∈ Ji, f,g ∈ G, k ∈ Kf, l ∈ Kg : f < g; (8) 

c1l + Qigf (3 - yfg – xijk - xijl ) ≥ dik + r1g 

i ∈ I, j ∈ Ji, f,g ∈ G, k ∈ Kf, l ∈ Kg : f < g;  (9) 

 

 

o buffering constraints 

 

cik = di-1k + rig; i ∈ I, g ∈ G, k ∈ Kg : i > 1; (10) 

 

o maximum completion time constraints 

 

cmk ≤ Cmax;  k ∈ K, (11) 

dik +      ∈               ≤ Cmax; i ∈ I, g ∈ G, k ∈ Kg : i < m , (12) 

cml - cil ≤ Cmax -    ∈             
       -     ∈             

            – 
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 ( l –    
   
   )r1g  - (      

 
   )rmg -    ∈             

           -  

   ∈             
       ;  g ∈ G, l ∈ Kg : m1 =1, mm=1;  (13) 

 

o batch processing constraints 

 

cik+m ≥ dik + rig;  i ∈ I, g ∈ G, k ∈ Kg : k + mi < last(Kg), mi>1, (14) 

cik+1 ≥ cik;  i ∈ I, , g ∈ G, k ∈ Kg : k < last(Kg), mi>1, (15) 

cik+1 ≥ dik + rig; i ∈ I, g ∈ G, k ∈ Kg : k < last(Kg), mi=1; (16) 

 

o variable elimination constraints 

 

f,g ∈ G : f ≥ g; (17) 

 

o variable non-negativity and integrality constraints 

 

i ∈ I, k ∈ K, (18) 

i ∈ I, k ∈ K, (19) 

i ∈ I, j ∈ Ji, k ∈ K, (20) 

f,g ∈ G. (21) 

 

The objective function (1) represents the schedule length to be minimized. 

Assignment constraint (2) ensures that in every stage each part is assigned 

to exactly one processor, and (3)assigns successive parts of one type 

alternatively to different parallel processors ( next(j,Ji) is the next processor 

after j ∈ J, in the circular set Ji of parallel processors at Stage i). Constraint 

(4) ensures that each part is processed in the first stage, and (5) 

guarantees that it is also processed in all downstream stages. Constraint (6) 

indicates that each part cannot be departed from a stage until it is 

completed in this stage, and equation (7) ensures that each part leaves the 

line as soon as it is completed in the last stage. Constraints (8) and (9) are 

part noninterference constraints. No two parts can be performed on the 

same processor simultaneously. For a given sequence of parts, only one 

constraint of (8) and (9) is active, and only if both parts k and l are 
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assigned to the same processor. Equation (10) indicates that processing of 

each part in every stage starts immediately after its departure from the 

previous stage. Constraint (11) defines the maximum completion time of all 

parts. Constraint (12) relates part departure times to makespan directly. 

Every part must be departed from a stage sufficiently early in order to have 

all of its remaining tasks completed within the remaining processing time. 

Constraint (13) ensures that each part is processed within the time interval 

remaining after processing of all preceding parts and before processing of 

all succeeding parts. Flow time cml – (c1l – r1g) of each part l ∈ Kg cannot be 

greater than the makespan Cmax minus sum of processing times of all 

preceding parts in the first stage 

 

   ∈        
       +     ∈        

             +  

( l – 1 –     
   
   )r1g, 

 

and sum of processing times of all succeeding parts in the last stage 

 

 (      
 
   )rmg +    ∈             

           -     ∈             
       . 

 

Constraint (13) is valid only for the line that begins and ends with a single 

processor, which is typical for SMT lines. Batch processing constraints 

(14),(15) along with (3) ensure that parts of one type are processed 

consecutively in each stage with parallel processors, whereas consecutive 

processing of identical parts in each stage with a single processor is 

imposed by (16). Parameter Qifg in (8) and (9) is a large number not less 

than the schedule length, determined for Stage i when batch f precedes 

batch g. Qifg is calculated as below, where UB is an upper bound on the 

schedule length. 

 

Qifg = UB -      ∈            ∈     ; i ∈ I; f,g ∈ G, (22) 

 

UB = 
        ∈  ∈ 
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The mixed integer program includes various cutting constraints exploiting 

special FFL configurations (e.g., constraints (12),( 13)) and some properties 

of batch processing on parallel processors ((3), (14), and (15)) and on a 

single processor (16). The cutting constraints may have a great impact on 

reducing computational effort required to find the optimal solution. The 

model proposed for batch scheduling in flexible flow lines with limited 

intermediate buffers is a general formulation and includes various special 

cases. For example, if mi = 1, ∀i ∈ I :      ∈ > 0 , the model can be applied 

for batch scheduling in a flexible flow line with no buffers. If completion and 

departure times are equal for each processing stage and part, i.e., cik = dik,  

∀i ∈ I, k ∈ K, the batch scheduling problem in a hybrid flowshop with 

unlimited buffers can be considered. 

 

3.2.3 Numerical examples 

 

In this section, numerical examples are presented, and some computational 

results are reported to illustrate possible applications of the mixed integer 

programming approach. The examples are modeled after real-world SMT 

lines. The assembly schedules for the examples were calculated on a 

Compaq Presario 1830 laptop with Pentium III, 450MHz using AMPL 

modeling language and CPLEX v.7.1 solver. 

 

EXAMPLE 1. FACTORY WITH SINGLE STATIONS. 

The SMT line configuration for Example 1 is shown in Figure 3.6. The line 

consists of a loader, screen printer, four placement machines, and a vision 

inspection machine, in series separated by intermediate buffers. The line 

represents a typical low-volume, medium-variety production system. For 

the industry scenario that was studied, 13 different board types are 

assembled in small size batches. A daily production order consists of at 

most four different board types assembled in the line. 

The input data for Example 1 were prepared considering the daily 

production of the line over a one month horizon. Table 3.4 lists the 

processing times for boards, and Table 3.5 presents the input data for 

selected problem instances that represent five daily production orders. The 
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characteristics of mixed integer programs for the example and the solution 

results are summarized in Table 3.6. 

 

 

 

 

 

 

 

 

 

 

 

Board Type 
Processing stage 

1 3 7 11 15 19 23 

1 20 25 133 45 38 62 45 

2 20 25 155 156 28 58 50 

3 20 25 67 56 36 35 45 

4 20 25 93 95 - 51 40 

5 20 25 76 111 41 63 50 

6 20 25 87 93 52 48 45 

7 20 25 34 78 92 55 45 

8 20 25 66 28 34 - 30 

9 20 25 141 90 49 - 40 

10 20 25 86 83 56 22 45 

11 20 25 98 84 36 43 45 

12 20 25 176 175 76 65 50 

13 20 25 - 17 67 28 45 

 

 

 

 

 

 

Fig. 3.6: Factory with single stations, Sawik (2002) 

Table 3.4: EXAMPLE 1. Processing times in seconds, Sawik (2002) 
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Problem 

no. 

Daily Mix 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

1 7 13 9 6 - - - - 

2 2 23 9 1 - - - - 

3 7 1 11 33 - - - - 

4 5 17 7 1 8 11 9 1 

5 1 21 4 1 7 2 10 7 

 

 

Problem Var. Bin. Cons. Nonz. LB C*
max Nodes CPU** 

1 1085 590 7289 30771 1722 1722 0 5,5 

2 1370 745 3364 11926 3953 3967 0 1 

3 1940 1055 4824 17096 3521 3521 0 1,9 

4 1717 936 20939 91916 2506 2568 19 52 

5 1774 967 20158 88157 3577 3577 18 28 

 

 

 

The size of the mixed integer programming models for the example 

problems is represented by the total number of variables, Var., number of 

binary variables, Bin., number of constraints, Cons., and number of nonzero 

coefficients, Nonz., in the constraint matrix. The last four columns of Table 

3.6 present the lower bound LB on the makespan, the optimal makespan 

Cmax , the node number in the branch-and-bound tree at which the optimal 

solution was found, and CPU time in seconds required to prove optimality of 

the solution. In all cases, the time required to find the optimal solution was 

much smaller than that required to prove optimality. The lower bound was 

calculated as below 

 

        
        ∈ 

  
       ∈        

 ∈     

      ∈      

 ∈     

    

Table 3.5: EXAMPLE 1.  Input data for selected problems, Sawik (2002) 

Table 3.6: EXAMPLE 1.  Computational results, Sawik (2002) 
*Optimal makespan 
**CPU time for proving optimality 
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Figure 3.7 shows a Gantt chart with the optimal batch schedule for Problem 

4, where B stands for buffer and M stands for machine for board loading, 

screen printing, component placement, or vision inspection. Buffering or 

machine blocking is indicated with a narrow bar. The optimal input 

sequence of board types is 7,5,8,9, and the optimal makespan Cmax = 2568. 

 

EXAMPLE 2. FACTORY WITH PARALLEL STATIONS 

 

 

 

 

 

 

 

 

 

 

The SMT line configuration for Example 2 is shown in Figure 3.8. The line 

consists of a screen printer, three sets of two parallel placement machines 

Fig. 3.7: Batch schedule for SMT line with single stations, Sawik (2002) 

Fig 3.8: Factory with parallel stations, Sawik 2002 
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and four shuttles routing the boards to the next available placement 

machine, a vision inspection machine and a single placement machine, in 

series separated by intermediate buffers.  The line represents a typical 

high-volume, low-variety production system, in which six different board 

types are produced in medium to large size batches. A daily production 

order consists of at most four different board types assembled in the line. 

Table 4 lists the processing times for boards, and Table 5 presents the input 

data for selected problem instances that represent five daily production 

orders and the corresponding minimum part sets. The MPS production 

requirements represent 1/40th, 1/40th, 1/30th, 1/100th, and 1/40th of the 

actual daily production order, respectively, for Problems 1, 2, 3, 4, and 5. 

 

Board Type 
Processing stage 

1 5 9 13 17 19 21 

1 22 207 213 204 80 40 62 

2 22 208 220 204 80 40 62 

3 22 207 224 191 80 40 62 

4 22 207 213 204 80 40 62 

5 22 207 220 204 80 40 62 

6 22 184 196 199 80 40 62 

 

 

 

Problem 

no. 

Daily Mix/ MPS 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

Board 

Type 

Batch 

Size 

1 3 240/6 4 200/5 5 480/12 - - 

2 1 80/2 2 120/3 3 240/6 5 480/12 

3 1 180/6 2 210/7 3 510/17 - - 

4 3 300/3 4 400/4 5 500/5 - - 

5 3 1080/27 6 400/10 - - - - 

 

 

 

Table 3.7: EXAMPLE 2. Processing times in seconds, Sawik (2002) 

Table 3.8: EXAMPLE 2.  Input data for selected problems, Sawik (2002) 
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Problem Var. Bin. Cons. Nonz. LB C*
max Nodes CPU** 

1 1269 670 12434 54674 3127 3233 17 41 

2 1272 673 12799 56519 3137 3247 100 1400 

3 1654 873 19674 87634 3915 3993 40 130 

4 664 351 3950 16622 1914 1992 80 11 

5 2037 1074 20758 91137 4583 4695 0 72 

 

 

 
The characteristics of mixed integer programs for the MPS problems and the 

solution results are summarized in Table 3.9. The last four columns of Table 

3.9 present the lower bound LB, on makespan, the optirnal makespan Cmax 

the node number in the branch-and-bound tree at which the optimal 

solution was found, and CPU time in seconds required to prove optimality of 

the solution. In all cases, the time required to find the optimal solution was 

much smaller than that required to prove optimality. Figure 3.9 shows a 

Gantt chart with the optimal batch schedule obtained for Problem 4, where 

B stands for buffer and M stands for machine for screen printing, 

component placement, or vision inspection. The input sequence of board 

types is 4,5,3, and the makespan Cmax = 1992.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.9: EXAMPLE 2.  Computational results, Sawik (2002) 
*Optimal makespan 
**CPU time for proving optimality 

Fig 3.9: Batch schedule for SMT line with parallel stations, 2002 
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Experiments with various features of the CPLEX solver to speed up the 

solution process have indicated that the best results are obtained with a 

nearly depth-first branch and bound strategy for node selection where 

limited backtracking is allowed. (Note that the quality is low because the 

image comes from the original paper and haven’t been modified, in order to 

respect Sawik’s work and to preserve the accuracy.) 

 

3.2.4 Conclusions 

 

This paper has presented an exact approach for batch scheduling in flexible 

flow lines with limited intermediate buffers. The approach based on a mixed 

integer programming formulation is capable of optimal scheduling of 

batches of different part types by using commercially available software for 

discrete programming. The mathematical formulation includes various 

cutting constraints exploiting special FFL configurations and some properties 

of batch processing on parallel machines. The cutting constraints have an 

impact on reducing computational effort required to find the optimal 

solution. Nevertheless, the CPU time required to find proven optimal 

schedules for realistic large size problems still can be very high. The 

computation time can be further reduced by introducing a specific MPS 

scheduling mode. The proposed approach can be applied to a variety of 

different real-world flexible flow line configurations and production scenarios 

with only small modifications to the constraint formulations and input data 

definitions. The proven optimal solutions that can obtained for small size 

problems can also be used to evaluate the performance of various heuristics 

for FFL batch scheduling. Note that this work has been partially supported 

by AGH and KBN (Poland) and by the Motorola Advanced Technology Center 

(U.S.A.). 
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