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Due to the large number of uncertainties in the production workshop, the actual performance of the scheduling scheme 

deviated significantly from the theoretical value. In order to enhance its anti-jamming capability, this paper developed the 

robust optimization of stochastic hybrid job-shop scheduling with multiprocessors tasks. Firstly, predictable uncertainties 

were abstracted into processing time variations and described by scenario analysis in the modeling process. Secondly, based 

on the analysis of the advantages and disadvantages of traditional robust optimization models, a new Expected Cmax and the 

Worst scenario Model (ECWM) was proposed. The model improved the single-index robust optimization model and avoided 

the disadvantage that the Max Regret Model is computationally intensive. Finally, the effectiveness of ECWM is verified by 

simulation experiments. The results show that the scheduling obtained by ECWM has good average performance and anti-

risk ability, which indicates that the model achieves a good balance in scheduling performance enthusiasm and risk resistance. 
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1. INTRODUCTION 
 

Workshop scheduling occupies an important position in the production management of manufacturing enterprises and plays 

an important role in improving the productivity of enterprises, reducing costs and enhancing market competitiveness. The 

Job-shop Scheduling Problem (JSP) is one of the most classic models in the field of workshop scheduling and is often solved 

by using genetic algorithm (Huang and Wang, 2016; Tan et al., 2019), artificial neural networks (Lei et al., 2022), and various 

swarm intelligence algorithms (Long et al., 2022; Gu, 2021), etc. The JSP assumes that each process can only be completed 

on one processor. However, in the actual production workshop, there are often situations where certain working procedures 

require multiple processors (equipment or workers, etc.) to process simultaneously, which challenges the application of JSP. 

This JSP problem with multiprocessor task processing requirements is called the Hybrid Job-shop Scheduling with 

Multiprocessor Task (HJSMT), which can also be called Hybrid Multiprocessor Tasks Job-shop Scheduling. It can be seen 

as a hybrid scheduling problem that combines JSP and Multiprocessor task scheduling (MTS) (Fan et al., 2018). Among 

them, the MTS requires multiple processors to process the workpiece processing task simultaneously, but the task is assigned 

only once and ends without the concept of working procedure. HJSMT scheduling is more commonly used in practical single-

piece discrete manufacturing shops, parallel computing systems and multi-task assignments. However, there is little research 

on HJSMT by domestic and foreign scholars. 

The generalized HJSMT is an NP-hard problem. Its model is characterized by high complexity and many constraints. 

For a long time, the research dedicated to HJSMT has only included: proposing an approximate scheduling method and an 

integrated method based on the taboo search to determine the scheduling scheme and studying only the insertion strategy of 

HJMST with workpiece insertion without implementing the design of the scheduling scheme (Gröflin et al., 2008), etc. In 

recent years, in order to better solve the HJSMT problem, Fan et al. (2019) and Zhai et al. (2018) proposed an improved 

decentralized algorithm and particle swarm optimization algorithm, respectively, which achieved excellent results. In 

addition, in the network parallel computing system, the multi-step scheduling (Wang et al., 2017) with multiprocessor task 

requirements is substantially consistent with the HJSMT problem in this paper, while the hybrid particle swarm optimization 

algorithm proposed in this reference provides a new idea for the in-depth study of the algorithm. In addition to the study of 

different algorithms for solving this problem, Fan et al. (2018) implement the whole simulation process of HJSMT using 

Plant Simulation software. 

https://doi.org/10.23055/Ijietap.2023.30.2.8285
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The scheduling problem in actual production faces a complex and changing dynamic environment, such as changes in 

material supply, sudden machine breakdowns (Soofi et al., 2021), changes in workers' working conditions or insertion of 

new jobs (Seyyedi et al., 2021), etc. These uncertain factors will affect the implementation effect of the scheduling scheme and 

even make the scheme infeasible. Therefore, it is necessary to develop the study of the HJSMT scheduling problem under an 

uncertain environment, that is, the stochastic HJSMT problem. 

If a scheduling scheme can also perform well when uncertain events occur, then this attribute is called "robustness". In 

order to get robust scheduling, the common method is to consider these uncertain factors in modeling. Mckay et al. (1989) 

divided the uncertainties in actual production into two categories: predictable uncertainty and unpredictable uncertainty. 

Because unpredictable uncertainties happen accidentally and unpredictably, they cannot be considered in the modeling of 

uncertainty problems. 

In summary, this paper continues to study the stochastic HJSMT problem based on the deterministic model research. 

Considering the risk resistance capacity of the scheduling scheme and the predictable uncertainty factors, this paper uses the 

scenario analysis method to establish the stochastic HJSMT model and proposes a new robust optimization model, that is, 

the Expected Cmax and Bad-scenario Robust Model. 

 

2. HYBRID JOB-SHOP SCHEDULING WITH MULTIPROCESSOR TASK 
 

As mentioned above, the HJSMT problem is a more complex hybrid scheduling model that combines JSP and MTS. The 

problem is described as follows: there is a batch of workpieces to be processed by a certain number of processors, and each 

workpiece has a certain number of processing procedures. Each working procedure needs to occupy at least one processor at 

the same time. How to arrange the processing order of the processes on the processors to achieve the optimal index of an 

optimization. 

 

(1) The workpiece should be processed according to the processing route, i.e., the first working procedure 𝑂𝑖1, then the 

working procedure 𝑂𝑖2, ..., and finally working procedure 𝑂𝑖|𝐽𝑖|; 

(2) The next working procedure can only start when the previous one is finished; 

(3) Once the working procedure is started, it must be completed, and no interruption is allowed in the middle; 

(4) A processor can only process one working procedure at a certain time, but it occupies 1 processor or more at the 

same time. 

(5) There is no priority order between workpieces. 

 

As mentioned earlier, the scheduling problem in Wang et al. (2017) is substantially consistent with HJSMT. Since the 

authors will continue to use the HPSO algorithm (Wang et al., 2017) previously designed by the research team to solve the 

newly proposed robust optimization model in this paper, the mathematical description of the HJSMT problem also uses a 

model consistent with that of Wang et al. (2017), namely: 

 

Objective function: 

 

min 𝐶𝑚𝑎𝑥 = 𝑥𝑑𝑓 (1) 

 

s.t. 

 

𝑥𝑖,𝑗′ − 𝑥𝑖𝑗 ≥ 𝑝𝑖,𝑗′ , 𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑂𝑖𝑗 , 𝑂𝑖,𝑗′} ∈ 𝐴 (2) 

𝑥𝑖𝑗 − 𝑥𝑖′,𝑗′ ≥ 𝑝𝑖′,𝑗′ ∨ 𝑥𝑖′,𝑗′ − 𝑥𝑖𝑗 ≥ 𝑝𝑖,𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 {𝑂𝑖𝑗 , 𝑂𝑖′,𝑗′} ∈ 𝐵 (3) 

𝑥𝑖𝑗 − 𝑥𝑑𝑠 ≥ 0 ∨ 𝑥𝑑𝑠 − 𝑥𝑖𝑗 ≥ 𝑝𝑖𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑖𝑗 ∈ 𝐼 (4) 

 

The meaning of the mathematical symbol is as follows: there are n workpieces 𝐽 = {𝐽1, 𝐽2, ⋯ , 𝐽𝑛} to be processed on m 

processor 𝑀 = {𝑀1, 𝑀2, ⋯ , 𝑀𝑚}. 𝐼 = {𝑂𝑖𝑗|𝑖 = 1,2, ⋯ , 𝑛; 𝑗 = 1,2, ⋯ , |𝐽𝑖|} stands for the working procedure set. 𝑂𝑖𝑗  takes up 

all the processors in the processor set 𝑚𝑖𝑗 at the same time and the time required is 𝑃𝑖𝑗. The "start virtual process" 𝑂𝑑𝑠  and 

the "end virtual process" 𝑂𝑑𝑓  are defined, which represent the first and last working procedure of the entire process, 

respectively. 𝑥𝑖𝑗  stands for the start processing time of the working procedure 𝑂𝑖𝑗(⊆ 𝐼⋃{𝑂𝑑𝑠 , 𝑂𝑑𝑓}) . In addition,  𝐴 =

{{𝑂𝑖𝑗 , 𝑂𝑖′𝑗′}|𝑂𝑖𝑗 , 𝑂𝑖′,𝑗′ ∈ 𝐼; 𝑖 = 𝑖′; 𝑗′ > 𝑗}. {𝑂𝑖𝑗 , 𝑂𝑖′ ,𝑗′} ∈ 𝐴 represents different pairs of working procedure from the same 

workpiece. 𝐵 = {{𝑂𝑖𝑗 , 𝑂𝑖′𝑗′}|𝑂𝑖𝑗 ,𝑂𝑖′𝑗′ ∈ 𝐼; 𝑓𝑖𝑥𝑖′𝑗′ ∩ 𝑓𝑖𝑥𝑖𝑗 ≠ ∅; 𝑖 ≠ 𝑖′} . {𝑂𝑖𝑗 , 𝑂𝑖′,𝑗′} ∈ 𝐵  represents pairs of working 
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procedure from different workpieces and at least one processor in the set of processors required by working procedure 

{𝑂𝑖𝑗 , 𝑂𝑖′,𝑗′} is the same (Tavakkoli et al., 2005). 

 

3. STOCHASTIC ROBUST OPTIMIZATION MODEL 
 

In studying stochastic workshop scheduling problems, for the predictable uncertainty factors, t-modeling methods mainly 

include the probability distribution method (Tavakkoli et al., 2005), the fuzzy set method (Liu et al., 2011) and the scenario 

analysis method. Both the probability distribution method and the fuzzy set method only consider the large probability events 

while ignoring the smaller probability events when modeling stochastic problems, so the resulting solutions are statistically 

effective. 

In order to solve the above problems, the scenario analysis method is mainly used in the research of robust optimization 

for stochastic problems at home and abroad. The basic idea of this method is to represent the stochastic environments in tree 

form according to the time stage, starting from the root node and continuously branching to the leaf node, so as to consider 

all possible scenarios (Zhang and Wang, 2009). In the field of workshop scheduling, the scenario method has been used in 

many studies (Talla and Leus, 2014; Wang et al., 2012) and achieved good results. 

 

3.1 Stochastic HJSMT problem based on scenario description 

 

For the stochastic HJSMT problem, this paper reflects the uncertain factors as the change of processing time 𝑃𝑖𝑗 , so it is not 

fixed, but has multiple possible values according to the occurrence of uncertain events. Each uncertain event is a scenario 

with a certain probability, which represents a possible realization of random variables. 

In this paper, a possible value of processing time 𝑝𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑛; 𝑗 = 1,2, . . . , |𝐽𝑖|  for all working procedure of 

stochastic HJSMT is regarded as a scenario, and the probability of occurrence of the scenario is assumed to be known. The 

symbols used in this paper are as follows: 

𝛬: denotes the set of all scenarios; 𝜆 denotes a certain scenario, 𝜆 ∈ 𝛬; 𝛬𝛽: denotes a bad scenario set. 𝑃𝑟(𝜆): denotes 

the probability of occurrence of the scenario 𝜆; s: denotes a solution to the problem, i.e., scheduling; 𝑠𝜆
∗: optimal scheduling 

under scenario  𝜆 ; 𝐶(𝑠, 𝜆) : maximum completion time of solution s under scenario 𝜆 , i.e., 𝐶𝑚𝑎𝑥 ; 𝐶∗(𝑠, 𝜆):the optimal 

performance in all scenarios. 𝑝𝑖𝑗
𝜆 : Processing time of working procedure 𝑂𝑖𝑗  under scenario  𝜆 . Obviously, there is a 

relationship between 𝜆  and 𝑝𝑖𝑗
𝜆 : 𝜆 = {𝑝𝑖𝑗

𝜆 |𝑖 = 1,2, . . . , 𝑛; 𝑗 = 1,2, . . . , |𝐽𝑖|} , i.e., the scenario 𝜆  represents one possible 

realization of the processing time of all working procedure. 

 

3.2 Traditional robust optimization model 

 

In this subsection, the traditional robust optimization model is briefly introduced and analyzed, and a new robust optimization 

model is proposed based on it. 

 

3.2.1 Expected 𝑪𝒎𝒂𝒙 Model 

 

The starting point of the Expected 𝐶𝑚𝑎𝑥  Model (ECM) is very simple. Its goal is to minimize the weight 𝐶𝑚𝑎𝑥 of all scenarios 

in the scenario set 𝛬, and the weight is generally the probability of the scenario. ECM can be regarded as the pursuit of 

excellent performance in the statistical sense. 

 

min 
𝑠

𝐸𝐶(𝑠) = ∑ 𝑃𝑟( 𝜆)𝜆∈𝛬 × 𝐶(𝑠, 𝜆) . (5) 

 

3.2.2 Expected 𝑪𝒎𝒂𝒙 and its Variance Model 

 

The Expected 𝐶𝑚𝑎𝑥  and its Variance Model (ECVM) adds the variance of the scheduling performance as one of the 

optimization metrics based on the ECM, which is intended to control the fluctuation of the scheduling performance so as to 

be robust. Where 0 ≤ 𝛼𝑉 ≤ 1.  

 

min
𝑠

 𝐸𝐶𝑉(𝑠) = (1 − 𝛼𝑣) + 𝛼𝑣 ∑ 𝑃𝑟(𝜆) × [𝐶(𝑠, 𝜆) − 𝐸𝐶(𝑠)]2 . (6) 

 

  



Wang et al. Robust Optimization of Stochastic Hybrid Job-Shop Scheduling 

 

376 

3.2.3 Worst 𝑪𝒎𝒂𝒙 Model 

 

The optimization goal of the Worst 𝐶𝑚𝑎𝑥 Model (WCM) is to minimize the worst performance 𝑚𝑎𝑥
𝜆∈𝛬

{𝐶(𝑠, 𝜆)}. 

 

min
𝑠

 𝑊𝐶(𝑠) = max
𝜆∈𝛬

 {𝐶(𝑠, 𝜆)}. (7) 

 

WCM only considers the worst scenario and does not pursue good performance in other scenarios, so its decision-

making is highly conservative (Wang et al., 2012). 

 

3.2.4 Max Regret Model 

 

The Max Regret Model (MRM) takes the relative difference between the performance 𝐶(𝑠, 𝜆)  of the scenario 𝜆  under 

scheduling 𝑠  and the optimal performance 𝐶(𝑠𝜆
∗, 𝜆)  of the scenario 𝜆  as the optimization index. Where is the optimal 

scheduling 𝑠𝜆
∗ in the scenario 𝜆. 

 

min
s

 𝑀𝑅(𝑠) = max 
𝜆∈𝛬

{𝐶(𝑠, 𝜆) − 𝐶∗(𝑠, 𝜆)}. (8) 

 

MRM is an important model in the field of decision-making. The idea is that when something happens, the value of the 

loss is formed because the decision maker did not choose the strategy with the greatest gain. 

 

3.2.5 Expected 𝑪𝒎𝒂𝒙 and Bad-scenario Robust Model 

 

Considering the advantages and disadvantages of the previous four types of robust optimization models, Wang et al. (2012) 

made an improvement on ECM and MRM, that is, all scenario sets whose performance exceeds the expected performance to 

a certain extent (𝛽𝐸𝐶(𝑠)) are defined as bad scenario sets, and the "exceeding" part is taken as the optimization index, which 

is Expected 𝐶𝑚𝑎𝑥  and Bad-scenario Robust Model (ECBM) (Wang et al., 2012). 

 

min 
𝑠

𝐸𝐶𝐵𝑅(𝑠) = (1 − 𝛼𝐵)𝐸𝐶(𝑠) + 𝛼𝐵 ∑ 𝑃𝑟( 𝜆)

𝜆∈𝛬𝛽

× [𝐶(𝑠, 𝜆) − 𝛽𝐸𝐶(𝑠)] , 
(9) 

 

where 0 ≤ 𝛼𝐵 ≤ 1. This model not only includes the pursuit of expected scheduling performance (EC(s)) but also suppresses 

the appearance of bad scenarios and has good robustness. 

Among the above five types of traditional robust optimization models, ECM is only the pursuit of performance in a 

statistical sense; ECVM uses variance as the optimization objective to suppress performance fluctuations, but the variance 

will inhibit the appearance of good scenarios; WCM only optimizes the performance of the worst scenarios; MRM takes into 

account both performance enthusiasm and risk resistance, but the amount of calculation is huge; ECBM improves ECM well, 

which is a statistical pursuit of average scheduling performance and risk resistance. In order to effectively optimize the 

performance of bad scenarios while optimizing the average performance of HJSMT scheduling, this paper proposes a new 

expectation-worst scenario robust optimization model to achieve this goal. 

 

3.3 Robust optimization model construction and analysis of HJSMT for Expected 𝑪𝒎𝒂𝒙 and the Worst scenario Model 

 

3.3.1 Expected 𝑪𝒎𝒂𝒙 and the Worst scenario Model 

 

As mentioned above, ECBM pursues scheduling robustness in a statistical sense. However, this paper hopes to get such 

scheduling: it performs well enough in general scenarios, and it does not perform badly in some bad scenarios. For this reason, 

we learn from the practice of WCM, take max 
𝜆∈𝛬

{𝐶(𝑠, 𝜆)} as one of the optimization goals, and add the optimization of the 

average performance of HJSMT scheduling on this basis so that the Expected 𝐶𝑚𝑎𝑥 and the Worst scenario Model (ECWM) 

is obtained:  

 

min 
𝑠

𝐸𝐶𝑊(𝑠) = (1 − 𝛼𝑤)𝐸𝐶(𝑠) + 𝛼𝑤 max
𝜆∈𝛬

 {𝐶(𝑠, 𝜆)}, (10) 

 

where 0 ≤ 𝛼𝑊 ≤ 1. Here, 𝜆𝑤 = arg max 
𝜆∈𝛬

{𝐶(𝑠, 𝜆)} is referred to as the worst scenario of scheduling 𝑠.  



Wang et al. Robust Optimization of Stochastic Hybrid Job-Shop Scheduling 

 

377 

Since the weighting of the first part of 𝐸𝐶(𝑠) in the above equation (7) is used to improve the average performance of 

HJSMT scheduling, and the weighting of the second part of 𝑊𝐶(𝑠) is used to improve the performance of the worst scenario. 

ECWM is essentially a robust optimization model that combines ECM and WCM. 

 

3.3.2 ECWM Robust Scheduling Model Analysis 

 

As a combined model, the performance of ECWM must be affected by two purely biased uncertain models. Discussion on 

the properties of ECWM: different values of 𝛼𝑊 can achieve the balance of average performance and robustness in different 

degrees, among which property 1 and property 2 are obvious. 

Property 1: if 𝛼𝑊 = 0, then ECWM degenerates to ECM：𝐸𝐶𝑊(𝑠) = 𝐸𝐶(𝑠). So ECWM has the characteristics of 

pursuing average performance optimization. 

Property 2: if 𝛼𝑊 = 1, then ECWM degenerates to WCM：𝐸𝐶𝑊(𝑠) = 𝑊𝐶(𝑠); For the optimal solution 𝑠∗ of WCM, 

when ECWM takes 𝛼𝑊 = 1, its optimal solution is also 𝑠∗, which shows that ECWM has the same optimal choice as WCM 

in terms of anti-risk ability. 

According to property 1 and property 2, ECWM has both ECM and WCM characteristics, which can balance the pursuit 

of anti-risk ability and average performance. 

Property 3: When 𝛼𝑊 ∈ [0,1], for ECWM, the following properties can be obtained: 

 

𝐸𝐶𝐸𝐶𝑀 ≤ 𝐸𝐶𝐸𝐶𝑊𝑀 ≤ 𝐸𝐶𝑊𝐶𝑀 and 𝑊𝐶𝑊𝐶𝑀 ≤ 𝑊𝐶𝐸𝐶𝑊𝑀 ≤ 𝑊𝐶𝐸𝐶𝑀. 

 

For property 3, the following process is given to prove: the equation (7) can be transformed into: 

 

𝐸𝐶(𝑠)- 𝛼𝑤 (𝐸𝐶(𝑠) − max
𝜆∈𝛬

 {𝐶(𝑠, 𝜆)}). (11) 

 

Since 𝑊𝐶(𝑠) = max 
𝜆∈𝛬

{𝐶(𝑠, 𝜆)} is the worst-case scenario performance, there must be 𝐸𝐶(𝑠) ≤ max 
𝜆∈𝛬

{𝐶(𝑠, 𝜆)},so when 

the value of ECW(s) is the smallest, it satisfies  𝛼𝑤 = 0, and degenerates to the ECM model at this time, so 𝐸𝐶𝐸𝐶𝑀 ≤
𝐸𝐶𝐸𝐶𝑊𝑀. 

Let 𝑠∗ be the optimal solution of ECWM, then for any schedule 𝑠 of ECWM, 𝐸𝐶𝑆 ≥ 𝐸𝐶∗, and when 𝛼𝑤 = 1, ECWM(s) 

degenerates to WC(s). At this time, for the optimal solution 𝑠∗ of ECWM, which represents the optimal solution for the worst 

scenario under ECWM, so for any scenario 𝜆, the corresponding scheduling 𝑠 has 𝐸𝐶𝑠 ≤ 𝐸𝐶𝑊𝐶𝑀. In summary, 𝐸𝐶ECM ≤
𝐸𝐶𝐸𝐶𝑊𝑀 ≤ 𝐸𝐶𝑊𝐶𝑀. 

Similarly, let 𝑠∗ be the optimal solution of WCM, and it has been proved that WCM is the realization of a specific 

scenario of ECWM, and 𝑠∗ is the worst scenario performance of the optimal solution. Therefore, for any scheduling 𝑠 of 

ECWM, it must satisfy 𝑊𝐶𝑠 ≥ 𝑊𝐶∗. When 𝛼𝑤 = 0, ECWM degenerates to ECM. At this time, ECWM's 𝑊𝐶∗ performance 

is the worst case and does not have robustness and only pursues average performance, and 𝑊𝐶𝐸𝐶𝑀 satisfies 𝑊𝐶𝐸𝐶𝑀 ≥ 𝑊𝐶𝑆. 

In summary: 𝑊𝐶𝑊𝐶𝑀 ≤ 𝑊𝐶𝐸𝐶𝑊𝑀 ≤ 𝑊𝐶𝐸𝐶𝑀. 

Property 3 reveals the inherent logic of ECWM in balancing performance and robustness. In theory, its performance is 

not worse than ECM, and its robustness is not worse than WCM. Therefore, ECWM can achieve the goal of avoiding 

significant deterioration in bad scenarios while ensuring average performance. 

 

4. SOLVING THE HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM FOR HJSMT 

 

4.1 Classical particle swarm optimization algorithm 

 

PSO algorithm is a kind of bionic algorithm which was first proposed by Kennedy and Eberhart (1995). PSO is essentially 

an iterative algorithm, which has the advantages of easy to use, high accuracy, and fast convergence speed. 

The update equation of particle position and velocity in the PSO algorithm is as follows: 

 

𝑣𝑖𝑑
(𝑘+1)

= 𝑤𝑣𝑖𝑑
(𝑘)

+ 𝑐1𝑟𝑎𝑛𝑑1
(𝑘)

(𝑃𝑏𝑒𝑠𝑡𝑖𝑑
(𝑘)

− 𝑥𝑖𝑑
(𝑘)

) + 𝑐2𝑟𝑎𝑛𝑑2
(𝑘)

(𝐺𝑏𝑒𝑠𝑡𝑑
(𝑘)

− 𝑥𝑖𝑑
(𝑘)

) (12) 

𝑥𝑖𝑑
(𝑘+1)

= 𝑥𝑖𝑑
(𝑘)

+ 𝑣𝑖𝑑
(𝑘)

 , (13) 
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where 𝑣𝑖𝑑
(𝑘)

 and 𝑥𝑖𝑑
(𝑘)

 denote the velocity and position of the d-th dimension of the i-th particle in the k-th iteration, respectively. 

The optimal solution that can be found by an individual particle is called the "individual extreme value", denoted by pbest; 

the optimal value that can be found by the whole particle population is called "global optimum", denoted by gbest.  

 

4.2 Hybrid particle swarm optimization algorithm 

 

PSO algorithm is widely used in scheduling problems, and there are many improved algorithms (Jia et al., 2012; Lv et al., 

2021). This is because the traditional PSO algorithm itself is defined in the continuous domain optimization algorithm, but 

the definition of the scheduling problem is often discrete. At the same time, although the PSO algorithm performs well in the 

global search, it will miss some high-quality solutions in the local search process, so it needs to be adjusted and improved in 

dealing with the scheduling problem. 

As a hybrid scheduling model of JSP and MTS, HJSMT is more complex than JSP. In HJSMT, working procedure need 

to be processed by multiple processors at the same time. Because it does not meet the constraint of the JSP model that "one 

working procedure can only be processed on one machine", many classical algorithms suitable for JSP cannot solve HJSMT 

problems. To this end, we implement the HPSO algorithm to solve the problem of this paper based on the previous research 

results of our research team (Wang et al., 2017). The algorithm adds a simulated annealing algorithm (SA) to GPSO (Gao et 

al., 2015), which improves the local search ability of the algorithm, and can effectively solve the discrete combinatorial 

optimization problem of HJSMT. 

HPSO adopts a new position update method and a local search method based on simulated annealing. At the same time, 

in order to ensure the performance of the algorithm, a memory of size b is introduced to record the best b particles found by 

the particle swarm. Swarms tend to be large, and local searches for all particles result in huge calculations and reduce the 

efficiency of the algorithm, so only particles in the memory are searched locally. Here, the fitness value of a particle is defined 

as the maximum completion time of the scheduling scheme that the particle represents. The HPSO flow is shown in Figure 

1. 

 

4.3 Particle encoding strategy 

 

This paper adopts the most widely used process-based coding method: using |𝐽𝑖| represents the number of working procedures 

(𝑖 = 1,2,3 … , 𝑛) of workpiece i and represents a particle as a vector of length ∑ |𝐽𝑖|
𝑛
𝑖=1 , which is used to represent a scheduling 

scheme. Each element of the vector represents the corresponding task, and element i occurs |𝐽𝑖| times and the order of 

occurrence represents the corresponding step. For example, when there are 3 workpieces, each with 3 working procedures, a 

vector (particle) is (1,2,3,3,1,1,3,2,2), and its corresponding processing order is (𝑂11, 𝑂21, 𝑂31, 𝑂32, 𝑂12, 𝑂13, 𝑂33, 𝑂22, 𝑂23) 

(𝑂𝑖𝑗  represents the j-th working procedure of the i-th workpiece). 
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Randomly generate the initial population, 

and initialize the individual optimal 

particle and the global optimal particle

Update particle position 

information to get a new 

generation of particles

Update the memory
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and outputs the result
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Figure 1. HPSO algorithm flow 
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4.4 Particle update method 

 

In HPSO, the update of particle position can be regarded as the information exchange between the current particle and the 

individual optimal particle and the global optimal particle. Inspired by the genetic algorithm, the crossover operation is used 

here to achieve the information exchange between particles. In each iteration, the particles are updated in the following way. 

 

Step 1: Cross the current particle with the individual optimal particle to get the new particle P1. 

Step 2: Cross the current particle with the global optimal particle to get the new particle P2.  

Step 3: Compare the fitness values of P1 and P2, and replace the current particle with the new particle with the smaller 

fitness value.  

 

It is worth noting that in step 3, even if the fitness value of the current particle is smaller than the fitness value of the 

new particle, the replacement operation is still performed. By means of the particle update described above, the particles 

move from one position to another and search for the optimal solution in the solution space. Using A1 and A2 to represent 

the particles to be crossed, the new particle is obtained as B after crossover, and the crossover operation (Wang et al., 2017) 

is defined as follows. 

 

Step 1: Divide the task set 𝑆 = {𝐽𝑖|𝑖 = 1,2, . . . , 𝑛} into two subsets S1 and S2 at random. 

Step 2: The child particle B1 inherits the elements belonging to S1 in A1 and the elements belonging to S2 in A2. 

Step 3: The child particle B2 inherits the elements belonging to S2 in A1 and the elements belonging to S1 in A2. 

Step 4: Compare the fitness values of child particles B1 and B2, and output the child particle with smaller fitness value, 

i.e., new particle B. 

 

Figure 2 shows an example of crossover operation, when S1={J2, J3} and S2={J1}, the new particle B1 retains elements 

2 and 3 in A1 and element 1 in A2, and B2 retains element 1 in A1 and elements 2 and 3 in A2. By this crossover operation, 

the child particles inherit some information from the parent particles and "mutate" on this basis to search for the optimal 

solution of the problem on a larger scale. 

 

3 1 2 1 3 3 1 2 2

1 3 2 1 3 2 1 3 2

1 3 2 3 1 3 2 1 2

3 1 1 2 3 1 2 3 2

 
 

Figure 2. Crossover operation to obtain child particles 

 

4.5 Particle local search method 

 

Although the traditional particle swarm optimization algorithm has good global search capability, the local search capability 

is weak, and it is easy to miss high-quality solutions. For this reason, HPSO adds a local search algorithm based on simulated 

annealing on the basis of PSO. The simulated Annealing algorithm (SA) is a local search algorithm simulating the solid 

annealing principle. Unlike the traditional local search algorithm (hill climbing algorithm), SA can accept inferior solutions 

with a certain probability and has the ability to jump out of the local optimum, which has good effect on multi-peak 

optimization problems with good results. In each iteration, the b particles in the memory will be used as the initial solution 

of SA for local search. 

A neighborhood particle is a new particle obtained by giving a small change to the current particle, and the local search 

process can be regarded as the process of generating neighborhood particles. In order to generate a neighborhood solution, a 

reasonable neighborhood structure needs to be set, and the advantages and disadvantages of the neighborhood structure are 

directly related to the SA search performance. For the encoding method in 4.3, the operations commonly used to generate 

neighborhood solutions are inverse order, insertion and interchange. Yang et al. (2012) points out that the interchange 

operation is more conducive to the large range search of the algorithm, so this paper uses the interchange operation to generate 
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the neighborhood solution, i.e., given a particle, two different elements are randomly selected, and their positions are 

exchanged to obtain the neighborhood particles, as shown in Figure 3. 

When SA starts its search, the initial temperature 𝑇0 should be set high enough to be able to search for all particles. In 

the initialization stage of the particle swarm optimization algorithm, the fitness values of the optimal particle and the worst 

particle are recorded: 𝑝𝑏  and 𝑝𝑤, respectively, and the probability of accepting the worst particle is denoted as 𝑝𝑟 ∈ (0,1), so 

that there is 𝑝𝑟 = exp[−(𝑝𝑤 − 𝑝𝑏)/𝑇0], from which the initial temperature can be obtained as 𝑇0 = −(𝑝𝑤 − 𝑝𝑏)/(𝑙𝑛 𝑝𝑟). 

SA has a sampling step of L at each temperature, yielding a neighborhood particle each time through an interchange operation, 

and if the particle is better than the current particle, the current particle is replaced with that particle; If the particle is inferior 

to the current particle, the neighborhood particle is accepted with probability 𝑝𝑟 = exp[−(𝑝𝑤 − 𝑝𝑏)/𝑇𝑘]. After L searches, 

SA performs a cooling operation, which uses the index cooling method: 𝑇𝑘 = 𝜆𝑇𝑘−1. 

 

1 2 2 3 1 1 3 2 3

O11 O21 O22 O31 O12 O13 O32 O23 O33

O11 O21 O12 O31 O22 O13 O32 O23 O33

1 2 1 3 2 1 3 2 3

The corresponding step

Particle

Neighborhood particle

The corresponding step
 

 

Figure 3. Interchange operation to obtain neighborhood particles 

 

4.6 HPSO algorithm steps 

 

The main steps of HPSO are as follows. 

Step 1: Given the population size popsize, the maximum number of iterations MaxIterion, set the current iteration iter = 1. 

Step 2: Randomly generate the initial particle population 𝑃𝑡
(0)

, where t = 1, 2,⋯, popsize, and determine the fitness value 

𝐹(𝑃𝑡
(0)

) for each particle. 

Step 3: Initialize the individual optimal particle 𝑃𝑏𝑒𝑠𝑡𝑡
(0)

= 𝑃𝑡
(0)

, the global optimal particle 𝐺𝑏𝑒𝑠𝑡(0) =

{𝑃𝑏𝑒𝑠𝑡𝑡
(0)

|𝐹(𝑃𝑏𝑒𝑠𝑡𝑡′
(0)

) = max
𝑡

{𝐹(𝑃𝑏𝑒𝑠𝑡𝑡
(0)

)}}, and select b optimal 𝑃𝑏𝑒𝑠𝑡𝑡
(0)

 into the memory.  

Step 4: Update all current particle 𝑃𝑡
(𝑖𝑡𝑒𝑟−1)

 with their individual optimal particles 𝑃𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟−1)

 and global optimal 

particles 𝐺𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟−1)

 to obtain the new particle 𝑃𝑡
(𝑖𝑡𝑒𝑟)

. 

Step 5: Checks the fitness value of each new particle 𝐹(𝑃𝑡
(𝑖𝑡𝑒𝑟)

) and performs a replacement operation if the fitness value 

of the new particle is less than the fitness value of the worst particle in the memory.  

Step 6: Perform a local search for particles in the memory. 

Step 7: Update the individual optimal particle; if 𝐹(𝑃𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟−1)

) ≥ 𝐹(𝑃𝑡
(𝑖𝑡𝑒𝑟)

), then 𝑃𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟)

= 𝑃𝑡
(𝑖𝑡𝑒𝑟−1)

, otherwise 

𝑃𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟)

= 𝑃𝑏𝑒𝑠𝑡𝑡
(𝑖𝑡𝑒𝑟−1)

; then update the global optimal particle. 

Step 8: If iter ≥ MaxIterion, the algorithm stops, and the output result is 𝐺𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟); Otherwise, iter = iter + 1 and go back 

to step 4. 

 

5. EXPERIMENT SIMULATION AND RESULT ANALYSIS 

 

The difference between the solution of the stochastic HJSMT problem and the deterministic problem is that the objective 

function of the algorithm is different: the objective function of the deterministic HJSMT problem is the maximum completion 

time 𝐶𝑚𝑎𝑥; The objective function of the stochastic HJSMT problem is the various robust optimization models introduced in 

the previous section. Therefore, as long as the algorithm is determined, the robust optimization model introduced above can 

be used to solve any uncertain scheduling problem. 
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5.1 Design of stochastic HJSMT problem examples and selection of performance index 

 

In order to test the performance of HPSO on the HJSMT problem, this paper adopts the method of GröflinandLinkert (2008). 

First, a batch of deterministic HJSMT problem examples P1~P8 with different scales are randomly generated (see Table 1). 

The stochastic HJSMT problem examples are derived from the randomization of deterministic HJSMT problems P1 ~ 

P8. According to the practice of related Wang et al. (2012), stochastic HJSMT problem examples are generated as follows: 

The number of scenarios for each problem |𝛬| is equal to 50; assuming that the probability of all scenarios is the same, that 

is, 𝑃𝑟(𝜆) =
1

50
，𝜆 ∈ 𝛬; random processing time is randomly selected within [1,99], that is: 

 

𝑝𝑖𝑗
𝜆 ∈ 𝑈[1,99], 𝑖 = 1,2, . . . , 𝑛,  𝑗 = 1,2, . . . , |𝐽𝑖|，𝜆 ∈ 𝛬 (14) 

 

In the selection of performance index, it is hoped that the selected performance index can reflect the enthusiasm and 

risk resistance of the robust optimization model, mainly including the following three aspects: (1) The average performance 

of scheduling in different scenarios; (2) The fluctuation of scheduling in different scenarios; (3) Scheduling performance in 

bad scenarios. Therefore, the expected performance EC, variance VC and the performance WC in the worst scenario are 

selected as performance indexes. 

 

Table 1. Deterministic HJSMT problems P1~P8 
 

Problem P1 P2 P3 P4 P5 P6 P7 P8 

Scale 
n 5 5 5 10 10 10 20 20 

q 5 10 15 5 10 15 5 10 

Note: n denotes the number of workpieces, and q denotes the number of working procedures. 

 

In the simulation experiment, we first analyze the performance changes of ECWM under different weights 𝛼𝑊 to find 

the best weight 𝛼𝑊
∗ , then use ECWM and traditional robust optimization model to solve the stochastic HJSMT problem, and 

the experimental results are compared and analyzed. 

 

5.2 Variation of ECWM performance with different weights 

 

In ECWM, the weight 𝛼𝑊  plays a role in regulating the equilibrium relationship between scheduling enthusiasm and 

robustness. The scheduling obtained under different weights has different emphasis. In order to obtain the performance 

difference of ECWM under different weight 𝛼𝑊, the experiment uses ECWM under different weight to solve the random P1 

problem. The values of the weight 𝛼𝑊 are 0, 0.1, 0.2, …, 1. The algorithm runs 10 times under each weight, and the best 

fitness value is the experimental result. This is the maximum potential of the ECWM model, considering different weight 

values. The experimental results are summarized in Table 2. 

 

Table 2. ECWM performance with different weights 

 

𝛼𝑊 EC VC WC 

0 554 3230 695 

0.1 554 3230 695 

0.2 556 3040 695 

0.3 560 2746 665 

0.4 566 2703 669 

0.5 570 2966 657 

0.6 570 2966 657 

0.7 570 2966 657 

0.8 570 2966 657 

0.9 570 2966 657 

1 570 2966 657 

 

It can be seen from the results in Table 2 that when 𝛼𝑊 = 0, ECWM is ECM, and the enthusiasm of scheduling (the 

average value of scheduling in different scenarios) is the best, but the performance fluctuates greatly, and the robustness is 

also the worst. When 𝛼𝑊 = 0.1, 0.2, the result obtained is not much different from that when 𝛼𝑊 = 0. This is because the 
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weight 𝛼𝑊 is too small, and the ECWM's robustness 𝛼𝑊𝑚𝑎𝑥
𝜆∈𝛬

{𝐶(𝑠, 𝜆)} is not highlighted. With the gradual increase of 𝛼𝑊, 

the enthusiasm of scheduling is decreasing, while the robustness is getting better and better, and the performance fluctuation 

is also weakening. As can be seen in Figure 4, each performance indicator of scheduling reaches a steady state when 𝛼𝑊 ≥
0.5, which is the least aggressive and the best in terms of robustness and performance fluctuations at the same time. This is 

because too large weight 𝛼𝑊 will cause (1 − 𝛼𝑊)𝐸𝐶(𝑠) to be too small, and ECWM's pursuit of enthusiasm is not being 

exploited. It is worth pointing out that when 𝛼𝑊 = 0.3, EC only increased by 6 units, but WC decreased by 30 units. At this 

time, the enthusiasm and robustness of scheduling reached a very good balance, so in the following experiments, the value 

of 𝛼𝑊 is set to 0.3. 
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Figure 4. Performance variation of ECWM with different weights 

 

5.3 Comparison of ECWM and traditional robust optimization models 

 

The following experiments use ECWM and traditional robust optimization models to solve more complex stochastic HJSMT 

problems and analyze the advantages and disadvantages of these models by comparing the experimental results. This 

experiment still uses the HPSO algorithm, and its parameter setting and running environment are consistent with Section 3.2. 

According to the experimental results in the previous section, the weight of ECWM is set to 0.3, i.e., 𝛼𝑊 = 0.3. In addition, 

according to Wang et al. (2012), the weights and parameters of the traditional robust optimization model are set as follows: 

𝛼𝑉 = 0.5, 𝛽 = 1.05, 𝛼𝐵 = 0.5. Each model is used to solve each problem 10 times, and the best one is taken as the 

experimental result. The experimental results are summarized in Table 3. 

 

Table 3. Comparison of ECWM and traditional robust optimization models 

 

Example Performance ECM ECVM WCM MRM ECBM ECWM 

P1 

EC 554* 594# 570 565 576 560^ 

VC 3230# 1939* 2966 2780 2588^ 2634 

WC 695 696# 657* 700 669 665^ 

P2 

EC 790* 845# 802 796 834 794^ 

VC 5899 2936* 4082^ 6094# 5926 5806 

WC 956# 952 896* 946 923 900^ 

P3 

EC 1060* 1163 1092# 1061^ 1168 1069 

VC 9596# 3201* 6173 7781 4817^ 9180 

WC 1278# 1275 1250* 1274 1275 1267^ 

P4 EC 681* 806# 725 701 694^ 697 
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Example Performance ECM ECVM WCM MRM ECBM ECWM 

VC 3512# 1781* 2738^ 3339 3008 2813 

WC 874 899# 802* 849 866 806^ 

P5 

EC 1122 1274# 1181 1146^ 1167 1153 

VC 4762# 1091* 3124^ 3421 3185 3601 

WC 1282 1336# 1241* 1269 1291 1239^ 

P6 

EC 1416* 1567# 1510 1477 1497 1441^ 

VC 5438 1110* 3482^ 5148 5107 5918# 

WC 1665# 1646 1573* 1648 1593 1584^ 

P7 

EC 1208* 1411# 1345 1234^ 1248 1255 

VC 7665 2303* 6130 9293# 4797^ 6938 

WC 1599# 1523 1495* 1506 1547 1524^ 

P8 

EC 1613* 1876 1721 1630^ 1676 1662 

VC 7416 1536* 8515# 7223 5401^ 6806 

WC 1911 1962# 1766* 1821 1779^ 1801 
Note: * indicates the best value of this performance, ^ indicates the second-best value of this performance, and # 
indicates the worst value of this performance. 

 

Among the three indexes, the expectation EC reflects the enthusiasm of scheduling to pursue excellent performance, 

the variance VC reflects the volatility of scheduling performance in different scenarios, and the worst scenario performance 

WC reflects the anti-risk ability of scheduling. As can be seen in Figures 5, 6 and 7, ECM, ECVM and WCM achieve the 

best values of their respective optimization metrics EC, VC and WC, respectively, in most cases, but are also the models with 

the worst values. This is because ECM and WCM belong to a single index optimization model, and it is difficult to consider 

the performance beyond their respective optimization index. ECVM takes variance VC as one of the optimization indexes, 

which can effectively reduce the fluctuation of scheduling in various scenarios, but it is at the expense of good performance 

enthusiasm and anti-risk ability. The other three models, MRM, ECBM and ECWM, all perform between the best value and 

the worst value in the performance index EC and WC. This result is consistent with the essence of the three models, that is, 

a balance and compromise between the single index optimization model ECM and WCM in different ways. Among the six 

robust optimization models, ECWM gets the most suboptimal value, which shows that the model achieves a good balance in 

terms of performance enthusiasm and risk resistance; The result of ECBM is a little lower than that of ECWM, and it also 

achieves a good balance in performance enthusiasm and risk resistance; The performance of MRM is slightly worse than that 

of ECBM, which is consistent with the conclusion of Wang et al. (2012). Because MRM uses the near-optimal solution of 

each scenario rather than the optimal solution (because HJSMT is an NP-hard problem, the optimal solution is difficult to 

obtain), it is difficult to accurately obtain the regret value 𝐶(𝑠, 𝜆) − 𝐶∗(𝑠, 𝜆) of scheduling 𝑠, so the effect is not fully 

developed. 
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Figure 5. Comparison of EC metrics between ECWM and traditional robust optimization model 
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Figure 6. Comparison of VC metrics between ECWM and traditional robust optimization model 
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Figure 7. Comparison of WC metrics between ECWM and traditional robust optimization model 

 

Although WCM is the most robust model, which has the highest risk resistance (the optimal WC value) in all HJSMT 

problems, WCM is too conservative, and its enthusiasm for excellent performance is low. ECVM gets the worst performance, 

which shows that ECVM performs the worst in terms of good performance enthusiasm and risk resistance. Because ECVM 

takes variance VC as the optimization index, it not only suppresses the performance of bad scenarios but also suppresses the 

performance of good scenarios, which worsens the performance of ECVM in performance indexes EC and WC. However, 

ECVM is the best in terms of performance fluctuation of scheduling in various scenarios. 
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6. CONCLUSIONS 

 

In conclusion, the ECWM model proposed in this paper is not the best performance in a single performance, but considering 

the robustness, performance enthusiasm and risk resistance of scheduling results, ECWM performs better than the other five 

models. 

Since there is usually a large deviation between the theoretical and actual performance of the scheduling scheme 

obtained from the deterministic model when implemented in an uncertain environment, this requires that the scheduling needs 

to be risk-resistant, i.e., it can maintain good performance even when encountering uncertain events. To this end, this paper 

takes the initiative to consider uncertainties in real production workshop and uses scenario analysis to describe the processing 

time in stochastic HJSMT problems and proposes a new robust optimization model for stochastic HJSMT, namely the 

Expected 𝐶𝑚𝑎𝑥 and the Worst scenario Model (ECWM). In the simulation experiment, ECWM is used to solve the stochastic 

HJSMT problem, and the solution results are compared with traditional robust optimization models ECM, ECVM, WCM, 

MRM and ECBM. The results show that the scheduling obtained by ECWM has not only good average performance but also 

good anti-risk ability, which indicates that the model has reached a good balance between scheduling performance enthusiasm 

and risk resistance.  

Although the performance of ECWM proposed in this paper is excellent, it needs a lot of computation and takes a long 

time to solve. This disadvantage is also the disadvantage of traditional robust optimization algorithms such as ECM, ECVM, 

WCM, MRM and ECBRM. From the perspective of reducing the amount of computation, future research can develop a 

robust optimization model with less computation and faster solution speed. In addition, sensitivity analysis can also be used 

to find out the indexes that may affect the robustness of HJSMT, and the objective function that meets the requirements can 

be constructed and optimized. 
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