
Clemson University
TigerPrints

All Theses Theses

4-2015

Discrete Particle Swarm Optimization for Flexible
Flow Line Scheduling
Parastoo Amiri
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Amiri, Parastoo, "Discrete Particle Swarm Optimization for Flexible Flow Line Scheduling" (2015). All Theses. 2087.
https://tigerprints.clemson.edu/all_theses/2087

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/2087?utm_source=tigerprints.clemson.edu%2Fall_theses%2F2087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DISCRETE PARTICLE SWARM OPTIMIZATION FOR FLEXIBLE FLOW LINE

SCHEDULING

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Industrial Engineering

by

Parastoo Amiri

April 2015

Accepted by:

Dr. Mary E. Kurz, Committee Chair

Dr. Scott J. Mason

Dr. Amin Khademi

ii

ABSTRACT

Previous research on scheduling flexible flow lines (FFL) to minimize makespan has utilized

approaches such as branch and bound, integer programming, or heuristics. Metaheuristic methods

have attracted increasing interest for solving scheduling problems in the past few years. Particle

swarm optimization (PSO) is a population-based metaheuristic method which finds a solution

based on the analogy of sharing useful information among individuals. In the previous literature

different PSO algorithms have been introduced for various applications. In this research we study

some of the PSO algorithms, continuous and discrete, to identify a strong PSO algorithm in

scheduling flexible flow line to minimize the makespan. Then the effectiveness of this PSO

algorithm in FFL scheduling is compared to genetic algorithms.

Experimental results suggest that discrete particle swarm performs better in scheduling of

flexible flow line with makespan criteria compared to continuous particle swarm. Moreover,

combining discrete particle swarm with a local search improves the performance of the algorithm

significantly and makes it competitive with the genetic algorithm (GA).

iii

DEDICATION

I would like to dedicate this thesis to my mother, Fahimeh Farid, my father, Kioumars Amiri and

my uncle, Dr. Mohammad Ali Farid for all their love and support.

iv

ACKNOWLEDGMENTS

This project would not have been possible without the guidance and help of several

individuals who in one way or another contributed and extended their valuable assistance in

preparation and achievement of this research. First, my utmost gratitude to Dr. Mary Elizabeth

Kurz, my project advisor, whose encouragement, guidance and support from the initial to the final

level enabled me to complete this study. I would also like to thank Dr. Scott Mason and Dr. Amin

Khademi, the members of the project committee, who have provided useful feedback and without

their knowledge and assistance this study would not have been successful. Lastly, I would like to

thank Clemson Computing team, especially, Dr. Marcin Ziolkowski for providing the support and

equipment I have needed to develop and complete my project.

v

TABLE OF CONTENTS

 Page

TITLE PAGE ... i

ABSTRACT .. ii

DEDICATION ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER 1

INTRODUCTION .. 1

1.1 Literature Review .. 3

1.1.1 Standard Particle Swarm Optimization .. 3

1.1.2 Discrete PSO... 4

1.1.3 Discretization Methods ... 4

1.1.4 Modified PSO ... 6

1.1.5 Flexible Flow Line ... 9

1.1.6 PSO in Scheduling ... 11

1.2 Problem Description .. 13

1.3 Research Motivations and Objectives ... 13

CHAPTER 2

METHODOLOGIES .. 16

2.1 Standard Particle Swarm ... 15

2.1.1 Solution Representation .. 16

2.1.2 Initialization and Position Update .. 17

vi

2.2 Passive Congregation Particle Swarm... 18

2.3 Attraction Repulsion Particle Swarm .. 19

2.4 Discrete Particle Swarm .. 20

2.4.1 Mutation ... 21

2.4.2 Crossover .. 22

2.5 Hybrid Discrete Particle Swarm .. 22

2.6 Evaluation.. 24

2.6.1 Notation ... 24

2.6.2 Makespan .. 24

2.6.3 Lower Bound ... 24

2.6.4 Loss ... 22

CHAPTER 3

EXPERIMENTATION AND COMPUTATIONAL RESULTS 26

3.1 Test Data ... 26

3.2 Assumptions .. 27

3.3 Experimental Environment ... 27

3.4 Generating Random Numbers ... 27

3.5 Algorithms ... 28

3.5.1 Tuning SPSO ... 28

3.5.2 Tuning PCPSO ... 29

3.5.3 Exploring ARPSO ... 30

3.5.4 DPSO ... 31

3.6 Comparing the Algorithms with GA ... 35

3.7 Effect of Different Factors in the Data sets ... 36

Table of Contents (Continued) Page

vii

3.7.1 Skipping Factor .. 36

3.7.2 Number of Jobs ... 37

3.7.3 Number of Stages .. 38

3.7.4 Number of Machines ... 39

3.7.5 Processing Time .. 39

CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH ... 40

4.1 Conclusions ... 40

4.2 Future Research ... 41

APPENDICES

A: Friedman Test-Tuning DPSO .. 42

B: Kruskal-Wallis Test on Different Factors DPSO-LS-500 43

REFERENCES ... 45

Table of Contents (Continued) Page

viii

LIST OF TABLES

Table Page

2.1 Mechanisms to bring the positions back into the allowable range 17

2.2 Particle Info, Mutation, Crossover .. 22

3.1 Characteristics of the problem instances ... 26

3.2 %Loss results of SPSO ... 28

3.3 % Loss results of PCPSO .. 29

3.4 %Loss results .. 30

3.5 Levels of different parameters ... 31

3.6 DPSO results ... 32

3.7 % Loss results ..33

3.8 p-values obtained from Kruskal-Wallis test .. 36

ix

LIST OF FIGURES

Figure Page

1.1 Flow shop .. 1

1.2 Job shop .. 1

1.3 Flexible flow line .. 2

1.4 Particle Motion.. 3

1.6 Local search .. 7

1.7 Interaction of particles in Standard PSO and PCPSO ... 8

2.1 SPSO Algorithm16

2.2 PCPSO Algorithm18

2.3 ARPSO Algorithm .. 19

2.4 DPSO Algorithm ... 21

2.5 Mutation process ... 21

2.6 PTL crossover process .. 22

2.7 DPSO-LS Algorithm ... 23

2.8 Local search Algorithm ... 23

3.1 Kruskal-Wallis test at 95% confidence level .. 28

3.2 Kruskal-Wallis test at 95% confidence level on c3 ... 29

3.3 (a) Changing diversity over time (b) Changing in makespan over time 30

3.4 Kruskal-Wallis test at 95% confidence level .. 31

3.5 Kruskal-Wallis test at 95% confidence level .. 32

3.6 Kruskal-Wallis test at 95% confidence level .. 32

3.7 Kruskal-Wallis test at 95% confidence level .. 32

x

3.8 Comparison between discrete algorithms (300 and 500 iterations) 33

3. 9 Comparison between all algorithms.. 33

3.10 Kruskal-Wallis test at 95% confidence level .. 34

3.11 Kruskal-Wallis test at 95% confidence level .. 34

3.12 Kruskal-Wallis test at 95% confidence level .. 34

3.13 Scatter plot of SPSO (decreasing w) vs GA.. 35

3.14 Kruskal-Wallis test at 95% confidence level .. 35

3.15 Scatter plot of DPSO-LS-500 vs GA .. 35

3.16 Effect of skipping factor on %Loss .. 36

3.17 Effect of skipping factor on %Loss .. 37

3.18 Effect of number of jobs on %Loss of DPSO-LS-500 37

3.19 Effect of number of stages on %Loss ... 38

3.20 Effect of skipping factor on %Loss grouped by number of stages 38

3.21 Effect of number of machines on %Loss .. 39

3.22 Effect of processing time on %Loss ... 39

List of Figures (Continued) Page

1

CHAPTER 1

INTRODUCTION

Scheduling problems have been the subject of much research for many years. They can be found

wherever there are some tasks which should be assigned to some resources. In a manufacturing

environment, scheduling is done with regard to different objectives such as minimizing flow time,

tardiness, lateness or makespan.

Makespan is the maximum completion time of all jobs. Minimizing makespan is important

because it tends to increase the facility utilization. Minimizing makespan has been of great interest

in both job shops and flow shops.

In a flow shop, jobs follow the same path from one machine to another (Figure 1.1) while in a

job shop there is no common pattern of movement from machine to machine (Figure 1.2). Each

job is processed by at most one machine in each stage. The machines available at each stage are

identical.

Figure 1.1. Flow shop

Figure 1.2. Job shop

More than one machine might be available in each stage of a flow line, in which case it is called

a hybrid flow line. One special case of a hybrid flow line is when the jobs are allowed to skip some

stages, which is called a flexible flow line (Figure 1.3). It can be seen in industries such as

A B C

A D

C B

Product 1

Product 2

Product 2

Product 1

2

automobile or printed circuit boards where there is no need for some jobs to visit all stages, but

they keep the same linear path.

Figure 1.3. Flexible flow line

There are different approaches to scheduling flexible flow lines, such as branch and bound

(Salvador, 1973; Brah and Hunsucker, 1991; Carlier and Neron, 2000), or integer programming

(Sawik, 2002; Kurz and Askin, 2004). It is proved that even the two-stage flow shop scheduling

problem with parallel machines to minimize makespan is a NP-hard problem (Gupta, 1988).

Accordingly heuristics have been used to solve these kinds of problems. Heuristics are

experienced-based techniques which try to find a solution which is not guaranteed to be optimal.

They are divided into two main categories: constructive heuristics which produce initial solution

and improvement heuristics which improve the solution by using search techniques. In scheduling,

a constructive heuristic starts without a schedule or job sequence and then adds one job at a time

to find the solution, while improvement heuristics, such as metaheuristics, use an initial schedule,

and then try to find a better “similar” schedule, referred to as improved solution. Metaheuristics

such as tabu search (TS), simulated annealing (SA), genetic algorithms (GA) and particle swarm

optimization (PSO) are based on local search techniques. Particle swarm optimization is a

population-based metaheuristic method introduced by Kennedy and Eberhart (1995) which has

been recently the focus of some articles dealing with scheduling problems. It has also been applied

to different NP-hard problems such as traveling salesman problem, lot sizing, etc. The potential

merit of PSO over other metaheuristics is its ability to find solutions based on social behavior of

sharing useful information among individuals.

M1 M2 M3

M4

M5

M6

M7

3

In this chapter, after reviewing some literatures which are available in this area, the problem

considered in this study and the objective of this research will be discussed.

1.1 Literature Review

This literature review is focused on the following topics:

• Particle Swarm Optimization

• Flow shop scheduling

• Applying particle swarm optimization in scheduling problems

1.1.1 Standard Particle Swarm Optimization

Kennedy and Eberhart (1995) introduced standard PSO for continuous optimization problems.

Particle swarm optimization is a population based metaheuristic which is inspired from bird

flocking and fish schooling, searching for food. Various PSO algorithms are introduced for

continuous and discrete solution spaces. In this algorithm, particles fly through the solution space

by learning from the historical information that they gain from the swarm population.

Each particle has its own velocity and it has a memory of the best solution which has been

found by itself (pbest) and by the swarm (gbest). Figure 1.4 shows how particle i changes its

position from time t (xi
t) to t+1 (xi

t+1) based on its trust in its own experience at time t (vi
t), its

neighbor experience (pi
t) and the whole swarm experience (gi

t).

Figure 1.4. Particle Motion (Clerc, 2004)

xi
t

xi
t+1

pi
t

gi
t

vi
t

4

1.1.2 Discrete PSO

In a standard PSO positions are real valued, so it cannot be applied directly to binary/discrete

space. Efforts have been made to adapt this algorithm for discrete solution space. Kennedy and

Eberhart introduced the discrete binary version of PSO with a stochastic velocity model in 1997,

which was the first PSO algorithm to be used in discrete space. They were motivated by the idea

that any problem, discrete or continuous, can be expressed in a binary notation so an optimizer

with binary representation can be advantageous. In the discrete binary version of PSO, the position

xi
t can only be zero or one and vi is the probability that xi changes to state 0 or one. This probability

is computed as:

������ = 11 + exp ����� (1.1)

Then xi
t can be defined as:

�1 �� ������ ������ < ������,0 ��ℎ�� ���, (1.2)

1.1.3 Discretization Methods

An appropriate representation of particle position is needed in order to use PSO for discrete

problems. The sets of real variables in original PSO which represent particle position have to be

discretized in order to be applied to discrete problems. Krause et al. (2013) characterize the

codification of candidate solutions in three encoding schemes:

1- Binary codification (BC) for candidate solutions.

2- Integer codification (IC) for candidate solutions.

3- Using transformation methods to transform real values into a BC (real-to-binary: RTB) or

an IC (real-to-integer: RTI), where RTI represents a combination of integer values. These

transformations have to be done at each iteration loop.

5

They also categorize the discretization methods which are used in literature as follow:

• Sigmoid Function

The Sigmoid function transforms a continuous space value into a binary one. The

transformation is applied to each dimension of the position vector:

!1 �� ������ ������ < 11 + exp ����� ,0 ��ℎ�� ���,
where i is the index of population size. The random number is drawn uniformly from [0,1].

• Random-Key

The random-key (RK) transforms a continuous space value into an integer/combinatorial

value. To decode the position the nodes are visited in ascending order for each dimension.

e.g: x=(0.90, 0.35, 0.03, 0.21, 0.1) � x=(3, 5, 4, 2, 1). (Bean et al., 1994; Kurz and Askin,

2004). This method will be discussed in detail in Chapter 2.

• Smallest Position Value

The smallest position value (SPV) transforms a continuous space value into an integer

value. The smallest position value method maps the positions of the solution vector by

placing the index of the lowest valued component as the first item on a permutated solution,

the next lowest as the second, and so on. This method creates an integer vector solution by

indexing the position of all the particles (Tasgetiren et al., 2004).

• Modified Position Equation

Pan et al. (2008) and Tasgetiren et al. (2007) use the modified position equation (MPE)

method to update the positions of particles in PSO algorithm. The details of this method is

available in Chapter 2.

6

• Great Value Priority

Congying et al. (2011) use the great value priority (GVP) method to transform a continuous

space into a binary space. First, the position of the solution xi
t with the largest element is

selected, where i=1,.., N and N is the population size. This position is set on the first

position of a new vector named as permutation vector ". Next, the position of the second

largest element of xi
t is selected and placed in the next position of ". This procedure is

repeated successively for all dimensions of xi
t and once permutation vector " is fulfilled,

following equation is applied to transform it into binary, where j=1, . . . , D and D is the

dimension size:

xij
t =�1, �� "# > "#%&,0, ��ℎ�� ���.

• Nearest Integer

In this method, a real value is converted to the nearest integer (NI) by rounding or

truncating up or down (Burnwal and Deb, 2012).

1.1.4 Modified PSO

In order to use PSO in a permutation problem, the standard PSO should be modified. In

permutation problem elements of a position are not independent, while in standard PSO elements

are independent so two elements can have the same value. This conflict is not accepted in

permutation problems.

Hu et al. (2003) introduced a new velocity and particle update to handle the permutation

parameter set. They use this algorithm to solve the n-queen problem. The velocity is defined as the

possibility that a position changes, in other words, the probability that each particle swaps is equal

to the value of the velocity. The mutation factor is also used to update the positions when they are

identical to gbest. Their objective is minimizing the number of diagonal conflicts. The results are

compared to the result of the same problem which was solved using a GA.

One of the main problems of original PSO on strongly multi-modal test problems is its

premature convergence due to loss of diversity in search space. Convergence happens when the

7

system or process reaches a stable state. Based on the definition by Van den Bergh (2002), in flow

shop scheduling problem, convergence is written as:

lim�→, -������� = -����∗
where gbest(t) is best position found in time t or in tth generation, gbest* is a fixed position in

the solution space. It implies that, if gbest does not change after some point in time, then

convergence is achieved. If gbest is the global best position, then the algorithm attains the global

best convergence. Otherwise, the algorithm is stuck in a local optima. Of course, the true optimal

solution is not known, so if gbest is not the optimal solution, premature convergence has occurred.

Premature convergence may happen because of fast information flow between particles. In this

case, the swarm may converge to a local solution and may not be able to explore the search space

thoroughly. Figure 1.6 shows a local minimum x1, if the algorithm converges at this point, the

better solution x2 will be screened out. So there is a need to improve the exploration of this

algorithm in order to avoid sub-optimal solutions more frequently.

Figure 1.6. x1 is the current solution, x2 is another solution which

is better than x1, in order to avoid premature convergence, x1 should

change into an intermediate solution /&0 (Liao et al, 2007).

Riget and Vesterstrøm (2002) propose an algorithm based on attraction and repulsion between

particles. They define a critical value for diversity (dcritical). When the diversity is less than dcritical,

particles repel each other and when the calculated diversity is above this value, they attract each

other.

8

They test this new algorithm on four standard multi-modal objective functions. The results are

competitive with the GA algorithm and better than original PSO. Dallard et al. (2007) use this

algorithm to solve an orienteering problem successfully.

He et al. (2004) propose a new algorithm by considering passive congregation in the velocity

update. The idea is each particle in an aggregation has lots of potential useful information that may

help them to reach to optimal solutions. Figure 1.7 shows the interaction between particles in SPSO

(1.7a) and passive congregation algorithm (1.7b).

(a) (b)

Figure 1.7. (a) Interaction of particles in Standard PSO, (b) Interaction of

particles with passive congregation (He et al., 2004)

Ho et al. (2005) claim that cognitive and social behavior of SPSO are not completely

independent; as in human decision making, the personal best may overcome the social best. They

modify the velocity equation in order to improve the exploration and exploitation behavior of the

swarm (Eq. 1.3). A random number (r1) is used to control these two parts and random number r2

is used to balance between global and local searches. The value s3 is used in order to increase the

diversity. The values c1 and c2 are cognitive and social parameters, respectively.

() () () ()()1

2 1 2 13 1 22 1 1 1
t ttt t t

i i ii i i
p gvv s c x c xr r r rr

+ = + − − + − − − (1.3)

s3= 1 1 ������ ������ > 0.05,−1 ��ℎ�� ���.
Zhang et al. (2010) suggest a discrete algorithm called circular discrete particle swarm

optimization (CDPSO). They address the premature convergence of PSO algorithm by considering

the swarm activity and the similarity of particles in each iteration. The swarm activity is small

when the algorithm is trapped into local optimum, in order to escape from this situation, the

gbest gbest

9

mutation is used to send the particles to a new search area. Decreasing the diversity of the swarm

leads to increase of the similarity of particles, so by calculation the similarity, it is possible to

prevent the premature convergence. They use this algorithm to obtain the minimum makespan in

flow shop scheduling.

Chen and Yangmin Li (2007) propose a modified PSO with controllable random exploration

velocity (PSO-CREV) added to the velocity updating in order to balance exploration behavior and

convergence rate with respect to different optimization problems. They use various benchmarks to

evaluate this algorithm.

Sevkli and Sevilgen (2010) improve the PSO algorithm by considering both exploration and

exploitation. They propose a new algorithm by modifying the update method of the best particle

in the swarm (the pioneering particle). They strengthen the exploitation mechanism by using

Reduced Variable Neighborhood Search (RVNS) and at the same iteration random velocity is used

to improve the exploration mechanism. The proposed algorithm is successfully tested on discrete

and continuous problems. The results in both cases were competitive or even better than previous

results, e.g. their results for orienteering problem were better than the published results by Dallard

et al. (2007).

M. R. Singh et al. (2013) uses a chaotic mutation operator in order to overcome the problem of

trapping at local minima in standard PSO algorithm. The Chaotic sequence using logistic mapping

is used instead of random numbers to improve the diversity in solution space.

1.1.5 Flexible Flow Line

A flexible flow line is a manufacturing system where multiple machines can exist in each stage,

each job must be processed by at most one machine at each stage and jobs can skip some stages.

If there is only one machine at each stage and jobs have to meet all the stages, this line is the flow

shop line.

Many works have been done in scheduling of flexible flow shops. Kurz and Askin (2003)

compare various scheduling rules in flexible flow line scheduling. They categorize the previous

works based on their approaches, such as branch-and-bound, extensions of previous techniques

10

(Johnson’s rule etc.), applying metaheuristics and development of new techniques. They apply

eight constructive heuristics to minimize the makespan in the systems with more than two stages

and various configurations of machines. These heuristics are being compared using the value of

(makespan-lower bound)/lower bound.

There might also some setup times involved in scheduling of flexible flow line. The setup

usually corresponds to preparing the machines for the execution of the next job and when the setup

time depends on the previous job which has completed on the machine, the setups is sequence

dependent. Kurz and Askin (2004) tackle the scheduling of flexible flow line with sequence

dependent setup times by applying random keys genetic algorithms in order to minimize the

makespan. They also develop a strong lower bound for this problem. This lower bound shows that

the makespan is at least as large as the longest completion time, considering the setup time which

is assumed to be the shortest setup possible. This research shows that in the case where more than

two stages are considered, the genetic algorithm outperformed the procedures presented by their

previous work (Kurz and Askin, 2003).

Tavakkoli-Moghaddam et al. (2007) consider a flexible flow line problem with blocking

processor (FFLB). They proposed a queen-bee-based genetic algorithm to schedule flexible flow

lines. They also apply memetic algorithm (MA) along with using a local search (Tavakoli

Moghadam, 2009), namely, nested variable neighborhood search (NVNS), to minimize the

makespan. It is claimed that this algorithm outperforms the classical genetic algorithm. Kia et al.

(2009) use simulation to investigate dynamic scheduling of flexible flow lines with sequence

dependent setup times. Scheduling of flexible flow lines with unrelated parallel machine is

addressed in Zandieh et al (2010). They apply GA in order to solve this problem and also try to

consider the constraints which exist in real world scheduling. Karmakar and Mahanty (2010) apply

genetic algorithm and the theory of constraints to solve a mixed integer linear program for a

flexible flow line in a paint factory with makespan criteria. Shahvari et al. (2011) develop a mixed-

integer linear programming model for the flexible flow shop sequence dependent group scheduling

problem, then they apply six metaheuristics based on tabu search (TS) to solve this problem. Sawik

(2011) address the deterministic cyclic and batch scheduling problem in flexible flow lines with

continuous and limited machine availability to schedule the jobs so that they are completed in the

11

shortest possible time. He develops a mixed-integer programming model for these problems and

compares the computational results of the models.

Particle swarm optimization (PSO) is also applied in scheduling of flexible flow lines to

minimize the makespan (Sankaran, 2009; Singh et al., 2013). Sankaran (2009) applies the original

PSO algorithm with random keys as a representation, but the results indicate that this algorithm

does not outperform GA in minimizing the makespan. Singh et al. (2013) modify the original

algorithm by using chaotic numbers and mutation operator to increase the diversity of the solution

space. They claim that their algorithm outperforms GA for the same problem.

1.1.6 PSO in scheduling

There are papers which address the PSO algorithm in scheduling problems. This algorithm has

been applied to some scheduling environments such as no-wait flow shop scheduling (Pan et al.,

2008a and 2008b), permutation flow shop (Tasgetiren et al., 2007; Lian et al., 2006), parallel batch

processing machines (Damodaran et al, 2012), sequence dependent disassembly line (Kalayci and

Gupta, 2013), single machine (Tasgetiren et al, 2004; Anghinolfi and Paolucci, 2009), flow shop

(Liao et al, 2007; Zhang et al., 2010), hybrid flow shop (Tseng and Liao, 2008) and flexible flow

shop (Sankaran, 2009; Singh et al., 2013)

Tasgetiren et al. (2004) use continuous PSO to minimize total weighted tardiness on single

machine. They use each dimension to represent the number of jobs and Smallest Position Value

(SPV) rule and random keys representation, are used to sort the dimensions and transform the

particle positions into job permutations. Later they minimize makespan and maximum lateness of

jobs using the same technique and utilize variable neighborhood search (VNS) as a local search

method in permutation flow shop sequencing problem (Tasgetiren et al., 2007).

The research by Tasgetiren et al. is an extension of continuous PSO. Pan et al. (2008a) reported

the first DPSO algorithm to solve no-wait flow shop scheduling using a new position update

method based on discrete job permutation. They use a new crossover (PTL crossover) to produce

a pair of different permutation even from two identical parents. In this method, a block of jobs is

chosen by two-cut points randomly and then it is moved to one side of solution vector and at the

end the new permutation is filled with the remaining jobs from the other particle. They also use

12

several speed-up methods for the Swap and Insert neighborhood structures. Finally they use

variable neighborhood (VND) local search to improve the DPSO algorithm.

Anghinolfi and Paolucci (2009) proposed new particle swarm optimization approach to solve

the total weighted tardiness scheduling problem with sequence dependent setup times on a single

machine. As Tasgetiren et al. (2004), they use permutation solution-particle as a representation

and they create a list of moves to update the particles’ positions. Results from implementing the

proposed DPSO to Cicirello’s benchmark were satisfactory.

Lian et al. (2006) propose a new approach called similar particle swarm optimization algorithm

(SPSOA) inspired from mutation and crossover which are used in genetic algorithm. They use

these operators to update the velocity and position in order to minimize the makespan in

permutation flow shop problem. The results demonstrate that SPSOA performs better than GA.

Liao et al. (2007) extend the binary PSO algorithm which is proposed by Kennedy and Eberhart

(1997) by using similar approaches as Tasgetiren et al. (2004), in order to solve flow shop

scheduling problems. Velocity update equation is the same as original PSO but they redefine the

velocity as how likely job j is to be placed in the kth position. They compare their algorithm to the

continuous PSO algorithm proposed by Tasgetiren et al. (2004) and two genetic algorithms, results

show that the proposed algorithm can be very competitive. They also use local search in their

algorithm in order to improve their algorithm.

In another work, Tseng and Liao, (2008) apply particle swarm optimization algorithm for

hybrid flow-shop scheduling. “Absolute” solution encoding is only used for encoding of the first

stage because it is the only stage that all jobs are available at time zero. For other stages the list

scheduling (LS) algorithm is used to determine the start times of the jobs at other stages. According

to this algorithm, jobs are processed as soon as possible based on their completion times from the

previous stage in such a way that job completion times will be minimal. They employ various

velocity update methods and neighborhood topologies (gbest, pbest and time-delay models). They

claim that their algorithm outperforms GA and ACS.

 M. R. Singh et al. (2013) uses chaotic mutation operator in order to overcome the problem of

trapping at local minima in standard PSO algorithm. The chaotic sequence using logistic mapping

13

is used instead of random numbers to improve the diversity in solution space. They use random

keys as a representation and employ mutation strategy to increase the diversity. Mutation is

performed each time the number of iterations without diversity exceeds an exact number.

Sankaran (2009) applies PSO in scheduling flexible flow line with sequence dependent setup

times. Random keys are used as a solution representation and the algorithm is evaluated by the

lower bound which is proposed by Kurz and Askin (2004). The results indicate that the PSO

algorithm does not perform well in minimizing makespan in this problem. Several potential

weaknesses of this research are: (1) Use of standard PSO algorithm without considering the

premature convergence of this algorithm, (2) Not modifying position and velocity update

equations, (3) Not considering other encoding methods.

1.2. Problem Description

The problem considered in this study involves scheduling jobs for a flexible flow line with the

objective of minimizing the makespan. This problem consists of a set J of n jobs that need to be

processed in a flexible flow line. Each job j∈J is associated with processing time (pj) and setup

time (��#) where i is the job processed before job j on the same machine. The problem under study

is NP-hard (Gupta, 1988). Therefore, various algorithms of the particle swarm optimization are

used to minimize the maximum completion time.

1.3. Research Motivations and Objectives

This study is motivated by the importance of flexible flow line scheduling, the effectiveness of

PSO in various applications and the lack of any publication, to the authors’ knowledge, which

addresses this scheduling problem by using discrete particle swarm optimization in a flexible flow

line. Flexible flow lines (FFL) are used in various industries such as automotive, printed circuit

board and textile. Finding the optimal assignment of limited resources to a number of jobs to obtain

minimum flow time, makespan, lateness and tardiness or other objectives is very important.

According to the literature, PSO is an effective algorithm which can reach high quality solutions

in a reasonable computational time. It also has fewer numbers of parameters than other

evolutionary metaheuristics such as genetic algorithm (GA). GA uses mutation and crossover to

14

update the solution space. As discussed earlier in a permutation problem, every job should appear

just once in the sequence. Since the crossover operator does not consider this fact, there is a need

to recheck the solution which is created by crossover. So using crossover in GA can make the

algorithm more complicated in scheduling problems. However it does not mean that crossover

operator is not an efficient operator because it may be worthwhile when applied to PSO.

 There are many papers available which use heuristic approaches to solve scheduling problems,

but few use PSO. More specifically there are no papers available with the focus in using DPSO in

order to solve flexible flow line scheduling problem with sequence dependent setup times.

Kurz and Askin (2004) address this problem with makespan criteria using a random keys genetic

algorithm approach and obtained a strong lower bound for this problem, However Sankaran and

Kurz (2009) applied a continuous version of PSO to solve this problem but the results were not

satisfactory. Since the scheduling is a discrete problem we propose to apply the discrete version of

PSO using the same data set as in these two works and compare the results.

In this work we plan to use DPSO algorithms. The functionality of PSO is based on how it updates

the position and velocity of the particles. Our main focus is on applying different methods to update

velocity and positions. Additionally we will examine the impact of using an appropriate encoding

to represent the sequence of n jobs.

The primary goal of this research is finding an alternative PSO method for GA in scheduling

a flexible flow line to minimize the makespan. This goal is achieved through the following

objectives:

1. Develop various PSO algorithms

2. Compare the solution quality of the proposed algorithms against GA

15

CHAPTER 2

METHODOLOGIES

Some of the PSO methodologies have been discussed in the previous chapter. In this chapter some

of the methods which are used in this research are discussed in detail. These methods are as

follows:

1. Standard Particle Swarm Optimization (SPSO)

2. Passive Congregation Particle Swarm Optimization (PCPSO)

3. Attraction Repulsion Particle Swarm Optimization (ARPSO)

4. Discrete Particle Swarm Optimization (DPSO)

5. Hybrid Discrete Particle Swarm Optimization with a Local Search (DPSO-LS)

The performance of each of these algorithms are evaluated by using a method which is presented

at the end of this chapter.

2.1 Standard Particle Swarm

In this method, the position of ith particle of the swarm in the continuous n-dimensional search

space at iteration t is xi
t= (/�&� , /�4� ,…,/�5�) with the objective value of f(x) (fitness). The best

previous position (pbest) of each particle (best personal position of particle i) is shown by pi
t=

("�&� , "�4� , ..., "�5�) and the last particle position change (velocity) is represented by vi
t = (��&� , ��4� ,…,��5�). The position with the best function value found so far is the global best (gbest) position and

is represented by gi
t = (-�&� , -�4� , ..., -�5�). Each particle adjusts its position during time based on its

own experience and also the experience of other particles. The SPSO algorithm is given in Figure

2.1. The position and velocity of particle i at iteration t of the SPSO algorithm, xi
t and vi

t

respectively, are updated by following equations:

1

1 21 2
() ()

t tt t t t

i i i ii i
p gv w v c x c xr r

+
= + − + − (2.1)

(2.2) 1 1t t t

i i ix x v
+ +

= +

16

where:

• w is the inertia parameter that weights the previous velocity of a particle (how much a

particle trusts its own experience).

• c1 and c2 are cognitive and social parameters, respectively.

• r1 and r2 are uniform random numbers between [0, 1] which are used to weight (
t t

ii
p x−)

and (t t

ii
g x−).

Figure 2.1. SPSO Algorithm

2.1.1 Solution Representation

The solution representation in this method is random keys (Bean et al. 1994; Kurz and Askin,

2004). In this encoding, each solution is represented by a particle with an n dimension vector,

where n is the number of jobs. Each dimension is a random number between [0, M) with two

decimals, where M is the number of machines in the stage. For example, for a problem with 5 jobs

and 3 machines in a stage, a particle position can be defined as: xi
t= (1.78, 1.65, 2.23, 3.45, 2.49).

The integer part is the machine number to which the job is assigned and fractional part serves as

the sort key to sort the jobs assigned to each machine. This particle represents jobs 2 and 1 will be

Initialize parameters and particles random positions and velocities on n-dimensions in the

search space

Do

 For each particle i with position xi
t do

If (xi
t is better than pi

t-1) then

pi
t
 xi

t

End-if

 End-for

 Update gi
t

 For each particle i do

1t

iv
+

  () ()
1 21 2

t tt t t

i i ii i
p gwv c x c xr r+ − + −

1t

ix
+

 
1t t

i ix v+
+

 End-for

While (a stop criterion is not satisfied)

17

assigned to machine one, respectively, jobs 3 and 5 will be assigned to machine two and job 4 will

be processed at machine 3.

2.1.2 Initialization and Position Update

The parameters used for c1 and c2 are set as c1=c2=2 as recommended by Kennedy and Eberhart

(2001). The inertia parameter is a critical parameter for the convergence behavior of this algorithm.

It can be constant or decreasing over time (similar to the β parameter in simulated annealing which

decreases in each iteration).

The position of particle i is initialized randomly between [0, M) and the velocity of particle i is

randomly chosen from [0,1]. After every updating process, all the positions should be in range of

[0, M), which might be violated in some iterations. In this research, two mechanisms are used to

deal with the issue of positions being outside the range of allowable values:

1- xi
t= min (M-0.01, max(0, xi

t))

2- Bounce Back (Sankaran, 2009):

if xi
t ≥M then xi

t=2M − xi
t

if xi
t <0 then xi

t= -xi
t

To better understand how these mechanisms help to maintain the position in the allowable range,

consider a stage consisting of two machines which is supposed to process 4 jobs. The allowable

range for each position is between [0,2) but after updating the velocity and adding it to the current

position, a position is obtained with some out of range dimensions. Table 2.1 illustrates how the

two mechanisms bring those values back in range.

 Position

xi
t+1 =xi

t + vi
t+1 (-1.78, 1.65, 2.23, 0.45)

Mechanism1 (0, 1.65, 1.99, 0.45)

Mechanism2 (1.78, 1.65, 1.77, 0.45)

Table 2.1. Mechanisms to bring the positions back into the allowable

range.

18

2.2 Passive Congregation Particle Swarm

The algorithm of PCPSO is similar to SPSO except for the velocity update process. In this method

each particle gets information from personal best, global best and one other random particle in the

swarm in order to update its position. They enter this kind of information into Eq. (2.1) and rewrite

the equation as follow:

1

1 2 31 2 3
() () ()

t t tt t t t t

i i i i ii i c
p g pv w v c x c x c xr r r

+
= + − + − + − (2.3)

where "6� is a particle selected randomly from the swarm, c3 is the passive congregation coefficient

and r3 is a random uniform number in [0, 1].

The PCPSO algorithm is given in Figure 2.2. The solution representation in this method is also

random keys.

Figure 2.2. PCPSO Algorithm

Initialize parameters and particles random positions and velocities on n-dimensions in

the search space

Do

 For each particle i with position xi
t do

If (xi
t is better than pi

t-1) then

pi
t
 xi

t

End-if

 End-for

 Update gi
t

 For each particle i do

1t

iv
+

  () () ()
1 2 31 2 3

t t tt t t t

i i i ii i c
p g pwv c x c x c xr r r− − −+ + +

1t

ix
+

 
1t t

i ix v+
+

 End-for

While (a stop criterion is not satisfied)

19

2.3 Attraction Repulsion Particle Swarm

As mentioned in the previous chapter, in this method the position update depends on the diversity

of the swarm. If the diversity is less than a critical value, the particles will repel each other;

otherwise, they will attract each other. In the proposed algorithm, the velocity equation is:

1

1 21 2
() ()

t tt t t t

i i i ii idir p gv wv c x c xr r
+

= + − + −
 
 
 

 (2.4)

Where variable dir directs the velocity of the swarm being updated by attraction (dir = 1) or

repulsion (dir = -1).

���� = −1 �� ���� > 0 ��� ��������7 < �8����8�9�,��� = 1 �� ���� < 0 ��� ��������7 ≥ �8����8�9� (2.5)

As with the previous algorithms, the random keys are used for encoding the solution space. Figure

2.3 shows the ARPSO algorithm.

Figure 2.3. ARPSO Algorithm

Initialize parameters and particles random positions and velocities

Do

 For each particle i with position xi
t do

If (xi
t is better than pi

t-1) then

pi
t  xi

t

End-if

 End-for

 Update gi
t

 Calculate diversity (N)

For each particle i do

If diversity<critical value

1t

iv
+


1 21 2
() ()

t tt t t

i i ii i
p gwv c x c xr r+ − + −

Else

1t

iv
+


22

() ()
11

t tt t t

i i ii i
p gwv c x c xr r− − −−

End-if

1t

ix
+

 
1t t

i ix v+
+

 End-for

While (a stop criterion is not satisfied)

20

There are different methods to calculate the diversity of a swarm. Here we use the average distance

around the swarm center (Olorunda and Engelbrecht, 2008):

��������7�;� = 1|;| = >=�/�#� − /̅#�45
#@&

|A|
�@& (2.6)

where N is the swarm, |;| is the swarm size, |B| is the length of the longest diagonal in the search

space, n is the dimensionality of the problem (number of jobs), /�#� is the jth value of the ith particle

at iteration t and /̅# is the average of jth value of all the particles:

/̅# = ∑ /�#|A|�@&|;| (2.7)

2.4 Discrete Particle Swarm

In order to be able to use the job permutation based encoding scheme, Pan et al. (2008) introduced

a method for updating the position. In this method the position is updated in one step, meaning

that the particle has no velocity. The position update equation is as follows:

/�� = 84⨂EF�8&⨂E4� ⨂E&�/��G&�, "��G&�, -��G&� (2.8)

As mentioned before, H�� = ⨂E&�/��G&� is the velocity of the particle. F1 is the mutation operator

which is applied with probability w. If a random number r ∈ [0,1] is less than w then mutation will

be performed.

J�� = 8&⨂E4�H��, "��G&� is the cognitive part of the particle and F2 is the crossover operator which

occurs with probability c1. /�� = 84⨂EF�J��, -��G&� is the social part of the particle and F3 is the

crossover operator which occurs with probability c2. DPSO algorithm is given in Figure 2.4.

21

Figure 2.4. DPSO Algorithm

2.4.1 Mutation

The insert mutation is used in DPSO algorithm. Figure 2.5 illustrates how insert mutation works.

In this example two random numbers are generated. These random numbers represent the position

of the jobs. The job associated with the bigger random number is inserted after the job associated

with the smaller random number. In the following example job 4 is inserted after job 3.

3 4 2 1 5

After mutation

3 2 4 1 5

Before mutation

Figure 2.5. Mutation process

Initialize parameters and particles random positions on n-dimensions in the search space

Do

 For each particle i with position xi
t do

If (xi
t is better than pi

t-1) then

pi
t  xi

t

End-if

 End-for

 Update gi
t

 For each particle i do

If randomNum<w H��%& = ���������/���
 End-if

 If randomNum <c1J��%& = 8���������H��, "���
 End-if

 If randomNum <c2/��%& = 8���������J��, -���
 End-if

 End-for

While (a stop criterion is not satisfied)

Random number 1= 3

Random number 2= 1

22

2.4.2 Crossover

A two cut crossover introduced by Pan et al. (2008) is used for position update (PTL crossover).

In this method, a block of jobs is chosen by two-cut points randomly and then it is moved to one

side of solution vector and at the end the new permutation is filled with the remaining jobs from

the other particle. Figure 2.6 illustrates PTL crossover method.

Figure 2.6. PTL crossover process

The following example illustrates the position update in this algorithm. The current position of a

particle, its personal best and the global best is shown in Table 2.2. This particle might mutate with

probability w. Then it can be recombined with the personal best with the probability c1 and finally

it might recombined with the global best with the probability c2.

Insert Mutation

(Inertia)

PTL Crossover

(Cognitive)

PTL Crossover

(Social)

xi
t (3 5 1 2 4) H�� (3 1 5 2 4) J�� (1 5 2 3 4)

pi
t (1 2 3 4 5) xi

t (3 5 1 2 4) pi
t (1 2 3 4 5) gi

t (1 4 5 3 2)

gi
t (1 4 5 3 2) H�� (3 1 5 2 4) J�� (1 5 2 3 4) /�� (5 2 1 4 3)

(a) (b) (c) (d)

Table 2.2. (a) Particle Info (b) Mutation (c) Recombined with the personal best (d) Recombined with the global best.

2.5 Hybrid Discrete Particle Swarm with a Local Search (DPSO-LS)

In order to improve the DPSO algorithm, Pan et al. (2008) apply a local search based on the insert

neighborhood on the global best of each iteration which helps the exploitation (Figure 2.7). The

algorithm of the local search which is applied in this research is given in Figure 2.8. The new

neighbor (U) is found by using an insert mutation. A simulated annealing type of acceptance

1 2 4 5 3

2 1 3 5 4

Before crossover

1 2 4 3 5

After crossover

Random number 1= 3

Random number 2= 1

23

criterion is used in this algorithm. The local search runs for 500 iterations or until a value less than

the global best is found.

Figure 2.7. DPSO-LS Algorithm

Figure 2.8. Local search Algorithm

Initialize parameters and particles random positions on n-dimensions in the search space

Do

 For each particle i with position xi
t do

If (xi
t is better than pi

t-1) then

pi
t
 xi

t

End-if

 End-for

 Update gi
t

 For each particle i do

If randomNum<w H�� = ���������/��G&�
 End-if

 If randomNum <c1J�� = 8���������H��, "��G&�
 End-if

 If randomNum <c2/�� = 8���������J��, -��G&�
 End-if

 End-for

 Apply Local search to gi
t

While (a stop criterion is not satisfied)

Do

U=mutation (gi
t)

Evaluate

If f(U)< f(gi
t)

 gi
t= U

End-if

While (a stop criterion is not satisfied)

24

2.6 Evaluation

To describe the makespan and lower bounds equations, the following notations are used (Kurz and

Askin, 2004):

2.6.1 Notations

n Number of jobs

k Number of stages

kj Last stage visited by job j "�� Processing time for job i at stage t�� Number of machines at stage t��#� Setup time from job i to job j at stage tK� Set of stages visited by job i

St Set of jobs that visit stage t = {i: "�� >0}L�� Completion time for job i at stage t

2.6.2 Makespan

The makespan which is the maximum completion time among all the jobs is the objective used in

this research. When job j is processing on a machine and job i is the next job to be processed, the

completion time of job i is calculated using Eq. (2.9).

1
, ,max{ }t t tt

ii i j

t
j iSC C CP

−= + + (2.9)

2.6.3 Lower Bound

Kurz and Askin, 2001, developed a lower bound for flexible flow line with sequence dependent

setup times:

1

0,....,1,....,

()max min
i

t t

jii
j ni n t S

p SLB
== ∈

 
 + 
 
 

= ∑ (2.10)

25

1 0,....,

2
0,...., 0,....,1 1

1,....,
1

0,....,1[]

1
() (

min

min min min min
max

min min min

t

t t

t t

t

jiit kj ni

ji jiti i
j n j nti i

t k
t

jit i i
j n ji q i

S

S S

S S

p S

p pS S
mLB

p pS
m

τ

τ ττ τ

τ τ

τ ττ

τ

− =∈

= == = +∈ ∈
=

−

= ==∈ ∈

 
 +
    
    + + + +

   
   

+ + − +

=

∑
∑ ∑

∑
1 1

0,....,1 1

)min

t
t

ji
nq

m

S
τ

τ

− −

= =

 
 
 
 
  
 
 

  
  
  
    

∑ ∑

(2.11)

LB1
 is developed with the assumption that every job must be processed at every stage while LB2

assumes that every stage must process all of its jobs. The time for the first job to get to each stage

and leave it as well and the idle time for parallel machines at each stage waiting for the first

available job are also included in LB2. These two lower bounds are calculated for each of the

datasets and the higher LB is used as the lower bound for that test scenario.

2.6.4 Loss

The measure to evaluate the solutions is “%Loss” which is the percentage of deviation of the

makespan from the lower bound Eq. 2.12. where Cmax is the makespan for each test scenario and

LB is the lower bound for that dataset.

max% 100
LBC

Loss
LB

−
= × . (2.12)

26

CHAPTER 3

EXPERIMENTATION AND COMPUTATIONAL RESULTS

The algorithms which were introduced in the previous chapter are tested using 180 problem

instances. In this chapter, the datasets on which the various experiments have been conducted are

explained. The computational results are also discussed in this chapter.

3.1 Test Data

The problem instances are obtained from the work presented by Kurz and Askin (2004). Table 3.1

shows the different levels of each factor. The factors are skipping probability, processing time,

number of stages, number of machines and number of jobs, which leads to 3×2×3×5×2=180 test

scenarios. Kurz and Askin also provide 10 datasets for each of these test scenarios. These 1800

datasets are available at http://people.clemson.edu/~mkurz/ffl.html.

The setup times in the datasets were generated randomly from a Unif (12-14) distribution. The

setup time matrices satisfy the triangle inequality (Rios-Mercado and Bard, 1998). As mentioned

before, in a flexible flow line jobs are allowed to skip stages as long as they are processed at least

at one stage. The skipping probability are chosen to be 0%, 5% and 40% (Leon and Ramamoorthy,

1997).

Table 3.1 Characteristics of the problem instances

Factor Level

Skipping probability

0.00

0.05

0.40

Processing times
Unif (50-70)

Unif (20-100)

Number of stages

2

4

8

Machine distribution &

Number of Machines

Constant

1

2

10

Variable
Unif (1,4)

Unif (1,10)

Number of jobs
30

100

27

3.2 Assumptions

It is assumed that machines are available at all times, all jobs are available at time 0 (the ready

time for stage 1 are set to 0 for all jobs), the ready times at stage t +1 are the completion times at

stage t (no travel time between stages). Preemption is not allowed and jobs have the same priorities.

Infinite buffers exist before each machine. Parallel machines are identical in capability and

processing rate. The number of machines in each stage should be less than the number of jobs to

be processed at that stage.

3.3 Experimental Environment

 The algorithms which are introduced in Chapter 2 are coded in MATLAB 2013. For each setting,

50 replications have been run and in each replication the program runs for certain number of

iterations (300 or 500) or until the lower bound is achieved. The percentage loss is computed as

(makespan – lower bound)/lower bound for each result, and we report the average loss over the 50

replications for each dataset for each algorithm.

All computational experiments are performed using the Palmetto Cluster, Clemson University’s

primary high performance computing (HPC) resource. The amount of time used to run a program

is highly dependent on the available resources at any given time and the number of jobs run on

that resource at the same time. SPSO, PCPSO and ARPSO programs required about a calendar

day to run for all data sets and all replication (1800*50 executions), less than two calendar days

for DPSO and a little more than two days for DPSO-LS using 32 CPUs at a time.

3.4 Generating Random Numbers

The set of random numbers which is generated for a replication is unique to that replication and it

is replicable. In generating the random numbers, we utilize the Mersenne Twister pseudorandom

number generator, seeded with seed which is calculated as follows:

1800 (1)seed repNum FileNum= × − + (3.1)

Where repNum is the replication number which changes from 1 to 50 and FileNum is the file

number which changes from 1 to 1800.

28

3.5 Algorithms

In this section the results of experiments on the mentioned algorithms are provided.

3.5.1 Tuning SPSO

This algorithm, which is the standard particle swarm algorithm, has several parameters which need

to be set initially, such as the inertia weight w, cognitive parameter c1 and social parameter c2. The

parameters c1 and c2 are set at 2 following Kennedy and Eberhart (1995). The inertia parameter w

is critical for the convergence behavior of PSO algorithms. There should be a balance between

exploration and exploitation ability in this algorithm. This parameter can help the algorithm to

better explore the solution space.

We experimentally evaluated two methods for setting the inertia parameter: a constant value of 1

or a dampened value, set initially to 1 but decreasing by a damping weight at each iteration.

Decreasing the value at each iteration is intended to help the exploitation ability. The damping

weight is 0.99. The population size is set at 100 for all algorithms. Table 3.2 shows the result for

these experiments. As it is observed from this table and Kruskal-Wallis test result (Figure 3.1),

decreasing the inertia weight w in each iteration improves the performance of the algorithm.

Table 3.2. %Loss results of SPSO

 w

%Loss Constant Decreasing

Average 22.26651 19.1006

Standard deviation 14.54169 11.80097

Min 3.087108 2.357537

Max 86.34629 66.69318

Kruskal-Wallis Test on %Loss

Treatment N Median Ave Rank Z

SPSO-Constant 1800 22.33 1908.8 6.25

SPSO-Decreasing 1800 19.07 1692.2 -6.25

Overall 3600 1800.5

H = 39.06 DF = 1 P = 0.000

H = 39.06 DF = 1 P = 0.000 (adjusted for ties

Figure 3.1. Kruskal-Wallis test at 95% confidence level

29

3.5.2 Tuning PCPSO

As mentioned in Chapter 2, this algorithm introduces a new parameter, the passive congregation

coefficient c3. The effect of parameter c3 is studied by setting it at 0.1, 0.3 and 0.6 following He et

al. (2004). The program runs for 50 replications, each contains 300 iterations. The parameters c1

and c2 are set at 2 and the inertia parameter w is set at 1 initially and decreases with the damping

weight of 0.99, as determined in the previous section. Using the same figure of merit (average loss

across all replications and all 1800 data sets), Table 3.3 and Figure 3.2 indicate that increasing the

passive congregation coefficient (thereby increasing the effect of the selected random particle),

has a negative impact on the average loss percentage. Therefore, including a random particle in

updating the velocity does not help the performance of the algorithm. We hypothesize that the

negative impact of the increased weight for the passive congregation parameter may be explained

as follows: since 100 particles are available at each iteration, getting the information from a random

particle can move the particle in a non-desired direction when the particle are already moving in a

desired direction.

Table 3.3. % Loss results of PCPSO

 c3

% Loss 0.1 0.3 0.6

Average 19.84147 20.549 21.30217

Standard deviation 12.38769 12.844 13.48009

Min 1.912021 2.2779 2.653979

Max 71.21025 76.422 79.72438

Kruskal-Wallis Test on %Loss

Treatments N Median Ave Rank Z

0.1 1800 20.11 2618.8 -2.72

0.3 1800 20.81 2701.4 0.03

0.6 1800 21.48 2781.2 2.69

Overall 5400 2700.5

H = 9.76 DF = 2 P = 0.008

H = 9.76 DF = 2 P = 0.008 (adjusted for ties)

Figure 3.2. Kruskal-Wallis test at 95% confidence level on c3

30

3.5.3 Exploring ARPSO

The parameter in this algorithm which plays an important role is the critical value, as described in

the previous chapter. In this experiment this value is set at 0.5. Figure 3.3 shows a typical relation

between diversity in the swarm (3.3a) and the makespan of the best particle (3.3b) in the swarm at

each iteration. As you can see from Figure 3.3a the diversity decreases over time until it hits the

critical value, at which point the diversity in the swarm is forced to increase. By increasing the

diversity, it is expected that the chance of finding a better solution increases but as illustrated in

Figure 3.3b, it is not very effective. The bounce back method was also applied to this variant of

the PSO (ARPSO-BB) and compared to ARPSO (see Table 3.4). ARPSO and ARPSO-BB do not

evidence very different behavior (Figure 3.4). Since increasing the diversity decreases the

exploitation ability, this algorithm is highly sensitive to the critical value. It might be possible to

obtain a better result from ARPSO by tuning the critical value.

(a) (b)

Figure 3.3. (a) Changing diversity over time (b) Changing in makespan over time

Table 3.4. %Loss results

 Algorithm

%Loss ARPSO ARPSO-BB

Average 19.49828 19.49344

Standard deviation 11.71283 11.71868

Min 2.88688 2.940846

Max 66.9113 67.07617

31

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

ARPSO 1800 19.51 1800.8 0.02

ARPSO-BB 1800 19.53 1800.2 -0.02

Overall 3600 1800.5

H = 0.00 DF = 1 P = 0.987

H = 0.00 DF = 1 P = 0.987 (adjusted for ties)

Figure 3.4. Kruskal-Wallis test at 95% confidence level

3.5.4 DPSO

As mentioned before, the solution representation in this algorithm is based on job permutation. At

the first stage, jobs are assigned based on the order in the sequence and the available machine. The

parameters in this algorithm are different from the continuous algorithms introduced earlier. The

parameters w, c1 and c2 are the probabilities of mutation, crossover with pbest and crossover with

gbest respectively. In order to find the best values for these parameters, parameter tuning is done.

Following Pan et al. (2008), the learning parameters c1∈ {0.2, 0.3, 0.8}, c2 ∈ {0.2, 0.3, 0.8} and

the weighting factors are w ∈ {0.1, 0.2, 0.6} (Table 3.5).

Table 3.5 Levels of different parameters

Parameter w c1 c2

Level

0.1 0.2 0.2

0.2 0.3 0.3

0.6 0.8 0.8

Each of the 27 settings are tested for 20 replications, 300 iterations on 1800 datasets (1800*27*20

makespan values). The Friedman test is used to find the best setting to minimize the percentage

Loss. This test is done using MINITAB 17 and the results are shown in Appendix A. The setting

with the lowest sum of ranks is chosen to be the best setting. The results show that the setting

w=0.6 and c1=c2=0.8 leads to the lowest makespan comparing to other settings. Therefore, this

setting is selected for all the experiments using DPSO.

The effect of number of iterations is also studied by changing the iterations from 300 to 500. It is

observed that at 95% confidence level the results are not significantly different (Figure 3.5). As it

is shown in Table 3.6 by increasing the number of iterations a better result is obtained.

32

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

DPSO 300 1800 17.91 1812.7 0.70

DPSO 500 1800 17.67 1788.3 -0.70

Overall 3600 1800.5

H = 0.49 DF = 1 P = 0.483

H = 0.49 DF = 1 P = 0.483 (adjusted for ties)

Figure 3.5 Kruskal-Wallis test at 95% confidence level

To further improve the results the local search is implemented on the global best of each iteration

of DPSO (both 300 and 500 iterations). Table 3.6 illustrates that the local search significantly

improve the results (Figure 3.6 & 3.7), from average loss percentages of 17.73 to 16.87 for DPSO-

500 and from 17.97 to 17.14 for DPSO-300. By using the local search, the probability of leaving

the local optima and finding a better solution increases. Figure 3.8 compares the average loss of

the various DPSO algorithms. It is observed that DPSO-LS-500 has the lowest average Loss.

Table 3.6. DPSO results

 Algorithm

%Loss

DPSO

300

DPSO

500

DPSO-

LS-300

DPSO-

LS-500

Average 17.97066 17.73969 17.14973 16.878

Standard

deviation
11.27256 11.23991 11.29628 11.2607

Min 0.648955 0.550353 0.438936 0.37703

Max 60.84259 60.76667 60.0463 59.79905

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

DPSO-300 1800 17.91 1846.3 2.64

DPSO-LS-300 1800 17.00 1754.7 -2.64

Overall 3600 1800.5

H = 6.98 DF = 1 P = 0.008

H = 6.98 DF = 1 P = 0.008 (adjusted for ties)

Figure 3.6 Kruskal-Wallis test at 95% confidence level

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

DPSO-500 1800 17.67 1848.2 2.76

DPSO-LS-500 1800 16.74 1752.8 -2.76

Overall 3600 1800.5

H = 7.60 DF = 1 P = 0.006

H = 7.60 DF = 1 P = 0.006 (adjusted for ties)

Figure 3.7 Kruskal-Wallis test at 95% confidence level

33

Figure 3.8 Comparison between discrete algorithms (300 and 500 iterations)

3.6 Comparing the Algorithms with GA

The results of SPSO (decreasing w), PCPSO, ARPSO and DPSO-LS-500 are compared with the

results of the GA developed by Kurz and Askin (2004) (Table 3.7 & Figure 3.9). Figure (3.10)

shows that there is a significant difference between these algorithms.

Table 3.7. % Loss results

 Algorithm

%Loss
SPSO ARPSO PCPSO

DPSO-

LS-500
GA

Average 19.1006 19.49828 19.84147 16.878 17.55725

Standard deviation 11.80097 11.71283 12.38769 11.2607 11.1508

Min 2.357537 2.88688 1.912021 0.37703 1.328397

Max 66.69318 66.9113 71.21025 59.79905 59.62358

Figure 3. 9. Comparison between all algorithms

34

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

SPSO 1800 19.07 4619.8 2.18

ARPSO 1800 19.51 4738.5 4.34

PCPSO 1800 20.11 4760.7 4.75

DPSO-LS-500 1800 16.74 4106.8 -7.19

GA 1800 17.65 4276.7 -4.09

Overall 9000 4500.5

H = 91.62 DF = 4 P = 0.000

H = 91.62 DF = 4 P = 0.000 (adjusted for ties)

Figure 3.10. Kruskal-Wallis test at 95% confidence level

The Kruskal-Wallis test on SPSO, ARPSO and PCPSO indicates that these algorithms do not have

any significant difference at 95% confidence level (Figure 3.11). The tuned SPSO with the

decreasing inertia weight factor is compared to the GA using the non-parametric test of Kruskal-

Wallis (Figure 3.12), it is observed that there is a significant difference between the average

percentage loss of these two algorithms at the 95% confidence level. The scatter plot of these two

algorithms illustrates the degree to which the GA performs better (Figure 3.13).

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

SPSO 1800 19.07 2647.4 -1.77

ARPSO 1800 19.51 2719.5 0.63

PCPSO 1800 20.11 2734.5 1.13

Overall 5400 2700.5

H = 3.21 DF = 2 P = 0.201

H = 3.21 DF = 2 P = 0.201 (adjusted for ties

Figure 3.11. Kruskal-Wallis test at 95% confidence level

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

SPSO 1800 19.07 1869.9 4.01

GA 1800 17.65 1731.1 -4.01

Overall 3600 1800.5

H = 16.06 DF = 1 P = 0.000

H = 16.06 DF = 1 P = 0.000 (adjusted for ties)

Figure 3.12. Kruskal-Wallis test at 95% confidence level

35

Figure 3.13. Scatter plot of SPSO (decreasing w) vs GA

The results of DPSO-LS-500 is also compared with GA, it is observed that there is a significant

difference between the results at 95% confidence level (Figure 3.14) and DPSO-LS-500 can hit a

lower average loss. It indicates that by changing the solution representation, the performance of a

PSO algorithm can improve significantly and become competitive with the GA (Figure 3.15)

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

DPSO-LS-500 1800 16.74 1765.1 -2.04

GA 1800 17.65 1835.9 2.04

Overall 3600 1800.5

H = 4.17 DF = 1 P = 0.041

H = 4.17 DF = 1 P = 0.041 (adjusted for ties)

Figure 3.14 Kruskal-Wallis test at 95% confidence level

Figure 3.15 Scatter plot of DPSO-LS-500 vs GA

36

3.7 Effect of Different Factors in the Data Sets

 The Kruskal-Wallis test is performed on DPSO-LS-500 results to illustrate whether there is any

significant difference between each of the factors at 95% confidence level. Table 3.8 shows the p-

values obtained from these tests. All p-values are less than 0.01 except for the processing time

factor, which means almost all the factors have significant effect at 95% confidence level.

Factor P value

Number of jobs < 0.01

Skipping probability < 0.01

Process time > 0.01

Number of stages < 0.01

Number of machines per stage < 0.01
Table 3.8 p-values obtained from Kruskal-Wallis test

3.7.1 Skipping Factor

It is observed that when all jobs visit all stages (0% Skip), DPSO-LS performs significantly better

with the average loss of 6.12 % (Figure 3.16). By changing the skipping probability from 0% to

5% and 40%, the average Loss increases from 6.12% to 17.75% and 26.76%, respectively. Figure

3.17 illustrates how the skipping probability divided the datasets into three distinct groups. It can

be concluded that DPSO is more effective when the skipping probability is low.

0
.3

7
7

0
3

0
4

2
8

0
.6

1
1

8
7

0
4

5
5

2
.3

1
1

0
7

8
5

0
3

6
.1

2
0

2
7

4
0

4
3

1
7

.7
5

1
1

8
3

4
9

2
6

.7
6

2
5

4
7

0
5

2
1

.2
4

6
3

8
9

4

5
0

.3
4

6
2

1
6

7
9

5
9

.7
9

9
0

5
4

3
7

0

Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

%
Lo

ss

0 . 0 5 0 . 4

Skipping Factor

Figure 3.16 Effect of skipping factor on %Loss

37

Figure 3.17 Effect of skipping factor on %Loss

3.7.2 Number of Jobs

Figure 3.18 shows that when the number of jobs increases from 30 to 100 the average Loss

increases from 15.00 to 18.74. By increasing the number of jobs, the solution space becomes larger

and exploring the whole solution space to obtain a better result will take more time.

Figure 3.18 Effect of number of jobs on %Loss of DPSO-LS-500

0.596236422 0.377030428

18.74841652

15.00758654

59.79905437
58.06480092

0

10

20

30

40

50

60

70

100 jobs 30 jobs

%
Lo

ss Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

 38

3.7.3 Number of Stages

Figure 3.19 indicates that DPSO performs better when the number of stages is low. The order

which is selected for stage 1 may not be the optimal order for all stages and by moving through

the flexible flow line the effect of choosing poor order for later stages becomes more apparent.

Another possible reason is the effect of skipping probability on the results. By increasing the

number of stages, jobs have more stages to skip, therefore average Loss will increase (Figure 3.20).

Figure 3.19 Effect of number of stages on %Loss

Figure 3.20 Effect of skipping factor on %Loss grouped by number of stages

0
.3

7
7

0
3

0
4

2
8

0
.5

5
0

5
8

2
5

2

0
.7

4
0

6
8

1
4

9
1

1
4

.8
9

2
1

2
8

9
6

1
6

.5
2

6
5

4
6

8
4

1
9

.2
1

5
3

2
8

7
8

5
4

.3
0

7
8

5
3

9
5

5
4

.4
3

8
7

3
8

0
8

5
9

.7
9

9
0

5
4

3
7

2 4 8

Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

%
Lo

ss

2 4 8 2 4 8 2 4 8

0 0 . 0 5 0 . 4

Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

%
Lo

ss

Skipping factor grouped by number of stages

Stages

39

3.7.4 Number of Machines

From Figure 3.21, the DPSO algorithm performs very poorly when there are 10 machines in each

stage. Generally by increasing the number of machines, the solution space becomes larger and

the average loss increases.

Figure 3.21 Effect of number of machines on %Loss

3.7.5 Processing Time

Figure 3.22 indicates that the average Loss changes when the distribution of the processing times

changes, but the amount of this change is not statistically significant. In this case, when the

distribution of the processing time changes from Unif (50-70) to Unif (20-100), average Loss

increases from 16.75 to 17.00. It can be concluded that the performance of DPSO algorithm does

not change significantly, practically or statistically, by this factor.

 Figure 3.22 Effect of processing time on %Loss

0
.7

4
5

6
3

6
7

9
6

3
.1

6
1

1
7

5
1

7
1

2
.3

1
1

0
7

8
5

0
3

0
.4

2
9

1
1

6
1

8

0
.3

7
7

0
3

0
4

2
8

1
4

.3
9

8
5

9
7

6
2

1
7

.6
4

8
3

7
0

6
8

2
0

.8
2

2
5

7
4

5
1

1
6

.6
1

4
5

0
9

8
8

1
4

.9
0

5
9

5
4

9
6

5
8

.0
0

5
6

2
0

2
3

5
0

.8
2

9
7

8
7

2
3

5
9

.7
9

9
0

5
4

3
7

5
6

.2
6

5
2

8
8

2
3

5
8

.0
6

4
8

0
0

9
2

1 2 1 0 U N I F (1 , 1 0) U N I F (1 , 4)

Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

Number of machines

%
Lo

ss

0
.3

7
7

0
3

0
4

2
8

0
.4

3
3

1
0

6
4

2
2

1
7

.0
0

3
5

8
4

4

1
6

.7
5

2
4

1
8

6
5

5
8

.0
0

5
6

2
0

2
3

5
9

.7
9

9
0

5
4

3
7

U N I F (2 0 - 1 0 0) U N I F (5 0 - 7 0)

Min of Loss DPSO-LS-500

Average of Loss DPSO-LS-500

Max of Loss DPSO-LS-500

Processing Time

%
Lo

40

CHAPTER 4

CONCLUSIONS AND FUTURE WORKS

The presented study analyzes the performance of continuous and discrete particle swarm

optimization methods to minimize the makespan for a flexible flow line.

4.1 Conclusions

Various particle swarm optimization algorithms were developed to solve the problem of

scheduling jobs for a flexible flow line. First SPSO, with constant and also decreasing inertia

weight parameter, was implemented, then ARPSO and PCPSO which are some extensions of

SPSO were also developed to improve the SPSO result using random keys as a solution

representation. Results indicate that SPSO with decreasing inertia parameter has the best

performance among these algorithms.

 A discrete particle swarm optimization was also developed using permutation-based encoding.

Moreover, a local search was used to improve the performance of DPSO. The proposed DPSO-LS

performs significantly better than DPSO.

The performance of the proposed SPSO with decreasing inertia weight and DPSO-LS were

evaluated against the result of GA. The results illustrate that there is a significant difference

between the performances of these algorithms. GA performs better than SPSO and DPSO-LS

outperformed the results from both of these algorithms.

The presented DPSO-LS algorithm and the program developed in MATLAB can help

individuals in charge of scheduling jobs on flexible flow line with sequence dependent setup time,

make informed decisions and effectively schedule the line so that the makespan will be minimized.

Satisfactory performance in minimizing the makespan can have a significant impact on facility

utilization.

The analysis performed also illustrates how the characteristics of the problem setting (number

of stages, for example) may influence the quality of the makespan found using these algorithms,

providing a scheduler with information about the appropriateness of these methods.

41

4.2 Future Research

There are several extensions of the proposed algorithm which may be beneficial to investigate.

Applying other local search methods is a good area to research. One of these methods can be

swapping the job with the longest completion time with other jobs in the schedule. Moreover,

applying a local search on SPSO can lead to improvements in the algorithm and improve the

quality of the final solution. Feeding the particle swarm algorithm with the result of other

metaheuristic methods such as simulated annealing can be another interesting area to study.

Finally, future research may analyze other methods of assigning jobs to machines, other than list

scheduling.

42

Appendix A

Friedman Test-Tuning DPSO

Friedman Test: Response versus Treatment blocked by

Block

S = 15203.25 DF = 25 P = 0.000

S = 15330.02 DF = 25 P = 0.000 (adjusted for ties)

Treatment N

Est

Median Sum of Ranks

1 1800 18.157 31817.5

2 1800 18.036 19974.0

3 1800 18.060 23433.5

4 1800 18.169 32853.0

5 1800 18.133 29752.0

6 1800 18.184 34261.0

7 1800 17.939 13371.0

8 1800 18.094 25992.0

9 1800 18.008 18383.5

10 1800 17.988 15623.5

11 1800 18.091 25229.5

12 1800 18.128 28682.5

13 1800 18.031 19548.5

14 1800 18.040 20594.5

15 1800 17.934 12929.5

16 1800 18.031 20435.5

17 1800 18.249 38997.5

18 1800 18.224 37027.5

19 1800 18.022 20048.5

21 1800 18.046 22209.5

22 1800 17.985 15722.5

23 1800 18.140 29606.0

24 1800 17.940 12726.0

25 1800 17.984 15390.5

26 1800 18.182 32788.0

27 1800 18.187 34403.0

Grand median = 18.076

The lowest rank is 12726.0 for

treatment 24 with following

parameters:

C1 0.8

C2 0.8

W 0.6

43

Appendix B

Kruskal-Wallis Test on Different Factors

DPSO-LS-500

1. Number of Jobs

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

h 900 12.73 806.9 -7.64

a 900 20.46 994.1 7.64

Overall 1800 900.5

H = 58.35 DF = 1 P = 0.000

H = 58.35 DF = 1 P = 0.000 (adjusted for ties)

h=30 jobs, a=100 jobs

2. Number of Machines

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

l 720 15.16 796.1 -6.96

h 720 17.39 975.6 5.00

m 360 17.70 959.2 2.40

Overall 1800 900.5

H = 48.68 DF = 2 P = 0.000

H = 48.68 DF = 2 P = 0.000 (adjusted for ties)

l= 1, h=2, m=10

3. Number of Stages

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

l 600 16.54 810.1 -5.22

h 600 18.06 998.2 5.64

m 600 15.84 893.2 -0.42

Overall 1800 900.5

H = 39.47 DF = 2 P = 0.000

H = 39.47 DF = 2 P = 0.000 (adjusted for ties)

l=2, m=4, h=8

44

4. Processing Time

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

l 900 16.52 890.8 -0.79

h 900 16.93 910.2 0.79

Overall 1800 900.5

H = 0.62 DF = 1 P = 0.431

H = 0.62 DF = 1 P = 0.431 (adjusted for ties)

l= Unif(50-70), h=Unif(20-100)

5. Skipping Probability

Kruskal-Wallis Test on Loss

treatment N Median Ave Rank Z

l 600 5.254 372.3 -30.49

h 600 25.976 1363.0 26.69

m 600 17.989 966.2 3.79

Overall 1800 900.5

H = 1104.18 DF = 2 P = 0.000

H = 1104.18 DF = 2 P = 0.000 (adjusted for ties)

l= 0.00, h=0.05, m= 0.40

45

REFERENCES

Anghinolfi, D., & Paolucci, M. (2009). “A new discrete particle swarm optimization approach for the

single-machine total weighted tardiness scheduling problem with sequence dependent setup

times.” European Journal of Operational Research, 193(1), 73-85.

Bean, J. C. (1994). “Genetic algorithms and random keys for sequencing and optimization.” ORSA journal

on computing, 6(2), 154-160.

Clerc, M. (2004). “Discrete particle swarm optimization, illustrated by the traveling salesman problem.”

New optimization techniques in engineering, Springer Berlin Heidelberg, 219-239.

Congying, Lv, Zhao Huanping, and Yang Xinfeng.(2011) "Particle swarm optimization algorithm for

quadratic assignment problem." Computer Science and Network Technology (ICCSNT), 2011 International

Conference on., Vol. 3, 1728-1731, IEEE.

Dallard, H., Lam, S. S., & Kulturel-Konak, S. (2007). “Solving the orienteering problem using attractive

and repulsive particle swarm optimization.” In Information Reuse and Integration, 2007. IRI 2007. IEEE

International Conference on, pp. 12-17. IEEE.

Damodaran, P., Diyadawagamage, D. A., Ghrayeb, O., & Vélez-Gallego, M. C. (2012). “A particle swarm

optimization algorithm for minimizing makespan of nonidentical parallel batch processing machines.” The

International Journal of Advanced Manufacturing Technology, 58(9-12), 1131-1140.

Gupta, J.N.D. (1988). “Two stage hybrid flow shop scheduling problem.” Journal of Operational Research

Society, 39(4), 359–364.

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R., & Paton, R. C. (2004). “A particle swarm optimizer with

passive congregation.” Biosystems, 78(1), 135-147.

Ho, S. L., Yang, S., Ni, G., Lo, E. W., & Wong, H. C. C. (2005). “A particle swarm optimization-based

method for multiobjective design optimizations.Magnetics.” IEEE Transactions on, 41(5), 1756-1759.

 46

Hu, X., Eberhart, R. C., & Shi, Y. (2003). “Swarm intelligence for permutation optimization: a case study

of n-queens problem.” Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE, pp.

243-246. IEEE.

Kalayci, C. B., & Gupta, S. M. (2013). “A particle swarm optimization algorithm with neighborhood-based

mutation for sequence dependent disassembly line balancing problem.” The International Journal of

Advanced Manufacturing Technology, 69(1-4), 197-209.

Karmakar, S., & Mahanty, B. (2010). “Minimizing Makespan for a Flexible Flow Shop Scheduling Problem in a Paint

Company.” Industrial Engineering and Operations Management.

Kennedy, J., & Eberhart, R. (1995). “Particle swarm optimization.” In Proceedings of IEEE international

conference on neural networks, 4(2), 1942-1948.

Kennedy, J., & Eberhart, R. C. (1997). “A discrete binary version of the particle swarm algorithm.”

In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE

International Conference on, vol. 5, pp. 4104-4108. IEEE.

Kia, H. R., Davoudpour, H., & Zandieh, M. (2010). “Scheduling a dynamic flexible flow line with sequence dependent

setup times: a simulation analysis.” International Journal of Production Research, 48(14), 4019-4042.

Krause, J., Cordeiro, J., Parpinelli, R. S., & Lopes, H. S. (2013). “A survey of swarm algorithms applied to

discrete optimization problems.” Swarm Intelligence and Bio-inspired Computation: Theory and

Applications. Elsevier Science & Technology Books, 169-191.

Kurz, M. E., & Askin, R. G. (2003). “Comparing scheduling rules for flexible flow lines.” International Journal of

Production Economics, 85(3), 371-388.

Kurz, M. E., & Askin, R. G. (2004). “Scheduling flexible flow lines with sequence dependent setup

times.” European Journal of Operational Research,159(1), 66-82.

Lian, Z., Gu, X., Jiao, B., (2006a). “A similar particle swarm optimization algorithm for permutation flow

shop scheduling to minimize makespan.” Applied Mathematics and Computation, 175(1), 773–785.

Liao, C. J., Tseng, C. T., & Luarn, P. (2007). “A discrete version of particle swarm optimization for flow

shop scheduling problems.” Computers & Operations Research, 34(10), 3099-3111.

 47

Fatih Tasgetiren, M., Sevkli, M., Liang, Y. C., & Gencyilmaz, G. (2004). “Particle swarm optimization

algorithm for single machine total weighted tardiness problem.” In Evolutionary Computation, 2004.

CEC2004. Congress on, vol. 2, pp. 1412-1419. IEEE.

Oĝuz, C., & Ercan, M. F. (2005). “A genetic algorithm for hybrid flow-shop scheduling with multiprocessor

tasks.” Journal of Scheduling, 8(4), 323-351.

Pan, Q. K., Fatih Tasgetiren, M., & Liang, Y. C. (2008). “A discrete particle swarm optimization algorithm

for the no-wait flow shop scheduling problem.” Computers & Operations Research, 35(9), 2807-2839.

Pan, Q. K., Wang, L., Tasgetiren, M. F., & Zhao, B. H. (2008b). “A hybrid discrete particle swarm

optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion.” The

International Journal of Advanced Manufacturing Technology, 38(3-4), 337-347.

 Riget, J., & Vesterstrøm, J. S. (2002). “A diversity-guided particle swarm optimizer-the ARPSO.” Dept.

Comput. Sci., Univ. of Aarhus, Aarhus, Denmark, Tech. Rep, 2, 2002.

Salvador, M. S. (1973). “A solution to a special class of flow shop scheduling problems.” In Symposium on

the theory of scheduling and its applications, pp. 83-91. Springer Berlin Heidelberg.

Sankaran, V., Kurz, M. E., (2009), “A particle swarm optimization using random keys for flexible flow shop

scheduling problem with sequence dependent setup times.” Master thesis, Clemson University, Clemson, SC.

Sevkli, A. Z., & Sevilgen, F. E. (2010). “StPSO: Strengthened particle swarm optimization.” Turkish

Journal of Electrical Engineering & Computer Sciences, 18, 1095-1114.

Shahvari, O., Salmasi, N., Logendran, R., & Abbasi, B. (2012). “An efficient tabu search algorithm for flexible flow

shop sequence dependent group scheduling problems.” International Journal of Production Research, 50(15), 4237-

4254.

Singh, M. R., Mahapatra, S. S., & Mishra, K. (2013). “A novel swarm optimiser for flexible flow shop

scheduling.” International Journal of Swarm Intelligence, 1(1), 51-69.

Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). “A particle swarm optimization

algorithm for makespan and total flowtime minimization in the permutation flow shop sequencing

problem.” European Journal of Operational Research, 177(3), 1930-1947.

 48

Tavakkoli-Moghaddam, R., & Safaei, N. (2007). “A New Mathematical Model for Flexible Flow Lines with Blocking

Processor and Sequence dependent Setup Time.” Multiprocessor Scheduling, 255.

Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2009). “A memetic algorithm for the flexible flow line

scheduling problem with processor blocking.” Computers & Operations Research, 36(2), 402-414.

Tseng, C. T., & Liao, C. J. (2008). “A particle swarm optimization algorithm for hybrid flow-shop

scheduling with multiprocessor tasks.” International Journal of Production Research, 46(17), 4655-4670.

Zandieh, M., Mozaffari, E., & Gholami, M. (2010). “A robust genetic algorithm for scheduling realistic hybrid flexible

flow line problems.” Journal of Intelligent Manufacturing, 21(6), 731-743.

Zhang, Jindong, Changsheng Zhang, and Shubin Liang.(2010) "The circular discrete particle swarm

optimization algorithm for flow shop scheduling problem." Expert Systems with Applications, 37(8), 5827-

5834.

	Clemson University
	TigerPrints
	4-2015

	Discrete Particle Swarm Optimization for Flexible Flow Line Scheduling
	Parastoo Amiri
	Recommended Citation

	Microsoft Word - 350616_pdfconv_355784_BAB4D702-EBE4-11E4-BC4E-0D272E1BA5B1

