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ABSTRACT 

Previous research on scheduling flexible flow lines (FFL) to minimize makespan has utilized 

approaches such as branch and bound, integer programming, or heuristics. Metaheuristic methods 

have attracted increasing interest for solving scheduling problems in the past few years. Particle 

swarm optimization (PSO) is a population-based metaheuristic method which finds a solution 

based on the analogy of sharing useful information among individuals. In the previous literature 

different PSO algorithms have been introduced for various applications. In this research we study 

some of the PSO algorithms, continuous and discrete, to identify a strong PSO algorithm in 

scheduling flexible flow line to minimize the makespan. Then the effectiveness of this PSO 

algorithm in FFL scheduling is compared to genetic algorithms. 

Experimental results suggest that discrete particle swarm performs better in scheduling of 

flexible flow line with makespan criteria compared to continuous particle swarm. Moreover, 

combining discrete particle swarm with a local search improves the performance of the algorithm 

significantly and makes it competitive with the genetic algorithm (GA). 
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CHAPTER 1 

INTRODUCTION 

Scheduling problems have been the subject of much research for many years. They can be found 

wherever there are some tasks which should be assigned to some resources. In a manufacturing 

environment, scheduling is done with regard to different objectives such as minimizing flow time, 

tardiness, lateness or makespan.  

Makespan is the maximum completion time of all jobs. Minimizing makespan is important 

because it tends to increase the facility utilization. Minimizing makespan has been of great interest 

in both job shops and flow shops. 

In a flow shop, jobs follow the same path from one machine to another (Figure 1.1) while in a 

job shop there is no common pattern of movement from machine to machine (Figure 1.2). Each 

job is processed by at most one machine in each stage. The machines available at each stage are 

identical.  

Figure 1.1. Flow shop 

Figure 1.2. Job shop 

More than one machine might be available in each stage of a flow line, in which case it is called 

a hybrid flow line. One special case of a hybrid flow line is when the jobs are allowed to skip some 

stages, which is called a flexible flow line (Figure 1.3). It can be seen in industries such as 
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automobile or printed circuit boards where there is no need for some jobs to visit all stages, but 

they keep the same linear path. 

Figure 1.3. Flexible flow line 

There are different approaches to scheduling flexible flow lines, such as branch and bound 

(Salvador, 1973; Brah and Hunsucker, 1991; Carlier and Neron, 2000), or integer programming 

(Sawik, 2002; Kurz and Askin, 2004). It is proved that even the two-stage flow shop scheduling 

problem with parallel machines to minimize makespan is a NP-hard problem (Gupta, 1988). 

Accordingly heuristics have been used to solve these kinds of problems. Heuristics are 

experienced-based techniques which try to find a solution which is not guaranteed to be optimal. 

They are divided into two main categories: constructive heuristics which produce initial solution 

and improvement heuristics which improve the solution by using search techniques. In scheduling, 

a constructive heuristic starts without a schedule or job sequence and then adds one job at a time 

to find the solution, while improvement heuristics,  such as metaheuristics, use an initial schedule, 

and then try to find a better “similar” schedule, referred to as improved solution. Metaheuristics 

such as tabu search (TS), simulated annealing (SA), genetic algorithms (GA) and particle swarm 

optimization (PSO) are based on local search techniques. Particle swarm optimization is a 

population-based metaheuristic method introduced by Kennedy and Eberhart (1995) which has 

been recently the focus of some articles dealing with scheduling problems. It has also been applied 

to different NP-hard problems such as traveling salesman problem, lot sizing, etc. The potential 

merit of PSO over other metaheuristics is its ability to find solutions based on social behavior of 

sharing useful information among individuals.  

M1 M2 M3 
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In this chapter, after reviewing some literatures which are available in this area, the problem 

considered in this study and the objective of this research will be discussed. 

1.1 Literature Review 

This literature review is focused on the following topics: 

• Particle Swarm Optimization

• Flow shop scheduling

• Applying particle swarm optimization in scheduling problems

1.1.1 Standard Particle Swarm Optimization 

Kennedy and Eberhart (1995) introduced standard PSO for continuous optimization problems. 

Particle swarm optimization is a population based metaheuristic which is inspired from bird 

flocking and fish schooling, searching for food. Various PSO algorithms are introduced for 

continuous and discrete solution spaces. In this algorithm, particles fly through the solution space 

by learning from the historical information that they gain from the swarm population.  

Each particle has its own velocity and it has a memory of the best solution which has been 

found by itself (pbest) and by the swarm (gbest). Figure 1.4 shows how particle i changes its 

position from time t (xi
t) to t+1 (xi

t+1) based on its trust in its own experience at time t (vi
t), its 

neighbor experience (pi
t) and the whole swarm experience (gi

t).  

Figure 1.4. Particle Motion (Clerc, 2004) 

xi
t 

xi
t+1

pi
t

gi
t

vi
t
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1.1.2 Discrete PSO 

In a standard PSO positions are real valued, so it cannot be applied directly to binary/discrete 

space. Efforts have been made to adapt this algorithm for discrete solution space. Kennedy and 

Eberhart introduced the discrete binary version of PSO with a stochastic velocity model in 1997, 

which was the first PSO algorithm to be used in discrete space. They were motivated by the idea 

that any problem, discrete or continuous, can be expressed in a binary notation so an optimizer 

with binary representation can be advantageous.  In the discrete binary version of PSO, the position 

xi
t can only be zero or one and vi is the probability that xi changes to state 0 or one. This probability 

is computed as: 

������ = 11 + exp ����� (1.1) 

Then xi
t can be defined as: 

�1    �� ������ ������ < ������,0            ��ℎ�� ���,                           (1.2) 

1.1.3 Discretization Methods 

An appropriate representation of particle position is needed in order to use PSO for discrete 

problems. The sets of real variables in original PSO which represent particle position have to be 

discretized in order to be applied to discrete problems. Krause et al. (2013) characterize the 

codification of candidate solutions in three encoding schemes: 

1- Binary codification (BC) for candidate solutions. 

2- Integer codification (IC) for candidate solutions.  

3- Using transformation methods to transform real values into a BC (real-to-binary: RTB) or 

an IC (real-to-integer: RTI), where RTI represents a combination of integer values. These 

transformations have to be done at each iteration loop. 
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They also categorize the discretization methods which are used in literature as follow: 

• Sigmoid Function

The Sigmoid function transforms a continuous space value into a binary one. The

transformation is applied to each dimension of the position vector:

!1    �� ������ ������ < 11 + exp ����� ,0                      ��ℎ�� ���,                          
where i is the index of population size. The random number is drawn uniformly from [0,1]. 

• Random-Key

The random-key (RK) transforms a continuous space value into an integer/combinatorial 

value. To decode the position the nodes are visited in ascending order for each dimension. 

e.g: x=(0.90, 0.35, 0.03, 0.21, 0.1) � x=(3, 5, 4, 2, 1). (Bean et al., 1994; Kurz and Askin,

2004). This method will be discussed in detail in Chapter 2. 

• Smallest Position Value

The smallest position value (SPV) transforms a continuous space value into an integer

value. The smallest position value method maps the positions of the solution vector by

placing the index of the lowest valued component as the first item on a permutated solution,

the next lowest as the second, and so on. This method creates an integer vector solution by

indexing the position of all the particles (Tasgetiren et al., 2004).

• Modified Position Equation

Pan et al. (2008) and Tasgetiren et al. (2007) use the modified position equation (MPE)

method to update the positions of particles in PSO algorithm. The details of this method is

available in Chapter 2.
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• Great Value Priority

Congying et al. (2011) use the great value priority (GVP) method to transform a continuous

space into a binary space. First, the position of the solution xi
t with the largest element is

selected, where i=1,.., N and N is the population size. This position is set on the first

position of a new vector named as permutation vector ". Next, the position of the second

largest element of xi
t is selected and placed in the next position of ". This procedure is

repeated successively for all dimensions of xi
t  and once permutation vector " is fulfilled,

following equation is applied to transform it into binary, where j=1, . . . , D and D is the

dimension size:

xij
t =�1, �� "# > "#%&,0,   ��ℎ�� ���.

• Nearest Integer

In this method, a real value is converted to the nearest integer (NI) by rounding or 

truncating up or down (Burnwal and Deb, 2012). 

1.1.4 Modified PSO 

In order to use PSO in a permutation problem, the standard PSO should be modified. In 

permutation problem elements of a position are not independent, while in standard PSO elements 

are independent so two elements can have the same value. This conflict is not accepted in 

permutation problems.  

Hu et al. (2003) introduced a new velocity and particle update to handle the permutation 

parameter set. They use this algorithm to solve the n-queen problem. The velocity is defined as the 

possibility that a position changes, in other words, the probability that each particle swaps is equal 

to the value of the velocity. The mutation factor is also used to update the positions when they are 

identical to gbest. Their objective is minimizing the number of diagonal conflicts. The results are 

compared to the result of the same problem which was solved using a GA. 

One of the main problems of original PSO on strongly multi-modal test problems is its 

premature convergence due to loss of diversity in search space. Convergence happens when the 
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system or process reaches a stable state. Based on the definition by Van den Bergh (2002), in flow 

shop scheduling problem, convergence is written as: 

lim�→, -������� =  -����∗
where gbest(t) is best position found in time t or in tth generation, gbest* is a fixed position in 

the solution space. It implies that, if gbest does not change after some point in time, then 

convergence is achieved. If gbest is the global best position, then the algorithm attains the global 

best convergence. Otherwise, the algorithm is stuck in a local optima. Of course, the true optimal 

solution is not known, so if gbest is not the optimal solution, premature convergence has occurred. 

Premature convergence may happen because of fast information flow between particles. In this 

case, the swarm may converge to a local solution and may not be able to explore the search space 

thoroughly. Figure 1.6 shows a local minimum x1, if the algorithm converges at this point, the 

better solution x2 will be screened out. So there is a need to improve the exploration of this 

algorithm in order to avoid sub-optimal solutions more frequently.  

Figure 1.6. x1 is the current solution, x2 is another solution which 

is better than x1, in order to avoid premature convergence, x1 should 

change into an intermediate solution /&0 (Liao et al, 2007).

Riget and Vesterstrøm (2002) propose an algorithm based on attraction and repulsion between 

particles. They define a critical value for diversity (dcritical). When the diversity is less than dcritical, 

particles repel each other and when the calculated diversity is above this value, they attract each 

other.  
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They test this new algorithm on four standard multi-modal objective functions. The results are 

competitive with the GA algorithm and better than original PSO. Dallard et al. (2007) use this 

algorithm to solve an orienteering problem successfully.  

He et al. (2004) propose a new algorithm by considering passive congregation in the velocity 

update. The idea is each particle in an aggregation has lots of potential useful information that may 

help them to reach to optimal solutions. Figure 1.7 shows the interaction between particles in SPSO 

(1.7a) and passive congregation algorithm (1.7b). 

(a) (b) 

Figure 1.7. (a) Interaction of particles in Standard PSO, (b) Interaction of 

particles with passive congregation (He et al., 2004) 

Ho et al. (2005) claim that cognitive and social behavior of SPSO are not completely 

independent; as in human decision making, the personal best may overcome the social best. They 

modify the velocity equation in order to improve the exploration and exploitation behavior of the 

swarm (Eq. 1.3).  A random number (r1) is used to control these two parts and random number r2 

is used to balance between global and local searches. The value s3 is used in order to increase the 

diversity. The values c1 and c2 are cognitive and social parameters, respectively.  

( ) ( ) ( ) ( )( )1

2 1 2 13 1 22 1 1 1
t ttt t t

i i ii i i
p gvv s c x c xr r r rr

+ = + − − + − − − (1.3) 

s3= 1 1    ������ ������ > 0.05,−1                          ��ℎ�� ���.    
Zhang et al. (2010) suggest a discrete algorithm called circular discrete particle swarm 

optimization (CDPSO). They address the premature convergence of PSO algorithm by considering 

the swarm activity and the similarity of particles in each iteration. The swarm activity is small 

when the algorithm is trapped into local optimum, in order to escape from this situation, the 

gbest gbest
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mutation is used to send the particles to a new search area. Decreasing the diversity of the swarm 

leads to increase of the similarity of particles, so by calculation the similarity, it is possible to 

prevent the premature convergence. They use this algorithm to obtain the minimum makespan in 

flow shop scheduling.  

Chen and Yangmin Li (2007) propose a modified PSO with controllable random exploration 

velocity (PSO-CREV) added to the velocity updating in order to balance exploration behavior and 

convergence rate with respect to different optimization problems. They use various benchmarks to 

evaluate this algorithm. 

Sevkli and Sevilgen (2010) improve the PSO algorithm by considering both exploration and 

exploitation. They propose a new algorithm by modifying the update method of the best particle 

in the swarm (the pioneering particle). They strengthen the exploitation mechanism by using 

Reduced Variable Neighborhood Search (RVNS) and at the same iteration random velocity is used 

to improve the exploration mechanism. The proposed algorithm is successfully tested on discrete 

and continuous problems. The results in both cases were competitive or even better than previous 

results, e.g. their results for orienteering problem were better than the published results by Dallard 

et al. (2007). 

M. R. Singh et al. (2013) uses a chaotic mutation operator in order to overcome the problem of 

trapping at local minima in standard PSO algorithm. The Chaotic sequence using logistic mapping 

is used instead of random numbers to improve the diversity in solution space.  

1.1.5 Flexible Flow Line 

A flexible flow line is a manufacturing system where multiple machines can exist in each stage, 

each job must be processed by at most one machine at each stage and jobs can skip some stages. 

If there is only one machine at each stage and jobs have to meet all the stages, this line is the flow 

shop line. 

Many works have been done in scheduling of flexible flow shops.  Kurz and Askin (2003) 

compare various scheduling rules in flexible flow line scheduling. They categorize the previous 

works based on their approaches, such as branch-and-bound, extensions of previous techniques 
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(Johnson’s rule etc.), applying metaheuristics and development of new techniques.  They apply 

eight constructive heuristics to minimize the makespan in the systems with more than two stages 

and various configurations of machines. These heuristics are being compared using the value of 

(makespan-lower bound)/lower bound.  

There might also some setup times involved in scheduling of flexible flow line. The setup 

usually corresponds to preparing the machines for the execution of the next job and when the setup 

time depends on the previous job which has completed on the machine, the setups is sequence 

dependent. Kurz and Askin (2004) tackle the scheduling of flexible flow line with sequence 

dependent setup times by applying random keys genetic algorithms in order to minimize the 

makespan. They also develop a strong lower bound for this problem. This lower bound shows that 

the makespan is at least as large as the longest completion time, considering the setup time which 

is assumed to be the shortest setup possible. This research shows that in the case where more than 

two stages are considered, the genetic algorithm outperformed the procedures presented by their 

previous work (Kurz and Askin, 2003). 

Tavakkoli-Moghaddam et al. (2007) consider a flexible flow line problem with blocking 

processor (FFLB). They proposed a queen-bee-based genetic algorithm to schedule flexible flow 

lines. They also apply memetic algorithm (MA) along with using a local search (Tavakoli 

Moghadam, 2009), namely, nested variable neighborhood search (NVNS), to minimize the 

makespan. It is claimed that this algorithm outperforms the classical genetic algorithm. Kia et al. 

(2009) use simulation to investigate dynamic scheduling of flexible flow lines with sequence 

dependent setup times. Scheduling of flexible flow lines with unrelated parallel machine is 

addressed in Zandieh et al (2010). They apply GA in order to solve this problem and also try to 

consider the constraints which exist in real world scheduling. Karmakar and Mahanty (2010) apply 

genetic algorithm and the theory of constraints to solve a mixed integer linear program for a 

flexible flow line in a paint factory with makespan criteria. Shahvari et al. ( 2011) develop a mixed-

integer linear programming model for the flexible flow shop sequence dependent group scheduling 

problem, then they apply six metaheuristics based on tabu search (TS) to solve this problem. Sawik 

(2011) address the deterministic cyclic and batch scheduling problem in flexible flow lines with 

continuous and limited machine availability to schedule the jobs so that they are completed in the 
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shortest possible time. He develops a mixed-integer programming model for these problems and 

compares the computational results of the models. 

Particle swarm optimization (PSO) is also applied in scheduling of flexible flow lines to 

minimize the makespan (Sankaran, 2009; Singh et al., 2013). Sankaran (2009) applies the original 

PSO algorithm with random keys as a representation, but the results indicate that this algorithm 

does not outperform GA in minimizing the makespan. Singh et al. (2013) modify the original 

algorithm by using chaotic numbers and mutation operator to increase the diversity of the solution 

space. They claim that their algorithm outperforms GA for the same problem. 

1.1.6 PSO in scheduling 

There are papers which address the PSO algorithm in scheduling problems. This algorithm has 

been applied to some scheduling environments such as no-wait flow shop scheduling (Pan et al., 

2008a and 2008b), permutation flow shop (Tasgetiren et al., 2007; Lian et al., 2006), parallel batch 

processing machines (Damodaran et al, 2012), sequence dependent disassembly line (Kalayci and 

Gupta, 2013), single machine (Tasgetiren et al, 2004; Anghinolfi and Paolucci, 2009), flow shop 

(Liao et al, 2007; Zhang et al., 2010), hybrid flow shop (Tseng and Liao, 2008) and flexible flow 

shop (Sankaran, 2009; Singh et al., 2013) 

Tasgetiren et al. (2004) use continuous PSO to minimize total weighted tardiness on single 

machine. They use each dimension to represent the number of jobs and Smallest Position Value 

(SPV) rule and random keys representation, are used to sort the dimensions and transform the 

particle positions into job permutations. Later they minimize makespan and maximum lateness of 

jobs using the same technique and utilize variable neighborhood search (VNS) as a local search 

method in permutation flow shop sequencing problem (Tasgetiren et al., 2007).  

The research by Tasgetiren et al. is an extension of continuous PSO. Pan et al. (2008a) reported 

the first DPSO algorithm to solve no-wait flow shop scheduling using a new position update 

method based on discrete job permutation. They use a new crossover (PTL crossover) to produce 

a pair of different permutation even from two identical parents. In this method, a block of jobs is 

chosen by two-cut points randomly and then it is moved to one side of solution vector and at the 

end the new permutation is filled with the remaining jobs from the other particle.  They also use 
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several speed-up methods for the Swap and Insert neighborhood structures. Finally they use 

variable neighborhood (VND) local search to improve the DPSO algorithm.  

Anghinolfi and Paolucci (2009) proposed new particle swarm optimization approach to solve 

the total weighted tardiness scheduling problem with sequence dependent setup  times on a single 

machine. As Tasgetiren et al. (2004), they use permutation solution-particle as a representation 

and they create a list of moves to update the particles’ positions. Results from implementing the 

proposed DPSO to Cicirello’s benchmark were satisfactory. 

Lian et al. (2006) propose a new approach called similar particle swarm optimization algorithm 

(SPSOA) inspired from mutation and crossover which are used in genetic algorithm. They use 

these operators to update the velocity and position in order to minimize the makespan in 

permutation flow shop problem. The results demonstrate that SPSOA performs better than GA. 

Liao et al. (2007) extend the binary PSO algorithm which is proposed by Kennedy and Eberhart 

(1997) by using similar approaches as Tasgetiren et al. (2004), in order to solve flow shop 

scheduling problems. Velocity update equation is the same as original PSO but they redefine the 

velocity as how likely job j is to be placed in the kth position. They compare their algorithm to the 

continuous PSO algorithm proposed by Tasgetiren et al. (2004) and two genetic algorithms, results 

show that the proposed algorithm can be very competitive. They also use local search in their 

algorithm in order to improve their algorithm. 

In another work, Tseng and Liao, (2008) apply particle swarm optimization algorithm for 

hybrid flow-shop scheduling. “Absolute” solution encoding is only used for encoding of the first 

stage because it is the only stage that all jobs are available at time zero. For other stages the list 

scheduling (LS) algorithm is used to determine the start times of the jobs at other stages. According 

to this algorithm, jobs are processed as soon as possible based on their completion times from the 

previous stage in such a way that job completion times will be minimal. They employ various 

velocity update methods and neighborhood topologies (gbest, pbest and time-delay models). They 

claim that their algorithm outperforms GA and ACS.  

 M. R. Singh et al. (2013) uses chaotic mutation operator in order to overcome the problem of 

trapping at local minima in standard PSO algorithm. The chaotic sequence using logistic mapping 
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is used instead of random numbers to improve the diversity in solution space. They use random 

keys as a representation and employ mutation strategy to increase the diversity. Mutation is 

performed each time the number of iterations without diversity exceeds an exact number. 

Sankaran (2009) applies PSO in scheduling flexible flow line with sequence dependent setup 

times. Random keys are used as a solution representation and the algorithm is evaluated by the 

lower bound which is proposed by Kurz and Askin (2004). The results indicate that the PSO 

algorithm does not perform well in minimizing makespan in this problem. Several potential 

weaknesses of this research are: (1) Use of standard PSO algorithm without considering the 

premature convergence of this algorithm, (2) Not modifying position and velocity update 

equations, (3) Not considering other encoding methods. 

1.2. Problem Description 

The problem considered in this study involves scheduling jobs for a flexible flow line with the 

objective of minimizing the makespan. This problem consists of a set J of n jobs that need to be 

processed in a flexible flow line. Each job j∈J is associated with processing time (pj) and setup

time (��#) where i is the job processed before job j on the same machine. The problem under study

is NP-hard (Gupta, 1988). Therefore, various algorithms of the particle swarm optimization are 

used to minimize the maximum completion time. 

1.3. Research Motivations and Objectives 

This study is motivated by the importance of flexible flow line scheduling, the effectiveness of 

PSO in various applications and the lack of any publication, to the authors’ knowledge, which 

addresses this scheduling problem by using discrete particle swarm optimization in a flexible flow 

line. Flexible flow lines (FFL) are used in various industries such as automotive, printed circuit 

board and textile. Finding the optimal assignment of limited resources to a number of jobs to obtain 

minimum flow time, makespan, lateness and tardiness or other objectives is very important.  

According to the literature, PSO is an effective algorithm which can reach high quality solutions 

in a reasonable computational time. It also has fewer numbers of parameters than other 

evolutionary metaheuristics such as genetic algorithm (GA). GA uses mutation and crossover to 
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update the solution space. As discussed earlier in a permutation problem, every job should appear 

just once in the sequence. Since the crossover operator does not consider this fact, there is a need 

to recheck the solution which is created by crossover. So using crossover in GA can make the 

algorithm more complicated in scheduling problems. However it does not mean that crossover 

operator is not an efficient operator because it may be worthwhile when applied to PSO. 

 There are many papers available which use heuristic approaches to solve scheduling problems, 

but few use PSO. More specifically there are no papers available with the focus in using DPSO in 

order to solve flexible flow line scheduling problem with sequence dependent setup times.  

Kurz and Askin (2004) address this problem with makespan criteria using a random keys genetic 

algorithm approach and obtained a strong lower bound for this problem, However Sankaran and 

Kurz (2009) applied a continuous version of PSO to solve this problem but the results were not 

satisfactory. Since the scheduling is a discrete problem we propose to apply the discrete version of 

PSO using the same data set as in these two works and compare the results.  

In this work we plan to use DPSO algorithms. The functionality of PSO is based on how it updates 

the position and velocity of the particles. Our main focus is on applying different methods to update 

velocity and positions. Additionally we will examine the impact of using an appropriate encoding 

to represent the sequence of n jobs. 

The primary goal of this research is finding an alternative PSO method for GA in scheduling 

a flexible flow line to minimize the makespan. This goal is achieved through the following 

objectives: 

1. Develop various PSO algorithms

2. Compare the solution quality of the proposed algorithms against GA
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CHAPTER 2 

METHODOLOGIES 

Some of the PSO methodologies have been discussed in the previous chapter. In this chapter some 

of the methods which are used in this research are discussed in detail. These methods are as 

follows: 

1. Standard Particle Swarm Optimization (SPSO)

2. Passive Congregation Particle Swarm Optimization (PCPSO)

3. Attraction Repulsion Particle Swarm Optimization (ARPSO)

4. Discrete Particle Swarm Optimization (DPSO)

5. Hybrid Discrete Particle Swarm Optimization with a Local Search (DPSO-LS)

The performance of each of these algorithms are evaluated by using a method which is presented 

at the end of this chapter. 

2.1 Standard Particle Swarm 

In this method, the position of ith particle of the swarm in the continuous n-dimensional search 

space at iteration t is xi
t= (/�&� , /�4� ,…,/�5� ) with the objective value of f(x) (fitness). The best

previous position (pbest) of each particle (best personal position of particle i) is shown by pi
t= 

("�&� , "�4� , ..., "�5� ) and the last particle position change (velocity) is represented by vi
t = (��&� , ��4� ,…,��5� ). The position with the best function value found so far is the global best (gbest) position and

is represented by gi
t = (-�&� , -�4� , ..., -�5� ). Each particle adjusts its position during time based on its

own experience and also the experience of other particles. The SPSO algorithm is given in Figure 

2.1. The position and velocity of particle i at iteration t of the SPSO algorithm, xi
t and vi

t 

respectively, are updated by following equations: 

1

1 21 2
( ) ( )

t tt t t t

i i i ii i
p gv w v c x c xr r

+
= + − + − (2.1) 

(2.2) 1 1t t t

i i ix x v
+ +

= +
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where: 

• w is the inertia parameter that weights the previous velocity of a particle (how much a

particle trusts its own experience).

• c1 and c2 are cognitive and social parameters, respectively.

• r1 and r2 are uniform random numbers between [0, 1] which are used to weight (
t t

ii
p x− )

and ( t t

ii
g x−  ).

Figure 2.1. SPSO Algorithm 

2.1.1 Solution Representation 

The solution representation in this method is random keys (Bean et al. 1994; Kurz and Askin, 

2004).  In this encoding, each solution is represented by a particle with an n dimension vector, 

where n is the number of jobs. Each dimension is a random number between [0, M) with two 

decimals, where M is the number of machines in the stage. For example, for a problem with 5 jobs 

and 3 machines in a stage, a particle position can be defined as: xi
t= (1.78, 1.65, 2.23, 3.45, 2.49). 

The integer part is the machine number to which the job is assigned and fractional part serves as 

the sort key to sort the jobs assigned to each machine. This particle represents jobs 2 and 1 will be 

Initialize parameters and particles random positions and velocities on n-dimensions in the 

search space 

Do 

 For each particle i with position xi
t do 

If (xi
t is better than pi

t-1) then 

pi
t  
  xi

t
 

End-if 

 End-for 

 Update gi
t

 For each particle i do 

 
1t

iv
+

  ( ) ( )
1 21 2

t tt t t

i i ii i
p gwv c x c xr r+ − + −

1t

ix
+

  
1t t

i ix v+
+

   End-for 

While (a stop criterion is not satisfied) 
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assigned to machine one, respectively, jobs 3 and 5 will be assigned to machine two and job 4 will 

be processed at machine 3. 

2.1.2 Initialization and Position Update 

The parameters used for c1 and c2 are set as c1=c2=2 as recommended by Kennedy and Eberhart 

(2001). The inertia parameter is a critical parameter for the convergence behavior of this algorithm. 

It can be constant or decreasing over time (similar to the β parameter in simulated annealing which 

decreases in each iteration).  

The position of particle i is initialized randomly between [0, M) and the velocity of particle i is 

randomly chosen from [0,1]. After every updating process, all the positions should be in range of 

[0, M), which might be violated in some iterations. In this research, two mechanisms are used to 

deal with the issue of positions being outside the range of allowable values: 

1- xi
t= min (M-0.01, max(0, xi

t)) 

2- Bounce Back (Sankaran, 2009): 

if xi
t ≥M then xi

t=2M − xi
t 

if xi
t <0 then xi

t= -xi
t 

To better understand how these mechanisms help to maintain the position in the allowable range, 

consider a stage consisting of two machines which is supposed to process 4 jobs. The allowable 

range for each position is between [0,2) but after updating the velocity and adding it to the current 

position, a position is obtained with some out of range dimensions. Table 2.1 illustrates how the 

two mechanisms bring those values back in range. 

 Position 

xi
t+1 =xi

t + vi
t+1 (-1.78, 1.65, 2.23, 0.45) 

Mechanism1 (0, 1.65, 1.99, 0.45) 

Mechanism2 (1.78, 1.65, 1.77, 0.45) 

Table 2.1. Mechanisms to bring the positions back into the allowable 

range. 
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2.2 Passive Congregation Particle Swarm 

The algorithm of PCPSO is similar to SPSO except for the velocity update process. In this method 

each particle gets information from personal best, global best and one other random particle in the 

swarm in order to update its position. They enter this kind of information into Eq. (2.1) and rewrite 

the equation as follow: 

1

1 2 31 2 3
( ) ( ) ( )

t t tt t t t t

i i i i ii i c
p g pv w v c x c x c xr r r

+
= + − + − + −  (2.3)

where "6� is a particle selected randomly from the swarm, c3 is the passive congregation coefficient

and r3 is a random uniform number in [0, 1]. 

The PCPSO algorithm is given in Figure 2.2. The solution representation in this method is also 

random keys. 

Figure 2.2. PCPSO Algorithm 

Initialize parameters and particles random positions and velocities on n-dimensions in 

the search space 

Do 

 For each particle i with position xi
t do 

If (xi
t is better than pi

t-1) then 

pi
t   
  xi

t
 

End-if 

 End-for 

 Update gi
t

 For each particle i do 

 
1t

iv
+

  ( ) ( ) ( )
1 2 31 2 3

t t tt t t t

i i i ii i c
p g pwv c x c x c xr r r− − −+ + +

1t

ix
+

  
1t t

i ix v+
+

   End-for 

While (a stop criterion is not satisfied) 
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2.3 Attraction Repulsion Particle Swarm 

As mentioned in the previous chapter, in this method the position update depends on the diversity 

of the swarm. If the diversity is less than a critical value, the particles will repel each other; 

otherwise, they will attract each other. In the proposed algorithm, the velocity equation is: 

1

1 21 2
( ) ( )

t tt t t t

i i i ii idir p gv wv c x c xr r
+

= + − + −
 
 
 

 (2.4) 

Where variable dir directs the velocity of the swarm being updated by attraction (dir = 1) or 

repulsion (dir = -1).  

���� =  −1              �� ���� > 0 ��� ��������7 < �8����8�9�,��� = 1                  �� ���� < 0 ��� ��������7 ≥ �8����8�9�  (2.5) 

As with the previous algorithms, the random keys are used for encoding the solution space. Figure 

2.3 shows the ARPSO algorithm. 

Figure 2.3. ARPSO Algorithm 

Initialize parameters and particles random positions and velocities 

Do 

 For each particle i with position xi
t do 

If (xi
t is better than pi

t-1) then 

pi
t   xi

t
 

End-if 

 End-for 

 Update gi
t

 Calculate diversity (N)

For each particle i do 

If diversity<critical value 

 
1t
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+
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( ) ( )
11

t tt t t

i i ii i
p gwv c x c xr r− − −−

End-if 
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1t t
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+

   End-for 

While (a stop criterion is not satisfied) 
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There are different methods to calculate the diversity of a swarm. Here we use the average distance 

around the swarm center (Olorunda and Engelbrecht, 2008): 

��������7�;� = 1|;| = >=�/�#� − /̅#�45
#@&

|A|
�@& (2.6) 

where N is the swarm, |;| is the swarm size, |B| is the length of the longest diagonal in the search

space, n is the dimensionality of the problem (number of jobs), /�#�  is the jth value of the ith particle

at iteration t and  /̅# is the average of  jth value of all the particles:

/̅# = ∑ /�#|A|�@&|;| (2.7) 

2.4 Discrete Particle Swarm 

In order to be able to use the job permutation based encoding scheme, Pan et al. (2008) introduced 

a method for updating the position. In this method the position is updated in one step, meaning 

that the particle has no velocity. The position update equation is as follows: 

/�� = 84⨂EF�8&⨂E4� ⨂E&�/��G&�, "��G&�, -��G&� (2.8) 

As mentioned before, H�� =  ⨂E&�/��G&� is the velocity of the particle. F1 is the mutation operator

which is applied with probability w. If a random number r ∈ [0,1] is less than w then mutation will

be performed.  

J�� = 8&⨂E4�H��, "��G&� is the cognitive part of the particle and F2 is the crossover operator which

occurs with probability c1.  /�� = 84⨂EF�J��, -��G&� is the social part of the particle and F3 is the

crossover operator which occurs with probability c2. DPSO algorithm is given in Figure 2.4. 
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Figure 2.4. DPSO Algorithm 

2.4.1 Mutation 

The insert mutation is used in DPSO algorithm. Figure 2.5 illustrates how insert mutation works. 

In this example two random numbers are generated. These random numbers represent the position 

of the jobs. The job associated with the bigger random number is inserted after the job associated 

with the smaller random number. In the following example job 4 is inserted after job 3. 

3 4 2 1 5 

After mutation 

3 2 4 1 5 

Before mutation 

Figure 2.5. Mutation process 

Initialize parameters and particles random positions on n-dimensions in the search space 

Do 

 For each particle i with position xi
t do 

If (xi
t is better than pi

t-1) then 

pi
t   xi

t
 

End-if 

 End-for 

 Update gi
t

 For each particle i do 

If randomNum<w H��%& = ���������/���
 End-if 

 If randomNum <c1J��%& = 8���������H��, "���
 End-if 

 If randomNum <c2/��%& = 8���������J��, -���
 End-if 

   End-for 

While (a stop criterion is not satisfied) 

Random number 1= 3 

Random number 2= 1 
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2.4.2 Crossover 

A two cut crossover introduced by Pan et al. (2008) is used for position update (PTL crossover). 

In this method, a block of jobs is chosen by two-cut points randomly and then it is moved to one 

side of solution vector and at the end the new permutation is filled with the remaining jobs from 

the other particle. Figure 2.6 illustrates PTL crossover method.  

Figure 2.6. PTL crossover process 

The following example illustrates the position update in this algorithm. The current position of a 

particle, its personal best and the global best is shown in Table 2.2. This particle might mutate with 

probability w. Then it can be recombined with the personal best with the probability c1 and finally 

it might recombined with the global best with the probability c2. 

Insert Mutation 

(Inertia) 

PTL Crossover 

(Cognitive) 

PTL Crossover 

(Social) 

xi
t (3 5 1 2 4) H�� (3  1 5 2 4) J�� (1 5 2 3 4)

pi
t (1 2 3 4 5) xi

t (3 5 1 2 4)  pi
t (1 2 3 4 5) gi

t (1 4 5 3 2) 

gi
t (1 4 5 3 2) H�� (3  1 5 2 4) J�� (1 5 2 3 4) /�� (5 2 1 4 3)

(a) (b)  (c)  (d) 

Table 2.2. (a) Particle Info (b) Mutation (c) Recombined with the personal best (d) Recombined with the global best. 

2.5 Hybrid Discrete Particle Swarm with a Local Search (DPSO-LS) 

In order to improve the DPSO algorithm, Pan et al. (2008) apply a local search based on the insert 

neighborhood on the global best of each iteration which helps the exploitation (Figure 2.7). The 

algorithm of the local search which is applied in this research is given in Figure 2.8. The new 

neighbor (U) is found by using an insert mutation. A simulated annealing type of acceptance 

1 2 4 5 3 

2 1 3 5 4 

Before crossover 

1 2 4 3 5 

After crossover 

Random number 1= 3 

Random number 2= 1 
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criterion is used in this algorithm. The local search runs for 500 iterations or until a value less than 

the global best is found. 

Figure 2.7. DPSO-LS Algorithm 

Figure 2.8. Local search Algorithm 

Initialize parameters and particles random positions on n-dimensions in the search space 

Do 

 For each particle i with position xi
t do 

If (xi
t is better than pi

t-1) then 

pi
t  
  xi

t
 

End-if 

 End-for 

 Update gi
t

 For each particle i do 

If randomNum<w H�� = ���������/��G&�
 End-if 

 If randomNum <c1J�� = 8���������H��, "��G&�
 End-if 

 If randomNum <c2/�� = 8���������J��, -��G&�
 End-if 

 End-for 

  Apply Local search to gi
t 

While (a stop criterion is not satisfied) 

Do 

U=mutation (gi
t) 

Evaluate 

If f(U)< f(gi
t ) 

 gi
t= U 

End-if 

While (a stop criterion is not satisfied) 
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2.6 Evaluation 

To describe the makespan and lower bounds equations, the following notations are used (Kurz and 

Askin, 2004): 

2.6.1 Notations 

n Number of jobs  

k Number of stages 

kj Last stage visited by job j "�� Processing time for job i at stage t�� Number of machines at stage t��#�  Setup time from job i to job j at stage tK� Set of stages visited by job i

St Set of jobs that visit stage t = {i: "�� >0}L�� Completion time for job i at stage t

2.6.2 Makespan 

The makespan which is the maximum completion time among all the jobs is the objective used in 

this research. When job j is processing on a machine and job i is the next job to be processed, the 

completion time of job i is calculated using Eq. (2.9). 

1
, ,max{ }t t tt

ii i j

t
j iSC C CP

−= + +  (2.9) 

2.6.3 Lower Bound 

Kurz and Askin, 2001, developed a lower bound for flexible flow line with sequence dependent 

setup times: 
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LB1
 is developed with the assumption that every job must be processed at every stage while LB2

assumes that every stage must process all of its jobs. The time for the first job to get to each stage 

and leave it as well and the idle time for parallel machines at each stage waiting for the first 

available job are also included in LB2. These two lower bounds are calculated for each of the 

datasets and the higher LB is used as the lower bound for that test scenario. 

2.6.4 Loss 

The measure to evaluate the solutions is “%Loss” which is the percentage of deviation of the 

makespan from the lower bound Eq. 2.12. where Cmax is the makespan for each test scenario and 

LB is the lower bound for that dataset. 

max% 100
LBC

Loss
LB

−
= × .  (2.12) 
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CHAPTER 3 

EXPERIMENTATION AND COMPUTATIONAL RESULTS 

The algorithms which were introduced in the previous chapter are tested using 180 problem 

instances. In this chapter, the datasets on which the various experiments have been conducted are 

explained. The computational results are also discussed in this chapter. 

3.1 Test Data 

The problem instances are obtained from the work presented by Kurz and Askin (2004). Table 3.1 

shows the different levels of each factor. The factors are skipping probability, processing time, 

number of stages, number of machines and number of jobs, which leads to 3×2×3×5×2=180 test 

scenarios. Kurz and Askin also provide 10 datasets for each of these test scenarios. These 1800 

datasets are available at http://people.clemson.edu/~mkurz/ffl.html. 

The setup times in the datasets were generated randomly from a Unif (12-14) distribution. The 

setup time matrices satisfy the triangle inequality (Rios-Mercado and Bard, 1998). As mentioned 

before, in a flexible flow line jobs are allowed to skip stages as long as they are processed at least 

at one stage. The skipping probability are chosen to be 0%, 5% and 40% (Leon and Ramamoorthy, 

1997). 

Table 3.1 Characteristics of the problem instances 

Factor Level 

Skipping probability 

0.00 

0.05 

0.40 

Processing times 
Unif (50-70) 

Unif (20-100) 

Number of stages 

2 

4 

8 

Machine distribution & 

Number of Machines 

Constant 

1 

2 

10 

Variable 
Unif (1,4) 

Unif (1,10) 

Number of jobs 
30 

100 
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3.2 Assumptions 

It is assumed that machines are available at all times, all jobs are available at time 0 (the ready 

time for stage 1 are set to 0 for all jobs), the ready times at stage t +1 are the completion times at 

stage t (no travel time between stages). Preemption is not allowed and jobs have the same priorities. 

Infinite buffers exist before each machine. Parallel machines are identical in capability and 

processing rate. The number of machines in each stage should be less than the number of jobs to 

be processed at that stage. 

3.3 Experimental Environment 

 The algorithms which are introduced in Chapter 2 are coded in MATLAB 2013. For each setting, 

50 replications have been run and in each replication the program runs for certain number of 

iterations (300 or 500) or until the lower bound is achieved. The percentage loss is computed as 

(makespan – lower bound)/lower bound for each result, and we report the average loss over the 50 

replications for each dataset for each algorithm.   

All computational experiments are performed using the Palmetto Cluster, Clemson University’s 

primary high performance computing (HPC) resource. The amount of time used to run a program 

is highly dependent on the available resources at any given time and the number of jobs run on 

that resource at the same time. SPSO, PCPSO and ARPSO programs required about a calendar 

day to run for all data sets and all replication (1800*50 executions), less than two calendar days 

for DPSO and a little more than two days for DPSO-LS using 32 CPUs at a time. 

3.4 Generating Random Numbers 

The set of random numbers which is generated for a replication is unique to that replication and it 

is replicable. In generating the random numbers, we utilize the Mersenne Twister pseudorandom 

number generator, seeded with seed which is calculated as follows:  

1800 ( 1)seed repNum FileNum= × − + (3.1) 

Where repNum is the replication number which changes from 1 to 50 and FileNum is the file 

number which changes from 1 to 1800. 
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3.5 Algorithms 

In this section the results of experiments on the mentioned algorithms are provided. 

3.5.1 Tuning SPSO 

This algorithm, which is the standard particle swarm algorithm, has several parameters which need 

to be set initially, such as the inertia weight w, cognitive parameter c1 and social parameter c2. The 

parameters c1 and c2 are set at 2 following Kennedy and Eberhart (1995). The inertia parameter w 

is critical for the convergence behavior of PSO algorithms. There should be a balance between 

exploration and exploitation ability in this algorithm. This parameter can help the algorithm to 

better explore the solution space.  

We experimentally evaluated two methods for setting the inertia parameter: a constant value of 1 

or a dampened value, set initially to 1 but decreasing by a damping weight at each iteration. 

Decreasing the value at each iteration is intended to help the exploitation ability. The damping 

weight is 0.99. The population size is set at 100 for all algorithms. Table 3.2 shows the result for 

these experiments. As it is observed from this table and Kruskal-Wallis test result (Figure 3.1), 

decreasing the inertia weight w in each iteration improves the performance of the algorithm.  

Table 3.2. %Loss results of SPSO 

 w 

%Loss Constant Decreasing 

Average 22.26651 19.1006 

Standard deviation 14.54169 11.80097 

Min 3.087108 2.357537 

Max 86.34629 66.69318 

Kruskal-Wallis Test on %Loss 

Treatment      N   Median  Ave Rank      Z 

SPSO-Constant      1800  22.33  1908.8  6.25 

SPSO-Decreasing  1800   19.07    1692.2  -6.25 

Overall      3600  1800.5 

H = 39.06  DF = 1  P = 0.000 

H = 39.06  DF = 1  P = 0.000  (adjusted for ties 

Figure 3.1. Kruskal-Wallis test at 95% confidence level 
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3.5.2 Tuning PCPSO 

As mentioned in Chapter 2, this algorithm introduces a new parameter, the passive congregation 

coefficient c3. The effect of parameter c3 is studied by setting it at 0.1, 0.3 and 0.6 following He et 

al. (2004). The program runs for 50 replications, each contains 300 iterations. The parameters c1

and c2 are set at 2 and the inertia parameter w is set at 1 initially and decreases with the damping 

weight of 0.99, as determined in the previous section. Using the same figure of merit (average loss 

across all replications and all 1800 data sets), Table 3.3 and Figure 3.2 indicate that increasing the 

passive congregation coefficient (thereby increasing the effect of the selected random particle), 

has a negative impact on the average loss percentage. Therefore, including a random particle in 

updating the velocity does not help the performance of the algorithm. We hypothesize that the 

negative impact of the increased weight for the passive congregation parameter may be explained 

as follows: since 100 particles are available at each iteration, getting the information from a random 

particle can move the particle in a non-desired direction when the particle are already moving in a 

desired direction. 

Table 3.3. % Loss results of PCPSO 

 c3 

% Loss 0.1 0.3 0.6 

Average 19.84147 20.549 21.30217 

Standard deviation 12.38769 12.844 13.48009 

Min 1.912021 2.2779 2.653979 

Max 71.21025 76.422 79.72438 

Kruskal-Wallis Test on %Loss 

Treatments     N  Median  Ave Rank  Z 

0.1  1800   20.11    2618.8  -2.72 

0.3  1800  20.81  2701.4  0.03 

0.6  1800  21.48  2781.2  2.69 

Overall  5400  2700.5 

H = 9.76  DF = 2  P = 0.008 

H = 9.76  DF = 2  P = 0.008  (adjusted for ties)

Figure 3.2. Kruskal-Wallis test at 95% confidence level on c3
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3.5.3 Exploring ARPSO 

The parameter in this algorithm which plays an important role is the critical value, as described in 

the previous chapter. In this experiment this value is set at 0.5. Figure 3.3 shows a typical relation 

between diversity in the swarm (3.3a) and the makespan of the best particle (3.3b) in the swarm at 

each iteration. As you can see from Figure 3.3a the diversity decreases over time until it hits the 

critical value, at which point the diversity in the swarm is forced to increase. By increasing the 

diversity, it is expected that the chance of finding a better solution increases but as illustrated in 

Figure 3.3b, it is not very effective. The bounce back method was also applied to this variant of 

the PSO (ARPSO-BB) and compared to ARPSO (see Table 3.4). ARPSO and ARPSO-BB do not 

evidence very different behavior (Figure 3.4). Since increasing the diversity decreases the 

exploitation ability, this algorithm is highly sensitive to the critical value. It might be possible to 

obtain a better result from ARPSO by tuning the critical value. 

(a) (b) 

Figure 3.3. (a) Changing diversity over time (b) Changing in makespan over time 

Table 3.4. %Loss results 

 Algorithm 

%Loss ARPSO ARPSO-BB 

Average 19.49828 19.49344 

Standard deviation 11.71283 11.71868 

Min 2.88688 2.940846 

Max 66.9113 67.07617 
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Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank      Z 

ARPSO  1800  19.51  1800.8  0.02 

ARPSO-BB  1800   19.53    1800.2  -0.02 

Overall  3600  1800.5 

H = 0.00  DF = 1  P = 0.987 

H = 0.00  DF = 1  P = 0.987  (adjusted for ties) 

Figure 3.4. Kruskal-Wallis test at 95% confidence level 

3.5.4 DPSO 

As mentioned before, the solution representation in this algorithm is based on job permutation. At 

the first stage, jobs are assigned based on the order in the sequence and the available machine. The 

parameters in this algorithm are different from the continuous algorithms introduced earlier. The 

parameters w, c1 and c2 are the probabilities of mutation, crossover with pbest and crossover with 

gbest respectively. In order to find the best values for these parameters, parameter tuning is done. 

Following Pan et al. (2008), the learning parameters c1∈ {0.2, 0.3, 0.8}, c2 ∈ {0.2, 0.3, 0.8} and

the weighting factors are w ∈ {0.1, 0.2, 0.6} (Table 3.5).

Table 3.5 Levels of different parameters 

Parameter w c1 c2 

Level 

0.1 0.2 0.2 

0.2 0.3 0.3 

0.6 0.8 0.8 

Each of the 27 settings are tested for 20 replications, 300 iterations on 1800 datasets (1800*27*20 

makespan values). The Friedman test is used to find the best setting to minimize the percentage 

Loss. This test is done using MINITAB 17 and the results are shown in Appendix A. The setting 

with the lowest sum of ranks is chosen to be the best setting. The results show that the setting 

w=0.6 and c1=c2=0.8 leads to the lowest makespan comparing to other settings. Therefore, this 

setting is selected for all the experiments using DPSO.  

The effect of number of iterations is also studied by changing the iterations from 300 to 500. It is 

observed that at 95% confidence level the results are not significantly different (Figure 3.5). As it 

is shown in Table 3.6 by increasing the number of iterations a better result is obtained.  
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Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank      Z 

DPSO 300  1800  17.91  1812.7  0.70 

DPSO 500  1800   17.67    1788.3  -0.70 

Overall  3600  1800.5 

H = 0.49  DF = 1  P = 0.483 

H = 0.49  DF = 1  P = 0.483  (adjusted for ties) 

Figure 3.5 Kruskal-Wallis test at 95% confidence level 

To further improve the results the local search is implemented on the global best of each iteration 

of DPSO (both 300 and 500 iterations). Table 3.6 illustrates that the local search significantly 

improve the results (Figure 3.6 & 3.7), from average loss percentages of 17.73 to 16.87 for DPSO-

500 and from 17.97 to 17.14 for DPSO-300. By using the local search, the probability of leaving 

the local optima and finding a better solution increases. Figure 3.8 compares the average loss of 

the various DPSO algorithms. It is observed that DPSO-LS-500 has the lowest average Loss. 

Table 3.6. DPSO results 

 Algorithm 

%Loss 

DPSO 

300 

DPSO 

500 

DPSO-

LS-300 

DPSO-

LS-500 

Average 17.97066 17.73969 17.14973 16.878 

Standard 

deviation 
11.27256 11.23991 11.29628 11.2607 

Min 0.648955 0.550353 0.438936 0.37703 

Max 60.84259 60.76667 60.0463 59.79905 

Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank      Z 

DPSO-300  1800  17.91  1846.3  2.64 

DPSO-LS-300  1800   17.00    1754.7  -2.64 

Overall  3600  1800.5 

H = 6.98  DF = 1  P = 0.008 

H = 6.98  DF = 1  P = 0.008  (adjusted for ties) 

Figure 3.6 Kruskal-Wallis test at 95% confidence level 

Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank      Z 

DPSO-500  1800  17.67  1848.2  2.76 

DPSO-LS-500  1800   16.74    1752.8  -2.76 

Overall  3600  1800.5 

H = 7.60  DF = 1  P = 0.006 

H = 7.60  DF = 1  P = 0.006  (adjusted for ties) 

Figure 3.7 Kruskal-Wallis test at 95% confidence level 
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Figure 3.8 Comparison between discrete algorithms (300 and 500 iterations) 

3.6 Comparing the Algorithms with GA 

The results of SPSO (decreasing w), PCPSO, ARPSO and DPSO-LS-500 are compared with the 

results of the GA developed by Kurz and Askin (2004) (Table 3.7 & Figure 3.9). Figure (3.10) 

shows that there is a significant difference between these algorithms.  

Table 3.7. % Loss results 

 Algorithm 

%Loss 
SPSO ARPSO PCPSO

DPSO-

LS-500
GA

Average 19.1006 19.49828 19.84147 16.878 17.55725 

Standard deviation 11.80097 11.71283 12.38769 11.2607 11.1508 

Min 2.357537 2.88688 1.912021 0.37703 1.328397 

Max 66.69318 66.9113 71.21025 59.79905 59.62358 

Figure 3. 9. Comparison between all algorithms 
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Kruskal-Wallis Test on Loss 

treatment          N  Median  Ave Rank      Z 

SPSO  1800  19.07  4619.8  2.18 

ARPSO  1800  19.51  4738.5  4.34 

PCPSO  1800  20.11  4760.7  4.75 

DPSO-LS-500     1800   16.74    4106.8  -7.19 

GA  1800   17.65    4276.7  -4.09 

Overall  9000  4500.5 

H = 91.62  DF = 4  P = 0.000 

H = 91.62  DF = 4  P = 0.000  (adjusted for ties) 

Figure 3.10. Kruskal-Wallis test at 95% confidence level 

The Kruskal-Wallis test on SPSO, ARPSO and PCPSO indicates that these algorithms do not have 

any significant difference at 95% confidence level (Figure 3.11). The tuned SPSO with the 

decreasing inertia weight factor is compared to the GA using the non-parametric test of Kruskal-

Wallis (Figure 3.12), it is observed that there is a significant difference between the average 

percentage loss of these two algorithms at the 95% confidence level. The scatter plot of these two 

algorithms illustrates the degree to which the GA performs better (Figure 3.13). 

Kruskal-Wallis Test on Loss 

treatment      N  Median  Ave Rank      Z 

SPSO  1800   19.07    2647.4  -1.77 

ARPSO  1800  19.51  2719.5  0.63 

PCPSO  1800  20.11  2734.5  1.13 

Overall  5400  2700.5 

H = 3.21  DF = 2  P = 0.201 

H = 3.21  DF = 2  P = 0.201  (adjusted for ties 

Figure 3.11. Kruskal-Wallis test at 95% confidence level 

Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank  Z 

SPSO  1800  19.07  1869.9  4.01 

GA  1800   17.65    1731.1  -4.01 

Overall  3600  1800.5 

H = 16.06  DF = 1  P = 0.000 

H = 16.06  DF = 1  P = 0.000  (adjusted for ties) 

Figure 3.12. Kruskal-Wallis test at 95% confidence level 
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Figure 3.13. Scatter plot of SPSO (decreasing w) vs GA 

The results of DPSO-LS-500 is also compared with GA, it is observed that there is a significant 

difference between the results at 95% confidence level (Figure 3.14) and DPSO-LS-500 can hit a 

lower average loss. It indicates that by changing the solution representation, the performance of a 

PSO algorithm can improve significantly and become competitive with the GA (Figure 3.15) 

Kruskal-Wallis Test on Loss 

treatment  N  Median  Ave Rank      Z 

DPSO-LS-500  1800   16.74    1765.1  -2.04 

GA  1800  17.65  1835.9  2.04 

Overall  3600  1800.5 

H = 4.17  DF = 1  P = 0.041 

H = 4.17  DF = 1  P = 0.041  (adjusted for ties) 

Figure 3.14 Kruskal-Wallis test at 95% confidence level 

Figure 3.15 Scatter plot of DPSO-LS-500 vs GA 
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3.7 Effect of Different Factors in the Data Sets 

 The Kruskal-Wallis test is performed on DPSO-LS-500 results to illustrate whether there is any 

significant difference between each of the factors at 95% confidence level. Table 3.8 shows the p-

values obtained from these tests. All p-values are less than 0.01 except for the processing time 

factor, which means almost all the factors have significant effect at 95% confidence level. 

Factor P value 

Number of jobs < 0.01 

Skipping probability < 0.01 

Process time > 0.01 

Number of stages < 0.01 

Number of machines per stage < 0.01 
Table 3.8 p-values obtained from Kruskal-Wallis test 

3.7.1 Skipping Factor 

It is observed that when all jobs visit all stages (0% Skip), DPSO-LS performs significantly better 

with the average loss of 6.12 % (Figure 3.16). By changing the skipping probability from 0% to 

5% and 40%, the average Loss increases from 6.12% to 17.75% and 26.76%, respectively. Figure 

3.17 illustrates how the skipping probability divided the datasets into three distinct groups. It can 

be concluded that DPSO is more effective when the skipping probability is low. 
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Figure 3.17  Effect of skipping factor on %Loss 

3.7.2 Number of Jobs 

Figure 3.18 shows that when the number of jobs increases from 30 to 100 the average Loss 

increases from 15.00 to 18.74. By increasing the number of jobs, the solution space becomes larger 

and exploring the whole solution space to obtain a better result will take more time.  

Figure 3.18  Effect of number of jobs on %Loss of DPSO-LS-500 
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3.7.3 Number of Stages 

Figure 3.19 indicates that DPSO performs better when the number of stages is low. The order 

which is selected for stage 1 may not be the optimal order for all stages and by moving through 

the flexible flow line the effect of choosing poor order for later stages becomes more apparent. 

Another possible reason is the effect of skipping probability on the results. By increasing the 

number of stages, jobs have more stages to skip, therefore average Loss will increase (Figure 3.20).  

 

Figure 3.19 Effect of number of stages on %Loss 

 

Figure 3.20  Effect of skipping factor on %Loss grouped by number of stages 
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3.7.4 Number of Machines 

From Figure 3.21, the DPSO algorithm performs very poorly when there are 10 machines in each 

stage. Generally by increasing the number of machines, the solution space becomes larger and 

the average loss increases.  

Figure 3.21  Effect of number of machines on %Loss 

3.7.5 Processing Time 

Figure 3.22 indicates that the average Loss changes when the distribution of the processing times 

changes, but the amount of this change is not statistically significant. In this case, when the 

distribution of the processing time changes from Unif (50-70) to Unif (20-100), average Loss 

increases from 16.75 to 17.00. It can be concluded that the performance of DPSO algorithm does 

not change significantly, practically or statistically, by this factor. 

 Figure 3.22  Effect of processing time on %Loss 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORKS 

The presented study analyzes the performance of continuous and discrete particle swarm 

optimization methods to minimize the makespan for a flexible flow line. 

4.1 Conclusions 

Various particle swarm optimization algorithms were developed to solve the problem of 

scheduling jobs for a flexible flow line. First SPSO, with constant and also decreasing inertia 

weight parameter, was implemented, then ARPSO and PCPSO which are some extensions of 

SPSO were also developed to improve the SPSO result using random keys as a solution 

representation. Results indicate that SPSO with decreasing inertia parameter has the best 

performance among these algorithms. 

 A discrete particle swarm optimization was also developed using permutation-based encoding. 

Moreover, a local search was used to improve the performance of DPSO. The proposed DPSO-LS 

performs significantly better than DPSO.  

The performance of the proposed SPSO with decreasing inertia weight and DPSO-LS were 

evaluated against the result of GA. The results illustrate that there is a significant difference 

between the performances of these algorithms. GA performs better than SPSO and DPSO-LS 

outperformed the results from both of these algorithms. 

The presented DPSO-LS algorithm and the program developed in MATLAB can help 

individuals in charge of scheduling jobs on flexible flow line with sequence dependent setup time, 

make informed decisions and effectively schedule the line so that the makespan will be minimized. 

Satisfactory performance in minimizing the makespan can have a significant impact on facility 

utilization. 

The analysis performed also illustrates how the characteristics of the problem setting (number 

of stages, for example) may influence the quality of the makespan found using these algorithms, 

providing a scheduler with information about the appropriateness of these methods. 
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4.2 Future Research 

There are several extensions of the proposed algorithm which may be beneficial to investigate. 

Applying other local search methods is a good area to research. One of these methods can be 

swapping the job with the longest completion time with other jobs in the schedule.  Moreover, 

applying a local search on SPSO can lead to improvements in the algorithm and improve the 

quality of the final solution. Feeding the particle swarm algorithm with the result of other 

metaheuristic methods such as simulated annealing can be another interesting area to study. 

Finally, future research may analyze other methods of assigning jobs to machines, other than list 

scheduling.  
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Appendix A 

Friedman Test-Tuning DPSO 

Friedman Test: Response versus Treatment blocked by 

Block  

S = 15203.25  DF = 25  P = 0.000 

S = 15330.02  DF = 25   P = 0.000 (adjusted for ties) 

Treatment N 

Est 

Median Sum of Ranks 

1 1800 18.157 31817.5 

2 1800 18.036 19974.0 

3 1800 18.060 23433.5 

4 1800 18.169 32853.0 

5 1800 18.133 29752.0 

6 1800 18.184 34261.0 

7 1800 17.939 13371.0 

8 1800 18.094 25992.0 

9 1800 18.008 18383.5 

10 1800 17.988 15623.5 

11 1800 18.091 25229.5 

12 1800 18.128 28682.5 

13 1800 18.031 19548.5 

14 1800 18.040 20594.5 

15 1800 17.934 12929.5 

16 1800 18.031 20435.5 

17 1800 18.249 38997.5 

18 1800 18.224 37027.5 

19 1800 18.022 20048.5 

21 1800 18.046 22209.5 

22 1800 17.985 15722.5 

23 1800 18.140 29606.0 

24 1800 17.940 12726.0 

25 1800 17.984 15390.5 

26 1800 18.182 32788.0 

27 1800 18.187 34403.0 

Grand median = 18.076 

The lowest rank is 12726.0 for 

treatment 24 with following 

parameters: 

C1 0.8 

C2 0.8 

W 0.6 
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Appendix B 

Kruskal-Wallis Test on Different Factors 

DPSO-LS-500 

1. Number of Jobs

Kruskal-Wallis Test on Loss 

treatment     N  Median  Ave Rank  Z 

h           900   12.73     806.9  -7.64 

a  900  20.46  994.1  7.64 

Overall    1800  900.5 

H = 58.35  DF = 1  P = 0.000 

H = 58.35  DF = 1  P = 0.000  (adjusted for ties) 

h=30 jobs, a=100 jobs 

2. Number of Machines

Kruskal-Wallis Test on Loss 

treatment     N  Median  Ave Rank  Z 

l           720   15.16     796.1  -6.96 

h  720  17.39  975.6  5.00 

m  360  17.70  959.2  2.40 

Overall    1800  900.5 

H = 48.68  DF = 2  P = 0.000 

H = 48.68  DF = 2  P = 0.000  (adjusted for ties) 

l= 1, h=2, m=10 

3. Number of Stages

Kruskal-Wallis Test on Loss 

treatment     N  Median  Ave Rank  Z 

l  600   16.54     810.1  -5.22 

h  600  18.06  998.2  5.64 

m  600   15.84     893.2  -0.42 

Overall    1800  900.5 

H = 39.47  DF = 2  P = 0.000 

H = 39.47  DF = 2  P = 0.000  (adjusted for ties) 

l=2, m=4, h=8 
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4. Processing Time

Kruskal-Wallis Test on Loss 

treatment     N  Median  Ave Rank  Z 

l           900   16.52     890.8  -0.79 

h  900  16.93  910.2  0.79 

Overall    1800  900.5 

H = 0.62  DF = 1  P = 0.431 

H = 0.62  DF = 1  P = 0.431  (adjusted for ties) 

l= Unif(50-70), h=Unif(20-100) 

5. Skipping Probability

Kruskal-Wallis Test on Loss 

treatment     N  Median  Ave Rank  Z 

l  600   5.254     372.3  -30.49 

h  600  25.976  1363.0  26.69 

m  600  17.989  966.2  3.79 

Overall    1800  900.5 

H = 1104.18  DF = 2  P = 0.000 

H = 1104.18  DF = 2  P = 0.000  (adjusted for ties) 

l= 0.00, h=0.05, m= 0.40 



45 

REFERENCES 

Anghinolfi, D., & Paolucci, M. (2009). “A new discrete particle swarm optimization approach for the 

single-machine total weighted tardiness scheduling problem with sequence dependent setup 

times.” European Journal of Operational Research, 193(1), 73-85. 

Bean, J. C. (1994). “Genetic algorithms and random keys for sequencing and optimization.” ORSA journal 

on computing, 6(2), 154-160. 

Clerc, M. (2004). “Discrete particle swarm optimization, illustrated by the traveling salesman problem.” 

New optimization techniques in engineering, Springer Berlin Heidelberg, 219-239. 

Congying, Lv, Zhao Huanping, and Yang Xinfeng.(2011) "Particle swarm optimization algorithm for 

quadratic assignment problem." Computer Science and Network Technology (ICCSNT), 2011 International 

Conference on., Vol. 3, 1728-1731, IEEE. 

Dallard, H., Lam, S. S., & Kulturel-Konak, S. (2007). “Solving the orienteering problem using attractive 

and repulsive particle swarm optimization.” In Information Reuse and Integration, 2007. IRI 2007. IEEE 

International Conference on, pp. 12-17. IEEE.  

Damodaran, P., Diyadawagamage, D. A., Ghrayeb, O., & Vélez-Gallego, M. C. (2012). “A particle swarm 

optimization algorithm for minimizing makespan of nonidentical parallel batch processing machines.” The 

International Journal of Advanced Manufacturing Technology, 58(9-12), 1131-1140. 

Gupta, J.N.D. (1988). “Two stage hybrid flow shop scheduling problem.” Journal of Operational Research 

Society, 39(4), 359–364. 

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R., & Paton, R. C. (2004). “A particle swarm optimizer with 

passive congregation.” Biosystems, 78(1), 135-147. 

Ho, S. L., Yang, S., Ni, G., Lo, E. W., & Wong, H. C. C. (2005). “A particle swarm optimization-based 

method for multiobjective design optimizations.Magnetics.” IEEE Transactions on, 41(5), 1756-1759. 



 

  

 46  

 

Hu, X., Eberhart, R. C., & Shi, Y. (2003). “Swarm intelligence for permutation optimization: a case study 

of n-queens problem.” Swarm Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE, pp. 

243-246. IEEE. 

Kalayci, C. B., & Gupta, S. M. (2013). “A particle swarm optimization algorithm with neighborhood-based 

mutation for sequence dependent disassembly line balancing problem.” The International Journal of 

Advanced Manufacturing Technology, 69(1-4), 197-209. 

Karmakar, S., & Mahanty, B. (2010). “Minimizing Makespan for a Flexible Flow Shop Scheduling Problem in a Paint 

Company.” Industrial Engineering and Operations Management. 

Kennedy, J., & Eberhart, R. (1995). “Particle swarm optimization.” In Proceedings of IEEE international 

conference on neural networks, 4(2), 1942-1948.  

Kennedy, J., & Eberhart, R. C. (1997). “A discrete binary version of the particle swarm algorithm.” 

In Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE 

International Conference on, vol. 5, pp. 4104-4108. IEEE.  

Kia, H. R., Davoudpour, H., & Zandieh, M. (2010). “Scheduling a dynamic flexible flow line with sequence dependent 

setup times: a simulation analysis.” International Journal of Production Research, 48(14), 4019-4042. 

Krause, J., Cordeiro, J., Parpinelli, R. S., & Lopes, H. S. (2013). “A survey of swarm algorithms applied to 

discrete optimization problems.” Swarm Intelligence and Bio-inspired Computation: Theory and 

Applications. Elsevier Science & Technology Books, 169-191. 

Kurz, M. E., & Askin, R. G. (2003). “Comparing scheduling rules for flexible flow lines.” International Journal of 

Production Economics, 85(3), 371-388. 

Kurz, M. E., & Askin, R. G. (2004). “Scheduling flexible flow lines with sequence dependent setup 

times.” European Journal of Operational Research,159(1), 66-82. 

Lian, Z., Gu, X., Jiao, B., (2006a). “A similar particle swarm optimization algorithm for permutation flow 

shop scheduling to minimize makespan.” Applied Mathematics and Computation, 175(1), 773–785. 

Liao, C. J., Tseng, C. T., & Luarn, P. (2007). “A discrete version of particle swarm optimization for flow 

shop scheduling problems.” Computers & Operations Research, 34(10), 3099-3111.  



 

  

 47  

 

Fatih Tasgetiren, M., Sevkli, M., Liang, Y. C., & Gencyilmaz, G. (2004). “Particle swarm optimization 

algorithm for single machine total weighted tardiness problem.” In Evolutionary Computation, 2004. 

CEC2004. Congress on, vol. 2, pp. 1412-1419. IEEE. 

Oĝuz, C., & Ercan, M. F. (2005). “A genetic algorithm for hybrid flow-shop scheduling with multiprocessor 

tasks.” Journal of Scheduling, 8(4), 323-351. 

Pan, Q. K., Fatih Tasgetiren, M., & Liang, Y. C. (2008). “A discrete particle swarm optimization algorithm 

for the no-wait flow shop scheduling problem.” Computers & Operations Research, 35(9), 2807-2839. 

Pan, Q. K., Wang, L., Tasgetiren, M. F., & Zhao, B. H. (2008b). “A hybrid discrete particle swarm 

optimization algorithm for the no-wait flow shop scheduling problem with makespan criterion.” The 

International Journal of Advanced Manufacturing Technology, 38(3-4), 337-347. 

 Riget, J., & Vesterstrøm, J. S. (2002). “A diversity-guided particle swarm optimizer-the ARPSO.” Dept. 

Comput. Sci., Univ. of Aarhus, Aarhus, Denmark, Tech. Rep, 2, 2002.  

Salvador, M. S. (1973). “A solution to a special class of flow shop scheduling problems.” In Symposium on 

the theory of scheduling and its applications, pp. 83-91. Springer Berlin Heidelberg. 

Sankaran, V., Kurz, M. E., (2009), “A particle swarm optimization using random keys for flexible flow shop 

scheduling problem with sequence dependent setup times.” Master thesis, Clemson University, Clemson, SC. 

Sevkli, A. Z., & Sevilgen, F. E. (2010). “StPSO: Strengthened particle swarm optimization.” Turkish 

Journal of Electrical Engineering & Computer Sciences, 18, 1095-1114. 

Shahvari, O., Salmasi, N., Logendran, R., & Abbasi, B. (2012). “An efficient tabu search algorithm for flexible flow 

shop sequence dependent group scheduling problems.” International Journal of Production Research, 50(15), 4237-

4254. 

Singh, M. R., Mahapatra, S. S., & Mishra, K. (2013). “A novel swarm optimiser for flexible flow shop 

scheduling.” International Journal of Swarm Intelligence, 1(1), 51-69. 

Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). “A particle swarm optimization 

algorithm for makespan and total flowtime minimization in the permutation flow shop sequencing 

problem.” European Journal of Operational Research, 177(3), 1930-1947.  



 

  

 48  

 

Tavakkoli-Moghaddam, R., & Safaei, N. (2007). “A New Mathematical Model for Flexible Flow Lines with Blocking 

Processor and Sequence dependent Setup Time.” Multiprocessor Scheduling, 255. 

Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2009). “A memetic algorithm for the flexible flow line 

scheduling problem with processor blocking.” Computers & Operations Research, 36(2), 402-414. 

Tseng, C. T., & Liao, C. J. (2008). “A particle swarm optimization algorithm for hybrid flow-shop 

scheduling with multiprocessor tasks.” International Journal of Production Research, 46(17), 4655-4670. 

Zandieh, M., Mozaffari, E., & Gholami, M. (2010). “A robust genetic algorithm for scheduling realistic hybrid flexible 

flow line problems.” Journal of Intelligent Manufacturing, 21(6), 731-743. 

Zhang, Jindong, Changsheng Zhang, and Shubin Liang.(2010) "The circular discrete particle swarm 

optimization algorithm for flow shop scheduling problem." Expert Systems with Applications, 37(8), 5827-

5834. 

 

 


	Clemson University
	TigerPrints
	4-2015

	Discrete Particle Swarm Optimization for Flexible Flow Line Scheduling
	Parastoo Amiri
	Recommended Citation


	Microsoft Word - 350616_pdfconv_355784_BAB4D702-EBE4-11E4-BC4E-0D272E1BA5B1

