72 research outputs found

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for markovian arrivals

    Get PDF
    Cataloged from PDF version of article.In this paper, we study the blocking probabilities in a wavelength division multiplexing-based asynchronous bufferless optical packet/burst switch equipped with a bank of tuneable wavelength converters dedicated to each output fiber line. Wavelength converter sharing, also referred to as partial wavelength conversion, corresponds to the case of a number of converters shared amongst a larger number of wavelength channels. In this study, we present a probabilistic framework for exactly calculating the packet blocking probabilities for optical packet/burst switching systems utilizing wavelength converter sharing. In our model, packet arrivals at the optical switch are first assumed to be Poisson and later generalized to the more general Markovian arrival process to cope with very general traffic patterns whereas packet lengths are assumed to be exponentially distributed. As opposed to the existing literature based on approximations and/or simulations, we formulate the problem as one of finding the steady-state solution of a continuous-time Markov chain with a block tridiagonal infinitesimal generator. To find such solutions, we propose a numerically efficient and stable algorithm based on block tridiagonal LU factorizations. We show that exact blocking probabilities can be efficiently calculated even for very large systems and rare blocking probabilities, e.g., systems with 256 wavelengths per fiber and blocking probabilities in the order of 10−40. Relying on the stability and speed of the proposed algorithm, we also provide a means of provisioning wavelength channels and converters in optical packet/burst switching systems

    Node design in optical packet switched networks

    Get PDF

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    Effective preemptive scheduling scheme for optical burst-switched networks with cascaded wavelength conversion consideration

    Get PDF
    We introduce a new preemptive scheduling technique for next-generation optical burst switching (OBS) networks considering the impact of cascaded wavelength conversions. It has been shown that when optical bursts are transmitted all optically from source to destination, each wavelength conversion performed along the lightpath may cause certain signal-to-noise deterioration. If the distortion of the signal quality becomes significant enough, the receiver would not be able to recover the original data. Accordingly, subject to this practical impediment, we improve a recently proposed fair channel scheduling algorithm to deal with the fairness problem and aim at burst loss reduction simultaneously in OBS environments. In our scheme, the dynamic priority associated with each burst is based on a constraint threshold and the number of already conducted wavelength conversions among other factors for this burst. When contention occurs, a new arriving superior burst may preempt another scheduled one according to their priorities. Extensive simulation results have shown that the proposed scheme further improves fairness and achieves burst loss reduction as well

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Optical Packet Switching Contention Resolution Based On A Hybrid Wavelength Conversion-Fiber Delay Line Scheme

    Get PDF
    Due to the convergence of computer communication and telecommunication technology, data traffic exceeds the telephony traffic. Thus, existing connection oriented and circuit switched network will need to be upgraded toward optical packet switched network. Optical packet switching has characteristics like high speed, data rate/data format transparency and configurable. Wavelength Division Multiplexing is the technology of combining a number of wavelengths in a single fiber. It is a tremendous trend to harness larger bandwidth for enormous delivery. WDM optical devices for multiplexing and switching in simple configuration are now available at a reasonable cost. It is a very appealing solution for development of optical packet switching. The issue of contention arises when two or more packets contend for the same output port in a switch with the same wavelength, which results to packet loss. The packet loss probability is addressed as the most inevitable and significant measurable performance parameter with QoS provisioning that is dominated by wavelength contention in optical packet switches. In electronic domain packet switched network, the contention is resolved by store and forward technique using the available electronic random access memory (RAM). Due to the immaturity of optical memory storage technology, there is no available ready-to-use optical random access memory. In order to overcome this bottleneck, several approaches have been adopted to resolve the contention problem from three domains: time, space and wavelength as stated: fiber delay line (time), deflection routing (space) and wavelength conversion (wavelength). Consequently, contention resolution in wavelength domain has attracted considerable interest among the optical communications community instead of implementing optical buffering and deflection routing that have been studied previously. This thesis proposes a bufferless, single stage, non-blocking fully connected optical packet switch for synchronous optical packet switching network, followed by a prioritized scheduling algorithm in association with hybrid contention resolution schemes. This iterative prioritized scheduling comprises of a set of preemptive selective policies for contention resolution. It is a hybrid technique that integrates wavelength conversion with feedback mechanism realized by fiber delay lines (FDL). By means of simulation, the proposed scheme has been investigated and compared with the conventional baseline scheme. A sensitive description of the satisfied packet loss probability and average packet delay as a function of main design parameters such as switch size, number of wavelengths, traffic load, degree of conversion and number of fiber delay lines have been carried out with significant improvement.Simulation results proved that the proposed scheme is an efficient approach in resolving packet contention with less complexity in execution. Relatively, number of wavelength, traffic load and degree of conversion has significant impact to packet loss ratio. The implementation of fiber delay lines results on average packet delay. Simulation results demonstrated that the switch size mildly affect the performance parameter. Respectively, packet loss ratio below 10-10 is obtained via simulation by the means of wavelength conversion without conventional buffering delay. The packet loss ratio is further reduced with the method as aforementioned with the insertion of fiber delay lines where PLR below 10-13 is achieved, which is much lower than the benchmark value. Furthermore, the obtained simulation results show that by classifying packet priority, the proposed scheduling scheme and architecture are able to offer differentiated class of service

    Analytic modelling and resource dimensioning of optical burst switched networks

    Get PDF
    The realisation of optical network architectures may hold the key to delivering the enormous bandwidth demands of next generation Internet applications and services. Optical Burst Switching (OBS) is a potentially cost-effective switching technique that can satisfy these demands by offering a high bit rate transport service that is bandwidth-efficient under dynamic Internet traffic loads. Although various aspects of OBS performance have been extensively investigated, there remains a need to systematically assess the cost/performance trade-offs involved in dimensioning OBS switch resources in a network. This goal is essential in enabling the future deployment of OBS but poses a significant challenge due to the complexity of obtaining tractable mathematical models applicable to OBS network optimisation. The overall aim of this thesis lies within this challenge. This thesis firstly develops a novel analytic performance model of an OBS node where burst contention is resolved by combined use of Tuneable Wavelength Converters (TWCs) and Fibre Delay Lines (FDLs) connected in an efficient share-per-node configuration. The model uses a two-moment traffic representation that gives a good trade-off between accuracy and complexity, and is suitable for extension to use in network modelling. The OBS node model is then used to derive an approximate analytic model of an OBS network of switches equipped with TWCs and FDLs, again maintaining a two-moment traffic model for each end-to-end traffic path in the network. This allows evaluation of link/route loss rates under different offered traffic characteristics, whereas most OBS network models assume only a single-moment traffic representation. In the last part of this thesis, resource dimensioning of OBS networks is performed by solving single and multi-objective optimisation problems based on the analytic network model. The optimisation objectives relate to equipment cost minimisation and throughput maximisation under end-to-end loss rate constraints. Due to non-convexity of the network performance constraint equations, a search heuristic approach has been taken using a constraint-handling genetic algorithm
    corecore