809 research outputs found

    A Comparison of Front-Ends for Bitstream-Based ASR over IP

    Get PDF
    Automatic speech recognition (ASR) is called to play a relevant role in the provision of spoken interfaces for IP-based applications. However, as a consequence of the transit of the speech signal over these particular networks, ASR systems need to face two new challenges: the impoverishment of the speech quality due to the compression needed to fit the channel capacity and the inevitable occurrence of packet losses. In this framework, bitstream-based approaches that obtain the ASR feature vectors directly from the coded bitstream, avoiding the speech decoding process, have been proposed ([S.H. Choi, H.K. Kim, H.S. Lee, Speech recognition using quantized LSP parameters and their transformations in digital communications, Speech Commun. 30 (4) (2000) 223–233. A. Gallardo-Antolín, C. Pelàez-Moreno, F. Díaz-de-María, Recognizing GSM digital speech, IEEE Trans. Speech Audio Process., to appear. H.K. Kim, R.V. Cox, R.C. Rose, Performance improvement of a bitstream-based front-end for wireless speech recognition in adverse environments, IEEE Trans. Speech Audio Process. 10 (8) (2002) 591–604. C. Peláez-Moreno, A. Gallardo-Antolín, F. Díaz-de-María, Recognizing voice over IP networks: a robust front-end for speech recognition on the WWW, IEEE Trans. Multimedia 3(2) (2001) 209–218], among others) to improve the robustness of ASR systems. LSP (Line Spectral Pairs) are the preferred set of parameters for the description of the speech spectral envelope in most of the modern speech coders. Nevertheless, LSP have proved to be unsuitable for ASR, and they must be transformed into cepstrum-type parameters. In this paper we comparatively evaluate the robustness of the most significant LSP to cepstrum transformations in a simulated VoIP (voice over IP) environment which includes two of the most popular codecs used in that network (G.723.1 and G.729) and several network conditions. In particular, we compare ‘pseudocepstrum’ [H.K. Kim, S.H. Choi, H.S. Lee, On approximating Line Spectral Frequencies to LPC cepstral coefficients, IEEE Trans. Speech Audio Process. 8 (2) (2000) 195–199], an approximated but straightforward transformation of LSP into LP cepstral coefficients, with a more computationally demanding but exact one. Our results show that pseudocepstrum is preferable when network conditions are good or computational resources low, while the exact procedure is recommended when network conditions become more adverse.Publicad

    Band-pass filtering of the time sequences of spectral parameters for robust wireless speech recognition

    Get PDF
    In this paper we address the problem of automatic speech recognition when wireless speech communication systems are involved. In this context, three main sources of distortion should be considered: acoustic environment, speech coding and transmission errors. Whilst the first one has already received a lot of attention, the last two deserve further investigation in our opinion. We have found out that band-pass filtering of the recognition features improves ASR performance when distortions due to these particular communication systems are present. Furthermore, we have evaluated two alternative configurations at different bit error rates (BER) typical of these channels: band-pass filtering the LP-MFCC parameters or a modification of the RASTA-PLP using a sharper low-pass section perform consistently better than LP-MFCC and RASTA-PLP, respectively.Publicad

    Recognizing GSM Digital Speech

    Get PDF
    The Global System for Mobile (GSM) environment encompasses three main problems for automatic speech recognition (ASR) systems: noisy scenarios, source coding distortion, and transmission errors. The first one has already received much attention; however, source coding distortion and transmission errors must be explicitly addressed. In this paper, we propose an alternative front-end for speech recognition over GSM networks. This front-end is specially conceived to be effective against source coding distortion and transmission errors. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bitstream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant advantages. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion as a result of the encoding-decoding process. Second, when transmission errors occur, our front-end becomes more effective since it is not affected by errors in bits allocated to the excitation signal. We have considered the half and the full-rate standard codecs and compared the proposed front-end with the conventional approach in two ASR tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated channel conditions. Furthermore, the disparity increases as the network conditions worsen

    IMPROVING THE AUTOMATIC RECOGNITION OF DISTORTED SPEECH

    Get PDF
    Automatic speech recognition has a wide variety of uses in this technological age, yet speech distortions present many difficulties for accurate recognition. The research presented provides solutions that counter the detrimental effects that some distortions have on the accuracy of automatic speech recognition. Two types of speech distortions are focused on independently. They are distortions due to speech coding and distortions due to additive noise. Compensations for both types of distortion resulted in decreased recognition error.Distortions due to the speech coding process are countered through recognition of the speech directly from the bitstream, thus eliminating the need for reconstruction of the speech signal and eliminating the distortion caused by it. There is a relative difference of 6.7% between the recognition error rate of uncoded speech and that of speech reconstructed from MELP encoded parameters. The relative difference between the recognition error rate for uncoded speech and that of encoded speech recognized directly from the MELP bitstream is 3.5%. This 3.2 percentage point difference is equivalent to the accurate recognition of an additional 334 words from the 12,863 words spoken.Distortions due to noise are offset through appropriate modification of an existing noise reduction technique called minimum mean-square error log spectral amplitude enhancement. A relative difference of 28% exists between the recognition error rate of clean speech and that of speech with additive noise. Applying a speech enhancement front-end reduced this difference to 22.2%. This 5.8 percentage point difference is equivalent to the accurate recognition of an additional 540 words from the 12,863 words spoken

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    AI and IoT Meet Mobile Machines: Towards a Smart Working Site

    Get PDF
    Infrastructure construction is society's cornerstone and economics' catalyst. Therefore, improving mobile machinery's efficiency and reducing their cost of use have enormous economic benefits in the vast and growing construction market. In this thesis, I envision a novel concept smart working site to increase productivity through fleet management from multiple aspects and with Artificial Intelligence (AI) and Internet of Things (IoT)

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    State of the Art of Audio- and Video-Based Solutions for AAL

    Get PDF
    It is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters. Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals. Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely lifelogging and self-monitoring, remote monitoring of vital signs, emotional state recognition, food intake monitoring, activity and behaviour recognition, activity and personal assistance, gesture recognition, fall detection and prevention, mobility assessment and frailty recognition, and cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed
    • 

    corecore