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Abstract

In this paper we address the problem of automatic speech recognition when wire-
less speech communication systems are involved. In this context, three main sources
of distortion should be considered: acoustic environment, speech coding and trans-
mission errors. Whilst the first one has already received a lot of attention, the last
two deserve further investigation in our opinion. We have found out that band-pass
filtering of the recognition features improves ASR performance when distortions
due to these particular communication systems are present. Furthermore, we have
evaluated two alternative configurations at different Bit Error Rates (BER) typical
of these channels: band-pass filtering the LP-MFCC parameters or a modification of
the RASTA-PLP using a sharper low-pass section perform consistently better than
LP-MFCC and RASTA-PLP, respectively.
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1 Introduction

Robustness in Automatic Speech Recognition (ASR) systems has always been
an extremely important issue since the first attempts to transfer this technol-
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ogy from research laboratories to real world applications. According to Junqua
(2000) we can distinguish three sources of variability in speech that affect the
performance of ASR systems: task and speaker is the first broad class, the
second is the acoustic environment and last, transducers and transmission
channels.

In this paper we are interested in dealing with the distortion produced by
the new transmission channels that have emerged in voice transmission. This
technology has experienced an enormous revolution in the past decade and still
continues. These systems have evolved from the classical and sole transmission
channel provided by Public Switched Telephone Network (PSTN) into a wide
range of alternatives that include wireless cellular systems, VoIP, Bluetooth,
wireless local and personal area networks of even a mixture of them.

Besides, the pervasiveness of all these means of voice transmission has trig-
gered the creation of multiple new information providing services that users
can access through these networks. These services can greatly benefit from
the use of automatic dialog systems for which an improved performance of
the ASR subsystem over the particular underlying transmission channels can
significantly reduce the need to resort to a human operator in many situations.

In this context, our work focuses on improving the robustness of ASR systems
that are accessed through a wireless network. Thus, in this scenario the speech
signal is transmitted through the corresponding wireless standard channel and
is recognized at a remote server. This is not the only approach to this problem.
Either embedded or Distributed Speech Recognition (DSR) face up the same
problem from a different point of view. Though not considered in this paper
these alternatives are briefly reviewed and their drawbacks and advantages
compared with those of the option considered here.

In this paper, we pay attention to two typical sources of distortion of wireless
channels: lossy speech coding and transmission errors. Our work is inspired in
previous works that suggested the filtering of the modulation spectrum of the
speech features to deal with channel-distorted or noisy speech (Hermansky and
Morgan (1994), Hanson and Applebaum (1993) or Nadeu et al. (1997) are
good examples). We have applied and adapted these ideas to the distortions
typical of wireless speech communications.

As a starting point, we consider two well-known parameter sets, namely:
MFCC and LP-MFCC. Further on, we focus on LP-MFCC since our experi-
ments reveal that it performs better than MFCC in presence of coding distor-
tion and transmission errors. We also compare our proposal with RASTA-PLP
(Hermansky and Morgan (1994)), a well-known filtering-based parameter set.

We show, conceptually and experimentally, that a band-pass filtering of the
time sequences of the spectral parameters is beneficial to deal with distortions
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due to transmission errors. Specifically, we suggest two configurations: the
first one, called BPF-LP-MFCC, consists on a band-pass filtering of the LP-
MFCC parameters; the second one is a modified version of RASTA-PLP, called
M-RASTA-PLP, using a sharper low-pass section. In both cases, we obtain
significant improvements with respect to LP-MFCC or the original RASTA,
respectively, when transmission errors are considered.

The paper is organized as follows: section 2 presents the problem of ASR in
wireless communication systems; section 3 describes the previous works on fil-
tering the spectral parameters and discusses the reasons (either given by other
authors in other contexts, or presented in this paper for wireless speech) for
which we propose to improve and adapt this technique to the wireless speech
communication scenario; section 4 describes the experimental setup, the base-
line systems, and the experimental assessment of the filtering-based proposed
techniques in comparison to well-known robust parameterization methods; fi-
nally, conclusions and directions of further work are summarized in section
5.

2 ASR in wireless environments

The enourmous success of the wireless cellular systems makes the analysis of
the distortion caused by them a relevant issue of research. With this purpose,
we can identify the main sources of distortion originated by these systems that
affect the performance of speech recognizers as:

• Acoustic environment : though strictly speaking this is not a distortion
caused by the wireless system itself we have included this category into
the classification to reinforce the idea that the wireless nature of these
networks have broaden dramatically the variety of situations or acoustic
environments in which voice is likely to be originated. Therefore, though
indirectly, it poses a new challenge on the speech recognition systems.

• Speech coding distortion: the wireless bandwidth is a very expensive resource
due to the increasing number of emergent wireless services that has only
made worse the saturation that already existed in the radio-electric spec-
trum. Therefore, to optimize the productivity of the spectral bands that al-
low the transmission using electronic devices of mass production, extremely
smart bandwidth sharing protocols have been devised. As part of these ef-
forts to maximize the utilization of the spectrum the use of medium and
low-rate speech coders plays a fundamental role in the feasibility of these
networks in the market place. This aggressive compression of the speech
signal produces a distortion that damages the speech recognizer operation.

• Transmission errors: due to the unreliable and variable nature of the radio-
channel, transmission errors are much more likely to happen in this type of
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networks than in wired ones. This issue is partly addressed by the channel
coders that aim at minimizing their effects. However, some errors remain
affecting once more the performance of speech recognizers.

To overcome the effects of these sources of distortion three main approaches
can be encountered in the literature, namely: local, distributed and remote
speech recognition. We will outline their main strengths and limitations in the
next subsection, paying special attention on the way in which they cope with
the mentioned distortions.

2.1 System architectures for speech recognition over wireless cellular systems

This taxonomy was established by Digalakis et al. (1999) attending to the
distribution of the processes of feature extraction (front-end) and decoding
(back-end) between the local user device and the service provider computing
system.

2.1.1 Local or embedded speech recognition

When both front-end (FE) and back-end (BE) modules are allocated in the
user device we usually refer to it as local or embedded speech recognition
(Junqua (2000)). This is indeed, the best way to avoid both coding distortion
and transmission errors, since no transmission of the speech signal is needed:
the speech transcription is sent to the server end as text data.

The main drawback of these systems is the limited capability of the devices,
normally small, that makes the embedding of a speech recognition application
extremely challenging and only allows the deployment of restricted vocabulary
tasks. In fact, this is a very interesting problem per se and currently a topic
of active research. However, it will not be treated in this paper.

2.1.2 Distributed speech recognition

Under the Distributed Speech Recognition (DSR) approach the BE (the most
computationally demanding of the two processes) is situated in the server side,
while the FE still resides in the user device (the client).

The advantages of this approach rely on the fact that the bandwidth required
to transmit the features for recognition is very small, while the computational
effort needed for their extraction is not so high and therefore can be accom-
plished by modest devices. Besides, a more protected data channel can be used
for the transmission of the features instead of the speech channels used for the
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coded speech transmission.

Nonetheless, in the typical voice-enabled services the amount of data sent to
the server (usually an information request) is not very high and therefore it
does not make a significant difference in bandwidth usage to send the features
for recognition or the coded speech (provided a Discontinuous Transmission
-DTX- system is used).

On the other hand, there is still a lot of research going on about the design
of FE for speech recognition that can be difficult and expensive to fit in a
conventional user device (see for example Chen et al. (2004)) and nonetheless
provide important improvements when included in the server side.

However, in order for the FE to match the BE the user and the server must
agree in the type of features that are going to be computed and therefore an
important effort has been taking place to come up with the appropriate stan-
dards. The earlier standard (ETSI ES 201 108 (2003)) was found to behave
poorly in noisy environments and thus recently a second Advanced Front-End
(AFE) (ETSI ES 202 050 (2004)) has been defined. This ETSI initiative has
produced an enormous advance in the understanding of noise influence on
speech recognizers and many proposals have been shown to improve signif-
icantly the performance under those conditions. Fortunately, most of those
techniques can be implemented as well in the server end (though with the
impairment caused by the coding distortion) and therefore are not tied to the
use of DSR approaches.

Still, there are some remaining issues for the implementation of those FE in
the user devices as discussed in Kiss et al. (2003) related with infrastructure
changes and application adaptations.

2.1.3 Remote speech recognition

On the other hand the remote speech recognition approach does not require
the local user device to do any processing of the speech signal further than the
usual encoding and transmission already embedded in the majority of them.
The whole recognition process takes place at the server end.

In this paper we have chosen this approach for several reasons:

• It provides the server with the ability to choose the FE that better matches
a particular application and even update it when needed.

• It does not impose restrictive conditions on the client terminal capabilities
nor does it create the need for special setting or agreements between client
and server.

• It preserves the transmission bandwidth requirements and the compatibility
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with the existing standard-based voice applications.
• It is possible to recover the uttered speech signal with the quality provided

by the speech coders employed.
• The new Adaptive Multi-Rate (AMR) speech coders balance appropriately

the amount of bandwidth employed for the actual transmission and the
protection of that transmission taking into account the conditions of the
channel, while these amounts are fixed in the case of DSR. Besides, Tandem
Free Operation (TFO) systems, when available, limit the speech coding
distortion to one stage (ETSI TS 128 062 V6.1.0 (2004-12)).

As for the drawbacks of these remote recognition systems we can name two:
the coding distortion and the transmission errors. We will take a closer look
to these problems and the solutions provided so far in the next section.

2.2 Wireless transmission distortions

The main transmission distortions caused by the wireless cellular communica-
tion networks are the coding-decoding distortion and the transmission errors.

Thus, from the early works by Euler and Zinke (1994) and Lilly and Paliwal
(1996) to the more recent by Hirsch (2002) we learned that for medium to
low rate speech coders the loss of recognition accuracy becomes important but
that this impairment can be greatly reduced by training the recognizer with
the same speech coder (matched conditions). It is important to realize that in
contrast with the environment noise distortions when the perfect matching is
almost impossible in real implementations, the set of types of coding distor-
tions is very small (the number of speech coders employed) and given that the
information of the coder employed is always signaled in the communications
protocol it is therefore feasible to consider the matched situation.

Bitstream-based solutions have been proposed (Peláez-Moreno et al. (2001);
Kim et al. (2002); Gallardo-Antoĺın et al. (2005)) to cope with the transmis-
sion distortions. The principle behind those solutions is to avoid the coding
distortion and an important part of the transmission errors by extracting the
bits that carry the information needed for recognition before the decoding
stage. This approach takes advantage of the Unequal Error Protection (UEP)
of the channel coding that makes the spectral envelope of the speech signal
much more robust to transmission errors than the rest of the signal. The main
drawback of this approach is that the feature extraction module needs to have
direct access to the bitstream.

Therefore, in our opinion, specific solutions for the channel and coding distor-
tions compatible with the application of noise-robust FE should be considered.
We have analyzed these problems in this paper considering both the channel
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and the source coding which has led us to the proposal of an enhancing filtering
of the modulation spectra of the speech features.

3 Filtering the time sequences of spectral parameters for wireless

speech recognition

3.1 Modulation Spectra

Figure 1 illustrates the well-known process of obtaining a set of parameters
from the speech signal. In particular, the speech signal is analyzed in a frame
by frame basis and a N -dimensional parameter vector is obtained for each
frame. Besides, we have represented the modulation spectra of each coefficient
which is defined as the Fourier transform of its temporal evolution (see (Nadeu
et al. (1997)) for more details).

i−th

modulation

spectrum

...

...

Frame 2

Time

Coef 1

Coef 2

Coef N

Frame 1

Window Duration

Frame period

Coef i

Frame M

FFT

Fig. 1. The modulation spectra of the i− th coefficient is the spectrum of the signal
defined by the time evolution of this coefficient

In this paper we propose filtering the temporal evolution of each component to
achieve robust ASR systems in wireless environments. In this section we first
review the main previous works involving a filtering of the modulation spectra
and, after that, we propose a novel filtering method conceived to improve the
robustness of the ASR systems dealing with wireless speech transmission.
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3.2 Previous works

In real world applications, ASR systems often encounter situations in which
a mismatch between training and testing conditions exists (e.g. noise, trans-
mission channel or the intra- or inter-speaker variations). In such cases, there
is a dramatic degradation of the recognizer accuracy.

During the past decades, a variety of techniques has been proposed for dealing
with this type of problems, such as robust parameterizations, feature vector
adaptation or model compensation. In this paper, we have focused on the first
approach, i.e., extracting robust speech features that are relatively insensitive
to different sources of degradation.

For that purpose, it would be desirable that the front-end of the speech recog-
nition system was able to keep the linguistic information (the relevant part in
terms of intelligibility) contained in the speech signal and reject the irrelevant
information (for example, signal distortions due to channel or the presence
of noise). This idea is directly related to the phenomena observed in several
perceptual experiments in which it is shown that the intelligibility of speech
mostly relies on some bands of the modulation spectra, while the rest does not
seem to contribute considerably (Drullman et al. (1994), Greenberg (1996)).
Typically, the suppression of the less important components of the modulation
spectra is accomplished by filtering of time trajectories of feature vectors.

The RelAtive SpecTrAl technique (RASTA) (Hermansky et al. (1992), Her-
mansky and Morgan (1994)) is one of the pioneering techniques developed
in this context. RASTA basically consists in a band-pass filtering applied in
the log-subband domain, which keeps the modulation frequencies in the range
between 1 and 12 Hz. The low-pass filtering helps to smooth some of the fast
frame-to-frame spectral changes appearing in the spectrum due to short-term
analysis artefacts. The high-pass filtering was initially designed for minimizing
the influence of convolutional noise (such as distortions due to microphones or
fixed-telephone channels). This effect can be viewed as that of a linear system,
producing a non-desired component which is additive in the log filter-bank
energies domain. As the spectrum of this kind of noise varies in a different
way than the speech spectrum, it can be removed efficiently by means of the
RASTA technique. In fact, Hermansky and Morgan (1994) showed that the
reduction of this irrelevant information in the parametric representation of
speech signals significantly improves the performance of the recognition sys-
tem.

Hanson and Applebaum (1993) extended the RASTA approach by applying,
in the cepstral domain, either a high-pass or a band-pass filter. Moreover, they
dealt with distorted-channel, additive noise and Lombard speech style. They
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showed that both, log-subband and cepstral high-pass filtering can improve
the ASR system performance when a mismatch between training and testing
conditions exists. Both approaches produced similar results because cepstral
coefficients are computed using a Discrete Cosine Transform (DCT), which is
a linear transformation of the logarithmic filter-bank energies. This result is
very appealing because it allows to successfully apply filtering techniques in
parameterizations where filter-bank energies are not available, such as LPC-
based front-ends, as it has been also shown by Smolders and Van Compernolle
(1993).

Other authors have proposed more sophisticated filters. For example, in Nadeu
et al. (1997) a cascade of a first-order equalizer and a band-pass filter (a FIR-
Slepian filter) was applied as well to the cepstrum-LPC domain. The authors
encountered that the enhancement of modulation frequencies around 3 Hz
(corresponding roughly to the average syllable rate of the used database) has
a beneficial influence on the ASR system performance.

Kanedera et al. (1998) provided an interesting study about the relevance of
some bands of modulation spectrum from the recognizer accuracy point of
view. The main conclusions extracted in this work were the following:

• In clean environments, most of the useful information is contained in the
frequency band between 1 and 16 Hz of the modulation spectrum.

• The band around 4 Hz is the most useful component in both, clean and
noisy conditions (this result is similar to the one obtained in Nadeu et al.
(1997)).

• In noisy environments, the components of the modulation spectrum be-
low 2 Hz and above 10 Hz are less important for speech intelligibility. In
particular, the band below 1 Hz contains mostly information about the en-
vironment (e.g. the effects due to the transmission channel). Therefore, the
recognition performance can be improved by suppressing this band in the
parameterization process.

Some authors (Hanson and Applebaum (1993), Nadeu et al. (2001)) have
stressed the relationship between the time filtering of speech parameters and
the classical first time-derivative or regression coefficients and acceleration co-
efficients (Furui (1986)). In fact, dynamic features can be seen as a high-pass
(in the target bandwidth) filtering of the static parameters in the cepstral
domain, in which the components around 10 Hz are enhanced. This inter-
pretation explains their effectiveness to cope with both, convolutional and
additive noises.
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3.3 Our proposal: band-pass filtering for wireless speech recognition

Although more extensively explained later, we find convenient to mention at
this point that the transmission errors due to wireless communications reach
the speech decoder in two forms: either as residual bit errors (those still present
after channel decoding) or as frame erasures. In this paper both are jointly
considered, since it is the channel decoder which decides whether the frame
is discarded (and substituted) or not, depending on the number of bit errors
and the sensitivity of the erroneous bits. Thus, once the bitstream has been
evaluated by the channel decoder, the source decoder receives either a clean
frame, a frame with residual errors, or a bad frame indication. In the last case,
this flag triggers the corresponding frame error concealing mechanism.

The residual bit errors produce unpredictable changes in the speech spec-
tral features. Thus, the whole bandwidth of their modulation spectra may be
eventually affected. In other words, the residual bit errors add certain level of
randomness to the spectral features, i.e., noisy variations in their time evolu-
tion. These time variations generate spurious components in the modulation
spectra.

With respect to frame erasures, we presume that the spectral envelope (almost
exact) repetition performed by the error concealment mechanism produces
both low and high frequencies in the modulation spectrum. The former due
to the steadiness of the repeated segment, and the later when, after successive
repetitions, a reliable frame reaches the decoder, likely producing an abrupt
time change.

The previous conjectures indicate that a band-pass filtering of the modulation
spectra could help to focus on the modulation frequencies which, being relevant
for speech intelligibility, are less contaminated by the transmission errors.

Furthermore, in order to prove these arguments, we have estimated the band-
width of the modulation spectrum for each MFCC coefficient extracted from
both, clean speech and speech that has suffered from transmission errors. For
these experiments, we consider the bandwidth as the frequency range where
the 90 % of the signal energy is contained. Finally, a channel with a Bit Er-
ror Rate (BER) equal to 5 · 10−2 has been used 1 . Figure 2 represents the
histogram of the bandwidth computed for the first six MFCCs where each
coefficient was analyzed in a window-by-window basis.

As shown in Figure 2, the effect of transmission errors in the modulation
spectra of MFCCs depends on the coefficient order. Particularly, observing

1 More details about the channel simulation and the bandwidth estimation will be
provided in section 4.
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Fig. 2. Histogram of the modulation spectrum bandwidth for the first six MFCC
parameters extracted from either clean speech (dashed-line) or speech that has
suffered from transmission errors (solid-line).

the bandwidth histograms for the first two coefficients we see that, because of
the transmission errors, a larger number of windows exhibit a lower bandwidth
(the histogram is slightly left-shifted). This fact indicates that low-frequency
components appear in those modulation spectra due to transmission errors,
since the same percentage of the energy is concentrated in a smaller band-
width. On the contrary, observing the bandwidth histograms for the higher
coefficients we see that a larger number of windows show higher bandwidth
(the histograms are slightly right-shifted due to errors).

Therefore, in order to reduce the effects of transmission errors, we propose
band-pass filtering the time trajectory of the spectral parameters to attenuate
or remove these undesired low or high frequencies that appear in their mod-
ulation spectra. Although, taking into consideration the histograms displayed
in Figure 2, the optimal solution seems to be to high-pass filter the lower
coefficients and low-pass filtering the higher ones, this issue has been left for
further work (preliminary experiments using individual filters did not work as
expected). Instead, we have chosen to perform the same band-pass filtering
for every coefficient. There are two reasons to proceed in that way. First, it
is easier to implement. And second, the histograms are showing just a trend
and we have found it better to remove those frequency bands that can be
contaminated and, at the same time, are not determinant from the intelligi-
bility point of view (in presence of degradations, modulation frequencies above
10 Hz worsen the recognition performance and frequency components under
2 Hz do not yield any improvement and, furthermore, could even degrade it
(Kanedera et al. (1998))).

In this paper we put forward that both low- and high-pass filtering signifi-
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cantly improve the recognition performance in presence of transmission errors.
In particular we suggest the replication of the well-known and well-established
high-pass section of the RASTA filter, and the design of a new low-pass section
to achieve the best balance between preserving relevant modulation frequen-
cies and mitigating the effect of the transmission errors.

4 Experimental Results

4.1 Experimental Setup

4.1.1 Database

The database employed in our experiments is the well-known Resource Man-
agement RM1 Database NIST (1992), which has a vocabulary of 991 words.
We have used the speaker independent data which is divided into two groups:
the training corpus which consists of 3990 sentences uttered by 109 speakers
and the test set which contains 1200 sentences from 40 different speakers and
corresponds to the compilation of the first four official test sets (February and
October, 1989, February, 1991 and September, 1992). We have used a down-
sampled version (at 8 KHz) of the database (originally recorded at 16 kHz in
clean conditions using a high-quality desktop microphone). The orthographic
transcription of the data is based on the SRI Resource Management dictio-
nary (provided in the same distribution by NIST) which has been modified
for adapting it to the CMU phone set as suggested in the RM task defined in
HTK.

Since the database was recorded in a clean environment, it is possible to study
the effects of the transmission errors without any interference caused by other
sources of distortions.

4.1.2 Wireless channel model

For the purspose of testing the performance of our proposal in realistic con-
ditions, we have simulated a complete GSM scenario which includes not only
a channel model but also the GSM channel coding/decoding processes. The
behavior of the GSM channel has been simulated for different conditions using
a hybrid model combining both empirical measures (for modelling shadowing
effects produced by the presence of obstacles like buildings in urban areas) and
theoretical results (for the Rayleigh fading phenomena related to the mobile
speed). The GSM channel coding/decoding has been implemented following
the ETSI/GSM specifications for half-rate traffic channels (ETSI Recommen-
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dation GSM 6.20 (1999)). It includes implementations of the channel coding
(cyclic, convolutional coding) and the blocks relevant to the arrangement of
the digital TDMA GSM stream (reordering, partitioning, interleaving and
burst formatting). More details about the overall GSM channel simulator are
given in Gallardo-Antoĺın et al. (2005).

The channel model inserts bursty transmission errors in the bitstream ac-
cording to the desired Bit Error Rate (BER). The channel decoder is able to
detect and correct some of these errors or even substitute a seriously damaged
frame by an attenuated version of the last reliably received one. Therefore, two
different types of errors appear at the input of the speech decoder: frame era-
sures and residual bit errors. The first one is measured in terms of the Frame
Erasure Rate (FER) which is the percentage of erroneous frames that were
replaced by the concealing mechanism and the second one is characterized by
the Residual Bit Error Rate (RBER) which is the percentage of remaining
transmission errors not corrected or detected in the channel decoding stage.

Following this procedure, we have designed five different half-rate GSM chan-
nels corresponding to different channel conditions (BER = 0, 10−3, 10−2,
2.5 10−2 and 5 10−2). The FER and RBER values of each channel are listed
in Table 1. FER and RBER are not theoretical values, but experimentally
computed ones for the database we have employed.

Table 1
Characteristics of the half-rate GSM channels used in the experimentation. BER,
FER (”Frame Error Rate”) and RBER (”Residual Bit Error Rate”) are shown for
each channel

Channel BER FER RBER

Channel0 0 0 % 0 %

Channel1 10−3 0.015 % 0.0265 %

Channel2 10−2 0.479 % 0.2753 %

Channel3 2.5 · 10−2 2.9296 % 0.8061 %

Channel4 5 · 10−2 12.333 % 2.3222 %

These channel conditions have been chosen taking into account the eight qual-
ity bands defined in the GSM standard (ETSI ETS 300 578 (1999)) shown in
Table 2. These quality bands are defined in accordance to the BER estimated
before the channel decoding.

The fourth band is considered as the one representing an expected average
quality. For this reason we have chosen channels with a BER around this band.
Specifically, a channel in the third (BER = 10−2), fourth (BER = 2.5 · 10−2)
and fifth (BER = 5 · 10−2) quality bands have been chosen. Besides, we have
tested two channels belonging to the best band: an error-free (BER = 0, only
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Table 2
Quality bands in GSM

Quality Band BER

0 BER < 2 · 10−3

1 2 · 10−3 < BER < 4 · 10−3

2 4 · 10−3 < BER < 8 · 10−3

3 8 · 10−3 < BER < 1.6 · 10−2

4 1.6 · 10−2 < BER < 3.2 · 10−2

5 3.2 · 10−2 < BER < 6.4 · 10−2

6 6.4 · 10−2 < BER < 1.28 · 10−1

7 1.28 · 10−1 < BER

coding distortion) and a low error one (BER = 10−3).

4.2 Baseline Experiments

4.2.1 Front-End

Two parameter sets have been used for the baseline experiments: MFCCs and
LP-MFCCs and figure 3 illustrates the way we have implemented them.

As can be observed, the difference between both parameter sets relies on how
the speech spectrum is obtained. In particular, the “Spectral Analysis” step in
the MFCC computation is replaced by the “Pole Modeling” and “Spectrum
Envelope Computation” steps in the LP-MFCC case. In this last case, the
order of the all-pole model has been experimentally chosen. In particular, we
have considered (always for clean speech) 8, 10, 12, 14 and 16, obtaining very
similar results above 10. Consequently, we have chosen that order for our
experiments.

In both cases, we use a 25 ms Hamming analysis window, obtaining 12 coef-
ficients every 10 ms. These static features are extended with the log-energy
and the corresponding first order delta parameters.

In those experiments (described further on) where an additional filtering stage
is introduced, the delta features are calculated from the filtered sequence
of spectral parameters (either MFCCs or LP-MFCCs). Hanson and Apple-
baum (1993) show that calculating the regression parameters from the fil-
tered ones yields better results. Their experiments involved filtering either
the log-subband energies or the cepstral coefficients obtained from a PLP
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Fig. 3. MFCC and LP-MFCC analysis

(Perceptually-based linear prediction) analysis, but similar results can be ex-
pected for MFCCs or LP-MFCCs.

4.2.2 Back-End

The back-end is based on HMMs (Hidden Markov Models). The HTK toolkit
Young et al. (1995) has been used to build the system. Context-dependent
acoustic models have been used, namely: cross-word triphones. A three-state,
three-mixture per state model is used to represent each triphone. The synthesis
of unseen triphones in the training set was performed through a decision tree
method of state clustering. Models are obtained using either clean speech (just
for reference experiments) or coded speech, without transmission errors. These
last models are used for every wireless speech recognition experiment, with or
without transmission errors. Finally, the standard word-pair grammar is used
as the language model.

It is important to note that when the temporal trajectories of the coefficients
are filtered the acoustic models are trained using those filtered parameters.
Thereby, we avoid any possible mismatch introduced by that filtered stage.
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Fig. 4. Baseline results: WER(%) for two parameter sets, MFCCs and LP-MFCCs,
and several channel conditions

4.2.3 Baseline results

Figure 4 shows the recognition results, in terms of Word Error Rate (WER),
for the two parameter sets considered and several channel conditions, namely:
clean speech, speech under coding distortion (BER = 0) and speech under
coding distortion and transmission errors (BER = 10−3, 10−2, 2.5 · 10−2 and
5 · 10−2). These results will be taken as the baseline for future comparisons.

From these experiments we draw our first conclusion: MFCCs achieve slightly
better performance for clean speech but LP-MFCCs are superior when coding
distortion and transmission errors are considered. Furthermore, as the channel
conditions worsen the performance improvement becomes more significant.
This is very likely to the smoother spectral envelope obtained due to LP
analysis carried out as a part of the LP-MFCC parameterization procedure.

4.3 MFCC Bandwidths

Before designing low- and high-pass sections to filter the time sequences of
the MFCCs, we have analysed which are the most relevant bands of their
modulation spectra (we assume that those corresponding to LP-MFCCs will
be quite similar). A block diagram of the process involved in that bandwidth
estimation for every coefficient is represented in figure 5 and summarized as
follows (Peláez-Moreno et al. (2002)):

• First, twelve MFCC coefficients (MFCC i[nf ], where i = 1, 2 . . . 12 and nf

is the time index) are extracted from clean speech. This process is similar
to the one explained in figure 1 but, in this case, a very small frame period

16



w

.

.

Power
Spectral
Density
Estimation

Power
Spectral
Density
Estimation

Power
Spectral
Density
Estimation

MFCC
analysis

Compute
90 % EBW

Compute
90 % EBW

EBW_1

EBW_2

EBW_12

Compute
90 % EBW

Average
over n

Average
over n

Average
over n

.

.

.
.
.

.

Speech

PSD_1[k]

PSD_2[k]

PSD_12[k]

Signal

MFCC_1[n ]

MFCC_12[n ]

MFCC_2[n ]

PSD_1[k, n  ]

PSD_2[k, n  ]

PSD_12[k, n  ]

w

w

w

f

f

f

w

w

.
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.

is used. As a result, the temporal trajectory of the MFCC parameters is
oversampled in order to avoid any possible aliasing effect that could affect
the bandwidth estimation process. Note that this frame period is just used
for bandwidth estimation and not for speech recognition.

• Second, we analyze the individual time sequences corresponding to every
MFCC coefficient using long Hamming windows. Specifically, we use win-
dows with a duration equal to 2 seconds and with a 50 % of overlap between
neighboring windows. On the one hand, such a long window imposes a very
poor time resolution; but, on the other hand, the frequency resolution is
high, making possible to estimate bandwidths with an accuracy around 1
Hz as required by this problem.

Then, the power spectral density is computed for each window. Those
signals are represented in figure 5 under the notation PSD i[k, nw] (i =
1, 2 . . . 12) where k represents the frequency modulation index and nw rep-
resents the time index that corresponds to the current window.

• Third, we compute the mean power spectral density (PSD i[k], i = 1, 2 . . . 12)
making an average over all the power spectral densities. From this mean
power spectral density we compute what we call Effective Bandwidth (EBW),
that is, the bandwidth within which a specific fraction of the spectral power
is concentrated. For example, a 90 % EBW refers to the bandwidth con-
taining the 90 % of the energy of the current signal (EBW i, i = 1, 2 . . . 12
in figure 5).

A similar estimation procedure is employed with the log-energy coefficient
extracted from the speech signal.

Finally, in figure 6 we have depicted the 90 % EBWs for the log-energy and
the twelve MFCCs. From that figure, it is clear that the EBW of the MFCCs
increases with the coefficient order, starting around 9 Hz for the log-energy
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and 11 Hz for the first MFCC and ending around 32 Hz for the 12th MFCC.

4.4 Low-pass filtering

In section 3.3 we advocated the convenience of band-pass filtering the modu-
lation spectrum of each coefficient in order to find a robust parameter set. We
design our filter in two steps: first, a tailored low pass section is build to cope
with transmission errors and, second, a high pass section is added. This two
stage filter design allow us to weight up the contribution of each section into
the final results.

The design of the high-pass section will be presented in section 4.5 while the
low-pass section is introduced in the current section.

4.4.1 FIR filters

Though previously reported results concerning the MFCC bandwidths suggest
to use a different filter for every coefficient, some preliminary results did not
indicate a clear advantage of using different filters. Actually, similar results
were found using the same filter for every coefficient that do not justify the
increment of complexity involved in the use of different filters.

Thus, using the same filter for every coefficient, we have assessed the effec-
tiveness of low-pass filtering the two reference parameter sets, MFCC and
LP-MFCC, for several channel conditions. We have finally employed an FIR
filter; nevertheless, the use of an IIR filter is briefly examined in the next sub-
section. Figures 7 and 8 illustrate the whole schema embbeding the filtering
stage of MFCC or LP-MFCC parameter set, respectively.

To gain insight on the more desirable characteristics (order and cutoff fre-
quency) of the sought filter, its effectiveness (in terms of recognition accuracy)
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has been assessed for the following set of parameters and conditions:

• Order: 10, 20 and 30
• Cutoff frequency (Hz): 8, 10, 12, 18, 24, 30
• Environment: Clean speech, BER = 0, 10−2, 2.5 · 10−2, 5 · 10−2

concluding that a 20th-order filter with a cutoff frequency of 12 Hz is the one
that achieves the best results. Although a 20th-order filter seems to be too high
considering the potential ”time spreading” (the impulse response extends over
200 ms.), the achieved improvement (as will be shown below) under coding
distortion and transmission errors is high enough to consider the selected filter
order as a good trade-off.

It is worth noting that the selected cutoff frequency is close to the ones found
by other authors like Nadeu et al. (1997) or Kanedera et al. (1998). If we
relate this cutoff frequency with the bandwidth estimation made in the previ-
ous subsection (figure 6), we observe that the chosen cutoff frequency allows
almost the whole spectral power of the first four coefficients to remain, while
turning out quite selective for the remaining coefficients. In other words, this
low-pass filter, in addition to removing the high frequencies of the modula-
tion spectra, performs some type of liftering by attenuating the higher-order
coefficients.

Figure 9 shows the results for the two filtered parameter sets, LPF-MFCC
(Low-Pass Filtered MFCC) and LPF-LP-MFCC (Low-Pass Filtered LP-MFCC).
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Fig. 9. WER achieved for LPF-MFCC and LPF-LP-MFCC and the corresponding
unfiltered versions, MFCC and LP-MFCC

Besides, for comparison purposes, the results corresponding to the unfiltered
ones are also shown.

From these results, we extract the following conclusions:

• Low-pass filtering the parameter set is beneficial from the recognition point
of view. Even without any distortion, filtering the MFCC coefficients leads
to some improvements. And what is more important, improvements increase
as channel conditions worsen.

• When some kind of distortion is present, the best results are achieved by
LPF-LP-MFCC. In particular, the relative reduction of the WER with re-
spect to LP-MFCC has a mean of 11.9 %.

4.4.2 IIR filters

Lower-order IIR filters can be as selective as the chosen 20th-order FIR filter.
Therefore, at least from the computational point of view, it is worth trying IIR
filters. However, as long as the design of a computationally efficient implemen-
tation is not the aim of this paper, we have only conducted some preliminary
experiments to explore if IIR filters should be considered in the future.

In particular, we haved tested a 5th order Butterworth IIR filter with a cutoff
frequency of 12 Hz. This filter was assessed only for the LP-MFCC parameter
set (so far, the most successful). The results are slightly lower than the ones
obtained with a FIR filter. Therefore, IIR filters could be considered as an
alternative and computationally more efficient implementation.
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4.5 Band-pass filtering

In this section we have evaluated the benefits of the inclusion of a high-pass
section to deal with coding distortion and transmission errors.

We start evaluating the performance of the RASTA-PLP method, a very well-
known technique which performs a band-pass filtering in the log-spectral do-
main. In order to make the differences between the filtering stage in RASTA-
PLP and the proposed filtering of MFCCs or LP-MFCCs clear, we briefly
compare RASTA-PLP with LPF-MFCC and LPF-LP-MFCC in the following
subsection.

We have also empirically compared RASTA-PLP with LPF-LP-MFCC for
several channel conditions. As shown below, RASTA performs better for lower
BERs (easy channels) while LPF-LP-MFCC turns out to be superior for higher
BERs (difficult channels). These results reveal two conclusions: 1) the high-
pass section of RASTA-PLP is beneficial; and 2) the low-pass section should
be sharper for medium and high BER channels.

4.5.1 RASTA-PLP (RelAtive SpecTrAl-Perceptually-based Linear Prediction)

Figure 10 illustrates the block diagram of RASTA-PLP (Hermansky and Mor-
gan (1994)) computation. Below follows a brief review of the goal of each block
and its relation with those involved in MFCC and LP-MFCC computation
(figure 3).

• Spectral analysis: the same as the one used in the MFCC analysis.
• Critical band analysis: This stage matches up with the “Mel-scale filter-

bank” although the weights are different.
• LOG (logarithm): it transforms a convolutional distortion into an additive

one.
• Band-pass filtering filters the time trajectories of the log-subband energies.

The RASTA filter has the next transfer function:

H(z) = 0.1z4
2 + z−1

− z−3
− 2z−4

1 − ρz−1
(1)

As shown in this expression, the RASTA filter has four zeros and one
pole (ρ). Originally, this pole was set to 0.98 by the authors of RASTA
(Hermansky and Morgan (1994)) but they also tried with different values.

• EXP (exponential): inverse of the previous logarithmic operation.
• Equal-loudness pre-emphasis: this step can be compared to “pre-emphasis”

in MFCC. The goal is the same in both cases: to take into account the dif-
ferent sensitivity of the human hearing system to different frequency bands.
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• Intensity-loudness power law: the spectrum magnitude is comprised aiming
at replicating the human hearing behaviour by simulating the relationship
between intensity and tonality (perceived intensity). In MFCC and LP-
MFCC parameter sets this goal is pursued by the “Log” operator.

• Pole modeling: the spectral envelope is estimated. In our experiments, the
model order was experimentally chosen to be 12 after having tested several
orders (8, 10, 12, 14 and 16) for both clean and distorted (coding distortion
and transmission errors) speech.

• Cepstral analysis: the same as the one in the MFCC or LP-MFCC analysis.

In comparison with PLP, RASTA includes a filter stage in the logarithmic
spectral domain, which is implemented through three steps: ”LOG”, ”band
pass filtering” and ”EXP”.

With respect to MFCC and LP-MFCC, the main differences are found in how
the speech spectral envelope is estimated and how the human hearing behavior
is taken into account.

Several pole values of the RASTA filter (ρ in eq. (1)) have been experimentaly
tested. We test values from 0.5 till 0.98 for both, clean and distorted - coding
and transmission errors- speech. We observed that as the pole position gets
closer to one, the results improve. However, for the highest pole positions
the differences were not significant and, consequently, we have fixed the pole
position, ρ, to a value equal to 0.98.

Figure 11 compares the word error rates achieved by PLP, RASTA-PLP and
LPF-LP-MFCC for several channel conditions. On the one hand, the RASTA
band-pass filter yieds clear improvements with respect to PLP when coding
distortion and transmission errors are considered. On the other hand, LPF-
LP-MFCC turns out to be better than RASTA-PLP for channels with BERs
equal or higher than 2.5 · 10−2, while RASTA-PLP is the best solution for
lower BERs.

The last results allow us to draw two main conclusions:

• RASTA filter is effective to deal with coding distortion and transmission
errors.

• Low-pass section of RASTA filter is not as selective as required for medium
and high BERs.

The last conclusion leads us to propose a new approach combining a high-pass
section similar to that of the RASTA filter, and a low-pass section similar to
the one suggested for filtering the LP-MFCCs.
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4.5.2 Combining the high-pass section of RASTA-PLP with a sharper low-
pass section

A band-pass filter has been designed combining the high-pass section of the
RASTA filter (with the pole at ρ = 0.98) and a low-pass section similar to
that of the 20th-order FIR filter proposed for LPF-LP-MFCC. The band-pass
filter so conceived has been implemented using 20 zeros and 1 pole. Figure
12 shows the frequency amplitude response of this filter. The phase has been
chosen to be linear.

We have tested this new filter in two different configurations: 1) for filtering
the LP-MFCC parameter sets in the same way that we had proposed the first
low-pass filtering, as illustrated in Figure 8. Henceforth, we call this approach
BPF-LP-MFCC (Band-Pass Filtering LP-MFCC). And 2) as an alternative
to the band-pass filtering of RASTA-PLP. From now on M-RASTA-PLP
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(Modified-RASTA-PLP).

Figure 13 shows the performance, in terms of word error rate, of BPF-LP-
MFCC in comparison with LPF-LP-MFCC for several channel conditions (re-
sults for LP-MFCC have also been depicted for reference). As it can be ob-
served, BPF-LP-MFCC always yields the best results, with relative improve-
ments (with respect to LPF-LP-MFCC) going from 2 % for a BER of 0 to
14 % for a BER of 5 ·10−2 (for clean speech the relative improvement is equal
to 6 %). Therefore, it can be concluded that the high-pass section of the filter
is also beneficial for speech recognition in wireless environments. Furthermore,
the advantage due to the high-pass section is higher as the channel conditions
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Fig. 13. WER: Comparative assessment of BPF-LP-MFCC and LPF-LP-MFCC.
Results for LP-MFCC have also shown for reference

worsen. In particular, the improvements are statistically significant 2 for BERs
of 2.5 · 10−2 and 5 · 10−2.

The results, again in terms of word error rate, corresponding to M-RASTA-
PLP in comparison to RASTA-PLP for several channel conditions are shown
in figure 14 (those achieved by PLP have also been included for reference). In
this case, parallel conclusions can be drawn: M-RASTA-PLP is always better
than RASTA-PLP and the improvement due to the new low-pass section of the
filter is higher as the BER of channel increases. In particular, the improvements
are statistically significant for BERs of 2.5 · 10−2 and 5 · 10−2.

Finally, Figure 15 shows a comparison between the two approaches, BPF-
LP-MFCC and M-RASTA-PLP. Although the differences are not statistically
significant, the trends are very clear: BPF-LP-MFCC is superior for higher
BERs while M-RASTA-PLP is the best solution for lower BERs. We think
that these results are due to the place where the pole modeling is performed.
In the PLP parameter set, the pole modeling is done in its latest stages while,
in the LP-MFCC parameter set, it takes place at the beginning. Although
further work should be done for extracting a clear conclusion, our first intuition
is that the smoothing step performed by the pole modeling should be done
earlier for channels with high BERs.

2 We have stated the statistical significance of the results calculating the confidence
intervals, for a confidence of 95 % (see Weiss and Hasset (1993), pp. 407-408, for
details).
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5 Conclusions and directions of further work

In this paper we have tackled the problem of speech recognition in a wireless
environment, paying special attention to coding distortion and transmission
errors. Our work is inspired in previous works that suggested filtering the
modulation spectra of the recognition features to deal with channel-distorted
or noisy speech. We have applied and adapted these ideas to the distortions
typical of wireless speech communications.
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Our work starts proposing a low-pass filtering of the recognition features to
remove the potential artificial high frequencies appearing in their modulation
spectrum due to transmission errors. To assess our proposal, we establish two
baseline parameter sets, namely, MFCCs and LP-MFCCs. Those experiments,
using either MFCCs or LP-MFCCs, showed that LP-MFCC is preferable to
MFCC when coding distortion and transmission errors are considered. And,
furthermore, the corresponding low-pass filtered parameter sets, called LPF-
MFCC and LPF-LP-MFCC, turn out to be better than the original (unfil-
tered) ones. In particular, LPF-LP-MFCC provides the best results.

In order to compare our proposal with other previous works, we have also as-
sessed the performance of RASTA-PLP, a well-established filtering-based tech-
nique, in the context of wireless speech communications. The results achieved
by RASTA-PLP in comparison to those of LPF-LP-MFCC allow us to draw
the following conclusions: 1) the high-pass section of the RASTA-PLP band-
pass filter yields improvements in the recognition performance in presence of
coding distortion and transmission errors; and 2) the low-pass section of the
same filter is not sharp enough to deal with this type of distortions, especially
for medium and high BERs.

Motivated by this last conclusion, we have designed a band-pass filter com-
bining the high-pass section of RASTA-PLP with the low-pass section that
we had proposed for filtering LP-MFCC. This novel filter has been applied in
two configurations: 1) as an alternative to the low-pass filtering proposed to
filter the LP-MFCC, called BPF-LP-MFCC and 2) as an alternative to the
band-pass filter of RASTA-PLP, leading to what we have called M-RASTA-
PLP.

The experimental results indicate that the novel band-pass filter provides bet-
ter results than previous filters, in both configurations, when coding distor-
tion and transmission errors are considered, especially for medium and high
BERs. In particular, M-RASTA-PLP is superior to RASTA-PLP for almost
every channel conditions and BPF-LP-MFCC is always better than LPF-LP-
MFCC. In both cases, the improvements are statistically significant for the
two highest BERs.

Finally, we have compared M-RASTA-PLP and BPF-LP-MFCC to conclude
that, although both parameter sets yield similar results, it seems clear that
M-RASTA-PLP should be selected for low BERs while BPF-LP-MFCC is the
best option for high BERs. Although further work is needed to extract a clear
conclusion, our first impression points at the position of the pole modeling
stage as the responsible of that behavior: when BER is high (the distortion is
high), it seems better to carry out the pole modelling at the first stages (as in
LP-MFCC) of the feature extraction procedure.
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We suggest four lines of research for further work. First of all, we would like
to extend the experiments using the new AMR speech coder. Second, we plan
to assess the proposed filter when, besides coding distortion and transmission
errors, additive noise is also present. Third, the use of IIR filters should be ex-
plored in more detail. In addition, the use of different filters for each coefficient
should be further investigated.
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