336 research outputs found

    High capacity photonic integrated switching circuits

    Get PDF
    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks appear at the physical layer of these switched interconnects due to its energy consumption and footprint. The energy consumption of the highly sophisticated but increasingly unwieldy electronic switching systems is growing rapidly with line rate, and their designs are already being constrained by heat and power management issues. The routing of multi-Terabit/second data using optical techniques has been targeted by leading international industrial and academic research labs. So far the work has relied largely on discrete components which are bulky and incurconsiderable networking complexity. The integration of the most promising architectures is required in a way which fully leverages the advantages of photonic technologies. Photonic integration technologies offer the promise of low power consumption and reduced footprint. In particular, photonic integrated semiconductor optical amplifier (SOA) gate-based circuits have received much attention as a potential solution. SOA gates exhibit multi-terahertz bandwidths and can be switched from a high-gain state to a high-loss state within a nanosecond using low-voltage electronics. In addition, in contrast to the electronic switching systems, their energy consumption does not rise with line rate. This dissertation will discuss, through the use of different kind of materials and integration technologies, that photonic integrated SOA-based optoelectronic switches can be scalable in either connectivity or data capacity and are poised to become a key technology for very high-speed applications. In Chapter 2, the optical switching background with the drawbacks of optical switches using electronic cores is discussed. The current optical technologies for switching are reviewed with special attention given to the SOA-based switches. Chapter 3 discusses the first demonstrations using quantum dot (QD) material to develop scalable and compact switching matrices operating in the 1.55µm telecommunication window. In Chapter 4, the capacity limitations of scalable quantum well (QW) SOA-based multistage switches is assessed through experimental studies for the first time. In Chapter 5 theoretical analysis on the dependence of data integrity as ultrahigh line-rate and number of monolithically integrated SOA-stages increases is discussed. Chapter 6 presents some designs for the next generation of large scale photonic integrated interconnects. A 16x16 switch architecture is described from its blocking properties to the new miniaturized elements proposed. Finally, Chapter 7 presents several recommendations for future work, along with some concluding remark

    Fault-Tolerant Single-Chip Vector Processor : architecture and performance analysis using Livermore loop benchmarks

    Get PDF
    Electrical Engineerin

    A Scalable Multi-Stage Packet-Switch for Data Center Networks

    Get PDF
    The growing trends of data centers over last decades including social networking, cloud-based applications and storage technologies enabled many advances to take place in the networking area. Recent changes imply continuous demand for bandwidth to manage the large amount of packetized traffic. Cluster switches and routers make the switching fabric in a Data Center Network (DCN) environment and provide interconnectivity between elements of the same DC and inter DCs. To handle the constantly variable loads, switches need deliver outstanding throughput along with resiliency and scalability for DCN requirements. Conventional DCN switches adopt crossbars or/and blocks of memories mounted in a multistage fashion (commonly 2-Tiers or 3-Tiers). However, current multistage switches, with their space-memory variants, are either too complex to implement, have poor performance, or not cost effective. We propose a novel and highly scalable multistage switch based on Networkson- Chip (NoC) fabrics for DCNs. In particular, we describe a three-stage Clos packet-switch with a Round Robin packets dispatching scheme where each central stage module is based on a Unidirectional NoC (UDN), instead of the conventional singlehop crossbar. The design, referred to as Clos-UDN, overcomes shortcomings of traditional multistage architectures as it (i) Obviates the need for a complex and costly input modules, by means of few, yet simple, input FIFO queues. (ii) Avoids the need for a complex and synchronized scheduling process over a high number of input-output modules and/or port pairs. (iii) Provides speedup, load balancing and path-diversity thanks to a dynamic dispatching scheme as well as the NoC based fabric nature. Simulations show that the Clos-UDN outperforms some common multistage switches under a range of input traffics, making it highly appealing for ultra-high capacity DC networks

    Optimizing hardward granularity in parallel systems

    Get PDF

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    A multiple-bus, active backplane architecture for multiprocessor systems

    Get PDF
    This research investigates several problems associated with current multiprocessor interconnection networks, focusing primarily on general-purpose, shared-memory configurations. The project deals with all aspects of the interconnection, from the architectural level to the physical backplane. A bus-based architecture is presented as an alternative to the limitations of current schemes. This dissertation will focus on the physical layer implementation;For increased reliability, performance and scalability, a multiple-bus architecture is proposed. Each bus uses a word-serial approach to keep the total number of bus signals manageable. A source-synchronous transfer protocol allows data to be streamed at a high rate, thus increasing the pin-efficiency of the bus. The control acquisition scheme combines collision detection and priority arbitration to minimize bus access time without requiring additional signal lines. Cache coherence, message passing, and synchronization primitives are provided within the bus protocol to support multiple-processor systems;To reduce the capacitive loading on the bus, an active backplane is employed. This moves the transceiver and bus interface unit from the plug-in module down to the backplane. In addition to increasing the characteristic impedance of the bus, it also reduces the end-to-end propagation delay. Another advantage of moving the bus transceivers to the backplane is the uniform load presented to the bus, regardless of whether a slot is populated;Due to the reduction in drive current required, a custom CMOS transceiver, suitable for VLSI implementation, is used. It incorporates the collision detection circuitry required for the control acquisition scheme. Initial transceiver prototypes have been designed and fabricated in 2-[mu]m CMOS. These have been successfully tested at transfer rates in excess of 50MHz

    Multistage Packet-Switching Fabrics for Data Center Networks

    Get PDF
    Recent applications have imposed stringent requirements within the Data Center Network (DCN) switches in terms of scalability, throughput and latency. In this thesis, the architectural design of the packet-switches is tackled in different ways to enable the expansion in both the number of connected endpoints and traffic volume. A cost-effective Clos-network switch with partially buffered units is proposed and two packet scheduling algorithms are described. The first algorithm adopts many simple and distributed arbiters, while the second approach relies on a central arbiter to guarantee an ordered packet delivery. For an improved scalability, the Clos switch is build using a Network-on-Chip (NoC) fabric instead of the common crossbar units. The Clos-UDN architecture made with Input-Queued (IQ) Uni-Directional NoC modules (UDNs) simplifies the input line cards and obviates the need for the costly Virtual Output Queues (VOQs). It also avoids the need for complex, and synchronized scheduling processes, and offers speedup, load balancing, and good path diversity. Under skewed traffic, a reliable micro load-balancing contributes to boosting the overall network performance. Taking advantage of the NoC paradigm, a wrapped-around multistage switch with fully interconnected Central Modules (CMs) is proposed. The architecture operates with a congestion-aware routing algorithm that proactively distributes the traffic load across the switching modules, and enhances the switch performance under critical packet arrivals. The implementation of small on-chip buffers has been made perfectly feasible using the current technology. This motivated the implementation of a large switching architecture with an Output-Queued (OQ) NoC fabric. The design merges assets of the output queuing, and NoCs to provide high throughput, and smooth latency variations. An approximate analytical model of the switch performance is also proposed. To further exploit the potential of the NoC fabrics and their modularity features, a high capacity Clos switch with Multi-Directional NoC (MDN) modules is presented. The Clos-MDN switching architecture exhibits a more compact layout than the Clos-UDN switch. It scales better and faster in port count and traffic load. Results achieved in this thesis demonstrate the high performance, expandability and programmability features of the proposed packet-switches which makes them promising candidates for the next-generation data center networking infrastructure

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    High-speed, economical design implementation of transit network router

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 88-90).by Kazuhiro Hara.M.S

    A formalism for describing and simulating systems with interacting components.

    Get PDF
    This thesis addresses the problem of descriptive complexity presented by systems involving a high number of interacting components. It investigates the evaluation measure of performability and its application to such systems. A new description and simulation language, ICE and it's application to performability modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description language which was first proposed for defining reliability problems. ICE is declarative in style and has a limited number of keywords. The ethos in the development of the language has been to provide an intuitive formalism with a powerful descriptive space. The full syntax of the language is presented with discussion as to its philosophy. The implementation of a discrete event simulator using an ICE interface is described, with use being made of examples to illustrate the functionality of the code and the semantics of the language. Random numbers are used to provide the required stochastic behaviour within the simulator. The behaviour of an industry standard generator within the simulator and different methods of number allocation are shown. A new generator is proposed that is a development of a fast hardware shift register generator and is demonstrated to possess good statistical properties and operational speed. For the purpose of providing a rigorous description of the language and clarification of its semantics, a computational model is developed using the formalism of extended coloured Petri nets. This model also gives an indication of the language's descriptive power relative to that of a recognised and well developed technique. Some recognised temporal and structural problems of system event modelling are identified. and ICE solutions given. The growing research area of ATM communication networks is introduced and a sophisticated top down model of an ATM switch presented. This model is simulated and interesting results are given. A generic ICE framework for performability modelling is developed and demonstrated. This is considered as a positive contribution to the general field of performability research
    corecore