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Abstract 
In order for parallel architectures to be of any use at all in providing superior 

performance to uniprocessors, the benefits of splitting the workload among several 

processing elements must outweigh the overheads associated with this "divide and 

conquer" strategy. 

Whether or not this is the case depends on the nature of the algorithm and 

on the cost: performance functions associated with the real computer hardware 

available at a given time. 

This thesis is an investigation into the tradeoff of grain of hardware versus 

speed of hardware, in an attempt to show how the optimal hardware parallelism 

can be assessed. 

A model is developed of the execution time T of an algorithm on a machine as 

a function of the number of nodes, N. The model is used to examine the degree to 

which it is possible to obtain an optimal value of N, corresponding to minimum 

execution time. 

Specifically, the optimization is done assuming a particular base architecture, 

an algorithm or class thereof and an overall hardware cost. 

Two base architectures and algorithm types are considered, corresponding to 

two common classes of parallel architectures: a shared memory multiprocessor 

and a message-passing multicomputer. The former is represented by a simple 

shared-bus multiprocessor in which each processing element performs operations 

on data stored in a global shared store. The second type is represented by a two-

dimensional mesh-connected multicomputer. In this type of system all memory 

is considered private and data sharing is carried out using "messages" explicitly 

passed among the PEs. 
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1.1 Problem Statement 

It is not obvious that a parallel computer is always better than a uniprocessor. In 

general, it is not obvious that more processors are always better than fewer. If the 

cost of hardware is fixed, then the number of processing elements becomes one of 

several inter-related design parameters, and must undergo optimization with the 

others. 

For a fixed cost, and for a given architecture, a number of actual designs are 

possible, ranging from one expensive processing element (PE) to several of a lower 

cost. The criteria governing which number of PEs is optimal are the subjects of 

study of this thesis. The main goal is to show how a model for optimizing N, the 

number of PEs, may be developed. 

1.1.1 Processors - An Illustration 

If the aggregate performance of all processing elements in a fixed cost system was 

independent of the number of elements, then parallelism would have little to offer 

computer architects as a means of increasing performance. N processing elements 

each of speed 11N cannot outperform a single processing element of unit speed 

[28]. In fact, it is likely that the single PE would fare better than the many because 

of overheads, such as communication, in the multi-node system. 

Consider the algorithm represented by the graph in figure 1-1. Each of the 

nodes represent a task, and the arrows are dependencies. Tasks C and D cannot 

begin execution until tasks A and B respectively have completed. 

In this illustration it is assumed (unrealistically, as will be shown later) that 

the cost: performance of PEs is linear. In other words $D buys a total perfor- 

mance of M whether one purchases a single PE of that performance, or N PEs 
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Single node PE 1 I A I B I C I D I Time = 4 
system 

Two node PE1I 	A 	I 	C  Time = 4 system PE2I 	B 	I 	D 	I 

I I Execution Time 

Figure 1-1: Effect of linear cost: performance - Basic DAG 

each of performance MIN and cost $D/N [36] [37]. It is also assumed (again, 

unrealistically) that interprocessor communication carries no processing overhead 

and that the tasks consist of CPU-bound instructions only, and do not require 

external memory accesses. The figure shows the execution of the algorithm on a 

uniprocessor and on a two-PE system. It is apparent that while adding a second 

processor has allowed the use of concurrency (simultaneous execution of A and B, 

and of C and D), the fact that each of the PEs in the two-PE system is half as fast 

as the single PE means that no performance increase is actually achieved. The 

advantage of concurrent operation on the two node system is exactly cancelled by 

the necessary use of slower nodes. 

However, the above is hardly a parallel algorithm. The task graph is not 

connected and effectively represents two unrelated sequential computations. In 

figure 1-2 the results of several tasks are combined by a single final task. The 

execution times on various systems, with the same assumptions as before, are also 

shown. 
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A) (B) (C) (D) (E 

F 
Single node PE 1 I A I B I C I D I E I F I Time = 6 

system 
Two node PE 1 A C 	E 	I 	F Time = 8 

system PE21 B I 	D 
Three node PE  A D 	F I 	 Time =9 

system PE2 B E 
PE3 C 

Four node PE A 	 E 	I F 	I 	Time =12 
system PE 2 B 

PE3 C 
PE4 D 

Five node PE A 	 F I 	Time =1O 
system PE2 B 

PE3 C 
PE4 D 
PE51 E 

I I 	I 	I 	I 	I 	I 	I I 	I 	I 
Execution Time 

Figure 1-2: Effect of linear cost: performance - Connected DAG 
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Now, even though communication is still ignored, the multi-PE systems are 

decidedly slower than the single-PE system. Parallelism, in this case, is not merely 

a neutral option, but is in fact a performance-degrading factor. 

Finally, consider the implictions of a sub-linear PE cost: performance. For 

example, if the performance P is defined to be the reciprocal of the time a PE 

takes to execute a task, then let P for a PE of cost C be given by: 

P = 	 (1.1) 

Now, with such a relationship between cost and performance, increasing the 

parallelism has obvious performance benefits (figure 1-3). The rate of decrease 

with N of the number of tasks the most heavily loaded PE must perform is greater 

than the rate of increase of the task execution time. 

A key component then, in determining optimal N, is the precise nature of the 

PE cost: performance. This is discussed in detail in chapter 2. 

However, in this example, as before, both communications and memory ac-

cesses are ignored. 

If a time overhead is incurred whenever a FE must wait for a communication 

from another, then the benefits of using multiple PE's diminish. If this overhead 

itself is related to the number of PE's, (e.g. if it increases as a network increases in 

size), then the positive effects of sub-linear cost: performance have to be weighed 

against the negative effects of increasing network latency. 

Also, if the amount of memory required in a system increases with N, then 

for a fixed total memory cost, the parallel system will be forced to use cheaper 

(and therefore slower) memory devices. An example of such space scaling is given 

below. 
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A) (B) (C) (D) (E 

F 
Single node PE1 IA I B IC IQ 	F I Time =6 

system 
Two node PE 1 I 	A 	I 	C 	I 	E 	I 	F 	I Time = 5.6 

system PE 21 B I D 
Three node PE 1 A 	0 	I 	F 	I Time = 5.1 

system PE 2 B 	E 
PE3 C 

Four node PE 1 A 	E 	I 	F 	I Time = 6 
system PE 2 B 

PE3 C 
PE  0 

Five node PE 1 A 	F 	I Time = 4.5 
system PE2 B 

PE3 C 
PE4 D 
PE 51 E 

I 	I 	I 	I 	I 	I 	I 	I 	I I 	I 
Execution Time 

Figure 1-3: Effect of sub-linear cost: performance 
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1.1.2 Space Scaling 

Let A = (1', i) be a graph of tasks, where I' is the set of tasks, and L is a set of 

precedence relations among the members of F (see [70], and also page 69) section 

4.3.1). For a set of processors, P, a schedule of A on P is a set of triplets, S such 

that: 

S = {'y,p,t : 'yE F,p e P,t eAf} 

where t is the starting time, on processor p, of the corresponding task 'y. A 

general goal of scheduling is to minimize the maximum t in S. 

Large amounts of literature exist on various aspects of scheduling in multi-

computers - see [53] for a useful survey. Of particular interest here is the scenario 

in which obtaining an optimal schedule requires that some tasks in the DAG be 

recomputed on several processors [35] [57]. Recomputation may be required when 

the time to transmit the result of a computation from the processor on which it 

was obtained to a processor requiring the result is so great that the destination 

node can obtain the result faster by recomputing the result on its own behalf. 

In the section of DAG shown in Figure 1-4, each of the arcs has a weight cor-

responding to the length of time required to send a message if the arc connects 

two tasks on separate processors. The figure shows the execution of the DAG on 

a single processor, on two processors without recomputation and on two proces-

sors with recomputation of task T. The existence of a communication delay for 

any data transfer sent from one processor to another means that the minimum 

execution time is obtained by running task To  simultaneously on both processors. 

In this way the communication delay is avoided completely. 

In the context of this study, the degree to which recomputation reduces exe-

cution time cannot be understood without recognising the potential degradation 

in memory system performance of increasing the amount of memory in a fixed 
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Single Processor 

P0 

Tn 

Tn+1 

Tn+2 

T=30 

Two Processors 
No Recomputations 

P0 	P1 

Tn_ 	Idle 
Tn+1 

Tn+2 

T=25 

Two Processors 
With Recomputations 

	

P0 	P1 

	

Tn 	Tn 

	

Tn+1 	Tn+2 

T=20 

Figure 1-4: Weighted DAG Section 
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cost system. Recomputation requires that both data and code space be multiplied 

across as many processors as can usefully recompute a result, and this may require 

a reduction in the performance of that memory. 

A specific example of space scaling will be discussed in detail in chapter 4. 

1.2 Motivation 

This work has two major motivations; the optimization of parallel system designs, 

and the optimization of semiconductor device portfolios for such designs. 

1.2.1 Parallel System Design 

During a panel discussion at a recent supercomputing conference [59] the speakers 

were asked for their opinions on which system philosophy - large numbers of cheap 

processors versus small numbers of expensive processors - was best. The speakers 

included representatives from companies advocating the use of large numbers of 

off-the-shelf processors and those offering systems consisting of a relatively modest 

number of custom-built, very high performance processing elements [51]. That 

this problem is still open can be seen from the continuing presence of machines 

(e.g. those from CRAY Research) which consist of a small number (less than 

10) of extremely powerful processing elements while, at the same time, massively 

parallel machines using microprocessor-based PEs are also on offer [40]. A useful 

survey of this field can be found in [62] [73]. The panel's unanimous answer was, 

"it depends". The first motivation of this thesis is to begin to answer the following 

question, raised by that panel's answer: 

Upon what and to what degree does it "depend"? 

It may be that both types of system, and others besides, offer particular ad-

vantages in particular situation. (If so then perhaps the notion of a truly general 
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purpose parallel system is unrealisable [33]). But a model which quantifies those 

advantages and specifies the situations in which they exist will be valuable. Among 

other things, it may explain why it is that, so far, massively parallel systems have 

not been embraced by industry and business users. It is curious that, while re-

search into parallel computers has developed tremendous momentum over the past 

decade (a cursory glance at the list of journals publishing research in this area in-

dicates a continuing growth in the amount of work in progress in all aspects of the 

field), large-scale parallel machines have failed so far to find widescale application 

in the commercial arena. This failure is often blamed on deficiencies in various 

areas of parallel software. These vary from the practical lack of easy-to-use par-

allel compilers, efficient parallel operating systems, etc., to the more fundamental 

lack of a general purpose model which can span the gap between hardware and 

software [74] [26] [12]. 

But these deficiencies are only half the story. 

The level of tolerance that a computer user has to a decrease in ease of use of a 

new computing environment compared with an existing system is directly related 

to the level to which performance can be boosted within that environment, again 

compared with the existing system. In other words, users will put up with a lot if 

the rewards are big enough. 

A key reason that massive parallelism has been relatively unsuccessful in in 

dustry is not per se that computers in that architectural paradigm are difficult 

and costly to program, but that they are not outperforming equal-cost sequential 

systems enough to outweigh that difficulty and cost. Sequential systems are often 

still too good to be discarded in favour of their parallel cost-equivalent. 

1.2.2 Optimizing Device Portfolios 

Regardless of the current state of affairs, it seems reasonable to believe that even- 

tually sequential systems will lose their attraction, not least because insurmount- 
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able physical limits to individual component speed will be met [48]. If this is true, 

then it is worthwhile considering the implications for providers of components for 

computers. 

For most of the history of commercial computing machinery, the vast majority 

of computers have been single-node systems. Today, with mass produced per-

sonal computers and workstations, this is particularly obvious. Therefore, it is 

understandable that the manufacturers of microelectronic components for such 

machines will have based their device portfolios on the demands of single-node 

architectures. A typical system consists of a single microprocessor connected by 

relatively simple means to a memory system. The latter may be hierarchical with 

one or more levels of cache, and a high capacity storage medium such as disk. 

The range of memory, processor and support chips available, with their associated 

costs and performances reflect the strengths and weaknesses of the underlying von 

Neumann architecture as a model of computing machinery. 

It is not obvious that the current situation is optimal for parallel machines. 

The existing marketplace, in terms of volume of machines of a particular per-

formance, influences the profile of the product portfolios of the various component 

manufacturers. Fast computers are currently built from fast parts, while low- to 

mid-range components are used for the larger volume markets. However, if it was 

found that the optimal number of nodes for a common application was greater than 

one, then this could cause a shift in the demands placed on the silicon producers. 

Similarly, it is not unreasonable to ask if the current ratio of memory: processor 

hardware resource will be the same in a massively parallel SIMD computer (for 

example) as it is in the typical high-performance workstation available today. If 

not, then again the range of devices, in terms of speed, capacity and cost may 

have to change to suit the new market created by parallel architectures. 

Thus the second motivation of this thesis is to provide input for the develop- 
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ment of component portfolios. It will provide a means by which questions such as 

the following may be considered: 

Are fast expensive processors the best devices with which to implement very 

high performance computers? 

Do current memory device portfolios offer the best range of speeds and ca-

pacities for high performance computers? 

What performance and relative pricing (currently relatively unknown) is ap-

propriate for interconnection devices? 

1.2.3 Tradeoffs in a Fixed Cost System 

The tradeoff between number and speed of components is just one example of a 

more general principle which, through an investigation of optimal grain, this thesis 

is intended to highlight. The principle is that in a fixed cost system, a proposed 

enhancement in one part can only be implemented by reducing the performance (in 

the widest sense) in another part. In the context of this study, the enhancement 

consists of adding processors, and the manifold drawbacks include a reduction in 

the performance of the existing processors. Another example is the option to add 

more memory to an existing system. This is usually worthwhile, but it is only one 

of a number of alternatives, including increasing the speed of existing memory, 

or adding a cache (without increasing actual primary store capacity), or even 

adding further processors instead of memory. Deciding which enhancement to 

perform requires an understanding of not only its benefits, but also the drawbacks 

elsewhere in the system. Also, it is crucial to bear in mind that a system will 

tend to be only as fast as its slowest component. A great deal of existing parallel 

architecture research, while focussing on one specific aspect of the system (e.g. 

the interconnection network) leaves the question of the overall balance of hardware 
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unasked and unanswered. For example, in many interconnection network studies 

a key goal is the development of an interconnect which provides, for minimum 

cost, the highest performance possible. Performance is typically a combination 

of latency and throughput. It is generally acknowledged that electronic complete 

connections, while being excellent topologically, are too costly (0(N 2 )) to be viable 

and so other networks, such as various multistage topologies are often proposed 

in an attempt to approach complete connection performance without incurring 

the high cost [21] [42] [43]. However, this approach, driven as it is by the goal of 

maximum possible performance, fails to take into account the fact that in a fixed-

cost system the processing hardware may never need an interconnection scheme 

as powerful as an efficient multistage let alone a complete connection. The goal of 

network design should be the development of an interconnect which provides, for 

minimum cost, the highest performance necessary, as dictated by the demands of 

the workload, and in balance with the performance of the rest of the hardware. 

Another example is memory device and microprocessor speed. A typical read 

access to memory will involve the microprocessor driving address and control infor-

mation onto the appropriate signal lines on the memory devices, and then waiting 

for the relevant handshake signal before reading the data. Usually the handshake 

will be checked on a particular clock edge, and a full clock cycle (or "wait-state") 

must be inserted if the handshake is not ready. 

If the memory is fast enough, it can respond with data to allow the processor 

to operate with zero wait-states and at maximum speed. Slower memory, on the 

other hand, may force the processor to stall as it inserts wait-states while the 

memory devices access and drive the data. So, in terms of this access mechanism 

alone, it is useless to invest significant amounts of the system budget in either 

very fast memory or very fast processors, if each is not matched to the other. The 

memory should be fast enough to provide valid data as soon as the processor can 

accept it, but no faster. Conversely, the processor cannot make use of any extra 
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speed (considering memory accesses only) over and above that corresponding to 

best-case memory access time. 

Tradeoffs of this type will not be considered further in this thesis. Here the 

tradeoff of interest is the number of components versus their speed. 

1.3 Related work 

A significant amount of research has been carried out over the last two and a 

half decades into the performance of all aspects of computers, particularly parallel 

computers. This has ranged from general models of system performance, relying on 

relatively high level machine descriptions and statistical workload representations 

[32] [45], to precise simulation models of a specific detail of a microprocessor, or 

network switch, etc. [49] [55]. However, in much of this research, while the cost 

of hardware has not been completely ignored, it has not been fixed in such a way 

as to reflect the real tradeoffs faced by a budget-bound designer in the real world. 

The merits of some enhancement may be considered and weighed up against the 

cost of implementing the enhancement, but little work has been done to examine 

those merits in a fixed cost system where the enhancement can be implemented 

only at some cost to the rest of the system. 

In parallel architectures in particular, relatively few studies have attempted to 

quantify the potential negative effects in any part of the system, of trying to induce 

a positive effect in another part. Models of speedup and scalability, for example, 

are common [54] [69] [66]. These examine how the overall performance of a system 

will increase as N is increased, but typically where the processor type is the same 

throughout the analysis. That is, the cost of the system increases appropriately. 

The significance of the cost increase may be recognised as a decrease in pro-

cessor utilization and system efficiency [20]. However, a decrease in efficiency is 

really significant only if an alternative solution exists which results in a higher 
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utilization and therefore a higher performance. Of more immediate significance is 

the fact that if system cost is fixed then either: 

Cost is fixed at that of the initial system and therefore the proposed (more 

parallel) system must use cheaper PEs; or 

Cost is fixed at that of the new system (i.e. one containing more PEs of the 

type in the original system). In this case, an alternative "new" system can 

be contemplated; that is one containing the same number of PEs as in the 

original machine, but where the PEs are more expensive. 

Of specific relevance to this study is work by Barton and Withers [4]. They 

investigate the optimization of N by considering real processor cost: performance 

functions in the form: 

C = dVb 
	

(1.2) 

where C is processor cost, V is processor speed, and b and d are positive 

constants. 

They conclude that 

"for a given cost, delivered performance is maximized by selecting the 

fastest processor available at a given technology level, and employing 

as many as the budget allows". 

This conclusion is drawn using b = 0.25 but is made more general by noting 

that b can be expected to exceed unity as the leading edge of technology is ap-

proached. For b > 1 the optimal N may itself be greater than one, but is still 

finite. This study is a useful starting point but focusses on only one specific aspect 

of the problem; that is the speed of the processors as a function of their cost. The 
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effects of interprocessor communications are not included in their analysis, nor 

are the effects (if any) of memory references. Intuitively, interprocessor commu-

nication should be further reason to restrict the number of processors used, since 

communication can be a performance liability. 

Similar work was reported by Van-Catledge [75]. In this paper the author 

provides a comparison of three broad classes of parallel computers under various 

combinations of problem size scaling and serial fraction. The comparison consists 

of finding the combination of clock speed, scaling factor and serial fraction which 

provides performance greater than or equal to that of some reference machine. 

The general conclusions support those in [4] and imply that a small number of 

fast PEs is superior to a larger number of slower PEs. In fact, like Barton and 

Withers, Van-Catledge ignores the effects of communications overhead and so, 

in that respect, understates the result. On the other hand, as indicated in [44], 

the superiority of the coarse-grain machines depends on the overheads associated 

with parallel processing (primarily communication) growing faster than 0(N). 

Further, it is pointed out that the exact nature of the cost: performance function 

of the processors can have a critical impact on the optimal number of nodes. 

Even if the overhead grows faster than 0(N), still the cost of nodes may begin 

to increase so dramatically at technology leading edges that it is better to use a 

large number of slower nodes than to invest in a small number of state-of-the-art 

devices. 

The notion that parallelism may not be the panacea for the demand for higher 

computing power is not new. As early as 1967 Gene Amdahl suggested that, 

because of inherent sequentiality in some algorithms, parallelism may not offer 

such significant performance improvements as were being promised [3]. However 

even Amdahl's paper did not account for the further drawbacks of increasing N 

which occur if the total system cost is fixed. Gustafson further developed "Am-

dahl's Law" to account for the fact that often, parallelism is used not to increase 

speed of a fixed-size computation, but to increase the size of problem which can 
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be solved in a fixed time [23]. This provided more momentum for parallelism, 

but again did not take into account the effects of cost fixing. In 1987, Lundstrom 

tackled the problem of optimal use of computing resource in a general manner 

[46] and this was examined in a more detailed way by Ho and Snyder in 1990 

[27]. The latter suggested a principle of computer design which considered a pro-

posed enhancement to a computer to be cost-effective if the fractional reduction 

in computation time resulting from the enhancement was greater than the frac-

tional increase in cost of the enhancement. This notion has some merit, but at 

the leading edge of technology and performance the only enhancements possible 

may not be "cost-effective" (their definition). This is because at that leading edge, 

serious diminishing returns are experienced as more and more resources must be 

expended to obtain a rapidly decreasing performance improvement. Lundstrom 

takes a broader view and considers the solution to the problem as a black box 

which must achieve an optimal cost: performance. This leaves open the option of 

implementing an enhancement of significant cost and minimal performance ben-

efit, but for which the cost: performance is already optimal. In other words, an 

enhancement becomes "cost effective" if the performance benefits provided by the 

enhancement cannot be provided in any other, less expensive, way. 

1.4 Approach 

Two principal parameters of computer performance measurements are execution 

time, T and problem size, P. The latter could be some measure of the size of 

the data set on which some algorithm must be performed. In most situations, a 

computer user requires maximum PIT while restricting the range of one of the 

two parameters. In the context of this study, the goal is, for a fixed cost system, 

to choose N, the number of nodes, so as to minimize one of T or P as a function 

of the number of nodes. For either, the other parameter may be held constant. 

In other words, the problem is to choose the number of processors with which can 
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be solved the largest problem in a given time, or a given size of problem in the 

shortest time. 

In practice the maximum attainable speedup in most algorithms is limited, 

for any particular problem size, by the sequential portion of the computation [3]. 

As a result, the greatest benefit of parallelism is often to increase the amount of 

work which can be carried out in a reasonable (i.e. acceptable to the user) time. 

This is as opposed to decreasing the execution time of a fixed size problem [23] 

[68]. There appears to be a tolerance, on the part of a users, to various delays 

experienced when requiring different tasks of a computer. For example, the refresh 

of a drawing in a CAD application must be no more than fractions of a second 

whereas it seems acceptable for the compilation of a small to medium high-level 

language program to take some tens of seconds or more. Large simulations may 

take hours or even days; the simulations carried out to investigate further the 

models in this thesis took several hours per run. An increase in computing power 

in circumstances like these would more likely result in larger drawings, and more 

complex compilations and simulations rather than (or at least in addition to) a 

decrease in time for the original problems. 

Nevertheless, the time to solution, even for the largest problem, must be kept 

to some acceptable maximum. And even if an increase in N does allow an increase 

in problem size, the question still remains as to whether or not an equivalent (or 

greater) increase could be obtained using another equivalent cost system with 

a different number of nodes. Therefore, without loss of generality, the focus of 

attention in this study will be execution time. In order to emphasize the effects 

being considered, the PEs in all cases will be considered to be equally loaded. 

In other words the algorithms will have no sequential fraction. In reality, such a 

fraction will enforce an upper limit on the number of PEs that can be usefully 

employed. Although ignoring the unparallelizable aspect of a computation will 

bias any overall analysis in favour of parallelism, and towards a higher optimal N, 

its inclusion would serve to mask some of the specific effects of interest. Since it is 
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such effects that are the focus of study here, the algorithms used will be assumed 

completely parallel. In general, including the serial fraction would not be difficult 

and could be accounted for as a constant component (independent of N) of the 

critical path of the algorithm. 

The basic approach will be to develop a model of the execution time T of an 

algorithm on a machine as a function of the number of nodes, N. The model will 

be used to examine the degree to which it is possible to obtain an optimal value 

of N, corresponding to minimum execution time. 

Specifically, the optimization will be done assuming: 

A base architecture. 

An algorithm or class thereof 

An overall hardware cost. 

Two base architectures and algorithm types will be considered, corresponding 

to two common classes of parallel architectures: a shared memory multiprocessor 

and a message-passing multicomputer [6]. The former will be represented by a 

simple shared-bus multiprocessor in which each PE performs operations on data 

stored in a global shared store. The second type will be represented by a two-

dimensional mesh-connected multicomputer. In this type of system all memory 

will be considered private and data sharing will be carried out using "messages" 

explicitly passed among the PEs 

In addition, two sets of information are required, and will be developed in this 

study: 

1. The cost: performance functions of the various hardware functions and com-

ponents. For example, how many MFlops can be bought per dollar? How 

many MBytes of storage of a given access speed? How many MBytes/second 

of data transferred across what distance? 
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2. In terms of the above functions, the demands which the software will place 

upon the hardware. 

The single advantage (in terms of increasing performance) of a parallel com-

puter over a sequential system is that it can divide work among its various pro-

cessing elements. This means that, ignoring overheads associated with communi-

cation, the workload on the most heavily loaded PE in a parallel system typically 

will be less than the workload on a sequential machine running the same program. 

However, opposing this advantage are several disadvantages, including: 

• The workload on the PEs in a parallel system may be more than a simple 

11N division of the original program. For example, in some search algo-

rithms the ratio of the number of comparisons done by a single PE system 

compared with that done by a PE in an N-node system is only O(logN) 

and not 0(N) [41] [60]. Further, the parallel algorithm will typically require 

processing associated with communication as well as delays incurred by that 

communication. 

• The hardware components in the parallel system, being more numerous than 

in the sequential system, are cheaper and therefore potentially slower than 

those in the latter. 

• Some hardware components may constitute a shared resource, having to 

respond to demands from more than one PE. Such sharing can result in a 

FE being delayed in making use of a shared resource while another PE has 

ownership. Such contention does not exist in a sequential system. 

Whether or not a parallel system will provide a higher performance than an 

equivalent cost sequential system depends on the net effect of combining these 

negative factors with the positive advantage of dividing the workload among the 

PEs. This can be generalized to compare two or more parallel systems with 

different numbers of PEs. 
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1.4.1 Thesis Outline 

This thesis is laid out in the following manner. Following this introduction, in 

which the basic problem and context are described, chapter 2 discusses the rela-

tionship between the cost and performance of current (mid 1990's) VLSI technol-

ogy. Specifically, models are presented of cost versus instruction execution time, 

memory access time and switch latency. Chapter 3 then incorporates the results 

from chapter 2 into a model of the execution time of an algorithm on a shared-

bus multiprocessor. In a similar way, chapter 4 develops a performance model for 

an algorithm on a two-dimensional mesh multicomputer using a message-passing 

communications scheme. Chapter 5 compares the model predictions with sim-

ulation results and discusses some of the implications of the models presented 

to that point. Finally, chapter 6 concludes and provides suggestions for further 

development of this work. 
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2.1 Introduction 

This chapter analyzes the relationships between cost and performance of the com-

ponents used in current computers. 

The hardware can be split into three basic functions: processing, storage and 

interconnect. Corresponding to these are three basic components: microproces-

sors, memories and routers. In each case, it is assumed that the component is 

constructed in technology current in the mid 1990's. At this point in time, VLSI 

devices are common and ULSI components are imminent. Systems are constructed 

from ensembles of such components, packaged and grouped on printed circuit 

boards, or perhaps as unpackaged dice on ceramic substrates. These assumptions 

allow detail to be developed in the parameters in question, but do not limit the 

overall applicability of the analysis. 

2.2 Processing Hardware 

Advances in VLSI microprocessor performance are currently being achieved in two 

key ways: by increasing the operating frequency of a device and by increasing its 

internal parallelism. 

Clock frequency is determined by several factors, gate-oxide thickness and "fea-

ture size" being two of the most crucial. The latter in particular is often quoted 

by semiconductor manufacturers as an indication of the sophistication of their 

manufacturing process. Feature size, typically quoted in microns, is a measure 

of the length of the silicon channel in the MOS transistor - the basic component 

of VLSI devices. The figure given may also refer to the width of metal lines on 

the mask used to print photoresist patterns during various stages of wafer fabri-

cation. An alternative to this "drawn length" is the measured electrical length 
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of the channel, LEffectjve , which is typically 10% to 20% smaller than the drawn 

length. Whichever is quoted, as feature size is decreased, switching times and 

signal propagation delays decrease. Shorter interconnects also present smaller ca-

pacitances to drivers bringing further speed improvements. In contrast with recent 

geometries of 1 to 2 micron and above, 0.8 micron designs are now commonplace 

in mid-range devices [30] and 0.65 micron offerings are already available. Sub-0.5 

micron devices are planned. 

Of at least equal significance to clock speed, in determining device performance, 

is the degree of internal "parallelism" in the device. This is most commonly seen 

as an increase in the width of the data path of microprocessors. 8-bit devices, still 

used in low-end single-chip micro controllers have mostly given way to 16 and 32 

bit architectures, and 64-bit devices are available. However, while earlier devices 

used their internal parallel data path as a means of executing binary arithmetic 

at increasing speeds, today's processors provide a more explicit use of parallelism 

in the form of superpipelining and multiple execution units. However internal 

parallelism is implemented, increasing this aspect of a device requires an increase 

in the number of transistors in the design. 

A third factor affecting device performance in certain circumstances is pin-

out. Increasingly, designs are "pad-limited", i.e. the limit on device performance 

is imposed not by circuit complexity but by the I/O bandwidth of the packaged 

chip. This is currently an issue because of the large amount of silicon space 

required for bond pads onto which the device pins are connected and because the 

area of a die grows faster than its perimeter length. Some of the newest packaging 

technologies are helping to overcome this problem by allowing pins to be connected 

across the surface of the die, rather than simply along its edges [19], however this 

is still an expensive option and in use for only the leading edge of the market. For 

the purposes of this study, it will be assumed that the pins are bonded to pads 

around the die perimeter and that pin-out is proportional to the square-root of 

the die area. 
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These two aspects, the number of transistors as a measure of device paral-

lelism and feature size as key to clock frequency will be taken as the main factors 

determining device performance. 

With this in mind, a cost model for ICs is now developed. 

2.2.1 Cost and Price 

Cost is a measure of what a manufacturer has to do to produce a device. Price is 

a measure of what a purchaser of that device must do to buy it. 

If the manufacturer of a computer system purchases all of the required com-

ponents from other manufacturers, then the difference between device costs and 

prices are large, varied, and subject to all the vagaries of large scale economics. 

Device prices must cover not only manufacturing costs but also design and devel-

opment. Sales and marketing overheads may also be significant factors. Also, of 

course, the price of a device is heavily dependent on demand. While very general 

trends can be observed, there are so many factors at work (including, for example, 

pricing strategies which sustain real short-term losses in order to increase longer-

term market share, or raising the price of older end-of-life devices to encourage 

purchasers to move to newer products) that actual device prices are of little use 

in obtaining the required relationship to performance. 

If, on the other hand, the manufacturer of a computer system decides to man-

ufacture the devices required to build the system, then price and cost are almost 

the same and one of the lower cost margins is appropriate. For this reason, cost 

will be used as the primary factor governing performance. 

2.2.2 Modelling IC Cost 

The production of a VLSI device can be considered as a sequence of steps, in each 

of which an initial number of devices of some form (die sites on wafers, individual 
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dice, etc) may be put through a process phase and then subjected to a test phase. 

The devices passing the test will continue onto the next step and the remainder are 

discarded. Alternatively, those failing a test may be retested under a less stringent 

set of parameters (e.g. at a lower clock frequency) and passed or failed accordingly. 

In some steps no processing is carried out and the devices are subjected to several 

tests in sequence. The fraction of input devices which pass a test phase is called 

the step yield. The final overall cost of a device is therefore the total cost of all 

steps, (taking into account the continually decreasing number of devices remaining 

within the process) divided by the final number of good devices. If the number 

of devices passed into the first step is D, then the total cost, GIG,  for a device 

produced in an n-step sequence is: 

GIG 
D(C 1  + C 1 )+ Dy1 (C 2  + Cr2 ) + ... + Dy 1 y2  ... y(_ 1) (C + C) = 

Dy 1 y2 
 ... 

y 

- > 	((cr, ± G 1 ) nyj ) 

- 	ffl=oYk 

where: 

Cpi = cost of processing phase in step i 

Ct2  = cost of testing phase in step i 

y2 = yield of step i (Yo = 1) 

The processing phase (if one exists) in each step may consist of a large number 

of sub-processes and the number of steps in the overall sequence depends on the 

confidence the manufacturer has in the quality of each sub-process. In general it 

is beneficial to remove bad devices from the sequence as early as possible. This 

saves the cost of processing failed product any further, and may prevent non-

functional parts from reaching the end-customer. However, these benefits must 

be set against the costs of testing. If these costs are significant compared with 

the costs of processing, then it may be acceptable to allow the progress of bad 
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devices down some way the sequence. A sufficiently small probability that bad 

devices exist in any numbers is also reason to minimize testing. When sub-process 

quality exceeds a certain level a given test may be deemed no longer necessary. 

As a result, a device which, in early years of manufacturing, required three tests 

to be applied to all devices may finally be manufactured and sold having only one 

final test applied to a sample of finished product. In this case the test is being 

used merely to tune and affirm confidence in the manufacturing process rather 

than systematically to remove faulty devices. 

Often the manufacturer will combine the processing and testing costs in each 

step into a single figure. These step costs, along with the associated yields, are the 

focus of the various groups within the semiconductor manufacturing organization 

in their attempts to reduce final device cost. The overall cost is thus: 

	

CIC 
- 	 (c u; Yj) 

	

- 	 (2.1) 
11k0 Yk 

where C2  is the combined processing and testing cost of step i. 

For current microprocessors a typical manufacturing process consists of at least 

three steps: wafer fabrication and sort", assembly, and final test. A burn-in step 

may also be carried out (before final test) in which packaged devices are operated 

at a high temperature for a short time (up to a week) in order to "kill off" devices 

of marginal quality. 

Wafer fabrication consists of the numerous layering, patterning and other steps 

to take the basic silicon through to complete circuits on the wafer. During fabri-

cation, several tests are carried out on the developing wafer to provide feedback 

to process engineers and to eliminate defective wafers as early as possible. These 

include various electrical measurements and visual and automatic optical tests. 

After processing, the wafers are tested in wafer sort. Here individual die on the 

built wafers are tested while still attached to each other and faulty die are iden-

tified. This is done using an attachment to the tester which makes contact with 
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the pads of the device using tiny wire probes - hence the alternate name, "probe 

test". 

This point in the process is often taken as the first costing point by manufac-

turers, the cost being referred to as probed wafer cost. This covers not just the 

manufacture of the wafer, but the cost of probe test itself. 

The wafer is then scribed and the individual dice separated. Those marked 

during probe are discarded and the remainder are packaged using one of several 

materials and techniques. A second significant cost, that of assembly, is recognised 

here. 

Finally, the packaged devices are passed through a comprehensive test suite 

before being shipped to the customer. The final cost of the device is obtained at 

this point. 

Numerous variations on this process are possible. For example, if the manufac-

turer has sufficient confidence in the wafer fabrication process then probe test may 

be considered an unnecessary expense. In this case all devices will be packaged 

and only then subjected to the final test. Alternatively, rather than omit wafer 

sort entirely, a minimal sampling probe test regime may be followed as a check on 

the manufacturing process up to that point. 

For the sequence just described, following equation 2.1 the cost of the final 

device is: 

Qrc 
Cs + YSCA  + YSYACF 

= 	 (2.2) 
YsYAYF 

where: 
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Cs = Probed (sorted) wafer cost per die 

Ys = Probe yield - the fraction of probed die which pass probe test. 

CA = Assembly cost per die 

YA = Assembly yield 

CF = Final test cost - the cost to test a packaged device 

YF = Final test yield - the fraction of packaged devices which pass final test. 

Probed Wafer Cost 

For VLSI, wafer fabrication is usually the major component in the overall cost of an 

IC. Various factors affect this cost component including labour and material costs 

and also the cost of depreciating equipment. The latter is particularly significant 

in new wafer fabrication facilities. In older more mature installations which are 

fully depreciated, capital costs decrease but labour costs are still significant. 

Three of the most important process parameters affecting cost are wafer size, 

number of fabrication sub-processes, and feature size. Current wafer fabrication 

costs vary from less than $20 to $60 or more per square inch of wafer depending 

on these factors [24] [25]. For example, decreasing feature size will, in general, 

require more expensive and less-depreciated equipment. Increasing the number 

of sub-processes (reflected, for example, in an increase in the number of layers of 

metal) will typically increase the time and materials used to build the wafer with 

a resulting increase in labour and material costs. 

These three parameters are not independent of each other. As designs grow 

in size and complexity (i.e. in transistor count), all three parameters are affected. 

Feature size is decreased to increase device speed but also in order to keep the 

die size acceptably low. This is necessary to keep wafer sort yield high. Another 

area-saving method is to increase the number of layers of metal interconnect on 

the die. Single and double-layer metal processes are not sufficient for advanced 

microprocessors, and so three, four or more layers are being used. Also, since these 
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extra steps are typically taking place with smaller feature sizes, the cost of each 

step will also be increased. Wafer size itself is also increasing as device complexity 

grows. This is to achieve a large number of die per wafer allowing the wafer cost 

to be amortized over a larger number of units and reducing the relative number 

of non-functional edge dice. 

Feature size is also significant in the testing component of Cs.  The cost of 

wafer sort depends on the hourly cost of the probe facility and on the time to test 

the die. 

VLSI testers are increasingly sophisticated and expensive machines, the re-

quired performance of which depends upon (among other factors) the speed of 

operation of the device under test. The depreciation cost of tester equipment is 

therefore a significant proportion of the probe cost for high performance devices. 

In general the capital costs are more significant in test than in fabrication and this 

distinction looks likely to increase for some time. 

The test time depends on at least four factors; load time, index time, actual 

test time, and number of die probed concurrently. Load time is the time to prepare 

the tester for a particular product and may be several tens of minutes. However 

this is amortized over all devices subsequently tested using that program and is 

only significant if the test program is changed frequently. Index time is the time 

to step the wafer across the probe head. 

The actual test time depends on the number of vectors required to achieve 

a given fault coverage and the speed at which these can be used. The former 

depends upon the circuit complexity and upon its observability [1]. Scan methods 

allow relatively high fault coverages for even very complex designs, however the 

time to achieve this still depends on the depth to which test patterns must be first 

clocked into and then out of the circuit. Assuming a fixed required fault coverage 

(e.g. 95 - 100%) actual test time will therefore be considered a function of the 

transistor count. This is as a measure of both complexity of the circuit and the 
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pin out (i.e. specifically the number of primary inputs and outputs) as described 

earlier. The number of die which can be probed at one time depends primarily on 

the pin-out (for a fixed pin-count probe head). 

These factors are not unrelated. For example, there is a tradeoff between the 

index time and the degree of concurrent probing. Testing more than one die at 

a time may reduce the actual test time, however it can serve to increase index 

time as the effective increase in area being aligned under the probe head makes 

alignment more difficult and time consuming. Also, the relative importance of 

these factors changes as one moves from simple to more complex devices. Actual 

test time is less significant for very simple devices and may be of the order of only 

a few milliseconds. This is due partly to the low complexity of the design, but 

also to the use of concurrent probing made possible because of lower pin counts. 

Unfortunately, while these tradeoffs are understood in a qualitative way, the 

fabrication/sort process is simply too complex to succumb to an attempt to 

model it in quantitative detail. The basic physical effects just described are often 

swamped by factors such as the familiarity of wafer fab personnel with a particu-

lar process (costs typically being higher on the early stages of the learning curve). 

Varying labour costs across the globe also produce significant variation in costs. 

Real day-to-day costing in the semiconductor industry uses real cost data from 

working wafer fabrication facilities across the globe, and the level of modelling is 

fairly superficial. 

However, of the three parameters discussed above, feature size seems to be the 

dominant parameter. Assuming that both the number of process steps and the 

wafer diameter are both increasing as feature size decreases then probed wafer 

cost per unit area appears to be exponentially related to feature size. Let the cost 

per square millimetre be denoted by u and be expressed as: 

u(A) = ae 	+ Ubase 	 (2.3) 
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Figure 2-1: Probed Wafer Costs 

where A is the feature size in microns and Ubase  is the lower bound on cost 

dictated by basic wafer fab running costs and minimal profit requirements experi-

enced by the manufacturer. The coefficients, a and b currently have values around 

0.2 and 3 respectively and Ubase  is of the order of 0.015 [25] [77] [22]. See figure 

2-1. 

Again, it must be stressed that this relationship is more complex than simply 

feature size versus cost. The cost increases so rapidly below 1.0 micron because 

the wafer size is also being increased at that point. The number of layers of 

metal is also being increased as feature size diminishes. In addition to increasing 

the fabrication cost, these factors simultaneously increase the cost of probing the 

wafer. 

Nonetheless, both wafer diameter and metallization are increasing in response 

to the same factor which is driving down feature size - i.e. device complexity. 

Thus feature size appears to be a good single indicator of the overall trend. 
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To obtain the final build cost for the die, equation 2.3 is multiplied by the die 

area. This assumes that the whole of the original wafer is available for die from 

which a device may be constructed. This ignores any test die placed on the wafer 

for monitoring the fabrication subprocesses and also any non-functional edge die 

(see p59 of [25]). 

The probed wafer cost per die of area Amm 2  is thus: 

C8  = A(0.2e 3  +0.015) 	 (2.4) 

Probe Yield 

Several probe yield models exist, including Murphy, Seeds and Dingwall [25] [76]. 

These express the percentage of working die on a wafer as various functions of 

die area, defectivity, number of critical masks, etc. However, for simplicity and 

without serious loss of accuracy, a simpler exponential model is often used in the 

industry and will be applied here. Probe yield is given by: 

1 
Ys = eAD (2.5) 

where: 

A = Die area 

D = Defect density (defectivity) 

Defect density here refers to the number of killer defects which render a die 

non-functional. This is in fact related to feature size, or more specifically to 

circuit density. The closer together circuit elements are, the more likely is a defect 

to destroy a vital piece of circuit. As such, defect density varies between different 

types of circuit; memories, for example, typically have higher defectivities (all else 

being equal) than processors. The addition of a dense area such as a cache will, 

however, increase the density of killer defects for a processor. Like costs, actual 
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defectivity data is not generally available and for the purposes of this model, an 

average value of 1.0 per square centimere will be assumed [24]. For a die of area 

Arnm 2  the probe yield is thus: 

Ys = e0 

1 	
(2.6) 

This yield model (nor indeed the more sophisticated models mentioned earlier) 

does not take into account the effect on yield of discarding a whole wafer, even if it 

contains some good die, if the wafer's yield falls below some acceptable minimum. 

(e.g. 60% of average). This is done as a precaution, the manufacturer's confidence 

being low on a wafer with such abnormally low yield. 

Assembly and Final Test 

The cost of packaging depends on several factors, two of the most important being 

the type of material being used, and the number of pins in the package. 

The packaging material is chosen to provide protection for the enclosed die, 

and a means of heat dissipation. Whereas early devices were built in dual-in-line 

plastic packages (PDIP), current high speed (and high power) devices may require 

ceramic pin-grid-array (CPGA) or quad-fiat-pack (CQFP) or similar. 

While there does seem to be a tendency to package larger, higher performance 

devices in packages built from more costly materials (and involving more costly 

processes), there is no easily accessible relationship. Therefore the package type 

will be assumed to be the same for all devices and the package cost will be governed 

by the number of pins (assumed earlier to be proportional to the square root of 

the die area). 

While some models in use assume a constant cost/pin for a given package type, 

in actual fact the function is probably not exactly linear. As one would expect, 
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Figure 2-2: Package Costs (Source: Microprocessor Report, October 4, 1993) 

the closer a packaging process is pushed to its leading edge, the faster does cost 

increase for a fixed proportional increase in "performance" (i.e. pin-out). 

Figure 2-2 shows typical package costs for several package types. An average 

cost is also shown, and it is this which will be used in the rest of this analysis. 

A simple model of cost versus pin-out, based on the data in figure 2-2 gives 

CA of a P-pin device as approximately: 

CA = 9 * 10 4P'•7 	 (2.7) 

As discussed earlier, pin-out will be regarded as being proportional to the 

length of the die perimeter length. Current package technologies allow between 2 
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and 6 pins per millimetre of die edge. Assuming an average of 4 pins per millimetre, 

pin-out is: 

P=4fA 

and so assembly cost for a die of area A mm 2  is: 

CA = 9.5 * 10 3 A °85 	 (2.8) 

Typically, assembled devices are given only a visual check before being passed 

onto final test. Irreparably bent leads are the commonest cause of failure at this 

stage, however yield at this stage, YA,  is almost 100% and will be assumed so for 

the rest of this analysis. 

Final test cost is affected by similar factors to those affecting wafer sort al-

though the relative importance of index time is increased since the test may be 

carried out at several temperatures, some requiring a "soak-time" to bring a de-

vice at ambient up to the relevant higher temperature. Hourly costs vary from less 

than $50 per hour to over $250 per hour for advanced state of the art testers. As 

with fabrication costs, feature size will be taken as the dominant factor affecting 

which type of tester must be used for a given device. The test cost per second, Ct, 

is roughly: 

	

Ct = 0.5e -41\ 	 (2.9) 

The range of test times for devices tested on a particular machine is usually 

small enough to allow an average figure to be used for all devices. An average test 

time of 2 seconds is assumed, and the test cost per device is: 

CF = e 4'' 	 (2.10) 
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Final test yield, YF,  unlike probe yield, is usually consistently high for pro-

duction devices. Final test is principally a method of verifying the overall quality 

of the process from wafer sort onward and is not really intended as a means of 

removing inevitably faulty devices. Persistant failures in final test are regarded 

as a serious problem which must be corrected. Since no significant relationship is 

obvious between any of the performance characteristics and this particular yield, 

a constant 95% will be assumed for all devices. 

Overall Cost 

Combining equation 2.2 with equations 2.4, 2.6, 2.8 and 2.10, the overall cost for 

an IC is given by: 

GIG = 
Ae°° (O.2e 3 ' + 0.015) + 9.5 * 10 3A °85  + e4A 

0.95 
(2.11) 

Die area depends on feature size, transistor count and circuit density, and also 

on the pin-out required on the device. Decreasing feature size produces smaller 

transistors which not only take up less space, but which can also be placed closer 

together on the die. High circuit densities are typically seen in regular circuitry 

such as memory devices. Optimising the layout of the basic memory cell gives 

significant area savings when those cells are laid out in hundreds of thousands, or 

even millions. 

For a range of existing mid-range to high-end microprocessors, an approximate 

expression for die area as a function of transistor count T and feature size is: 

A = 0.12VT°94 	 (2.12) 

Fortunately, die area is generally available for most devices, and the published 

figures will be used where possible. 
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2.2.3 Microprocessor Cost: Performance 

The purpose of this cost model is to establish a relationship between what it takes 

to produce a device and the performance of that device. To do this, a range of 

currently-available MOS microprocessor devices was surveyed. Various data were 

collected and are given in Appendix A. The device cost in each case was calculated 

using equation 2.11. Assessing device performance is more difficult. 

A significant effort has been, and continues to be put into producing useful 

performance metrics for computers and their components. Several problems are 

faced in preparing such benchmarks, not the least of these being the desire, on 

the part of users of the metrics, for a single number to be attached to a device or 

system as a measure of its performance. Equally problematic is the ease with which 

devices or systems under test can be optimized with respect to the benchmark 

alone; i.e. without affecting the performance in general. Since benchmarks are 

often used by potential purchasers of systems to weigh one against another, it 

seems unavoidable that there will be a tendency on the part of manufacturers to 

try to cast their products in the best possible light. 

In addition to these general problems microprocessor performance metrics are 

further complicated by the number of definitions of performance implied by the 

metrics themselves. The oft-quoted "millions of instructions per seconds" (MIPS) 

can be useful for comparing different processors with similar instruction sets. 

However, it is less appropriate when comparing CISC (complex instruction set 

computer) processors with devices following the RISC (reduced instruction set 

computer) paradigm. While the latter may exhibit a higher MIPS rating than the 

former, the "instructions" executed by a RISC machine often perform less actual 

work than those on the CISC machine. The difference in such "native" MIPS 

ratings may therefore be deceptive. In an attempt to solve this problem, normal-

ized MIPS are often quoted, where the performance measurement is with respect 

to some standard machine (e.g. a VAX 11/780). Another measurement giving a 
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more useful performance comparison is millions of floating point operations per 

second (MFLOPS). Unfortunately, these metrics take little account of the nature 

of the software being run on the system containing the processor. Where some 

devices outperform others in floating-point intensive calculations, the positions 

may be reversed in code requiring intensive integer operations. To reflect this 

dependency, some benchmarks have been devised to measure the performance of 

devices running a particular type of computation (e.g. Dhrystone, Linpack, etc). 

Finally, possibly the most significant problem with many device benchmarks 

is that they do not necessarily reflect the performance of a system containing the 

device. Since system performance depends on more than simply the raw speed of 

the processor, and since most computer users are concerned with the performance 

of the system as a whole, the current trend is to use a range of metrics which 

measure the total system performance over a wide range of types of code. One of 

the most common examples of this type of benchmark is the range of SPEC suites 

[11]. 

In deciding on a benchmark for use in this cost: performance model, it was nec-

essary to choose one which provided a wide coverage, and which avoided the prob-

lems of comparing unequal instruction types. Although SPECint92 and SPECfp92 

are system metrics, they are widely used as means of comparing the performance 

of the processors involved. 1nt92 was available for the widest range of devices, and 

so was the metric of choice. The value used was the maximum figure available on 

any machine using that device and so gives some idea of the potential performance 

of a processor. Because it is a system metric it cannot be used to compare devices 

of roughly the same performance, however its use here is to derive a more general 

relationship between performance and cost, and the performance differences re-

sulting from differing system architectures are assumed insignificant when a wide 

enough range of devices is considered. 

Table 2-1 shows cost performance data for several processors. 
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Table 2-1: Processor Cost: Performance 

Device 

Name 

Clock 

(MHz) 

Area 

(mm 2) 

Trans 

(k) 

Geom. 

(pm) 

Probe 

Cost 

Probe 

Yield 

Ass'y 

Cost 

Test 

Cost 1nt92 

Total 

Cost 

ARM610 25 26 360 0.6 1.34 77% 0.42 0.09 24 2.36 

ARM710 33 34 570 0.6 1.75 71% 0.54 0.09 32 3.26 

MPC601 100 74 2800 0.5 4.72 48% 1.18 0.14 110 11.81 

MPC603 100 85 1600 0.5 5.43 43% 1.36 0.14 115 14.94 

R4200 80 117 1300 0.6 6.03 31% 1.87 0.09 55 22.53 

MC68040 40 164 1170 0.65 7.64 19% 2.62 0.07 35 44.3 

R4400 200 134 2300 0.35 12.02 26% 2.14 0.25 117 50.86 

21064AA 200 178.5 1750 0.68 7.83 17% 2.86 0.07 130 52.22 

R4600 67 182.4 1900 0.64 8.67 16% 2.92 0.08 92.1 59.7 

PA7150 125 202 906 0.75 7.76 13% 3.23 0.05 135 65 

21064 200 234 1700 0.8 7.76 10% 3.74 0.04 106.5 88.73 

MPC604 100 196 3600 0.5 12.51 14% 3.14 0.14 160 96.96 

MC68060 50 198 2500 0.5 12.64 14% 3.17 0.14 49 99.86 

21164 320 210 2800 0.5 12.52 12% 3.36 0.14 201.5 111.31 

MPC620 133 289 6000 0.5 18.45 6% 4.62 0.14 300 354.5 

R8000 75 297.6 3400 0.5 19 5% 4.76 0.14 108 397.36 
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Figure 2-3: Processor Cost: Performance (t 1 ) 

The 1nt92 figures in the table can be regarded as a rate of execution of work, 

similar to MIPS. Comparing the MIPS and 1nt92 values for a few devices shows 

that they are of the same order of magnitude (i.e. 106),  and that MIPS is very 

approximately between 1 and 2 times greater than the 1nt92 figure. Now, this con-

version can be precarious. A major limitation of MIPS is that it does not deal well 

with the wide range of instruction complexities available across all processors. For 

this reason, converting back from 1nt92 to a notional MIPS (i.e. by multiplying 

1nt92 by, say, 1.5) is not generally useful. However, the relationship is mentioned 

to provide a sensible order of magnitude to the expression for tj  presented below. 

1nt92 is therefore taken as a measure of millions of "1nt92 instructions" per sec-

ond. By expressing the computational workload in terms of such "instructions", 

a corresponding instruction time, tj , can be expressed as simply the reciprocal of 

the performance. A graph of tj  against processor cost, Cp, is shown in figure 2-3. 

Since the intention is to identify the highest available performance at or less 

than a given cost, it was assumed that performance is a monotonic function of cost 



X 	t_I(act) 

t_I (caic) 

$100 

45.00 

40.00 

35.00 

30.00 

25.00 

- 
20.00 

15.00 

10.00 

5.00 

0.00 

$0 

- x x 

$200 	$300 	$400 

CHAPTER 2. VLSI COST:PERFORMANCE 
	

42 

Cost v t_I 
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Figure 2-4: Adjusted Processor Cost: Performance (t 1 ) 

and that the performance attainable at any given cost point was at least that at the 

previous point. This has the effect of removing anomolous dips in performance 

where a device of particularly low performance (e.g. a high-end CISC from a 

mature architecture) happens to possess an unusually high cost. Figure 2-4 shows 

tj  against Cp after removing such anomolies. Since the object here is simply to 

obtain an approximate relationship betwen cost and performance, strictly within 

the limits of the technology investigated, a visual curve fit is sufficient. 

Figure 2-5 shows the reciprocal of the tj  curve, the units of speed being millions 

of "1nt92 instructions" per second, as discussed. This performance curve has the 

general form: 

= I + me" 	 (2.13) 
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Processor Speed v Cost 
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where Cp is device cost, and 1, m and n are positive reals. The curve shown 

has I = 3.33 * iO, m = 43 * 10 and n = 0.1/3 giving: 

= 3.33 * 10 + 43 * 10 e
_ 3!2L 

seconds 	 (2.14) 

While the relationships given are approximate, a general form of relationship 

can be identified. The exact nature can be made more or less accurate, as required 

and as available data allow. 

Figure 2-5 shows the reciprocal of the above fit curve. The resulting "S" curve 

is typical of products implemented in a range of technologies, the oldest of which 

are mature and well-understood, but with significant development costs associated 

with the leading edge. 

If the total processor cost (resource) is R, then Cp, the cost of a single 

device, is simply the total cost divided by the number of processors, tj can now 

be expressed as the required function of N: 
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ti = 3.33 * 10 9  + 43 * 10-9 e- 3N seconds 	 (2.15) 

Equation 2.15 is the first of the three required hardware cost: performance 

functions. 

2.3 Memory Hardware 

If the space requirements of an algorithm grow as the number of processors is 

increased, then the speed of the memory system will decrease if either: 

Memory subsystem performance decreases with array size, or 

Memory component performance increases with cost 

This section deals with the second of these two factors. 

2.3.1 Memory Device Cost:Performance - tM 

The principal performance metric for memory devices is access time. This is 

usually a measure of the time delay between a valid address being presented to the 

device (usually qualified by a strobe signal of some sort) and a valid datum being 

returned. The other measure of importance is device capacity - the number of 

bits which can be stored. In practice the drive to increase capacity acts to restrict 

the device speed - the smallest cells, allowing the most dense layout, being among 

the slower options. To overcome this, memory designers use various architectures 

to enhance the access time of the slower DRAM devices. Since such devices are 

typically accessed using a row address component followed by a column address, it 
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Figure 2-6: Memory Cost: Performance (memory access time) 

is possible to allow fast access to a second, third or subsequent locations after an 

initial access has been made, provided the subsequent locations are in the same 

physical portion of the device as the first access. Page-mode and nibble-mode 

devices are examples of these techniques [52]. 

Despite the variation in architectures, memory devices are relatively simple 

compared with microprocessors, and the task of relating memory device param-

eters to cost and price is much easier than with the processors. Because of this, 

published memory device prices show a clear relationship to performance, and so 

will be used here. 

Figure 2-6 shows memory access time as a function of the cost-per-megabyte. 

The latter was derived from the mean ASP (average selling price) for a range of 

SRAM devices in 1994 [18], and assumes a 50% mark-up of price over cost. 
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As with processor cost: performance, a fit curve of the following form will be 

used: 

tM = I + me-'CM  

where CM is the cost of one megabyte. In this case, I = 8.810, m = 6.5* 10 

and n = 0.21. 

Figure 2-7 shows the reciprocal of tM. 

Since the total cost, RM, of memory must be split among the space require-

ments of all nodes in the system, the final expression for memory performance can 

now be written: 
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O. 21 RM 

tM = 8.8 * iO + 6.5 * 107e 'M 	 (2.16) 

where RM is total memory cost, and riM is the total space requirement in 

megabytes. 

Equation 2.16 shows how the performance of memory varies as the amouhnt 

of memory is varied and is the first of the two components needed to describe 

memory hardware performance. To obtain a relationship between memory perfor-

mance and N, a relationship between amount of memory, rij, and N is required. 

This depends on the algorithm and the base architecture and will be discussed in 

chapters 3 and 4. 

The next section discusses the last of the three hardware functions: the inter -

connection network. 

2.4 Interconnection Network Hardware 

Interprocess or intertask communication is a distinct liability to a parallel al-

gorithm. It is the undesirable side-effect of allocating related tasks to different 

processors. While dividing the work in this way produces the obvious benefit of 

reducing the total workload on any given processor, it has the disadvantage of 

forcing the processors to spend time communicating. 

The basic building block of the network is the router component. The partic-

ular type used depends on the network chosen but in general these components 

provide the connections among processors and memory in a multiprocessor, and 

among PEs in a multicomputer. They provide a multiplexing/demultiplexing func-

tion, along with any associated arbitration. Routers may also provide buffering 

for data in transit. 
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Router performance is a measure of how quickly a datum arriving at an input 

port can be passed through to the output. Two aspects will be conisidered in this 

study: 

Router Cycle Time - tR. This is the time between a single-bit datum arriving 

at an input until it is driven onto the appropriate output link. 

. Router Channel Width - WR. The size of datum which can be routed in a 

single cycle. 

In this chapter, the concern is only with the speed of unloaded routers - that 

is, contention is not discussed. The effect of loading depends on the algorithm and 

the topology, and will be discussed, where appropriate, in later chapters 

Typically, as N increases in a particular network, the number of routers also in-

creases. For a fixed overall cost, this increase will result in a decrease in individual 

router performance, to the extent that the latter is related to cost. 

Both aspects of performance, cycle time and width, are now discussed in turn. 

2.4.1 Router Cycle Time 

The router cycle time, tR, will be considered a function of the technology as a 

whole, much in the same way as processing speed. Typical components of tR are 

arbitration speed, which relates to clock frequency, and signal propagation delay. 

However, while there is a large range of processors in which one can investigate 

the relationship between cost and performance, the same is not true for network 

routers. Therefore, the same basic relationship between cost and performance 

which is used for processor speed will also be used for routers, however the coeffi-

cients and exponents must be treated with a degree of caution. Nonetheless, since 

the basic technologies are the same for both components, the general form of the 

relationship should be similar. Following equation 2.15, the router cycle time is: 
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OARg  
tR= (3-33 * 10-9  + 43 	

-9 __\ 
* 10 e 3N  ) seconds 	(2.17) 

where RR is the total cost of all router components and a is the number of 

router cycles which can be performed in one instruction time. The value of a 

depends on the precise way in which routing achieved. For simplicity, a value of 1 

will be assumed. That is, the time to make the routing decision will be considered 

equivalent to the execution time of an instruction. For routing methods which can 

perform all of the decision-making in hardware, a larger value of a is likely. 

2.4.2 Router Channel Width 

The way in which the width, WR,  of the network routers varies with N depends on 

the particular cost metric used. The overall cost of the actual wiring between the 

routers may be used. This can be done, for example, by fixing the wiring density on 

a PCB. This is appropriate if the "costly" aspect of fabricating the interconnection 

is achieving the required resolution in PCB or VLSI lithography. Alternatively, 

if the cost of the wiring material itself is significant, then the following method 

could be used. 

Assume that the PEs (in particular, their router components) are arranged 

on a planar interconnect medium with unit spacing between the eight non-local 

"ports" on the routers. 

The total link resource (i.e. cost) is considered to be a single "wire" of length, 

RL, which is divided into RL unit-length single-bit wires. These are then grouped 

into as many links as are required by the whole system. The number of such 

unit-length wires, that is the width WR of each link, depends on the total number 

of links in the system. 

In a bidirectional two-dimensional square mesh, the total number of links (ig-

noring local links) is: 
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nL  = 4(N - 

therefore, the channel width, WRLCR,  for a link cost restricted scenario is: 

WRLCR 	
RL 

(2.18) 
4(N—/N) 

Note that here WSLCR  is effectively a measure of the bandwidth of a link. As was 

pointed out in [38], this is not always accurate. In systems where the messages are 

shorter, in length, than the link is wide then the extra width of the link cannot be 

used by the message. In other words no message is able to cross a channel in less 

than tR. Nonetheless, for cut-through systems [39] using sufficiently large messages 

(B >> WR), this factor is not critical. Even in short-message communication, the 

consequences of ignoring this effect are small if the average distance travelled by 

a message is sufficiently large. In that case latency is dominated by the message 

header establishing the connection between source and destination. 

The preceding example is appropriate for a wire-limited implementation. How-

ever, an alternative method is to use the pin-out of the router device as the limiting 

factor in determining channel width. As VLSI technology advances, and an in-

creasing number of transistors is implemented on a single device, the number of 

connections between the device and the rest of the system is becoming a bottle-

neck. Several approaches are being used to deal with this problem, including the 

development of new IC packages with smaller lead separation, and also the direct 

bonding of die to a substrate to produce a Multi-Chip Module. Regardless of the 

approach taken, the number of connections which may be made to a device is, 

after fixing other crucial variables such as the package material, strongly related 

to the manufacturing cost of the device. The effect of increasing pin-out has an 

even stronger (increasing) effect on device price. 
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The proportion of overall device cost due to packaging varies depending on the 

device size and complexity, and on the package types. In general, package cost is 

more significant for smaller parts, although newer package technologies (e.g. Ball 

Grid Array) can account for a significant portion of the cost of even larger devices. 

An average of a third will be assumed [10] and, following equation 2.7, the total 

pin-out of a router is given by: 

RR 	\1.7 

= (2.7 * 10 3N) 

This assumes one processor per router. Assuming that the router pins are 

divided only among n communication channels (i.e. ignoring power, ground and 

other pins), the channel width for a router cost restricted scenario is: 

1 

WR SCR  - / 
RR 

n 	10-3A (2.19) 

Since this expression provides a relationship between actual dollars and the 

channel width, it will be used for the remainder of the analysis. In the situations 

where link resource is the key factor, then equation 2.18 may be more appropriate. 

2.5 Summary 

This chapter has presented analyses of the factors affecting cost and performance 

for the components used to implement the three basic functions of a parallel com-

puter: processing, memory and interconnect. In particular, expressions were de-

rived for tj  (instruction execution time), tR (router cycle time), WR (router width) 

and tM (memory access time). Each of these was given as a function of the cost 

of the component concerned. 
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These functions will now be used in the development of expressions for the 

execution times of algorithms on the two architecture types mentioned in section 

1.4. 
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3.1 Introduction 

In this chapter, a model of performance is developed for the shared memory 

paradigm running on a simple shared-bus multiprocessor. First the architecture 

of the machine is described, and then the algorithm is presented in terms of an 

equivalent sequential "critical path". These are combined to provide an expression 

for the execution time as a function of N, the number of processors. 

3.2 Machine Architecture 

The shared memory multiprocessor will consist of an ensemble of processors con-

nected, by a single bus, to a shared store. (Figure 3-1). 

Each processor also has a private memory used for storing programs and 

for local temporary variables. A single arbitor controls the bus and operates a 

round-robin scheme among requesting processors, using individual Bus-Request 

and Bus-Grant signalling. Once a processor has been given control of the bus, it 

retains tenure for as long as necessary. All memory accesses during this time are 

direct, the processor stalling while an access is satisfied. This is in contrast to 

posted accesses, where the processor presents a request and then continues with 

other work until interrupted by the memory with the result of the access. 



CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 55 

SHARED MEMORY 

Local 	Local 	Local 	Local 	Local 
Memory 	Memory 	Memory 	Memory 	Memory 

Figure 3-1: Shared Memory Multiprocessor 
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3.3 The Algorithm 

The algorithm will consist of a series of arithmetic and logic operations performed 

on a data set of P points in the shared store. This corresponds to several com-

mon computations; for example, redex reduction in a graph representation of a 

functional program [58], or a matrix computation such as that described in [47]. 

Each set of operations will be preceded by a read, from the shared store, of one 

data point. Each point consists of a single word in shared memory. A series of i 

instructions is then performed on the datum, along with some associated private 

memory activity. The result is then written back to the shared store. Processors 

will continue in this way until all data have been processed. 

3.3.1 Critical Path 

Based on the above description of the algorithm, a processor in the shared memory 

system will, at any given time, be engaged in one of the following: 

Instruction Execution. These are the instructions performed on the data 

point after retrieving it from the shared store. 

Local Memory Access. This refers to an access to a PE's own private 

(and local) store. This could be an instruction fetch, or manipulation of a 

temporary, private variable. 

Shared Memory Access. In contrast with 2., this is an access to the main 

shared store and as such may be subject to blocking by similar accesses from 

other processors. This includes time spent waiting for access to the shared 

bus. 
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4. Idling. This is time spent completely idle with no data points available 

requiring processing. This could occur towards the end of the computation 

when some processors have completed their last write-back and are waiting 

for the remaining processors to complete theirs. 

If the situation arises, in the execution of the computation, where all processors 

have become idle and have no further work scheduled, then the algorithm can be 

considered to have terminated. Discounting memory stalls, where a processor is 

actually waiting for the response from another piece of hardware, a system-wide 

halt in work marks the end of the algorithm. Therefore, during the computation, 

there must exist, beginning at time zero, and ending at the termination, at least 

one Critical Path (CP) consisting of an unbroken sequence of operations (includ-

ing memory stalls). The process of assessing the execution time of the parallel 

algorithm is therefore equivalent to obtaining the execution time of the sequential 

algorithm represented by the CP. 

So, by restricting the analysis to the CP, item 4 can be ignored and the ex-

ecution time of the algorithm is equivalent to the execution time of a sequential 

program consisting of some distribution of operations 1 to 3 in the above list. The 

execution time then becomes the sum of products of the time to perform of each 

of those operations with the number of occurrences of each: 

TSM = ItI  + MItM1  + MS tMS 	 (3.1) 

where: 
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TSM = execution time 

I = total number of instructions on critical path 

t1 = time to execute one instruction 

M1  = total number of local memory accesses on critical path 

tM1  = time for local memory access 

M = total number of shared memory accesses on critical path 

tM3  = time for shared memory access 

It is assumed that local memory references constitute a constant fraction of 

instruction executions, p, which is independent of the number of processors. That 

is, M1  can be expressed as: 

M1 =pJ 

and so the execution time is: 

TSM = I(t1  + /LtM1 ) + MS tMS 	 (3.2) 

The next two sections examine the parameters in equation 3.2 for dependency 

on N. The parameters are divided into two types; I and M8  describe the operations 

on the critical path, and ti, tM1  and tM8 , describe the times to perform those 

operations. The former will be referred to as software parameters, and the latter 

as hardware parameters. 
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3.4 Software Parameters 

It will be assumed that each processor will deal with approximately the same 

number of data points as the others. Therefore, the critical path for N nodes 

operating on P points is simply the processing of [] points. Assuming P>> N, 

the number of points per node will be considered as P  for all nodes. If each point 

requires i instructions, then: 

I 
N 

Although each point requires two accesses to shared memory the write from 

one point will be performed on the same bus tenure as the read of the next point. 

This can be considered as a single memory access of twice the duration of a single 

read or write (both assumed equal). This doubling of shared memory access time 

is introduced to the analysis in equation 3.5 and allows M3  to represent the number 

of such double accesses thus: 

Equation 3.2 can now be rewritten as: 

TSM = 	
PtMS 	

(3.3) - (tJ + /itM1 ) ±  
N 

The next section looks at the three hardware parameters, tj, tM1  and tM3. 
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3.5 Hardware Parameters 

The instruction execution time, tj  is as given by equation 2.15: 

t1  = 3.33 + 43e 3N nanoseconds 

As discussed in section 2.3.1 memory performance is related to cost, and so to 

the amount of memory. The access time of a single memory device in the system 

is given by 2.16 and is therefore: 

- O.21RM 
tM = 8.8 + 650e (nM l 4Ms ) nanoseconds 

Where nm, is the total amount of local (private) memory for all processors, 

and riM3  is the total amount of shared memory in the system as a whole. It is 

assumed that the same type of memory device is being used to implement both 

local and shared store. If different device types were used (e.g. faster, more 

expensive SRAM for the local store, and cheap DRAM for the shared memory), 

then the two would be analyzed separately but using the same basic method. 

Regardless of which devices are used, any relationship between memory per-

formance and N depends on how riM1  and nm,, scale with the number of nodes. 

3.5.1 Space Scaling 

The total memory required (local or shared) to run a piece of software on a parallel 

machine can be split into three components as follows: 

Msys + MROUTE  + n MALG 

where: 
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Msys = System memory. This is the total memory required 

for the operating system which supports the running of 

the software in question. 

MRoUTE = Routing memory. This is memory for routing tables, 

and any other storage required for communications. 

MALG = Algorithm memory. This is the basic memory 

required by the computation alone. It includes the 

storage required for the program code, the problem 

data, the solution, and any intermediate storage. 

T1M5y5  is a result of the fact that computers are rarely used for a single compu-

tational purpose. The manufacturers of even the most application-specific systems 

will sell them to a reasonably varied market, and support software must be in place 

to act as a base upon which the equally varied applications can be built. That 

notwithstanding, system software will generally tend to be as small a portion as 

possible of the total requirements. Also, there is a growing use of high-performance 

hardware in embedded control applications in which there is little or no need for 

any operating system or other support software. For example, in computation 

intensive applications such as character recognition and raster image processing, 

multiple-processor embedded systems are beginning to emerge. Therefore, it will 

be assumed that, in general, Msys  will scale linearly with N (e.g. a microkernel 

will be placed on each PE) but that it will be small enough compared with the 

other two components to be ignored in most cases. 

Routing memory, MRQUTE,  is more fundamentally linked to the running of 

software on a parallel machine. While a system requiring no support software can 

be envisaged, communication information is an essential and unavoidable require-

ment. In the MIMD paradigm, an 0(N) scaling is possible for fixed size routing 

tables, and 0(N 2 ) if the tables themselves scale linearly with N. However, it will 

be assumed that the relative size of routing space is small compared with MALG 
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in systems of N below a particular upper bound. Provided N does not scale above 

this limit, the space requirements will be dominated by the memory required for 

the algorithm itself. 

MALG is the space required for the algorithm code, and any data space re-

quired. As mentioned above, the data space includes both the input and output 

data sets, and any excess intermediate storage (if required). 

For the multiprocessor system in question, the shared space will remain of 

constant size, and independent of N. Space scaling effects will therefore be seen 

only in an increase in the size of the processors' local memories. If each processor 

requires m bytes of local memory, then nm, = mN. For a constant n m, the local 

access time is therefore: 

- O.21RM 

tM1  = 8.8 + 650e (mN+flM) nanoseconds 	 (3.4) 

The shared memory access time, tM, depends on the same function, but is also 

affected by contention on the shared bus. 

3.5.2 Shared Memory Performance 

Access time to the shared store includes waiting time on the shared bus, and is 

derived as follows. 

The combined bus and shared memory will be modelled as a single server queue 

with deterministic service times. The average effective access time, tM3  is given 

by: 

tM3  = (NQ  + 1)2tM, 	 (3.5) 

where NQ  is the average number of existing bus requests seen by a processor 

when asserting its own request line and tM1  is as in equation 3.4. The factor of 
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two represents a double access, the write-back of a result, followed by the read of 

the next point. 

Since a processor will block until its request has been serviced, the system is 

closed and the average arrival rate of jobs into the queue depends on how many 

processors have not yet made (ungranted) requests. Intuitively, a slow memory 

coupled with a large number of fast processors will result in the queue filling 

rapidly until NQ  N. Conversely, a few slow processors connected to a very fast 

store would result in the fast servicing of requests and a relatively small NQ . From 

the point of view of a processor making a request, the arrival rate, A, of requests 

to the queue, is given by: 

A - N - N Q  - 1 

TP 

where N - NQ  - 1 is the number of processors which do not yet have requests 

placed with the bus arbitor. Tp is the time such a processor spends between the 

completion of one shared access until it makes its next request. 

The queue service rate, ii, is simply the reciprocal of twice the basic access 

time as given by equation 3.4: 

1 
1.' = 

Assuming balanced flow, the flow of requests will stabilize at the bottleneck 

rate where A = ii, imposed by either the memory or the processors themselves. 

That is: 

N—N Q -1 	1 

- 2tM1 

The number of processor requests seen by any given requesting processor is 

thus given by: 
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for - <(N—i). For - > (N—i), N Q O. 
tM1  - 	 tM1  

Processing time, T, is simply the time spent operating on a data point, in 

between bus requests: 

TP  = i(tj  + ,UtM1 ) 

and so the expression for shared memory access time, including bus waiting is: 

tM8  = (N - 
2t 1 ) 

( 

- 

= N 
i(tJ+ptM1)\ 

 2 	
)2tM1 

tM1   

Again, this is valid for for- ( N - i). For > (N - i), the queue length tm,

tends to zero, and the shared memory access time is the basic access time given 

by equation 3.4, that is: 

tM3  = 2tM 1  

The shared memory access time is therefore given by: 

tM8  = (N - mm 

 

)]\ I(N - 1), i 
	

2 
(t1  +/1tM1 	

2t 	 (3.6) 

where min[x, y] is the lower of x and y. Note that these expressions for memory 

performance ignore the effect on memory array performance of an increase in the 

physical size of the array. Two examples are increased wire lengths and increased 

decode/buffer stages. On a planar memory array, the distance from an input port 
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to the most distant cell is O(Jñ). For very fast cells in large arrays, this increase 

in wire delay may become significant. Decoding and buffering for the purpose of 

satisfying device fan-out requirements may also give rise to increasing delays as 

the number of cells in the array grows. Currently, these delays are often absorbed 

in the early stages of memory access cycles by presenting the required address well 

in advance of the point in time at which the processor actually latches the data. 

As cycles become shorter, however, and processors increase in speed, the time 

required to decode the address (possibly 64-bits wide) down to the appropriate 

device chip select and address portion may become significant. Nonetheless, it is 

the speed of the memory devices themselves which is the more dominant factor, 

and the main point of concern here. The access time of the memory system will 

be assumed to be the access time of the devices from which the system is built, 

and the key effect of any space scaling will be, as with the processors themselves, 

to change the cost of the devices. 

Equation 3.6 can now be combined with equation 3.3 to give: 

I  p 

 (Tp + 2tM) when N> -- +1 
( 

TSM = 	
- 2tM 1  

2PtM 	when N<-+1 

where: 

Tp = i(tj  + /itM1 ) 

From the above it can be seen that once the bus begins to load, any dependence 

of TSM  on N stems solely from N-dependency in tj or tM1 . This is because the 

linear decrease in the number of points to be operated upon by any given processor 

is countered by a similar increase in the waiting time on the bus. This effect will 

be seen in more detail in chapter 5. 
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3.6 Summary 

Expressions have been derived for the various components of equation 3.2, as 

functions of N, the number of processors in a shared memory multiprocessor. 

These functions depend on the technology cost: performance functions developed 

in chapter 2, and also upon the shared bus architecture described in this chapter. 

The effects of the various components of the execution time will be investi-

gated in chapter 5, and simulation results of a shared bus system under these 

cost: performance constraints will also be presented. 
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4.1 Introduction 

This chapter presents a model of performance for a computation following the 

message-passing paradigm, running on a mesh-connected multicomputer. As be-

fore, the architecture of the machine is described, and then the algorithm is pre-

sented in terms of an equivalent sequential "critical path". These are combined 

to provide an expression of the execution time as a function of N, the number of 

processors. 

4.2 Machine Architecture 

In the multicomputer, all memory will be considered private to the individual pro-

cessors. In addition to its memory, each processor also has a router through which 

it connects to the other nodes. The combined processor/memory/router entity is 

termed a processing element (PE) and these are arranged in a two-dimensional 

bi-directional rectangular mesh. The edges of the mesh are left unconnected, in 

contrast with the torus where the edges wrap round. The router is effectively 

a 5x5 (links in directions "north", "south", "east", "west" and "local") crossbar 

switch allowing non-blocking linking between any pairs of source and destination 

links (although higher-level routing strategies may restrict this). 

4.3 The Algorithm 

The algorithm to be modelled can be represented graphically by a set of layered, 

rectangular graphs as described in the next section. 
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4.3.1 A Graph Model of Algorithms 

A processor operation will be considered to be an instruction or a memory access. 

An operation is said to depend on another if the former may not begin until 

the latter has completed. The fan-in, fIN,  of an operation, is the number of 

operations upon which it depends. The fan-out, lOUT,  of an operation is the 

number of operations which depend upon it. A task, -yj  = {I, I, ..., I_} is a set 

of n operations where 'y has the following properties: 

1. 10  has either: 

fIN = 0 or 

fIN = 1 and depends on an operation with four>  1 or 

fIN > 1 

2. I (0 <j <n) depends on Is_i  only. 

3. 'n-i  has either: 

four = 0 or 

fouT = 1 and is depended upon by an operation with fIN > 1 or 

four>  1 

Intuitively, a task is any set of operations each of which depends solely on 

predecessors within the set, except for the first and last operations in the set. 

Let F = {'yo,y, 	be a set of tasks, and let L = {('y,'y) : i,j = 

(0, 1, ..., n - 1) and i 0 j} be a set of precedence relations among the members of 

F such that if ('yj, 'y) e A then the first operation in 'y, depends on data from the 

last operation in 'y.  -yj  is said to be a parent of 'y. 'yj is a child of 'y. 
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Denote by A = (F, z) a Directed Graph where each task in F is a node of A 

and each relation in A an edge of A. A cycle of A is a closed walk such that the 

direction of the walk is as described by the precedence defined by L. 

The algorithm will be represented by a connected Directed Acylic Graph - see 

Figure 4-1. This is a more exact model than the time-averaged process graph, 

[9], in which the nodes represent processes and the arcs the channels of commu-

nication between the processes. Unlike a task, a process may send and receive 

data throughout its lifetime, and may follow the sending of a message with fur-

ther processing. That model provides a higher-level view of the behaviour of the 

software, and may be more intuitive for many purposes. However, the task-based 

DAG lends itself more easily to the extraction of a set of parameters describing 

the load on the underlying hardware, and so is the method used here. 

In figure 4-1, 70  to 713  are tasks and the directed arcs represent dependencies 

- e.g. task 76  cannot begin execution until tasks -/ 3  and -y4  have completed and 

sent their messages. 

Each task, yi € F can be assigned an integer, I,  called its level according to 

the following method. 

Let louT,  be the fan-out of task 'yj; i.e. the number of arcs directed out of the 

task. Similarly, let fIN,  be the fan-in of task 'y; i.e. the number of arcs directed 

into the node representing that task. For each task, let outcounti = !OUT and 

incount2 = fIN1• 

The procedure for assigning levels to the tasks is as follows: 

Initially, let li  = 0 for all tasks. 

Find a task, 'y, with incount3  = 0 and out count3  > 0. 

For each child of task 'y3 : 

(a) Denote child task as task Yc. 
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Figure 4-1: Directed Acyclic Graph 
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Make I = max{ 1 3  ± 1, Q. 

incount = incount - I - 

outcourtt3  = outcount3  - 1. 

4. Repeat from 2 till incourit1  = 0 for all tasks -yj E r. 

Figure 4-2 shows the DAG in Figure 4-1 with tasks on relevant levels. Note 

that this method assigns the smallest possible li  to task 'yj. Task 'yio,  for example, 

could also have been given level 1 10 = 6 without violating the order imposed by A. 

If the task with the highest level number is denoted 'Yx  then let the dag depth be 

given by d = x + 1. Denote the number of tasks at a given level, 1, by w 1  (width). 

Define a layered DAG to be one in which the following condition holds: 

('y2 ,') E Aj=i+1 

A rectangular DAG is one in which w 1  is constant for all 1. In this case, the 

subscript will be dropped and DAG width will be denoted simply by w. 

The DAG can be represented by the following parameters: 

w = DAG Width 

d = DAG Depth 

f = Fan-Out 

j = Instructions per task 

= Memory accesses per instruction 

4.3.2 Grid Algorithm 

The specific algorithm used to investigate the message-passing paradigm is the 

transformation of an n-dimensional data space of size P, over s (steps) iterations. 

This type of algorithm is found in numerous simulation scenarios, a simple example 
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Level 0 __________________ 

Level 1 __________________  

Level 2 _______ 

Level  _____ - 

Level 

Level  FYI 	 yb 

Level 6 'y12 

Level 7 'y13 

Figure 4-2: Levelled DAG 
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being the modelling of heat flow across a metal sheet. The data space is divided 

into an n-dimensional grid, and each processor is allocated a portion of the grid. 

At each time iteration, the processors perform i instructions on their own grid 

points. This will involve p i local memory accesses. At the end of an iteration, all 

points interacting with points on another FE will be combined into a message and 

sent on. Reciprocal message sends will be expected. 

This can be represented by a set of DAGs with the following parameters: 

to = N (DAG width) 

d = s (DAG depth) 

j = 9 (Instructions per task) 

f = 2n (Fan-out) 

Ignoring edge effects, the dependencies among the points in the data space will 

be described by the interaction depth, 6 e {O, 1, 2 ... . }, as follows: 

Point A = (ai , a2 ,.. . , a,) interacts with point B = 01 , b2 ,.. . , b) if: 

j(1 <j < n) such that Vi(1 < i < n) 
if ij 

O<Iaj—b21<6 ifi=j 

for positive integers i and j: 

For example, in the case of a two-dimensional problem such as sheet heat 

flow, with 6 = 1 each grid point interacts with four neighbours. Mapped onto 

a 2-D mesh of processors, this would result in each physical PE also having four 

neighbours requiring messages. 

Message sends will be completely non-blocking; that is, the only activity re-

quired of the processor to send a message is to prepare it for the router. Sufficient 

buffering is assumed to allow the processor to return to its next task after prepar-

ing the message from the previous one. Incoming messages from other nodes will 

be processed fully by the router before being presented to local memory. Stripping 
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of address information, and error detection/correction etc. are all the responsibil-

ity of the router and will not affect the processor. For simplicity, the rest of this 

analysis will be of a two-dimensional decomposition with 8 = 1. 

4.3.3 Critical Path 

At any point in time, a given processor in the mesh will be doing one of the 

following things: 

Computation Proper. This is the computation associated with the algo-

rithm itself, as would be expected of the same (parallel) code running on a 

single-node system. It does not include any overhead computation associated 

with the preparation of messages. 

Memory Reference. Note that all memory references are local and not 

subject to sharing among processors. It will be assumed that there is no 

contention between the router and the processor. 

Sending a message. This is the time from when a processor has to halt 

computation proper to begin sending a message, until it restarts computation 

after processing the message. The time taken to perform a send can be a 

significant portion of the overall time spent communicating [53]. It may 

involve the generation of an address header, and an error control datum. In 

a real system an operating system call may be required. Alternatively it 

may simply involve the processor providing a memory pointer packet to the 

router, the latter then taking complete control of the send. Regardless of the 

amount of work required in actually getting the message onto the network, 

only that work performed by the processor itself is considered here. 
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Receiving a message. This is the time from when a processor has to halt 

computation to wait for a communication, until it restarts computation after 

receiving the required message. 

Idling. This is time spent idle with no task awaiting execution. This may 

occur in algorithms in which the parallelism varies with time. An example 

is at the start or end of a computation, where most nodes have either not 

begun work, or have completed their last allocated tasks and are waiting for 

work to begin, or for more heavily loaded nodes to complete. 

As before, by restricting the analysis to the CP, idling can be ignored. The 

execution time is thus: 

TMP = It, + MItM 1  + St s  + Rt 	 (4.1) 

where: 

TMP = 	execution time of mapped algorithm 

I = 	number of computation instructions on critical path 

t1  = 	time to execute one instruction 

M1  = 	number of local memory accesses on critical path 

tMj  = 	time to access local memory 

a = 	number of message sends on critical path 

t = 	time to send a message 

p = 	number of message receives on critical path 

t,, = 	time to receive a message 

All instructions will be considered equal. For example, no provision is made for 

mixes of floating-point versus integer arithmetic. However, adding such a detail 

would only be relevant to this study if the relative fp to mt speed (for example) 

was variable depending on the cost of the processor. If this was the case then 
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the model could be extended to account for the effect by splitting I into several 

instruction types and including terms corresponding to the execution times of 

instructions of the various types. 

Any computation associated with through-routing (i.e. the handling of mes-

sages in-transit passing through a node in this point-to-point topology) is not 

explicitly included here. In fact such computation is taken into consideration 

not in the processing components themselves but in the router components which 

make up part of the Interconnection Network. 

Since each iteration ends with each node sending messages to its neighbours, 

the sends themselves can be overlapped by the time spent waiting for the reciprocal 

messages to arrive. The execution time is thus: 

TMP = I(t1  + ,UtM1 ) + Rt 	 (4.2) 

where IL = 	is the memory references per instruction. 

The parameters in equation 4.2 are now examined for dependency on N. As 

before, those describing the nature of the critical path - I, and R - will be termed 

software parameters, and those describing the speed at which those three are 

performed - tj , t 1  and t - will be termed hardware parameters. 

4.4 Software Parameters 

The grid algorithm allows an even division of points among the PE's and so the 

number of instructions per node is given by: 

Psi 
N 
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It is assumed that each new iteration will not begin until all four (in the 2-D 

decomposition in question) messages have been received from the neighbouring 

nodes. Therefore, it is useful to consider the receipt of these as a single phase at 

the end of each iteration. The time to receive will reflect this, and R is simply the 

number of iterations, s. 

4.5 Hardware Parameters 

As before, t 1  is given by equation 2.15: 

OARp 

tj  = 3.33 + 43e 3N nanoseconds 

The remaining two parameters, tM and t,, are more complex and will be dealt 

with in turn in the next two sections. 

4.5.1 Memory Performance - tM1 

The basic device access time is given by equation 2.16, but the actual performance 

depends on the cost of those basic devices; this in turn depends on space scaling 

on the mesh. 

As with the shared memory system, it will be assumed that the memory cost 

is dominated by algorithm memory, MALG  (see page 61). However, contrastingly, 

in order to highlight the effects of space scaling in the grid decomposition, in this 

section only data space memory will be considered. Including program memory 

would serve only to add an extra scaling component which was linear with N and 

which may hide the more interesting effects caused by the overlap area method of 

grid decomposition. Code space could be included in the model simply by adding 

the appropriate linear function of N to equation 4.4 
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Halo data, required by "central" PE 

Figure 4-3: Overlap Areas 

For the grid algorithm, each PE will require storage not only for its allocated 

grid points, but also for the "edge" data incoming from its neighbouring nodes. 

This is an example of "overlap areas" [67] [78], the allocation of a "halo" of memory 

around the main data cell into which is placed the corresponding data from the 

neighbouring cells as they become available (Figure 4-3). 

In the figure, each block of sixteen data elements is allocated to a particular 

processor's local memory. The shaded area around the central block is the data 
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required by that "central" processor from its neighbouring processors. In this case 

the space required by the central processor is 16 + 16. 

The shape and size of this halo will depend on the nature of the algorithm and 

upon the dimension of the data and of its decomposition. The overall memory 

requirement is the space required for the data plus the combined space for all the 

halos. In general, the halo of any particular cell is the combination of those parts 

of other cells which are required to update the cell in question, however a regular 

decomposition provides a typical example of such overlap. 

Let C = (Cl, c2 ,. . . , c) be the Cartesian coordinates of a data point in n-space 

and let D = {(ci , c2 , . . . , c,) : Vi = 1 . . . n, 0 < ci  < k} be a set of data representing 

some system to be modelled. The parameters n and k are positive integers and 

are called respectively the dimension and radix of D. Let G = kn be the number 

of elements in D. For two points A, B e D, A is said to interact with B if the 

value of point A at time t is required as an input to the computation of point B at 

time t + Lit, where At is the size of the simulation time step. As described for the 

DAG, interactions of the following type are assumed: Point A = (a1 , a2 ,. . . , a) 

interacts with point B = (b1 , b2 , . . . , b) if: 

j(1 < j n) such that Vi(1 <i <n) 

for positive integers 8, i and j: 

8 is the interaction depth. 

ai  = bi 	ifij 

0<Ia—bI<8 ifi=j 

Let P = (pi, P2, . . . ,pn) represent a single processing element and let E = 

{ (pi,p,. . . ,p) : Vi = 1 . . . fl, j  < r} represent an ensemble of PEs across which 

the n-dimensional D is to be distributed. r = N 1/n is called the radix of the 

ensemble, and for simplicity assume that k/r is a positive integer. A partition of 

D across E is the set: 

M={(P,LX):PEE,LCD} 



CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 81 

such that 

ViCEif - <c< (p+1)k 
T 	 r 

In effect, both the data and the processor ensemble can be considered as n-

dimensional cubes with radices k and r respectively. 

In addition to the points in L, each node also requires space in which to store 

the values of any points which interact with points in L but which are located 

on other nodes. A point C E A will interact with non-local points (i.e. those on 

another node) if one or more of the coordinates of C satisfies the condition: 

ci  

or 

(p2  ± 1 )k (p + 1)k 
—8_<c 	 —1 

r 	 r 

Under the interaction described earlier, the inner points - which incur overlap 

for 8 > 1 - require the same non-local data points as the outermost points and 

so can be ignored when calculating overlap space requirements. The points of 

interest then, are those which would interact with 6 = 1 in the above expression. 

For each coordinate Cj in point C = (Cl, c2 ,. . . , c,) define 0[c2 ] as: 

J 1 c2  = && or c2 
= (p2±1)k - 1 

O[cj] 
= o otherwise 

Each 0[c2 ] = 1 represents an overlap in the ith  dimension and a requirement 

for 8 extra points of storage. For example, in figure 4-4, face point (1, 1, 0) overlaps 

in one dimension, edge point (0, 2, 1) overlaps in two dimensions, and the corner 

point (2, 2, 0) overlaps in all three dimensions. 
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Overlap in two dimensions 

 

Overlap in three 
dimensions 

ne dimension 

Figure 4-4: Overlap in several dimensions 

The total overlap space incurred per point is thus: 

h = 	O[c] 

And the total overlap space for a processor is: 

H= >6O[cI 
CEA i=1 

Or alternatively: 

O[c2 ] 

j=1 CEI 

Since each possible value of each Cj occurs the same number of times, then for 

any given dimension i: 

O[c] = 2 (k' 
CeA 	 r) 
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Since Li is homogeneous (being comprised of the complete set of n-tuples rep-

resenting the data points on the processor in question), the overlap is the same 

for each of the n dimensions and so: 

(n-i) 

H=28m 	 (4.3) Mr 

This is as expected if the interface between the processors is regarded as 2n 

(n - 1)-dimensional "cubes" of side k/r. 

For example, in two-dimensional data, with unit interaction depth, the inter-

face between the data on one processor and those on its neighbours consists of 

four "lines" of data. In a three-dimensional data set, the interface consists of the 

eight "surfaces" of the processor's cube of local data. For a three-dimensional 

decomposition with J = 1, the overlap space requirement on a single processor is: 

/ \2 

H=6( 

The overlap space as described is incurred on a by-processor basis, and so, 

ignoring edge-effects, the total space requirement for D is: 

MALG = G + NH 
(n-i) 

= G+28nN(- 

= C + 28nGN 

From this total, an outside "surface" of the data space of 2nk' should be 

subtracted. The total space requirements, removing surface overlap, is: 

MALG = C + 2nöG( n') (N - 1) 	 (4.4) 
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Equation 4.4 describes how the amount of memory will increase as N is in-

creased. 

For the two-dimensional decomposition in question, with 8 = 1, the space 

requirement on a base space of G is: 

MALO = G + 4V(/i - 1) data points 	 (4.5) 

Equation 4.5 can now be combined with the expression for basic component 

performance (equation 2.16) to give the access time, tM1 , in seconds: 

- 	O. 21 RM 
tM1  = 8.8 + 650e b(G+4J(V-1))  nanoseconds 

where b is the space per data point in megabytes. 

Figures 4-5, 4-6 and 4-7 show how total capacity, device cost and access time 

must vary with N in a two-dimensional grid decomposition of a 1MByte data 

space with interaction depth of 2. 

From figures 4-5 and 4-6 it can be seen that the increase in memory (and 

corresponding decrease in unit cost) is relatively modest. Increasing N from 1 to 

1000 incurs an overhead of only 25% in total space requirements. However, this 

is only for the data space as discussed. Including program memory, which may 

scale linearly with N, and the other components of memory could produce more 

serious scaling. 

Nonetheless, the effects of even this modest space scaling induced by the over-

lap areas are particularly obvious in figure 4-7. The access time increases by over 

50% when increasing the number of nodes from 1 up to 1000. Notice, however, 

that the increase in access time is more pronounced in small numbers of nodes 

and lessens as one increases above a few hundred processing elements. 



I-10 

1.2 
Cl, 
CS 

1.15 
(5 

CS
C) 

 

1.05 

1 

0 200 	400 	600 	800 

Nodes 

1000 
	

1200 

$15 
— $15 

$14 
. 	$14 
>1 
-a 
CS 

$12 
$12 

O $11 
C-) 

$10 
0 200 	400 	600 

Nodes 

800 	1000 	1200 

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 
	

11.9 

Total Memory Requirements v N 

Figure 4-5: Effects of Overlap Areas on Total Capacity 

Cost per Megabyte v N 

Figure 4-6: Effects of Overlap Areas on Memory Device Cost 
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Figure 4-7: Effects of Overlap Areas on Access Time 
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4.5.2 Mesh Network Latency - t, 

The mesh is a member of the k-ary n-cube family of interconnection topologies 

(Figure 4-8) [13]. A k-ary n-cube is an n-dimensional cube, the edge of which 

is a ring (torus) or line (mesh) of k PEs giving a total number of N = k PEs. 

The binary hypercube (k = 2) is a common example [65]. The meshes under 

consideration are those k-ary n-cubes with n = 2. 

In k-ary n-cubes, associated with each PE is typically a single router compo-

nent connecting the PE to the network in each of the n dimensions. Latency in 

these topologies is affected by several factors, and has been the subject of numer -

ous studies [13] [38] [64]. In general, the latency depends on the number of routers 

3-ary 1-cube 
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........ 

........ 
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........ 

........ 

3-ary 4-cube 
(4-D Mesh) 

(some connections omitted for 
clarity) 

4-ary 2-cube 
(2-D torus) 

2-ary 2-cube 
(4-D Binary cube) 

 

Figure 4-8: Examples of k-ary n-cubes 
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traversed, the performance of those components (under the relevant load), and 

the buffering strategy used for through-routing. 

In a store-and-forward system, where the entire message is received by each 

intermediate router before being forwarded to the next, then, ignoring contention, 

the average latency, tSF,  is given by: 

tSF = tRD 
B 

WR 

where: 

D = average number of hops between source and destination. 

WR = router channel width in bytes 

tR = router cycle time 

B = length of message in bytes 

Here it is assumed that the transit time across the links connecting neighbour-

ing routers is negligible. Even if this transit time becomes significant compared 

with the router delay, it is not affected by N in a fixed-degree network such as the 

mesh. For variable-degree topologies, like the binary hypercube, the link length 

may vary with N, and could be important. For a network using virtual cut-through 

or wormhole routing, [39] [16], a message is routed directly from input to output 

on intermediate routers, provided the output is free. It is not necessary to wait 

for the entire message to arrive before forwarding. Each message is divided into a 

number of "flits" (FLow-control digiTS) [14] and only the header-flit, containing 

the address information incurs the full penalty of traversing the intermediate links 

and routers 1 . After the path between source and destination has been set up, it 

remains open at any given point until the tail flit passes. The transfer of the mes-

sage is therefore pipelined, with each flit of the body of the message appearing to 

'Here, "flit" is being used synonomously with both "flit" and "phit" in [14]; thus 

flow-control is performed on portions of message equal in size to a single link width 
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experience only a single link and router delay. Assuming that the message header 

is a single W-byte flit, the latency, tVCT  for cut-through routing is: 

tVCT - DtR+(- 
WR 

--1)tR 

= tR(D+ 
WR —1) 
	 (4.6) 

This indicates the pipeline effect of these buffering strategies, in contrast with 

the less sophisticated store-and-forward method. For the remainder of this section 

the analysis will be restricted to virtual cut-through routing. 

Average distance travelled - D 

The average distance travelled by a message, D, depends on the communication 

locality. This is a function of the precedence relations of the graph, the network 

topology, and the routing strategy. 

Locality can be described by e(h), the probability that a child of a given parent 

task will be situated on a FE which is h links distant from the parent's PE. In other 

words, (h) is the probability that any given message will be sent to a destination 

PE situated h links ("hops") from the sending node. Examples of can be found 

in [17]. In the following, for simplicity, the network is assumed to be symmetric. 

Uniform Communication - In uniform communication the destination of a 

message will be chosen with equal probability from among all PEs. Assuming 

a symmetric network, is given by: 

(4.7) 

where Nh is the number of PEs which are h hops from the source processor. 
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• 	- 
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Figure 4-9: Decreasing Probability Communication 

Decreasing Probability Communication - Here the probability that a mes-

sage will be sent to a FE h hops away decreases as h increases. A simple 

example of this is in the nearest neighbour connected network shown in 

Figure 4-9: 

(h) = 'yNh 
 (h + 1) 	

(4.8) 

where 'y = 	is a normalizing constant used to ensure the total 
h=O h+1 

probability is unity and hmax  is the distance in hops of the PE furthest from 

the source PE. 

Sphere of Locality Communication - In this form of e each PE is considered 

to be at the centre of a group of PEs, each of which is no more than r 

hops away. In some architectures r can be considered the radius of a sphere, 

hence the name. A message from a PE will be sent to a randomly chosen 

FE within the sphere, with some probability, 0, and to a randomly chosen 
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PE outside the sphere, with probability 1 - ,3. Typically /3> 0.5. This form 

corresponds to Reed's Sphere of Locality in [61] [17]. 

For the grid algorithm on a mesh of dimension equal to that of the data, the 

locality depends on the interaction depth, and the number of PEs. For a data set 

of size G = kr', a PE will transmit to its 2n nearest neighbours (1 hop away) if 

6 > 0. It will also transmit to its next nearest neighbours if 6 > çi. In the same 

way, messages will also be sent to the PEs lying 3 hops distant if 6> 2 ç/. In 

general, messages will be sent to all PEs lying h hops from the source if: 

o>(h_1)c/ 

The average distance travelled by a message, D, is therefore: 

10 v1 
D 

- 	[6ç/] 

- 16ç1+1 

2 

For a 2-D mesh and data set, with 6 = 1, this reduces to: 

D=(1\/] +1) 

That is, D = 1 for N > 1 (N will not exceed G since that is the maximum 

parallelism of the algorithm). 

This is a trivial case of Sphere of Locality with r = 0 = 1. 

Equation 4.6 gives the latency for a single message traversing an unloaded 

network. To calculate t,,, the blocking due to the time the neighbouring nodes 

spend preparing messages must be considered. While the message sends are non- 

blocking, the FE will spend some time preparing the messages. Let i be the 
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number of instructions required to prepare and send a message, and so let tpREp = 

i3 (tj + 1UtM1 ) be the time to prepare a message for sending. The time for the head 

flit of the first of the four messages to cross the local router is: 

tpjp + tR 

The second message must wait until the whole of the first has gone, and so the 

total time until its head flit crosses the router is: 

tPREP + htR + tpftEp + tR 

where: h = 	is the number of flits in the message. The time for the third 
WR 

message is: 

tPREP + htR + tPREP + htR + tPREP + tR 

and the delay experienced by the header of the last message is: 

tppjp + ht + tPREP + htR ± tPREP + htR + tPREP + tR = 4tPREP + 3htR + tR 

Since a message will be in either of the four positions with equal likelihood, 

and since there are four incoming messages, it will be assumed that one of the four 

will indeed be the last from its source. The additional time for this last message 

to reach the destination node is simply htR, since the other three messages will 

aready have been received. 

The total waiting time, t is therefore: 

t = 4tppjp + 3htR + tR + htR 

B 
= 4 (Z,(tI + LtM,) + tR I ( 

	+ 1)) 
- 	 (4.9) 

\WR 4 
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Router Cycle Time - tR 

Router cycle time, tR is as given by equation 2.17 in chapter 2: 

OARg 
- 

tR = 3.33 + 43e 3N nanoseconds 

This treats the process of connecting an input and output pair, and driving 

the data across the router as of the same order as an instruction execution on a 

processor. The coefficient a in equation 2.17 can be varied to reflect a router cycle 

significantly shorter than the instruction cycle. RR  in the above expression is the 

total cost of all routers. 

Router Channel Width - WR 

Router channel width, WR, was also developed in chapter 2, and is given by 

equation 2.19. This will be expressed as 8-bit bytes and for a 10-channel router 

(bidirectional in each dimension, plus a bidirectional port to the local node) is 

given by: 

1 / 	RR 	\l.7 

WR = 	
\ 2.7*103N) 

Message Length - B 

The last parameter required is B, the number of bytes per message. This depends 

on the number of points on the sending PE which interact with points on the 

destination PE. Ignoring edge effects, the total number of points to be sent to any 

PE is given by the halo space in equation 4.3. This is split among the 2n "faces" 

of the n-dimensional cube of points allocated to the PE. The message length, 

assuming one byte per point, is thus: 

(n-I) 

B = f - 	± header + tail 
\rj 
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The header and tail portions vary according to the implementation. The header 

will usually contain the destination address and perhaps a message length datum. 

The tail may be a check datum. For the purposes of this analysis, the header is 

assumed to be three bytes, and the tail is unused, and so B for a 2-D mesh with 

8 = 1 is: 

B= (+3) 
	

(4.10) 

4.6 Summary 

Expressions have been derived for the various components of equation 4.2 as func-

tions of N, the number of processors in a shared memory multiprocessor. These 

functions depend on the technology cost: performance functions developed in chap-

ter 2, and also upon the algorithm and machine architecture as described in this 

chapter. 

The effects of the various components of the execution time will be investigated 

in chapter 5, and simulation results of a 2-D mesh under these cost: performance 

constraints will also be presented. 
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CHAPTER 5. DISCUSSION 

5.1 Introduction 

This chapter takes the models developed in chapters 3 and 4, and discusses the 

significance of the various parameters involved. First, in section 5.2, simulation 

results are used to validate the models for both architectures. The simulations 

were of real hardware systems, containing processors, memory, arbiters, routing 

elements etc. The cost and performance figures for the simulations were also taken 

from real devices. This contrasts with the performance models themselves which 

used the various derived functions of cost and performance as described in the 

previous chapters. Since the range of actual cost and performance data consists of 

discrete values, the process of validation had to depart from the overall principle 

of cost fixing. For each simulation experiment, the cost of individual components 

was fixed and their number varied. In other words overall system cost was allowed 

to increase as N was varied. Each experiment compared results calculated using 

the models with actual results for component costs at the low, mid and high-points 

of the available data. This method allowed an extensive test of the accuracy of 

the models' predictions, and produced confidence in these. Once this confidence 

was achieved, it was then possible to proceed to investigate the cost fixing effects 

with the models alone. This discussion is presented in section 5.4 

5.2 The Simulator 

This section discusses the simulations used to validate the models described in 

chapters 3 and 4. First, the simulator itself is described. Only the mesh simulator, 

being the more complex of the two used, is described here. Then the experiments 

and corresponding results used to validate both the bus and mesh models are 

presented. 
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5.2.1 Verilog Simulator 

Various simulation tools were considered, many providing a front-end to a common 

high-level language [7] [8] [31]. The chosen tool was Verilog [71] and the Cadence 

Verilog-XL [29] simulator. Verilog is one of the two most popular languages (the 

other being VHDL [5]) widely used for hardware description. It provides a useful 

mapping between HDL and hardware and this can be exploited using synthesis 

tools. 

The simulator consisted of two basic types of entity, processors (with integral 

memory) and routers. The processors executed instructions, initiated local mem-

ory references and then prepared a message which was passed to the router. Each 

processor and router were combined into a single node component and these were 

connected in a two-dimensional bi-directional mesh. 

The router consisted of five pairs (north, south, east, west and local) of buffers; 

each pair consisting of one input and one output. Connections among these were 

achieved using a 5x5 crossbar switch. This allowed non-blocking connections be-

tween pairs of inputs and outputs. Figure 5-1 shows a block diagram of the router 

component. 

Routing was bidirectional with wormhole buffering and so a simple X-Y re-

stricted routing scheme sufficed to avoid deadlock. The router buffers had attached 

fifo queues, but these were not used in the simulations described. Messages were 

sent as a sequence of phits, the number of which was fixed for any given simulation 

run, but in general depended on the algorithm (e.g. the size of the halo in the 

overlap areas computation), and the router channel width. The first three phits 

were the coordinates of the destination, node, the coordinates of the source, and a 

unique ID for that message. Only the first of these three was required for routing 

purposes; the others were used for debugging. 
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Figure 5-1: Verilog Router Block Diagram 



CHAPTER 5. DISCUSSION 

5.2.2 Simulation Control 

One drawback of the Verilog language was its lack of support for run-time instan-

tiation of simulation entities. Lacking an equivalent of VHDL's "for . . . generate" 

construct, in Verilog all router and processor modules had to be explicitly instan-

tiated. Since varying the number of such components was a key aspect of the 

simulation, a C front-end was built to generate the Verilog fixtures for the various 

values of N being examined. 

This C controller used look-up tables to specify timings for the various oper-

ations performed by the simulator, and controlled the collection of data after the 

run. The controller would oversee experiments described in a parameter file; the 

file could describe either a set of experiments explicitly, or a range of parameters 

from which a full-factorial experiment would be performed. Figure 5-2 provides 

an overview of the simulation control. 

5.2.3 Performance 

Simulator performance proved to be a serious limiting factor. While simulations of 

several thousand nodes on relatively modest hardware are regularly reported [56], 

the Verilog-XL simulator was extremely memory-hungry. Simulations of under 

1000 nodes exceeded the several hundred megabyte swap limits on a large server 

and resulted in disk-thrashing. Towards the end of the project, progress was made 

using Chronologic's VCS [63]. This compiled simulator (Cadence's interprets the 

source) gave up to 10 times savings on memory and commensurate improvements 

in simulation time. 
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Figure 5-2: Simulation Control 
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5.3 Simulation Results 

This section describes the various simulation experiments performed to check the 

accuracy of the model predictions. The shared memory system is described first, 

and then the message-passing multicomputer. Full results tables and graphs are 

given in appendix B. 

5.3.1 Shared Memory Multiprocessor 

As described in chapter 3, the shared memory system consists of N processors, 

each with a private store, connected to a common shared memory by a single bus. 

The shared memory contains P data points, each of which must be operated on 

using a set of i instructions, and pi private memory references. After processing a 

point, a processor writes the result back to the shared store and, in the same bus 

tenure, reads the next unprocessed point. Each point consists of a single word of 

memory. 

To validate the model, a range of simulation experiments was performed. The 

simulator modelled real hardware constructs and used actual cost and performance 

figures for the processors and memory devices. The simulation experiments fo-

cused on the algorithm parameters i and p. P was made sufficiently large to hide 

the initial bus loading transients which are not represented in equation 3.6 and 

so a single simulation cycle was sufficient for each value of N. In the first run, 

p = 0.1 and i = 10. Systems were simulated for N = 1 to 100. While 100 nodes 

is very modest in the wider context of parallel systems, as will be seen from the 

results, this is usually high enough to cause the bus to saturate. The base memory 

sizes were 5 Megabytes for the shared store, and 0.5 Megabytes per processor of 

local store. This was then repeated for i = 100 and i = 500. These three runs 

were then repeated again twice; first with p = 0.5 and then p = 1. In each case, 
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the cost of a single processor and single memory device were fixed. Since N was 

varied for each run, the total system cost would increase as N was increased. This 

was done because the range of available processor cost: performance figures was 

limited and consisted of discrete values. 

This set of experiments was then repeated twice, once for components in the 

middle of the cost range examined, and once for the most expensive components. 

Figures B—i to B-9 in Appendix B plot execution time against N for each 

experiment. Simulation results matched the model to within an average of under 

3.5%. 

5.3.2 Message-passing Multicomputer 

The multicomputer described in chapter 4 consists of N processing nodes arranged 

in a two-dimensional rectangular mesh. Each node contains a processor, a private 

memory store and a router through which the processor communicates with others. 

The algorithm is the transformation, over s iterations, of an n-dimensional data 

space of P points. In each iteration each point requires the execution of i instruc-

tions, and i local memory accesses. Each iteration ends with the transmission of 

the relevant points to neighbouring nodes, as described in chapter 4. 

The simulations used the following fixed parameters throughout. The data 

space consisted of P = 4096 points arranged in two dimensions. The number of 

iterations was five. Router cost was fixed at $350 each for all simulations. As will 

become apparent, this was necessary to ensure that one of the significant aspects 

of router performance - I/O bandwidth - did not dominate all other effects. As 

with the bus simulations, three sets were run corresponding to low-cost, mid-range 

and high-end memory and processors. 
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Each experiment consisted of three sets of simulation runs, each for a square 

mesh from 1 to 400 nodes. Over the three sets one of the key algorithm parameters 

was varied, while the others were fixed. 

Experiment la simulated instruction execution only, varying i. Experiment 

lb again varied i but did this within the context of communication and memory 

operations. Experiments 2a and 2b simulated varying i3 , with first a low then 

high value for i. Experiments 3a to 3c varied p, first with two values of i and no 

communications, and then with messages. Finally experiment 4 varied the number 

of bytes per grid point. 

Figures B—lU to B-33 plot execution time against N for each experiment. 

Simulation results matched the model to within an average of 11%. 

5.4 Model Behaviour 

Having gained confidence in the accuracy of the various performance models, it is 

now possible to investigate,using the models alone, the effects of cost fixing. This 

section considers the effect on execution time, and on optimal N, of varying some 

of the key model parameters. First, the shared-bus model is discussed, and then 

the message-passing model. 

5.4.1 Shared Memory Multiprocessor Model 

A significant factor in this system is the loading on the shared-bus. As expected, 

in a fixed cost system this easily becomes a bottleneck as the number of processors 

is increased. The increase in loading due to the increase in N is exacerbated by the 

fact that the service time of the shared memory is also increasing. On the other 

hand, this is partly compensated for by the increased time the processors spend in 
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Parameter Description Value 

P Number of points in data set 10000 

i Number of instructions per point 100 

p Fraction of instructions requiring local memory access 0.1 

M Local memory per processor 0.5 MBytes 

M8 Total shared memory 5 MBytes 

RP Total cost of processors $500 

RM Total cost of all memory $250 

Table 5-1: Default Parameters for Bus Model 

between bus requests, due to their increased instruction execution time and ever-

slowing local memory. Note that for simplicity the model (nor the simulations) 

does not include the effects on performance of the increasing electrical length of 

the bus as N grows. Capacitive loading and transmission-line effects such as wire-

OR glitching can have very serious performance implications and would tend to 

make the optimal N even lower than described below. 

The sensitivity of the model to any given parameter may well depend on the 

precise domain over which it is being varied, and the domains of the other pa-

rameters. For example, the effect of varying the degree to which memory scales 

(linear in the model presented so far, but not necessarily so in general) will be 

more obvious in a system with low i and/or high M. Any parameter values dif-

fering from those used in the simulations are mentioned where appropriate. The 

default values are given in table 5-1. 

While the simulation experiments allowed the overall system cost to increase, 

and so kept the individual component costs constant throughout a run, in the 

following discussion the overall cost of each of the three hardware functions is 

kept constant. As a result, component cost varies inversely with N. 

Using equation 2.15 (page 44), figures 5-3 and 5-4 show how processor perfor- 
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Figure 5-3: Single Processor Instruction Execution Time (t 1 ) 

mance varies with N in a system with a total processor cost of $500. The latter 

graph measures processor speed as described in section 2.2.3. The graphs show 

that, in effect, above about 50 nodes (for this particular total cost), N can be 

increased with little impact on the processor performance. This is because, below 

a cost of around $10, processor speed is not significantly dependent on cost. In the 

mid 1990s, at this low-end of VLSI technology, devices typically are distinguished 

not by raw speed but by the extent to which they integrate, on a single chip, func-

tions previously made available on separate devices. The effect of this is to render 

the aggregate performance of the multiprocessor an almost linear function of N 

above the "knee" in the graphs. For example, for a total system cost of $500, the 

aggregate performance is 300 million "1nt92 instructions" per second for a single 

node, around 1250 for 50 nodes, and approximately 8000 for 400 nodes. In other 

words, if other factors suggest that the optimal processor cost is $10 at most (i.e. 

that optimal N is at least 50 in this case), then there is a strong case for using as 

many of the cheapest available nodes as possible. However, the effect of memory 

cost: performance must also be considered. 
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Figure 5-4: Single Processor Performance 

For a total memory system cost of $500, figures 5-5 and 5-6 (using equation 

2.16 on page 47) show how the memory performance in the shared bus architecture 

drops as the capacity is increased. As with the processors, the nature of the mem-

ory cost: performance function means that the impact of increasing the amount of 

memory lessens as the total memory increases. However, this "flattening" is not 

as pronounced as with the processor devices, and in systems with significant space 

scaling the implications on memory performance of increasing N may continue to 

be serious for very high values of N. The effect, on the value of the optimal N, of 

varying the degree of space scaling is discussed later. 

The next four sections consider the effects on optimal N, of varying the pa-

rameters describing the algorithm and the hardware. 
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Figure 5-6: Memory Speed versus Total Capacity 
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Number of Instructions - i 

The effect of increasing the number of instructions to be performed on a point 

depends principally on the nature of the hardware cost: performance functions. 

For sub-linear functions, increasing i tends to increase optimal N. This is due to 

two effects. First, the critical path length, being inversely linear with N, decreases 

faster than the time to execute instructions increases. Second, the computation 

to communication ratio increases, lessening the load on the shared bus. 

Figure 5-7 shows how the optimal number of nodes increases as i is increased. 

For i = 10, consituting very fine grain parallelism, the optimal number of nodes 

is only 4. As i increases, the loading on the bus decreases for a given number 

of nodes, and the optimal N increases: optimal N is 30 for i = 100 and 70 for 

i = 500. Expressed in terms of processor costs, the optimal system for fine grain 

parallelism (i.e. small i)  would be constructed from a few expensive nodes of 

cost: performance around that of the 21164 (see table 2-1 on page 40). Increasing 

i makes slower, less expensive nodes more attractive and i = 500 is best dealt 

with using a system of nodes with cost: performance between that of the ARM710 

and the MPC601. 

Notice that the convergence of the three curves shown is as predicted by the 

model given in chapter 3, and coincides with the points at which the buses in 

the three systems shown begin to load. Once a processor can expect to have to 

wait for another to be serviced before receiving tenure, any additional processors 

increase this loading. The slight rise in execution time at just under 10 nodes 

(i.e. for devices between around $50 and $40) is due to the superlinear nature of 

processor cost performance at the low end of the range investigated. This can be 

seen clearly on figure 2-5 on page 43. 

Figure 5-8 shows how the bus "queue lengths" increase as N is increased. Re-

call that the queuing model used was of a closed system and that a processor would 

only issue a single request before stalling to wait for service. This dependence of 
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Execution Time - Sensitivity to i 

Figure 5-7: Bus Model - Execution time sensitivity to i 

average arrival rate upon the queue length itself provides a "braking" effect on 

the loading of the queue, and the queue length grows only linearly wih N once 

loading begins. 
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Queue Length - Sensitivity to i 

Figure 5-8: Bus Model - Bus waiting sensitivity to i 
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Local Memory Activity - 

Increasing the amount of local memory references will, as with processors, tend to 

increase the optimal N, provided the memory cost: performance is sub-linear (i.e. 

if increasing memory device cost incurs increasingly diminishing returns in terms 

of improved access time). Figure 5-9 was produced using shared bus models, with 

a total memory cost, RM of $100. This shows how optimal N increases with i. 

Again, as with the processors themselves, this is due to the reduced bus loading 

seen when processors spend more time in their local stores. Of course, this effect 

is lessened slightly by the fact that the increase in memory size will impact the 

performance of the shared store, effectively increasing the queue service time and 

lengthening the queue. Optimal N is 6 when one local access is performed for 

every 10 instructions, but this increases to 56 when every instruction requires a 

local access. In practice, p may be greater than unity, if every instruction has to 

be fetched from the local store. 
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Figure 5-9: Bus Model - Execution time sensitivity to It 
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Queue Length - Sensitivity to mu 
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Figure 5-10: Bus Model - Bus waiting sensitivity to i 

Figure 5-10 shows how queue length dependency on N is affected by t, the 

sharp increases in length corresponding to the second "knee" in the relevant curves 

in figure 5-9. 
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Space Scaling 

In the system scenario discussed in chapter 3, and in the simulations, the to-

tal memory scaled almost linearly with N. In section 3.5.1, the total memory 

requirements were given as: 

MALG mN + nm. 

where m is the local space per processor, and nm,, is the shared space. 

Figure 5-11 shows total memory requirements of the form: 

MALG = mN + nm, 	 (5.1) 

for exp = 0.1, 1.0 and 1.2. 

The presence of the exponent, especially when greater than unity, could repre-

sent the growth of local memory requirements due to cache management or virtual 

memory translation tables, etc. 

Intuitively, one would expect systems with super-linear space-scaling to have 

lower optimal N than those with exponents of less than unity. This is seen in 

figure 5-12, produced from the model after using equation 5.1 as the denominator 

of the exponent in equation 3.4 (see page 62). The lack of convergence on the 

three curves, in contrast with the two parameters examined so far, is due to the 

fact that, as shown in chapter 3, after bus loading begins, TSM  depends mainly on 

device access time. 

The slight "knees" in the curves in figure 5-12 correspond with the onset of 

bus loading, and coincide with the points shown in figure 5-13. 
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Figure 5-11: Bus Model - Memory requirements for various space scaling expo-

nents 
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Figure 5-12: Bus Model - Execution time sensitivity to space scaling 
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Queue Length - Space Scaling Sensitivity 
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Figure 5-13: Bus Model - Bus waiting sensitivity to space scaling 

Hardware Cost:Performance 

The execution time of an instruction on a processor of cost Cp = Rp/N has been 

shown (see equation 2.15) to be approximated by: 

t1  = 3.33 ± 43e+"nanoseconds 

This final section concerning the shared memory architecture considers the ef-

fect on optimal N of varying the processor cost: performance function. By varying 

the coefficient of Cp in the above expression, alternative tj may be investigated, 

along with the implications for TSM.  Varying the coefficient could correspond to 

an exploration of the processor cost: performance function at costs above that of 

the most expensive single chip MOS devices. This would allow an investigation of 

bipolar processors, and of board-level processors (see Chapter 6). It could also cor-

respond to an examination of future processor cost: performance functions, where 

various physical limits on device construction become significant. Alternatively, 

various issues other than just cost and performance may restrict a designer's choice 
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Variation in Processor 
Cost: Performance (t_I v cost) 
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Figure 5-14: Instruction execution times for various processor cost: performance 

coefficients 

of processor. For example, some computer manufacturers tend to focus on mature 

device families, letting competitors take the risk with newer devices. Therefore, 

the range of processors available over which to investigate the "number" versus 

"speed" tradeoff may be restricted to low-end devices. In such a case, a more ac-

curate curve to fit the restricted cst and performance data is likely to show more 

super-linearity, and a higher coefficient may be more suitable. 

Figure 5-14 shows tj as a function of cost for coefficients of -0.01, -0.03 and 

-0.05 (corresponding to values near and around the current actual value). Figure 

5-15 shows the reciprocal plots representing processor performance. 

Figure 5-15 in particular highlights the degree to which the variation in proces-

sor performance within a particular cost range depends on the coefficient. With a 

coefficient of -0.05, the curve rises sharply and is almost constant above $150. The 

curve for a coefficient value of -0.01, on the other hand, is super-linear for much of 
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Variation in Processor Cost: Performance (speed v 
cost) 

Processor Cost 

Figure 5-15: Processor performance for various coefficients 

its extent, and only begins to show sub-linearity above $350. From this, one would 

expect machines using a processor technology following the -0.01 curve to have a 

higher optimal N, all else being equal, compared with a technology following the 

-0.05 curve. In the super-linear portion of the cost: performance curve, it is better 

to use a single node of cost X than N nodes each of cost X/N. 

Figure 5-16 plots execution time for the three coefficients and confirms that 

the -0.01 technology has higher optimal N (34 processors) than either the -0.03 

technology (30 processors) or the -0.05 technology (8 processors). 
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Execution Time - Sensitivity to Processor 
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Parameter Description Value 

P Number of points in data space 4096 

s Iterations 5 

i Number of computation instructions per point 100 

i Number of instructions per message send 1 

Fraction of instructions requiring local memory access 0.1 

b Memory per grid point 1 byte 

RP  Total cost of processors $500 

RM Total cost of all memory $0.36 

RR Total cost of all routers $5000 

Table 5-2: Default Parameters for .Mesh Model 

5.4.2 Message Passing Multicomputer Model 

The default parameters used in this section are given in table 5-2. A note of 

explanation is required for the total memory cost. The unusually low figure is due 

simply to the fact that the algorithm as described uses only 4 KBytes of memory. 

The cost given corresponds to just over $90 per megabyte. 

In contrast with the bus architecture, in which the communications latency 

could quickly become a bottleneck, the localized communications pattern in the 

mesh renders that architecture more scalable for this algorithm. An algorithm with 

non-localized communications would suffer more seriously from message latency 

as N increased, and optimal N would be lower (see Chapter 6). An investiga-

tion of the sensitivity of N to the various parameters in the model shows that 

only in unrealistically extreme situations, (e.g. where the number of instructions 

required to send a message is significantly greater than the instructions proper) 

does optimal N fall below the upper end of the range. 

This occurs for several reasons. First, as with the bus, the number of com-

putation instructions on the critical path is decreasing linearly with N, while the 

growth in the time to perform any of those instructions, tj , is generally increasing 
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Figure 5-17: Mesh Model - Time for Computation Only 

only sub-linearly (see figure 5-3). Figure 5-17 shows the time spent by a processor 

on computation only, as a function of the number of nodes. As with the bus, this 

argues for a large number of slow devices if other effects are ignored. 

Also, communication latency is affected only insofar as the hardware param-

eters are also so affected. Unlike non-local communications, blocking is not sig-

nificantly increased by increasing N, and so t,, is most sensitive to speed of the 

the three components types - processors, memory and routers - and also to the 

width of the router I/O port. From equation 4.9 it can be seen that latency can 

be dominated by either the router cycle time, tR, or by the message preparation 

time which is strongly dependent on i3 . 

A comparison of figure 5-18 with figure 5-19 shows how t, follows the router 

cycle time tR, when i is small (1/100th of i in this case). If i is increased 

(e.g. if communication required the services of high-level system services such as 

a OS kernel), then t depends principally on the performance of the processors 

themselves and on memory performance if p is sufficiently high. 

Figure 5-20 shows that the message length is largely unaffected by N, and so 

does not affect optimal grain. 

Message length remains fairly constant because while router width decreases 
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Latency versus N 
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Figure 5-18: Mesh Model - Latency, t,, versus N 

Router Cycle Time 

Figure 5-19: Mesh Model - Router Cycle Time, tR,  versus N 
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Figure 5-20: Mesh Model - Message Length versus N 
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Figure 5-21: Mesh Model - Router Width versus N 

with N (figure 5-21), the halo size, and therefore the number of bytes per message, 

is also decreasing (figure 5-22). 

The conclusion to be drawn from figures 5-19 to 5-22 is that, for this mesh 

algorithm, interprocessor communication is not a serious limitation on the use of 

parallelism. The narrowing of the width of router channels is effectively countered 

by the steady decrease in the amount of data being transmitted at the end of each 

iteration. In addition, router cycle time, tR is not increasing fast enough with N 

to overcome the benefits produced by the decreasing critical path. 

Finally, the space scaling due to overlap areas is relatively slight and while the 
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Figure 5-22: Mesh Model - Bytes per Message versus N 

memory access time is increasing with N, the linear decrease in the number of 

memory references on the critical path more than compensates. For a different 

space scaling scenario (e.g. if local code space on each processor was included), 

the increased memory requirements may begin to cause sufficient degradation in 

memory speed as to reduce the optimal N. 

5.5 Shared Bus Example 

This section describes an example of the bus architecture showing how optimal N 

and processor type can be identified. 

For the shared bus, the grain of computation is important. The more instruc-

tions that are required per point (i.e. the coarser the grain), the more processors 

can be used. Ironically this means that for a fixed total number of instructions, 

the more parallelism available (i.e. the finer the grain), the less able is the bus 

to support it. Figure 5-23 was generated from the shared bus models in chapter 

3 by plotting execution time against N for a range of values of i and extracting 

the N corresponding to minimum TSM  in each case. The other parameters are: 

P = 10000 (number of points), i = 0.1 (local memory accesses per instruction), 
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Optimal N on Shared Bus - i_c sensitivity 
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Figure 5-23: Bus Model - Optimal N versus i 

m = 0.5MBytes (local memory per processor), nm, = 5MBytes (total shared 

memory), Rp = $500 (total cost of processors), RM = $250 (total cost of all 

memory). 

With a total processor cost, R, of $500, the graph indicates that the optimal 

processor, for this particular algorithm and ignoring electrical effects on the bus, 

varies from extremely high performance devices such as the MPC620 for very fine 

grain computations (i < 10), to more modest processors (relatively speaking) 

such as the MPC601 when i is large. Of course, this analysis focuses on the mid 

to high range of all available processors. 

The amount of local memory activity is also a key factor in determining which 

processor type should be used. Because performance of the memory devices stud-

ied degrades slower, as N increases, than the length of the critical path, local 

memory accesses are not an obstacle to the use of parallelism. On the contrary, 

despite a slowing of memory with increasing N, the fact that local accesses tend 

to keep processors off the bus suggests that increasing p will correspond with an 
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Optimal N on Shared Bus - mu sensitivity 
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Figure 5-24: Bus Model - Optimal N versus it 

increase in the optimal number of nodes. Figure 5-24 was generated in the same 

way as figure as the above i sensitivity graph and shows optimal N against I.L. 

The other parameters are: P = 10000 (number of points), i = 100 (instructions 

per point), m = 0.5MBytes (local memory per processor), nm, = 5MBytes (total 

shared memory), Rp = $500 (total cost of processors), RM = $100 (total cost of 

all memory). 

Note that the example here, as throughout this study, is based on SRAM 

devices, as presented in [18]. Systems using DRAM devices may require a different 

function in place of equation 2.16, however the method of analysis would be the 

same. 
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5.6 Summary 

In this chapter, simulation results have been used to validate the models presented 

previously. The models' sensitivity to variation in some of their key parameters 

were then discussed. 

In the bus model, since aggregate performance tended to increase almost lin-

early with N above a certain number of nodes (about 10 for a total node cost of 

$500), the bus loading was the key factor in determining optimal N. Similarly, 

since memory performance was relatively unaffected by cost at the low-end of 

the device range, increasing the amount of memory (a linear space scaling in the 

simulations) did not, in itself, act to degrade performance seriously. The main 

factor limiting the use of parallelism was the relationship between shared mem-

ory access time and N. Once the bus began to load the benefit of adding more 

processors was quickly outweighed by the increased bus waiting time. This was 

further emphasized when super-linear space-scaling was considered. 

For the message-passing mesh architecture, communications locality and mod-

est space scaling meant that optimal N was almost always at the highest N inves-

tigated. Locality makes a decrease in router speed and a narrowing of inter-node 

links the key communications drawbacks of increasing N. The problem of router 

speed decreasing with N was generally outweighed by the increased concurrency. 

The narrowing links were not a serious limitation because the amount of data 

being sent decreased with N and so message length remained relatively constant. 

For systems with more severe space scaling, or non-local communications patterns, 

optimal N could be expected to decrease. 
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6.1 Summary and Conclusions 

Parallel architectures have, in terms of decreasing the execution time of a problem, 

one significant advantage over sequential machines: 

a The amount of work allocated to the most heavily-loaded processor is less 

in the parallel machine. 

If the total hardware cost is fixed, then opposing this advantage are several 

disadvantages: 

. The processors in the parallel machine are slower. 

. The memory devices in the parallel machine are slower, since memory re-

quirements typically increase with the number of processors. 

. The components used to connect the processors and memories in the parallel 

machine have performances and bandwidth which vary inversely with the 

number of processors. 

. Additional work is required of the processors in the parallel machine, due to 

communications. 

• Sharing of resources among the various processors may force delays when a 

given resource is found to be busy. 

This thesis has presented an investigation of these advantages and disadvan-

tages and their net effect on the execution time of a problem on a system of N 

nodes. 

The first conclusion of this work is to reaffirm the scale of the problem at hand. 

Optimizing hardware granularity is a significant problem depending on a large set 
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of input parameters and any particular result depends heavily on the system under 

investigation. 

The principal aim of this thesis was not to give precise results concerning 

optimal N, but rather to present an approach to the problem which could, in any 

specific circumstances, lead to a better understanding of the tradeoffs inherent in 

varying the number of processors. This has been done by examining two specific 

systems, and describing the parallel computation in a way that can be expressed 

as a workload on the hardware. The methods used, and the underlying principle 

- that a hardware enhancement in one part a fixed cost system will have an 

associated performance reduction elsewhere - can be applied more generally, and 

in a wider area than simply optimizing grain. 

In the two systems examined, an important factor was the difference between 

the rate of decrease with N of the length of the critical path and the rate of decrease 

of component speed, again with the increase in the number of processors. Since 

hardware cost: performance was modelled as showing very rapidly diminishing re-

turns beyond a certain cost, and since the critical path was decreasing roughly 

linearly with N, one would expect that high degrees of parallelism would be pos-

sible, unless other factors such as resource sharing, or communications overhead 

became significant. This was seen in the different behaviour of the two systems 

with different interconnection strategies. Whereas the lack of blocking in the mesh 

allowed N to be increased to a maximum, the poor scalability of the single shared 

bus did not. However, the mesh's scalability was seen under very localized com-

munication so that the only serious impact on latency was through a decrease in 

the switch speed. Since switching time was, because of the nature of the hard-

ware cost: performance, scaling up at a lower rate than that of the decrease of the 

critical path, an increase in N did not seriously degrade overall performance. 

Some general points are noted: 
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A VLSI cost model was presented and the expected sub-linearity of VLSI 

devices was identified in memory and processor components. As suggested 

in [72] both the feature size and die area (number of transistors) are signif-

icant factors affecting device cost, with a key effect being wafer fabrication 

equipment depreciation. 

A survey of microprocessor data was carried out, and this was combined 

with the cost model data to determine a cost: performance function for the 

basic components. Reasonable approximate curves were proposed. 

Space scaling was described in detail for a grid decomposition, and this was 

used to show how memory system performance will degrade with N. 

A scheme for representing a DAG algorithm as a workload on N processors 

was presented and used to develop the performance model in detail. 

Verilog simulations were presented and provided validation of the models to 

within 3.5% for the shared-bus, and 11% for the mesh. 

6.2 Suggestions for Future Research 

Several investigations spring from the current one. In general, these would involve 

taking a specific aspect of the analysis and developing more precise models with 

more precise (but less general) results. 

The effects, on cache management strategies, of increasing N is one possible 

area of study. As N increases, the amount of work required to maintain cache 

coherency in some schemes may become prohibitively large. A possible approach 

is to express the change in the amount of cache-maintenance work done as a 

function of N and to use this in conjunction with the cost: performance models 

presented here, to identify an overall effect on execution time. 
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An investigation into the effects of different (blocking) communications pat-

terns, would also be informative. As was shown in this thesis, while the mesh's 

non-blocking communications gave optimal N at the highest value, the bus could 

quickly saturate making large N a poor choice. Work presented in [2] could provide 

a starting point for a more general latency model. 

Further work could be done to extend the processor cost model out beyond 

single-chip VLSI devices, to include board-level processors. In the analysis pre-

sented here, obviously parallel architectures are needed when the total processor 

cost is greater than that of leading edge single-chip device. By identifying a 

cost: performance function for board-level CPUs (perhaps using bipolar technolo-

gies) the tradeoff between number and speed of processors may be investigated 

to higher cost ranges. It would also be useful to devise a more precise model of 

switch cost: performance than the one presented here. Switch components are still 

relatively uncommon but several experimental and a few commercial devices have 

been produced and could form the beginning of a study [15] [50] [34]. 

Also, the general principle of fixing system cost in order to investigate the net 

effects of a proposed optimization, could be applied to tradeoffs among the amount 

of resource used for each of the three main hardware functions: processors, memory 

and interconnect. Keeping the three hardware functions independent, as was done 

here, ignores the fact that if the performance of one component drops very rapidly 

as N increases, it may become a bottleneck which dominates all other effects. 

Bearing in mind that varying N is only one of several options available when 

designing an optimal architecture, and investigation into trading off processor, 

memory and interconnect cost would be difficult, but useful. 

Alternative sources of space scaling effects are worthy of investigation. For 

example, as mentioned in chapter 1, the discussions of the merits of recomputa-

tion in scheduling (e.g. [35] and [57]) currently take no account of the impact 

on memory performance of executing the same task on several processors. For 
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high performance networks using memory with a poor cost: performance function, 

recomputation may become a liability. 

Finally, the future implications of this modelling approach could be investi-

gated, particularly with respect to examining the relative importance of scalability 

and modularity in parallel systems. 

6.2.1 Scalability and Modularity 

Ultra-high performance is not the only reason for considering parallism in com-

puter architectures. Another, possibly more widely useful property, is the ability 

to increase the performance of a parallel system by adding more nodes. This is 

useful for two reasons. First, it allows an existing piece of hardware to be retained 

and improved, rather than discarded as is the case today. Second, it allows a range 

of products, providing a range of costs and performances, to be developed from a 

single design effort in both hardware and software. The latter is particularly useful 

since each individual VLSI component typically has a minimum support overhead 

(design, marketing, sales support, etc.) and so the fewer different components an 

OEM needs to support the target market, the better. 

However, it is the notion that the ability to add nodes to an existing system is 

valuable, that warrants further study. For example, the ability to add more nodes 

to a fixed-degree topology such as the mesh has been used to argue its merits over 

a variable-degree topology such as the binary cube. The ability to add more nodes 

should be considered in light of the fact that when the time to upgrade arrives, 

VLSI technology can be expected to have moved on, making the upgrade with 

older nodes less attractive. 

Specifically, the problem is as follows: 

In year Y1 , a system is built using N 1  nodes. Some time later, in year Y2 , a 
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sum of money is made available with which to upgrade the available computing 

resource. The user has a choice: 

Purchase more nodes of the original type, and add these to the existing 

system, or 

Discard the existing system and build a new optimal system, with the avail-

able technology. 

Apart from the various factors discussed in this thesis, a key factor is the 

growth of VLSI device performance with time. A useful starting point for this 

is [72]. Practical experience at Edinburgh, in the early 1990's, suggests that, at 

the moment, VLSI is still advancing fast enough to make scalablity for upgrad-

ing's sake of limited worth. This may change however, as the technology reaches 

its upper limits. The circumstances under which this would occur merit further 

investigation. 
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Key to Survey Table 

Name Device Name/Number 

Mfr 	Principal Manufacturer 

Cik 	External Bus Clock Frequency (MHz) 

Mips 	Dhrystone MIPS 

Mflops Millions of floating-point operations per second 

1nt92 	Maximum quoted Int92 in system using this processor 

1nt92 	Maximum quoted FP92 in system using this processor 

KD/s Kdrhystones per second 

Area 	Die area mm 2  

Trans 	Number of transistors (1000's) 

Ftr 	Feature size (drawn) (microns) 

Name Mfr CIk Mips Mflops 1.t92 FP92 KD/s Area Trans Ftr 

21064 DEC 133 62.6 107.8 234 1700 0.8 

21064 DEC 150 74.3 126.0 234 1700 0.8 

21064 DEC 166 234 1700 0.8 

21064 DEC 200 106.5 200.4 234 1700 0.68 

21064A DEC 225 135 205 2800 0.68 

21064A DEC 225 170 290 2800 0.68 

21064AA DEC 100 1750 0.68 

21064AA DEC 133 65 112 1750 068 

21064AA DEC 150 74 126 1750 0.68 

21064AA DEC 166 90 140 1750 0.68 

21064AA DEC 175 114 162 1750 0.68 

21064AA DEC 182 103 176 1750 0.68 

21064AA DEC 190 122 185 1750 0.68 

21064AA DEC 200 130 184 1750 0.68 

21066 DEC 166 70 105 

21068 DEC 66 30 50 

21164 DEC 225 135 205 2800 0.5 

21164 DEC 275 170 290 2800 0.5 

21164 DEC 320 201.5 366.5 2800 0.5 

29000 AMD 16 

29000 AMD 20 

29000 AMD 25 

29000 AMD 30 

386/387 INTEL 33 6.2 3.3 1200 

486DX INTEL 25 13.3 6.6 1 1200 

486DX INTEL 33 18.3 9.5 

486DX INTEL 50 30.1 14 1200 

486DX2 CYRIX 66 32.2 16 0.7 

486DX2 CYRIX 80 0 

486DX2 INTEL 25.4 15.9 

486DX2 INTEL 1 	66 32.2 16 0.7 

486DX2 INTEL 80 07 

486DX3 INTEL 99 48 24 1200 

135 
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Name 
[ 

Mfr I CIk 	I  Mips Mflops 1.t92 FP92 KD/s 
[ 

Area Trans Ftr]j 

486DX4 INTEL 100  

486SLC INTEL 33  

486SX INTEL 25 

486SX INTEL 33 

6502 ROCKWELL  

80186 INTEL 8 

80188 INTEL 8 

80286 INTEL 10 

80386 INTEL 16 

80386 INTEL 20 

80386 INTEL 25 

8080A INTEL 2 

8088 INTEL 5 

80C186 INTEL 10 

80C188 INTEL 10 

80C286 INTEL 16 

80C286 INTEL 12.5 

80085A INTEL 3 

80086 INTEL 8 

84C00A TOSH 6 

ARM2 ARM 8 5.3 5.29 25 1.2 

ARM3 ARM 25 14.8 250 0.8 

ARM6 ARM 33 7.15 33.5 0 

ARM60 ARM 16 43 0.6 

ARM610 ARM 25 25 24 26 359 0.6 

ARM7 ARM 33 53 4.96 35.6 0.8 

ARM700 ARM 55 69 68 579 0.8 

ARM710 ARM 33 32 34 570 0.6 

MC6800 MOT 1 

MC68000 MOT 8 30 68 2.5 

MC68000 MOT 10 30 68 21 

MC68000 MOT 12 30 68 2 

MC68010 MOT 8 41.4 84 2.6 

MC68010 MOT 10 41.4 84 26 

MC68010 MOT 12 41.4 84 2.6 

MC68020 MOT 12 39.7 190 0.8 

MC68020 MOT 16 39.7 190 0.8 

MC68020 MOT 20 5.2 0.19 9 39.7 190 0.8 

MC68020 MOT 25 6.5 0.24 11 39.7 190 0.8 

MC68020 MOT 33 8.7 0.32 15 39.7 190 0.8 

MC68030 MOT 16 4.5 1 	0.26 7.8 55.4 273 1.0 

MC68030 MOT 20 5.4 0.32 9.4 55.4 273 1.0 

MC68030 MOT 25 6.7 0.4 11.7 55.4 273 1.0 

MC68030 MOT 33 9.0 0.53 15.6 55.4 273 1.0 

MC68030 MOT 40 10.8 0.6 1 18.8 55.4 273 1.0 

MC68030 MOT 50 13.5 0.8 23.5 55.4 273 1.0 

MC68040 MOT 25 26.1 3.5 19 45.5 163 1170 0.65 

MC68040 MOT 33 34.8 4.7 61 163 1170 0.65 

MC68040 MOT 40 43.8 35 23 72.7 163 1170 0.8 

MC68040 MOT 45 41.3 5.6 72.7 163 1170 0.65 

MC68060 MOT 50 90 1 49 1 198 2500 0.5 

MC6809 MOT I 

MC68EC000 MOT 8 1.2 2.1 28.6 68 0.8 

MC68EC000 MOT 15 2.5 4.4 28.6 68 0.8 

MC68ECO40 MOT 20 20.9 0.2 36.4 128 777 0.65 

MPC601 MOT/IBM 50 51 63 1 120 2800 0.6 
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Name Mfr I  CIk 	I Mips Mfiops 1.t92 FP92 I KD/s Area Taus Ftr 

MPC601 MOT/IBM 60 120 2800 0.6 

MPC601 MOT/IBM 66 62 80 120 2800 0.6 

MPC601 MOT/IBM 80 77 93 120 2800 0.6 

MPC601 MOT/IBM 100 110 130 74 2800 0.5 

P24C INTEL 99 

P24T INTEL 

P54C INTEL 0.6 

P54MC INTEL 

P6 INTEL  

P86 INTEL/HP  

PA7100 HP 99 109.1 167.9 202 806 0.75 

PA7100LC HP 60 58.1 78.5 202 906 0.75 

PA7100LC HP 75 82.6 127.2 202 906 0.75 

PA7100LC HP 80 84.1 79 202 906 0.75 

PA7100LC HP 100 101 137 202 906 0.75 

PA7150 HP 125 135 200 202 806 0.75 

PA7200 HP 

PA9000 HP 

PENTIUM INTEL 60 58.3 52.2 290 3100 0.8 

PENTIUM INTEL 66 64.5 56.9 290 3200 065 

PENTIUM INTEL 90 90 72.7 3200 065 

PENTIUM INTEL 99 96.8 85.4 

PENTIUM INTEL 100 100 80.6 3200 0.65 

POWER IBM 63 73.3 134.6 

POWER2 IBM 72 126 260.4 19200 

P0WER2532 IBM 25 20.9 39.4 

POWER3332 IBM 33 27.7 51.9 

P0WER3364 33 28.5 64.6 

R4200 MTI 40 50 24 1300 0.6 

R4200 MTI 40 55 30 1300 0.6 

R4400 MTI 50 59.1 62.1 186 2300 0.6 

R4400 MTI 75 94.2 105.2 186 2300 0.6 

R4400 MTI 150 2300 0.6 

R4400 MTI 200 117 131 134 2300 0.35 

R4600 MTI 50 60 68 1900 0.64 

R4600 MTI 67 92.1 82 1900 0.64 

R8000/TFP MTI 75 300 300 108 310 298 3400 0.5 

RSC3308 IBM 33 20.4 29.1 

RSC4608 IBM 46 28.5 39.9 

Sparc(H) SUN 66 67 93 0.65 

Sparc(H) ROSS 100 111 135 135 0.5 

Sparc(M) SUN 50 23 18 0.8 

Sparc(S) SUN 89 103 

Sparc(S) SUN 50 65 80 256 3000 0.7 

Sparc2(M) SUN 100 63 56 11 
T5 MTI 100 250 300 5200 

Z80A ZILOG 4 

Z80B ZILOG 6 

Z84C ZILOG 8 

I860XP INTEL 50 75 2500 0.8 
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B.1 Bus Simulation Results 

This section provides results for the bus simulations. Three sets of experiments 

were performed; one for low-cost components, one for mid-range devices, and one 

for devices at the high-end of the cost and performance ranges. Tables B—i to 

B-3 provide a summary of the parameters used in the bus simulations. Figures 

B—i to B-9 plot execution time against N for each experiment. Simulation results 

matched the model to within an average of under 3.5%. 
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Low-cost components 

P i p 

Memory (MBytes) CPU 

Cost ti 

MEM 

Cost tM Local Shared 

Experiment 1 

10000 10 0.1 0.5 5 2.36 41.67 11.5 70 

10000 100 0.1 0.5 5 2.36 41.67 11.5 70 

10000 500 0.1 0.5 5 2.36 41.67 11.5 70 

Experiment 2 

10000 10 0.5 0.5 5 2.36 41.67 11.5 70 

10000 100 0.5 0.5 5 2.36 41.67 11.5 70 

10000 500 0.5 0.5 5 2.36 41.67 11.5 70 

Experiment 3 

10000 10 1.0 0.5 5 2.36 41.67 11.5 70 

10000 100 1.0 0.5 5 2.36 41.67 11.5 70 

10000 500 1.0 0.5 5 2.36 41.67 11.5 70 

Table B-i: Bus Simulation Experiments - 1 of 3 
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Shared Bus - Expt 1(10w cost) E =10 (act)  

w 15000.00 i=10(ca1c) 

_ 10000.00 • i=100(act) 

5000.00 AA i=100(calc) 
6 	 A----

&. .. . 
0.00 A i=500(act) 

0 20 	40 	60 	80 100 

Processors 	- i=500(calc) 

Figure B—i: Bus Experiment 1 - Low-cost Components 

Shared Bus - Expt 2 (low cost) i=1 0(act) 

20000.00 a i=10(calc) 
E 

j 15000.00 
i-100(act) 

10000.00 A 

5000.00 AAA i=100(ca1c) 

W 0.00 • A i=500(act) 
0 20 	40 	60 	80 100 

Processors i=500(calc) 

Figure B-2: Bus Experiment 2 - Low-cost Components 

Shared Bus- Expt 3(10w cost) i =10 (act 

w 30000.00 A i=10(calc) . 25000.00 _ 20000.00 • i=100(act) 
.2 15000.00 

10000.00 AA i=100(ca1c) 
w 
W 

500000 •- 	-A--A • 	. E 0.00 A i=500(act) 
0 20 	40 	60 	80 100 

Processors i=500(calc) 

Figure B-3: Bus Experiment 3 - Low-cost Components 
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Mid-range components 

P i 

it Memory (MBytes) CPU 

Cost ti 

MEM 

Cost tM Local Shared 

Experiment 1 

10000 10 0.1 0.5 5 50.86 8.55 15.82 32 

10000 100 0.1 0.5 5 50.86 8.55 15.82 32 

10000 500 0.1 0.5 5 50.86 8.55 15.82 32 

Experiment 2 

10000 10 0.5 0.5 5 50.86 8.55 15.82 32 

10000 100 0.5 0.5 5 50.86 8.55 15.82 32 

10000 500 0.5 0.5 5 50.86 8.55 15.82 32 

Experiment 3 

10000 10 1.0 0.5 5 50.86 8.55 15.82 32 

10000 100 1.0 0.5 5 50.86 8.55 15.82 32 

10000 500 1.0 0.5 5 50.86 8.55 15.82 32 

Table B-2: Bus Simulation Experiments - 2 of 3 
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Shared Bus - Expt 1 (medium cost) 

w 	4000.00 i 
E 	 I 
j 	3000.00 I 

	

2000.00 I 	A 

g 	1000.00! 	• • • • • 
w 	0.00 

	

0 	20 	40 	60 	80 	100 

Processors 

I 

11 

A 

1=10 (act) 

i=10(calc) 

1=1 00(act) 

i=1 00(calc) 

i=500(act) 

i=500(calc) 

Figure B-4: Bus Experiment 1 - Mid-range Components 

Shared Bus - Expt 2 (medium cost) E 	i=1 0(act) 

8000.00 i=10(calc) 

6000.00 A\ 

4000.00 
• 	

1=1 00(act) 

2000.00 
A A 	

A 
i=100(calc) 

X 
W 

A A 

0.00 A 	i=500(act) 
0 20 	40 	60 	80 	100 

Processors 
i=500(calc) 

Figure B-5: Bus Experiment 2 - Mid-range Components 
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CD 12000.00 . 10000.00 - 8000.00 
.2 6000.00 - 4000.00 

2000.00 
w 0.00 

0 

Shared Bus - Expt 3 (medium cost) 

A\ 

A 

A - - A— 
A 

• £ - i - l U- O N E 

20 	40 	60 	80 	100 

Processors  

=1 0(act) 

i=1 0(calc) 

1=1 00(act) 

1=1 00(calc) 

i=500(act) 

i=500(calc) 

Figure B-6: Bus Experiment 3 - Mid-range Components 
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High-end components  

P i j 

Memory (MBytes) CPU 

Cost tj 

MEM 

Cost tM Local Shared 

Experiment 1 

10000 10 0.1 0.5 5 354.5 3.33 40.23 9 

10000 100 0.1 0.5 5 354.5 3.33 40.23 9 

10000 500 0.1 0.5 5 354.5 3.33 40.23 9 

Experiment 2 

10000 10 0.5 0.5 5 354.5 3.33 40.23 9 

10000 100 0.5 0.5 5 354.5 3.33 40.23 9 

10000 500 0.5 0.5 5 354.5 3.33 40.23 9 

Experiment 3 

10000 10 1.0 0.5 5 354.5 3.33 40.23 9 

10000 100 1.0 0.5 5 354.5 3.33 40.23 9 

10000 500 1.0 0.5 5 354.5 3.33 40.23 9 

Table B-3: Bus Simulation Experiments - 3 of 3 



APPENDIX B. SIMULATION 
	

145 

Shared Bus - Expt I (high cost) 

	

, 	1200.00 

	

•E_ 	1000.00 
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400.00 
200.00 I -. . . • 11 
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1=10 (act) 
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i=500(act) 

i=500(calc) 

Figure B-7: Bus Experiment 1 - High-end Components 

Shared Bus - Expt 2 (high cost) 

w 	2000.00 
E 

i 	1500.001 
C- 	 I 
.2 	1000.00 1  

500.001 

w 	0.001 
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Processors 
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=10 (calc)  

=1 00(act) 

=1 00(calc) 

=500(act) 

=500(calc) 

Figure B-8: Bus Experiment 2 - High-end Components 

Shared Bus -Expt3(high cost) • 	i=10(act) 

w 4000.00 I i=10(calc) 
E 
R 3000 . 00 ! 

A  
• 	i=100(act) 	'I 

2000.00 

1000 . 00 1 
i=100(calc) 

CD 
X 

LU 0.00 
A 	- A- A .-- • I I I I 	U 	I U 	I  A 	i=500(act) 

0 20 	40 	60 	80 	100 

Processors i=500(calc) 

Figure B-9: Bus Experiment 3 - High-end Components 



APPENDIX B. SIMULATION 	 146 

B.2 Mesh Simulation Results 

This section provides results for the mesh simulations. As discussed in chapter 

5, the simulations used the following fixed parameters throughout. The data 

space consisted of P = 4096 points arranged in two dimensions. The number of 

iterations was five. Switch cost was fixed at $350 for all simulations. As with 

the bus simulations, three sets were run corresponding to low-cost, mid-range and 

high-end memory and processors. 

Each experiment consisted of three sets of simulation runs, each for a square 

mesh from 1 to 400 nodes. Over the three sets one of the key algorithm parameters 

was varied, while the others were fixed. 

Experiment la simulated instruction execution only, varying i. Experiment 

lb again varied i but did this within the context of communication and memory 

operations. Experiments 2a and 2b simulated varying i, with first a low then 

high value for i. Experiments 3a to 3c varied i, first with two values of i and no 

communications, and then with messages. Finally experiment 4 varied the number 

Tables B-4 to B-6 summarize the simulations. Figures B-10 to B-33 plot 

execution time against N for each experiment. Simulation results matched the 

model to within an average of 11%. 
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Low-cost Components 

i i8  It bpg 8 

CPU 

Cost ti 

MEM 

Cost tM 

SWITCH 

Cost t 

Expt. la 1 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33 

100 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33 

500 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33 

Expt. lb 1 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

100 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

F500 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

Expt. 2a 1 1 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

1 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

1 100 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

Expt. 2b 100 1 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

100 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

100 100 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

Expt. 3a 1 0 1 1 0 2.36 41.67 11.5 70 354.5 3.33 

1 0 51 1 0 2.36 41.67 11.5 70 354.5 3.33 

1 0 101 1 0 2.36 41.67 11.5 70 354.5 3.33 

Expt. 3b 100 0 1 1 0 2.36 41.67 11.5 70 354.5 3.33 

100 0 51 1 0 2.36 41.67 11.5 70 354.5 3.33 

100 0 101 1 0 2.36 41.67 11.5 70 354.5 3.33 

Expt. 3c 50 50 1 1 1 2.36 41.67 11.5 70 354.5 3.33 

50 50 51 1 1 2.36 41.67 11.5 70 354.5 3.33 

50 50 101 1 1 2.36 41.67 11.5 70 354.5 3.33 

Expt. 4 50 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33 

50 50 50 10 1 2.36 41.67 11.5 70 354.5 3.33 

50 j 	50 j 	50 j 	20 j 	1 j 	2.36 j  41.67 j 	11.5 j 	70 j 	354.5 3.33 

Table B-4: Mesh Simulation Experiments - 1 of 3 
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Mesh Experiment la - Low-cost Components 
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Figure B-10: Mesh Experiment la - Low-cost Components 

Mesh Experiment lb - Low-cost Components 
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Figure B—il: Mesh Experiment lb - Low-cost Components 
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Mesh Experiment 2a - Low-cost Components 
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Figure B-12: Mesh Experiment 2a - Low-cost Components 

Mesh Experiment 2b - Low-cost Components 
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Figure B-13: Mesh Experiment 2b - Low-cost Components 
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Mesh Experiment 3a - Low-cost Components 
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Figure B-14: Mesh Experiment 3a - Low-cost Components 

Mesh Experiment 3b - Low-cost Components 
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Figure B-15: Mesh Experiment 3b - Low-cost Components 

Mesh Experiment 3c - Low-cost Components 
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Figure B-16: Mesh Experiment 3c - Low-cost Components 
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Mesh Experiment 4- Low Cost Components 
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Figure B-17: Mesh Experiment 4 - Low-cost Components 
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Mid-range Components 

i8  p bpg ö 

CPU 

Cost ti 

MEM 

Cost tM 

SWITCH 

Cost t 

Expt. la 1 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33 

100 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33 

500 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33 

Expt. lb 1 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

100 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

500 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

Expt. 2a 1 1 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

1 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

1 100 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

Expt. 2b 100 1 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

100 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

100 100 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

Expt. 3a 1 0 1 1 0 50.86 8.55 15.82 32 354.5 3.33 

1 0 51 1 0 50.86 8.55 15.82 32 354.5 3.33 

1 0 101 1 0 50.86 8.55 15.82 32 354.5 3.33 

Expt. 3b 100 0 1 1 0 50.86 8.55 15.82 32 354.5 3.33 

100 0 51 1 0 50.86 8.55 15.82 32 354.5 3.33 

100 0 101 1 0 50.86 8.55 15.82 32 354.5 3.33 

Expt. 3c 50 50 1 1 1 50.86 8.55 15.82 32 354.5 3.33 

50 50 51 1 1 50.86 8.55 15.82 32 354.5 3.33 

50 50 101 1 1 50.86 8.55 15.82 32 354.5 3.33 

Expt. 4 50 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33 

50 50 50 10 1 50.86 8.55 15.82 32 354.5 3.33 

50 50 50 20 1 50.86 8.55 15.82 32 354.5 3.33 

Table B-5: Mesh Simulation Experiments - 2 of 3 
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Mesh Experiment l  - Mid-range Components 
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Figure B-18: Mesh Experiment la - Mid-range Components 
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Figure B-19: Mesh Experiment lb - Mid-range Components 
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Mesh Experiment 2a - Mid-range Components 
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Figure B-20: Mesh Experiment 2a - Mid-ra nge Components 

Mesh Experiment 2b - Mid-range Components 
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Figure B-21: Mesh Experiment 2b - Mid-range Components 
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Figure B-22: Mesh Experiment 3a - Mid-range Components 
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Figure B-23: Mesh Experiment 3b - Mid-range Components 

Mesh Experiment 3c - Mid-range Components 
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Figure B-24: Mesh Experiment 3c - Mid-range Components 
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Mesh Experiment 4- Mid-range Components 
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Figure B-25: Mesh Experiment 4 - Mid-range Components 
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High-end Components  

c i, t bpg 6 

CPU 

Cost ti 

MEM 

Cost tM 

SWITCH 

Cost t 

Expt. la 1 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33 

100 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33 

500 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33 

Expt. lb 1 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

100 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

500 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

Expt. 2a 1 1 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

1 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

1 100 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

Expt. 2b 100 1 50 1 ± 354.5 3.33 40.23 9 354.5 3.33 

100 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

100 100 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

Expt. 3a 1 0 1 1 0 354.5 3.33 40.23 9 354.5 3.33 

1 0 51 1 0 354.5 3.33 40.23 9 354.5 3.33 

1 0 101 1 0 354.5 3.33 40.23 9 354.5 3.33 

Expt. 3b 100 0 1 1 0 354.5 3.33 40.23 9 354.5 3.33 

100 0 51 1 0 354.5 3.33 40.23 9 354.5 3.33 

100 0 101 1 0 354.5 3.33 40.23 9 354.5 3.33 

Expt. 3c 50 50 1 1 1 354.5 3.33 40.23 9 354.5 3.33 

50 50 51 1 ± 354.5 3.33 40.23 9 354.5 3.33 

50 50 101 1 1 354.5 3.33 40.23 9 354.5 3.33 

Expt. 4 50 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33 

50 50 50 10 1 354.5 3.33 40.23 9 354.5 3.33 

50 50 50 20 1 354.5 3.33 40.23 9 354.5 3.33 

Table B-6: Mesh Simulation Experiments - 3 of 3 
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Mesh Experiment la - High-end Components 
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Figure B-26: Mesh Experiment la - High-end Components 
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Figure B-27: Mesh Experiment lb - High-end Components 
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Mesh Experiment 2a - High-end Components 
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Figure B-28: Mesh Experiment 2a - High-end Components 
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Figure B-29: Mesh Experiment 2b - High-end Components 
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Mesh Experiment 3a - High-end Components 
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Figure B-30: Mesh Experiment 3a - High-end Components 
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Figure B-31: Mesh Experiment 3b - High-end Components 
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Figure B-32: Mesh Experiment 3c - High-end Components 
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Mesh Experiment 4- High-end Components 
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