
Optimizing Hardware Granularity

in Parallel Systems

Thomas Kelly

PhD

The University of Edinburgh

1995

Li

Declaration

This thesis has been composed by me and is, except where indicated, my own

work.

Thomas Kelly. November, 1995

Abstract
In order for parallel architectures to be of any use at all in providing superior

performance to uniprocessors, the benefits of splitting the workload among several

processing elements must outweigh the overheads associated with this "divide and

conquer" strategy.

Whether or not this is the case depends on the nature of the algorithm and

on the cost: performance functions associated with the real computer hardware

available at a given time.

This thesis is an investigation into the tradeoff of grain of hardware versus

speed of hardware, in an attempt to show how the optimal hardware parallelism

can be assessed.

A model is developed of the execution time T of an algorithm on a machine as

a function of the number of nodes, N. The model is used to examine the degree to

which it is possible to obtain an optimal value of N, corresponding to minimum

execution time.

Specifically, the optimization is done assuming a particular base architecture,

an algorithm or class thereof and an overall hardware cost.

Two base architectures and algorithm types are considered, corresponding to

two common classes of parallel architectures: a shared memory multiprocessor

and a message-passing multicomputer. The former is represented by a simple

shared-bus multiprocessor in which each processing element performs operations

on data stored in a global shared store. The second type is represented by a two-

dimensional mesh-connected multicomputer. In this type of system all memory

is considered private and data sharing is carried out using "messages" explicitly

passed among the PEs.

Acknowledgements

The pursuit of this research has introduced me to many people to whom I am

indebted. First, I am grateful to my employer, Motorola Ltd., which supported

this work in its entirety. In particular, I want to thank John Barr, Jim Ritchie

and Chip Shanley; without their support I would not have been able to complete

my work. Their encouragement, and patience, will always be appreciated.

In the Department of Computer Science at Edinburgh I found a good deal of

support, and a rich atmosphere of study. To my supervisors Professor Roland

Ibbet, and David Rees I am especially grateful. I also learned much from fellow

students of whom Tim Harris, Neil MacDonald and Mike Norman were outstand-

ing.

I also had the opportunity to spend time at the Department of Computing Sci-

ence in the University of Glasgow. There, especially, did I begin the change of mind

required to move from engineering to science. Advice and encouragement were

gratefully received from John O'Donnell, Professor Simon Peyton-Jones, Mary

Sheeran, Rob Sutherland, Pauline Haddow and Hans Stadtler. A particular place

in my thanks is reserved for Mohamed Ould-Khaoua whose own persistence as

well as encouragement and friendship were and are appreciated.

So to my family, closest to my heart, and the ultimate reason for any of my

endeavours. They, my three girls, have encouraged, supported and sustained me

most. And my parents; the work presented here rests upon the base with which

they provided me.

Finally, I reserve the greatest thanks till last. For me, the period of study

covered by this thesis was an apprenticeship in thought. Much as I am glad for

the increase in knowledge I have gained in various aspects of Computing Science,

far dearer to me was the opening of my eyes to thought itself, and the receipt

of courage to ask, and ask, and ask. And in that respect I had the honour to

learn from Lewis MacKenzie at the University of Glasgow. Through his mind,

bested only by his humility, I finally learned really to begin to think. This thesis

is dedicated to him, teacher and friend.

For Lewis M. MacKenzie

"The herring are flying high tonight"

Table of Contents

Introduction 	 1

	

1.1 	Problem Statement2

1.1.1 	Processors - An Illustration2

1.1.2 	Space Scaling7

	

1.2 	Motivation9

1.2.1 	Parallel System Design9

1.2.2 	Optimizing Device Portfolios10

1.2.3 Tradeoffs in a Fixed Cost System12

	

1.3 	Related work 14

	

1.4 	Approach 17

1.4.1 	Thesis Outline21

VLSI Cost:Performance 	 22

	

2.1 	Introduction23

	

2.2 	Processing Hardware23

2.2.1 	Cost and Price 25

2.2.2 	Modelling IC Cost 25

1

2.2.3 Microprocessor Cost: Performance 	 38

	

2.3 	Memory Hardware44

2.3.1 Memory Device Cost: Performance - tM44

2.4 Interconnection Network Hardware47

2.4.1 	Router Cycle Time48

2.4.2 	Router Channel Width49

	

2.5 	Summary 51

3. A Shared-memory Multiprocessor 53

3.1 Introduction 54

3.2 Machine Architecture 54

3.3 The Algorithm 56

3.3.1 	Critical Path 56

3.4 Software Parameters 59

3.5 Hardware Parameters 60

3.5.1 	Space Scaling 60

3.5.2 	Shared Memory Performance 62

3.6 Summary 66

4. A Message-passing Multicomputer 	 67

	

4.1 	Introduction68

	

4.2 	Machine Architecture68

	

4.3 	The Algorithm 68

4.3.1 A Graph Model of Algorithms69

4.3.2 Grid Algorithm 	 . 72

4.3.3 	Critical Path 75

	

4.4 	Software Parameters77

	

4.5 	Hardware Parameters78

4.5.1 	Memory Performance - tM....................78

4.5.2 	Mesh Network Latency - t87

	

4.6 	Summary 94

5. Discussion 	 95

	

5.1 	Introduction96

	

5.2 	The Simulator96

5.2.1 	Verilog Simulator97

5.2.2 	Simulation Control99

5.2.3 	Performance99

	

5.3 	Simulation Results101

5.3.1 Shared Memory Multiprocessor101

5.3.2 Message-passing Multicomputer102

	

5.4 	Model Behaviour103

5.4.1 Shared Memory Multiprocessor Model103

5.4.2 Message Passing Multicomputer Model119

	

5.5 	Shared Bus Example123

5.6 	Summary 126

6. Concluding Remarks
	

127

6.1 	Summary and Conclusions128

6.2 Suggestions for Future Research130

6.2.1 	Scalability and Modularity132

Microprocessor Survey Data 	 134

Simulation 	 .138

B.1 Bus Simulation Results139

B.2 Mesh Simulation Results146

List of Figures

1-1 Effect of linear cost: performance - Basic DAG3

1-2 Effect of linear cost: performance - Connected DAG4

1-3 Effect of sub-linear cost: performance6

1-4 Weighted DAG Section8

2-1 Probed Wafer Costs32

2-2 Package Costs (Source: Microprocessor Report, October 4, 1993) . . 35

2-3 Processor Cost: Performance (t 1) 41

2-4 Adjusted Processor Cost: Performance (t 1) 42

2-5 Processor Cost: Performance (millions of "1nt92 instructions" per

second)43

2-6 Memory Cost: Performance (memory access time)45

2-7 Memory Cost: Performance (memory speed)46

3-1 Shared Memory Multiprocessor55

4-1 Directed Acyclic Graph71

4-2 Levelled DAG73

4-3 Overlap Areas79

v

4-4 Overlap in several dimensions82

4-5 Effects of Overlap Areas on Total Capacity85

4-6 Effects of Overlap Areas on Memory Device Cost85

4-7 Effects of Overlap Areas on Access Time86

4-8 Examples of k-ary n-cubes87

4-9 Decreasing Probability Communication90

5-1 Verilog Router Block Diagram98

5-2 Simulation Control100

5-3 Single Processor Instruction Execution Time (t 1) 105

5-4 Single Processor Performance106

5-5 Memory Access Time versus Total Capacity107

5-6 Memory Speed versus Total Capacity107

5-7 Bus Model - Execution time sensitivity to i 109

5-8 Bus Model - Bus waiting sensitivity to i 110

5-9 Bus Model - Execution time sensitivity to 1u 111

5-10 Bus Model - Bus waiting sensitivity to i112

5-11 Bus Model - Memory requirements for various space scaling exponents 114

5-12 Bus Model - Execution time sensitivity to space scaling114

5-13 Bus Model - Bus waiting sensitivity to space scaling115

5-14 Instruction execution times for various processor cost: performance

coefficients116

5-15 Processor performance for various coefficients117

5-16 Bus Model - Execution time sensitivity to processor cost: performance ll8

5-17 Mesh Model - Time for Computation Only120

5-18 Mesh Model - Latency, t versus N121

5-19 Mesh Model - Router Cycle Time, tR, versus N121

5-20 Mesh Model - Message Length versus N122

5-21 Mesh Model - Router Width versus N122

5-22 Mesh Model - Bytes per Message versus N123

5-23 Bus Model - Optimal N versus i 124

5-24 Bus Model - Optimal N versus ,a125

B—i Bus Experiment 1 - Low-cost Components141

B-2 Bus Experiment 2 - Low-cost Components141

B-3 Bus Experiment 3 - Low-cost Components141

B-4 Bus Experiment 1 - Mid-range Components143

B-5 Bus Experiment 2 - Mid-range Components143

B-6 Bus Experiment 3 - Mid-range Components143

B-7 Bus Experiment 1 - High-end Components145

B-8 Bus Experiment 2 - High-end Components145

B-9 Bus Experiment 3 - High-end Components145

B-10Mesh Experiment la - Low-cost Components148

B—llMesh Experiment lb - Low-cost Components148

B-12 Mesh Experiment 2a - Low-cost Components149

B-13 Mesh Experiment 2b - Low-cost Components149

B-14 Mesh Experiment 3a - Low-cost Components150

B-15 Mesh Experiment 3b - Low-cost Components150

B-16 Mesh Experiment 3c - Low-cost Components150

B-17Mesh Experiment 4 - Low-cost Components151

B-18 Mesh Experiment la - Mid-range Components153

B-19 Mesh Experiment lb - Mid-range Components153

B-20 Mesh Experiment 2a - Mid-range Components154

B-21 Mesh Experiment 2b - Mid-range Components154

B-22 Mesh Experiment 3a - Mid-range Components155

B-23 Mesh Experiment 3b - Mid-range Components155

B-24Mesh Experiment 3c - Mid-range Components155

B-25 Mesh Experiment 4 - Mid-range Components156

B-26 Mesh Experiment la - High-end Components158

B-27Mesh Experiment lb - High-end Components158

B-28Mesh Experiment 2a - High-end Components159

B-29Mesh Experiment 2b - High-end Components159

B-30 Mesh Experiment 3a - High-end Components160

B-31 Mesh Experiment 3b - High-end Components160

B-32 Mesh Experiment 3c - High-end Components160

B-33 Mesh Experiment 4 - High-end Components161

List of Tables

2-1 Processor Cost: Performance 	 . 40

5-1 Default Parameters for Bus Model104

5-2 Default Parameters for Mesh Model119

B—i Bus Simulation Experiments - i of 3i40

B-2 Bus Simulation Experiments - 2 of 3i42

B-3 Bus Simulation Experiments - 3 of 3144

B-4 Mesh Simulation Experiments - 1 of 3147

B-5 Mesh Simulation Experiments - 2 of 3152

B-6 Mesh Simulation Experiments - 3 of 3157

ix

List of Key Symbols

CA = Assembly cost per die

CF = Final test cost - the cost to test a packaged device

Cp = Cost of a single processor

Cs = Probed (sorted) wafer cost per die

C = Base memory requirements in mesh

I = Total computation instructions on critical path of mapped algorithm

M1 = Total number of local memory accesses on critical path

= Total number of shared memory accesses on critical path

N = Number of processing elements

P = Number of points in shared-memory algorithm

RL = Total cost (resource) of all links

RM = Total cost (resource) of all memory devices

Rp = Total cost (resource) of all processors

RR = Total cost (resource) of all router devices

TMP = execution time of mapped algorithm

TSM = Execution time on shared-memory machine

WR = Router width

S = Interaction depth

Fraction of instructions requiring local memory access

p = number of message receives on critical path

a = number of message sends on critical path

d = DAG depth

f = task fanout (mesh)

ic = Instructions per point (computation only)

is =Number of instructions required to prepare and send a message

j = instructions per task in mesh algorithm

m = Local memory per processor

n = dimension of data in mesh aig.

nm = Total amount of memory in system

= Number of physical channels per router

= Total amount of local (private) memory.

M8 = Total amount of shared memory

s = number of iterations in mesh algorithm

ti = Single instruction execution time

tM = Simple memory access time (i.e. ignoring contention)

tR = Router cycle time

tM, = Time for local memory access

tM8 = Time for shared memory access

t,, = time to receive a message

t = time to send a message

YA = Assembly yield

YF = Final test yield - the fraction of packaged devices which pass final test

Ys = Probe yield - the fraction of probed die which pass probe test.

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 	 2

1.1 Problem Statement

It is not obvious that a parallel computer is always better than a uniprocessor. In

general, it is not obvious that more processors are always better than fewer. If the

cost of hardware is fixed, then the number of processing elements becomes one of

several inter-related design parameters, and must undergo optimization with the

others.

For a fixed cost, and for a given architecture, a number of actual designs are

possible, ranging from one expensive processing element (PE) to several of a lower

cost. The criteria governing which number of PEs is optimal are the subjects of

study of this thesis. The main goal is to show how a model for optimizing N, the

number of PEs, may be developed.

1.1.1 Processors - An Illustration

If the aggregate performance of all processing elements in a fixed cost system was

independent of the number of elements, then parallelism would have little to offer

computer architects as a means of increasing performance. N processing elements

each of speed 11N cannot outperform a single processing element of unit speed

[28]. In fact, it is likely that the single PE would fare better than the many because

of overheads, such as communication, in the multi-node system.

Consider the algorithm represented by the graph in figure 1-1. Each of the

nodes represent a task, and the arrows are dependencies. Tasks C and D cannot

begin execution until tasks A and B respectively have completed.

In this illustration it is assumed (unrealistically, as will be shown later) that

the cost: performance of PEs is linear. In other words $D buys a total perfor-

mance of M whether one purchases a single PE of that performance, or N PEs

CHAPTER 1. INTRODUCTION
	

3

Single node PE 1 I A I B I C I D I Time = 4
system

Two node PE1I 	A 	I 	C Time = 4 system PE2I 	B 	I 	D 	I

I I Execution Time

Figure 1-1: Effect of linear cost: performance - Basic DAG

each of performance MIN and cost $D/N [36] [37]. It is also assumed (again,

unrealistically) that interprocessor communication carries no processing overhead

and that the tasks consist of CPU-bound instructions only, and do not require

external memory accesses. The figure shows the execution of the algorithm on a

uniprocessor and on a two-PE system. It is apparent that while adding a second

processor has allowed the use of concurrency (simultaneous execution of A and B,

and of C and D), the fact that each of the PEs in the two-PE system is half as fast

as the single PE means that no performance increase is actually achieved. The

advantage of concurrent operation on the two node system is exactly cancelled by

the necessary use of slower nodes.

However, the above is hardly a parallel algorithm. The task graph is not

connected and effectively represents two unrelated sequential computations. In

figure 1-2 the results of several tasks are combined by a single final task. The

execution times on various systems, with the same assumptions as before, are also

shown.

CHAPTER 1. INTRODUCTION
	

Ell

A) (B) (C) (D) (E

F
Single node PE 1 I A I B I C I D I E I F I Time = 6

system
Two node PE 1 A C 	E 	I 	F Time = 8

system PE21 B I 	D
Three node PE A D 	F I 	 Time =9

system PE2 B E
PE3 C

Four node PE A 	 E 	I F 	I 	Time =12
system PE 2 B

PE3 C
PE4 D

Five node PE A 	 F I 	Time =1O
system PE2 B

PE3 C
PE4 D
PE51 E

I I 	I 	I 	I 	I 	I 	I I 	I 	I
Execution Time

Figure 1-2: Effect of linear cost: performance - Connected DAG

CHAPTER 1. INTRODUCTION
	

5

Now, even though communication is still ignored, the multi-PE systems are

decidedly slower than the single-PE system. Parallelism, in this case, is not merely

a neutral option, but is in fact a performance-degrading factor.

Finally, consider the implictions of a sub-linear PE cost: performance. For

example, if the performance P is defined to be the reciprocal of the time a PE

takes to execute a task, then let P for a PE of cost C be given by:

P = 	 (1.1)

Now, with such a relationship between cost and performance, increasing the

parallelism has obvious performance benefits (figure 1-3). The rate of decrease

with N of the number of tasks the most heavily loaded PE must perform is greater

than the rate of increase of the task execution time.

A key component then, in determining optimal N, is the precise nature of the

PE cost: performance. This is discussed in detail in chapter 2.

However, in this example, as before, both communications and memory ac-

cesses are ignored.

If a time overhead is incurred whenever a FE must wait for a communication

from another, then the benefits of using multiple PE's diminish. If this overhead

itself is related to the number of PE's, (e.g. if it increases as a network increases in

size), then the positive effects of sub-linear cost: performance have to be weighed

against the negative effects of increasing network latency.

Also, if the amount of memory required in a system increases with N, then

for a fixed total memory cost, the parallel system will be forced to use cheaper

(and therefore slower) memory devices. An example of such space scaling is given

below.

CHAPTER 1. INTRODUCTION 	 on

A) (B) (C) (D) (E

F
Single node PE1 IA I B IC IQ 	F I Time =6

system
Two node PE 1 I 	A 	I 	C 	I 	E 	I 	F 	I Time = 5.6

system PE 21 B I D
Three node PE 1 A 	0 	I 	F 	I Time = 5.1

system PE 2 B 	E
PE3 C

Four node PE 1 A 	E 	I 	F 	I Time = 6
system PE 2 B

PE3 C
PE 0

Five node PE 1 A 	F 	I Time = 4.5
system PE2 B

PE3 C
PE4 D
PE 51 E

I 	I 	I 	I 	I 	I 	I 	I 	I I 	I
Execution Time

Figure 1-3: Effect of sub-linear cost: performance

CHAPTER 1. INTRODUCTION
	

7

1.1.2 Space Scaling

Let A = (1', i) be a graph of tasks, where I' is the set of tasks, and L is a set of

precedence relations among the members of F (see [70], and also page 69) section

4.3.1). For a set of processors, P, a schedule of A on P is a set of triplets, S such

that:

S = {'y,p,t : 'yE F,p e P,t eAf}

where t is the starting time, on processor p, of the corresponding task 'y. A

general goal of scheduling is to minimize the maximum t in S.

Large amounts of literature exist on various aspects of scheduling in multi-

computers - see [53] for a useful survey. Of particular interest here is the scenario

in which obtaining an optimal schedule requires that some tasks in the DAG be

recomputed on several processors [35] [57]. Recomputation may be required when

the time to transmit the result of a computation from the processor on which it

was obtained to a processor requiring the result is so great that the destination

node can obtain the result faster by recomputing the result on its own behalf.

In the section of DAG shown in Figure 1-4, each of the arcs has a weight cor-

responding to the length of time required to send a message if the arc connects

two tasks on separate processors. The figure shows the execution of the DAG on

a single processor, on two processors without recomputation and on two proces-

sors with recomputation of task T. The existence of a communication delay for

any data transfer sent from one processor to another means that the minimum

execution time is obtained by running task To simultaneously on both processors.

In this way the communication delay is avoided completely.

In the context of this study, the degree to which recomputation reduces exe-

cution time cannot be understood without recognising the potential degradation

in memory system performance of increasing the amount of memory in a fixed

CHAPTER 1. INTRODUCTION

10

Single Processor

P0

Tn

Tn+1

Tn+2

T=30

Two Processors
No Recomputations

P0 	P1

Tn_ 	Idle
Tn+1

Tn+2

T=25

Two Processors
With Recomputations

	

P0 	P1

	

Tn 	Tn

	

Tn+1 	Tn+2

T=20

Figure 1-4: Weighted DAG Section

CHAPTER 1. INTRODUCTION 	 9

cost system. Recomputation requires that both data and code space be multiplied

across as many processors as can usefully recompute a result, and this may require

a reduction in the performance of that memory.

A specific example of space scaling will be discussed in detail in chapter 4.

1.2 Motivation

This work has two major motivations; the optimization of parallel system designs,

and the optimization of semiconductor device portfolios for such designs.

1.2.1 Parallel System Design

During a panel discussion at a recent supercomputing conference [59] the speakers

were asked for their opinions on which system philosophy - large numbers of cheap

processors versus small numbers of expensive processors - was best. The speakers

included representatives from companies advocating the use of large numbers of

off-the-shelf processors and those offering systems consisting of a relatively modest

number of custom-built, very high performance processing elements [51]. That

this problem is still open can be seen from the continuing presence of machines

(e.g. those from CRAY Research) which consist of a small number (less than

10) of extremely powerful processing elements while, at the same time, massively

parallel machines using microprocessor-based PEs are also on offer [40]. A useful

survey of this field can be found in [62] [73]. The panel's unanimous answer was,

"it depends". The first motivation of this thesis is to begin to answer the following

question, raised by that panel's answer:

Upon what and to what degree does it "depend"?

It may be that both types of system, and others besides, offer particular ad-

vantages in particular situation. (If so then perhaps the notion of a truly general

CHAPTER 1. INTRODUCTION 	 10

purpose parallel system is unrealisable [33]). But a model which quantifies those

advantages and specifies the situations in which they exist will be valuable. Among

other things, it may explain why it is that, so far, massively parallel systems have

not been embraced by industry and business users. It is curious that, while re-

search into parallel computers has developed tremendous momentum over the past

decade (a cursory glance at the list of journals publishing research in this area in-

dicates a continuing growth in the amount of work in progress in all aspects of the

field), large-scale parallel machines have failed so far to find widescale application

in the commercial arena. This failure is often blamed on deficiencies in various

areas of parallel software. These vary from the practical lack of easy-to-use par-

allel compilers, efficient parallel operating systems, etc., to the more fundamental

lack of a general purpose model which can span the gap between hardware and

software [74] [26] [12].

But these deficiencies are only half the story.

The level of tolerance that a computer user has to a decrease in ease of use of a

new computing environment compared with an existing system is directly related

to the level to which performance can be boosted within that environment, again

compared with the existing system. In other words, users will put up with a lot if

the rewards are big enough.

A key reason that massive parallelism has been relatively unsuccessful in in

dustry is not per se that computers in that architectural paradigm are difficult

and costly to program, but that they are not outperforming equal-cost sequential

systems enough to outweigh that difficulty and cost. Sequential systems are often

still too good to be discarded in favour of their parallel cost-equivalent.

1.2.2 Optimizing Device Portfolios

Regardless of the current state of affairs, it seems reasonable to believe that even-

tually sequential systems will lose their attraction, not least because insurmount-

CHAPTER 1. INTRODUCTION 	 11

able physical limits to individual component speed will be met [48]. If this is true,

then it is worthwhile considering the implications for providers of components for

computers.

For most of the history of commercial computing machinery, the vast majority

of computers have been single-node systems. Today, with mass produced per-

sonal computers and workstations, this is particularly obvious. Therefore, it is

understandable that the manufacturers of microelectronic components for such

machines will have based their device portfolios on the demands of single-node

architectures. A typical system consists of a single microprocessor connected by

relatively simple means to a memory system. The latter may be hierarchical with

one or more levels of cache, and a high capacity storage medium such as disk.

The range of memory, processor and support chips available, with their associated

costs and performances reflect the strengths and weaknesses of the underlying von

Neumann architecture as a model of computing machinery.

It is not obvious that the current situation is optimal for parallel machines.

The existing marketplace, in terms of volume of machines of a particular per-

formance, influences the profile of the product portfolios of the various component

manufacturers. Fast computers are currently built from fast parts, while low- to

mid-range components are used for the larger volume markets. However, if it was

found that the optimal number of nodes for a common application was greater than

one, then this could cause a shift in the demands placed on the silicon producers.

Similarly, it is not unreasonable to ask if the current ratio of memory: processor

hardware resource will be the same in a massively parallel SIMD computer (for

example) as it is in the typical high-performance workstation available today. If

not, then again the range of devices, in terms of speed, capacity and cost may

have to change to suit the new market created by parallel architectures.

Thus the second motivation of this thesis is to provide input for the develop-

CHAPTER 1. INTRODUCTION 	 12

ment of component portfolios. It will provide a means by which questions such as

the following may be considered:

Are fast expensive processors the best devices with which to implement very

high performance computers?

Do current memory device portfolios offer the best range of speeds and ca-

pacities for high performance computers?

What performance and relative pricing (currently relatively unknown) is ap-

propriate for interconnection devices?

1.2.3 Tradeoffs in a Fixed Cost System

The tradeoff between number and speed of components is just one example of a

more general principle which, through an investigation of optimal grain, this thesis

is intended to highlight. The principle is that in a fixed cost system, a proposed

enhancement in one part can only be implemented by reducing the performance (in

the widest sense) in another part. In the context of this study, the enhancement

consists of adding processors, and the manifold drawbacks include a reduction in

the performance of the existing processors. Another example is the option to add

more memory to an existing system. This is usually worthwhile, but it is only one

of a number of alternatives, including increasing the speed of existing memory,

or adding a cache (without increasing actual primary store capacity), or even

adding further processors instead of memory. Deciding which enhancement to

perform requires an understanding of not only its benefits, but also the drawbacks

elsewhere in the system. Also, it is crucial to bear in mind that a system will

tend to be only as fast as its slowest component. A great deal of existing parallel

architecture research, while focussing on one specific aspect of the system (e.g.

the interconnection network) leaves the question of the overall balance of hardware

CHAPTER 1. INTRODUCTION 	 13

unasked and unanswered. For example, in many interconnection network studies

a key goal is the development of an interconnect which provides, for minimum

cost, the highest performance possible. Performance is typically a combination

of latency and throughput. It is generally acknowledged that electronic complete

connections, while being excellent topologically, are too costly (0(N 2)) to be viable

and so other networks, such as various multistage topologies are often proposed

in an attempt to approach complete connection performance without incurring

the high cost [21] [42] [43]. However, this approach, driven as it is by the goal of

maximum possible performance, fails to take into account the fact that in a fixed-

cost system the processing hardware may never need an interconnection scheme

as powerful as an efficient multistage let alone a complete connection. The goal of

network design should be the development of an interconnect which provides, for

minimum cost, the highest performance necessary, as dictated by the demands of

the workload, and in balance with the performance of the rest of the hardware.

Another example is memory device and microprocessor speed. A typical read

access to memory will involve the microprocessor driving address and control infor-

mation onto the appropriate signal lines on the memory devices, and then waiting

for the relevant handshake signal before reading the data. Usually the handshake

will be checked on a particular clock edge, and a full clock cycle (or "wait-state")

must be inserted if the handshake is not ready.

If the memory is fast enough, it can respond with data to allow the processor

to operate with zero wait-states and at maximum speed. Slower memory, on the

other hand, may force the processor to stall as it inserts wait-states while the

memory devices access and drive the data. So, in terms of this access mechanism

alone, it is useless to invest significant amounts of the system budget in either

very fast memory or very fast processors, if each is not matched to the other. The

memory should be fast enough to provide valid data as soon as the processor can

accept it, but no faster. Conversely, the processor cannot make use of any extra

CHAPTER 1. INTRODUCTION 	 14

speed (considering memory accesses only) over and above that corresponding to

best-case memory access time.

Tradeoffs of this type will not be considered further in this thesis. Here the

tradeoff of interest is the number of components versus their speed.

1.3 Related work

A significant amount of research has been carried out over the last two and a

half decades into the performance of all aspects of computers, particularly parallel

computers. This has ranged from general models of system performance, relying on

relatively high level machine descriptions and statistical workload representations

[32] [45], to precise simulation models of a specific detail of a microprocessor, or

network switch, etc. [49] [55]. However, in much of this research, while the cost

of hardware has not been completely ignored, it has not been fixed in such a way

as to reflect the real tradeoffs faced by a budget-bound designer in the real world.

The merits of some enhancement may be considered and weighed up against the

cost of implementing the enhancement, but little work has been done to examine

those merits in a fixed cost system where the enhancement can be implemented

only at some cost to the rest of the system.

In parallel architectures in particular, relatively few studies have attempted to

quantify the potential negative effects in any part of the system, of trying to induce

a positive effect in another part. Models of speedup and scalability, for example,

are common [54] [69] [66]. These examine how the overall performance of a system

will increase as N is increased, but typically where the processor type is the same

throughout the analysis. That is, the cost of the system increases appropriately.

The significance of the cost increase may be recognised as a decrease in pro-

cessor utilization and system efficiency [20]. However, a decrease in efficiency is

really significant only if an alternative solution exists which results in a higher

CHAPTER 1. INTRODUCTION
	

15

utilization and therefore a higher performance. Of more immediate significance is

the fact that if system cost is fixed then either:

Cost is fixed at that of the initial system and therefore the proposed (more

parallel) system must use cheaper PEs; or

Cost is fixed at that of the new system (i.e. one containing more PEs of the

type in the original system). In this case, an alternative "new" system can

be contemplated; that is one containing the same number of PEs as in the

original machine, but where the PEs are more expensive.

Of specific relevance to this study is work by Barton and Withers [4]. They

investigate the optimization of N by considering real processor cost: performance

functions in the form:

C = dVb
	

(1.2)

where C is processor cost, V is processor speed, and b and d are positive

constants.

They conclude that

"for a given cost, delivered performance is maximized by selecting the

fastest processor available at a given technology level, and employing

as many as the budget allows".

This conclusion is drawn using b = 0.25 but is made more general by noting

that b can be expected to exceed unity as the leading edge of technology is ap-

proached. For b > 1 the optimal N may itself be greater than one, but is still

finite. This study is a useful starting point but focusses on only one specific aspect

of the problem; that is the speed of the processors as a function of their cost. The

CHAPTER 1. INTRODUCTION 	 16

effects of interprocessor communications are not included in their analysis, nor

are the effects (if any) of memory references. Intuitively, interprocessor commu-

nication should be further reason to restrict the number of processors used, since

communication can be a performance liability.

Similar work was reported by Van-Catledge [75]. In this paper the author

provides a comparison of three broad classes of parallel computers under various

combinations of problem size scaling and serial fraction. The comparison consists

of finding the combination of clock speed, scaling factor and serial fraction which

provides performance greater than or equal to that of some reference machine.

The general conclusions support those in [4] and imply that a small number of

fast PEs is superior to a larger number of slower PEs. In fact, like Barton and

Withers, Van-Catledge ignores the effects of communications overhead and so,

in that respect, understates the result. On the other hand, as indicated in [44],

the superiority of the coarse-grain machines depends on the overheads associated

with parallel processing (primarily communication) growing faster than 0(N).

Further, it is pointed out that the exact nature of the cost: performance function

of the processors can have a critical impact on the optimal number of nodes.

Even if the overhead grows faster than 0(N), still the cost of nodes may begin

to increase so dramatically at technology leading edges that it is better to use a

large number of slower nodes than to invest in a small number of state-of-the-art

devices.

The notion that parallelism may not be the panacea for the demand for higher

computing power is not new. As early as 1967 Gene Amdahl suggested that,

because of inherent sequentiality in some algorithms, parallelism may not offer

such significant performance improvements as were being promised [3]. However

even Amdahl's paper did not account for the further drawbacks of increasing N

which occur if the total system cost is fixed. Gustafson further developed "Am-

dahl's Law" to account for the fact that often, parallelism is used not to increase

speed of a fixed-size computation, but to increase the size of problem which can

CHAPTER 1. INTRODUCTION 	 17

be solved in a fixed time [23]. This provided more momentum for parallelism,

but again did not take into account the effects of cost fixing. In 1987, Lundstrom

tackled the problem of optimal use of computing resource in a general manner

[46] and this was examined in a more detailed way by Ho and Snyder in 1990

[27]. The latter suggested a principle of computer design which considered a pro-

posed enhancement to a computer to be cost-effective if the fractional reduction

in computation time resulting from the enhancement was greater than the frac-

tional increase in cost of the enhancement. This notion has some merit, but at

the leading edge of technology and performance the only enhancements possible

may not be "cost-effective" (their definition). This is because at that leading edge,

serious diminishing returns are experienced as more and more resources must be

expended to obtain a rapidly decreasing performance improvement. Lundstrom

takes a broader view and considers the solution to the problem as a black box

which must achieve an optimal cost: performance. This leaves open the option of

implementing an enhancement of significant cost and minimal performance ben-

efit, but for which the cost: performance is already optimal. In other words, an

enhancement becomes "cost effective" if the performance benefits provided by the

enhancement cannot be provided in any other, less expensive, way.

1.4 Approach

Two principal parameters of computer performance measurements are execution

time, T and problem size, P. The latter could be some measure of the size of

the data set on which some algorithm must be performed. In most situations, a

computer user requires maximum PIT while restricting the range of one of the

two parameters. In the context of this study, the goal is, for a fixed cost system,

to choose N, the number of nodes, so as to minimize one of T or P as a function

of the number of nodes. For either, the other parameter may be held constant.

In other words, the problem is to choose the number of processors with which can

CHAPTER 1. INTRODUCTION 	 18

be solved the largest problem in a given time, or a given size of problem in the

shortest time.

In practice the maximum attainable speedup in most algorithms is limited,

for any particular problem size, by the sequential portion of the computation [3].

As a result, the greatest benefit of parallelism is often to increase the amount of

work which can be carried out in a reasonable (i.e. acceptable to the user) time.

This is as opposed to decreasing the execution time of a fixed size problem [23]

[68]. There appears to be a tolerance, on the part of a users, to various delays

experienced when requiring different tasks of a computer. For example, the refresh

of a drawing in a CAD application must be no more than fractions of a second

whereas it seems acceptable for the compilation of a small to medium high-level

language program to take some tens of seconds or more. Large simulations may

take hours or even days; the simulations carried out to investigate further the

models in this thesis took several hours per run. An increase in computing power

in circumstances like these would more likely result in larger drawings, and more

complex compilations and simulations rather than (or at least in addition to) a

decrease in time for the original problems.

Nevertheless, the time to solution, even for the largest problem, must be kept

to some acceptable maximum. And even if an increase in N does allow an increase

in problem size, the question still remains as to whether or not an equivalent (or

greater) increase could be obtained using another equivalent cost system with

a different number of nodes. Therefore, without loss of generality, the focus of

attention in this study will be execution time. In order to emphasize the effects

being considered, the PEs in all cases will be considered to be equally loaded.

In other words the algorithms will have no sequential fraction. In reality, such a

fraction will enforce an upper limit on the number of PEs that can be usefully

employed. Although ignoring the unparallelizable aspect of a computation will

bias any overall analysis in favour of parallelism, and towards a higher optimal N,

its inclusion would serve to mask some of the specific effects of interest. Since it is

CHAPTER 1. INTRODUCTION

such effects that are the focus of study here, the algorithms used will be assumed

completely parallel. In general, including the serial fraction would not be difficult

and could be accounted for as a constant component (independent of N) of the

critical path of the algorithm.

The basic approach will be to develop a model of the execution time T of an

algorithm on a machine as a function of the number of nodes, N. The model will

be used to examine the degree to which it is possible to obtain an optimal value

of N, corresponding to minimum execution time.

Specifically, the optimization will be done assuming:

A base architecture.

An algorithm or class thereof

An overall hardware cost.

Two base architectures and algorithm types will be considered, corresponding

to two common classes of parallel architectures: a shared memory multiprocessor

and a message-passing multicomputer [6]. The former will be represented by a

simple shared-bus multiprocessor in which each PE performs operations on data

stored in a global shared store. The second type will be represented by a two-

dimensional mesh-connected multicomputer. In this type of system all memory

will be considered private and data sharing will be carried out using "messages"

explicitly passed among the PEs

In addition, two sets of information are required, and will be developed in this

study:

1. The cost: performance functions of the various hardware functions and com-

ponents. For example, how many MFlops can be bought per dollar? How

many MBytes of storage of a given access speed? How many MBytes/second

of data transferred across what distance?

CHAPTER 1. INTRODUCTION
	

Kc

2. In terms of the above functions, the demands which the software will place

upon the hardware.

The single advantage (in terms of increasing performance) of a parallel com-

puter over a sequential system is that it can divide work among its various pro-

cessing elements. This means that, ignoring overheads associated with communi-

cation, the workload on the most heavily loaded PE in a parallel system typically

will be less than the workload on a sequential machine running the same program.

However, opposing this advantage are several disadvantages, including:

• The workload on the PEs in a parallel system may be more than a simple

11N division of the original program. For example, in some search algo-

rithms the ratio of the number of comparisons done by a single PE system

compared with that done by a PE in an N-node system is only O(logN)

and not 0(N) [41] [60]. Further, the parallel algorithm will typically require

processing associated with communication as well as delays incurred by that

communication.

• The hardware components in the parallel system, being more numerous than

in the sequential system, are cheaper and therefore potentially slower than

those in the latter.

• Some hardware components may constitute a shared resource, having to

respond to demands from more than one PE. Such sharing can result in a

FE being delayed in making use of a shared resource while another PE has

ownership. Such contention does not exist in a sequential system.

Whether or not a parallel system will provide a higher performance than an

equivalent cost sequential system depends on the net effect of combining these

negative factors with the positive advantage of dividing the workload among the

PEs. This can be generalized to compare two or more parallel systems with

different numbers of PEs.

CHAPTER 1. INTRODUCTION
	

21

1.4.1 Thesis Outline

This thesis is laid out in the following manner. Following this introduction, in

which the basic problem and context are described, chapter 2 discusses the rela-

tionship between the cost and performance of current (mid 1990's) VLSI technol-

ogy. Specifically, models are presented of cost versus instruction execution time,

memory access time and switch latency. Chapter 3 then incorporates the results

from chapter 2 into a model of the execution time of an algorithm on a shared-

bus multiprocessor. In a similar way, chapter 4 develops a performance model for

an algorithm on a two-dimensional mesh multicomputer using a message-passing

communications scheme. Chapter 5 compares the model predictions with sim-

ulation results and discusses some of the implications of the models presented

to that point. Finally, chapter 6 concludes and provides suggestions for further

development of this work.

Chapter 2

VLSI Cost: Performance

22

CHAPTER 2. VLSI COST:PERFORMANCE 	 23

2.1 Introduction

This chapter analyzes the relationships between cost and performance of the com-

ponents used in current computers.

The hardware can be split into three basic functions: processing, storage and

interconnect. Corresponding to these are three basic components: microproces-

sors, memories and routers. In each case, it is assumed that the component is

constructed in technology current in the mid 1990's. At this point in time, VLSI

devices are common and ULSI components are imminent. Systems are constructed

from ensembles of such components, packaged and grouped on printed circuit

boards, or perhaps as unpackaged dice on ceramic substrates. These assumptions

allow detail to be developed in the parameters in question, but do not limit the

overall applicability of the analysis.

2.2 Processing Hardware

Advances in VLSI microprocessor performance are currently being achieved in two

key ways: by increasing the operating frequency of a device and by increasing its

internal parallelism.

Clock frequency is determined by several factors, gate-oxide thickness and "fea-

ture size" being two of the most crucial. The latter in particular is often quoted

by semiconductor manufacturers as an indication of the sophistication of their

manufacturing process. Feature size, typically quoted in microns, is a measure

of the length of the silicon channel in the MOS transistor - the basic component

of VLSI devices. The figure given may also refer to the width of metal lines on

the mask used to print photoresist patterns during various stages of wafer fabri-

cation. An alternative to this "drawn length" is the measured electrical length

CHAPTER 2. VLSI COST:PERFORMANCE 	 24

of the channel, LEffectjve , which is typically 10% to 20% smaller than the drawn

length. Whichever is quoted, as feature size is decreased, switching times and

signal propagation delays decrease. Shorter interconnects also present smaller ca-

pacitances to drivers bringing further speed improvements. In contrast with recent

geometries of 1 to 2 micron and above, 0.8 micron designs are now commonplace

in mid-range devices [30] and 0.65 micron offerings are already available. Sub-0.5

micron devices are planned.

Of at least equal significance to clock speed, in determining device performance,

is the degree of internal "parallelism" in the device. This is most commonly seen

as an increase in the width of the data path of microprocessors. 8-bit devices, still

used in low-end single-chip micro controllers have mostly given way to 16 and 32

bit architectures, and 64-bit devices are available. However, while earlier devices

used their internal parallel data path as a means of executing binary arithmetic

at increasing speeds, today's processors provide a more explicit use of parallelism

in the form of superpipelining and multiple execution units. However internal

parallelism is implemented, increasing this aspect of a device requires an increase

in the number of transistors in the design.

A third factor affecting device performance in certain circumstances is pin-

out. Increasingly, designs are "pad-limited", i.e. the limit on device performance

is imposed not by circuit complexity but by the I/O bandwidth of the packaged

chip. This is currently an issue because of the large amount of silicon space

required for bond pads onto which the device pins are connected and because the

area of a die grows faster than its perimeter length. Some of the newest packaging

technologies are helping to overcome this problem by allowing pins to be connected

across the surface of the die, rather than simply along its edges [19], however this

is still an expensive option and in use for only the leading edge of the market. For

the purposes of this study, it will be assumed that the pins are bonded to pads

around the die perimeter and that pin-out is proportional to the square-root of

the die area.

CHAPTER 2. VLSI COST:PERFORMANCE
	

25

These two aspects, the number of transistors as a measure of device paral-

lelism and feature size as key to clock frequency will be taken as the main factors

determining device performance.

With this in mind, a cost model for ICs is now developed.

2.2.1 Cost and Price

Cost is a measure of what a manufacturer has to do to produce a device. Price is

a measure of what a purchaser of that device must do to buy it.

If the manufacturer of a computer system purchases all of the required com-

ponents from other manufacturers, then the difference between device costs and

prices are large, varied, and subject to all the vagaries of large scale economics.

Device prices must cover not only manufacturing costs but also design and devel-

opment. Sales and marketing overheads may also be significant factors. Also, of

course, the price of a device is heavily dependent on demand. While very general

trends can be observed, there are so many factors at work (including, for example,

pricing strategies which sustain real short-term losses in order to increase longer-

term market share, or raising the price of older end-of-life devices to encourage

purchasers to move to newer products) that actual device prices are of little use

in obtaining the required relationship to performance.

If, on the other hand, the manufacturer of a computer system decides to man-

ufacture the devices required to build the system, then price and cost are almost

the same and one of the lower cost margins is appropriate. For this reason, cost

will be used as the primary factor governing performance.

2.2.2 Modelling IC Cost

The production of a VLSI device can be considered as a sequence of steps, in each

of which an initial number of devices of some form (die sites on wafers, individual

CHAPTER 2. VLSI COST:PERFORMANCE 	 26

dice, etc) may be put through a process phase and then subjected to a test phase.

The devices passing the test will continue onto the next step and the remainder are

discarded. Alternatively, those failing a test may be retested under a less stringent

set of parameters (e.g. at a lower clock frequency) and passed or failed accordingly.

In some steps no processing is carried out and the devices are subjected to several

tests in sequence. The fraction of input devices which pass a test phase is called

the step yield. The final overall cost of a device is therefore the total cost of all

steps, (taking into account the continually decreasing number of devices remaining

within the process) divided by the final number of good devices. If the number

of devices passed into the first step is D, then the total cost, GIG, for a device

produced in an n-step sequence is:

GIG
D(C 1 + C 1)+ Dy1 (C 2 + Cr2) + ... + Dy 1 y2 ... y(_ 1) (C + C) =

Dy 1 y2
 ...

y

- > 	((cr, ± G 1) nyj)

- 	ffl=oYk

where:

Cpi = cost of processing phase in step i

Ct2 = cost of testing phase in step i

y2 = yield of step i (Yo = 1)

The processing phase (if one exists) in each step may consist of a large number

of sub-processes and the number of steps in the overall sequence depends on the

confidence the manufacturer has in the quality of each sub-process. In general it

is beneficial to remove bad devices from the sequence as early as possible. This

saves the cost of processing failed product any further, and may prevent non-

functional parts from reaching the end-customer. However, these benefits must

be set against the costs of testing. If these costs are significant compared with

the costs of processing, then it may be acceptable to allow the progress of bad

CHAPTER 2. VLSI COST:PERFORMANCE 	 27

devices down some way the sequence. A sufficiently small probability that bad

devices exist in any numbers is also reason to minimize testing. When sub-process

quality exceeds a certain level a given test may be deemed no longer necessary.

As a result, a device which, in early years of manufacturing, required three tests

to be applied to all devices may finally be manufactured and sold having only one

final test applied to a sample of finished product. In this case the test is being

used merely to tune and affirm confidence in the manufacturing process rather

than systematically to remove faulty devices.

Often the manufacturer will combine the processing and testing costs in each

step into a single figure. These step costs, along with the associated yields, are the

focus of the various groups within the semiconductor manufacturing organization

in their attempts to reduce final device cost. The overall cost is thus:

	

CIC
- 	 (c u; Yj)

	

- 	 (2.1)
11k0 Yk

where C2 is the combined processing and testing cost of step i.

For current microprocessors a typical manufacturing process consists of at least

three steps: wafer fabrication and sort", assembly, and final test. A burn-in step

may also be carried out (before final test) in which packaged devices are operated

at a high temperature for a short time (up to a week) in order to "kill off" devices

of marginal quality.

Wafer fabrication consists of the numerous layering, patterning and other steps

to take the basic silicon through to complete circuits on the wafer. During fabri-

cation, several tests are carried out on the developing wafer to provide feedback

to process engineers and to eliminate defective wafers as early as possible. These

include various electrical measurements and visual and automatic optical tests.

After processing, the wafers are tested in wafer sort. Here individual die on the

built wafers are tested while still attached to each other and faulty die are iden-

tified. This is done using an attachment to the tester which makes contact with

CHAPTER 2. VLSI COST.-PERFORMANCE

the pads of the device using tiny wire probes - hence the alternate name, "probe

test".

This point in the process is often taken as the first costing point by manufac-

turers, the cost being referred to as probed wafer cost. This covers not just the

manufacture of the wafer, but the cost of probe test itself.

The wafer is then scribed and the individual dice separated. Those marked

during probe are discarded and the remainder are packaged using one of several

materials and techniques. A second significant cost, that of assembly, is recognised

here.

Finally, the packaged devices are passed through a comprehensive test suite

before being shipped to the customer. The final cost of the device is obtained at

this point.

Numerous variations on this process are possible. For example, if the manufac-

turer has sufficient confidence in the wafer fabrication process then probe test may

be considered an unnecessary expense. In this case all devices will be packaged

and only then subjected to the final test. Alternatively, rather than omit wafer

sort entirely, a minimal sampling probe test regime may be followed as a check on

the manufacturing process up to that point.

For the sequence just described, following equation 2.1 the cost of the final

device is:

Qrc
Cs + YSCA + YSYACF

= 	 (2.2)
YsYAYF

where:

CHAPTER 2. VLSI COST:PERFORMANCE 	 29

Cs = Probed (sorted) wafer cost per die

Ys = Probe yield - the fraction of probed die which pass probe test.

CA = Assembly cost per die

YA = Assembly yield

CF = Final test cost - the cost to test a packaged device

YF = Final test yield - the fraction of packaged devices which pass final test.

Probed Wafer Cost

For VLSI, wafer fabrication is usually the major component in the overall cost of an

IC. Various factors affect this cost component including labour and material costs

and also the cost of depreciating equipment. The latter is particularly significant

in new wafer fabrication facilities. In older more mature installations which are

fully depreciated, capital costs decrease but labour costs are still significant.

Three of the most important process parameters affecting cost are wafer size,

number of fabrication sub-processes, and feature size. Current wafer fabrication

costs vary from less than $20 to $60 or more per square inch of wafer depending

on these factors [24] [25]. For example, decreasing feature size will, in general,

require more expensive and less-depreciated equipment. Increasing the number

of sub-processes (reflected, for example, in an increase in the number of layers of

metal) will typically increase the time and materials used to build the wafer with

a resulting increase in labour and material costs.

These three parameters are not independent of each other. As designs grow

in size and complexity (i.e. in transistor count), all three parameters are affected.

Feature size is decreased to increase device speed but also in order to keep the

die size acceptably low. This is necessary to keep wafer sort yield high. Another

area-saving method is to increase the number of layers of metal interconnect on

the die. Single and double-layer metal processes are not sufficient for advanced

microprocessors, and so three, four or more layers are being used. Also, since these

CHAPTER 2. VLSI COST:PERFORMANCE 	 30

extra steps are typically taking place with smaller feature sizes, the cost of each

step will also be increased. Wafer size itself is also increasing as device complexity

grows. This is to achieve a large number of die per wafer allowing the wafer cost

to be amortized over a larger number of units and reducing the relative number

of non-functional edge dice.

Feature size is also significant in the testing component of Cs. The cost of

wafer sort depends on the hourly cost of the probe facility and on the time to test

the die.

VLSI testers are increasingly sophisticated and expensive machines, the re-

quired performance of which depends upon (among other factors) the speed of

operation of the device under test. The depreciation cost of tester equipment is

therefore a significant proportion of the probe cost for high performance devices.

In general the capital costs are more significant in test than in fabrication and this

distinction looks likely to increase for some time.

The test time depends on at least four factors; load time, index time, actual

test time, and number of die probed concurrently. Load time is the time to prepare

the tester for a particular product and may be several tens of minutes. However

this is amortized over all devices subsequently tested using that program and is

only significant if the test program is changed frequently. Index time is the time

to step the wafer across the probe head.

The actual test time depends on the number of vectors required to achieve

a given fault coverage and the speed at which these can be used. The former

depends upon the circuit complexity and upon its observability [1]. Scan methods

allow relatively high fault coverages for even very complex designs, however the

time to achieve this still depends on the depth to which test patterns must be first

clocked into and then out of the circuit. Assuming a fixed required fault coverage

(e.g. 95 - 100%) actual test time will therefore be considered a function of the

transistor count. This is as a measure of both complexity of the circuit and the

CHAPTER 2. VLSI COST:PERFORMANCE 	 31

pin out (i.e. specifically the number of primary inputs and outputs) as described

earlier. The number of die which can be probed at one time depends primarily on

the pin-out (for a fixed pin-count probe head).

These factors are not unrelated. For example, there is a tradeoff between the

index time and the degree of concurrent probing. Testing more than one die at

a time may reduce the actual test time, however it can serve to increase index

time as the effective increase in area being aligned under the probe head makes

alignment more difficult and time consuming. Also, the relative importance of

these factors changes as one moves from simple to more complex devices. Actual

test time is less significant for very simple devices and may be of the order of only

a few milliseconds. This is due partly to the low complexity of the design, but

also to the use of concurrent probing made possible because of lower pin counts.

Unfortunately, while these tradeoffs are understood in a qualitative way, the

fabrication/sort process is simply too complex to succumb to an attempt to

model it in quantitative detail. The basic physical effects just described are often

swamped by factors such as the familiarity of wafer fab personnel with a particu-

lar process (costs typically being higher on the early stages of the learning curve).

Varying labour costs across the globe also produce significant variation in costs.

Real day-to-day costing in the semiconductor industry uses real cost data from

working wafer fabrication facilities across the globe, and the level of modelling is

fairly superficial.

However, of the three parameters discussed above, feature size seems to be the

dominant parameter. Assuming that both the number of process steps and the

wafer diameter are both increasing as feature size decreases then probed wafer

cost per unit area appears to be exponentially related to feature size. Let the cost

per square millimetre be denoted by u and be expressed as:

u(A) = ae 	+ Ubase 	 (2.3)

Cost/mmA2 ($)

$0.06

$0.05

$0.04

$0.03

$0.02

$0.01

CHAPTER 2. VLSI COST:PERFORMANE
	

32

Unit Area Wafer Cost v Feature Size

III,I,

4.00 	3.50 	3.00 	2.50 	2.00 	1.50 	1.00 	0.50 	0.00

Feature Size (microns)

Figure 2-1: Probed Wafer Costs

where A is the feature size in microns and Ubase is the lower bound on cost

dictated by basic wafer fab running costs and minimal profit requirements experi-

enced by the manufacturer. The coefficients, a and b currently have values around

0.2 and 3 respectively and Ubase is of the order of 0.015 [25] [77] [22]. See figure

2-1.

Again, it must be stressed that this relationship is more complex than simply

feature size versus cost. The cost increases so rapidly below 1.0 micron because

the wafer size is also being increased at that point. The number of layers of

metal is also being increased as feature size diminishes. In addition to increasing

the fabrication cost, these factors simultaneously increase the cost of probing the

wafer.

Nonetheless, both wafer diameter and metallization are increasing in response

to the same factor which is driving down feature size - i.e. device complexity.

Thus feature size appears to be a good single indicator of the overall trend.

CHAPTER 2. VLSI COST:PERFORMANCE 	 33

To obtain the final build cost for the die, equation 2.3 is multiplied by the die

area. This assumes that the whole of the original wafer is available for die from

which a device may be constructed. This ignores any test die placed on the wafer

for monitoring the fabrication subprocesses and also any non-functional edge die

(see p59 of [25]).

The probed wafer cost per die of area Amm 2 is thus:

C8 = A(0.2e 3 +0.015) 	 (2.4)

Probe Yield

Several probe yield models exist, including Murphy, Seeds and Dingwall [25] [76].

These express the percentage of working die on a wafer as various functions of

die area, defectivity, number of critical masks, etc. However, for simplicity and

without serious loss of accuracy, a simpler exponential model is often used in the

industry and will be applied here. Probe yield is given by:

1
Ys = eAD (2.5)

where:

A = Die area

D = Defect density (defectivity)

Defect density here refers to the number of killer defects which render a die

non-functional. This is in fact related to feature size, or more specifically to

circuit density. The closer together circuit elements are, the more likely is a defect

to destroy a vital piece of circuit. As such, defect density varies between different

types of circuit; memories, for example, typically have higher defectivities (all else

being equal) than processors. The addition of a dense area such as a cache will,

however, increase the density of killer defects for a processor. Like costs, actual

CHAPTER 2. VLSI COST:PERFORMANCE 	 34

defectivity data is not generally available and for the purposes of this model, an

average value of 1.0 per square centimere will be assumed [24]. For a die of area

Arnm 2 the probe yield is thus:

Ys = e0

1 	
(2.6)

This yield model (nor indeed the more sophisticated models mentioned earlier)

does not take into account the effect on yield of discarding a whole wafer, even if it

contains some good die, if the wafer's yield falls below some acceptable minimum.

(e.g. 60% of average). This is done as a precaution, the manufacturer's confidence

being low on a wafer with such abnormally low yield.

Assembly and Final Test

The cost of packaging depends on several factors, two of the most important being

the type of material being used, and the number of pins in the package.

The packaging material is chosen to provide protection for the enclosed die,

and a means of heat dissipation. Whereas early devices were built in dual-in-line

plastic packages (PDIP), current high speed (and high power) devices may require

ceramic pin-grid-array (CPGA) or quad-fiat-pack (CQFP) or similar.

While there does seem to be a tendency to package larger, higher performance

devices in packages built from more costly materials (and involving more costly

processes), there is no easily accessible relationship. Therefore the package type

will be assumed to be the same for all devices and the package cost will be governed

by the number of pins (assumed earlier to be proportional to the square root of

the die area).

While some models in use assume a constant cost/pin for a given package type,

in actual fact the function is probably not exactly linear. As one would expect,

CHAPTER 2. VLSI COST:PERFORMANCE
	

35

Package Cost v Pin-Out

$80.00

	

$70.00 	
CPGA

$60.00

	

$50.00 	 Mean
4-

C')
0
	

CBGA
$40.00

0)

	

cc $30.00
	

TAB

0.
$20.00

$ 10.00

$0.00

0 	100 	200 	300 	400 	500 	600

Number of Pins

Figure 2-2: Package Costs (Source: Microprocessor Report, October 4, 1993)

the closer a packaging process is pushed to its leading edge, the faster does cost

increase for a fixed proportional increase in "performance" (i.e. pin-out).

Figure 2-2 shows typical package costs for several package types. An average

cost is also shown, and it is this which will be used in the rest of this analysis.

A simple model of cost versus pin-out, based on the data in figure 2-2 gives

CA of a P-pin device as approximately:

CA = 9 * 10 4P'•7 	 (2.7)

As discussed earlier, pin-out will be regarded as being proportional to the

length of the die perimeter length. Current package technologies allow between 2

	

CHAPTER 2. VLSI COST:PERFORMANCE
	

36

and 6 pins per millimetre of die edge. Assuming an average of 4 pins per millimetre,

pin-out is:

P=4fA

and so assembly cost for a die of area A mm 2 is:

CA = 9.5 * 10 3 A °85 	 (2.8)

Typically, assembled devices are given only a visual check before being passed

onto final test. Irreparably bent leads are the commonest cause of failure at this

stage, however yield at this stage, YA, is almost 100% and will be assumed so for

the rest of this analysis.

Final test cost is affected by similar factors to those affecting wafer sort al-

though the relative importance of index time is increased since the test may be

carried out at several temperatures, some requiring a "soak-time" to bring a de-

vice at ambient up to the relevant higher temperature. Hourly costs vary from less

than $50 per hour to over $250 per hour for advanced state of the art testers. As

with fabrication costs, feature size will be taken as the dominant factor affecting

which type of tester must be used for a given device. The test cost per second, Ct,

is roughly:

	

Ct = 0.5e -41\ 	 (2.9)

The range of test times for devices tested on a particular machine is usually

small enough to allow an average figure to be used for all devices. An average test

time of 2 seconds is assumed, and the test cost per device is:

CF = e 4'' 	 (2.10)

CHAPTER 2. VLSI COST.-PERFORMANCE
	

37

Final test yield, YF, unlike probe yield, is usually consistently high for pro-

duction devices. Final test is principally a method of verifying the overall quality

of the process from wafer sort onward and is not really intended as a means of

removing inevitably faulty devices. Persistant failures in final test are regarded

as a serious problem which must be corrected. Since no significant relationship is

obvious between any of the performance characteristics and this particular yield,

a constant 95% will be assumed for all devices.

Overall Cost

Combining equation 2.2 with equations 2.4, 2.6, 2.8 and 2.10, the overall cost for

an IC is given by:

GIG =
Ae°° (O.2e 3 ' + 0.015) + 9.5 * 10 3A °85 + e4A

0.95
(2.11)

Die area depends on feature size, transistor count and circuit density, and also

on the pin-out required on the device. Decreasing feature size produces smaller

transistors which not only take up less space, but which can also be placed closer

together on the die. High circuit densities are typically seen in regular circuitry

such as memory devices. Optimising the layout of the basic memory cell gives

significant area savings when those cells are laid out in hundreds of thousands, or

even millions.

For a range of existing mid-range to high-end microprocessors, an approximate

expression for die area as a function of transistor count T and feature size is:

A = 0.12VT°94 	 (2.12)

Fortunately, die area is generally available for most devices, and the published

figures will be used where possible.

CHAPTER 2. VLSI COST:PERFORMANCE 	 38

2.2.3 Microprocessor Cost: Performance

The purpose of this cost model is to establish a relationship between what it takes

to produce a device and the performance of that device. To do this, a range of

currently-available MOS microprocessor devices was surveyed. Various data were

collected and are given in Appendix A. The device cost in each case was calculated

using equation 2.11. Assessing device performance is more difficult.

A significant effort has been, and continues to be put into producing useful

performance metrics for computers and their components. Several problems are

faced in preparing such benchmarks, not the least of these being the desire, on

the part of users of the metrics, for a single number to be attached to a device or

system as a measure of its performance. Equally problematic is the ease with which

devices or systems under test can be optimized with respect to the benchmark

alone; i.e. without affecting the performance in general. Since benchmarks are

often used by potential purchasers of systems to weigh one against another, it

seems unavoidable that there will be a tendency on the part of manufacturers to

try to cast their products in the best possible light.

In addition to these general problems microprocessor performance metrics are

further complicated by the number of definitions of performance implied by the

metrics themselves. The oft-quoted "millions of instructions per seconds" (MIPS)

can be useful for comparing different processors with similar instruction sets.

However, it is less appropriate when comparing CISC (complex instruction set

computer) processors with devices following the RISC (reduced instruction set

computer) paradigm. While the latter may exhibit a higher MIPS rating than the

former, the "instructions" executed by a RISC machine often perform less actual

work than those on the CISC machine. The difference in such "native" MIPS

ratings may therefore be deceptive. In an attempt to solve this problem, normal-

ized MIPS are often quoted, where the performance measurement is with respect

to some standard machine (e.g. a VAX 11/780). Another measurement giving a

CHAPTER 2. VLSI COST:PERFORMANCE 	 39

more useful performance comparison is millions of floating point operations per

second (MFLOPS). Unfortunately, these metrics take little account of the nature

of the software being run on the system containing the processor. Where some

devices outperform others in floating-point intensive calculations, the positions

may be reversed in code requiring intensive integer operations. To reflect this

dependency, some benchmarks have been devised to measure the performance of

devices running a particular type of computation (e.g. Dhrystone, Linpack, etc).

Finally, possibly the most significant problem with many device benchmarks

is that they do not necessarily reflect the performance of a system containing the

device. Since system performance depends on more than simply the raw speed of

the processor, and since most computer users are concerned with the performance

of the system as a whole, the current trend is to use a range of metrics which

measure the total system performance over a wide range of types of code. One of

the most common examples of this type of benchmark is the range of SPEC suites

[11].

In deciding on a benchmark for use in this cost: performance model, it was nec-

essary to choose one which provided a wide coverage, and which avoided the prob-

lems of comparing unequal instruction types. Although SPECint92 and SPECfp92

are system metrics, they are widely used as means of comparing the performance

of the processors involved. 1nt92 was available for the widest range of devices, and

so was the metric of choice. The value used was the maximum figure available on

any machine using that device and so gives some idea of the potential performance

of a processor. Because it is a system metric it cannot be used to compare devices

of roughly the same performance, however its use here is to derive a more general

relationship between performance and cost, and the performance differences re-

sulting from differing system architectures are assumed insignificant when a wide

enough range of devices is considered.

Table 2-1 shows cost performance data for several processors.

CHAPTER 2. VLSI COST:PERFORMANCE
	

Eul

Table 2-1: Processor Cost: Performance

Device

Name

Clock

(MHz)

Area

(mm 2)

Trans

(k)

Geom.

(pm)

Probe

Cost

Probe

Yield

Ass'y

Cost

Test

Cost 1nt92

Total

Cost

ARM610 25 26 360 0.6 1.34 77% 0.42 0.09 24 2.36

ARM710 33 34 570 0.6 1.75 71% 0.54 0.09 32 3.26

MPC601 100 74 2800 0.5 4.72 48% 1.18 0.14 110 11.81

MPC603 100 85 1600 0.5 5.43 43% 1.36 0.14 115 14.94

R4200 80 117 1300 0.6 6.03 31% 1.87 0.09 55 22.53

MC68040 40 164 1170 0.65 7.64 19% 2.62 0.07 35 44.3

R4400 200 134 2300 0.35 12.02 26% 2.14 0.25 117 50.86

21064AA 200 178.5 1750 0.68 7.83 17% 2.86 0.07 130 52.22

R4600 67 182.4 1900 0.64 8.67 16% 2.92 0.08 92.1 59.7

PA7150 125 202 906 0.75 7.76 13% 3.23 0.05 135 65

21064 200 234 1700 0.8 7.76 10% 3.74 0.04 106.5 88.73

MPC604 100 196 3600 0.5 12.51 14% 3.14 0.14 160 96.96

MC68060 50 198 2500 0.5 12.64 14% 3.17 0.14 49 99.86

21164 320 210 2800 0.5 12.52 12% 3.36 0.14 201.5 111.31

MPC620 133 289 6000 0.5 18.45 6% 4.62 0.14 300 354.5

R8000 75 297.6 3400 0.5 19 5% 4.76 0.14 108 397.36

CHAPTER 2. VLSI COST:PERFORMANCE

Cost v t_I

45.00 1. ARM610
40.00 >'

35.00

30.00 > xMC68O4O

25.00

	

20.00 	x MC68060

	

15.00 	\
R8000

	

10.00 	X X 	 X

	

5.00 	x 1164 	M PC629<

	

0.00 	I 	 I 	 I

$0 	$100 $200 $300 $400

Processor Cost

X 	t_I (act)

t_I (Ca Ic)

5I

Figure 2-3: Processor Cost: Performance (t 1)

The 1nt92 figures in the table can be regarded as a rate of execution of work,

similar to MIPS. Comparing the MIPS and 1nt92 values for a few devices shows

that they are of the same order of magnitude (i.e. 106), and that MIPS is very

approximately between 1 and 2 times greater than the 1nt92 figure. Now, this con-

version can be precarious. A major limitation of MIPS is that it does not deal well

with the wide range of instruction complexities available across all processors. For

this reason, converting back from 1nt92 to a notional MIPS (i.e. by multiplying

1nt92 by, say, 1.5) is not generally useful. However, the relationship is mentioned

to provide a sensible order of magnitude to the expression for tj presented below.

1nt92 is therefore taken as a measure of millions of "1nt92 instructions" per sec-

ond. By expressing the computational workload in terms of such "instructions",

a corresponding instruction time, tj , can be expressed as simply the reciprocal of

the performance. A graph of tj against processor cost, Cp, is shown in figure 2-3.

Since the intention is to identify the highest available performance at or less

than a given cost, it was assumed that performance is a monotonic function of cost

X 	t_I(act)

t_I (caic)

$100

45.00

40.00

35.00

30.00

25.00

-
20.00

15.00

10.00

5.00

0.00

$0

- x x

$200 	$300 	$400

CHAPTER 2. VLSI COST:PERFORMANCE
	

42

Cost v t_I

Processor Cost

Figure 2-4: Adjusted Processor Cost: Performance (t 1)

and that the performance attainable at any given cost point was at least that at the

previous point. This has the effect of removing anomolous dips in performance

where a device of particularly low performance (e.g. a high-end CISC from a

mature architecture) happens to possess an unusually high cost. Figure 2-4 shows

tj against Cp after removing such anomolies. Since the object here is simply to

obtain an approximate relationship betwen cost and performance, strictly within

the limits of the technology investigated, a visual curve fit is sufficient.

Figure 2-5 shows the reciprocal of the tj curve, the units of speed being millions

of "1nt92 instructions" per second, as discussed. This performance curve has the

general form:

= I + me" 	 (2.13)

CHAPTER 2. VLSI COST:PERFORMANCE
	

43

Processor Speed v Cost

300

250

200

1 150
100

50

0
$0

I 	 I

$50 	$100 $150 $200 $250

Processor Cost

$300 $350 $400

Figure 2-5: Processor Cost: Performance (millions of "1nt92 instructions" per

second)

where Cp is device cost, and 1, m and n are positive reals. The curve shown

has I = 3.33 * iO, m = 43 * 10 and n = 0.1/3 giving:

= 3.33 * 10 + 43 * 10 e
_ 3!2L

seconds 	 (2.14)

While the relationships given are approximate, a general form of relationship

can be identified. The exact nature can be made more or less accurate, as required

and as available data allow.

Figure 2-5 shows the reciprocal of the above fit curve. The resulting "S" curve

is typical of products implemented in a range of technologies, the oldest of which

are mature and well-understood, but with significant development costs associated

with the leading edge.

If the total processor cost (resource) is R, then Cp, the cost of a single

device, is simply the total cost divided by the number of processors, tj can now

be expressed as the required function of N:

CHAPTER 2. VLSI COST:PERFORMANCE 	 44

ti = 3.33 * 10 9 + 43 * 10-9 e- 3N seconds 	 (2.15)

Equation 2.15 is the first of the three required hardware cost: performance

functions.

2.3 Memory Hardware

If the space requirements of an algorithm grow as the number of processors is

increased, then the speed of the memory system will decrease if either:

Memory subsystem performance decreases with array size, or

Memory component performance increases with cost

This section deals with the second of these two factors.

2.3.1 Memory Device Cost:Performance - tM

The principal performance metric for memory devices is access time. This is

usually a measure of the time delay between a valid address being presented to the

device (usually qualified by a strobe signal of some sort) and a valid datum being

returned. The other measure of importance is device capacity - the number of

bits which can be stored. In practice the drive to increase capacity acts to restrict

the device speed - the smallest cells, allowing the most dense layout, being among

the slower options. To overcome this, memory designers use various architectures

to enhance the access time of the slower DRAM devices. Since such devices are

typically accessed using a row address component followed by a column address, it

CHAPTER 2. VLSI COST:PERFORMANCE
	

45

Memory Access Time v Average Cost/MByte

90

80

70

60
U)
.E. 50

40
-

30
\

20

10

0

$0.00 $10.00 $20.00 $30.00 $40.00 $50.00

• 	t_M(act ns)

t_M(catc ns)

Megabyte Cost

Figure 2-6: Memory Cost: Performance (memory access time)

is possible to allow fast access to a second, third or subsequent locations after an

initial access has been made, provided the subsequent locations are in the same

physical portion of the device as the first access. Page-mode and nibble-mode

devices are examples of these techniques [52].

Despite the variation in architectures, memory devices are relatively simple

compared with microprocessors, and the task of relating memory device param-

eters to cost and price is much easier than with the processors. Because of this,

published memory device prices show a clear relationship to performance, and so

will be used here.

Figure 2-6 shows memory access time as a function of the cost-per-megabyte.

The latter was derived from the mean ASP (average selling price) for a range of

SRAM devices in 1994 [18], and assumes a 50% mark-up of price over cost.

CHAPTER 2. VLSI COST:PERFORMANCE

0.12

0.10

0.08

0.06

0.04

0.02

0.00

$0.00

Memory Speed v Average Cost/MByte

I 	 I 	 I

$10.00 	$20.00 	$30.00 	$40.00

Megabyte Cost

$50.00

Figure 2-7: Memory Cost: Performance (memory speed)

As with processor cost: performance, a fit curve of the following form will be

used:

tM = I + me-'CM

where CM is the cost of one megabyte. In this case, I = 8.810, m = 6.5* 10

and n = 0.21.

Figure 2-7 shows the reciprocal of tM.

Since the total cost, RM, of memory must be split among the space require-

ments of all nodes in the system, the final expression for memory performance can

now be written:

CHAPTER 2. VLSI COST:PERFORMANCE 	 47

O. 21 RM

tM = 8.8 * iO + 6.5 * 107e 'M 	 (2.16)

where RM is total memory cost, and riM is the total space requirement in

megabytes.

Equation 2.16 shows how the performance of memory varies as the amouhnt

of memory is varied and is the first of the two components needed to describe

memory hardware performance. To obtain a relationship between memory perfor-

mance and N, a relationship between amount of memory, rij, and N is required.

This depends on the algorithm and the base architecture and will be discussed in

chapters 3 and 4.

The next section discusses the last of the three hardware functions: the inter -

connection network.

2.4 Interconnection Network Hardware

Interprocess or intertask communication is a distinct liability to a parallel al-

gorithm. It is the undesirable side-effect of allocating related tasks to different

processors. While dividing the work in this way produces the obvious benefit of

reducing the total workload on any given processor, it has the disadvantage of

forcing the processors to spend time communicating.

The basic building block of the network is the router component. The partic-

ular type used depends on the network chosen but in general these components

provide the connections among processors and memory in a multiprocessor, and

among PEs in a multicomputer. They provide a multiplexing/demultiplexing func-

tion, along with any associated arbitration. Routers may also provide buffering

for data in transit.

CHAPTER 2. VLSI COST:PERFORMANCE

Router performance is a measure of how quickly a datum arriving at an input

port can be passed through to the output. Two aspects will be conisidered in this

study:

Router Cycle Time - tR. This is the time between a single-bit datum arriving

at an input until it is driven onto the appropriate output link.

. Router Channel Width - WR. The size of datum which can be routed in a

single cycle.

In this chapter, the concern is only with the speed of unloaded routers - that

is, contention is not discussed. The effect of loading depends on the algorithm and

the topology, and will be discussed, where appropriate, in later chapters

Typically, as N increases in a particular network, the number of routers also in-

creases. For a fixed overall cost, this increase will result in a decrease in individual

router performance, to the extent that the latter is related to cost.

Both aspects of performance, cycle time and width, are now discussed in turn.

2.4.1 Router Cycle Time

The router cycle time, tR, will be considered a function of the technology as a

whole, much in the same way as processing speed. Typical components of tR are

arbitration speed, which relates to clock frequency, and signal propagation delay.

However, while there is a large range of processors in which one can investigate

the relationship between cost and performance, the same is not true for network

routers. Therefore, the same basic relationship between cost and performance

which is used for processor speed will also be used for routers, however the coeffi-

cients and exponents must be treated with a degree of caution. Nonetheless, since

the basic technologies are the same for both components, the general form of the

relationship should be similar. Following equation 2.15, the router cycle time is:

CHAPTER 2. VLSI COST:PERFORMANCE

OARg
tR= (3-33 * 10-9 + 43 	

-9 __\
* 10 e 3N) seconds 	(2.17)

where RR is the total cost of all router components and a is the number of

router cycles which can be performed in one instruction time. The value of a

depends on the precise way in which routing achieved. For simplicity, a value of 1

will be assumed. That is, the time to make the routing decision will be considered

equivalent to the execution time of an instruction. For routing methods which can

perform all of the decision-making in hardware, a larger value of a is likely.

2.4.2 Router Channel Width

The way in which the width, WR, of the network routers varies with N depends on

the particular cost metric used. The overall cost of the actual wiring between the

routers may be used. This can be done, for example, by fixing the wiring density on

a PCB. This is appropriate if the "costly" aspect of fabricating the interconnection

is achieving the required resolution in PCB or VLSI lithography. Alternatively,

if the cost of the wiring material itself is significant, then the following method

could be used.

Assume that the PEs (in particular, their router components) are arranged

on a planar interconnect medium with unit spacing between the eight non-local

"ports" on the routers.

The total link resource (i.e. cost) is considered to be a single "wire" of length,

RL, which is divided into RL unit-length single-bit wires. These are then grouped

into as many links as are required by the whole system. The number of such

unit-length wires, that is the width WR of each link, depends on the total number

of links in the system.

In a bidirectional two-dimensional square mesh, the total number of links (ig-

noring local links) is:

CHAPTER 2. VLSI COST:PERFORMANCE 	 50

nL = 4(N -

therefore, the channel width, WRLCR, for a link cost restricted scenario is:

WRLCR 	
RL

(2.18)
4(N—/N)

Note that here WSLCR is effectively a measure of the bandwidth of a link. As was

pointed out in [38], this is not always accurate. In systems where the messages are

shorter, in length, than the link is wide then the extra width of the link cannot be

used by the message. In other words no message is able to cross a channel in less

than tR. Nonetheless, for cut-through systems [39] using sufficiently large messages

(B >> WR), this factor is not critical. Even in short-message communication, the

consequences of ignoring this effect are small if the average distance travelled by

a message is sufficiently large. In that case latency is dominated by the message

header establishing the connection between source and destination.

The preceding example is appropriate for a wire-limited implementation. How-

ever, an alternative method is to use the pin-out of the router device as the limiting

factor in determining channel width. As VLSI technology advances, and an in-

creasing number of transistors is implemented on a single device, the number of

connections between the device and the rest of the system is becoming a bottle-

neck. Several approaches are being used to deal with this problem, including the

development of new IC packages with smaller lead separation, and also the direct

bonding of die to a substrate to produce a Multi-Chip Module. Regardless of the

approach taken, the number of connections which may be made to a device is,

after fixing other crucial variables such as the package material, strongly related

to the manufacturing cost of the device. The effect of increasing pin-out has an

even stronger (increasing) effect on device price.

CHAPTER 2. VLSI COST:PERFORMANCE
	

51

The proportion of overall device cost due to packaging varies depending on the

device size and complexity, and on the package types. In general, package cost is

more significant for smaller parts, although newer package technologies (e.g. Ball

Grid Array) can account for a significant portion of the cost of even larger devices.

An average of a third will be assumed [10] and, following equation 2.7, the total

pin-out of a router is given by:

RR 	\1.7

= (2.7 * 10 3N)

This assumes one processor per router. Assuming that the router pins are

divided only among n communication channels (i.e. ignoring power, ground and

other pins), the channel width for a router cost restricted scenario is:

1

WR SCR - /
RR

n 	10-3A (2.19)

Since this expression provides a relationship between actual dollars and the

channel width, it will be used for the remainder of the analysis. In the situations

where link resource is the key factor, then equation 2.18 may be more appropriate.

2.5 Summary

This chapter has presented analyses of the factors affecting cost and performance

for the components used to implement the three basic functions of a parallel com-

puter: processing, memory and interconnect. In particular, expressions were de-

rived for tj (instruction execution time), tR (router cycle time), WR (router width)

and tM (memory access time). Each of these was given as a function of the cost

of the component concerned.

CHAPTER 2. VLSI COST:PERFORMANCE
	

52

These functions will now be used in the development of expressions for the

execution times of algorithms on the two architecture types mentioned in section

1.4.

Chapter 3

A Shared-memory Multiprocessor

53

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 54

3.1 Introduction

In this chapter, a model of performance is developed for the shared memory

paradigm running on a simple shared-bus multiprocessor. First the architecture

of the machine is described, and then the algorithm is presented in terms of an

equivalent sequential "critical path". These are combined to provide an expression

for the execution time as a function of N, the number of processors.

3.2 Machine Architecture

The shared memory multiprocessor will consist of an ensemble of processors con-

nected, by a single bus, to a shared store. (Figure 3-1).

Each processor also has a private memory used for storing programs and

for local temporary variables. A single arbitor controls the bus and operates a

round-robin scheme among requesting processors, using individual Bus-Request

and Bus-Grant signalling. Once a processor has been given control of the bus, it

retains tenure for as long as necessary. All memory accesses during this time are

direct, the processor stalling while an access is satisfied. This is in contrast to

posted accesses, where the processor presents a request and then continues with

other work until interrupted by the memory with the result of the access.

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 55

SHARED MEMORY

Local 	Local 	Local 	Local 	Local
Memory 	Memory 	Memory 	Memory 	Memory

Figure 3-1: Shared Memory Multiprocessor

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 56

3.3 The Algorithm

The algorithm will consist of a series of arithmetic and logic operations performed

on a data set of P points in the shared store. This corresponds to several com-

mon computations; for example, redex reduction in a graph representation of a

functional program [58], or a matrix computation such as that described in [47].

Each set of operations will be preceded by a read, from the shared store, of one

data point. Each point consists of a single word in shared memory. A series of i

instructions is then performed on the datum, along with some associated private

memory activity. The result is then written back to the shared store. Processors

will continue in this way until all data have been processed.

3.3.1 Critical Path

Based on the above description of the algorithm, a processor in the shared memory

system will, at any given time, be engaged in one of the following:

Instruction Execution. These are the instructions performed on the data

point after retrieving it from the shared store.

Local Memory Access. This refers to an access to a PE's own private

(and local) store. This could be an instruction fetch, or manipulation of a

temporary, private variable.

Shared Memory Access. In contrast with 2., this is an access to the main

shared store and as such may be subject to blocking by similar accesses from

other processors. This includes time spent waiting for access to the shared

bus.

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 57

4. Idling. This is time spent completely idle with no data points available

requiring processing. This could occur towards the end of the computation

when some processors have completed their last write-back and are waiting

for the remaining processors to complete theirs.

If the situation arises, in the execution of the computation, where all processors

have become idle and have no further work scheduled, then the algorithm can be

considered to have terminated. Discounting memory stalls, where a processor is

actually waiting for the response from another piece of hardware, a system-wide

halt in work marks the end of the algorithm. Therefore, during the computation,

there must exist, beginning at time zero, and ending at the termination, at least

one Critical Path (CP) consisting of an unbroken sequence of operations (includ-

ing memory stalls). The process of assessing the execution time of the parallel

algorithm is therefore equivalent to obtaining the execution time of the sequential

algorithm represented by the CP.

So, by restricting the analysis to the CP, item 4 can be ignored and the ex-

ecution time of the algorithm is equivalent to the execution time of a sequential

program consisting of some distribution of operations 1 to 3 in the above list. The

execution time then becomes the sum of products of the time to perform of each

of those operations with the number of occurrences of each:

TSM = ItI + MItM1 + MS tMS 	 (3.1)

where:

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR

TSM = execution time

I = total number of instructions on critical path

t1 = time to execute one instruction

M1 = total number of local memory accesses on critical path

tM1 = time for local memory access

M = total number of shared memory accesses on critical path

tM3 = time for shared memory access

It is assumed that local memory references constitute a constant fraction of

instruction executions, p, which is independent of the number of processors. That

is, M1 can be expressed as:

M1 =pJ

and so the execution time is:

TSM = I(t1 + /LtM1) + MS tMS 	 (3.2)

The next two sections examine the parameters in equation 3.2 for dependency

on N. The parameters are divided into two types; I and M8 describe the operations

on the critical path, and ti, tM1 and tM8 , describe the times to perform those

operations. The former will be referred to as software parameters, and the latter

as hardware parameters.

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 59

3.4 Software Parameters

It will be assumed that each processor will deal with approximately the same

number of data points as the others. Therefore, the critical path for N nodes

operating on P points is simply the processing of [] points. Assuming P>> N,

the number of points per node will be considered as P for all nodes. If each point

requires i instructions, then:

I
N

Although each point requires two accesses to shared memory the write from

one point will be performed on the same bus tenure as the read of the next point.

This can be considered as a single memory access of twice the duration of a single

read or write (both assumed equal). This doubling of shared memory access time

is introduced to the analysis in equation 3.5 and allows M3 to represent the number

of such double accesses thus:

Equation 3.2 can now be rewritten as:

TSM = 	
PtMS 	

(3.3) - (tJ + /itM1) ±
N

The next section looks at the three hardware parameters, tj, tM1 and tM3.

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 60

3.5 Hardware Parameters

The instruction execution time, tj is as given by equation 2.15:

t1 = 3.33 + 43e 3N nanoseconds

As discussed in section 2.3.1 memory performance is related to cost, and so to

the amount of memory. The access time of a single memory device in the system

is given by 2.16 and is therefore:

- O.21RM
tM = 8.8 + 650e (nM l 4Ms) nanoseconds

Where nm, is the total amount of local (private) memory for all processors,

and riM3 is the total amount of shared memory in the system as a whole. It is

assumed that the same type of memory device is being used to implement both

local and shared store. If different device types were used (e.g. faster, more

expensive SRAM for the local store, and cheap DRAM for the shared memory),

then the two would be analyzed separately but using the same basic method.

Regardless of which devices are used, any relationship between memory per-

formance and N depends on how riM1 and nm,, scale with the number of nodes.

3.5.1 Space Scaling

The total memory required (local or shared) to run a piece of software on a parallel

machine can be split into three components as follows:

Msys + MROUTE + n MALG

where:

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 61

Msys = System memory. This is the total memory required

for the operating system which supports the running of

the software in question.

MRoUTE = Routing memory. This is memory for routing tables,

and any other storage required for communications.

MALG = Algorithm memory. This is the basic memory

required by the computation alone. It includes the

storage required for the program code, the problem

data, the solution, and any intermediate storage.

T1M5y5 is a result of the fact that computers are rarely used for a single compu-

tational purpose. The manufacturers of even the most application-specific systems

will sell them to a reasonably varied market, and support software must be in place

to act as a base upon which the equally varied applications can be built. That

notwithstanding, system software will generally tend to be as small a portion as

possible of the total requirements. Also, there is a growing use of high-performance

hardware in embedded control applications in which there is little or no need for

any operating system or other support software. For example, in computation

intensive applications such as character recognition and raster image processing,

multiple-processor embedded systems are beginning to emerge. Therefore, it will

be assumed that, in general, Msys will scale linearly with N (e.g. a microkernel

will be placed on each PE) but that it will be small enough compared with the

other two components to be ignored in most cases.

Routing memory, MRQUTE, is more fundamentally linked to the running of

software on a parallel machine. While a system requiring no support software can

be envisaged, communication information is an essential and unavoidable require-

ment. In the MIMD paradigm, an 0(N) scaling is possible for fixed size routing

tables, and 0(N 2) if the tables themselves scale linearly with N. However, it will

be assumed that the relative size of routing space is small compared with MALG

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 62

in systems of N below a particular upper bound. Provided N does not scale above

this limit, the space requirements will be dominated by the memory required for

the algorithm itself.

MALG is the space required for the algorithm code, and any data space re-

quired. As mentioned above, the data space includes both the input and output

data sets, and any excess intermediate storage (if required).

For the multiprocessor system in question, the shared space will remain of

constant size, and independent of N. Space scaling effects will therefore be seen

only in an increase in the size of the processors' local memories. If each processor

requires m bytes of local memory, then nm, = mN. For a constant n m, the local

access time is therefore:

- O.21RM

tM1 = 8.8 + 650e (mN+flM) nanoseconds 	 (3.4)

The shared memory access time, tM, depends on the same function, but is also

affected by contention on the shared bus.

3.5.2 Shared Memory Performance

Access time to the shared store includes waiting time on the shared bus, and is

derived as follows.

The combined bus and shared memory will be modelled as a single server queue

with deterministic service times. The average effective access time, tM3 is given

by:

tM3 = (NQ + 1)2tM, 	 (3.5)

where NQ is the average number of existing bus requests seen by a processor

when asserting its own request line and tM1 is as in equation 3.4. The factor of

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 63

two represents a double access, the write-back of a result, followed by the read of

the next point.

Since a processor will block until its request has been serviced, the system is

closed and the average arrival rate of jobs into the queue depends on how many

processors have not yet made (ungranted) requests. Intuitively, a slow memory

coupled with a large number of fast processors will result in the queue filling

rapidly until NQ N. Conversely, a few slow processors connected to a very fast

store would result in the fast servicing of requests and a relatively small NQ . From

the point of view of a processor making a request, the arrival rate, A, of requests

to the queue, is given by:

A - N - N Q - 1

TP

where N - NQ - 1 is the number of processors which do not yet have requests

placed with the bus arbitor. Tp is the time such a processor spends between the

completion of one shared access until it makes its next request.

The queue service rate, ii, is simply the reciprocal of twice the basic access

time as given by equation 3.4:

1
1.' =

Assuming balanced flow, the flow of requests will stabilize at the bottleneck

rate where A = ii, imposed by either the memory or the processors themselves.

That is:

N—N Q -1 	1

- 2tM1

The number of processor requests seen by any given requesting processor is

thus given by:

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 64

for - <(N—i). For - > (N—i), N Q O.
tM1 - 	 tM1

Processing time, T, is simply the time spent operating on a data point, in

between bus requests:

TP = i(tj + ,UtM1)

and so the expression for shared memory access time, including bus waiting is:

tM8 = (N -
2t 1)

(

-

= N
i(tJ+ptM1)\

 2 	
)2tM1

tM1

Again, this is valid for for- (N - i). For > (N - i), the queue length tm,

tends to zero, and the shared memory access time is the basic access time given

by equation 3.4, that is:

tM3 = 2tM 1

The shared memory access time is therefore given by:

tM8 = (N - mm

)]\ I(N - 1), i
	

2
(t1 +/1tM1 	

2t 	 (3.6)

where min[x, y] is the lower of x and y. Note that these expressions for memory

performance ignore the effect on memory array performance of an increase in the

physical size of the array. Two examples are increased wire lengths and increased

decode/buffer stages. On a planar memory array, the distance from an input port

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 65

to the most distant cell is O(Jñ). For very fast cells in large arrays, this increase

in wire delay may become significant. Decoding and buffering for the purpose of

satisfying device fan-out requirements may also give rise to increasing delays as

the number of cells in the array grows. Currently, these delays are often absorbed

in the early stages of memory access cycles by presenting the required address well

in advance of the point in time at which the processor actually latches the data.

As cycles become shorter, however, and processors increase in speed, the time

required to decode the address (possibly 64-bits wide) down to the appropriate

device chip select and address portion may become significant. Nonetheless, it is

the speed of the memory devices themselves which is the more dominant factor,

and the main point of concern here. The access time of the memory system will

be assumed to be the access time of the devices from which the system is built,

and the key effect of any space scaling will be, as with the processors themselves,

to change the cost of the devices.

Equation 3.6 can now be combined with equation 3.3 to give:

I p

 (Tp + 2tM) when N> -- +1
(

TSM = 	
- 2tM 1

2PtM 	when N<-+1

where:

Tp = i(tj + /itM1)

From the above it can be seen that once the bus begins to load, any dependence

of TSM on N stems solely from N-dependency in tj or tM1 . This is because the

linear decrease in the number of points to be operated upon by any given processor

is countered by a similar increase in the waiting time on the bus. This effect will

be seen in more detail in chapter 5.

CHAPTER 3. A SHARED-MEMORY MULTIPROCESSOR 	 66

3.6 Summary

Expressions have been derived for the various components of equation 3.2, as

functions of N, the number of processors in a shared memory multiprocessor.

These functions depend on the technology cost: performance functions developed

in chapter 2, and also upon the shared bus architecture described in this chapter.

The effects of the various components of the execution time will be investi-

gated in chapter 5, and simulation results of a shared bus system under these

cost: performance constraints will also be presented.

Chapter 4

A Message-passing Multicomputer

67

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 68

4.1 Introduction

This chapter presents a model of performance for a computation following the

message-passing paradigm, running on a mesh-connected multicomputer. As be-

fore, the architecture of the machine is described, and then the algorithm is pre-

sented in terms of an equivalent sequential "critical path". These are combined

to provide an expression of the execution time as a function of N, the number of

processors.

4.2 Machine Architecture

In the multicomputer, all memory will be considered private to the individual pro-

cessors. In addition to its memory, each processor also has a router through which

it connects to the other nodes. The combined processor/memory/router entity is

termed a processing element (PE) and these are arranged in a two-dimensional

bi-directional rectangular mesh. The edges of the mesh are left unconnected, in

contrast with the torus where the edges wrap round. The router is effectively

a 5x5 (links in directions "north", "south", "east", "west" and "local") crossbar

switch allowing non-blocking linking between any pairs of source and destination

links (although higher-level routing strategies may restrict this).

4.3 The Algorithm

The algorithm to be modelled can be represented graphically by a set of layered,

rectangular graphs as described in the next section.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 69

4.3.1 A Graph Model of Algorithms

A processor operation will be considered to be an instruction or a memory access.

An operation is said to depend on another if the former may not begin until

the latter has completed. The fan-in, fIN, of an operation, is the number of

operations upon which it depends. The fan-out, lOUT, of an operation is the

number of operations which depend upon it. A task, -yj = {I, I, ..., I_} is a set

of n operations where 'y has the following properties:

1. 10 has either:

fIN = 0 or

fIN = 1 and depends on an operation with four> 1 or

fIN > 1

2. I (0 <j <n) depends on Is_i only.

3. 'n-i has either:

four = 0 or

fouT = 1 and is depended upon by an operation with fIN > 1 or

four> 1

Intuitively, a task is any set of operations each of which depends solely on

predecessors within the set, except for the first and last operations in the set.

Let F = {'yo,y, 	be a set of tasks, and let L = {('y,'y) : i,j =

(0, 1, ..., n - 1) and i 0 j} be a set of precedence relations among the members of

F such that if ('yj, 'y) e A then the first operation in 'y, depends on data from the

last operation in 'y. -yj is said to be a parent of 'y. 'yj is a child of 'y.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 70

Denote by A = (F, z) a Directed Graph where each task in F is a node of A

and each relation in A an edge of A. A cycle of A is a closed walk such that the

direction of the walk is as described by the precedence defined by L.

The algorithm will be represented by a connected Directed Acylic Graph - see

Figure 4-1. This is a more exact model than the time-averaged process graph,

[9], in which the nodes represent processes and the arcs the channels of commu-

nication between the processes. Unlike a task, a process may send and receive

data throughout its lifetime, and may follow the sending of a message with fur-

ther processing. That model provides a higher-level view of the behaviour of the

software, and may be more intuitive for many purposes. However, the task-based

DAG lends itself more easily to the extraction of a set of parameters describing

the load on the underlying hardware, and so is the method used here.

In figure 4-1, 70 to 713 are tasks and the directed arcs represent dependencies

- e.g. task 76 cannot begin execution until tasks -/ 3 and -y4 have completed and

sent their messages.

Each task, yi € F can be assigned an integer, I, called its level according to

the following method.

Let louT, be the fan-out of task 'yj; i.e. the number of arcs directed out of the

task. Similarly, let fIN, be the fan-in of task 'y; i.e. the number of arcs directed

into the node representing that task. For each task, let outcounti = !OUT and

incount2 = fIN1•

The procedure for assigning levels to the tasks is as follows:

Initially, let li = 0 for all tasks.

Find a task, 'y, with incount3 = 0 and out count3 > 0.

For each child of task 'y3 :

(a) Denote child task as task Yc.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 71

Figure 4-1: Directed Acyclic Graph

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 72

Make I = max{ 1 3 ± 1, Q.

incount = incount - I -

outcourtt3 = outcount3 - 1.

4. Repeat from 2 till incourit1 = 0 for all tasks -yj E r.

Figure 4-2 shows the DAG in Figure 4-1 with tasks on relevant levels. Note

that this method assigns the smallest possible li to task 'yj. Task 'yio, for example,

could also have been given level 1 10 = 6 without violating the order imposed by A.

If the task with the highest level number is denoted 'Yx then let the dag depth be

given by d = x + 1. Denote the number of tasks at a given level, 1, by w 1 (width).

Define a layered DAG to be one in which the following condition holds:

('y2 ,') E Aj=i+1

A rectangular DAG is one in which w 1 is constant for all 1. In this case, the

subscript will be dropped and DAG width will be denoted simply by w.

The DAG can be represented by the following parameters:

w = DAG Width

d = DAG Depth

f = Fan-Out

j = Instructions per task

= Memory accesses per instruction

4.3.2 Grid Algorithm

The specific algorithm used to investigate the message-passing paradigm is the

transformation of an n-dimensional data space of size P, over s (steps) iterations.

This type of algorithm is found in numerous simulation scenarios, a simple example

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 73

Level 0 __________________

Level 1 __________________

Level 2 _______

Level _____ -

Level

Level FYI 	 yb

Level 6 'y12

Level 7 'y13

Figure 4-2: Levelled DAG

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER
	

74

being the modelling of heat flow across a metal sheet. The data space is divided

into an n-dimensional grid, and each processor is allocated a portion of the grid.

At each time iteration, the processors perform i instructions on their own grid

points. This will involve p i local memory accesses. At the end of an iteration, all

points interacting with points on another FE will be combined into a message and

sent on. Reciprocal message sends will be expected.

This can be represented by a set of DAGs with the following parameters:

to = N (DAG width)

d = s (DAG depth)

j = 9 (Instructions per task)

f = 2n (Fan-out)

Ignoring edge effects, the dependencies among the points in the data space will

be described by the interaction depth, 6 e {O, 1, 2 }, as follows:

Point A = (ai , a2 ,.. . , a,) interacts with point B = 01 , b2 ,.. . , b) if:

j(1 <j < n) such that Vi(1 < i < n)
if ij

O<Iaj—b21<6 ifi=j

for positive integers i and j:

For example, in the case of a two-dimensional problem such as sheet heat

flow, with 6 = 1 each grid point interacts with four neighbours. Mapped onto

a 2-D mesh of processors, this would result in each physical PE also having four

neighbours requiring messages.

Message sends will be completely non-blocking; that is, the only activity re-

quired of the processor to send a message is to prepare it for the router. Sufficient

buffering is assumed to allow the processor to return to its next task after prepar-

ing the message from the previous one. Incoming messages from other nodes will

be processed fully by the router before being presented to local memory. Stripping

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 75

of address information, and error detection/correction etc. are all the responsibil-

ity of the router and will not affect the processor. For simplicity, the rest of this

analysis will be of a two-dimensional decomposition with 8 = 1.

4.3.3 Critical Path

At any point in time, a given processor in the mesh will be doing one of the

following things:

Computation Proper. This is the computation associated with the algo-

rithm itself, as would be expected of the same (parallel) code running on a

single-node system. It does not include any overhead computation associated

with the preparation of messages.

Memory Reference. Note that all memory references are local and not

subject to sharing among processors. It will be assumed that there is no

contention between the router and the processor.

Sending a message. This is the time from when a processor has to halt

computation proper to begin sending a message, until it restarts computation

after processing the message. The time taken to perform a send can be a

significant portion of the overall time spent communicating [53]. It may

involve the generation of an address header, and an error control datum. In

a real system an operating system call may be required. Alternatively it

may simply involve the processor providing a memory pointer packet to the

router, the latter then taking complete control of the send. Regardless of the

amount of work required in actually getting the message onto the network,

only that work performed by the processor itself is considered here.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 76

Receiving a message. This is the time from when a processor has to halt

computation to wait for a communication, until it restarts computation after

receiving the required message.

Idling. This is time spent idle with no task awaiting execution. This may

occur in algorithms in which the parallelism varies with time. An example

is at the start or end of a computation, where most nodes have either not

begun work, or have completed their last allocated tasks and are waiting for

work to begin, or for more heavily loaded nodes to complete.

As before, by restricting the analysis to the CP, idling can be ignored. The

execution time is thus:

TMP = It, + MItM 1 + St s + Rt 	 (4.1)

where:

TMP = 	execution time of mapped algorithm

I = 	number of computation instructions on critical path

t1 = 	time to execute one instruction

M1 = 	number of local memory accesses on critical path

tMj = 	time to access local memory

a = 	number of message sends on critical path

t = 	time to send a message

p = 	number of message receives on critical path

t,, = 	time to receive a message

All instructions will be considered equal. For example, no provision is made for

mixes of floating-point versus integer arithmetic. However, adding such a detail

would only be relevant to this study if the relative fp to mt speed (for example)

was variable depending on the cost of the processor. If this was the case then

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 77

the model could be extended to account for the effect by splitting I into several

instruction types and including terms corresponding to the execution times of

instructions of the various types.

Any computation associated with through-routing (i.e. the handling of mes-

sages in-transit passing through a node in this point-to-point topology) is not

explicitly included here. In fact such computation is taken into consideration

not in the processing components themselves but in the router components which

make up part of the Interconnection Network.

Since each iteration ends with each node sending messages to its neighbours,

the sends themselves can be overlapped by the time spent waiting for the reciprocal

messages to arrive. The execution time is thus:

TMP = I(t1 + ,UtM1) + Rt 	 (4.2)

where IL = 	is the memory references per instruction.

The parameters in equation 4.2 are now examined for dependency on N. As

before, those describing the nature of the critical path - I, and R - will be termed

software parameters, and those describing the speed at which those three are

performed - tj , t 1 and t - will be termed hardware parameters.

4.4 Software Parameters

The grid algorithm allows an even division of points among the PE's and so the

number of instructions per node is given by:

Psi
N

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 78

It is assumed that each new iteration will not begin until all four (in the 2-D

decomposition in question) messages have been received from the neighbouring

nodes. Therefore, it is useful to consider the receipt of these as a single phase at

the end of each iteration. The time to receive will reflect this, and R is simply the

number of iterations, s.

4.5 Hardware Parameters

As before, t 1 is given by equation 2.15:

OARp

tj = 3.33 + 43e 3N nanoseconds

The remaining two parameters, tM and t,, are more complex and will be dealt

with in turn in the next two sections.

4.5.1 Memory Performance - tM1

The basic device access time is given by equation 2.16, but the actual performance

depends on the cost of those basic devices; this in turn depends on space scaling

on the mesh.

As with the shared memory system, it will be assumed that the memory cost

is dominated by algorithm memory, MALG (see page 61). However, contrastingly,

in order to highlight the effects of space scaling in the grid decomposition, in this

section only data space memory will be considered. Including program memory

would serve only to add an extra scaling component which was linear with N and

which may hide the more interesting effects caused by the overlap area method of

grid decomposition. Code space could be included in the model simply by adding

the appropriate linear function of N to equation 4.4

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 79

Halo data, required by "central" PE

Figure 4-3: Overlap Areas

For the grid algorithm, each PE will require storage not only for its allocated

grid points, but also for the "edge" data incoming from its neighbouring nodes.

This is an example of "overlap areas" [67] [78], the allocation of a "halo" of memory

around the main data cell into which is placed the corresponding data from the

neighbouring cells as they become available (Figure 4-3).

In the figure, each block of sixteen data elements is allocated to a particular

processor's local memory. The shaded area around the central block is the data

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 80

required by that "central" processor from its neighbouring processors. In this case

the space required by the central processor is 16 + 16.

The shape and size of this halo will depend on the nature of the algorithm and

upon the dimension of the data and of its decomposition. The overall memory

requirement is the space required for the data plus the combined space for all the

halos. In general, the halo of any particular cell is the combination of those parts

of other cells which are required to update the cell in question, however a regular

decomposition provides a typical example of such overlap.

Let C = (Cl, c2 ,. . . , c) be the Cartesian coordinates of a data point in n-space

and let D = {(ci , c2 , . . . , c,) : Vi = 1 . . . n, 0 < ci < k} be a set of data representing

some system to be modelled. The parameters n and k are positive integers and

are called respectively the dimension and radix of D. Let G = kn be the number

of elements in D. For two points A, B e D, A is said to interact with B if the

value of point A at time t is required as an input to the computation of point B at

time t + Lit, where At is the size of the simulation time step. As described for the

DAG, interactions of the following type are assumed: Point A = (a1 , a2 ,. . . , a)

interacts with point B = (b1 , b2 , . . . , b) if:

j(1 < j n) such that Vi(1 <i <n)

for positive integers 8, i and j:

8 is the interaction depth.

ai = bi 	ifij

0<Ia—bI<8 ifi=j

Let P = (pi, P2, . . . ,pn) represent a single processing element and let E =

{ (pi,p,. . . ,p) : Vi = 1 . . . fl, j < r} represent an ensemble of PEs across which

the n-dimensional D is to be distributed. r = N 1/n is called the radix of the

ensemble, and for simplicity assume that k/r is a positive integer. A partition of

D across E is the set:

M={(P,LX):PEE,LCD}

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 81

such that

ViCEif - <c< (p+1)k
T 	 r

In effect, both the data and the processor ensemble can be considered as n-

dimensional cubes with radices k and r respectively.

In addition to the points in L, each node also requires space in which to store

the values of any points which interact with points in L but which are located

on other nodes. A point C E A will interact with non-local points (i.e. those on

another node) if one or more of the coordinates of C satisfies the condition:

ci

or

(p2 ± 1)k (p + 1)k
—8_<c 	 —1

r 	 r

Under the interaction described earlier, the inner points - which incur overlap

for 8 > 1 - require the same non-local data points as the outermost points and

so can be ignored when calculating overlap space requirements. The points of

interest then, are those which would interact with 6 = 1 in the above expression.

For each coordinate Cj in point C = (Cl, c2 ,. . . , c,) define 0[c2] as:

J 1 c2 = && or c2
= (p2±1)k - 1

O[cj]
= o otherwise

Each 0[c2] = 1 represents an overlap in the ith dimension and a requirement

for 8 extra points of storage. For example, in figure 4-4, face point (1, 1, 0) overlaps

in one dimension, edge point (0, 2, 1) overlaps in two dimensions, and the corner

point (2, 2, 0) overlaps in all three dimensions.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 82

Overlap in two dimensions

Overlap in three
dimensions

ne dimension

Figure 4-4: Overlap in several dimensions

The total overlap space incurred per point is thus:

h = 	O[c]

And the total overlap space for a processor is:

H= >6O[cI
CEA i=1

Or alternatively:

O[c2]

j=1 CEI

Since each possible value of each Cj occurs the same number of times, then for

any given dimension i:

O[c] = 2 (k'
CeA 	 r)

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 83

Since Li is homogeneous (being comprised of the complete set of n-tuples rep-

resenting the data points on the processor in question), the overlap is the same

for each of the n dimensions and so:

(n-i)

H=28m 	 (4.3) Mr

This is as expected if the interface between the processors is regarded as 2n

(n - 1)-dimensional "cubes" of side k/r.

For example, in two-dimensional data, with unit interaction depth, the inter-

face between the data on one processor and those on its neighbours consists of

four "lines" of data. In a three-dimensional data set, the interface consists of the

eight "surfaces" of the processor's cube of local data. For a three-dimensional

decomposition with J = 1, the overlap space requirement on a single processor is:

/ \2

H=6(

The overlap space as described is incurred on a by-processor basis, and so,

ignoring edge-effects, the total space requirement for D is:

MALG = G + NH
(n-i)

= G+28nN(-

= C + 28nGN

From this total, an outside "surface" of the data space of 2nk' should be

subtracted. The total space requirements, removing surface overlap, is:

MALG = C + 2nöG(n') (N - 1) 	 (4.4)

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 84

Equation 4.4 describes how the amount of memory will increase as N is in-

creased.

For the two-dimensional decomposition in question, with 8 = 1, the space

requirement on a base space of G is:

MALO = G + 4V(/i - 1) data points 	 (4.5)

Equation 4.5 can now be combined with the expression for basic component

performance (equation 2.16) to give the access time, tM1 , in seconds:

- 	O. 21 RM
tM1 = 8.8 + 650e b(G+4J(V-1)) nanoseconds

where b is the space per data point in megabytes.

Figures 4-5, 4-6 and 4-7 show how total capacity, device cost and access time

must vary with N in a two-dimensional grid decomposition of a 1MByte data

space with interaction depth of 2.

From figures 4-5 and 4-6 it can be seen that the increase in memory (and

corresponding decrease in unit cost) is relatively modest. Increasing N from 1 to

1000 incurs an overhead of only 25% in total space requirements. However, this

is only for the data space as discussed. Including program memory, which may

scale linearly with N, and the other components of memory could produce more

serious scaling.

Nonetheless, the effects of even this modest space scaling induced by the over-

lap areas are particularly obvious in figure 4-7. The access time increases by over

50% when increasing the number of nodes from 1 up to 1000. Notice, however,

that the increase in access time is more pronounced in small numbers of nodes

and lessens as one increases above a few hundred processing elements.

I-10

1.2
Cl,
CS

1.15
(5

CS
C)

1.05

1

0 200 	400 	600 	800

Nodes

1000
	

1200

$15
— $15

$14
. 	$14
>1
-a
CS

$12
$12

O $11
C-)

$10
0 200 	400 	600

Nodes

800 	1000 	1200

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER
	

11.9

Total Memory Requirements v N

Figure 4-5: Effects of Overlap Areas on Total Capacity

Cost per Megabyte v N

Figure 4-6: Effects of Overlap Areas on Memory Device Cost

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER

Access time v N

65.00
60.00
55.00
50.00

C 45.00
40.00

•s 35.00
30.00
25.00
20.00

0 	200 	400
	

600 	800 	1000
	

1200

Nodes

Figure 4-7: Effects of Overlap Areas on Access Time

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 87

4.5.2 Mesh Network Latency - t,

The mesh is a member of the k-ary n-cube family of interconnection topologies

(Figure 4-8) [13]. A k-ary n-cube is an n-dimensional cube, the edge of which

is a ring (torus) or line (mesh) of k PEs giving a total number of N = k PEs.

The binary hypercube (k = 2) is a common example [65]. The meshes under

consideration are those k-ary n-cubes with n = 2.

In k-ary n-cubes, associated with each PE is typically a single router compo-

nent connecting the PE to the network in each of the n dimensions. Latency in

these topologies is affected by several factors, and has been the subject of numer -

ous studies [13] [38] [64]. In general, the latency depends on the number of routers

3-ary 1-cube

00000000
........

........

........

........

........

3-ary 4-cube
(4-D Mesh)

(some connections omitted for
clarity)

4-ary 2-cube
(2-D torus)

2-ary 2-cube
(4-D Binary cube)

Figure 4-8: Examples of k-ary n-cubes

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 88

traversed, the performance of those components (under the relevant load), and

the buffering strategy used for through-routing.

In a store-and-forward system, where the entire message is received by each

intermediate router before being forwarded to the next, then, ignoring contention,

the average latency, tSF, is given by:

tSF = tRD
B

WR

where:

D = average number of hops between source and destination.

WR = router channel width in bytes

tR = router cycle time

B = length of message in bytes

Here it is assumed that the transit time across the links connecting neighbour-

ing routers is negligible. Even if this transit time becomes significant compared

with the router delay, it is not affected by N in a fixed-degree network such as the

mesh. For variable-degree topologies, like the binary hypercube, the link length

may vary with N, and could be important. For a network using virtual cut-through

or wormhole routing, [39] [16], a message is routed directly from input to output

on intermediate routers, provided the output is free. It is not necessary to wait

for the entire message to arrive before forwarding. Each message is divided into a

number of "flits" (FLow-control digiTS) [14] and only the header-flit, containing

the address information incurs the full penalty of traversing the intermediate links

and routers 1 . After the path between source and destination has been set up, it

remains open at any given point until the tail flit passes. The transfer of the mes-

sage is therefore pipelined, with each flit of the body of the message appearing to

'Here, "flit" is being used synonomously with both "flit" and "phit" in [14]; thus

flow-control is performed on portions of message equal in size to a single link width

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 89

experience only a single link and router delay. Assuming that the message header

is a single W-byte flit, the latency, tVCT for cut-through routing is:

tVCT - DtR+(-
WR

--1)tR

= tR(D+
WR —1)
	 (4.6)

This indicates the pipeline effect of these buffering strategies, in contrast with

the less sophisticated store-and-forward method. For the remainder of this section

the analysis will be restricted to virtual cut-through routing.

Average distance travelled - D

The average distance travelled by a message, D, depends on the communication

locality. This is a function of the precedence relations of the graph, the network

topology, and the routing strategy.

Locality can be described by e(h), the probability that a child of a given parent

task will be situated on a FE which is h links distant from the parent's PE. In other

words, (h) is the probability that any given message will be sent to a destination

PE situated h links ("hops") from the sending node. Examples of can be found

in [17]. In the following, for simplicity, the network is assumed to be symmetric.

Uniform Communication - In uniform communication the destination of a

message will be chosen with equal probability from among all PEs. Assuming

a symmetric network, is given by:

(4.7)

where Nh is the number of PEs which are h hops from the source processor.

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 90

• 	-

h=O

III 	II • 	• (source processor)

-h=1

•1r%• -h= 2

II 1 • 	
III •

Figure 4-9: Decreasing Probability Communication

Decreasing Probability Communication - Here the probability that a mes-

sage will be sent to a FE h hops away decreases as h increases. A simple

example of this is in the nearest neighbour connected network shown in

Figure 4-9:

(h) = 'yNh
 (h + 1) 	

(4.8)

where 'y = 	is a normalizing constant used to ensure the total
h=O h+1

probability is unity and hmax is the distance in hops of the PE furthest from

the source PE.

Sphere of Locality Communication - In this form of e each PE is considered

to be at the centre of a group of PEs, each of which is no more than r

hops away. In some architectures r can be considered the radius of a sphere,

hence the name. A message from a PE will be sent to a randomly chosen

FE within the sphere, with some probability, 0, and to a randomly chosen

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 91

PE outside the sphere, with probability 1 - ,3. Typically /3> 0.5. This form

corresponds to Reed's Sphere of Locality in [61] [17].

For the grid algorithm on a mesh of dimension equal to that of the data, the

locality depends on the interaction depth, and the number of PEs. For a data set

of size G = kr', a PE will transmit to its 2n nearest neighbours (1 hop away) if

6 > 0. It will also transmit to its next nearest neighbours if 6 > çi. In the same

way, messages will also be sent to the PEs lying 3 hops distant if 6> 2 ç/. In

general, messages will be sent to all PEs lying h hops from the source if:

o>(h_1)c/

The average distance travelled by a message, D, is therefore:

10 v1
D

- 	[6ç/]

- 16ç1+1

2

For a 2-D mesh and data set, with 6 = 1, this reduces to:

D=(1\/] +1)

That is, D = 1 for N > 1 (N will not exceed G since that is the maximum

parallelism of the algorithm).

This is a trivial case of Sphere of Locality with r = 0 = 1.

Equation 4.6 gives the latency for a single message traversing an unloaded

network. To calculate t,,, the blocking due to the time the neighbouring nodes

spend preparing messages must be considered. While the message sends are non-

blocking, the FE will spend some time preparing the messages. Let i be the

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 92

number of instructions required to prepare and send a message, and so let tpREp =

i3 (tj + 1UtM1) be the time to prepare a message for sending. The time for the head

flit of the first of the four messages to cross the local router is:

tpjp + tR

The second message must wait until the whole of the first has gone, and so the

total time until its head flit crosses the router is:

tPREP + htR + tpftEp + tR

where: h = 	is the number of flits in the message. The time for the third
WR

message is:

tPREP + htR + tPREP + htR + tPREP + tR

and the delay experienced by the header of the last message is:

tppjp + ht + tPREP + htR ± tPREP + htR + tPREP + tR = 4tPREP + 3htR + tR

Since a message will be in either of the four positions with equal likelihood,

and since there are four incoming messages, it will be assumed that one of the four

will indeed be the last from its source. The additional time for this last message

to reach the destination node is simply htR, since the other three messages will

aready have been received.

The total waiting time, t is therefore:

t = 4tppjp + 3htR + tR + htR

B
= 4 (Z,(tI + LtM,) + tR I (

	+ 1))
- 	 (4.9)

\WR 4

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 93

Router Cycle Time - tR

Router cycle time, tR is as given by equation 2.17 in chapter 2:

OARg
-

tR = 3.33 + 43e 3N nanoseconds

This treats the process of connecting an input and output pair, and driving

the data across the router as of the same order as an instruction execution on a

processor. The coefficient a in equation 2.17 can be varied to reflect a router cycle

significantly shorter than the instruction cycle. RR in the above expression is the

total cost of all routers.

Router Channel Width - WR

Router channel width, WR, was also developed in chapter 2, and is given by

equation 2.19. This will be expressed as 8-bit bytes and for a 10-channel router

(bidirectional in each dimension, plus a bidirectional port to the local node) is

given by:

1 / 	RR 	\l.7

WR = 	
\ 2.7*103N)

Message Length - B

The last parameter required is B, the number of bytes per message. This depends

on the number of points on the sending PE which interact with points on the

destination PE. Ignoring edge effects, the total number of points to be sent to any

PE is given by the halo space in equation 4.3. This is split among the 2n "faces"

of the n-dimensional cube of points allocated to the PE. The message length,

assuming one byte per point, is thus:

(n-I)

B = f - 	± header + tail
\rj

CHAPTER 4. A MESSAGE-PASSING MULTICOMPUTER 	 94

The header and tail portions vary according to the implementation. The header

will usually contain the destination address and perhaps a message length datum.

The tail may be a check datum. For the purposes of this analysis, the header is

assumed to be three bytes, and the tail is unused, and so B for a 2-D mesh with

8 = 1 is:

B= (+3)
	

(4.10)

4.6 Summary

Expressions have been derived for the various components of equation 4.2 as func-

tions of N, the number of processors in a shared memory multiprocessor. These

functions depend on the technology cost: performance functions developed in chap-

ter 2, and also upon the algorithm and machine architecture as described in this

chapter.

The effects of the various components of the execution time will be investigated

in chapter 5, and simulation results of a 2-D mesh under these cost: performance

constraints will also be presented.

Chapter 5

Discussion

95

CHAPTER 5. DISCUSSION

5.1 Introduction

This chapter takes the models developed in chapters 3 and 4, and discusses the

significance of the various parameters involved. First, in section 5.2, simulation

results are used to validate the models for both architectures. The simulations

were of real hardware systems, containing processors, memory, arbiters, routing

elements etc. The cost and performance figures for the simulations were also taken

from real devices. This contrasts with the performance models themselves which

used the various derived functions of cost and performance as described in the

previous chapters. Since the range of actual cost and performance data consists of

discrete values, the process of validation had to depart from the overall principle

of cost fixing. For each simulation experiment, the cost of individual components

was fixed and their number varied. In other words overall system cost was allowed

to increase as N was varied. Each experiment compared results calculated using

the models with actual results for component costs at the low, mid and high-points

of the available data. This method allowed an extensive test of the accuracy of

the models' predictions, and produced confidence in these. Once this confidence

was achieved, it was then possible to proceed to investigate the cost fixing effects

with the models alone. This discussion is presented in section 5.4

5.2 The Simulator

This section discusses the simulations used to validate the models described in

chapters 3 and 4. First, the simulator itself is described. Only the mesh simulator,

being the more complex of the two used, is described here. Then the experiments

and corresponding results used to validate both the bus and mesh models are

presented.

CHAPTER 5. DISCUSSION
	

97

5.2.1 Verilog Simulator

Various simulation tools were considered, many providing a front-end to a common

high-level language [7] [8] [31]. The chosen tool was Verilog [71] and the Cadence

Verilog-XL [29] simulator. Verilog is one of the two most popular languages (the

other being VHDL [5]) widely used for hardware description. It provides a useful

mapping between HDL and hardware and this can be exploited using synthesis

tools.

The simulator consisted of two basic types of entity, processors (with integral

memory) and routers. The processors executed instructions, initiated local mem-

ory references and then prepared a message which was passed to the router. Each

processor and router were combined into a single node component and these were

connected in a two-dimensional bi-directional mesh.

The router consisted of five pairs (north, south, east, west and local) of buffers;

each pair consisting of one input and one output. Connections among these were

achieved using a 5x5 crossbar switch. This allowed non-blocking connections be-

tween pairs of inputs and outputs. Figure 5-1 shows a block diagram of the router

component.

Routing was bidirectional with wormhole buffering and so a simple X-Y re-

stricted routing scheme sufficed to avoid deadlock. The router buffers had attached

fifo queues, but these were not used in the simulations described. Messages were

sent as a sequence of phits, the number of which was fixed for any given simulation

run, but in general depended on the algorithm (e.g. the size of the halo in the

overlap areas computation), and the router channel width. The first three phits

were the coordinates of the destination, node, the coordinates of the source, and a

unique ID for that message. Only the first of these three was required for routing

purposes; the others were used for debugging.

CHAPTER 5. DISCUSSION

Figure 5-1: Verilog Router Block Diagram

CHAPTER 5. DISCUSSION

5.2.2 Simulation Control

One drawback of the Verilog language was its lack of support for run-time instan-

tiation of simulation entities. Lacking an equivalent of VHDL's "for . . . generate"

construct, in Verilog all router and processor modules had to be explicitly instan-

tiated. Since varying the number of such components was a key aspect of the

simulation, a C front-end was built to generate the Verilog fixtures for the various

values of N being examined.

This C controller used look-up tables to specify timings for the various oper-

ations performed by the simulator, and controlled the collection of data after the

run. The controller would oversee experiments described in a parameter file; the

file could describe either a set of experiments explicitly, or a range of parameters

from which a full-factorial experiment would be performed. Figure 5-2 provides

an overview of the simulation control.

5.2.3 Performance

Simulator performance proved to be a serious limiting factor. While simulations of

several thousand nodes on relatively modest hardware are regularly reported [56],

the Verilog-XL simulator was extremely memory-hungry. Simulations of under

1000 nodes exceeded the several hundred megabyte swap limits on a large server

and resulted in disk-thrashing. Towards the end of the project, progress was made

using Chronologic's VCS [63]. This compiled simulator (Cadence's interprets the

source) gave up to 10 times savings on memory and commensurate improvements

in simulation time.

100 CHAPTER 5. DISCUSSION

Figure 5-2: Simulation Control

CHAPTER 5. DISCUSSION 	 101

5.3 Simulation Results

This section describes the various simulation experiments performed to check the

accuracy of the model predictions. The shared memory system is described first,

and then the message-passing multicomputer. Full results tables and graphs are

given in appendix B.

5.3.1 Shared Memory Multiprocessor

As described in chapter 3, the shared memory system consists of N processors,

each with a private store, connected to a common shared memory by a single bus.

The shared memory contains P data points, each of which must be operated on

using a set of i instructions, and pi private memory references. After processing a

point, a processor writes the result back to the shared store and, in the same bus

tenure, reads the next unprocessed point. Each point consists of a single word of

memory.

To validate the model, a range of simulation experiments was performed. The

simulator modelled real hardware constructs and used actual cost and performance

figures for the processors and memory devices. The simulation experiments fo-

cused on the algorithm parameters i and p. P was made sufficiently large to hide

the initial bus loading transients which are not represented in equation 3.6 and

so a single simulation cycle was sufficient for each value of N. In the first run,

p = 0.1 and i = 10. Systems were simulated for N = 1 to 100. While 100 nodes

is very modest in the wider context of parallel systems, as will be seen from the

results, this is usually high enough to cause the bus to saturate. The base memory

sizes were 5 Megabytes for the shared store, and 0.5 Megabytes per processor of

local store. This was then repeated for i = 100 and i = 500. These three runs

were then repeated again twice; first with p = 0.5 and then p = 1. In each case,

CHAPTER 5. DISCUSSION 	 102

the cost of a single processor and single memory device were fixed. Since N was

varied for each run, the total system cost would increase as N was increased. This

was done because the range of available processor cost: performance figures was

limited and consisted of discrete values.

This set of experiments was then repeated twice, once for components in the

middle of the cost range examined, and once for the most expensive components.

Figures B—i to B-9 in Appendix B plot execution time against N for each

experiment. Simulation results matched the model to within an average of under

3.5%.

5.3.2 Message-passing Multicomputer

The multicomputer described in chapter 4 consists of N processing nodes arranged

in a two-dimensional rectangular mesh. Each node contains a processor, a private

memory store and a router through which the processor communicates with others.

The algorithm is the transformation, over s iterations, of an n-dimensional data

space of P points. In each iteration each point requires the execution of i instruc-

tions, and i local memory accesses. Each iteration ends with the transmission of

the relevant points to neighbouring nodes, as described in chapter 4.

The simulations used the following fixed parameters throughout. The data

space consisted of P = 4096 points arranged in two dimensions. The number of

iterations was five. Router cost was fixed at $350 each for all simulations. As will

become apparent, this was necessary to ensure that one of the significant aspects

of router performance - I/O bandwidth - did not dominate all other effects. As

with the bus simulations, three sets were run corresponding to low-cost, mid-range

and high-end memory and processors.

CHAPTER 5. DISCUSSION
	

103

Each experiment consisted of three sets of simulation runs, each for a square

mesh from 1 to 400 nodes. Over the three sets one of the key algorithm parameters

was varied, while the others were fixed.

Experiment la simulated instruction execution only, varying i. Experiment

lb again varied i but did this within the context of communication and memory

operations. Experiments 2a and 2b simulated varying i3 , with first a low then

high value for i. Experiments 3a to 3c varied p, first with two values of i and no

communications, and then with messages. Finally experiment 4 varied the number

of bytes per grid point.

Figures B—lU to B-33 plot execution time against N for each experiment.

Simulation results matched the model to within an average of 11%.

5.4 Model Behaviour

Having gained confidence in the accuracy of the various performance models, it is

now possible to investigate,using the models alone, the effects of cost fixing. This

section considers the effect on execution time, and on optimal N, of varying some

of the key model parameters. First, the shared-bus model is discussed, and then

the message-passing model.

5.4.1 Shared Memory Multiprocessor Model

A significant factor in this system is the loading on the shared-bus. As expected,

in a fixed cost system this easily becomes a bottleneck as the number of processors

is increased. The increase in loading due to the increase in N is exacerbated by the

fact that the service time of the shared memory is also increasing. On the other

hand, this is partly compensated for by the increased time the processors spend in

CHAPTER 5. DISCUSSION
	

ID

Parameter Description Value

P Number of points in data set 10000

i Number of instructions per point 100

p Fraction of instructions requiring local memory access 0.1

M Local memory per processor 0.5 MBytes

M8 Total shared memory 5 MBytes

RP Total cost of processors $500

RM Total cost of all memory $250

Table 5-1: Default Parameters for Bus Model

between bus requests, due to their increased instruction execution time and ever-

slowing local memory. Note that for simplicity the model (nor the simulations)

does not include the effects on performance of the increasing electrical length of

the bus as N grows. Capacitive loading and transmission-line effects such as wire-

OR glitching can have very serious performance implications and would tend to

make the optimal N even lower than described below.

The sensitivity of the model to any given parameter may well depend on the

precise domain over which it is being varied, and the domains of the other pa-

rameters. For example, the effect of varying the degree to which memory scales

(linear in the model presented so far, but not necessarily so in general) will be

more obvious in a system with low i and/or high M. Any parameter values dif-

fering from those used in the simulations are mentioned where appropriate. The

default values are given in table 5-1.

While the simulation experiments allowed the overall system cost to increase,

and so kept the individual component costs constant throughout a run, in the

following discussion the overall cost of each of the three hardware functions is

kept constant. As a result, component cost varies inversely with N.

Using equation 2.15 (page 44), figures 5-3 and 5-4 show how processor perfor-

t_l v N - Total Cost of Processors = $500

0 	100 200 	300 	400

CHAPTER 5. DISCUSSION
	

105

45.00

40.00

35.00

30.00
CO 25.00

20.00

15.00

10.00

5.00

0.00

Number of Processors

Figure 5-3: Single Processor Instruction Execution Time (t 1)

mance varies with N in a system with a total processor cost of $500. The latter

graph measures processor speed as described in section 2.2.3. The graphs show

that, in effect, above about 50 nodes (for this particular total cost), N can be

increased with little impact on the processor performance. This is because, below

a cost of around $10, processor speed is not significantly dependent on cost. In the

mid 1990s, at this low-end of VLSI technology, devices typically are distinguished

not by raw speed but by the extent to which they integrate, on a single chip, func-

tions previously made available on separate devices. The effect of this is to render

the aggregate performance of the multiprocessor an almost linear function of N

above the "knee" in the graphs. For example, for a total system cost of $500, the

aggregate performance is 300 million "1nt92 instructions" per second for a single

node, around 1250 for 50 nodes, and approximately 8000 for 400 nodes. In other

words, if other factors suggest that the optimal processor cost is $10 at most (i.e.

that optimal N is at least 50 in this case), then there is a strong case for using as

many of the cheapest available nodes as possible. However, the effect of memory

cost: performance must also be considered.

CHAPTER 5. DISCUSSION
	

106

Processor Speed v N - Total Cost of Processors = $500

300.00
V

250.00
0)
csJc,

G)

200.00
w
CL

0 150.00

6.2 100.00

I.-
4-
C') 50.00
C

100 	200 	300 	400

Number of Processors

Figure 5-4: Single Processor Performance

For a total memory system cost of $500, figures 5-5 and 5-6 (using equation

2.16 on page 47) show how the memory performance in the shared bus architecture

drops as the capacity is increased. As with the processors, the nature of the mem-

ory cost: performance function means that the impact of increasing the amount of

memory lessens as the total memory increases. However, this "flattening" is not

as pronounced as with the processor devices, and in systems with significant space

scaling the implications on memory performance of increasing N may continue to

be serious for very high values of N. The effect, on the value of the optimal N, of

varying the degree of space scaling is discussed later.

The next four sections consider the effects on optimal N, of varying the pa-

rameters describing the algorithm and the hardware.

CHAPTER 5. DISCUSSION
	

107

t_M v MBytes - Total Cost Memory = $500

600.00

500.00

._. 400.00
U)

300.00

200.00

100.00

0.00

0 100 	200 	300

Total Memory (MBytes)

400

Figure 5-5: Memory Access Time versus Total Capacity

1/t_M v MBytes - Total Cost Memory = $ 500

120.00
V

8 	100.00
0
(0

80.00

60.00
(I)
U) '

40.00
0

20.00

4-

0
	

100 	200 	300
	

400

Total Memory (MBytes)

Figure 5-6: Memory Speed versus Total Capacity

CHAPTER 5. DISCUSSION

Number of Instructions - i

The effect of increasing the number of instructions to be performed on a point

depends principally on the nature of the hardware cost: performance functions.

For sub-linear functions, increasing i tends to increase optimal N. This is due to

two effects. First, the critical path length, being inversely linear with N, decreases

faster than the time to execute instructions increases. Second, the computation

to communication ratio increases, lessening the load on the shared bus.

Figure 5-7 shows how the optimal number of nodes increases as i is increased.

For i = 10, consituting very fine grain parallelism, the optimal number of nodes

is only 4. As i increases, the loading on the bus decreases for a given number

of nodes, and the optimal N increases: optimal N is 30 for i = 100 and 70 for

i = 500. Expressed in terms of processor costs, the optimal system for fine grain

parallelism (i.e. small i) would be constructed from a few expensive nodes of

cost: performance around that of the 21164 (see table 2-1 on page 40). Increasing

i makes slower, less expensive nodes more attractive and i = 500 is best dealt

with using a system of nodes with cost: performance between that of the ARM710

and the MPC601.

Notice that the convergence of the three curves shown is as predicted by the

model given in chapter 3, and coincides with the points at which the buses in

the three systems shown begin to load. Once a processor can expect to have to

wait for another to be serviced before receiving tenure, any additional processors

increase this loading. The slight rise in execution time at just under 10 nodes

(i.e. for devices between around $50 and $40) is due to the superlinear nature of

processor cost performance at the low end of the range investigated. This can be

seen clearly on figure 2-5 on page 43.

Figure 5-8 shows how the bus "queue lengths" increase as N is increased. Re-

call that the queuing model used was of a closed system and that a processor would

only issue a single request before stalling to wait for service. This dependence of

=10

i=100

1=500

20000

15000

10000

0

5000
W

25000

0
0 	20 	40 	60 	80 	100

I

CHAPTER 5. DISCUSSION
	

109

Execution Time - Sensitivity to i

Figure 5-7: Bus Model - Execution time sensitivity to i

average arrival rate upon the queue length itself provides a "braking" effect on

the loading of the queue, and the queue length grows only linearly wih N once

loading begins.

=10

i=100

=500

100.0

80.0

60.0

- 40.0

20.0

0.0
0 	 50 	 100

CHAPTER 5. DISCUSSION
	

110

Queue Length - Sensitivity to i

Figure 5-8: Bus Model - Bus waiting sensitivity to i

CHAPTER 5. DISCUSSION
	

111

Local Memory Activity -

Increasing the amount of local memory references will, as with processors, tend to

increase the optimal N, provided the memory cost: performance is sub-linear (i.e.

if increasing memory device cost incurs increasingly diminishing returns in terms

of improved access time). Figure 5-9 was produced using shared bus models, with

a total memory cost, RM of $100. This shows how optimal N increases with i.

Again, as with the processors themselves, this is due to the reduced bus loading

seen when processors spend more time in their local stores. Of course, this effect

is lessened slightly by the fact that the increase in memory size will impact the

performance of the shared store, effectively increasing the queue service time and

lengthening the queue. Optimal N is 6 when one local access is performed for

every 10 instructions, but this increases to 56 when every instruction requires a

local access. In practice, p may be greater than unity, if every instruction has to

be fetched from the local store.

30000

' 25000

20000

15000

10000

LU 5000

Execution Time - Sensitivity to mu

mu = 0.1

mu=0.5

mu=1.0

0 	 50 	 100

I

Figure 5-9: Bus Model - Execution time sensitivity to It

CHAPTER 5. DISCUSSION
	

112

Queue Length - Sensitivity to mu

C)
C

90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0

mu = 0.1

mu = 0.5

mu=1.O

0 	 50 	 100

Figure 5-10: Bus Model - Bus waiting sensitivity to i

Figure 5-10 shows how queue length dependency on N is affected by t, the

sharp increases in length corresponding to the second "knee" in the relevant curves

in figure 5-9.

CHAPTER 5. DISCUSSION
	

113

Space Scaling

In the system scenario discussed in chapter 3, and in the simulations, the to-

tal memory scaled almost linearly with N. In section 3.5.1, the total memory

requirements were given as:

MALG mN + nm.

where m is the local space per processor, and nm,, is the shared space.

Figure 5-11 shows total memory requirements of the form:

MALG = mN + nm, 	 (5.1)

for exp = 0.1, 1.0 and 1.2.

The presence of the exponent, especially when greater than unity, could repre-

sent the growth of local memory requirements due to cache management or virtual

memory translation tables, etc.

Intuitively, one would expect systems with super-linear space-scaling to have

lower optimal N than those with exponents of less than unity. This is seen in

figure 5-12, produced from the model after using equation 5.1 as the denominator

of the exponent in equation 3.4 (see page 62). The lack of convergence on the

three curves, in contrast with the two parameters examined so far, is due to the

fact that, as shown in chapter 3, after bus loading begins, TSM depends mainly on

device access time.

The slight "knees" in the curves in figure 5-12 correspond with the onset of

bus loading, and coincide with the points shown in figure 5-13.

CHAPTER 5. DISCUSSION
	

114

140.0

120.0

100.0

80.0

i 60.0
 40.0

20.0

0.0

Space Scaling

exp=0.8

exp=1.0

exp=1.2

0 	 50 	100

Figure 5-11: Bus Model - Memory requirements for various space scaling expo-

nents

Execution Time - Space Scaling Sensitivity

9000
. 8000
20 7000

6000
P 5000
g4000

3000
2000

W 1000
0

exp=0.8

exp=1.0

exp=1.2

0 	 50 	100

Figure 5-12: Bus Model - Execution time sensitivity to space scaling

CHAPTER 5. DISCUSSION
	

115

Queue Length - Space Scaling Sensitivity

70.0

60.0

S) 50.0

I 40.0

30.0

20.0

10.0

exp=0.8

exp=1.0

exp=1.2

0 	 50 	 100

	

LSI- 	E:

Figure 5-13: Bus Model - Bus waiting sensitivity to space scaling

Hardware Cost:Performance

The execution time of an instruction on a processor of cost Cp = Rp/N has been

shown (see equation 2.15) to be approximated by:

t1 = 3.33 ± 43e+"nanoseconds

This final section concerning the shared memory architecture considers the ef-

fect on optimal N of varying the processor cost: performance function. By varying

the coefficient of Cp in the above expression, alternative tj may be investigated,

along with the implications for TSM. Varying the coefficient could correspond to

an exploration of the processor cost: performance function at costs above that of

the most expensive single chip MOS devices. This would allow an investigation of

bipolar processors, and of board-level processors (see Chapter 6). It could also cor-

respond to an examination of future processor cost: performance functions, where

various physical limits on device construction become significant. Alternatively,

various issues other than just cost and performance may restrict a designer's choice

CHAPTER 5. DISCUSSION
	

116

Variation in Processor
Cost: Performance (t_I v cost)

50.00
45.00
40.00
35.00
30.00
25.00

4.) 20.00
15.00
10.00
5.00
0.00

$0

coeff = -0.01

coeff = -0.03

coeff = -0.05

$200 	$400

--

Processor Cost

Figure 5-14: Instruction execution times for various processor cost: performance

coefficients

of processor. For example, some computer manufacturers tend to focus on mature

device families, letting competitors take the risk with newer devices. Therefore,

the range of processors available over which to investigate the "number" versus

"speed" tradeoff may be restricted to low-end devices. In such a case, a more ac-

curate curve to fit the restricted cst and performance data is likely to show more

super-linearity, and a higher coefficient may be more suitable.

Figure 5-14 shows tj as a function of cost for coefficients of -0.01, -0.03 and

-0.05 (corresponding to values near and around the current actual value). Figure

5-15 shows the reciprocal plots representing processor performance.

Figure 5-15 in particular highlights the degree to which the variation in proces-

sor performance within a particular cost range depends on the coefficient. With a

coefficient of -0.05, the curve rises sharply and is almost constant above $150. The

curve for a coefficient value of -0.01, on the other hand, is super-linear for much of

300

H 250

200

0 CL
150

100

50

0
$0 	$200 	$400

coeff = -0.01

coeff = -0.03

coeff = -0.05

--

.1,II]

CHAPTER 5. DISCUSSION
	

117

Variation in Processor Cost: Performance (speed v
cost)

Processor Cost

Figure 5-15: Processor performance for various coefficients

its extent, and only begins to show sub-linearity above $350. From this, one would

expect machines using a processor technology following the -0.01 curve to have a

higher optimal N, all else being equal, compared with a technology following the

-0.05 curve. In the super-linear portion of the cost: performance curve, it is better

to use a single node of cost X than N nodes each of cost X/N.

Figure 5-16 plots execution time for the three coefficients and confirms that

the -0.01 technology has higher optimal N (34 processors) than either the -0.03

technology (30 processors) or the -0.05 technology (8 processors).

CHAPTER 5. DISCUSSION
	

118

Execution Time - Sensitivity to Processor
Cost: Performance

6000

5000

4000

3000
0

2000
C.)

1000
w

0

coeff=-
0.01

coetf=-
0.03

coeff=-
0.05 0 	 50 	 100

Figure 5-16: 	Bus Model - Execution time sensitivity to processor

cost: performance

CHAPTER 5. DISCUSSION
	

119

Parameter Description Value

P Number of points in data space 4096

s Iterations 5

i Number of computation instructions per point 100

i Number of instructions per message send 1

Fraction of instructions requiring local memory access 0.1

b Memory per grid point 1 byte

RP Total cost of processors $500

RM Total cost of all memory $0.36

RR Total cost of all routers $5000

Table 5-2: Default Parameters for .Mesh Model

5.4.2 Message Passing Multicomputer Model

The default parameters used in this section are given in table 5-2. A note of

explanation is required for the total memory cost. The unusually low figure is due

simply to the fact that the algorithm as described uses only 4 KBytes of memory.

The cost given corresponds to just over $90 per megabyte.

In contrast with the bus architecture, in which the communications latency

could quickly become a bottleneck, the localized communications pattern in the

mesh renders that architecture more scalable for this algorithm. An algorithm with

non-localized communications would suffer more seriously from message latency

as N increased, and optimal N would be lower (see Chapter 6). An investiga-

tion of the sensitivity of N to the various parameters in the model shows that

only in unrealistically extreme situations, (e.g. where the number of instructions

required to send a message is significantly greater than the instructions proper)

does optimal N fall below the upper end of the range.

This occurs for several reasons. First, as with the bus, the number of com-

putation instructions on the critical path is decreasing linearly with N, while the

growth in the time to perform any of those instructions, tj , is generally increasing

CHAPTER 5. DISCUSSION
	

120

Computation Time

4000.00

0 3000.00
.2 2000.00

0.60
0 	100 	200 	300 	400

Nodes

Figure 5-17: Mesh Model - Time for Computation Only

only sub-linearly (see figure 5-3). Figure 5-17 shows the time spent by a processor

on computation only, as a function of the number of nodes. As with the bus, this

argues for a large number of slow devices if other effects are ignored.

Also, communication latency is affected only insofar as the hardware param-

eters are also so affected. Unlike non-local communications, blocking is not sig-

nificantly increased by increasing N, and so t,, is most sensitive to speed of the

the three components types - processors, memory and routers - and also to the

width of the router I/O port. From equation 4.9 it can be seen that latency can

be dominated by either the router cycle time, tR, or by the message preparation

time which is strongly dependent on i3 .

A comparison of figure 5-18 with figure 5-19 shows how t, follows the router

cycle time tR, when i is small (1/100th of i in this case). If i is increased

(e.g. if communication required the services of high-level system services such as

a OS kernel), then t depends principally on the performance of the processors

themselves and on memory performance if p is sufficiently high.

Figure 5-20 shows that the message length is largely unaffected by N, and so

does not affect optimal grain.

Message length remains fairly constant because while router width decreases

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0 100 	200 	300 	400

Nodes

CHAPTER 5. DISCUSSION
	

121

Latency versus N

800.00

700.00

600.00

' 500.00

400.00

_I 300.00

200.00

100.00

0.00

0 100 	200 	300 	400

Nodes

Figure 5-18: Mesh Model - Latency, t,, versus N

Router Cycle Time

Figure 5-19: Mesh Model - Router Cycle Time, tR, versus N

CHAPTER 5. DISCUSSION
	

122

Message Length

5.00
w 4.00

rL 	3.00
w 2.00

.. E 1.00
0.00

0 	 100 	200 	300
	

400

Nodes

Figure 5-20: Mesh Model - Message Length versus N

Switch Port Width

30.00

Cl) 20.00

10.00

0.001
0 	 100 	200 	300 	400

Nodes

Figure 5-21: Mesh Model - Router Width versus N

with N (figure 5-21), the halo size, and therefore the number of bytes per message,

is also decreasing (figure 5-22).

The conclusion to be drawn from figures 5-19 to 5-22 is that, for this mesh

algorithm, interprocessor communication is not a serious limitation on the use of

parallelism. The narrowing of the width of router channels is effectively countered

by the steady decrease in the amount of data being transmitted at the end of each

iteration. In addition, router cycle time, tR is not increasing fast enough with N

to overcome the benefits produced by the decreasing critical path.

Finally, the space scaling due to overlap areas is relatively slight and while the

CHAPTER 5. DISCUSSION
	

123

Bytes to Send

40.00

CO 30.00

20.00

co 10.00

0.00
0 100 	200 300 	400

Nodes

Figure 5-22: Mesh Model - Bytes per Message versus N

memory access time is increasing with N, the linear decrease in the number of

memory references on the critical path more than compensates. For a different

space scaling scenario (e.g. if local code space on each processor was included),

the increased memory requirements may begin to cause sufficient degradation in

memory speed as to reduce the optimal N.

5.5 Shared Bus Example

This section describes an example of the bus architecture showing how optimal N

and processor type can be identified.

For the shared bus, the grain of computation is important. The more instruc-

tions that are required per point (i.e. the coarser the grain), the more processors

can be used. Ironically this means that for a fixed total number of instructions,

the more parallelism available (i.e. the finer the grain), the less able is the bus

to support it. Figure 5-23 was generated from the shared bus models in chapter

3 by plotting execution time against N for a range of values of i and extracting

the N corresponding to minimum TSM in each case. The other parameters are:

P = 10000 (number of points), i = 0.1 (local memory accesses per instruction),

CHAPTER 5. DISCUSSION
	

124

Optimal N on Shared Bus - i_c sensitivity

80
x

70 	 x

60 	 x x

z50 	
x

- 	 x
E40 	 X

.. 	 x
0. 30 	 X 0

20
10

X

	

0 < 	 I 	 --

	

0 	100 	200 	300 	400 	500

i_c (Instructions per point)

Figure 5-23: Bus Model - Optimal N versus i

m = 0.5MBytes (local memory per processor), nm, = 5MBytes (total shared

memory), Rp = $500 (total cost of processors), RM = $250 (total cost of all

memory).

With a total processor cost, R, of $500, the graph indicates that the optimal

processor, for this particular algorithm and ignoring electrical effects on the bus,

varies from extremely high performance devices such as the MPC620 for very fine

grain computations (i < 10), to more modest processors (relatively speaking)

such as the MPC601 when i is large. Of course, this analysis focuses on the mid

to high range of all available processors.

The amount of local memory activity is also a key factor in determining which

processor type should be used. Because performance of the memory devices stud-

ied degrades slower, as N increases, than the length of the critical path, local

memory accesses are not an obstacle to the use of parallelism. On the contrary,

despite a slowing of memory with increasing N, the fact that local accesses tend

to keep processors off the bus suggests that increasing p will correspond with an

	

CHAPTER 5. DISCUSSION
	

125

Optimal N on Shared Bus - mu sensitivity

100

	

80! 	 > x
70.!
60!

	

E 501 	 Xx

40!
0 30!

20 	X><

10l X oi<

	

I 	 I

	

0 	0.5 	 1 	1.5 	2

mu (local accesses per instruction)

Figure 5-24: Bus Model - Optimal N versus it

increase in the optimal number of nodes. Figure 5-24 was generated in the same

way as figure as the above i sensitivity graph and shows optimal N against I.L.

The other parameters are: P = 10000 (number of points), i = 100 (instructions

per point), m = 0.5MBytes (local memory per processor), nm, = 5MBytes (total

shared memory), Rp = $500 (total cost of processors), RM = $100 (total cost of

all memory).

Note that the example here, as throughout this study, is based on SRAM

devices, as presented in [18]. Systems using DRAM devices may require a different

function in place of equation 2.16, however the method of analysis would be the

same.

CHAPTER 5. DISCUSSION
	

126

5.6 Summary

In this chapter, simulation results have been used to validate the models presented

previously. The models' sensitivity to variation in some of their key parameters

were then discussed.

In the bus model, since aggregate performance tended to increase almost lin-

early with N above a certain number of nodes (about 10 for a total node cost of

$500), the bus loading was the key factor in determining optimal N. Similarly,

since memory performance was relatively unaffected by cost at the low-end of

the device range, increasing the amount of memory (a linear space scaling in the

simulations) did not, in itself, act to degrade performance seriously. The main

factor limiting the use of parallelism was the relationship between shared mem-

ory access time and N. Once the bus began to load the benefit of adding more

processors was quickly outweighed by the increased bus waiting time. This was

further emphasized when super-linear space-scaling was considered.

For the message-passing mesh architecture, communications locality and mod-

est space scaling meant that optimal N was almost always at the highest N inves-

tigated. Locality makes a decrease in router speed and a narrowing of inter-node

links the key communications drawbacks of increasing N. The problem of router

speed decreasing with N was generally outweighed by the increased concurrency.

The narrowing links were not a serious limitation because the amount of data

being sent decreased with N and so message length remained relatively constant.

For systems with more severe space scaling, or non-local communications patterns,

optimal N could be expected to decrease.

Chapter 6

Concluding Remarks

127

CHAPTER 6. CONCLUDING REMARKS 	 128

6.1 Summary and Conclusions

Parallel architectures have, in terms of decreasing the execution time of a problem,

one significant advantage over sequential machines:

a The amount of work allocated to the most heavily-loaded processor is less

in the parallel machine.

If the total hardware cost is fixed, then opposing this advantage are several

disadvantages:

. The processors in the parallel machine are slower.

. The memory devices in the parallel machine are slower, since memory re-

quirements typically increase with the number of processors.

. The components used to connect the processors and memories in the parallel

machine have performances and bandwidth which vary inversely with the

number of processors.

. Additional work is required of the processors in the parallel machine, due to

communications.

• Sharing of resources among the various processors may force delays when a

given resource is found to be busy.

This thesis has presented an investigation of these advantages and disadvan-

tages and their net effect on the execution time of a problem on a system of N

nodes.

The first conclusion of this work is to reaffirm the scale of the problem at hand.

Optimizing hardware granularity is a significant problem depending on a large set

CHAPTER 6. CONCLUDING REMARKS 	 129

of input parameters and any particular result depends heavily on the system under

investigation.

The principal aim of this thesis was not to give precise results concerning

optimal N, but rather to present an approach to the problem which could, in any

specific circumstances, lead to a better understanding of the tradeoffs inherent in

varying the number of processors. This has been done by examining two specific

systems, and describing the parallel computation in a way that can be expressed

as a workload on the hardware. The methods used, and the underlying principle

- that a hardware enhancement in one part a fixed cost system will have an

associated performance reduction elsewhere - can be applied more generally, and

in a wider area than simply optimizing grain.

In the two systems examined, an important factor was the difference between

the rate of decrease with N of the length of the critical path and the rate of decrease

of component speed, again with the increase in the number of processors. Since

hardware cost: performance was modelled as showing very rapidly diminishing re-

turns beyond a certain cost, and since the critical path was decreasing roughly

linearly with N, one would expect that high degrees of parallelism would be pos-

sible, unless other factors such as resource sharing, or communications overhead

became significant. This was seen in the different behaviour of the two systems

with different interconnection strategies. Whereas the lack of blocking in the mesh

allowed N to be increased to a maximum, the poor scalability of the single shared

bus did not. However, the mesh's scalability was seen under very localized com-

munication so that the only serious impact on latency was through a decrease in

the switch speed. Since switching time was, because of the nature of the hard-

ware cost: performance, scaling up at a lower rate than that of the decrease of the

critical path, an increase in N did not seriously degrade overall performance.

Some general points are noted:

CHAPTER 6. CONCLUDING REMARKS
	

130

A VLSI cost model was presented and the expected sub-linearity of VLSI

devices was identified in memory and processor components. As suggested

in [72] both the feature size and die area (number of transistors) are signif-

icant factors affecting device cost, with a key effect being wafer fabrication

equipment depreciation.

A survey of microprocessor data was carried out, and this was combined

with the cost model data to determine a cost: performance function for the

basic components. Reasonable approximate curves were proposed.

Space scaling was described in detail for a grid decomposition, and this was

used to show how memory system performance will degrade with N.

A scheme for representing a DAG algorithm as a workload on N processors

was presented and used to develop the performance model in detail.

Verilog simulations were presented and provided validation of the models to

within 3.5% for the shared-bus, and 11% for the mesh.

6.2 Suggestions for Future Research

Several investigations spring from the current one. In general, these would involve

taking a specific aspect of the analysis and developing more precise models with

more precise (but less general) results.

The effects, on cache management strategies, of increasing N is one possible

area of study. As N increases, the amount of work required to maintain cache

coherency in some schemes may become prohibitively large. A possible approach

is to express the change in the amount of cache-maintenance work done as a

function of N and to use this in conjunction with the cost: performance models

presented here, to identify an overall effect on execution time.

CHAPTER 6. CONCLUDING REMARKS
	

131

An investigation into the effects of different (blocking) communications pat-

terns, would also be informative. As was shown in this thesis, while the mesh's

non-blocking communications gave optimal N at the highest value, the bus could

quickly saturate making large N a poor choice. Work presented in [2] could provide

a starting point for a more general latency model.

Further work could be done to extend the processor cost model out beyond

single-chip VLSI devices, to include board-level processors. In the analysis pre-

sented here, obviously parallel architectures are needed when the total processor

cost is greater than that of leading edge single-chip device. By identifying a

cost: performance function for board-level CPUs (perhaps using bipolar technolo-

gies) the tradeoff between number and speed of processors may be investigated

to higher cost ranges. It would also be useful to devise a more precise model of

switch cost: performance than the one presented here. Switch components are still

relatively uncommon but several experimental and a few commercial devices have

been produced and could form the beginning of a study [15] [50] [34].

Also, the general principle of fixing system cost in order to investigate the net

effects of a proposed optimization, could be applied to tradeoffs among the amount

of resource used for each of the three main hardware functions: processors, memory

and interconnect. Keeping the three hardware functions independent, as was done

here, ignores the fact that if the performance of one component drops very rapidly

as N increases, it may become a bottleneck which dominates all other effects.

Bearing in mind that varying N is only one of several options available when

designing an optimal architecture, and investigation into trading off processor,

memory and interconnect cost would be difficult, but useful.

Alternative sources of space scaling effects are worthy of investigation. For

example, as mentioned in chapter 1, the discussions of the merits of recomputa-

tion in scheduling (e.g. [35] and [57]) currently take no account of the impact

on memory performance of executing the same task on several processors. For

CHAPTER 6. CONCLUDING REMARKS 	 132

high performance networks using memory with a poor cost: performance function,

recomputation may become a liability.

Finally, the future implications of this modelling approach could be investi-

gated, particularly with respect to examining the relative importance of scalability

and modularity in parallel systems.

6.2.1 Scalability and Modularity

Ultra-high performance is not the only reason for considering parallism in com-

puter architectures. Another, possibly more widely useful property, is the ability

to increase the performance of a parallel system by adding more nodes. This is

useful for two reasons. First, it allows an existing piece of hardware to be retained

and improved, rather than discarded as is the case today. Second, it allows a range

of products, providing a range of costs and performances, to be developed from a

single design effort in both hardware and software. The latter is particularly useful

since each individual VLSI component typically has a minimum support overhead

(design, marketing, sales support, etc.) and so the fewer different components an

OEM needs to support the target market, the better.

However, it is the notion that the ability to add nodes to an existing system is

valuable, that warrants further study. For example, the ability to add more nodes

to a fixed-degree topology such as the mesh has been used to argue its merits over

a variable-degree topology such as the binary cube. The ability to add more nodes

should be considered in light of the fact that when the time to upgrade arrives,

VLSI technology can be expected to have moved on, making the upgrade with

older nodes less attractive.

Specifically, the problem is as follows:

In year Y1 , a system is built using N 1 nodes. Some time later, in year Y2 , a

CHAPTER 6. CONCLUDING REMARKS
	

133

sum of money is made available with which to upgrade the available computing

resource. The user has a choice:

Purchase more nodes of the original type, and add these to the existing

system, or

Discard the existing system and build a new optimal system, with the avail-

able technology.

Apart from the various factors discussed in this thesis, a key factor is the

growth of VLSI device performance with time. A useful starting point for this

is [72]. Practical experience at Edinburgh, in the early 1990's, suggests that, at

the moment, VLSI is still advancing fast enough to make scalablity for upgrad-

ing's sake of limited worth. This may change however, as the technology reaches

its upper limits. The circumstances under which this would occur merit further

investigation.

Appendix A

Microprocessor Survey Data

134

APPENDIX A. MICROPROCESSOR SURVEY DATA

Key to Survey Table

Name Device Name/Number

Mfr 	Principal Manufacturer

Cik 	External Bus Clock Frequency (MHz)

Mips 	Dhrystone MIPS

Mflops Millions of floating-point operations per second

1nt92 	Maximum quoted Int92 in system using this processor

1nt92 	Maximum quoted FP92 in system using this processor

KD/s Kdrhystones per second

Area 	Die area mm 2

Trans 	Number of transistors (1000's)

Ftr 	Feature size (drawn) (microns)

Name Mfr CIk Mips Mflops 1.t92 FP92 KD/s Area Trans Ftr

21064 DEC 133 62.6 107.8 234 1700 0.8

21064 DEC 150 74.3 126.0 234 1700 0.8

21064 DEC 166 234 1700 0.8

21064 DEC 200 106.5 200.4 234 1700 0.68

21064A DEC 225 135 205 2800 0.68

21064A DEC 225 170 290 2800 0.68

21064AA DEC 100 1750 0.68

21064AA DEC 133 65 112 1750 068

21064AA DEC 150 74 126 1750 0.68

21064AA DEC 166 90 140 1750 0.68

21064AA DEC 175 114 162 1750 0.68

21064AA DEC 182 103 176 1750 0.68

21064AA DEC 190 122 185 1750 0.68

21064AA DEC 200 130 184 1750 0.68

21066 DEC 166 70 105

21068 DEC 66 30 50

21164 DEC 225 135 205 2800 0.5

21164 DEC 275 170 290 2800 0.5

21164 DEC 320 201.5 366.5 2800 0.5

29000 AMD 16

29000 AMD 20

29000 AMD 25

29000 AMD 30

386/387 INTEL 33 6.2 3.3 1200

486DX INTEL 25 13.3 6.6 1 1200

486DX INTEL 33 18.3 9.5

486DX INTEL 50 30.1 14 1200

486DX2 CYRIX 66 32.2 16 0.7

486DX2 CYRIX 80 0

486DX2 INTEL 25.4 15.9

486DX2 INTEL 1 	66 32.2 16 0.7

486DX2 INTEL 80 07

486DX3 INTEL 99 48 24 1200

135

APPENDIX A. MICROPROCESSOR SURVEY DATA 	 136

Name
[

Mfr I CIk 	I Mips Mflops 1.t92 FP92 KD/s
[

Area Trans Ftr]j

486DX4 INTEL 100

486SLC INTEL 33

486SX INTEL 25

486SX INTEL 33

6502 ROCKWELL

80186 INTEL 8

80188 INTEL 8

80286 INTEL 10

80386 INTEL 16

80386 INTEL 20

80386 INTEL 25

8080A INTEL 2

8088 INTEL 5

80C186 INTEL 10

80C188 INTEL 10

80C286 INTEL 16

80C286 INTEL 12.5

80085A INTEL 3

80086 INTEL 8

84C00A TOSH 6

ARM2 ARM 8 5.3 5.29 25 1.2

ARM3 ARM 25 14.8 250 0.8

ARM6 ARM 33 7.15 33.5 0

ARM60 ARM 16 43 0.6

ARM610 ARM 25 25 24 26 359 0.6

ARM7 ARM 33 53 4.96 35.6 0.8

ARM700 ARM 55 69 68 579 0.8

ARM710 ARM 33 32 34 570 0.6

MC6800 MOT 1

MC68000 MOT 8 30 68 2.5

MC68000 MOT 10 30 68 21

MC68000 MOT 12 30 68 2

MC68010 MOT 8 41.4 84 2.6

MC68010 MOT 10 41.4 84 26

MC68010 MOT 12 41.4 84 2.6

MC68020 MOT 12 39.7 190 0.8

MC68020 MOT 16 39.7 190 0.8

MC68020 MOT 20 5.2 0.19 9 39.7 190 0.8

MC68020 MOT 25 6.5 0.24 11 39.7 190 0.8

MC68020 MOT 33 8.7 0.32 15 39.7 190 0.8

MC68030 MOT 16 4.5 1 	0.26 7.8 55.4 273 1.0

MC68030 MOT 20 5.4 0.32 9.4 55.4 273 1.0

MC68030 MOT 25 6.7 0.4 11.7 55.4 273 1.0

MC68030 MOT 33 9.0 0.53 15.6 55.4 273 1.0

MC68030 MOT 40 10.8 0.6 1 18.8 55.4 273 1.0

MC68030 MOT 50 13.5 0.8 23.5 55.4 273 1.0

MC68040 MOT 25 26.1 3.5 19 45.5 163 1170 0.65

MC68040 MOT 33 34.8 4.7 61 163 1170 0.65

MC68040 MOT 40 43.8 35 23 72.7 163 1170 0.8

MC68040 MOT 45 41.3 5.6 72.7 163 1170 0.65

MC68060 MOT 50 90 1 49 1 198 2500 0.5

MC6809 MOT I

MC68EC000 MOT 8 1.2 2.1 28.6 68 0.8

MC68EC000 MOT 15 2.5 4.4 28.6 68 0.8

MC68ECO40 MOT 20 20.9 0.2 36.4 128 777 0.65

MPC601 MOT/IBM 50 51 63 1 120 2800 0.6

APPENDIX A. MICROPROCESSOR SURVEY DATA 	 137

Name Mfr I CIk 	I Mips Mfiops 1.t92 FP92 I KD/s Area Taus Ftr

MPC601 MOT/IBM 60 120 2800 0.6

MPC601 MOT/IBM 66 62 80 120 2800 0.6

MPC601 MOT/IBM 80 77 93 120 2800 0.6

MPC601 MOT/IBM 100 110 130 74 2800 0.5

P24C INTEL 99

P24T INTEL

P54C INTEL 0.6

P54MC INTEL

P6 INTEL

P86 INTEL/HP

PA7100 HP 99 109.1 167.9 202 806 0.75

PA7100LC HP 60 58.1 78.5 202 906 0.75

PA7100LC HP 75 82.6 127.2 202 906 0.75

PA7100LC HP 80 84.1 79 202 906 0.75

PA7100LC HP 100 101 137 202 906 0.75

PA7150 HP 125 135 200 202 806 0.75

PA7200 HP

PA9000 HP

PENTIUM INTEL 60 58.3 52.2 290 3100 0.8

PENTIUM INTEL 66 64.5 56.9 290 3200 065

PENTIUM INTEL 90 90 72.7 3200 065

PENTIUM INTEL 99 96.8 85.4

PENTIUM INTEL 100 100 80.6 3200 0.65

POWER IBM 63 73.3 134.6

POWER2 IBM 72 126 260.4 19200

P0WER2532 IBM 25 20.9 39.4

POWER3332 IBM 33 27.7 51.9

P0WER3364 33 28.5 64.6

R4200 MTI 40 50 24 1300 0.6

R4200 MTI 40 55 30 1300 0.6

R4400 MTI 50 59.1 62.1 186 2300 0.6

R4400 MTI 75 94.2 105.2 186 2300 0.6

R4400 MTI 150 2300 0.6

R4400 MTI 200 117 131 134 2300 0.35

R4600 MTI 50 60 68 1900 0.64

R4600 MTI 67 92.1 82 1900 0.64

R8000/TFP MTI 75 300 300 108 310 298 3400 0.5

RSC3308 IBM 33 20.4 29.1

RSC4608 IBM 46 28.5 39.9

Sparc(H) SUN 66 67 93 0.65

Sparc(H) ROSS 100 111 135 135 0.5

Sparc(M) SUN 50 23 18 0.8

Sparc(S) SUN 89 103

Sparc(S) SUN 50 65 80 256 3000 0.7

Sparc2(M) SUN 100 63 56 11
T5 MTI 100 250 300 5200

Z80A ZILOG 4

Z80B ZILOG 6

Z84C ZILOG 8

I860XP INTEL 50 75 2500 0.8

Appendix B

Simulation

138

APPENDIX B. SIMULATION 	 139

B.1 Bus Simulation Results

This section provides results for the bus simulations. Three sets of experiments

were performed; one for low-cost components, one for mid-range devices, and one

for devices at the high-end of the cost and performance ranges. Tables B—i to

B-3 provide a summary of the parameters used in the bus simulations. Figures

B—i to B-9 plot execution time against N for each experiment. Simulation results

matched the model to within an average of under 3.5%.

APPENDIX B. SIMULATION
	

140

Low-cost components

P i p

Memory (MBytes) CPU

Cost ti

MEM

Cost tM Local Shared

Experiment 1

10000 10 0.1 0.5 5 2.36 41.67 11.5 70

10000 100 0.1 0.5 5 2.36 41.67 11.5 70

10000 500 0.1 0.5 5 2.36 41.67 11.5 70

Experiment 2

10000 10 0.5 0.5 5 2.36 41.67 11.5 70

10000 100 0.5 0.5 5 2.36 41.67 11.5 70

10000 500 0.5 0.5 5 2.36 41.67 11.5 70

Experiment 3

10000 10 1.0 0.5 5 2.36 41.67 11.5 70

10000 100 1.0 0.5 5 2.36 41.67 11.5 70

10000 500 1.0 0.5 5 2.36 41.67 11.5 70

Table B-i: Bus Simulation Experiments - 1 of 3

APPENDIX B. SIMULATION
	

141

Shared Bus - Expt 1(10w cost) E =10 (act)

w 15000.00 i=10(ca1c)

_ 10000.00 • i=100(act)

5000.00 AA i=100(calc)
6 	 A----

&. .. .
0.00 A i=500(act)

0 20 	40 	60 	80 100

Processors 	- i=500(calc)

Figure B—i: Bus Experiment 1 - Low-cost Components

Shared Bus - Expt 2 (low cost) i=1 0(act)

20000.00 a i=10(calc)
E

j 15000.00
i-100(act)

10000.00 A

5000.00 AAA i=100(ca1c)

W 0.00 • A i=500(act)
0 20 	40 	60 	80 100

Processors i=500(calc)

Figure B-2: Bus Experiment 2 - Low-cost Components

Shared Bus- Expt 3(10w cost) i =10 (act

w 30000.00 A i=10(calc) . 25000.00 _ 20000.00 • i=100(act)
.2 15000.00

10000.00 AA i=100(ca1c)
w
W

500000 •- 	-A--A • 	. E 0.00 A i=500(act)
0 20 	40 	60 	80 100

Processors i=500(calc)

Figure B-3: Bus Experiment 3 - Low-cost Components

APPENDIX B. SIMULATION
	

142

Mid-range components

P i

it Memory (MBytes) CPU

Cost ti

MEM

Cost tM Local Shared

Experiment 1

10000 10 0.1 0.5 5 50.86 8.55 15.82 32

10000 100 0.1 0.5 5 50.86 8.55 15.82 32

10000 500 0.1 0.5 5 50.86 8.55 15.82 32

Experiment 2

10000 10 0.5 0.5 5 50.86 8.55 15.82 32

10000 100 0.5 0.5 5 50.86 8.55 15.82 32

10000 500 0.5 0.5 5 50.86 8.55 15.82 32

Experiment 3

10000 10 1.0 0.5 5 50.86 8.55 15.82 32

10000 100 1.0 0.5 5 50.86 8.55 15.82 32

10000 500 1.0 0.5 5 50.86 8.55 15.82 32

Table B-2: Bus Simulation Experiments - 2 of 3

APPENDIX B. SIMULATION
	

143

Shared Bus - Expt 1 (medium cost)

w 	4000.00 i
E 	 I
j 	3000.00 I

	

2000.00 I 	A

g 	1000.00! 	• • • • •
w 	0.00

	

0 	20 	40 	60 	80 	100

Processors

I

11

A

1=10 (act)

i=10(calc)

1=1 00(act)

i=1 00(calc)

i=500(act)

i=500(calc)

Figure B-4: Bus Experiment 1 - Mid-range Components

Shared Bus - Expt 2 (medium cost) E 	i=1 0(act)

8000.00 i=10(calc)

6000.00 A\

4000.00
• 	

1=1 00(act)

2000.00
A A 	

A
i=100(calc)

X
W

A A

0.00 A 	i=500(act)
0 20 	40 	60 	80 	100

Processors
i=500(calc)

Figure B-5: Bus Experiment 2 - Mid-range Components

U

•

A

CD 12000.00 . 10000.00 - 8000.00
.2 6000.00 - 4000.00

2000.00
w 0.00

0

Shared Bus - Expt 3 (medium cost)

A\

A

A - - A—
A

• £ - i - l U- O N E

20 	40 	60 	80 	100

Processors

=1 0(act)

i=1 0(calc)

1=1 00(act)

1=1 00(calc)

i=500(act)

i=500(calc)

Figure B-6: Bus Experiment 3 - Mid-range Components

APPENDIX B. SIMULATION
	

144

High-end components

P i j

Memory (MBytes) CPU

Cost tj

MEM

Cost tM Local Shared

Experiment 1

10000 10 0.1 0.5 5 354.5 3.33 40.23 9

10000 100 0.1 0.5 5 354.5 3.33 40.23 9

10000 500 0.1 0.5 5 354.5 3.33 40.23 9

Experiment 2

10000 10 0.5 0.5 5 354.5 3.33 40.23 9

10000 100 0.5 0.5 5 354.5 3.33 40.23 9

10000 500 0.5 0.5 5 354.5 3.33 40.23 9

Experiment 3

10000 10 1.0 0.5 5 354.5 3.33 40.23 9

10000 100 1.0 0.5 5 354.5 3.33 40.23 9

10000 500 1.0 0.5 5 354.5 3.33 40.23 9

Table B-3: Bus Simulation Experiments - 3 of 3

APPENDIX B. SIMULATION
	

145

Shared Bus - Expt I (high cost)

	

, 	1200.00

	

•E_ 	1000.00
800.00

.2 600.00
400.00
200.00 I -. . . • 11

0.00
0 	20 	40 	60 	80 	100

Processors

U

L

1=10 (act)

=1 0(calc)

i=1 00(act)

i=100(calc)

i=500(act)

i=500(calc)

Figure B-7: Bus Experiment 1 - High-end Components

Shared Bus - Expt 2 (high cost)

w 	2000.00
E

i 	1500.001
C- 	 I
.2 	1000.00 1

500.001

w 	0.001

	

0 	20 	40 	60 	80 	100

Processors

=10 (act)

=10 (calc)

=1 00(act)

=1 00(calc)

=500(act)

=500(calc)

Figure B-8: Bus Experiment 2 - High-end Components

Shared Bus -Expt3(high cost) • 	i=10(act)

w 4000.00 I i=10(calc)
E
R 3000 . 00 !

A
• 	i=100(act) 	'I

2000.00

1000 . 00 1
i=100(calc)

CD
X

LU 0.00
A 	- A- A .-- • I I I I 	U 	I U 	I A 	i=500(act)

0 20 	40 	60 	80 	100

Processors i=500(calc)

Figure B-9: Bus Experiment 3 - High-end Components

APPENDIX B. SIMULATION 	 146

B.2 Mesh Simulation Results

This section provides results for the mesh simulations. As discussed in chapter

5, the simulations used the following fixed parameters throughout. The data

space consisted of P = 4096 points arranged in two dimensions. The number of

iterations was five. Switch cost was fixed at $350 for all simulations. As with

the bus simulations, three sets were run corresponding to low-cost, mid-range and

high-end memory and processors.

Each experiment consisted of three sets of simulation runs, each for a square

mesh from 1 to 400 nodes. Over the three sets one of the key algorithm parameters

was varied, while the others were fixed.

Experiment la simulated instruction execution only, varying i. Experiment

lb again varied i but did this within the context of communication and memory

operations. Experiments 2a and 2b simulated varying i, with first a low then

high value for i. Experiments 3a to 3c varied i, first with two values of i and no

communications, and then with messages. Finally experiment 4 varied the number

Tables B-4 to B-6 summarize the simulations. Figures B-10 to B-33 plot

execution time against N for each experiment. Simulation results matched the

model to within an average of 11%.

APPENDIX B. SIMULATION
	

147

Low-cost Components

i i8 It bpg 8

CPU

Cost ti

MEM

Cost tM

SWITCH

Cost t

Expt. la 1 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33

100 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33

500 0 0 1 0 2.36 41.67 11.5 70 354.5 3.33

Expt. lb 1 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

100 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

F500 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

Expt. 2a 1 1 50 1 1 2.36 41.67 11.5 70 354.5 3.33

1 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

1 100 50 1 1 2.36 41.67 11.5 70 354.5 3.33

Expt. 2b 100 1 50 1 1 2.36 41.67 11.5 70 354.5 3.33

100 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

100 100 50 1 1 2.36 41.67 11.5 70 354.5 3.33

Expt. 3a 1 0 1 1 0 2.36 41.67 11.5 70 354.5 3.33

1 0 51 1 0 2.36 41.67 11.5 70 354.5 3.33

1 0 101 1 0 2.36 41.67 11.5 70 354.5 3.33

Expt. 3b 100 0 1 1 0 2.36 41.67 11.5 70 354.5 3.33

100 0 51 1 0 2.36 41.67 11.5 70 354.5 3.33

100 0 101 1 0 2.36 41.67 11.5 70 354.5 3.33

Expt. 3c 50 50 1 1 1 2.36 41.67 11.5 70 354.5 3.33

50 50 51 1 1 2.36 41.67 11.5 70 354.5 3.33

50 50 101 1 1 2.36 41.67 11.5 70 354.5 3.33

Expt. 4 50 50 50 1 1 2.36 41.67 11.5 70 354.5 3.33

50 50 50 10 1 2.36 41.67 11.5 70 354.5 3.33

50 j 	50 j 	50 j 	20 j 	1 j 	2.36 j 41.67 j 	11.5 j 	70 j 	354.5 3.33

Table B-4: Mesh Simulation Experiments - 1 of 3

APPENDIX B. SIMULATION
	

M.

Mesh Experiment la - Low-cost Components

14000

12000

w 10000
E

j 	8000

•6 6000

4000

LU 2000

0

0

A

- A. A •-. •4
...... . £ liii i

100 	200 	300 	400

Nodes

• 	i_c=1(act)

i_c=1 (calc)

• 	i_c=100(act)

i_c=1 00(calc)

A 	i_c=500(act)

i_c =500 (Cal C)

Figure B-10: Mesh Experiment la - Low-cost Components

Mesh Experiment lb - Low-cost Components

30000

25000

20000

15000

'S 10000
CD

L 	soo:

A
• 	i_c=1(act)

i_c=1 (calc)

• 	i_c=100(act)

i_c=1 00(calc)

A 	i_c=500(act)

ic=500(calc)

• 	A A • 	 ---A AAA A 6 •.....•.Ill 	- - - i -i
100 	200 	300 	400

Nodes

Figure B—il: Mesh Experiment lb - Low-cost Components

APPENDIX B. SIMULATION
	

149

Mesh Experiment 2a - Low-cost Components

250

Cl)

.2.. 200

150

100

0
CD
X 50
w

I

AA

N& . A AAAA A A A A A

	

. p 	. .

-. . . . - 	U 	W • •

100 	200 	300 	400

Nodes

• 	i_s=1(act)

i_s=1 (caic)

• 	i_s=50(act)

i_s=50(calc)

A 	i_s=100(act)

i_s=1 00(calc)

Figure B-12: Mesh Experiment 2a - Low-cost Components

Mesh Experiment 2b - Low-cost Components

6000 i

5000 -.

4000

3000
o 	I

2000
CD
o

1000

0 	 I 	 I

0 	100 	200 	300 	400

Nodes

• 	i_s=1 (act)

i_s=1(calc)

• 	i_s=100(act)

i_s=1 00(calc)

Figure B-13: Mesh Experiment 2b - Low-cost Components

APPENDIX B. SIMULATION
	

150

Mesh Experiment 3a - Low-cost Components

80
E

60
0Afl 	\\

.

20

0
0 	100 	200 	300 	400

Nodes

• 	mu=0.1(act)

mu=0.1(calc)

• 	mu=0.5(act)

- 	mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-14: Mesh Experiment 3a - Low-cost Components

Mesh Experiment 3b - Low-cost Components

8000
E 	 A

6000 	\
C- 	 .+
2 	4000

2000
LU

0 	• -.-±* ia aa a
0 	100 	200 	300 	400

Nodes

• 	mu=0.1(act)

mu=0.1(calc)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-15: Mesh Experiment 3b - Low-cost Components

Mesh Experiment 3c - Low-cost Components

CD 	4000
E 	 A

i 	3000

2000

1000

0 	100 	200 	300 	400

Nodes

• 	mu=0.1(act)

mu=0.1 (caic)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1 .0(act)

mu=1.0(calc)

Figure B-16: Mesh Experiment 3c - Low-cost Components

ru

• 	bpg=10(act)

bpg=1 0(calc)

. .

400

2000

1500

1000
0
0
'C 500 W

100 	200 	300

APPENDIX B. SIMULATION
	

151

Mesh Experiment 4- Low Cost Components

3000

2500
	LI

Nodes

Figure B-17: Mesh Experiment 4 - Low-cost Components

APPENDIX B. SIMULATION
	

152

Mid-range Components

i8 p bpg ö

CPU

Cost ti

MEM

Cost tM

SWITCH

Cost t

Expt. la 1 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33

100 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33

500 0 0 1 0 50.86 8.55 15.82 32 354.5 3.33

Expt. lb 1 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

100 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

500 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

Expt. 2a 1 1 50 1 1 50.86 8.55 15.82 32 354.5 3.33

1 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

1 100 50 1 1 50.86 8.55 15.82 32 354.5 3.33

Expt. 2b 100 1 50 1 1 50.86 8.55 15.82 32 354.5 3.33

100 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

100 100 50 1 1 50.86 8.55 15.82 32 354.5 3.33

Expt. 3a 1 0 1 1 0 50.86 8.55 15.82 32 354.5 3.33

1 0 51 1 0 50.86 8.55 15.82 32 354.5 3.33

1 0 101 1 0 50.86 8.55 15.82 32 354.5 3.33

Expt. 3b 100 0 1 1 0 50.86 8.55 15.82 32 354.5 3.33

100 0 51 1 0 50.86 8.55 15.82 32 354.5 3.33

100 0 101 1 0 50.86 8.55 15.82 32 354.5 3.33

Expt. 3c 50 50 1 1 1 50.86 8.55 15.82 32 354.5 3.33

50 50 51 1 1 50.86 8.55 15.82 32 354.5 3.33

50 50 101 1 1 50.86 8.55 15.82 32 354.5 3.33

Expt. 4 50 50 50 1 1 50.86 8.55 15.82 32 354.5 3.33

50 50 50 10 1 50.86 8.55 15.82 32 354.5 3.33

50 50 50 20 1 50.86 8.55 15.82 32 354.5 3.33

Table B-5: Mesh Simulation Experiments - 2 of 3

APPENDIX B. SIMULATION
	

153

Mesh Experiment l - Mid-range Components

3500

3000

w 2500

2000

1500

1000
CD

500

0
0

A A AT- -A
III

6 ,- 6 - 16 I

100 	200 	300 	400

Nodes

• 	i_c=1 (act)

i_c=1 (caic)

• 	i_c=1 00(act)

i_c=1 00(calc)

A 	i_c=500(act)

ic=5 00 (ca Ic)

Figure B-18: Mesh Experiment la - Mid-range Components

Mesh Experiment lb - Mid-range Components

9000
8000

3 7000
6000

•i 5000
4000
3000

CD 2000
Uj 1000

0

0

Fl . i_c=1 (act)

i_c=1(calc)

i_c=1 00(act)

i_c=100(calc)

i_c=500(act)

i_c=500(calc)

•
-•• e U..... I I I I I I I 1 I

100 	200 	300 	400

Nodes

Figure B-19: Mesh Experiment lb - Mid-range Components

APPENDIX B. SIMULATION
	

154

Mesh Experiment 2a - Mid-range Components

80j

70 A& • 	i_s=1 (act)

60 AAAAA 	
A

E
i_s=1(calc)

50

40 i
-

s=50(act)
30 ----•- 	•- 	-• 	•

I 	s=50(calc)
wv -
W 10

UI
A 	i_s=100(act)

0 100 	200 	300 	400 i 	s=100(calc)

Nodes

Figure B-20: Mesh Experiment 2a - Mid-ra nge Components

Mesh Experiment 2b - Mid-range Components

1800
1600
4 A1fl
'$00 '

1200
}-1000 	$

800
600
400

W 200 	 $ $
0

0 	100 	200 	300 	400

Nodes

i_s=1 (act)

i_s=1 (caic)

i_s=100(act)

i_s=1 00(calc)

Figure B-21: Mesh Experiment 2b - Mid-range Components

Mesh Experiment 3a - Mid-range Components

G) 	25
20

15 o u,
io

5
LU 	0

0

I'
• p

100 	200

Nodes

A
300 	400

APPENDIX B. SIMULATION
	

155

• 	mu=0.1 (act)

mu=0.1(calc)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-22: Mesh Experiment 3a - Mid-range Components

RA .k \,rL 	r,r* h - 	 I
I I t_A1Ji III II IL JIJ - 1V11..l I 	 Jfl 	 ' 	

I 	 mit-fl I 1i r't\

G) 	3000
. 	2500

_ 2000
.2 	1500

	

innn 	 A
o

	

500 	 :

0 	100 	200 	300 	400

Nodes

• •, '..-.-,• ,

mu=0.1 (caic)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-23: Mesh Experiment 3b - Mid-range Components

Mesh Experiment 3c - Mid-range Components

1500.00

1000.00

00 500.00

LU
	

0.00 o 	
100 	200 	300 	400

Nodes

• 	mu=0.1(act)

mu=0.1(calc)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-24: Mesh Experiment 3c - Mid-range Components

APPENDIX B. SIMULATION
	

156

Mesh Experiment 4- Mid-range Components

900.00
800.00
700.00
600.00

i 500.00
400.00

• 300.00
200.00

Uj 100.00
0.00

E
• 	bpg=1(act)

bpg=1 (caic)

• 	bpg=10(act)

bpg=1 0(calc)

- -U A 	bpg=20(act)

300 	400 	 bpg=20(calc)

[!J 100 	200

Nodes

Figure B-25: Mesh Experiment 4 - Mid-range Components

APPENDIX B. SIMULATION
	

157

High-end Components

c i, t bpg 6

CPU

Cost ti

MEM

Cost tM

SWITCH

Cost t

Expt. la 1 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33

100 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33

500 0 0 1 0 354.5 3.33 40.23 9 354.5 3.33

Expt. lb 1 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

100 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

500 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

Expt. 2a 1 1 50 1 1 354.5 3.33 40.23 9 354.5 3.33

1 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

1 100 50 1 1 354.5 3.33 40.23 9 354.5 3.33

Expt. 2b 100 1 50 1 ± 354.5 3.33 40.23 9 354.5 3.33

100 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

100 100 50 1 1 354.5 3.33 40.23 9 354.5 3.33

Expt. 3a 1 0 1 1 0 354.5 3.33 40.23 9 354.5 3.33

1 0 51 1 0 354.5 3.33 40.23 9 354.5 3.33

1 0 101 1 0 354.5 3.33 40.23 9 354.5 3.33

Expt. 3b 100 0 1 1 0 354.5 3.33 40.23 9 354.5 3.33

100 0 51 1 0 354.5 3.33 40.23 9 354.5 3.33

100 0 101 1 0 354.5 3.33 40.23 9 354.5 3.33

Expt. 3c 50 50 1 1 1 354.5 3.33 40.23 9 354.5 3.33

50 50 51 1 ± 354.5 3.33 40.23 9 354.5 3.33

50 50 101 1 1 354.5 3.33 40.23 9 354.5 3.33

Expt. 4 50 50 50 1 1 354.5 3.33 40.23 9 354.5 3.33

50 50 50 10 1 354.5 3.33 40.23 9 354.5 3.33

50 50 50 20 1 354.5 3.33 40.23 9 354.5 3.33

Table B-6: Mesh Simulation Experiments - 3 of 3

APPENDIX B. SIMULATION
	

158

Mesh Experiment la - High-end Components

1200

1000

800

600

400
CD
0
x w 200

0
0

A • 	i_c=1(act)

ic=1 (caic)

• 	i_c=100(act)

i_c=100(calc)

A 	i_c=500(act)

i_c=500(calc)

•
-AAA -A-A A

.....
 *-1-4-6 - 6 - 4 a a a a

100 	200 	300 	400

Nodes

Figure B-26: Mesh Experiment la - High-end Components

Mesh Experiment lb - High-end Components

3000

2500

2000

1500

1000
0 w x w 500

0

0

A

A ----A A -A AA

......ii i a a 16 a a
100 	200 	300 	400

Nodes

• 	i_c=1 (act)

i_c=1 (caic)

• 	i_c=100(act)

• 	i_c=100(calc)

A 	i_c=500(act)

i_c=5 00 (ca Ic)

Figure B-27: Mesh Experiment lb - High-end Components

APPENDIX B. SIMULATION
	

159

Mesh Experiment 2a - High-end Components

25
A

20 NA AAA A A AAAA 	A

E 15

:-- •-• •••--•- --
- ---U.

I 	- • 	--- 	.---. -. 	-..
0 I 	 -- 	I 	------I

0 100 200 	300 	400

Nodes 	 - 	- 	-

• 	i_s=1 (act)

i_s=1 (caic)

• 	i_s=50(act)

i_s=50 (Ca Ic)

A 	i_s=100(act)

• 	i_s=100(calc)

Figure B-28: Mesh Experiment 2a - High-end Components

Mesh Experiment 2b - High-end Components

600 - 	-
500 • 	i_s=1 (act)

400
i_s=1 (caic)

300 kit • 	i_s=100(act)
15 200
W

I 100 --- 	:l-j i_s=100(calc)
•j 	1:1

0 I 	 I 	 I

0 100 	200 	300 	400

Nodes

Figure B-29: Mesh Experiment 2b - High-end Components

APPENDIX B. SIMULATION
	

160

Mesh Experiment 3a - High-end Components

	

, 	8

	

E 	A

	

•i 	6

	

.24 	\A\

	

CD 	2

	

Uj 	0
0 	100
	

200 	300 	400

Nodes

• 	mu=0.1(act)

mu=0.1 (caic)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1.0(calc)

Figure B-30: Mesh Experiment 3a - High-end Components

Mesh Experiment 3b - High-end Components 	• 	rn.ifl I (f\
uuUMJ. U

800 A mu=0.1(calc)

600 • 	mu=0.5(act)
400

CD 200
no mu=0.5(catc)

0
A 	mu=1.0(act) 0

100 	200 	300 	400

Nodes mu=1.0(calc)

Figure B-31: Mesh Experiment 3b - High-end Components

Mesh Experiment 3c - High-end Components 	• 	miin I (rt\

CD 	400 	A
E 	 \ j 	300

.2200

100

0 	100 	200 	300 	400

Nodes

mu=0.1(calc)

• 	mu=0.5(act)

mu=0.5(calc)

A 	mu=1.0(act)

mu=1 .0(calc)

Figure B-32: Mesh Experiment 3c - High-end Components

bpg=10(act)

250
a
C,)

200
E

150

1 100
50

bpg=1 0(calc)

APPENDIX B. SIMULATION
	

161

Mesh Experiment 4- High-end Components

300

.

El

0
	

100 	200 	300 	400

Nodes

Figure B-33: Mesh Experiment 4 - High-end Components

Bibliography

Miron Abramovici, Melvin Breuer, and Arthur Friedman. Digital Systems

Testing and Testable Design. Computer Science Press, 1990.

Anant Agarwal. Limits on interconnection network performance. IEEE

Transactions on Parallel and Distributed Systems, October 1991.

Gene Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the IFIPS Spring Joint Com-

puter Conference, pages 483-485, 1967.

M.L. Barton and G.R. Withers. Computing performance as a function of the

speed, quantity and cost of the processors. Proceedings of Supercomputing

1989, pages 759-764, 1989.

Jayaram Bhasker. A VHDL Primer. Prentice-Hall, 1992.

Laxmi Bhuyan. Interconnection networks for parallel and distributed pro-

cessing. IEEE Computer, pages 9-12, 1987.

Graham Birtwhistle. SIMULA BEGIN. Lund New York, 1973.

Graham Birtwhistle. DEMOS : a system for discrete event modelling on

SIMULA. London, Macmillan, 1979.

162

Bibliography
	 163

Rosemary Candlin, Peter Fisk, Joe Phillips, and Neil Skilling. A statistical

approach to predicting the performance of concurrent programs. Proceedings

of EWPC'92, the European Workshops on Parallel Computing, page 616,

March 1992.

Garry Christie. Private communication. Motorola Ltd., August 1994.

Standard Performance Evaluation Corporation. c/o NCGA national com-

puter graphics association. Fairfax, VA 22031, USA.

David Culler, Richard Karp, and David Patterson. Logp: Towards a realistic

model of parallel computation. In Proceedings of the 4th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, San Diego,

California, May 1993. ACM.

William J. Daily. Performance analysis of k-ary n-cube interconnection net-

works. IEEE Transactions on Computers, 39(6):775-785, June 1990.

William J. Dally. Virtual-Channel flow control. IEEE Transactions on Par-

allel and Distributed Computing, 3(2):194-205, March 1992.

William J. Dally and Charles L. Seitz. The torus routing chip. Distributed

Computing, 1(3):187-196, 1986.

William J. Daily and Charles L. Seitz. Deadlock-free message routing in

multiprocessor interconnection networks. IEEE Transactions on Computers,

C-36(5):547-553, May 1987.

Sivarama Dandamudi. Hierarchical Interconnection Networks for Multi-

computer Systems. PhD thesis, University of Saskatchewan, Saskatoon,

Saskatchewan, Canada, November 1988.

Bibliography 	 164

[181 Dataquest Europe Ltd. European MOS memory market consumption forecast

1991 - 1997. Technical Report SEMI-EU-MT-9301, Dataquest, June 1993.

Daryl Doane and Paul Franzon, editors. M'ultichip Module Technologies and

Alternatives. Van Nostrand Reinhold, 1993.

Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus

efficiency in parallel systems. IEEE TC, 38(3):408-423, March 1989.

T. Feng. A survey of interconnection networks. IEEE Computer, pages 12-

27, December 1981.

Stuart Forbes. Private communication. Motorola Ltd., July 1994.

John L. Gustafson. Reevaluating Amdahl's law. CA CM, 31(P):532-533, May

Um

Linley Gwennap. Estimating IC manufacturing costs. Microprocessor Report,

pages 12-16, August 1993.

John Hennessy and David Patterson. Computer Architecture. A Quantitative

Approach. Morgan Kaufman Publishers Inc, 1990.

Anthony J.G. Hey. General-purpose parallel computing. In Conference on

Very Large Scale Computing in the 21st century, Cape Cod, October 1990.

Samuel Ho and Lawrence Snyder. Balance in architectural design, 1990.

Kai Hwang and Faye Briggs. Computer Architecture and Parallel Processing.

McGraw Hill, 1984.

Cadence Design Systems Inc. Verilog-XL Reference Manual. Cadence, 1991.

[30] Motorola Inc. MDA08 CMOS Standard Cell Data. Motorola, 1991.

Bibliography
	 165

Jade Simulations International. SIM++ : a discrete event simulation lan-

guage. JSI Inc., 1988.

Raj Jam. The Art of Computer Systems Performance Analysis. Wiley, 1991.

J.E.Smith, W.C.Hsu, and C.Hsiung. Future general purpose supercomputer

architectures. In Proceedings, pages 796-804, 1990.

Christopher Frank Joerg. Design and implementation of a packet switched

routing chip. Technical Report MIT/LCS/TR-482, Massachusetts Institute

of Technology, MIT Lab. for Computer Science, Cambridge MA, December

1990.

Hermann Jung, Lefteris Kirousis, and Paul Spirakis. Lower bounds and effi-

cient algorithms for multiprocessor scheduling of directed acyclic graphs with

communication delays. Information and Computation, 1(105):94-104, 1983.

Thomas Kelly. How medium is "Medium"? In lEE Colloquium on Medium

Grain Distributed Computing, The Institution of Electrical Engineers, Savoy

Place, London, March 1992.

Thomas Kelly and Roland Ibbett. Parallelism versus performance - matching

parallel hardware to software. In G.R.Joubert, D.Trystram, and D.J.Evans,

editors, Parallel Computing: Trends and Applications, pages 437 - 444. Else-

vier Science B.V., 1994.

Thomas Kelly, Lewis MacKenzie, and Mohamed Ould-Khaoua. Effects of

message length, decision time and wiring density on k-ary n-cube latency.

In Permian Basin Supercomputing Conference, University of Texas of the

Permian Basin, March 1992.

Bibliography
	 166

Parviz Kermani and Leonard Kleinrock. Virtual Cut-Through: a new com-

puter communication switching technique. Computer Networks 3, pages 267-

286, 1979.

R.E. Kessler and J.L. Schwarzmeier. CRAY T31): A new dimension for Cray

Research. In Digest of Papers, Comp Con Spring '93, pages 176-182, San

Francisco, February 1993. IEEE, IEEE Computer Society Press.

C. P. Kruskal. Searching, merging and sorting in parallel computation. IEEE

Transactions on Computers, C-32(10):942-946, October 1983.

Clyde P. Kruskal and Marc Snir. The performance of multistage intercon-

nection networks for multiprocessors. IEEE Transactions on Computers, C-

32(12):1091-1098, December 1983.

Kumar and Reddy. Augmented shuffle-exchange multistage interconnection

networks. IEEE Computer, pages 30-40, June 1987.

Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithms

and architectures. Computer science technical report, University of Min-

nesota, Minneapolis, MN - 55455, May 1991.

Edward D. Lazowska. Quantitative System Performance: Computer System

Analysis Using Queuing Network Models. Prentice-Hall, 1984.

Stephen F. Lundstrom. Applications considerations in the system design

of highly concurrenturrent multiprocessors. IEEE TC, C-36(11):1292-1309,

November 1987.

Lewis M. MacKenzie. The Application of Microelectronic Technology to

Physics Research. PhD thesis, University of Glasgow, Glasgow, Scotland,

November 1983.

Bibliography
	 167

Carver Mead and Lynn Conway. Introduction to VLSI Systems, chapter 9.

Addison-Wesley, October 1980.

Sharad Mehrotra, Chien-Ming Cheng, Kai Hwang, Michel Dubois, and D.K.

Panda. Algorithm-driven simulation and performance projection of a RISC-

based orthogonal multiprocessor. 1990 International Conference on Parallel

Processing, 3:244-253, 1990.

P.R. Miller, C.R.Jesshope, and J.T.Yantchev. The mad-postman network

chip. In Proceedings of Transputing - Volume 2, pages 517-536, 1991.

Kenichi Miura, Moriyuki Takamura, Yoshinori Sakamoto, and Shin Okada.

Overview of the Fujitsu VPP500 Supercomputer. In Digest of Papers, Corn-

pCon Spring '93, pages 128-130, San Francisco, February 1993. IEEE, IEEE

Computer Society Press.

Motorola. Memory Device Data - DL113 Rev 7. Motorola Inc., 1991.

M.G. Norman and P. Thanisch. Models of machines and computations for

mapping in multicomputers. ACM Computing Surveys, 25(3), 1993.

Daniel Nussbaum and Anant Agarwal. Scalability of parallel machines.

CA CM, 34(3):56-61, March 1991.

Mohamed Ould-Khaou, Lewis MacKenzie, and Robert Sutherland. Perfor-

mance of switching methods in cobra networks. Departmental Research Re-

port AH-93-01, University of Glasgow, Dept. of Computing Science, Glasgow

G12 8QQ, Scotland, United Kingdom., November 1993.

Mohamed Ould-Khaoua. Hypergraph- based Interconnection Networks for

Large Multicomputers. PhD thesis, University of Glasgow, Glasgow, Scot-

land, February 1994.

Bibliography 	 168

Christos H. Papadimitriou and Mihalis Yannakakis. Towards an architecture-

independent analysis of parallel algorithms. SIAM Journal of Computing,

19(2):322-328, April 1990.

Simon Peyton-Jones. The implementation of functional programming lan-

guages. Prentice-Hall, 1987.

Giacomo Polosa. Technical forum. Supercomputing Europe '93, February

1993.

Michael J. Quinn. Designing Efficient Algorithms for Parallel Computers,

chapter 5, pages 108-109. McGraw-Hill, 1987.

Daniel A. Reed. Queueing network models of multicomputer networks. In

Proceedings of 1983 ACM SIGMETRICS Conference on Measurement and

Modelling of Computer Systems, pages 190 - 197, Minneapolis, Minnesota,

1983. ACM.

R.W.Hockey and C.R.Jesshope. Parallel Computers 2. Adam & Huger. ISBN

0-85274-812-4, 1988.

John Sanguinetti and Peter Eichenberger. VCS2 User's Guide. Chronologic

Simulation, 1994.

Steven L. Scott and James R. Goodman. Performance of Pipelined- Channel

k-ary n-cube Networks, 1900.

Charles L. Seitz. The cosmic cube. CA CM, 28(1):22-33, 1985.

Marc Snir. Scalable parallel computers and scalable parallel codes: From

theory to practice. In Heinz Nixdorf Symposium, pages 19-27, 1992.

Karl Solchenbach and Ulrich Trottenberg. Suprenum: System essentials and

grid applications. Parallel Computing, 7:265-281, 1988.

Bibliography 	 169

Xian-He Sun and John L. Gustafson. Sizeup: A new parallel performance

metric. 1991 International Conference on Parallel Processing,. 2:298-299,

1991.

Xian-He Sun and Lionel M. Ni. Another view on parallel speedup. IEEE ?,

pages 324-333, 1990.

M. Swamy and K. Thulasiram. Graphs, Networks and Algorithms. John

Wiley and Sons, 1981.

Donald Thomas and Philip Moorby. The Verilog Hardware Description Lan-

guage. Kluwer Academic Publishers, 1991.

Walid Touma. The Dynamics of the Computer Industry. Kluwer Academic

Publishers, 1993.

Arthur Trew and Greg Wilson. Past, Present, Parallel - A Survey of Avail-

able Parallel Computing Systems. Springer-Verlag, 1991.

Leslie G. Valiant. A bridging model for parallel computation. CA CM,

33(2):103-111, August 1990.

Frederic A. Van-Catledge. Towards a general model for evaluating the relative

performance of computer systems. International Journal of Supercomputer

Applications, 3(2):100-108, Summer 1989.

Peter vanZant. A Practical Guide to Semiconductor Processing. McGraw-

Hill, 1990.

Simon Young. Private communication. Motorola Ltd., July 1994.

Hans Zima and Barbara Chapman. Compiling for distributed-memory sys-

tems. Technical Report ACPC/TR 92-17, University of Vienna, Austrian

Centre for Parallel Computation, University of Vienna, November 1992.

