

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

CORR, G. A., 1996. A formalism for describing and simulating
systems with interacting components. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/�
mailto:openair%1ehelp@rgu.ac.uk�

A Formalism for Describing and Simulating
Systems with Interacting Components

GLENN A CORR

A thesis submitted in partial fulfilment of the requirements of The Robert Gordon
University for the degree of Doctor of Philosophy.

May 1996

The Robert Gordon University, Aberdeen.

Abstract

This thesis addresses the problem of descriptive complexity presented by systems involving

a high number of interacting components. It investigates the evaluation measure of

performability and its application to such systems.

A new description and simulation language, ICE and it's application to performability

modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description

language which was first proposed for defining reliability problems. ICE is declarative in

style and has a limited number of keywords. The ethos in the development of the language

has been to provide an intuitive formalism with a powerful descriptive space. The full

syntax of the language is presented with discussion as to its philosophy. The

implementation of a discrete event simulator using an ICE interface is described, with use
being made of examples to illustrate the functionality of the code and the semantics of the
language.

Random numbers are used to provide the required stochastic behaviour within the

simulator. The behaviour of an industry standard generator within the simulator and

different methods of number allocation are shown. A new generator is proposed that is a
development of a fast hardware shift register generator and is demonstrated to possess good

statistical properties and operational speed.

For the purpose of providing a rigorous description of the language and clarification of its

semantics, a computational model is developed using the formalism of extended coloured

Petri nets. This model also gives an indication of the language's descriptive power relative

to that of a recognised and well developed technique. Some recognised temporal and

structural problems of system event modelling are identified. and ICE solutions given.

The growing research area of ATM communication networks is introduced and a

sophisticated top down model of an ATM switch presented. This model is simulated and

interesting results are given. A generic ICE framework for performability modelling is

developed and demonstrated. This is considered as a positive contribution to the general

field of performability research.

Declaration

I hereby declare that this thesis is a record of work undertaken by myself, that it has not
been the subject of any previous application for a degree and that all sources of information

have been duly acknowledged.

Glenn A Con

May 1996

Acknowledgements

I wish to acknowledge the following people to whom I am indebted and without whom this

project would not have been possible.

Dr Tony Miller as my main project supervisor, who has provided many helpful ideas and

with whom I have held many fruitful discussions.

Wendy, my wife, for her unfailing belief and encouragement over the past three years.

I would also like to thank The Robert Gordon University for financially supporting this

project.

This thesis is dedicated to the memory of my late grandfather, Andrew Smith,

"A true Christian gentleman"

Contents

1 Introduction 8

1.1 Project objectives
8

1.2 Historical background to project 10

1.3 Project development 11

1.4 What has been achieved ?..................... ... 13

1.5 Guide for the reader 14

1.5.1 ICE for the first time
17

2 Performability Modelling 18

2.1 Introduction 18

2.2 Performability
19

2.3 Formal probability theoretic definition of performability 21

2.4 Modelling techniques 23

2.4.1 Non-state space
24

2.4.2 Markov reward models 26

2.4.2.1 Unified performability, performance and dependability

framework 28

2.4.3 Stochastic Petri nets
33

1

2.4.3.1 High-level Petri nets 34

2.4.3.2 Modelling and analysis with stochastic reward nets 36

2.4.4 Hierarchical and hybrid 38

2.4.5 How should realistic systems be modelled ?.......
....

39

2.5 The evolution of performability 40

2.6 Tools 42

2.7 Problems encountered in modelling systems 44

2.7.2 Largeness 44

2.7.2 Stiffness
46

2.7.3 Non exponential behaviour
.................. ... 47

2.8 Conclusions
........................... ...

47

3 The ICE Language 48

3.1 Introduction 49

3.2 Overview 50

3.3 Language Details
....................... 51

3.3.1 Counters 52

3.3.1.1 State integer attributes 53

3.3.1.2 Resources as state descriptors 54

3.3.1.3 Component integer attributes 55

3.3.1.3.1 Counter declaration 56

3.3.1.3.2 Counter initialisation
.......

56

3.3.1.3.3 Counter modification 57

3.3.1.3.4 Counters as transition pre-conditions 59

3.3.2 The syntax of transitions 59

3.3.3 Timing with transition pre-conditions 60

3.3.4 Hierarchical editing of models 64

3.4 Conclusions 65

2

4 Implementation of the ICE simulator 66

4.1 Overview
66

4.1.1 I SIM directory structure 68

4.2 Background 69

4.2.1 Simulation styles and languages
69

4.2.1.1 Examples of specific simulation languages
70

4.2.2 Features of a discrete event simulator
71

4.2.3 The development environment
72

4.3 Compilation of the language
73

4.3.1 The Precompiler
73

4.3.1.1 Error reporting
75

4.3.2 The Parser
76

4.3.3 The Compiler 78

4.3.3.1 Simulation objects
78

4.3.3.2 General compiler operation 78

4.3.3.3 The StateSpace
80

4.3.3.4 Consequence graphs 80

4.4 Simulation Phase
82

4.4.1 The event processing cycle
84

4.4.2 The event data file 88

4.5 Post processing
89

4.5.1 VIZ the visual post processor
89

4.5.2 TPP the statistical analyzer
91

4.6 Conclusions
99

5 Random Number Generation 100

5.1 Overview
100

5.2 The random number generator
102

5.2.1 The Lehmer generator
102

5.2.2 The Park and Miller generator
103

5.2.3 Statistical properties of random number sequences
105

3

5.3 Random number properties 105

5.3.1 Statistical tests 106

5.3.1.1 The Chi-square test 106

5.3.2 The testing procedure 109

5.4 Testing the Park and Miller generator 110

5.5 Random number allocation 112

5.6 Testing the sub-sequence produced by the Park and Miller generator within
ISIM 114

5.6.1 Data logging modification to I SIM 116

5.6.2 Example results of I SIM generated sub-sequences 115

5.6.3 Detection of any predictably statistically poor sub-sequences 116

5.6.4 The effect of statistically poor subsequence on I SIM models 119

5.7 A revised scheme for random number allocation within I SIM 123

5.8 The development of a novel pseudo-random number generator 126

5.8.1 Linear feedback shift register sequences 126

5.8.1 Decimation of m-sequences 128

5.8.2 The generation of pseudo-random numbers from linear feedback shift

register sequences 129

5.8.3 The Tausworthe generator 129

5.8.4 The Lewis Payne generator 130

5.8.5 The split-up feedback shift register generator 131

5.8.6 The Barel generator 132

5.8.7 A proposed fast Tausworthe generator
133

5.8.7.1 Software implementation
................

134

5.8.7.2 Testing the fast Tausworthe generator 134

5.8.7.3 Timing of the generator
135

5.9 The generation of seeds to produce parallelized random number sources ... 136

5.10 Conclusions
138

4

6 Computational models for ICE 139

6.1 Introduction 139

6.2 COMPONENT 140

6.3 CONSTANTS 141

6.4 STATE SETs and COUNTERS
141

6.5 SYSTEM
143

6.6 RESOURCES
146

6.7 BEHAVIOUR
147

6.7.1 Timed Probabilistic Transitions
147

6.7.2 Transition Firing Policies 148

6.7.3 ON EVENT 150

6.7.4 IF
152

6.8 WAIT FOR
153

6.9 ATTRIBUTES 154

6.10 Behavioural models 157

6.10.1 Dependency 157

6.10.2 Concurrency
158

6.10.3 Synchronisation 159

6.10.4 Conflict
159

6.11 Conclusions
160

7 An ICE performance model of an ATM switch 162

7.1 Introduction
162

7.2 Asynchronous Transfer Mode
163

7.3 ATM switches
163

7.3.1 The architecture of Banyan networks
164

7.4 The ICE model
167

7.4.1 Overview
167

7.4.2 The input traffic
169

7.4.3 The input controllers
170

7.4.4 Operation of the cross-bar switches
171

5

7.4.5 The switching elements 173

7.4.6 The output controllers 175

7.5 Model validation 176

7.6 Results 176

7.6.1 Performance parameters
177

7.6.2 Simulation parameters
177

7.6.3 Simulation results and observations
178

7.7 Conclusions
180

8 Performability modelling with ICE 182

8.1 Introduction
182

8.2 Distribution of accumulated reward
183

8.3 The ICE reward model
184

8.4 Multiprocessor example
185

8.4.1 Performability measures
189

8.5 Conclusions
191

9 Discussion and conclusions 193

9.1 Overview
193

9.2 The ICE language
194

9.3 Implementation of the ICE simulator
198

9.4 Random number generation
200

9.5 Computational models for ICE
201

9.5.1 A macroscopic view
202

9.6 Performability modelling
203

9.6.1 Problems encountered in modelling systems
204

9.7 Suggested areas of further work
205

9.8 Conclusions
207

6

References 208

A Performability Specification Language 223

A. 1 Introduction
224

A. 2 Overview
224

A. 3 Language Syntax
225

A. 3.1 COMPONENT
225

A. 3.2 STATE SET
226

A. 3.3 SYSTEM
227

A. 3.4 RESOURCE
229

A. 3.5 BEHAVIOUR
229

A. 3.6 WAIT FOR
232

B Data Structures, Objects and Files created during Simulation 234

B. 1 An ICE program - 'logger. ice'
235

B. 2 Parsing of 'logger. ice' 237

B. 2.1 Simulation Data Structures
241

B. 3 Compilation
253

B. 3.1 Consequence Graphs
257

B. 4 Simulation - The Event Data File
260

B. 5 Statistical Analysis Data
260

B. 5.1 Objects created from Event Data File information
260

B. 5.2 Objects created from the Analysis File
263

C ICE listing of communications network sources model 266

D ICE listing of Delta-2 Banyan switch architecture model 270

E Reprint of published paper 278

7

Chapter 1

Introduction

1.1 Project objectives

The aim of this project was to research a new approach to describing and simulating

complex systems involving multiple interacting components.

Complexity is a problem not only for computational analysis but for the system description

itself. There is a need for a problem specification formalism which supports descriptions

proportional to the size of the physical system rather than the overall system state space.

This is an approach which addresses the problem of complexity as presented to the human

modeller rather than the computing hardware. Whereas computing architecture continues

to become increasingly more powerful, we can safely predict that human capability to

intellectually grasp the operation of highly interconnected systems will remain relatively

limited.

To facilitate the simplified modelling of systems the first objective was to develop a new

approach of describing each component in a system separately. This was to include means

of specifying inter-component relationships so that all component interaction could be left

to simulation. This formalism has been called the ICE (Interacting ComponEnts) language.

8

The foundation for ICE is an earlier reliability description language (RDL) [6] which has

been used to successfully model a number of reliability problems. While it is recognised

that a state space approach such as that adopted by ICE is not as universally applicable to

performance measures as it is to reliability measures, an objective of the language was to

be able to model the performance of complex systems in an efficient manner. Further to

this, to provide a rigorous testing ground for ICE's descriptive power, it was decided to

focus on performability measures in modelling and to develop a generic performability

modelling framework using the language. Performability is a composite measure of

performance and dependability and as such presents a more significant challenge to the

modeller and the modelling technique than either pure performance or dependability

modelling. Here we take dependability to be a collective term for both reliability and

availability measures.

When considering the field of performability it was important to recognise the existing
formalisms and their relative merits. It was thus necessary to consider the popular

approach of stochastic Petri nets in some detail and derive detailed comparisons between

these and the ICE technique. There was also a recognised need for a rigorous

mathematical definition of the languages semantics. Stochastic Petri nets were identified

as a medium for achieving this.

ICE describes systems in a generic manner in terms or their functionality and performance,
dependability and performability measures. A further objective was to develop a bespoke

software package that could perform discrete event simulations on ICE descriptions.

A summary of what has been achieved and to what extent the objectives have been met is

given in section 1.4.

The project specification was roughly followed though due to the interesting nature of the

work a number of additional avenues of investigation were considered as they presented

themselves. Particularly the evolution of the simulator and the simulation algorithms

posed some interesting questions about the language's semantics and they accordingly

underwent an iterative process of modification. Related issues arose as the performability

framework was investigated and attractive and fruitful areas of further work were identified.

An outline of the general development of the project is given in section 1.3.

9

1.2 Historical background to project

There has been research conducted into reliability modelling at the Robert Gordon

University since the late seventies. Work within the School of Electronic and Electrical

Engineering in this area started in the field of hardware reliability simulators [7]. These

simulators were dedicated microprocessor implementations that facilitated the accelerated

simulation of multi-component concurrent systems. It was possible to enter data as to the

behaviour and reliability characteristics of individual components and their inter-dependant

relationships. Simulations could then be conducted over the modelled systems life cycle

and measures determined for the reliability of the complete system.

Prior to simulating a system on such hardware it was necessary to describe the functionality

of the model in an appropriate manner. There are a number of ways to describe reliability
problems such as task graphs, fault trees, mathematical statements. There was however no

standard technique. System designers and evaluators may describe the same system in
different ways and this can have a corresponding impact on the types of analysis possible
and the results obtainable.

It was this situation that was the catalyst for the idea of a reliability description language

(RDL). The language was to act both as an input for the hardware simulators and as a

generic method for describing systems in terms of reliability. It was also to provide a

method which would encourage greater coherence between the approaches of designers and
evaluators.

The initial outline of RDL was first presented in 1986 [8]. It was identified by the

European Commission in Brussels as a possible standard for formalised reliability

descriptions. This interest lead to refinements in the language and this revised version was

presented to the EEC in 1987 [9].

Up to this point the language was purely a descriptive tool and no simulator existed. In

1987 Scrase, a research assistant in the school, began work on further refining the

language and writing a software simulator [10]. Once a simulator had been developed

Scrase went on to apply the language to a number of standard reliability problems and

investigated its use in the modelling of communications networks. The final version of

RDL was documented in 1991 [6].

10

In 1988 Walker, a teaching company associate, started work on the simulator. His remit

was to revise it to be of such a standard so as to be of use as an industry tool. At about

the same time, Smith, another research assistant, applied RDL to flexible manufacturing

systems (FMS) [11]. He developed a super-set of the language with added constructs

unique to FMS modelling.

In 1993 it had been recognised that RDL was limited in that the ethos behind its

development was focused on the reliability measures of a system. The first objective of

this project was to develop a declarative language which would be a super-set of RDL

facilitating generic modelling of universal systems.

1.3 Project development

This section describes the general progress of the project and the extent to which the initial

specification in section 1.1 was followed.

Initial work focused on the development of the ICE language, with the main focus being

on increasing its descriptive space and reviewing all means to facilitate component
interaction. A general philosophy was adopted at this stage to make the language as

intuitive as possible. The observation was made that often an expert is required to model

a system due to the complexity of the modelling technique. We wished to remove this

complexity and the involved level of abstraction to produce a tool which could be used

directly by design and evaluation engineers.

As work progressed on the language development began on the simulator. It was decided

to use the Tecsim simulator that had been written for RDL as a basis and build upon it.

A suitable compiler writer was identified and the first stage of the software was

implemented. Once the compiler had been completed, attention focused on the discrete

event simulator and the simulation algorithms. From development of the algorithms it

became apparent that although the language syntax was relatively simple, some of the

semantics were necessarily complex and would be implementation dependant. The

questions that arose during the implementation of the simulator lead to further reviews of

the language, especially in relation to event priority and timing. It could be argued that

these matters should have been finalised before work on the simulator began but it was the

11

experience of event scheduling within the simulator that directed our thinking towards these

modifications.

Any model that is simulated must then be analysed to extract meaningful results. To ease

this process it was decided to automate an analysis process and incorporate it into the

simulation software. To this end two post processors for the simulator were developed.

One post processor was implemented to provide textual analysis of a complete simulation

event list or a subset there of. The other was designed to provide statistical analysis on the

event list. For ease of use it was decided to make the user interface to the post processor

resemble a spreadsheet.

In parallel to the development of the language and simulator, extensive literary research

was conducted into the area of performability. The evolution of this field was investigated

as was the variety of modelling techniques that have been presented. There was much

evidence in the more recent literature of the suitability of reward type techniques to

performability modelling. Further examination of these techniques highlighted some

underlying principles that could be adopted within ICE and therefore suggested this to be

a promising area of research and application for the language. This research also

confirmed the suspected complexity of performability modelling showing it to be both a

rigorous testing area and an area in which simplified approaches are required.

As the simulator was nearing completion a tangential but fruitful area of investigation

presented itself. Initially an industry standard random number generator had been chosen
for the simulator. Further consideration revealed that this generator was designed to

provide a constant stream of numbers for use by a single consumer and that it had only
been proven to be statistically good over runs of close to a full period. Our use of the

generator was to provide numbers for multiple consumers and the run of numbers allocated

to a consumer may be of any duration. Statistical tests were run on numbers generated

during actual simulations and this revealed that the technique of randomly allocating

numbers to different components from a single source was not always satisfactory.

Prompted by these results we adopted a new approach to number allocation. It was also

noted that while the generators used were statistically good they were computationally
intensive. For this reason it was decided to consider the custom generator that had been

developed for the preceding hardware reliability simulators. A software implementation

based on this generator was developed which proved to be over four times faster in

12

operation and thus it was chosen as the preferred generator for the ICE simulator.

At this point, the uncovered complexity of the language's semantics and the requirement

to compare ICE to existing performability formalisms lead to an extensive investigation of

stochastic Petri nets. It was soon discovered that the descriptive power of basic stochastic

Petri nets was too limited to properly describe all of the ICE constructs. Further research

into recent high-level developments of Petri nets however uncovered additions that

countered this problem and a rigorous description of ICE was derived.

Following the initial objectives, the next stage of the project was to apply ICE to complex

performance problems. The application area of communications systems was chosen.

Research revealed that the area of significant current interest was ATM networks. Other

research in the school at the time was pursuing the implications of transferring video data

across ATM networks. It was felt that we could add valuable input to this work and thus

focused on ATM systems. Extensive investigation into ATM networks by literary searches

and conference attendance narrowed our focus further to ATM switches. Different types

of switches and their constituent parts were considered and sophisticated performance

models were developed and simulated with ICE, showing its applicability to performance

problems.

Once the performance models had been built and tested, attention was turned to the

rigorous testing area of performability, and results from this were very promising. It was

decided to research a generic performability modelling framework using ICE that could be

applied to a variety of problems. This work has illuminated a number of fruitful areas of

further work.

1.4 What has been achieved ?

In this section we summarise the main achievements of the project.

A formal descriptive language, ICE, has been developed and revised. ICE has been proven

to be generic, transparent and inherently lucid. Although it is simple to learn and apply

it has surprising power whilst maintaining a relatively limited state space.

13

An object oriented software modelling tool, I SIM, has been built around the ICE language.

I SIM facilitates the compilation, discrete event simulation and analysis of ICE models.
The simulator is appropriately powerful and flexible. All applications described in this

thesis had simulation run times of less than 5 minutes. Analysis is achieved both by

observation of a selected event list and by statistical analysis of this event list.

In relation to I SIM, investigation has been conducted into the generation and allocation

of pseudo-random numbers. A novel software implementation of a linear feedback shift

register pseudo-random number generator has been proposed. The generator has been

demonstrated to operate at a rate of over four times faster than an industry standard linear

congruential generator whilst possessing guaranteed statistical properties when applied to

concurrent systems.

A rigorous definition of ICE has been demonstrated by the manipulation of extended

coloured generalised stochastic Petri nets. This has also given an indication of the

comparable power of ICE to these nets which are a standard formalism applied to

performability modelling.

ICE has been used to produce performance measures of complex concurrent systems.
Whilst it has been recognised that a state space approach is not always the most suitable
for performance measures, ICE has proven that in some instances it can give considerable
insight into a systems behaviour by virtue of its low level of abstraction and inherent

transparency.

A generic framework for the performability modelling of systems incorporating interacting

components has been proposed. This framework uses the notion of stochastic reward

models. It is of comparable power to a stochastic reward net approach but notably simpler

to apply.

1.5 Guide for the reader

In this section we give a guide as to how to read the thesis. The document flows in a
logical progression, though depending upon specific interest, the first time reader may wish

to miss out some chapters.

14

Figure 1.1 is a schematic representation of the thesis. This is intended as a broad guide

only and should not be perceived as being restrictive. Related themes are shown together

and the links between the appendices and the chapters they relate to are detailed.

Chapter 2 gives a detailed look at performability modelling, introducing the different

approaches and implications. For readers already familiar with this field or for those who

are interested in ICE for another application this chapter may be missed on a first reading.

A full listing of the constructs and syntax of ICE is presented in appendix A and chapter

3 discusses some of the significant aspects in greater detail. These sections should be read

together as appropriate.

Chapter 4 tells of the development if I SIM. This is rather a complex software tool and

to aid in understanding a complete step by step example to its operation is listed in

appendix B. Chapter 5 describes the work done in developing the random number

generator. These chapters may be missed by those whose sole interest is in applying ICE.

Chapter 6 describes the computational models for ICE using Petri nets. This is a valuable

guide for a full understanding of the semantics.

Chapter 7 presents a detailed ICE performance model of an ATM switch. A full listing of

the model is given at appendix C and a published paper on this area is reprinted in

appendix D. These chapters provide insight into the use of ICE for performance modelling
but can be bypassed for those who wish to focus on performability modelling.

Chapter 8 introduces the ICE framework for performability modelling. A reasonable

understanding of the work presented in chapter 3 and the techniques of performability

modelling described in chapter 2 will be required before reading this chapter.

Chapter 9 brings our conclusions from the work together and discusses areas of possible

further work.

15

1. Introduction

2. Performability
APPENDICES

3. ICE language -------------------------------- A. Full syntax

4. Simulator --B.
Example

5. Random no. -------------C. Listing
generator

6. Computational
models

D. Listing

7. ATM switch

' E. Paper

8. Performability
framework

9. Conclusions

Figure 1.1 Schematic representation of the thesis

16

1.5.1 ICE for the first time

ICE has a relatively limited number of constructs and its structure is logical and should be

quite straightforward to gain familiarity with the language. The apparently simple syntax

does however hide some complex semantics which may at first be hard to grasp.

The starting point for learning the language should be sections 3.1 and 3.2 which provide

a broad overview of the language's approach. The reader is then referred to appendix A

which gives a thorough presentation and explanation of the entire syntax.

When this is understood, we would suggest the remainder of chapter 3 be read. This will

give further insight into the operation and implications of some of the languages more

sophisticated constructs. At this point a reasonable grasp of ICE should have been

obtained. To enforce this, consideration of the performability example in section 8.3 is

advised.

For a thorough insight into the semantics and an example of ICE's use in modelling

complex systems comprising inter-acting components, study of the ATM switch model in

section 7.4 is recommended. This example takes the reader through the modelling process
from conceptual system diagrams, via state transition diagrams for the constituent

components to the ICE code for each component. A full listing of the model is given in

appendix D.

17

Chapter 2

Performability Modelling

2.1 Introduction

In this chapter we present some general background to the project, with reference to

established methodologies and published literature.

The term performability is that given to the composite measure of performance and

dependability. We take dependability to be a global term encompassing reliability and

availability. The reasons for considering such a composite measure will be discussed

later in the chapter.

Historically, dependability and performance modelling developed as separate fields until

the increasing complexity of interacting systems dictated the need for combined

measures. For this reason initially we shall consider the requirement for and meaning

of performability, performance and dependability measures. A formal definition will be

given of performability and from there some of the known approaches to performability

modelling will be presented, along with a unified framework of measures. We shall

then consider the evolution of research regarding this topic and mention some of the

18

tools that have been developed to define and analyse systems. Finally we examine some

of the recognised problems that the performability modeller must be aware of.

2.2 Performability

The continuing growth of the sophistication of computer and communications systems
has dictated the requirement for increased innovation in model construction/solution, tool

development and the definition of analysis measures. This is especially so for

networked systems comprised of a number of interacting components [12].

When evaluating a system the requirement is to relate what it is and does to what it is

required to be and do. Two measures may be of interest for this evaluation, namely

performance and dependability. Performance in this context, generally refers to how

effectively or efficiently a system delivers a specified Quality of Service (QoS) provided
it is delivered correctly. Dependability is taken as the reliance to be justifiably placed

on the service it delivers. Dependability encompasses both reliability and availability.
Reliability is the continuous delivery of proper service and availability the alternation
between deliveries of proper and improper service.

Both performance and dependability have evolved as individual fields. If separate

evaluations of performance and dependability are done to determine a deliverable QoS

then appropriate constraints must be stated on how properties affecting performance

interact with those effecting dependability. Results of each type of evaluation may be

taken together to provide a complete assessment of overall QoS [13]. Generally

however they are not easy to combine particularly if performance in the presence of

faults is degradable, i. e. faults may reduce performance and thus QoS even though the

system is still in the proper state. Analysis of degradable systems from a pure

performance stance is therefore often optimistic as it ignores fault repair and gracefully

degrading operation. Conversely pure reliability analysis tends to be overly pessimistic

as no account of performance is taken [14]. Rather, a degradable system's probity

should be viewed as a multi-valued variable reflecting the degree to which the system

is operational. The need to accommodate this property using model based evaluation

19

methods was the raison d'etre for performability.

The general framework for model-based performability evaluation was first published
in 1978 by Meyer [15]. He produced a more refined description in 1980 [16]. The

framework was a development from his earlier notion on "computer based reliability"
[17] and recognises the work done at that time by Borgerson and Freitas [18] who noted

that degradable systems require special attention compared to non-degradable systems

when developing measures and models to evaluate them.

The initial application area was the evaluation of ultra-reliable aircraft control computers
being developed by the U. S. Space Agency (NASA). One aim of these systems was the

ability to shed workload beginning with the least critical tasks if a loss of processing

power due to faults occurred. This enabled the systems to operate at various degrees

of service over a specified period of use.

In Meyer's earlier work [19] he viewed the unification of performance and dependability

(or reliability as it was then referred to) as a measure of system effectiveness where its

formulation depended on an intermediate association of 'worth' (defined as reward,
benefit, utility) with each possible level of accomplishment.

As the concepts developed the desired amount of generality evolved and led to the

conclusion that the performability-dependability aspects of effectiveness should be

separate from worths that may be associated with their outcomes. The resulting refined

concept could still however be employed at higher level worth-oriented evaluations of

systems effectiveness. The term 'performability was adopted in 1980 [16] and can be

simply stated to be a measure of a systems ability to perform in a designated

environment.

In early work performability was taken to mean only distribution functions of

accumulated reward. Since the calculation of distribution functions can be very complex
it is often considered that the expected values of these distributions can be taken as

performability measures. Using steady state values has also been debated. It is now

common to consider any measure that takes both performance and dependability into

20

account as a performability measure and we shall take this same definition here.

2.3 Formal probability-theoretic definition of performability models

We use the term "model" to refer to a representation of a total system. Let S denote the

total system in question, where S consists of an object system C (the communication or

computing system being evaluated) and it's environment E (the workload and external
faults etc.) thus

S=(C, E)

should be regarded as a probabilistic description of the total system that is sufficiently
detailed to support a particular type of evaluation. Given an accepted set of interacting

components, the distinction between C and E is dependant upon the subset of

components, C, which is being investigated and its ability to perform. This comprises

of C. The remaining components, lying outside the system boundary but whose
interaction with C may affect the performability, form E.

The performance of S over a specified utilization period T is a random variable Y taking

values in a set A; elements of A are the accomplishment levels (or performance

outcomes) that might possible be obtained by S. T is the time period of use over which

system performance is summarised (by the value of Y). T is an interval that may be

discrete or continuous and either bounded or for systems that demonstrate meaningful

steady state behaviour, unbounded.

Note that the interpretation of "performance" here is more general than in the context

of traditional computing. It connotes any designated aspect of the total systems

behaviour relative to which the object systems ability to perform is being measured.

This permits choices of Y to be almost limitless, ranging from a binary variable that

distinguishes whether or not a specified service is performed correctly throughout T up

to a high level representation of service quality with a continuum of service levels.

Meyer [14] states the generic meaning of performance within this context to be "what

21

a system accomplishes during its use". A systems ability to so perform, expressed by

probabilities, is its performability.

Performability may be defined as follows. For a system S with performance Y taking

values in accomplishment set A, the performability of S is the probability measure Perf

(often denoted p) induced by Y where, for any measurable set B of accomplishment

levels (B c A),

Perf (B) = P[Y eB]= the probability that S performs at a level in B.

This measure applies to any set B for which the event Y=B has a probability although

in practice these sets are typically intervals of accomplishment expressing performance

requirements. Hence, for example, if A= (-oo, oo) and B= [a, oo) then Perf(B) is the

probability that S performs at or above the level a.

These probabilities are determined via an underlying stochastic process X referred to as

the base model of S. X is a time indexed set of random variables

X={XJtEI },

where the time set I must include the utilization period T associated with the

performance variable Y. Hence X may be continuous-time or discrete-time, depending

on the nature of the system. For any t EI, the value of the random variable Xr is the

state of the system S at time t given a state space Q. The state space Q may be

considered as the product space Qc x QE where Qc and QE are the state spaces of the

object system and environment respectively. This process, when restricted to the period

T associated with Y conveys the dynamics of an object system's structure, internal state

and environment during that period.

The base model must also, by definition, support a solution of performability in that, for

any accomplishment set B of interest, Perf(B) is indeed determinable, at least

theoretically, from the probabilistic nature of X restricted to T. This requirement is

ensured via a capabilityfunction which maps trajectories ofXinto corresponding values

22

of Y. A base model X together with a performance variable Y is a performability model

of S.

When a performability model is solved analytically, the base model must be

characterised explicitly in some suitable form, e. g. a state-transition-rate matrix in the

case of a continuous time, time homogenous, finite state Markov process. If

performability is estimated via simulation techniques then X refers to the behaviour of

some simulation model S. Model-based performability evaluation thus involves two

steps. Firstly performability model construction which consists of specifying the

performance variable Y, relative to which Perf is defined and determination of a base

model X that supports its solution.

2.4 Modelling techniques

We distinguish three methods for system performance, dependability and performability

evaluation : measurement based, model based and hybrid methods [20].

Measurement based evaluation (also called empirical evaluation) requires access to a

measurable system. This is often not possible, especially in development applications.

Also obtaining measurements is often a complicated and expensive process and may be

impractical for dependability events which often require extremely long measurement

sessions.

Model based evaluation is an alternative. Models can be as simple or complex as the

situation dictates. Once a model has been constructed it must be solved. This can be

done using simulation or analytical techniques. Analytical techniques can be full

symbolic, semi-symbolic or numerical. A distinction that can be made is whether the

model solution requires the entire state space to be generated or not. The most common

example of the former is the solution of a large but finite Markov model [21]. An

example of the latter is the use of fault-trees for reliability analysis [22].

Many useful practical evaluations use a suitable combination of different modelling

23

approaches with measurements, e. g. fault injection simulation with the faults being

measured values from an operational system. An example of this is given in Hsueh et

al [23]. They use real error and resource usage data from a multiprocessor system in

a semi-Markov process model with reward functions based on the service and error rates

of each state. The model is solved to estimate system performability and depict the cost

of different types of errors.

The state behaviour of a model is identified with X. The performability model solution
is the procedure that yields values Perf(B) for accomplishment levels in set B. B is

chosen to contain levels that are of interest to the modeller. In general, knowledge of
the probability distribution function (PDF) of Y suffices to determine such values and
hence the performability model can be regarded as fully solved once the PDF of Y has

been determined. Typically solutions of the PDF must be determined via numerical or
simulation techniques though closed-form solutions are sometimes possible. In some

applications it may be the case where only certain of the application sets have useful
interpretations and hence a full solution will be unnecessary.

Numerous techniques exist for modelling systems. The factors which determine the

technique chosen are the balance between ease of modelling and accuracy, the measures

of system behaviour that are to be obtained and the properties of the system which are

to be modelled. Below we discuss 4 main approaches. In section 2.4.1 non-state space

models where explicit knowledge and numeration of the state space of the model is not

required for evaluation are considered. In section 2.4.2 we discuss Markov chain type

models and in section 2.4.3 Stochastic Petri Net (SPN) based models. In section 2.4.4

we introduce hierarchial and approximate modelling approaches.

2.4.1 Non-state space

Non-state space methods are attractive in that state space tends to increase exponentially

with problem size. Four of the better know non-state space methods are fault trees

(FTs), task graphs (TGs), product form queuing networks (PFQNs) and matrix geometric

methods (MGMs).

24

Fault tree methods and reliability block diagrams give very accurate representations of

systems and efficient solution algorithms exist. These techniques are mostly used for

dependability and safety analysis. With FTs a tree structure with logic gates is used to

express how systems fail. The leaves of a tree express component failures. System

failure is expresses as a logical function of the failure of components and subsystems

and this provides a combinatorial means of solving measures of interest. Subsystems

and components must have stochastically independent failure behaviour and hence the

limitation of these techniques is the complex compensation techniques required to

model interaction between the constituent components of a system [24].

TGs [25] are a technique often applied for performance modelling of concurrent

systems. These however make the assumption that resources within a system are infinite

and for many applications this is not acceptable.

A method which does allow for finite resource contention is PFQNs [26]. In a PFQN

the number of resources (queues and servers) as well as the way in which customers use

these resources are specified. The active elements are the queues which may serve the

customers in any of the recognised scheduling disciplines. Routing chains govern how

customers move through a network and these customers may be grouped into classes.

At each queue customers belonging to specific classes request a general differential

service time distribution. After service the customers proceeds to the next queue along

its routing chain. A vector giving the number of customers of each class at each queue

specifies the state of the PFQN. The arrival of a new job or the completed service of

a customer at a queue causes a change of state. Techniques that exploit the model

structure and are much less memory intensive than solving the model at state space level

can be employed to analyse the model. PFQNs are often applied in situations where

there are finite resources but may not be extended in cases where concurrency or

synchronisation is required as in these instances the product form is violated.

MGMs exploit the repetitive underlying Markov chain of a queuing model. The

generating matrix for many queuing models often has a number of so called boundary

columns and from some point all other columns are the same save that they shift

downwards. Due to this special structure solutions can be obtained by solving a number

25

of linear equations [20]. By contrast the original Markov model would have involved

the solution of an infinite system of linear equations. MGMs cannot be extended to

cases where concurrency and synchronisation is required.

2.4.2 Markov reward models

A more powerful technique, free from any such limitations are Markov Models [27].

They are extensively used with equal effectiveness in modelling concurrency,

synchronisation, resource contention, system dependencies, fault tolerance, system re-

configuration etc. A Markov chain has a discrete state space and is a stochastic process

whose past has no influence on its future if the present state is specified. We use the

term stochastic process to indicate a continuous time parameter as opposed to sequence

which would indicate a discrete time parameter. Formally X(t) is a Markov chain if

Pr { X(t) =jI X(tn-,) = In-1)

A Markov chain is memoryless. This implies that the amount of time spent in its

current state, known as the sojourn time, is irrelevant to its probability of being in any

other state. A semi-Markov chain is similar in most respects to a Markov chain except

that its sojourn time does have an effect on the state transition probabilities and thus it

does not posses the memoryless property.

An extension to this is the Markov Reward Model (MRM) which can be used to model

degradable performance. In a MRM, a real variable termed the reward rate is associated

with each state of the underlying state-space. The reward rate is an indication of the

useful work of interest done by the system while it exists in any given state. It is also

possible to associate reward impulses with state transitions. Hence it facilitates the

calculation of performability measures such as total work done within a finite time

interval, this being equivalent to the accumulated reward within that interval.

Formally, an MRM consists of an underlying continuous time Markov chain (CTMC),

X={ X(t), t> 0} with a finite state space S, and a reward function r where r: S -*

26

R. Xis completely described by its generator matrix Q and the initial probability vector

7r(0). For each state i ES, r(i), usually written as r, , represents the reward obtained per

unit time spent by X in that state, hence we can state a performance variable Y(t) as the

total reward accumulated over time t as

I
Y(t) =fr (Xs) ds

0

A solution of performability F is the PDF of Y(t) ie for any accomplishment level y the

probability

Fnr) (Y) = P[Y(t)
- y]

This type of rate based model is given in [28] for a special class of degradable

microprocessor model. Here the base model is a Markov process and a closed form

solution of performability is presented.

CTMCs have equivalent modelling power. There are well known methods and software

tools available for solving CTMCs but the solution methods are far more cumbersome.

The primary disadvantage of the MRM technique is the large size of their state-space

even for simple small systems. This frequently causes verbose specifications and

ineffective solutions. Possible means of avoiding largeness will be discussed later.

A comprehensive treatise on Markov reward models for performability analysis is given

in [29]. Krieger [28], describes a range of numerical solution methods which may be

applied to these models.

27

2.4.2.1 Unified performability, performance and dependability

framework

In this section we present a unified framework for developing performability,

performance and dependability models in terms of MRMs. Although MRMs are the

underlying medium, the measures derived may be applied to other techniques e. g.

stochastic reward nets and discrete event simulations.

Definitions

If the analysis types applicable to stochastic processes are defined, it is then possible to

derive performability measures that can be used to determine the behavioural properties

of a system [3]. Where the performability measures incorporate reward rates, these

reward rates can be reduced to give binary rewards between states and thus give
dependability measures.

There are 4 categories of analysis applicable to stochastic processes

1. Transient Analysis

2. Steady State Analysis

3. Cumulative Transient Analysis

4. Sensitivity Analysis

Let (e(t), tý 0) be a continuous-time, finite state, homogenous Markov chain (CTMC)

with state space denoted by S and a constant reward r; assigned to each state i. With

the reward rate specifications the CTMC can be specified as an MRM. If the MRM

spends i, time units in state i then the accumulated reward is r; T,.. It is also possible to

associate rewards with the transitions of the CTMC. The reader is referred to [25] for

a basic coverage of MRMs.

Let P(t) be the state probability vector of the model , where Pi(t) is the instantaneous

probability that the MRM is in state i at time t. Let P(O) be the initial probability vector

and Q be the generator matrix. Transient analysis of the models behaviour is dependant

28

upon the existence of P(O) and is given by the Kolmogorov differential equation:

dP t= P(t)Q
(1)

dt

Steady state analysis is conducted by determining it, the steady state probability vector:

it = lim P(t)

given the limit exists. Note that this is independent of P(O) and is obtained by setting

the l. h. s. of equation (1) to zero :

'rrQ=o, Evi=1 (2)
! ES

Here 7r, is the steady state probability of the MRM being in state i.

Cumulative transient analysis involves computing the total time spent in state i during

the time interval [0, t). Let L; (t) denote this value. In vector terms, integrating equation

(1):

r
z(t) =

fP(x)dx

0

This value can be determined by solving:

dL t= L(t)Q + P(0) (3)
dt

When the MRM has absorbing states, the state space S can be partitioned into the two

subsets : SA (absorbing states) and S. (transient states). The sub-matrix QT of Q can be

defined, corresponding to the non-absorbent states. The mean time spent by the MRM

in state i is given by

29

00
Ti =f Pi ()dx

0

which can be computed by integrating equation (1) from 0 to 00 :

TQT + P7(O) =0 (4)

For such a Markov chain the mean time to absorption can be calculated by :

MTTA =E -r;
(5)

I ¬ST

If it is assumed that all the entries in Q are functions of some parameter vector 0,

sensitivity analysis involves computing the variation in the state probability vector with

respect to the model parameters i. e.

dP t (6)
d9

Using the above formulae it is possible to define performability, dependability and

performance measures for the MRM.

Performability measures

Let the instantaneous reward rate of a MRM be T(t) = r®(,,). The reward accumulated

in the time interval [0, t) is given by:

Ir
«t) =f r(x)dx =f re(.,)

(7)

00

Figure 2.1 shows an MRM with possible rewards and corresponding values ofX(t) (state

30

of Markov chain at time t), 2^(t) (the reward rate at time t) and q (t) (the accumulated

reward at time t).

21 A

r1=2 r2 =1 r3
2

li µ

X(t)
4
3
2
1

t

T(t) 4 4(t)
44
33
22
1

--b rý ->

1

0 ý t

Figure 2.1 Example 3 state MRM with graphs of X(t), T (t) and rp (t).

The instantaneous availability of the system is given by the expected, instantaneous

reward rate at time t, computed by:

E ýýt)] = Er, Pi(x) (8)
IES

In [7], Beaudry calls this value computation availability. The expected availability when

the system has reached steady state is given by lim,. E [1(t)]:

E (Y'ýý _ F, r17ri
i¬S

(9)

The expected accumulated reward in the interval [0, t) denotes the total time the system

is available in this interval and is given by:

E ýý(t)] = 1: r, L1(t) (10)
! ES

If the MRM has absorbing states it is often desirable to determine the mean time to

failure (MTTF). With the binary reward assignment the MTTF is the expected

accumulated reward until absorption, given by:

31

E [4 (oo)] = EriTi (11)
! ES

where ti; = timt. L; (t). A measure that is commonly required is the distribution of

accumulated reward, Y(t). This can be computed as

P [T(t) `-x] =E Pi (t) (12)
rt Sx, i eS

For example, the distribution of time to complete a task that requires r time units can
be computed by:

P[(r): ý t]=1-P[4(t)<r] X13)

where x(r) is a random variable denoting the time to accumulate reward r.

Dependability measures

In dependability modelling a reward rate of 1 is assigned to all the working (or up)

states and a rate of 0 to all the fault (or down) states. The instantaneous availability of

a system is then E[2 t)] and the steady state availability is E[Tom]. The cumulative

operational time of the system in the interval [0, t) is E[¢(t)]. Interval availability is the

proportion that a system is available in a given interval t and is given by E[(A(t)]/t.

Measures relating to the first system failure are also of interest. To determine these, all

states must be absorbing, ie all outgoing arcs are removed. Reliability is then given by

E[2"(t)]. A systems lifetime, analogous to the cumulative operational time [30], of the

system interval [0, t) is E[O(t)] and mean time to system failure MTTF is E[«(too)]. Note

that steady state measures can only be computed when none of the systems states are

absorbing. Conversely, reliability measures such as MTTF can only be determined if

all the systems fault states are absorbing states.

32

Performance measures

Performance measures are determined by identifying some suitable reward assignment.
For example the queue length at a particular part of the system. Then E[T J and E[21t)]

will give the average steady state and average transient queue lengths, respectively.

In a performability model, the reward assignment will typically be determined from a

performance model, which is computed for varying states of a dependability model. The

performance probability measures can then be computed incorporating the effect of
dependability.

The reader is referred to [31] for a comprehensive discussion on the hierarchy of

techniques applicable to dependability modelling.

2.4.3 Stochastic Petri nets

Stochastic Petri Nets (SPN) have been developed by Marsan et al [32] and Meyer et al
[33] and are an extension to Petri Nets (PN) [34] and differ in that their transitions have

exponentially distributed firing times as opposed to being untimed and immediate. They

provide a concise graphical means of high-level representation for modelling a system's
behaviour and have been traditionally used in the modelling of concurrent systems [1].

With a SPN a set of places, P (depicted as circles), a set of transitions, T (depicted as

bars) and a set of arcs, A (depicted as arrows) between circles and arcs and vice-versa

:Ac (P x 7) v (T x P). Each place can contain zero or more tokens (depicted as dots

within places). The distribution of dots is termed the marking and is analogous to the

state of an MRM. Arcs from places to transitions are termed input arcs and arcs from

transitions to places output arcs. A transition may fire when it is enabled, that is when

there is a token in each of its input places. Upon a transition firing, one token is

removed from each of its input places and one token is put in each of its output places.

This will result in a new marking, ie state. The firing of transitions takes an

exponentially distributed firing time.

33

The time variant behaviour of an SPN is given by its reachability graph and this has

been shown to be isomorphic to a CTMC [35]. Their evaluation is therefore conducted

by generating and solving the underlying CTMC. Software tools exist which facilitate

this, using as input an SPN specification [36].

An extension to the SPN which is applicable to dependability and performability

modelling is the Stochastic Reward Net (SRN). Analogous to the MRM, in an SRN

reward rates may be associated with the place markings and impulse rewards with the

firing of transitions. The SRN is therefore a high level specification of the MRM.

It should be noted that even though SPNs provide an exact and efficient specification

technique, their modelling power is the same as that of Markov models.

In dependability modelling a reward rate of I is assigned to all the working (or up)

states and a rate of 0 to all the fault (or down) states. When describing the system by

the use of SRNs the corresponding values are assigned to place markings which denote

the working and failure states.

Catania et at [37] propose a generic framework using GSPNs that can be applied to all

gracefully degrading systems to obtain performability measures. The procedure is based

in the definition of three fundamental models that all system components can be

represented by. The approach is certainly flexible and easy to apply but it's generic

nature dictates that for many applications there may not be scope for the required

amount of detail.

2.4.3.1 High-level Petri nets

There have been a number of extensions made to the basic SPN model described above

resulting in a variety of types of high-level Petri nets. Below we introduce some of the

more significant advances.

Coloured Petri nets [4] (CPN) where each token has an attached data value known as

34

the token colour. This provides the ability to produce a significantly more compact

representation. The use of coloured tokens is flexible. Using a single colour is

equivalent to an SPN. A number of colours proportionately reduces the size of the net

and more information is given in a textual manner on the net. These textual descriptions

are termed net inscriptions. A descriptive language coloured Petri net - modelling

language (CPN-ML) can be used for the net inscriptions.

Generalised coloured stochastic Petri nets [2] (GCSPN) are more flexible than SPNs as

they allow for immediate deterministic transition timings as well as stochastic timings.

Interval timed coloured Petri nets [38,39] (ITCPN) provide timing intervals for

transitions. These are stochastic timings with a specified minimum and maximum firing

time. Object oriented Petri nets [5] are an extension to GCSPNs where tokens are

grouped into types (equivalent to sets of colours) relevant to the application. This

enables data abstraction and inheritance.

Channels for synchronous communication have been suggested to connect transitions.
These allow transitions to communicate via complex values and have been applied to

modelling synchronous communication systems [40].

Three extensions that have a significant impact on the descriptive power of Petri nets

are place capacities, test arcs and inhibitor arcs [41]. Place capacities restrict the colour

and number of tokens that can exist in places to a specified value. Several test arcs are

allowed to access the same token in a place but not in the same step as ordinary arcs.

Test arcs cannot change the marking of a place and aid the modelling of concurrency.

Inhibitor arcs can be considered to be the opposite of ordinary arcs. They are always

input arcs to a transition and prevent the transition from firing if a corresponding token

exists in the input place.

The Devnet [42] introduced by Evans is an adaptation of SPNs which is used as a

graphical description of discrete event simulations.

A recognised limitation of Petri nets is their very small number of primitives which

means models can quickly become complex. An extension which has been developed

35

by Sanders and Meyer [33,43] is the stochastic activity net (SAN). SANs are similar

to SPNs having places, activities (analogous to transitions) and gates. The gates form

the fundamental difference between SANs and SPNs. They can be of two types, input

gates which have inputs from several places and an output to one activity and output

gates which have an input from one activity and outputs to several places. Gate

functions prescribe how gates are enabled and the passing of tokens. The gates give

SANs a greater flexibility and allow for increased conciseness over SPNs. In [44] a

SAN performability model of a multiprocessor system is presented. The performance

and reliability parts of the model are divided into sub-nets facilitating a hierarchial

approach. This avoids the stiff problem caused by the large order of difference in

timings between the two aspects. Sanders and Meyer developed METASAN [45] which

allows for model specification using SANs. Solution is facilitated by either simulation

or analytical techniques [56]. An input descriptive language similar to CPN-ML

describes the SAN by specifying all places, activities, gates, the links between them and

the gate functions.

2.4.3.2 Modelling and analysis with stochastic reward nets

Modelling and analysis is facilitated using SRNs by a3 stage process.

i) The system is described with a SPN. The rates of timed transitions must be

specified along with probabilities for immediate transitions. Priorities and

weights are used to solve conflict between simultaneously enabled transitions.

Some of the many extensions to Petri Nets e. g. inhibitor arcs, transition guards,

marking dependant arc cardinalities etc may be required to produce a concise

description.

ii) Generation of the underlying MRM. This requires the construction of the

reachability graph. One of two techniques may be applied. Either it may be

transformed into the equivalent MRM by elimination of all the vanishing

markings [36] or the vanishing markings may be preserved and the stochastic

process can be converted into a Discrete Time Markov Chain (DTMC).

36

iii) The MRM is solved for the system characteristics which are of interest.

Performability can be evaluated by replacing the binary reward values in the MRM with
different reward rates appropriate to the individual states of the system. To illustrate

this, consider a multiprocessor system which has N processors. Each processor is

susceptible to failure. These failures occur with a rate X. A single resource facilitates

repair with a rate µ. The CTMC of this system is shown in figure 2.1. This is a finite

birth-death process and can be simply specified by the two place SPN of figure 2.2.

NA (N-1)A (N-k+1)A 2A A

I ego

µ li Il li

;

'I'll
N N-1 N-K+1 N-K 10

Figure 2.1 CTMC of multiprocessor system

Figure 2.2 SPN of multiprocessor system

If each processor possesses a processing rate of a the reward rate assigned to each state

is different and is equal to ka, given that 0kN. The SPN can be specified as a

SRN with rewards associated to each place. The place marking would be o#(p�p), given

that #(pup) is the number of tokens in the place pup, each token representing a processor.

37

2.4.4 Hybrid and hierarchical Models

When two or more techniques are applied to the construction and solution of a single

model the approach is termed hybrid. Often this takes the form of hierarchial

modelling. Submodels may be specified and analysed using one methodology and the

results incorporated into a higher level model. It should be noted however that not all

hierarchial models are hybrid, for example the decomposition result in PFQN is a form

of non-hybrid hierarchial modelling.

Malhotra and Trivedi [31] suggest a formal generic methodology for expressing

hierarchy both within model specification and solution. The approach is flexible being

suitable for both hybrid and non-hybrid specifications. A unified view is taken of all

modelling techniques so that the hierarchial structure of the model is brought to the fore.

An introduction to the theory of hierarchical SPNs is given in [46] and Buchholz

describes a developed approach for CGSPNs in [2]. Although this approach is based

in CGSPNs it is portable to other high-level Petri net types.

Balbo et al [47] combine queuing networks and GSPNs for the pure performance

analysis of models with non-product form characteristics. The non-product form parts

of the system are solved using GSPNs, the results of which are used in load dependant

queues which are PFQNs. Szczerbicka [48] develops this approach using a

decomposition approach where the system is split into both GSPN submodels and a

special class of queuing models, termed BCMPs. The submodels are solved in isolation

and replaced as marking dependant GSPN submodels in a high level GSPN model which

can be solved to give performability measures.

The software tool, SHARPE [22] (described in section 2.5) allows many model types

to be analysed using a variety of techniques. Results from submodel analysis can be

incorporated into other models. This can also be done in a cyclic way with fixed point

iteration techniques being applied to solve the whole model. A number of base model

types are provided and the number of models of each type at any level and the

information passed between models is left to the users discretion. Benitez and Trivedi

[49] propose a method of multiprocessor performability analysis where queuing networks

38

are used to define performance measures and solved to derive reward rates that are used

within an overall Markov failure-repair model. Several combinations are solved using

SHARPE and compared.

Haverkort proposes a dynamic queuing network concept [50] where queuing networks

are used to describe the performance aspects and GSPNs the dependability aspects of

fault tolerant computer systems. A combined model is not explicitly constructed rather

an approximate behavioural decomposition solution is presented, as is common in

performability modelling. In [51] Haverkort develops a model where the performance

aspects are also modelled with GSPNs and two heuristic state space truncation

techniques, that allow good approximations of steady state performability values, are

introduced.

2.4.5 How should realistic systems be modelled ?

Many of the characteristics of real systems cannot be modelled using current analytic

techniques. Many systems cannot be separated into smaller independent subsystems and

their detailed state representation may be excessively large. Also, the events in real

systems may not be "memoryless" and event times can differ by several orders of

magnitude. These factors imply that simple analytical models such as product form

queuing networks may not be powerful enough, and detailed analytic models such as

Markov chains, may be unmanageably large and stiff. This has lead to a dependence

upon discrete event simulation in many instances. Discrete event simulation is often

improperly used and complex models are applied to situations when simpler techniques

would suffice. In the authors opinion correct implementations of discrete event

simulation is often the most applicable method when accurate predictions of the

performance, dependability and performability of systems comprising interacting

components is required.

39

2.5 The evolution of performability

Initial work in the mid 1970s investigated a variety of alternative formulations for

combined performance-dependability measures. This was motivated by different systems

and application considerations. A major contribution was Beaudrey's treatment of
"performance-related reliability" [52]. She associated a fixed computation rate with each

structure state and thus constant fault arrival rates (in a Markov reliability model) are

translated into "faults per unit of computation". As an example this method would

translate a reliability measure such as "mean time to failure" to the performance related

measure "mean computation to failure". Advantageously, techniques for evaluating the

reliability measure also apply to the performance related measure since the translated

model is also Markovian.

Meyer was one of the main contributors to the field and first proposed the term

performability in 1978 [15]. His initial contributions are described in section 2.2.

Most of the work however came from interests in fault-tolerant computing. A number

of contributions were made ranging from general evaluation methods to specific

applications [53,28].

The initial performability work focused on evaluation with respect to discrete valued

performance. This was the focus of Meyer's paper [16]. In this case, for any level of

accomplishment a r= A, the ability to perform exactly at that level is measurable. To

account for variations in user demands during a bounded period T, the construction of

the base model X could employ the notion of a phased model [28] where T is split into

a finite number of consecutive time periods. For each period the systems intra-period

behaviour is represented by a continuous time, finite state Markov process. The driving

application for this work was the performability evaluation of fault-tolerant

multiprocessors for aircraft control [54].

In the early to mid 1980s there was a concentration on the development of model based

performability evaluation [55,53]. The methods developed then are the basis of current

techniques. One of the most influential advances was the introduction in the early 1980s

40

[28] of solution methods based on reward models as discussed in section 2.4.2.

It was also in the early 1980s that the development of stochastic Petri nets became an

area of considerable interest to modellers. Their use in performance and dependability

evaluation began. Motivated by the consideration of further features, such as extended

timing and coloured tokens, they became suitable for performability modelling.

Stochastic net models, particularly SANs and SRNs (section 2.4.3.2), are now the

normal means used for automated performability evaluation. Prodromides and Sanders

[57] show the ease of specification using such a graphical technique by evaluate two

types of CSMA protocols, defining performance and dependability measures using SANs

and producing results through simulation with METASAN.

To this point the only application area had been computer systems. As interest grew

performability measures were applied to other fields such as satellite systems [58] and

communications systems [59] which are now a major area.

Since the mid 1980s there has been increased interest in performability model

construction and solution techniques, model based evaluation and the applying of these

techniques to the areas of computer and communication systems.

Many of the solution methods focus on performability models incorporating some type

of Markov reward model with accumulated reward, Y(t), as the performance variable.
Closed form solutions of performability, F1(1), have been developed for acyclic, non-

recoverable Markov reward models [60]. Using transform techniques e. g. Laplace

transform, to derive solutions is a popular technique. If only the expected value E[Y(t)]

is required, solutions tend to be less complex as the expectation is normally of a linear

value.

When systems incorporating some form of repair are considered the underlying process

model is no longer acyclic. In these models, solutions of the PDF of Fn,) are more

complex [61]. Solutions appropriate to rate based Markov reward models have been

based on Laplace transforms [53] that involve the transformation of both the time

variable t and the accomplishment level y. Laguerre transforms have also been used

41

[62]. There have also been solution techniques developed for steady state performability

measures. These are typically based on queuing network models of systems [63] for

which repairs can be continually repeated giving meaningful steady state behaviour.

Application areas

Performability evaluation has proven useful when applied to a variety of aspects of

communication systems. Van Dijk presents performability bounds for communications

networks using a message throughput as a performability measures [64]. Jones and

Malec [65] look at overall system performability and imply that it is the control software

that has a major impact though no actual results are given. Yang and Kubat [66]

propose a fast algorithm where the performability of a network is taken as the average

performance over the most probable network states. This algorithm is fast and efficient

but the approximation is made that states with a low probability of entry are never

entered. Koren and Koren [67] have applied performability measures to gracefully

degrading multiprocessor networks identifying a number of performance measures.

These networks are very similar to the Banyan class of network which is a popular

interconnection network used in ATM switches, discussed in chapter 7. Bhattacharya

et al [68] model such a Banyan network with the performability measure relating to the

likelihood of correct routing. They make the popular assumption that all input traffic

has a uniform distribution of output addresses. This would not always be a valid

assumption to make in the case of ATM networks as traffic is often bursty.

2.6 Tools

An onus is often put on system designers to develop the best possible product in the

shortest possible time with minimum use of resources. For these reasons, tools that are

quick to learn, easy to use and allow models to be constructed quickly will be highly

sought after. Tools that are to be of practical use should have simple, self explanatory

graphical user interfaces. Also the capability to define and reuse submodels that can be

combined to produce large models and provide the ability of multiple instances is

essential.

42

A variety of performability modelling and evaluation tools have been developed. A

brief description is given of a number of them below. Most of the tools use either a
Petri net or Markov process formalism for constructing base models. A comprehensive

guide to Petri net tools is given in [69].

LOOPN [70] is a language and simulator for specifying systems in terms of coloured

timed Petri nets. It utilises an object oriented approach and includes many of the

features of extended Petri nets. The use of objects facilitates the use of existing Petri

net models. CPN simulator [4] is another tool which uses CPNs to construct a base

model. It enables graphical input in the form of CPNs with net inscriptions. The split
between detail contained in the net and in the inscriptions is determined by the user.
It does not support object oriented features.

DyQNtool [71] uses extended GSPNs to construct a base model. Reward rates are

enabled through the use of PFQNs. This tool is one of the most advanced with respect

to automating reward model construction using a separate window permitting designation

of the source and type of performance values obtained via the queuing model analysis.

DSPNexpress [72] was initially developed as a performance and dependability analysis

tool using DSPNs to generate base models. It has been well proven in producing steady

state solutions for some quite complex systems. However it suffers from the restriction

that no more that one deterministic transition in any marking may be enabled. This

precludes its use in modelling many systems. The use of complimentary variables for

analysis has been proposed to circumvent this, though it adds to the complexity.

METASAN [28] employs SANs to construct base models and has separate facilities for

describing (i) the total system model and (ii) the performance variables used along with

the performability solution required. (i) is facilitated by the use of an input language

called Sanscript. (ii) includes both transient and steady state variables solved by either

analysis (for Markov base models) or simulation otherwise.

HARP [73] uses a behavioural decomposition approach to model the reliability and

performability of fault tolerant systems. Analysis is done via fault trees. It has been

43

used for quite large systems (> 24500 states). SHARPE [22] facilitates a number of

approaches (e. g. reliability block diagrams, PFQNs, MRMs) and allows true hierarchial

and combinatorial modelling. Using decomposition and aggregation (section 2.7.2) it

can model large systems with Markov and semi-Markov submodels.

METFAC [74] utilises Markov base models which are generated by a production rule

system. It has been used to model the performance, dependability and performability

of computer systems giving steady state and transient as well as cumulative measures.

Many other simulation tools and languages exists, however we have limited our

consideration to those that have been directly applied to performability modelling.

2.7 Problems encountered in modelling systems

In this section we consider some of the recurring problems in performance,
dependability and performability modelling. They are largeness and stiffness of the

model and the need for transition rates between model states to be non-exponential.
Some methods which can overcome these problems to an extent are described.

2.7.1 Largeness

A model can be constructed that incorporates the performance level of a system (e. g.

throughput, service times, cell loss) and the structural variations (due to failure, repair,

reconfiguration etc) but due to the large number of states required the model may reach

a prohibitive size very quickly. This is the largeness problem and is a main obstruction

to the monolithic approach to modelling degrading systems. This poses problems in

both model specification and analysis. Largeness must be either tolerated or avoided.

It is important to distinguish between descriptive and computational largeness. Often

largeness is taken as a composite term covering both but in truth they are quite different.

Whereas computing architecture continues to become increasingly more powerful, we

44

can safely predict that human capability to intellectually grasp the operation of highly

interconnected systems will remain relatively limited. We are therefore primarily

concerned with the descriptive largeness as presented to the modeller.

Using an GSPN framework to describe a model, whereby all that is specified is the

GSPN and the underlying CTMC/MRM is automatically generated is a method of

complexity hiding. The modeller need only be concerned with a degree of the entire

complexity. When the state space is too large to be either efficiently stored or solved

largeness must be avoided. This may be achieved by using approximation techniques

such as truncation, lumping, decomposition and fluid models.

With truncation a number of similar states or those with a low probability of entry are

combined [49]. Formally, given a reachability graph (S, A), (where S represents the set

of states and A the set of connecting arcs), the state truncation results in a truncated

reachability graph (S, A). If (S, A) (S, A), the method is called strict truncation.

Alternatively (S, A) might be a sub-graph of (S, A) augmented with one or more states

and arcs, known as the aggregation-truncation. Constantinescu [75] uses this approach

to model a fault-tolerant microcomputer with separate Markov models being used for

fault handling and fault occurrence events.

In lumping the system is decomposed into a number of constituent subsystems with

smaller state spaces. These are analysed separately and then recomposed to form the

lumped model [36]. Lumping results in a state space reduction which is significant

when the number of subsystems is large and their constituent number of states is small.

If the subsystems have interactions then the application of lumping requires considerable

care.

With decomposition, when there is a large difference between the rates of performance

related events with respect to dependability related events which are rare, it is acceptable

to assume that the system maintains a pseudo steady state with respect to performance

related events in between occurrences of failure related events. The performance

measures of the system for each of these pseudo steady states can then be calculated and

the overall system characterised by weighting each of them by the structure state

45

probabilities.

In general, rather than solving a monolithic model, two submodels are solved
independently, one to represent performance (the reward model) and one to capture the

structural variations (the structure state model). The decomposition technique leads to

a natural hierarchy of models. The structure state model is the higher level

reliability/availability model representing the failure/repair/reconfiguration processes of

the systems components. Each state in the structure state model will have an associated

reward model which is a performance model for the system with the given stationary

structural state. The performability measure is obtained by combining the performance

measures associated with each structural state with the probabilities obtained from the

structure state model. This is a common approach taken by Meyer [24] and Beaudry

[52]. Most of the proposed approaches are based on the common theory of MRMs,

introduced in section 2.4.2.

Fluid models with respect to GSPNs make use of the idea that as the number of tokens

in a place becomes large and the underlying CTMC grows, it may be possible to

approximate the number of tokens as a non-negative real number. From this it is then

possible to write the differential equations for the dynamic behaviour of the model and

in some cases, determine solutions. For this purpose Trivedi and Kulkarni [76] have

proposed fluid SPNs.

2.7.2 Stiffness

Combined modelling of performance levels and structural changes can also cause

stiffness, which is a direct result of extreme disparity between the occurrence rates of

performance related events and failure/repair events. Stiffness can cause considerable

problems during the analysis of a model that adversely affect its stability, accuracy and

efficiency, even if the model is not large. This is especially true in monolithic models

where performance related transitions can occur far more frequently (e. g. -109 times

more) than dependability related events. As with largeness, stiffness may be overcome

by either tolerance or avoidance.

46

Tolerance is achieved by implementing special mathematical techniques for the solution

of the system of differential equations [77,78]. Avoidance is linked to that of largeness

avoidance in that the same approximation techniques may be applied. Hierarchical

modelling using aggregation such as that proposed by Bobbio and Trivedi [79] is an

applicable method.

2.7.3 Non exponential behaviour

With some modelling techniques such as SPNs and some types of PFQNs, it is assumed

that all transition rates are exponentially distributed. In many applications this is not

acceptable as non-exponential rates may occur. Examples of this may be deterministic

times in communications protocols and Weibull distributions for message

acknowledgements.

With CTMCs one solution is to use a range of states each with exponential holding

times whose overall transition rate approximates the non-exponential firing rate [80].

This approach is conceptually simple but it increases the state space and there may be

a significant problem approximating the desired rate. Many stochastic extensions have

been suggested for SPNs which facilitate non-exponential rates. As well as GSPNs

discussed in section 2.4.3.1 these include DSPNs (Deterministic SPNs) deterministic and

exponential rates and ESPNs (Extended SPNs) which allow generally distributed rates.

When a simulation approach is taken, non-exponential timing is not a problem.

2.8 Conclusions

In this chapter we have considered the field of performability modelling. An

introduction has been given to the topic and performability has been formally defined.

We have discussed the evolution of performability from the first requirement that lead

to its development up to current issues. Four modelling techniques were examined,

these being non-state space, Markov, stochastic Petri nets and hierarchial and hybrid.

47

When considering the development of performability modelling tools it was noted that

most utilised Markov chains and/or Petri nets. We have presented a unified framework

for performability, performance and dependability measures in terms of Markov chains.

Problems encountered in the modelling of systems have been discussed and the

implication of these considered.

We have seen that when investigating modelling techniques it is important to consider

the implications of the method on the descriptive complexity of a problem. It is the

human interface to an approach that will often dictate its worth. In chapter 3 we present

a novel formalism for the description and simulation of complex systems that addresses

this issue. This new approach builds on many of the ideas presented in this chapter.

48

Chapter 3

The ICE Language

3.1 Introduction

In this chapter we describe the current implementation of the ICE language.

What became very clear during the development of the language was that its semantics

are paramount to its understanding. The ethos adopted has been to make the syntax as

intuitive as possible thus making the translation of real problems into language models as

simple as possible. Although the nature of the syntax is declarative it is supported by a

computational model which must be understood before the language can be used to solve

real problems accurately. Additional modifications to the syntax have been adopted to give

the language greater uniformity and to clarify the computational model.

The development of the compiler and simulator gave a clearer view of the potential uses

of the language. Further examination of possible application areas has since shown a

number of shortcomings in the original syntax. A main objective has been to increase the

modelling power of the language but without significantly increasing its complexity.

For the sake of completeness, continuity of argument and preserving the flow of the text

49

a short overview of the language is given in section 3.2. Readers already familiar with the

language may proceed to section 3.3. In the remainder of the chapter we limit our

discussion to a few of the language's more interesting features and semantic considerations

are discussed to illustrate the reasoning behind the developments. A complete description

of the entire syntax and all the language's constructs is given in appendix A. This chapter

should therefore be read in conjunction with appendix A.

3.2 Overview

The language has a declarative style that is based upon describing systems in terms of their

constituent interacting discrete state components.

Each COMPONENT in a system has a finite number of operational states. The component
moves between the various states in this STATE SET according to its predefined

BEHAVIOUR.

COUNTERS are component variables which are primarily used to counteract the problem

of state explosion. For example, if we wished to model a buffer with 100 spaces, we could
do so by using 101 states, i. e. 1 state for the empty condition and 100 for each of the levels

of occupancy. Alternatively, there could be 1 state to represent the buffer and a counter

which may take any value i where {0 <_ i _<
100 1iEN}. This clearly allows the state

complexity of models to be greatly reduced.

The transitions between states may be governed by :

0 Time delays, both deterministic and stochastic.

"A boolean function of one or more component states, known as a SYSTEM.

" The event of a transition between states of another component.

0 The value or change in value of a COUNTER associated with this or

another component.

Components may also have associated with them a variable AGE which can be used to

manipulate their behaviour.

50

To fully define a component , three statements are required :

" STATE_SET, which lists the finite set of states a component can exist in,

any counters belonging to the component and any modifications to be made

to these counters when the component enters the different states.

0 BEHAVIOUR, which defines all possible transitions that can be made

between states.

0 COMPONENT, which defines a component with a specified STATE SET

and BEHAVIOUR. It also gives the initial state of the component and

optionally an initial age and initial counter values.

As well as components we can also describe passive resources which may be allocated to

components. Resources may be consumable or non-consumable and are specified as

STOCK and RESOURCE respectively. The WAIT FOR statement allows the explicit

manipulation of resource levels during simulation.

The language syntax is free-format in the sense that blank spaces (spaces, tabs, new lines

etc) are ignored. The order of the statements is unimportant, except in the instance where

this would cause a semantic conflict. This point is expanded in section A1.5.

3.3 Language details

In the examples of syntax given the following conventions are used :

Keywords are shown in UPPERCASE.

User defined names are shown in italics.

Optional syntax is shown in [square brackets].

The complete language syntax is described in appendix A.

51

3.3.1 Counters

One problem that became immediately apparent when considering modelling with the

language was that of state explosion. In the original language each component in a system

could be thought of as a finite state machine with inputs. A separate state was required

to represent every possible condition of the component. This is feasible when conditions

are distinct. However conditions are often very similar and using a large number of states

to describe similar conditions was considered to be an inefficient way of modelling.

To illustrate this we consider the modelling of a buffer which has N places. Three distinct

conditions may be empty, occupied and full. We might however wish to know each level

of occupancy and this would result in a model with N+1 states as shown in figure 3.1.

O-O-D&-C empty occupied occupied occupied full
12 N-1

component states

Figure 3.1 State diagram of N-place buffer

Models of this nature would obviously soon become very large. Consider say a simple

multiplexer which has 8 inputs and 1 output all with a 100 place buffer. It was for this

reason it was decided to add an extra descriptor to a component so that similar conditions

could be grouped into a single state, whilst still retaining a mechanism to distinguish

between them. In the buffer example this could reduce the number of states required to

3 i. e. one for each distinct condition with the extra descriptor being used to distinguish

between the levels of occupied or indeed to just one state which covers all conditions.

These simplifications are shown in figure 3.2.

descriptor

empty , occupied full

descriptor

OR

buffer

Figure 3.2 State diagram of N-place buffer
using an extra descriptor

52

3.3.1.1 State integer attributes

The first possibility investigated was to utilise the component state attributes. These are

boolean variables which are solely used to group together selected states. Consider as an

example the state set

STATE_SET link
{

O busy;
O idle;
F broken;
F erroneous;

}

The uppercase letters preceding the states are the state attributes. The attribute '0' groups

together the operational states busy and idle and the attribute 'F groups together the failed

states broken and erroneous. An attribute is considered to be 'true' for all states that

posseses the attribute and false' for all other states.

An extra descriptor could be introduced by allowing integer state attributes which may take

on any integer value rather than a boolean value. This seemed like a simple way to

augment the description of a state. However upon reflection some disadvantages were
identified.

Firstly, the existing attributes exist solely to link states together. Integer attributes would

be used to enhance the description of a state thus having a different meaning altogether.

This was considered unacceptable as it would remove the simplicity of the attribute concept

by giving it two conflicting meanings. Secondly, attributes are only available when a

component is in a state that possesses that attribute. This was envisaged to be highly

restrictive as the integer value may be required to be known when the component is in any

state. For these reasons it was decided to discard the idea of integer state attributes and

seek an alternative which would avoid conflict with existing constructs and be accessible

when a component is in any state.

53

3.3.1.2 Resources as state descriptors

Resources are passive entities which may be allocated to components. They are created

either by use of the RESOURCE statement in a system model or during simulation time

by the WAIT FOR statement, as described in appendix A. 5. A dynamic count of the

number of resources available is kept and this is decremented when an ON RESOURCE

transition is activated. The number of resources specified is decremented from the count

and they are considered to be allocated to the state the component has moved into. When

the component moves out of this state the resources are freed and the count is incremented

accordingly.

The inherent counting which takes place as resources are manipulated suggests that there

may be a way to utilise resources as state descriptors. We will use the previously
described buffer example to illustrate this concept. The buffer may be described by use

of a single state component buffer and the resource space of which 100 entities are initially

created as shown in figure 3.3.

Initially there will be 100 space resources none of which are allocated to state normal of
buffer. Whenever a get space transition occurs the number of 'free' space resources will

be decremented by one and this resource will be allocated to state normal. The

complementary operation will occur when the drop space transition occurs. The level of

occupancy of the buffer is now represented by the number of resources allocated to the

component. This approach seemed quite promising initially but upon reflection a number

of problems were identified.

BUFFER SPACE

get space

idle 100

drop space

Figure 3.3 Buffer using Resources

The transitions get space and drop space are irregular in that they do not change the

component state but only affect the resource allocation. This was thought to be

54

inappropriate as this would introduce transitions with no state change, conflicting with the

intuitive understanding of a transition. This confuses the semantics and as was stated

earlier the aim is to keep the semantics as intuitive as possible. In the traditional sense of

resources we normally wish to know the number of free resources and this is immediately

available. In this instance however we would wish to know the number of resources

allocated which would involve determining the initial number of resources and calculating

those allocated by subtracting the number which are free. Currently we only inspect

resource levels when using ON RESOURCE pre-conditions and when these are enabled

and transitions occur resource levels are changed. We would now have to create new pre-

conditions which could inspect initial resource levels and current resource levels but have

no ability to change these levels. This of course could be done but it would change the

concept of resources which would confuse their use.

A further problem is that component descriptions would no longer be self contained but

have a level of abstraction. To fully obtain a components condition we would have to

consider its state and the condition of an external resource. It was decided that the best

solution would be to provide some means within a component statement to provide extra
descriptive power but which would not be confined to any single state as with integer state

attributes. To this end the concept of component integer attributes was developed. These

have been named counters.

3.3.1.3 Component integer attributes

From the reasoning expounded above it was decided to use component integer attributes

as the means by which to increase the descriptive power of components. Component

integer attributes have been called COUNTERS. When considering the integration of

counters into the language several questions had to be considered

1. Where to declare them and the syntax to use ?

2. Where and how to initialise them ?

3. Where to modify them and the method to use ?

4. How to use them as transition pre-conditions ?

55

3.3.1.3.1 Counter declaration

Since counters are component attributes the options for declaring them was either in the

COMPONENT statement or in the STATE SET statement. Since it is highly likely that

components which share the same STATE SET would also require the same counters it

was decided to add them there. The modified STATE SET takes the following form

STATE SET name {
COUNTERS :[counter list];
STATES {

state list ;

The counter list is an optional list of user defined counter names separated by commas.

A full description of the statement is given in section A. 2.

3.3.1.3.2 Counter initialisation

All counters associated with a component's state set must be given an initial value just as

it is mandatory to define an initial state for each component. This value will be component

dependant and not fixed for a given state set and therefore it was decided to initialise the

counters in the COMPONENT statement. For continuity this is done in the same line as

the setting of the initial state modifying this line to be

[INIT STATE :] state name [(counter finit list)];

The counter init list is optional, any counters not initialised default to 0. It will consist

of one or more counter names which are assigned integer values separated by commas, for

example

(counter a=3, counter b=7)

56

3.3.1.3.3 Counter modification

When considering the possible uses of counters the modifiers identified as being neccesary

were incrementing, decrementing, addition, subtraction, multiplication and division. It was

also perceived that in certain scenarios modulo arithmetic may be necessary.

Incrementing and decrementing are of course specific cases of addition and subtraction

therefore leaving the four standard arithmetical operations to be implemented. This could
be done in two ways, either by

i) using a function type operation, e. g. ADD(counter -a ,
7) or

ii) an arithmetical statement, e. g. counter a+7

Functions could be built into the language or defined by the user at the time of modelling.

Inbuilt functions would provide a powerful set of tools for the user but unless they were

restricted to basic single operations this could lead to quite an increase in syntax. It would

be possible to have a mixture of inbuilt and user defined functions. Arithmetical statements

have the disadvantage of having to be repeated if required in different places but they are

more intuitive and provide the modeller with a large degree of flexibility.

A major influence in deciding what form to use was the consideration of the impact on the

existing syntax. Arithmetical statements could be easily supported as they are already used

within SYSTEM statements. However, use of one should not exclude the other and it was

decided to utilise both.

The syntax for updating a counter is

counter name = expression

where expression is any arithmetic statement supported by the expressions used in

SYSTEM statements, eg

countera = counter a+7;
counter b= counter c/ 12

57

The single addition to this is a function type operation for modulo arithmetic, MODn(

expression), where expression is consistent with the above.

Once the syntax of counter modification was identified it was neccesary to consider where

the operation would occur. Counters are global to a component and their manipulation is

state dependant. This follows the ethos of the language in following a Moore model

where actions are a function of current state rather than the Mealy model where actions are

a function of transitions. This gives two possibilities for methods of updating

i) The update could be linked to a given state in the state set, as shown in the

partial statement

STATE_SET comp --g
{

{
COUNTERS counter a;
STATES {

state d: (counter counterl_a+7);

ii) The update could incorporated into a state transition within a behaviour

statement, as shown in the partial statement

ON EVENT comp b. state b
{

statejz -> stated :(counter -a = counter a+ 7) ;

The original concept of counters was to add extra descriptive power to states. Updating

a counter after a transition into the given state was felt to detract from this. It would mean

that there would not be a consistent link between counters and states for the updating

would become dependant upon how a component entered the state. The other disadvantage

of this is that it would add more complexity to the already detailed behaviour statement.

The one disadvantage of adding the update to the given state definition is that in some

cases we may want an update to be dependant to the way a state is entered. In these

situations though, we can use an additional state and preserve the state counter identity and

for these reasons it was decided to link counter modification to the state set.

58

3.3.1.3.4 Counters as transition pre-conditions

Transitions can be enabled by pre-conditions which depend on the state of other

components. Since counters are an extension of the state description it is desirable to be

able to use them in pre-conditions also. It was decided to expand the expression fields of

the ON EVENT and IF pre-condition statements to include boolean counter expressions,

eg

ON EVENT (counter a>9)
{

state x -> statey ;
}
IF (ALL (comp2. state a, counter a == 2, counter b< 3))
{

state x ->state z;

Since the boolean expressions used are the same as those that may be used in SYSTEM

statements, counters by default may also be used in SYSTEM statements. Note that the

equality symbol used is '=='. This is due to a single '=' signifying assignment and '==' was

considered the next most intuitive syntax to denote equality.

3.3.2 The syntax of transitions

The originally proposed way of specifying transitions was

PROB(0.3) state a -> state b 12 ;
PROB(0.7) state _a -> state c 18 ;

Probabilities must sum to 1 and they default to 1. Times are given at the end of a

statement and default to 0, i. e. and immediate transition.

This syntax was satisfactory when first devised. When we start considering the language

more as a tool for modelling real time systems, the timing of events becomes of greater

interest. The simulator developed conducts discrete event simulation and the relative

timing of events must be considered in all instances. To reflect this change in emphasis

it was decided to restructure the ordering of transitions to be

59

12 state a -> state -b
PROB(0.3) ;

18 state -a -> state -c
PROB(0.7) ;

Although this is a minor change it does preserve syntax consistency and is more intuitive.

3.3.3 Timing with transition pre-conditions

A fundamental feature of the language is the interaction of different components. This

interaction is controlled by transition pre-conditions which enable the transitions depending

upon the condition of other components. A review of these pre-conditions has lead to

some major modifications.

A full explanation of all pre-conditions is given in section A. 5, the three we are primarily
interested in are ON EVENT, IF and IF ON. We will take a brief look at how these may

be used by considering some examples

i) exp(70) first -> alt -I ON EVENT other. fail {
first -> alt -2 }

If the component described by the transitions enters the state first then normally it

would move to state alt 1 after a random time, T, determined by the exp(70)

function. However if after any time, t, during the components existence in state

first the component other moves into state fail then the component will be forced

immediately into state alt 2.

ii) exp(70) first -> alt -1 IF other. fail {
first -> alt -2 }

If the component other is in state fail when the compongnt enters state first then it

will immediately be forced in to state alt 2, otherwise it would move to state alt -1
after a random time, T, determined by the exp(70) function. If the component other

moved into state fail at any time after the component had entered state first it

would have no effect.

60

iii) exp(70) first -> alt 1
IF ON other. fail {

first -> alt -2 }

If the component other is in state fail when the component enters state first then it

will immediately be forced in to state alt_2, otherwise it would move to state alt 1

after a random time, T, determined by the exp(70) function. If the component other

moved into state fail at any time, t, after the component had entered state first then

at time t it would be forced immediately into state alt -2 and the transition to alt-1

would be disabled.

Upon reflection ON EVENT and IF_ON were thought to provide very useful means by

which to model component interaction and they are both quite intuitive. IF on the other

hand was thought to be quite confusing. II? ON is a composite operation, whereas IF is

a primitive and more favoured by purists.

As was shown in the example the IF expression is only checked upon entering a state and

thereafter it is not considered. This conflicts with the intuitive feel for 'IF' and was thought

to be misleading. Unless a modeller has an exact grasp of the sequencing of events the IF

pre-condition could be misused and produce confusing results. From this reasoning it was

decided to drop the IF precondition as it stood and to rename the II? ON precondition IF.

The result of this is no noticeable loss in modelling power and a 'safer' set of commands.

As shown in the examples there can be no timing associated with transitions which are

enabled by a pre-condition. The original reasoning behind this is that all transitions of such

a nature should be forced and thereby have the effect of an immediate interrupt on current

processing. This was thought to be too restrictive. In many instances we will not want

forced transitions to be immediate but have some time associated with them. In the

original language this was done by adding dummy states. A pre-condition would enable

a transition which would force the component into a dummy state and a second transition

would move the component from this dummy state into the final state in the time desired.

This is adding extra state complexity to the model which is never desirable. If timing were

incorporated into the precondition dependant transitions then these would not be required.

Another problem which is not immediately apparent is that of the effect that different

61

preconditions have on each other. Consider the example of modelling a car. We may wish

to model the scenario where on the event of the petrol light coming on we will wish to stop

for fuel in 5 time units and on the event of the oil light coming on we will wish to stop

for oil in 3 time units. To model this in the original language we could use the following

ON EVENT car. fuel light {
running -> need fuel ;

}
5 need fuel -> getting-fuel ;
ON EVENT car. oil light {

running -> need oil ;

3 need oil -> getting-oil ;

Consider the following possibility. At some time t, the fuel light comes on. This will

cause the component to immediately go into state need fuel and in 5 time units go into the

state getting-fuel. Say then at time t2 = t, +1 the oil light comes on. Since the component
is no longer in state running this will have no effect and although in reality the car will

need oil before it needs fuel, this will not be modelled. The only way to effectively solve

this problem is to split the component into two individual components, one which models

fuel required and another which models oil required and then the pre-conditions will not

interrupt one another. This however is not very satisfactory when we are modelling a large

system as it will result in a great number of components, all closely related but with their

own behaviours. The modeller would have to break down the functionality and at the same

time ensure all interaction is catered for. This is a philosophy of the language but any

reduction in complexity is desirable.

These two problems are very significant and can cause the modeller significant problems.

Models of real problems could grow to be quite complex and loose their simple connection

to the real problem. Investigation showed that adding timing to transitions which are

enabled by pre-conditions could solve both problems. This would appear like a simple step

to take but it has some significant and interesting consequences.

62

We will consider again the previous car scenario now modelled by adding timing

ON EVENT car. fuel light {
5 running -> getting-fuel

}
ON EVENT car. oil light {

3 running -> getting-oil
}

We have now got rid of the dummy states and immediately reduced the state complexity.

The question then raised is when in time are the transitions enabled ? If the fuel light

comes on do we immediately suspend any further interaction with the component until in

5 time units it moves into state getting, fuel thereby maintaining the forced nature of the

ON EVENT or will the component move to getting fuel in 5 time units with the possibility

that another transition may affect it before then and hence an ON EVENT is no longer a

forced event ?

By choosing the second alternative the problem of pre-condition interaction can be avoided.

Consider applying this timing principle to the above scenario. If at time t, = 0, the fuel

light comes on we can say that at time, T, = t, + 5, the component will move into state

getting. fuel. If at time, t2 =1, the oil light comes on we can say that the component will

move into state gettingoil at time, T2 = t2 +3=4. Since T, is less than T2, the transition

to gettinauel will be cancelled and instead the transition to getting oil will occur. Notice

also; that if t2 occurred at time 3 then T1= 6 so that now T2 is less than T, and hence the

transition to getting_fuel will occur before the transition to getting oil. The transitions

enabled by the pre-conditions can now interact effectively. They can interrupt one another

but they do so whilst maintaining correct timing integrity. We are therefore now able to

model scenarios like the one above by just using the one component. This facilitates a

significant saving in the complexity and ease of designing models to represent real

situations.

It is however now the case that transitions enabled by pre-conditions are not forced and

will not necessarily interrupt current processing. This significant change must be

understood but it is not a problem. If we still wish to provide forced events we can simply

do so by using pre-conditions with transitions that have timing equal to 0 and are therefore

immediate.

63

3.3.4 Hierarchical editing of models

When the language was first developed the only systems modelled were quite small test

applications. When considering the modelling of real systems two things became apparent.

Firstly, models could grow to a very significant size producing quite a large language

description and secondly, there may be duplication of code within the same model. To

tackle these problems it was decided to implement some sort of hierarchial editing.

In the C programming language hierarchial editing is enabled by the use of 'include' files.

These are files which contain listings of C code. Any file may incorporate these include

files by using the command

#include<file name>

This allows the programmer to build up a programme from a group of smaller programs,

keeping all files to a manageable size and providing a means of reusing sections of code.

The code is not immediately compiled but is first run through a pre-compiler which when

it sees any include commands expands them by copying in a new source file, the file

specified within the command. This is transparent to the user and will not change the

original source file in any way.

Such a mechanism was deemed to by ideal for our purposes and it was decided to

incorporate a similar command into the language. The syntax chosen is

#<file name>

This command is a simple modification to the language and has no effect on the

processing. It does however have very significant implications for the simulator for it has

meant the writing of a pre-processor. This is described in chapter 4.

64

3.4 Conclusions

The complete syntax of the ICE language is given in appendix A. This chapter has

presented some of the significant features and the philosophy behind them.

The objective during the development of ICE has been to achieve a compact and intuitive

syntax that provides a powerful descriptive space. A vital concern is the user interface to

the language. When a modeller takes a state space view of a system it is desirable that the

language can describe the system so visualised with a minimum level of abstraction.

The development of COUNTERs which add descriptive power without a corresponding

increase in the underlying state space have been discussed. The additional syntax required

is minimal in comparison to the modelling capability they contribute. The language

possesses an inherent simplicity that makes it favourable as a generic modelling tool. Any

changes to the syntax, no matter how apparently simple they may appear, must be

considered on a global context. It is paramount that the language's intuitive approach and

favourable human interface is maintained.

Consideration of the timing and priority of conditional transitions demonstrated the complex

semantics that are behind the language. Seemingly simple constructs can model a range

of different types of component interaction and it is therefore essential that the modeller

has a firm understanding of these semantics. The computational models of chapter 6

provide a rigorous definition.

65

Chapter 4

Implementation of the ICE Simulator

4.1 Overview

This chapter describes the simulator that facilitates the compilation and simulation of ICE

files.

In this chapter we give a brief introduction to simulation styles and languages and show
how these relate to ICE. We then go on to consider in some detail the development of

I SIM, which is an event-scheduling discrete event simulator with an ICE interface.

Files containing ICE code may be edited hierarchically. These files are integrated using

a pre-compiler. The code is then parsed to produced data structures. These data structures

are compiled into simulation data objects and checked for any syntactical errors. The C++

simulation objects interact under the control of the simulation algorithm. A timed log of

the object interaction is kept throughout simulation and may then be interpreted to produce

a text listing of all simulation events. The post processor analyses these events to produce

statistical information specified by the user on a spreadsheet.

Section 4.2 gives some background to simulation and simulation languages, specifically

66

discrete event simulation. Section 4.3 considers the operation of the pre-compiler, parser

and compiler in converting the ICE code into simulation data objects. Section 4.4

investigates the flow of control and the functions used by the simulation algorithm. Section

4.5 explains the development of the post processors which produce event listings and

statistically analyse the simulation.

Figure 4.1 shows the distinct stages of the simulator and the data flow between each stage.

Hierarchical ICE source file, filename. ICE

PRECOMPILER

expanded ICE source file

COMPILER

simulation objects

SIMULATOR

event data file, i_sim. evt

EVENT VIEWER

listing of simulation events

Figure 4.1

POST PROCESSORS

analysis specification,
filename. ana

ANALYZER

results

Overview of the Software

67

simulation data structures

To provide a clear understanding of the operation of the software an example is given.
A sample ICE program is listed in Appendix B. This is considered in parallel with the

explanation of the software. We shall effectively consider the results of parsing, compiling,

simulating and analysing this program. All data structures, objects and files created for this

specific example are also given in Appendix B and will be referred to throughout the

discussions.

4.1.1 I SIM directory structure

A tree diagram of the I SIM directory structure is shown in figure 4.2 along with a

description of the type of files each directory contains.

I_SIM

1-- BIN Executable Code

--- NEWLIB Libraries of Object Code

--- ICE Files containing system descriptions written in ICE

SRC

- CORE

GRAPHICS

--- INCLUDE

1--- MAIN

--- POST

--- SIM

- STD

1 ---WIDGETS

Functions shared by simulation and post processing software

Low level graphics functions

Header (. h) files

The main functions which call all others

Post processing functions

Simulation (parsing/compilation/simulation) functions

General purpose functions

High level graphics functions

Figure 4.2 I SIM Directory Structure

The total size of the combined source, object and executable code is about 4Mbytes.

I_SIM is comprised of four executable files. I SIM is the main graphical environment

which provides the user interface. ICE runs the simulation software i. e. the pre-

compilation, parsing, compilation and simulation of ICE code. VIZ runs the textual post

68

processor which gives a chronological listing of all events which occurred during

simulation. TPP runs the statistical post processor. ICE, VIZ and TPP are all called from

within I SIM transparent to the user.

4.2 Background

In this section we give a brief overview of discrete event simulation.

4.2.1 Simulation styles and languages

There exist specific simulation languages. These are normally programming languages

which have special constructs applicable to simulation. Often commercial languages are

based upon the popular programming languages C, C++, FORTRAN and Pascal. These

languages can be classified into three categories [81]

Monte Carlo

0 Discrete Event (asynchronous)

0 Quasi Continuous (synchronous)

Monte Carlo simulation may be defined as 'a scheme employing random numbers that is

used for solving certain stochastic and deterministic problems where the passage of time

plays no role' [82]. Monte Carlo simulators have features that allow random events to be

generated internally and they are often used in quantum physics modelling.

Discrete event simulation is characterised by the passage of blocks of time during which

nothing happens and is punctuated by events that change the state of the system. Emphasis

is placed on these events which show the interaction of the modelled components. It is

assumed that all important features of the system's behaviour may be modelled by these

events. The blocks of time vary in length dependant upon the occurrence of events and

therefore since the updating of the clock is not regular this type of simulation is also known

as asynchronous. It is often used in the modelling of digital communications systems and

in operations research.

69

Quasi Continuous simulation is concerned with modelling a set of equations that represent
a system over time. The system may consist of algebraic, differential or difference

equations whose solution continually vary with time. The simulation is 'quasi' continuous

as the system time is updated by some fixed time interval At with the system parameters
being re-evaluate within each time step. The length of At is a compromise between

accuracy (sufficiently close to continuity) and computational overheads. It is suited to

applications such as biological systems and computer aided design.

Owing to the nature of ICE we are interested in discrete event simulation. This can be

further subdivided into three classes

Activity scanning models a system by a set of activities which all have start and
finish conditions. The simulator scans all the activities starting conditions to
determine if they may be operated. The system clock is then advanced to the

shortest of these activities finishing times. The consequences of the finishing

conditions of all activities that will finish are then implemented.

20 Process orientation models a system by the flow of constituent processes. These

processes can communicate and interact with one another during simulation. They

may also utilise various defined resources.

I Event scheduling models system behaviour by a set of events which are stored

time sequentially in an event list. The simulator advances the system clock to the

first event in the list, determines any conditional events which are activated by the

execution of this event and places them in the appropriate place in the event list.

The process is then repeated by advancing the clock to the next event in the list.

These categories do not provide a strict framework but may be combined to provide the

most suitable simulator for a given language.

4.2.1.1 Examples of specific simulation languages

Here we briefly consider a few modem simulation languages to give an idea of the variety

available.

General Purpose Simulation System (GPSS) [83] is a discrete process interaction language.

70

It is most often used to model systems that consist of customer entities which compete for

limited resources.

Simulation Language for Alternative Modelling (SLAM) [84] is a FORTRAN based

language that was the first to allow modellers to approach a system with a discrete,

continuous or combined view. It is powerful due to it's flexibility and FORTRAN

subroutines may be called from within the language and run during simulation.

Simscript [85] is a FORTRAN based simulator that is not dependant upon a FORTRAN

compiler as it translates code into assembly language. It has constructs which support a

discrete event view with event scheduling and process orientation

SIMAN [86] like SLAM allows discrete event process oriented, event scheduled and

continuous components integrated into a single system model. A SIMAN model typically

consists of model code and a series of statements which are a framework for describing

experiments.

Other languages include DYNAMO which is FORTRAN based and facilitates continuous

simulation and SIMULA which is a PL1 based discrete event language. For a fuller

description of these and a comparison between simulation languages the user is referred to

Kreutzer [87].

All the languages mentioned are general purpose and suitable for the modelling of a wide

variety of systems. The nature of ICE however is quite specific and prescriptive of the

type of simulation required. The finite discrete state modelling of components suggests a

discrete event style and the interactive nature implies an event scheduled approach. Given

this we shall now consider the features of such a simulator.

4.2.2 Features of a discrete event simulator

Several generic features are important for all discrete event simulators. These have been

extensively investigated and comprehensive lists of requirements exist e. g. [88]. The main

features we need to consider are

71

DA system clock for advancing simulation time to order the events. In the instance

of an event scheduled simulator this should be a global variable, advanced to the

next event once all the events of the current time have been activated and their

consequences implemented.

0 General frameworks for model creation and editing. This is obviously the role of

the simulation language. A compiler is required to convert models described by the

language into suitable representation which may then be manipulated by the

simulator. The I SIM precompiler and simulator is detailed in section 4.2.

OO A method to schedule the occurrence of events. This requires two components, the

scheduling algorithm and the event list. The scheduling algorithm is the main

controlling function during simulation and dictates the simulators behaviour. The

event list is the time ordered list of events, normally a doubly linked list for ease

of insertion and deletion of events during simulation. The I SIM scheduler is

described in section 4.3.

® Tools to aid in the collection, analysis and reporting of the behaviour of the

modelled system during simulation. I SIM has two analysis tools described in

section 4.4.

SA random number generator which must produce a uniform and statistically

independent series of random numbers over a variable length of runs. These should

include tools for mapping the numbers into applicable distributions. The generation

of random numbers is a large field in itself and one that is considered in some

detail in chapter 5.

4.2.3 The development environment

I_SIM was developed on a 486DX2 PC running a DOS environment. It is written in C++

which supports object oriented programming (OOP)

This style of programming allows the programmer to model components found in the

problem domain as a set of abstract data types or objects which interact by parameter

passing. Objects may be created that inherit properties from other objects thus allowing

proven code to be reused for different applications. An excellent overview of OOP is given

72

in [89].

OOP is very suited to discrete event simulation. Its emphasis on communicating objects

matches well a modellers view of a system as a set of interacting components. The first

OOP language Simula67 [90] was written especially for simulation applications. From the

ideas first proposed in Simula67, the two currently popular OOP languages Smalltalk [91]

and C++ [92] were developed. Smalltalk was entirely based on the OOP concept whereas

C++, was developed by Stroustrup [89], as a superclass of the language C. Due to the

already established popularity of C, C++ is emerging as the dominant OOP language.

I SIM utilises many of the benefits of C++, especially inheritance and data hiding.

Simulation elements are represented as objects which simplifies the design and

understanding. Similar objects are constructed by inheriting common features of a base

class. Data hiding allows data within objects to be categorised so that it may only be

altered by functions which are given specific access.

Development of I SIM was both helped and hindered by the desire to re-use much of the

code of the earlier Tecsim simulator. This saved rewriting many proven routines but it also

restricted some of the data structuring.

4.3 Compilation of the language

The file ICE (MAIN) contains the main function which calls the compilation functions.

4.3.1 The precompiler

The precompiler was designed to facilitate hierarchical editing which allows files of ICE

code to be kept to an easily manageable size and also makes it easier to re-use sections of

code. The flow of control of file merge (MAIN/ICE) the main function of the precompiler

is best illustrated by considering the flowchart of figure 4.3.

73

Figure 4.3 Flow of control of file merge

74

As an example, given the three files, file 1, file-2 and file 3 with contents

FILE 1 FILE 2 FILE 3

LINE 1 LINE 4 LINE 6
LINE 2 #<FILE 3> LINE 7
#<FILE 2> LINE 5
LINE 3
END

If file 1 was passed to the pre-compiler the resulting input file would be file l. new with
contents

FILE 1. NEW

#<FILE_1>

LINE 1
LINE 2
#<FILE 2>
LINE 4
#<FILE3>

LINE 6

LINE 7

LINE 5
#!

LINE 3
END
#!

At first this file would seem rather verbose. Why write the individual files names and use

end of file characters in the new file when what we are aiming to achieve is an expanded
file containing all the ICE code ? The reason has nothing to do with the meaning of the

code but is solely used for error reporting. When the new ICE input file is passed to the

parser, all the lines beginning with a '#' will be ignored and thus have no effect on the

processing. However if there is a syntactical or logical error in the code we want to be

able to locate which file and on which line in this file the error occurred.

4.3.1.1 Error reporting

Prior to the introduction of the pre-compiler, error reporting was a simple task. For every
line in the ICE file which was converted into a data structure for compilation, the line

number was stored. If any errors were detected during compilation into simulation objects,

they were reported with this line number being given and of course there was only the one

75

source file. The line number that is now stored is that in the resulting new source file.
This is meaningless to the user as this file is created transparently. We are now required
to translate this line number into the line number in the appropriate source file. This is

done by creating a stack of file elements. Each element takes the form of a structure
shown in table 4.1.

char sfname[13]; // the name of the source file

int line; // count of number of line read from file

struct stack *next; // points to next stack element

Table 4.1 Structure of error reporting stack elements

When an error is detected a stack element is created for the first source file. The lines of

the new file are read sequentially and the line field of the stack element is incremented for

each line read. When a '#<file name>' line is encountered a new element is pushed onto

the top of the stack for this new file file name. Now as the lines are sequentially read the

line field of the new stack element is incremented. This process is repeated each time a
'#<file line>' is encountered. Whenever a'#! ' line is encountered the top element is popped

off the stack and the reading of lines continues using the element which is again on top of

the stack. When the total number of lines read is equal to the line number of the error then

the top stack element will contain the name of the original source file and line number.

4.3.2 The parser

This section describes how the ICE source code is converted into data structures which are

entered into a symbol table. This parsing phase uses two tools, one a hand written lexical

analyzer based on the Unix tool Lex and secondly a Dos version of the Unix compiler

writing utility Yacc. It is beyond the scope of this text to give a detailed description of

Lex and Yacc and the reader is therefore referred to the excellent text by Levine et al [88].

Both Lex and Yacc are program generators which take a high level lexical or syntax

description and generate C[92] or C++[89] programs. The lexical analyzer function yylex

(src\lex. cpp) recognises character patterns in an input file and converts them into a stream

of tokens. The set of character patterns is written to suit the application and is known as

76

the lex specification. Tokens may take integer values or represent language features such

as integers, ICE keywords or proper names. Associated with each token are variables

which may represent the actual value of an integer or proper name.

The I SIM compiler identifies the declarations, expressions, statements and blocks in an

ICE program. This task is known as parsing and the list of rules that define the

relationships that the program understands is a grammar. Yacc (Yet Another Compiler

Compiler) generates a parser which generates a C++ function yyparse (sim\ytab. cpp). The

grammar is a declarative style syntax description describing the language in terms of the

tokens defined in yylex. Linked with each element of the grammar are possible actions,

which are portions of C code that define and build the data structures used to hold all

required information about the ICE code.

The parser also provides syntax error detection by noting mismatches between the tokens

produced by yylex and the given grammar. The error reporting is handled as described in

section 4.3.1.1. Syntax errors produce an appropriate error message and the parser will

then attempt to recover so that further syntax errors are noted.

The data structures produced take the form of linked lists of C structures, one list for each

type of ICE statement. The main structure is the symbol table entry (symtabentry). There

are symbol table entries for each STATE_SET, BEHAVIOUR, COMPONENT, SYSTEM,

STOCK and WAIT FOR statement. Further types of structures are used for the component

parts of these statements such as transitions, state expressions, lists of states, lists of

resources etc and are linked via pointers to the symbol table entries to produce a complete

description of the ICE code. These collective data structures, all accessed by the single

array symlist of pointers to each linked list, provide the link to the compilation phase.

An example of an ICE program and a description of the system it models is given in

Appendix B section B. 1. Section B. 2 goes on to show the data structures produced when

this program is parsed.

77

4.3.3 The compiler

In ICE the order of statement declarations is unimportant. This means that items may not
be defined until after they are used and thus ICE code cannot be fully checked for errors
during the parsing phase, e. g. a STATE SET may be defined after a BEHAVIOUR

statement and hence during parsing it is not possible to check the state names given in the

transitions. This allows code to be entered in whatever order the modeller wished, it is

however recommended that a structured design procedure is adopted. The majority of error

checking is done in the compilation phase. The related information in the symbol table

entry linked lists is cross checked and converted into a set of self-consistent C++

simulation objects.

4.3.3.1 Simulation objects

There are C++ simulation objects for all active parts of the ICE description. By active we

mean those parts such as component states, counter values and resource levels etc which

may change state or value during simulation. All objects are derived classes from the base

class Object. Table 4.2 lists the different objects and gives a summary of their functions.

Base Class Derived Class Function

Object

Component Component description including pointers to behaviour and

state information.

Sexp State and Counter Expressions.

Resource Resource name and current quantity.

Waitfor Interrupt which causes change to a component or resource

description.

Table 4.2 Simulation object classes

4.3.3.2 General compiler operation

At the start of this phase an array object of pointers to simulation objects is created with

enough elements for the number of objects required. A simulation object is created for

78

each symtabenrty (discussed in section 4.3.2) created during parsing, except for

STATE_SETs and BEHAVIOUR statements which are handled differently, as will be

discussed. The order of conversion is as follows.

Function state set check (sim\tables. cpp) checks that each state and counter name is

unique, and gives each a corresponding number. These numbers are entered into the state

set symtabentry and the names are entered in a hash table for quick lookup in checking
further names.

Function resource check (sim\tables. cpp) creates a separate resource object for each

resource and stock structure.

Objects are created for each component and state expression or system statement, then

function component check (sim\compile. cpp) checks and converts the component

symtabentry into an object. An array is created to hold all the components counters and

their initial values are stored. All counter function expressions for these counters are added

to the component. A statespace object is created for each distinct behaviour and state set

symtabentry. The initial state of the component is set.

System symtabentries and the anonymous system symtabentries created for IF, ON EVENT

and counter expressions are checked. Anonymous denotes that the expression is not an

explicit component but a conditional clause which may be related to any component. The

format of the expressions are checked for validity. A permanent consequence graph link

is made from the state expression to the parent object. Section 4.3.3.4 describes the

function of consequence graphs. The expression is evaluated and the initial value entered

into the object.

Waitfor symtabentries are checked and converted into objects.

Thus in summary, during the compilation phase, the component, resource and system

symtabentries are converted into simulation objects, the state set and behaviour

symtabentries are converted into StateSpace objects and system objects are linked to their

parent objects by consequence graphs.

In appendix B, section B. 3 all the objects created during the compilation of the

79

symtabentries listed in section B. 2 are given.

4.3.3.3 The StateSpace

Information about which state a component can exist in and the transitions between states
is stored in a StateSpace object.

A StateSpace object is created for each behaviour symtabentry. It contains an array of

pointers to State objects. One State object is created for each state in the STATE SET.

Each transition in the BEHAVIOUR statement is converted into a transition node by the

parser (refer section B. 2.1). Transition nodes store the names of the states the transition

is from and to. The State objects for each state reference each transition node who's

from state is this state. Also during parsing, any counter expressions associated with a

particular state are referenced by the statelist structure created for the state. This reference

is copied into the corresponding State object during compilation.

The StateSpace objects created for the behaviour and state set symtabentries of section

B. 2.1 are shown in section B. 3.

4.3.3.4 Consequence graphs

A consequence graph is the method by which objects that interact during simulation are

linked together. Consider the conditional statement

IF comp1. active {
4 comp2. first -> comp2. second ;

}

At compile time a permanent link is set up between the component comp] and the state

active. The compl end of the link is known as the parent and the active end the child.

During simulation, when comp] is not in state active this is the only link. If comp] enters

state active a further dynamic link is established between the state active and the

component comp2. In this link, active is the parent and comp2 the child. When component

80

comp] moves out of state active this link is removed. This dynamic link will enable the

transition from state first to state second if comp2 enters state first. These consequence

graph links provide the current state of component interaction during simulation.

The simulation objects all have the class Object as their base class. This is a composite

object as it has another class as one of its members. This class forms part of Objects

private data and is an instance of the class CqGraph. CqGraph is used in its basic form

and it also forms the base class of three other types of consequence graph. These are listed

along with their prospective uses in table 4.3.

Base Class Derived Class Use

OnNode Links objects related by ON EVENT expressions.

CqGraph
ResrsNode Used to link component objects to resource objects when resources

are required for a change of state.

ForceNode Links an object to another object which is forcing it to change state.

Table 4.3 Consequence Graph types

The CqGraph node has four pointers. These are used to point to the previous and next

nodes in its parent link and to the previous and next nodes in its children's links. It also

contains the object numbers of its parent and child thus allowing any object to be doubly

linked to any other object via these nodes.

Consequence graphs may be used to connect objects for the various purposes listed in table

4.3. The way in which they work is the same in each instance.

Their operation is best understood by the use of an example. A detailed example using of

the consequence graphs created for one of the conditional statements of the program in

section B. 1 is given in section B. 3.1.

81

4.4 Simulation phase

The simulation software uses as its input the set of C++ objects that have been built during

the parsing and compiling stages and models the interaction of these objects under the

control of a simulation algorithm. The overall flow of control of the simulator is shown
in figure 4.4.

Before commencing the simulation the stop time (which must be given in the ICE code)
is recorded and the current time of simulation is set to 0, to indicate the start of a new

simulation.

A new Event Manager is created. This contains all the control information for the calender

queue of events. It has an array of pointers which form a linked list of the fundamental

simulation object type, Event. An Event object is created for every scheduled event (state

change) and is deleted once this event has occurred or has been surpassed by the

occurrence of another event. This linked list forms a calender queue of simulation events.

The simulation objects are initialised in two stages, the initialisation being dependant upon

the type of object. All objects contain a field state which holds the state of an object

during simulation. All these fields are set to the initial state. For components this will be

the initial state the component resides in and for state expressions it will be the initial

condition of the corresponding SYSTEM statement i. e. true or false.

For components, any attributes of the current state are entered into the component object.

Any events which are a consequence of this component being in the current state are

processed and if any IF state expressions for transitions from the current state are true the

component changes state. The next timed event is determined and a new Event object is

created for it and entered into the calendar queue. The state that this component will move

into upon the occurrence of this event is entered into the component object as the

next state. If there are any ON EVENT or ON RESOURCE transitions from the current

state then an OnNode consequence graph is created to link this component as a child of the

anonymous system expression object of the ON EVENT or ON RESOURCE statement.

If the resources listed in an ON RESOURCE statement are free then the resource transition

is activated.

82

Start

Record simulation stop time
Simulation time set to 0

Create Event Manager with
enough space for all objects

Phase one of initialising objects

Phase two of initialising objects
(components and state expressions)

Get next scheduled event
from calendar queue

Yes
Stop time exceeded ? Process the event

No

Yes
Any further events ?

No

End

Figure 4.4 Flow of control of simulation phase

83

Once all objects have been initialised and any state changes that this instigates processed,
the first scheduled event is retrieved from the calendar queue. Providing the occurrence
time of this event is not greater then the stop time it is processed and consequences of this

event implemented. The next scheduled event is then retrieved and so the process

continues until the stop time is reached.

4.4.1 The event processing cycle

Scheduled events relate to component state changes. The function Component:: event

common() forms the heart of the simulator as it coordinates the processing of every event
i. e. every state change. It calls other functions, come of which effect the processing of

events are listed in table 4.4.

Name Description

event commonO Main routine that processes the event calendar queue.

applyfnsO Modifies counter values by applying counter functions linked to the current state.

triggerChildreno Activates any child consequence graph nodes that are enabled in the current state. These

are links to IF, ON EVENT and ON RESOURCE statements in other components.

nextlFstateo Selects the next enabled IF transition from the current state.

nextTstateo Selects the next unconditional timed transition from the current state.

AddCnodesO Creates dynamic consequence graphs and links for any ON EVENT, ON RESOURCE or

SYSTEM statements that are enabled in the current state.

Table 4.4 Key simulation functions

event commonQ

The flow chart of figure 4.5 shows the flow of control of event commonO.

84

Start

Remove any consequence graph nodes
of which the component is a child

I Move to next state

next state = to stateof IF transition

Apply any counter functions to this state

Record attributes of new state
Record change of state
Release any resources held by previous state
Trigger any child consequence graphs of new

nextIFstnteO Yes Yes
Is there an IF tranistion for Is the time of the IF transition
this state that is valid ?

No I No

neatTstateO Yes next state = to state of this transition
Are there any timed Put event for this transition in calendar queue
transitions from this state ?

No

AddCnodesll Yes For each one, link the component to the
Are there any ON EVENT or state expression object of the statement
ON_RESOURCE transitions using a child consequence graph node
from this state ?

No

End

Figure 4.5 Flow of control of event common()

The first action is to remove any consequence graph modes of which this object is a child.

These links were created when the component moved into the current state and link the

component to any ON_EVENT or ON RESOURCE statements which could move the

component out of this state. As the component moves into the next state they no longer

85

can effect the components operation, unless they apply to the new state as well, in which
case they will be added again at the end of the processing for this event.

The component changes state into the next state and adopts the attributes of this state. If

there are any functions attached to this state that manipulate any counters then the function

applyfnsO calculates the new counter values and enters them into the corresponding

components counter list.

The new state and any change in counter values are recorded in the event date file. This

file is described in section 4.4.2.

Any resources the last state held are released and any resources required by the new state

are held. The free resource levels updated accordingly. The changes in resource levels are

recorded in the event date file. When resources are released any other ON RESOURCE

statements now enabled are activated.

If the component has any consequence graph links to children, e. g. for system statements

that are enabled when the component is in the new sate they are activated by the function

triggerChildren() and the events generated processed.

Function neztlFstateO determines if there are any IF transitions from the new state which

are enabled then the timing of the transition is determined. If the transition is immediate

then the new event is generated and processed. If it has a time delay the next state is set

and this new event is entered in the calendar queue.

If there are no timed IF transitions then function nextTstate determines whether there are

any timed transitions from this state. In the occurrence of there being more than one, the

one with the shortest transition time is selected. The to state of this transition is set as the

next state and a new event generated and entered in the calendar queue.

Function AddCnodesO determines if there are any ON EVENT or ON RESOURCE

transitions from the new state a child consequence graph node is created for each to link

the component to the related state expression.

86

Applyfnso

This function ensures that all counter values are updated as required. Counter values are

calculated by functions which are associated with component states. ApplyfnsO applies on
functions which are related to the current state and updates the associated counters.

triggerChildrenO

This function checks any consequence graph nodes of this component. These nodes will

be for SYSTEM or ON EVENT statements which are dependant upon this component.

If any of these statements are enabled by the component moving into this state an event

is created for the associated transition and placed in the calendar event queue.

nextlFstateO

This function reads through all the possible transitions from the current state and selects

only those which are conditionally governed by an IF statement. If a transition is found

which has a zero transition time i. e. an immediate forced transition, the one that is listed

first in the source code is selected.

If there are no immediate IF transitions, the timed IF transitions are considered. The

random number generator is used in determining the transition time when the timing is

given in terms of a time distribution. The transition with the shortest time is selected.

Again if there is more than one transition with the same timing then that listed first is

selected.

It is possible for more than one transition to be governed by the source IF statement. In

this case each transition will have a probability of occurrence. nextlFstateo uses the

random number generator to give a random selection of one of the possible transitions.

nextTstateO

This function selects all non conditional timed transitions from the current state. If the

transitions are probabilistic then the random number generator is called to randomly select

87

one. In the instance where there is more than one timed transition the one with the shortest
time is selected. The random number generator is called to determine times for transitions

with time distributions. IF more than one transition has the same time, the transition listed
first in the source code is selected.

AddCnodeso

The function AddCnodes checks if there are any ON EVENT or ON RESOURCE

statements which can enable transitions from the current state. For each conditional
transition a dynamic control consequence graph node is created to link the component

object to the ON EVENT or ON RESOURCE statement state expression.

If the ON_EVENT or ON RESOURCE enables a number of transitions from the current

state, each transition will have an associated probability. AddCnodesO calls the random

number generator to select which transition will be used.

If enough free resources exist to enable any ON. RESOURCE transitions an object is

created for this transition and placed in the event calendar queue.

4.4.2 The event data file

The event data file, I SIM. EVT, forms the interface between the simulator and the post

processors.

The file is comprised of two main parts. The first section is a description of the simulation

objects, written as they are created. This is used by the analyzer to construct analysis

objects and as a means of validating component, state, counter and system names in the

analysis specification. The second section is written during simulation and is a record of

every simulation event. When each event occurs the current simulation time, component

or system object number, state number and if appropriate counter number and value is

written to the file.

The start of the event data file that is written for the simulation objects in section B. 3 and

a few sample lines of simulation is listed in section B. 4.

88

4.5 Post processing

The event data file is the interface between the simulator and the post processors.
There are two post processors; VIZ, the visual post processor which provides a textual

listing of all simulation events and TPP the analyzer which performs statistical analysis on

the simulation data.

4.5.1 VIZ the visual post processor

A fundamental requirement of the post processor is to be able to view all of the simulation

events in the order in which they occurred. This is critical when analysing a models

behaviour. All events are listed in chronological order in the event data file. To provide

a listing of these events the relevant data must be retrieved, interpreted and displayed.

The initial facility sequentially read the event data file, interpreted all transition data and

created a textual file of events. Experimentation with the software found this method to

be impractical for a few reasons. The text file may be very large which is a waste of disc

space when often we just wish to view part of the simulation. Secondly, to be viewed from

within the software it was necessary to incorporate the use of an editor. This is wasteful

of resources as we only require to view the file and not to modify it. For large files that

cannot be handled in their whole by an editor it was necessary to swap in and out sections

of the file as required. This is untidy and annoying to the user.

The solution that was decided upon was to interpret and display one screen of event data

at a time as required. This alleviates the need to create a text file of the entire simulation

which saves space and means an editor is no longer required thus solving all the

aforementioned problems.

Operation of the event viewer

To provide access to the events in the event data file, the file is sequentially read once.

Whenever a transition or counter modification is detected an index is constructed to the

corresponding line of the file as shown in figure 4.6. A binary file of the complete set of

89

indices is written to disc. It is never known how many indices may be required so they

are created dynamically and added to a doubly linked list. The first list element is an index

to the first event in the event data file and the indices are chronologically ordered from

there. The list is doubly linked so that it may be read in either direction.

Index File Event File

0 ----> 15 0 ED Trans 10

1 -----------> 16 0 ED Trans 30

INI -- > 977 0 ED Trans 11

Figure 4.6 Index for accessing the transitions in the event data file

The events are displayed in a screen window. The window has a fixed number of rows,

n. Only enough events are interpreted at a time to fill one window. When the window is

first opened a pointer is set to the start of the index file. The first n indices in the index

file are used to read the corresponding n lines of the event data file. The pointer is now

placed at n-I index in the index file. The events listed in these lines are interpreted and

displayed in the window as shown in figure 4.7.

Esc=Exit UIEY EVENTS F3=Search PgUp PgDn Hoge End

8 datajiigh 6
8 control busy
0 logger idle
2 logger record

buffer a1
2 logger idle
4 logger record

buffer a2
4 logger idle
6 logger record

buffer -3
6 logger Idle
8 logger record

buffer -4
8 logger idle
18 logger record

buffer 5
18 datajtigh I

Figure 4.7 The event viewer screen

90

Commands used in the event viewer

As figure 4.7 shows, a number of user commands may be utilised in the event viewer.

Search enables the user to enter a string of search conditions. The index pointer is reset

to the start of the index file. The pointer is incremented through the indices and each

reference in the event data file is examined to see if it matches the search conditions.

When an event is found the search stops. That event which matched the search conditions

at the top of the screen and the other n-1 lines are the events which chronologically follow.

PgUp reads the previous n indices from where the index pointer is currently located and

displays the corresponding n events.

PgDn reads the next n indices from where the index pointer is currently located and

displays the corresponding n events.

Home moves the index pointer to the top of the index file and reads the first n indices.

These are used to locate the corresponding first n events which are then converted and

displayed.

End moves the index pointer to the last -n index i. e. the index file. The last n indices may f; J i`

then be read and used to locate the corresponding last n events which are then interpreted

and displayed.

The above listed functions provide an easy and complete method of viewing all or selected

sections of events.

4.5.2 TPP the statistical analyzer

When we model systems using the language and simulator we will often wish to perform

analysis upon the resulting list of events to gain greater understanding of the system. To

this end the statistical analyzer was developed.

When considering the development of such a tool two requirements were identified:

91

i) A means by which the user can select the required statistics
ii) Given this input, a method of interpreting the event data file to provide the

required statistics.

The analysis editor

The initial idea for allowing the user to select required statistics was by the use of an

analysis language. This language would describe which statistics were required for which

component states, counters and system expressions. This method was cumbersome and

presented challenges to the user. A parser was written to interpret the language and

convert it into useful data structures. This was reasonably efficient but the main problem

was that the user had to learn an extra language. A prime object has been to keep the

software as simple to operate as possible and it was felt that this extra analysis language

was an unnecessary complexity. It was therefore decided to design and implement a simple

graphical interface resembling a spreadsheet to allow the analysis data to be entered.

To give a complete understanding of this tool we shall consider both the users perspective

of entering requirements and viewing results and also how this 'specification' is stored for

input into the analyzer.

The users perspective

The analysis editor that the user is provided with is shown in figure 4.8. The screen has

three sections, a key prompt at the top, a7x 12 editing grid and an editing window at the

bottom. The editing grid provides a suitably formatted layout for the requirements to be

entered and displayed. Each grid location is known as a slot. The editing window is used

to edit text to be input to the individual slots.

ýý0
ýý

92

F1=help F2=history TECSII V 5.0 Aug 30 15: 18

Esc=Exit Edit analysis F3Clear F4=Save C=Cut P=Paste R=Rem Del

AB CDE F G
0 logger poll data high buffer
1 (State) (Stats) (Stats)
2
3
4
5
6
7
8
9

10
11

Select statistics: yZ variance stddeu min max
sum sumsq '/. ptile samples
conf lou confup tconf low tconfup accnumber

Figure 4.8 The Analysis Editor Screen

The key prompts are to remind the user of the various editing commands. These functions

are as follows.

F3 = clear Clears the entire editing grid
F4 = save Saves the grid contents to a filename and analysis file. The user will be

prompted for a filename and appropriate comment. This comment is
displayed when the user selects an analysis file for editing as a reminder of
the contents.

C= Cut Removes the contents of the slot the cursor is currently in and stores them
in an editing buffer.

P= Paste Pastes the contents of the editing buffer into the slot the cursor is currently
in.

D= Del Removes the contents of the slot the cursor is currently in but does not store
them in the editing buffer.

The slot the cursor is currently in will have its colours inverted. The selection of the slot

is altered by using the cursor control arrow keys.

When editing the grid any slot may have one of three content types. These are: -

empty : When nothing is in a slot it is denoted empty and has no effect on the

analyzer.

93

text . This is user entered text. It serves only as a comment of what statistical
information is displayed and has no effect on the analyzer.

stats These are user defined statistics. When a statistical specification is entered
in a slot, the slot will just display the text "[stats]" during editing. On

displaying results the statistical information is displayed in this slot. The

user should use a neighbouring slot for text as a reminder of what is

displayed.

To insert text in a chosen slot the user presses <enter> and to insert stats <ins>. All

editing of text and stats is done in the editing window not on the grid.

When statistics are required a menu of those available is displayed. Statistical information

is available on component states, system statement states and counters.

The statistics available and their meaning for component states and system statement states

is identical but varies for counters. Details of the statistics are given in tables 4.5 and 4.6.

Stats Meaning

mean The mean length of time the state is occupied.

variance The variance from the mean value.

stddev The standard deviation from the mean value.

min The minimum length of time the state is occupied.

max The maximum length of time the state is occupied.

sum The total time spent in the state during the simulation run.

sumSq The sum of the squares of the individual times spent in the state.

% The percentage of the total simulation time spent in the state.

ptile The percentile value of the state.

samples The number of individual times the state was entered.

conflow The lower confidence interval for a normal distribution.

confup The upper confidence interval for a normal distribution.

tconflow The lower confidence interval for at type distribution.

tconfup The upper confidence interval for at type distribution.

accnumber Prompts the analyzer to create a file which contains every sample recorded for this state.

Each sample is the individual time spent in the state. This file may be used for external

analysis and graphing of results.

I aolo '+. -+ ... «",.,.. -., "--_ ,.,,.. ý,......, ý,,..,

94

Statistics Meaning

mean The mean counter value during simulation.

variance The variance form the mean.

stddev The standard deviation from the mean value.

min The minimum counter value.

max The maximum counter value.

sum The sum of the product of each counter value and the duration for which it held that value.

sumSq the sum of the product of the square of each counter value and the duration for which it held

that value.

samples The number of times the counter changed value.

accnumber Prompts the analyzer to create a file which contains every sample recorded for the counter. A

sample is the counter value and the duration for which the counter held this value. This file

may be used by externally for further analysis and the graphing of results.

'l able 4. b biausucs for counters

It is possible to determine statistics on statistics when more than one run of a simulation

is done. For example we may run a simulation ten times and be interested in the

percentage value of a certain state occupancy over the complete number of runs. In this

instance we would denote the StatsOn to be percentage, which would denote the calculation

of percentage of total simulation spent in the given state during each individual run, and

the Stats to be mean which would calculate the mean value of the ten percentage values.

This is an important feature as in modelling a system it is normal to run a large number

of simulation runs to gain a truer understanding of the systems behaviour.

Processing of the analysis editor input

A data structure of the type slot is created for every slot on the editing grid. For the grid

shown in figure 4.8 the structures created would be as shown in figure 4.9. Note that for

clarity only the structures created for slots OA.. 1 G are shown, the other slots being

'EMPTY' slots. Note also that only the fields within the structures used for this specific

example are shown.

95

struct slot OA OB OC OD OE OF OG

t TEXT EMPTY TEXT TEXT TEXT EMPTY EMPTY

U{*text logger - poll datahigh buffer - -

*next} - - - - - -

struct slot 1A 1B IC 1D 1E IF 1G F

EMPTY EMPTY STATS STATS STATS EMPTY EMPTY

U{*text - - - - - -

*next} - - STA STB STC - -

struct Stats STA STB STC

*object control data_high logger

*state poll T buffer

type ANmean ANpercentage ANmean

stats on ANpercentage -1 -1

Figure 4.9 Data structures produced from the Analysis Editor

96

Input : filename. ana (analysis editor file)
i sim. evt (event data file)

Read simulation object information from i sim. evt, Create TDthings data structures for each
STATE SET, COMPONENT and SYSTEM statement

Readfilename. ana ignoring all but 'STATS' slots. Check slot details for errors by comparing
COMPONENT, STATE, SYSTEM and COUNTER names given in the 7Dthing data struct

Create an ana struct for each 'STAT' slot and a nested state expression to hold the object and
state/counter details. Create a Stats struct to hold results for each slot.

Set the monitor flag in each COMPONENT TDthing struct if any stats refer to a state or counter
of this component and in each SYSTEM TDthing struct that the stats refer to

Read line of transition data from i sim. evt (transition lines start with ED_Time)

Process the transition data
function DANrunO

End of file ?
No

Yes

Using the data recorded in the Stats structs calculate the required statistil

Oatpat : write a file of slots, similar tofilename. ana but with
the results calculated in place of the stats requirements

Figure 4.10 Flow of control of the Statistical Analyzer

When the grid is saved every slot is written sequentially to the filename. ana analysis file.

The file is used as the second input to the analyzer, the first being the event data file.

97

The statistical analyzer

The statistical analyzer takes as input the analysis file produced by the analysis editor and

the event data file produce by the simulator. The analysis file is effectively the

specification of the statistics required by the user and the event data file is the raw data of

the simulation upon which the analysis is performed. The flow of control of the analyzer
is shown in figure 4.10.

The processing of the analyzer is best understood by referring to an example. Given the

event data file in section B. 4 the data structures created by the analyzer are as shown in

section B. 5.1. Given the stats structs created by the analysis editor in the example above

(figure 4.9) the corresponding data structures produced by the analyzer are as shown in

section B. 5.2.

DANrunO

This function is the heart of the analysis software. It reads each line of the event data file

after the EDstart line and updates the data held in the Stats structures accordingly.

For each line that is read all the ana structs are considered. If the line refers to the same

component or system statement as the ana Statexp reference then it checks to see if the

state or counter value has changed since the previous recording.

In the case of component. state or system statements ana structs, eg anal and anal in our

example, then we record the time given in the I SIM. EVT line minus the time of the

previous recording, but only when the item has just exited the state of interest. This in

effect gives a record of the individual duration times spent in the state of interest. For

counter ana structs, i. e. ana3 in our example, then every time the counter changes value

the previous counter value and the duration for which the counter held this value is

recorded.

98

4.6 Conclusions

In this chapter we have considered the implementation of I SIM the software language

simulator.

Due to the nature of the language the simulation algorithm that has been developed is very

complex. This meant that extensive system testing was required which has proven the

software to be reasonably robust.

Implementation of the simulator proceeded concurrently with the development of the

language. Consideration of the various aspects of the simulation algorithm has lead to

reflection upon and hence greater understanding of the language. By using a variety of

simulation examples many ideas were formulated about the nature of the languages

semantics. This caused considerable debate about the merits of alternative semantics and

greatly helped to refine the language to its current form. At the time of writing, this was

thought to be optimal for the proposed applications though as different uses are considered

it may be necessary to re-evaluate some aspects of the semantics. The refined knowledge

of the semantics in turn helped in the development of the software.

The nature of the software development has been iterative in that it has undergone a

number of cycles of testing, debugging and modifying, both to correct errors and implement

changes in semantics. This approach is typical when prototyping a system but is not

optimal for producing a final product. With hindsight there are some parts of the software

which could be written in a more efficient manner. The observed robustness and

satisfactory simulation times indicates that this is not critical but may be worth considering

in future developments.

99

CHAPTER 5

Random Number Generation

5.1 Overview

Random numbers are used to provide the required stochastic behaviour within software

simulation. Due to the increasing variety of contexts within which random numbers are

used, such as for the generation of test data for algorithm checking and the simulation of

games of chance, extensive study has been conducted into techniques for their generation.

The ICE language facilitates stochastic and probabilistic modelling. Random numbers are

required to determine transition times from stochastic distributions and to select between

probabilistic transitions. It is therefore essential that the numbers used appear truly random

for the accurate simulation of models. This requirement is especially true when modelling

such things as queues. Queues are particularly sensitive to any disparity in the timing of

arrivals and departures and any small disruption in reading or writing rates can significantly

effect mean queue lengths [26].

An obvious source of true randomness is white noise. Hardware simulation systems may

periodically quantise the output of decaying pn junctions to produce streams of random

numbers [93]. The obvious disadvantage of such techniques is the inability to reproduce

100

lijtýiý'

the obtained sequences. The natural solution to this was the development of deterministic

algorithms to generate sequences which although entirely predictable behave as if they

were truly random. The accepted criteria for measuring their randomness is the application
of a suite of statistical tests. Many tests have been proposed and the consensus view [94]
is that a combination of tests checking a variety of properties must be passed for a
sequence to be considered random. A large number of algorithms have been developed.

These vary not only in the techniques employed but also in the speed of generation, length

of repeatable sequence and ease of software implementation.

The pseudo random number generators which produce maximum length binary sequences

or m-sequences (i. e. a sequence where all numbers in a range 0 or 1 to m are generated
before any are repeated) are of interest as they are known for their good randomness

properties. Each number generated is normalised to give a number, n, where 0ns1.

Any point in the sequence can be used as a starting point by stating an initial seed. Any

run of the generator starting with the same initial seed will produce identical results. The

seed is revised every time a number is generated and indicates the current point in the

sequence.

In this chapter we are concerned with the production of sequences of random numbers

within the I SIM software.
, If

I SIM facilitates the simulation of systems which can contain a variable number of

components. Each component may also have a variable number of transitions between its

constituent states. What is required is the generation of streams of random numbers for

every stochastic and probabilistic transition. The initial implementation used one generator

to produce a single stream of random numbers and these numbers were distributed to the

different transitions as required. The result is many streams of random numbers each of

which is comprised of random samples of the original sequence. These sequences will not

necessarily hold the same properties of randomness as the original sequence.

The I_SIM generator is discussed and statistical tests applied to the generated sequence.

Original modelling with I SIM did not suggest any loss of randomness with these

subsequences however the occasional questionable result when Counters were implemented

caused suspicion and lead to the decision to investigate the randomness of these

subsequences. The same tests when applied to the subsequences gave some interesting

101

results.

To guarantee the integrity of the sub sequences a new method of number allocation is

suggested and implemented. The statistical tests are repeated to ensure the randomness of
the improved implementation.

Finally a novel generator is proposed and implemented. This new generator shows a

number of desirable properties and is compared with the previous one.

5.2 The random number generator

Many deterministic methods of producing random numbers have been proposed. The

majority fall into one of five categories,

prime modulus multiplitive linear congruential generators or Lehmer generator

OO mixed linear congruential method generators

O additive random number generators

® shift register random number generators

OO combined random number generators

A good recent comparative study of public domain pseudorandom number generators is

given by Vattulainen et al [95].

5.2.1 The Lehmer random number generator

These algorithms were first proposed by DH Lehmer in 1951 [96] and have become one

of the most accepted and widely used methods of generating pseudo random number

sequences.

The Lehmer generator takes as its input a seed and performs a mathematical operation upon

it to produce another number, statistically independent from the first. The mathematical

102

operation used is multiplication by an integer, a, modulus a large prime integer, in. The

multiplier is an integer in the range [2, m-1]. The generating function is then

x,,., ,=a x� mod in ; where x� is the nth number in an integer sequence.

The values of a and m determine the statistical randomness of the generated sequence and
if chosen correctly a pseudo random sequence comprised of integers in the range [1, m-1]

will be produced. The divisor m must be prime (known as the Mersenne prime) to prevent

the sequence from collapsing to 0 which would occur in the event of a. x = m. In this

occurrence the subsequent seed would remain zero, terminating the sequence. This limits

the seed to the range, 0< seed < m. The number produced is normalised by division by

m to produce a number in the range, (0< number < 1.0). Many excellent Lehmer

generators exist and they are used widely in multiprocessor platforms [97].

The Lehmer generator is periodic as it produces a deterministic sequence of numbers and

then repeats. Ideally this sequence should be as long as possible and this is achieved by

selecting values for a and m that yield a full period multiplier. This is a generator that will

not repeat until it has selected every value in the range 1 to m-1 once. The necessary and

sufficient condition for this is that a is relatively prime to m ie the greatest common

divisor of a and m is 1. The disadvantage of this is that ideally we would wish to have a

sequence with replacement, ie if a number is selected then there is an equal likelihood of

it being selected again. With the Lehmer generator once a number has been selected it will

not be selected again until all other numbers in the sequence have been selected. Hence

the concept of equal probability for all numbers is violated. Another known but accepted

possible problem is that the pseudorandom numbers may lie in a relatively small number

of parallel hyperplanes. Hyperplanes are bands of values in which the generated numbers

lie. For example, numbers generated in the range 0.3 to 0.4 may not be distributed across

the entire range but limited to the field, or hyperplane, of 0.34 to 0.36 [95].

5.2.2 The Park and Miller generator

A vast amount of work has been done on Lehmer generators to determine good and bad

values of a and m. The Lehmer generator originally chosen for use within I SIM was that

103

proposed as an industry minimal standard by Park and Miller [98]. It was chosen for three

reasons :

1. It is a full period generator.
2. It has passed a number of empirical tests [99].

3. The algorithm is easily implemented in software.

The values for a and m selected were

a= 75= 16807

m= 231 -1= 2147483647

This generator has since been updated by the original authors who now recommend the

values

a= 48271

m= 231 - 1= 2147483647

stating that the original generator is suitable for most situations but the new generator is

"a little better" [100]. Note here that both moduli are prime. Moduli that are a power of

two are never used as Marsaglia has shown [101] that they may produce sequences that

demonstrate bad randomness properties.

Initial simulations within I SIM using this Lehmer generator seemed to produce satisfactory

results. However it was occasionally noticed that results obtained were not as expected and

this lead to some suspicion as to the quality of the generator. The Park and Miller generator

had previously been shown to produce a sequence of numbers with good randomness

properties but what was being used within I SIM was a number of sequences each of

which was comprised of numbers obtained by randomly sampling the original sequence.

To our knowledge no tests had been conducted upon randomly generated subsequences of

the Park and Miller generator. It was therefore considered necessary to test the statistical

properties of the subsequences and if results were unfavourable devise an alternative

method of random number allocation to stochastic transitions within I SIM.

104

5.2.3 Statistical properties of random number sequences

There are two categories of statistical tests that may be performed on a random number

generator. The first are theoretical tests which mathematically analyse the generator itself.

The second are empirical tests which involve the analysis of the sequences of numbers

produced by the generator.

Since theoretical tests are designed for the analysis of the sequence directly produce by the

generator they are no use for the analysis of subsequences unless these subsequences are

reproductions of the original sequence. Most empirical tests hold good for subsequences

as well as for full periods and it was therefore decided to use these.

The empirical tests are based on the theoretical properties of an ideal random sequence.

Pseudo random number sequences are predictable and therefore non ideal. We can

consider a pseudo random sequence as approximating the ideal if it passes a variety of

statistical tests which would be passed by a true-non deterministic sequence.

5.3 random number properties

If B. is an N bit random number uniformly distributed in the interval (0,2N-1] then each

number should be equally as likely to appear at any point in the sequence. Each number

should be independent of all previous numbers in the sequence. This criteria would seem

hard to satisfy as each number is strictly determined by the previous number. However if

the numbers produced pass a series of statistical tests they are deemed acceptable. The

number of runs of consecutively increasing or decreasing values should be directly related

to the length of the run,

half the runs should be of length 1,

a fourth of length 2,

an eighth of length 3,

Also the autocorrelation function should be peaked at zero phase shift and near zero for all

other values.

i

105

In addition to the above properties of randomness a good sequence should be m distributed.

That is, the generator should be capable of producing m independent pseudorandom

numbers which are uniformly distributed over the interval (0,2w']. Such a generator is

said to be uniformly distributed in m dimensional space.

5.3.1 Statistical tests

Statistical test performed on a sequence of random numbers are designed to measure the

closeness of selected properties to the theoretical properties of an "ideal" sequence. Due

to their statistical nature it is not possible to state categorically whether a sequence has

passed a given test, but rather we can state that a test has been passed with a given degree

of confidence. If the degree of confidence chosen was 95% then we would expect the test

to be failed one time in twenty on average. We may then categorise a bad random number

generator as one that fails the tests on average more often then it should. It is common

practice to perform multiple runs of tests to determine reliable results.

A variety of proven tests are available. Different tests are designed to measure the

different desired properties of a random number sequence. When choosing tests to apply

to a sequence we must select those that will give a comprehensive guide to the

"randomness" of the sequence. The tests that were chosen analyse different properties of

the sequence, many other tests could have been done but would have overlapped on the

properties being examined. Below is given a brief description of the tests selected for

application to the Park and Miller generator. These tests chosen were all equally applicable

to subsequences as to an entire sequence. All of the tests except the serial correlation use

the Chi-square test for analysis of results. This facilitates the ability to directly compare

results between the test ie we are able to say that a sequence performs better on test A than

on test B.

5.3.1.1 The Chi-square test

The Chi-square test gives a measure of the difference between the observed frequencies of

a number of events and the theoretically predicted frequencies of events. It is used to

106

interpret the results of most of the tests used here.

The Chi-square test is best illustrated by an example. Consider a six sided unbiased die.

The probability of rolling any number is 1/6. Therefore if the die is rolled n times we

would expect each number to come up n/6 times. If what was observed differed from this

value then it would be possible to say, with a degree of certainty, that the die is biased.

The difference is expressed by the equation

V=E (Y8 - nps)2 / nps ; where :Y is the observed frequency

: np is the expected frequency

The computed value of V is compared to the Chi-square distribution table of

percentage points. The row of the table is selected dependant upon the number of degrees

of freedom required which is one less then the number of possible outcomes tested for ie

5 in the die example. The column of the table is selected dependant upon the desired

confidence limit.

This procedure is important as it gives an indication of how close test results are to the

results that would be expected, thus providing a performance measure.

The Equidistribution test

This test is based on the requirement that a random sequence of numbers should be equally

distributed between the minimum and maximum numbers. We achieve this by multiplying

each number by a constant number d and rounding the result to the nearest integer. The

expected frequency of occurrence of each integer value is therefore m/d (where m is the

length of the sequence).

The Serial test

This test is preformed for the same reason as the equidistribution test but it uses pairs of

values. This measure gives the distribution of a sequence of numbers from 0 to d over d2

possible values. The expected frequency of occurrence of each pair as 1/d2. The increased

range of values dictates that the sequence to be analysed must be of sufficient length to

validate the Chi-square test conducted on the integer pairs. The rule proposed by Knuth

�I

107

[94] was used, which states that each category suggested should be expected to occur at
least 5 times and hence the use of sequences of length >- 5d2 is required.

The Gap test

Gap tests check the distribution of lengths of gaps between numbers within a specified

range. This is important as we can check for the clustering of values within a chosen

range. It was decided to use the ranges 0 to 0.5 and 0.5 to 1 to test for runs above and
below the mean respectively.

The Poker test

This test analyses the sequence of numbers five at a time, recording the occurrence of a

number of patterns. This detects if patterns are repeated too frequently or significantly

more than other patterns. The patterns that were selected are one, two, three, four and five

numbers falling within the same division. The range of possible values 0 to 1 being split

into ten divisions of equal length. This is a simplification of the classical poker test which

has seven categories. The five categories are sufficient for our purposes and are

significantly simpler to implement.

The Permutation test

This test is similar to the Poker test, splitting the sequence into groups of numbers of size

t. The numbers in any group can then have t! possible relative orderings. The algorithm

then counts the number of occurrences of each possible ordering. The expected frequency

of occurrence of each ordering is n/t!. The value oft was chosen as 5 to be suitable for

analysis.

The Run test

The run test analyses the distribution of runs for consecutive numbers up and down in the

sequence. Subsequences of the original sequence in which all the numbers are either

running up and down are examined. Each sequence analysed was offset from previous

sequences by at least one number to ensure that adjacent runs were independent. This is

a proviso of the Chi-square test that all events analysed be independent of each other.

t

108

Maximum of t test

This test splits the sequence into groups of length t and records the maximum value in each

group hence checking for any bias in groups of values. These recorded results are

effectively a new sequence of length m/t. This new subsequence can then be analysed by

the equidistribution test. The value of t was again chosen as five for the previously given

reasons.

The Serial Correlation test

This test generates a serial correlation coefficient which is a measure of how much any

number within the sequence is dependant upon any of the previous numbers. This is a

valuable test as it gives an indication as to the unpredictability of a number sequence.

5.3.2 The testing procedure

Large sequences of numbers were taken from generated sequences. The poker and

permutation tests required numbers to be split into groups of five and the serial test

required pairs therefore the amount of numbers used had to be divisible by ten. The

amount of numbers tested at any one time must also be representative of typical I SIM

applications and for this reason tests were done on sequences of numbers from 500 to

5000.

All of the tests were implemented in software. These tests took as their input a file of

random numbers. The relevant parts of the Chi-square tables were also implemented in

software to facilitate immediate analysis. All results were considered to fall into one of

three categories

i) Pass. The result is what would be expected to occur 90% of the time for

a truly random sequence.

ii) Suspect. The result is one which would only be expected to occur 10% of

the time.

109

iii) Reject. The result is one which would only be expected to occur 2% of the

time.

Each test was repeated at least ten times using different subsequences. When results were
inconclusive the tests were repeated in blocks of ten. When generating subsequences seeds

were chosen such that different subsequences would have no overlap.

5.4 Testing the Park and Miller generator

The first step of testing was to apply the statistical tests to the Park and Miller Generator.

Park and Miller's original spectral tests were global. Knuth [95] has shown that this is not

a sufficient test and that local randomness must also be tested. What we are testing here

are relatively short subsequences ie the local properties. The Lehmer generator originally

proposed [98] was tested as well as the modified generator [94]. Each generator was tested

with multiple runs incorporating 500 to 5000 samples.

A typical set of results for the Chi-square tests on the first generator are shown in table 5.1.

The results shown are for 2000 samples. The failure rate here is 12% at the 10%

confidence level and 2% at the 2% confidence level. These results are almost perfect. Any

discrepancies in these tests were small enough to be incidental to the tests and did not

indicate any statistical inadequacies. The results from the serial correlation tests applied

to the same 10 runs are shown in table 5.2. There is no indication of significant levels of

correlation.

#1

2s

3R

4SS

5

6SSS

7SS

8R

9S

10

EQ SE G1 G2 PK PE RD RU MX

110

Table 5.1 Test results for Park and Miller generator with multiplier 16807

Run # % failing at

5% level

1 5.20

2 3.35

3 4.90

4 3.80

5 5.20

6 5.80

7 4.10

8 4.30

9 4.75

10 4.20

Average 4.56

Table 5.2 Serial Correlation result or Par c an Miller generator with multiplier

16807

The generator tested above was that which was first implemented in I SIM. This was

updated by Park and Miller who now suggest a multiplier of 48271. A typical set of

results for the Chi-square test, again for 2000 samples per test is shown in table 5.3. The

results were very similar to the previous ones. In this example it failed the same number

of tests as the first generator at the 10% level, ie 12% but slightly more at the 2% level,

3% as opposed to 2%. These results are typical of all the tests done. The serial correlation

tests also produced results very close to those of the first sequence.

#I S S R

2

3

4 S

5 S

6

7 R S

8 S

9

10 S S R

111

H EQ SE G1 G2 PK PE RD RU MX
Table 5.3 Test results for Park and Miller generator with mu tiplier 48271

Run # % failing at

5% level

1 5.00

2 5.60

3 4.80

4 5.25

5 3.50

6 6.35

7 7.20

8 3.65

9 3.70

10 3.90

Average 4.895

Table 5.4 Serial Correlation results for Park and Miller generator with multiplier
48271

From the tests it may be concluded that there is neither generator is appreciably statistically

better then the other. It can also be stated that with respect to the statistical tests used, the

Park and Miller generator is virtually ideal and therefore suitable for use within I SIM.

5.5 Random number allocation

Some systems may have a number of independent components which require random

numbers. Such is the case with I SIM. Deng et al [102] considered the similar case of

the allocation of random numbers within multiprocessor systems. They identified four

criteria that should be satisfied, three of which are equally applicable to the instance of

multi-component systems. These are

i) Each subsequence should be indistinguishable from that produced by a

112

random sequence of standard uniformly distributed random variables.
ii) A subsequence generated for one process should be independent of the

subsequence generated for another process.
iii) The random numbers subsequences should be identically reproducible on

a subsequent execution of the same program.

Makino [103] considered randomness of a parallelized source with application to

congruential and shift register generators used within parallel computers. He found that

the randomness of the parallelized streams or subsequences ranged from being good to bad

dependant upon the method by which the source is parallelized. This work concentrated

on uniform means of parallelization, within I SIM the subsequences will be generated in

a random manner dependant entirely upon the individual model being simulated.

Random number allocation may be implemented sequentially, parallely or randomly. With

sequential allocation each of n components will be allocated every nth number from the

sequence. This is simple and requires no set up procedures however it has been recognised
that the subsequences may not be statistically as good as the original [103]. If the

components consume elements at variable rates then there may be space leakage, a problem

which is only partially solved by the wasteful solution of providing buffering for each

component. Space leakage is the loss of elements allocated to components which require

numbers at lower rates than those dictating the speed of allocation. Buffering is a wasteful
0

solution as it necessitates the use of extra resources to store the elements allocated to these

components. For this reason sequential allocation was unsuitable for I SIM.

In parallel allocation the generated sequence is split into n sequential sources so that each

component has its own linear non overlapping subsequence of the original sequence. The

statistical goodness of the subsequences should then be identical to that of the generator.
The primary problem with this method is what Burton and Page [104] refer to as "awkward

plumbing". Each component must have its own seed sufficiently far apart in the sequence

to avoid overlap. The allocation of seeds must be set up initially and this task becomes

complicated when the number of components is unknown.

Random allocation, allocates numbers from the generated sequence to components as they

are required. This results in subsequences which are a non deterministic irregular sampling

of the generated sequence. In one sense this is a refinement on sequential allocation as it

113

solves the problem of space leakage and saves on the use of component buffering. For

these reasons, random allocation was the method chosen for I SIM. However the statistical

quality of the subsequences is non determinable by theoretical means.

Deng at el [102] proposed a novel method of allocation for multiplitive linear congruential

generators that they have termed the systematic random leapfrog method. This involves

systematically choosing different multipliers for each of the different random number

generators allocated to each process. They have shown this method to be robust if a good

modulus is used. It is however not ideal for our purpose as we wish to use the Park and

Miller generator and therefore the multiplier must be constant. This is not an

insurmountable problem, though the implementation of such a means of allocation would

require the testing of a number of multipliers.

5.6 Testing the subsequences produced by the Park and Miller

generator within I SIM

We have seen that the random sequence produced by the Park and Miller generator is

virtually ideal. In section 5.4 it was explained how random allocation is used to provide

the stochastic transitions within aI SIM simulation with randomly sampled subsequences

of the generated sequence. As Makino [103] has shown we cannot assume that these

subsequences will exhibit the same statistical properties of the generated sequence.

The subsequences will be unique to individual models therefore to provide a representative

set of data for analysis it was necessary to collect data from a variety of 'typical' ICE

programs. The remit for these programs was that they should include all of the stochastic

and probabilistic features of the language that require random numbers and that they should

generate a suitably large number of calls to the random number generator for each

transition under analysis so that an acceptable amount of test data could be produced.

5.6.1 Data logging modification to I SIM

A number of modifications were required by the I SIM software to produce the data for

114

analysis. All of the modifications were functionally transparent to the user. The data

logging software creates a file which contains all data required for analysis. Every time

the random number generator is called a string of data is written to the file including the

transitions to and from states, whether the call was for a probabilistic or stochastic decision,

the seed to be used by the generator and the random number produced. This data allows

the analysis software to pick out any individual subsequence of random numbers and create
files containing the subsequence for any chosen transition.

5.6.2 Example results of I SIM generated subsequences

Three ICE files were used to produce typical subsequences for analysis. The results

obtained from each were all quite similar as would be expected. We present here one of

the models and the results obtained.

The model has two components with the same state space. The state space for a

component is shown in figure 5.1. All transitions are stochastic and two of them are

probabilistic.

exp(50)

Prob(O. 6) f exp(20)

exp(40) exp(10)
Running Waiting_

Prob(0.4)

exp(30)

Figure 5.1 State space of model used for analysis of Subsequences

The subsequences applied to each transition were analysed. In the case of the transitions

from the running state to the waiting states the subsequences used for the stochastic

behaviour and for the probabilistic behaviour were both analysed separately. Graph 5.1

shows the number of tests failed at both the 10% and 2% levels for a selection of the

,ý

115

transitions. These results are typical of all the results obtained for this and the other test

programs.

20

16

12

8

4

0

Graph 5.1 Tests failed at the 10% and 2% levels for selected transitions

There is a considerable range of results. They range from less than 7% of tests failed at

the 10% level and 0% of tests failed at the 2% level, which is better than would be

expected for an 'ideal' sequence to 19 % of tests failed at the 10% level and 5.6% failed

at the 2% level. By random chance we would expect to have some very good results and

some poor results. What is significant is the proliferation of failures of 4 out of 90 at the

2% level. This is twice as many as would be expected and though not very bad is certainly

a strong enough trend to be able to state that the subsequences on average are not as

statistically good as the generated sequence. This evidence indicates that the initial method

of random number allocation is not acceptable and must be improved if all transitions are

to be provided with random numbers as statistically good as the generated sequence.

An interesting point to note is that all tests were failed with equal likelihood. The

subsequences were statistically poorer in general and not with relation to any specific

attribute.

116

rTrP wA e r1 T ri P

Legend
El 1 0% level 0 2% level

wAl e1

5.6.3 Detection of any predictably statistically poor subsequences

The test program described above requires random numbers to be allocated to the various

transitions in a random unpredictable manner. It was decided to investigate alternative

sampling procedures that would produce significantly better or worse subsequences eg

regularly sampling every nth number from the generated sequence or regularly dropping

every nth number from the generated sequence.

A number of different sampling algorithms were tried. Again tests were done on numbers

of samples ranging from 500 to 5000. All tests were applied to each pattern a minimum

of ten times on sequences with seeds selected to prevent overlap. Graph 5.2 presents the

minimum and maximum number of tests failed, out of 90, at the 2% level for ten runs of

each of the nine tests described in section 5.3.2.1. Here, 2% denotes the Chi-square test

when 2% failures would be expected. Graph 5.3 presents the minimum and maximum

number of tests failed, out of 90, at the 10% level for the same range of tests.

Legend
® max tails [I mm lads

Graph 5.2 Minimum and maximum number of tests failed at the 2% level

117

20
18

16

14

12

10

8

6

4

2

0

CJ

raph 5.3 Minimum and maximum number of tests failed at the 10% level

Considering the results at the 10% level we cannot detect any particular trends. The values

range from less than 7% to 21 % ie from very good to unacceptable. This confirms the

results obtained for the random subsequences generated by the 1_SIM test programs.

More interesting revelations are shown by the results at the 2% level. More tests are failed

in the sequences where every nth number is dropped from the generated sequence than

when we form a subsequence with every nth number of the generated sequence. The

variance of results are shown and due to the probabilistic nature of the tests we cannot state

explicitly that any specific sequence is particularly good or bad but we can with confidence

make the observation that the generated sequences with equidistantly dropped numbers are

demonstrably worse than subsequences formed by uniformly dropped numbers when the

gap between numbers is small.

It should also be noted that the results can vary significantly for the same pattern of

samplings done on different parts of the same generated sequence. Consider the instance

when a subsequence is created by sampling every 6th number in the generated sequence

ie 'I miss 5' on the graphs. The tests failed at the 2% level range from 0% to 6.67%. This

is a large margin at the 2% level ie from better than expected to over three times as worse

118

6 miss 15 miss 14 miss 13 misst 2 miss 11 miss 11 miss 21 miss 31 miss 41 miss 51 miss a
Legend

max fails Q min fails

3ýý! 3

than expected. A number of extra tests were done on this sampling pattern and no other
tests were found that were worse than 2.22%. From this we can see that the 6.67% was

a rare chance result. Rare results are to be expected with statistical testing, however no

results with such great a range were obtained in the testing of either of the main Park and
Miller sequences indicating that subsequences constructed by sampling can produce

unpredictable significantly bad results and this suggests they cannot be thought of as

representative of the original pseudo-random sequences.

5.6.4 The effect of statistically poor subsequences on I SIM models

All the results prevented so far have been statistical. What is of real importance within

LSIM is the question, can statistically bad results have a noticeably detrimental effect upon

the simulation of models ?

To investigate this a number of ICE programs were written which incorporated a mixture

of stochastic and probabilistic transitions. These programs were kept simple so that the

relative order in which transitions would call the random number generator could be

predicted. This allows transitions to be fed with subsequences that are known to be

statistically bad. Statistically bad subsequences were chosen from tables of results and the

related starting seed used within the simulation.

We shall consider here one of the models used and the range of results obtained. This

model is of two communication network sources. It comprises two channels which feed

fifo queues in two network terminating units (NTUs). Each NTU is connected to the queue

of a switching element within a switch. The two sources are theoretically independent

though we shall introduce statistical independence via the traffic loads. A block diagram

of the model is shown in figure 5.2. The state space diagram for one source is shown in

figure 5.3.

119

SE
CHANNEL

ckA
qiA un ttn_y

all now «A queux

SE
CfiANMEL

c6B
qm ueB rCB q

Figure 5.2 Model of communication sources

total -total +1; glen-glen+1 NIU queue
Channel me

PROB(x)
IFlchA. arrive IFgitlqlen>

0

y total total +10 IF ccA. amve 0

quiet arrive wait drop
000

total total -1; g1en - glen -I Y

PROB(1-x)
IF eeA read 0

glen - glen -1
! LA dec

IF laeA. read
q

Switching element

wait
0 IF giA. qlen > EMPTY

Ty

read

wA

Switching element queue
total - total +I total - total -1
00

wait inc drop

0
IF wAiead IF xA_q. glen >

IF laeA. read
PO&q

Figure 5.3 State space diagram of a model of communication sources

We shall briefly consider the functionality of the model by reference to the state space

diagrams for each of the four components in turn.

The channel component generates traffic at any time instant with probability x. By setting

I

120

ýýýý
the values of x in the two different sources we can achieve the desired pattern for

generating the subsequences of random numbers. For example if we set x to be 1 in

channel chA and 5 in channel chB then the subsequences used by chA will be equivalent
to missing every 6th number from the generated sequence ie 5 miss 1. Conversely this will

set the subsequence used by chB to be every 6th number from the generated sequence ie

1 miss 5. This probabilistic method of determining the load creates the statistical
interdependence between the theoretically independent models. By choosing the starting

seed in the ICE program we can recreate any of the subsequences statistically analysed

previously.

The NIU queuing component qiA models the queue of traffic generated by chA. Whenever

traffic arrives the queue is incremented. If it grows to be over a given length, FULL, it is

decremented to remain at this maximum value, ie this simulates queue overflow. The

queue is decremented whenever the switching element seA reads from it. The rate at which

seA reads is 2y ie twice the rate at which traffic arrives. Using this ratio we can set the

load so that traffic in the queues should either build up, stay stable or decrease. If we set

the load to be 0.5 the level of the NIU queues should stay reasonably steady. When seA

reads traffic from qiA the queue seA_q is incremented. The counters total associated with

chA, qiA and seA_q show the total amount of traffic that has arrived at the respective

components. The counter glen associated with qiA keeps a running check of the amount

of traffic in the queue.

The values of the traffic load in both channels were set to different ratios to recreate some

of the traffic patterns previously analysed. As an indicator of the effect the subsequences

have on the model's behaviour we consider the mean length of the queues qiA. qlen and

qiB. qlen. Since the ratio between the feeding and reading of each queue is the same the

mean values should be similar.

This model was coded, see appendix C, and simulated. A number of simulations were

observed with the mean values of corresponding queues not usually deviating by greater

than 1 when runs lasting at least 1000 traffic arrivals were done.

To test if statistically bad subsequences would effect the models behaviour, the

subsequences that gave particularly bad results with the sampling pattern 5 miss 1 were

chosen. The starting seeds were selected to run simulations that would recreate the

121

subsequences previously recorded. The results of the mean values for the lengths of qiA
and qiB are shown in table 5.5.

qiA qiB

2.105 1.925

2.875 3.820

10.27 4.25

15.407 3.753

2.5 1.575

Table 5.5 Mean queue lengths from simulations using statistically bad subsequences.

Some of the results are reasonable and are not affected by the statistically bad

subsequences. However there are two results which are significantly bad. To investigate

this further the result with the biggest difference between queue lengths, qiA = 15.407 and

qiB = 3.753, was considered. By taking the generated subsequence, splitting it into ten

equisized sequences and taking the seed at the start of each of these sequences we could

run ten individual simulations each of one tenth of the length of the original and thus when

concatenated they are directly equivalent to the original. Table 5.6 shows the mean lengths

of the queues for each of the individual simulations.

q1A qiB

1 1.66 1.6

2 2.92 1.45

3 2.29 1.65

4 4.17 3.55

5 4.05 0.45

6 3.24 1.05

7 7.35 2.95

8 5.14 1.45

9 2.47 0.85

10 1.66 2.3

Table 5.6 Mean queue lengths from one simulation broken down into ten equisized
constituent parts

122

It can be seen that the mean value of qiA increases by over 4 from the 6th to the 7th run.

Significantly the highest mean is 7.35 for the 7th run which is less then half the mean of

15.407 for the complete sequence. When the file of random numbers forming this

subsequence was examined there were two extended runs of values greater than 0.5. This

would have caused channel chA to produce traffic feeding qiA at a greater rate it than it

was been read by seA thereby causing the queues length to increase. This was an

interesting result as the statistical test for runs up was failed badly by this subsequence.

Since qiA is being read at a steady rate any runs up in the traffic can take an

undeterminable time to clear from the queue dependant upon the rate of arrivals. When,

as in the case being examined, runs up in traffic are interspersed with steady traffic without

any runs down then the queues mean values can be falsely high.

This example has shown how statistically bad subsequences can produce actual bad

simulation results. The inherent nature of queues effectively illustrated how the poor

subsequence of random numbers directly altered the results from the simulation. Counters

and queues within ICE models can be significantly effected by statistically bad

subsequences. It was also observed that not all statistically bad subsequences will effect

the behaviour of the model. Some statistically bad subsequences will have no noticeable

effect on the models. It will also often be the case that the effect will be entirely

dependant upon the model itself. The nature of the transition interactions within a model

and their dependency upon the subsequences can vary substantially and a statistically bad

subsequence may significantly effect one model and have no apparent effect upon another.

5.7 A revised scheme for random number allocation within I SIM

It was shown in section 5.6 that the random method of allocating random numbers to

transitions from the generated random number sequence produced subsequences which

could be statistically poor. These subsequences could have a detrimental influence on the

behaviour of simulations producing unexpected and sometime erroneous results. For this

reason it was decided to revise the method of random number allocation.

In the random method of random number allocation there is only one generated sequence

being consumed by a number of components. The logical progression is to have an

independent random number sequence for each consuming component. This may be

123

achieved by having one random number generator and using the parallel allocation method
described in section 5.4.

Within I SIM parallel allocation was implemented by giving each probabilistic and

stochastic transition its own seed. This is the equivalent of splitting the sequence into a

number of disjoint subsequences, each of which should act like a virtual generator [105].

When any transition requires a random number to generate a probability or time it calls the

random number generator with its own seed. The generator produces a random number

using this seed and in the process will produce the sequentially following seed. This new

seed is returned to the calling transition. This process allows each transition to generate

its own independent sequence as required.

The main problem with random number allocation is determining the initial seeds. Burton

and Page discuss several methods in [104]. The primary concern is that each seed should

be sufficiently spaced within the overall sequence so that no part of the same linear

sequence will be used by more than one component within the same simulation run. If this

did occur then there would be high levels of correlation between the sequences being

allocated to supposedly independent components.

The method of determining the initial seeds was that which would give the greatest relief

from cross correlation. It was predicted that the highest conceivable amount of transitions

requiring random number sequences would be 500 (this may be simply changed if future

application areas require it). It was then predicted that the maximum amount of random

numbers required by any transition would be no greater then 1000000. Using these figures

the generator was run for 500 x 1000000 iterations and every 500th seed generated

recorded. A table was created with these seeds and they are used as the initial seeds within

I SIM. Within a simulation these seeds are allocated to transitions as required. It is

assured that the maximum spread of seeds is used. For example, if a model requires 10

seeds every 50th seeds in the table will be allocated to a transition.

It is desirable to be able to repeat simulations and to run simulations with different seeds.

To facilitate this the SEED command is used within an ICE model. The value of SEED

may be from 1 to 500 and dictates the starting point in the table from which seeds are

allocated. This will allow 500 different simulation runs of the same model, which if

deemed insufficient at some point may be increased by increasing the table size.

124

The statistical properties of the subsequences produced by this revised method of allocation

should in theory be equal to that of the parent generated sequence. To test this the same

programs were used as described in section 5.3.2. We shall consider here the model with
the state space shown in figure 5.1. Graph 5.4 presents the test results for the same

transitions as in graph 5.1, which shows the test results produced for the subsequences

created using the previous method of random allocation.

16

12

8

4

0
Legend...

0 10% level 0 2% level

Graph 5.4 Test results for 10% and 2% levels using subsequences produced by parallel

allocation.

It can be seen that these results are comparable to those for the generated sequence (table

5.1). It is interesting to compare these results to the results for the equivalent tests in graph

5.1. It can be seen that there are slightly less failures at the 10% level and on average half

the failures at the 2% level. For all the tests done on this improved method of allocation

the average percentage of failures at the 10% level was 131/o and at the 2% level 1.67%.

These results are very close to what would be expected for an 'ideal' random number

generator.

The revised method of parallel random number allocation has significantly improved the

statistical goodness of the subsequences being used by the transitions within 1_SIM

simulations. The subsequences are now close enough to the theoretical ideal to be

125

considered ideal. Out of all the tests done there were no particularly bad results, the worst

number of failures being 15.5 % at the 10% level and 3.3% at the 2% level. These values

are still within acceptable limits and we can therefore be confident in the statistical

goodness of all random number subsequences being used within I SIM.

5.8 The development of a novel pseudorandom number generator

The results obtained for the Park and Miller generator was acceptable but it was decided

to investigate the development of a novel generator. Current research suggested two

possible methods of generation.

The first was nonlinear congruential methods which are an extension of linear congruential

methods. This includes the promising inverse congruential approach first proposed and

then developed by Eichenauer et al [106,107]. This method has been proven to have a

number of good statistical properties and Neiderreiter [108] showed that it is suitable for

producing a number of parallel subsequences which are statistically independent.

The second area was in the development of fast generators based on the shift register

method. It was decided to investigate further this method due to the inherent properties

of long period and fast iteration of such generators. The long periods possible offer the

possibility of the production of uncorrelated parallel subsequences.

5.8.1 Linear feedback shift register sequences

Using hardware shift registers to generate binary sequences has been extensively researched

[109]. In this method selected bits of a shift register are added modulo 2 to the least

significant bit to compute the next logical input level. This level is input to the register

on the next clock pulse during which the contents of the register are shifted along one bit.

The succession of states in the register is periodic with the period, P, being

P:: 9 2"-1; where n is the number of bits in the register.

126

To produce a new number of bit length n there must be n iterations of the feedback

operation. Each state is wholly determined by the previous state. Obviously the all zeros

state is not allowed as this would result in logic zero being fed back and the register would

remain in this state.

Let X be the sequence of l's and 0's generated by the linear recursion relationship, where

X={x; }; where i=0,1,2,...

The feedback operations, ie the definition of which bits are added modulo 2 and fed back,

is given by the feedback equation

x; = alx; _1
+ a2x; -2

+... + a�x1-n (1)

where a; (j = 1,2, ... , n) takes the value 1 or 0. For the sequence to be of degree n, a,,

must be 1. The integers a, determine which stages of the register are fed back. Equation

(1) shows that the sequence x; depends only upon the preceding n-tuple (x;
_t, x; _I ,..., x;. 1).

Each new n-tuple has a unique successor determined only by the recursion formula. The

maximum period P of x; is P= 2" - 1. When the period is maximum the sequence is

called a maximal length linear recurring sequence or m-sequence.

For the sequence to be an m-sequence the polynomial

f(x) =1+ ax + a, x2 + ... +e (2)

must be primitive over the Galois field of order 2 [109]. Zieler [110,111] has compiled

lists of primitive polynomials.

Equation 2 is known as the characteristic equation. For computational ease the

characteristic equation is normally a primitive trinomial. When the period is prime, P is

known as the Mersenne prime and n is termed the Mersenne exponent.

127

ý! j 11 -H il-
5.8.1.1 Decimation of m-sequences

Decimation is an important principle used in newer shift register pseudorandom number

generators. Let x be an m-sequence. Let x(k) be a sequence generated by sampling every
kth bit of x. This operation is termed decimation of order k [112].

If k and P are coprime, (k, 2"- 1) = 1, the decimation is known as proper decimation and

x(k) is also an m-sequence with the same period. If k= 28 (a E I), x(k) is a shifted version

of X.

Let y be a binary m-sequence such that y= x(k). It is possible to determine the sequence

x by decimation of y. The order of the decimation should be such that [113] for k= 2°

m=2 "-a (3)

Consider two m-sequences xl(k) and x2(k) generated by sampling every kth bit of x

starting with the first bit for xl(k) and the second bit for x2(k). The sequences xl(k) and

x2(k) represent the same m-sequence with a phase shift between them. From equation 3,

if we assume x2(k) is delayed with respect to xl(k) by d bits, d can be shown to be

d=2°-8; when k=28

d=2"/k; whenk: P, - 2'

We can generalise this. Let x,,, (k) be the kth decimated sequence starting with the mth term

of x. The phase shift between x1 (k) and xm(k) is

d= m/k (mod P) (4)

This result has been used extensively in the development of linear feedback shift register

pseudorandom number generators.

Tomlinson et al [114] compared the m-type weight distributions of an m-sequence based

on a primitive trinomial and its decimation by consideration of a third central moment

which is a measure of skewness and is zero for symmetrical distribution. They have shown

that the third central moment can be very much less for the decimated sequence than for

128

the trinomial sequence.

5.8.2 The generation of random numbers from linear feedback shift

register sequences

Most of the techniques for producing random numbers from m-sequences rely on the fact

that a collection of N independently derived random binary digits when assembled in an

N-bit word may be interpreted as a number provided a suitable weighting is applied to each
bit in the word [115]. In this way a number B; in the range (0,2" - 1] may be created.

Assuming each digit is generated by a source which produces 0's and l's with equal

probability the N-bit composite number will be random and uniformly distributed over its

range. The difficulty lies in producing and N-bit number from n independent sources.

Using N stages of an n stage shift register presents itself as a simple solution but it is

undesirable as the generated numbers are cross correlated. It is therefore desirable to

spread the pick off positions by shifting the N digits adequately relative to each dther.

Two techniques are proposed to generate these n shifted version of the m-sequence

i) Linear Combination of the n register stages of the feedback shift register.

ii) Decimation of the m-sequence

The former requires the calculation of the proper stages to be added modulo 2 to get the

required shifts. The latter is simpler but slower due to the sampling. For n shifted

versions of the m-sequence to be independent the shift d must be high enough to ensure

there is no overlapping of the shifted subsequences. This calls for the use of high degree

polynomials representing the feedback shift register. In this way the generated

pseudorandom number sequences are uncorrelated to shifts up to d. Techniques were

proposed which use N different m-sequences to generate N-bit pseudorandom numbers but

they received little attention because of the correlation between the individual bits [116].

5.8.3 The Tausworthe generator

Tausworthe [117] proposed a method of pseudorandom number generation by decimation

129

of m-sequences produced by a feedback shift register. The advantages of this method is

the theoretical guarantee of good properties of randomness. Tausworthe showed that the

numbers produced had good mean, variance, autocorrelation and uniformity properties.

Tootill et al [118] observed however that these results applied to global characteristics and

give no insight into local behaviour. Local behaviour in our application is critical as we

will only use relatively small subsequences for any given application. They investigated

the runs properties of k-decimated generators based on the primitive trinomials (x° + xk +

1) and their compliment (x° + x°-'` + 1) and showed that sequences of k-bit numbers may

have good runs and uniformity properties provided the following criteria are met

i) The greatest common divisor between (km) and P is 1 for m= [n/k].

ii) k must be less that n/2.
iii) k is neither too small nor too close to n/2.

Provided neither k nor n was too small a generator meeting the above requirements has

predictably good runs properties. The main disadvantage of the Tausworthe generator is

its slow speed due to the sampling required for decimation. It does however remain a

widely used generator due to its theoretical randomness properties.

5.8.4 The Lewis Payne generator

Lewis and Payne [119] proposed a generalised feedback shift register generator (GFSR)

algorithm capable of producing long sequences of pseudorandom numbers which may

posseses m-space properties for any word size of machine. Their algorithm is commonly

used in cryptography where it as known as the TLP algorithm [120]. Their algorithm relies

upon shifted versions of the m-sequence and involves the introduction of delays between

words.

The GFSR algorithm is again based on a primitive polynomial, generally a trinomial (x°

+ xk + 1). A recurrence relation is used to produce a pseudorandom m-sequence b;. The

algorithm is initialised by the selection of suitable initial words. If N-bit words are desired,

the GFSR sequence is initialised by setting the elements of b; into N columns with a

suitable delay between adjacent columns.

130

This generator is fast and widely used. There exists efficient software implementations

including Hamilton's [121]. Tests on this generator demonstrated reasonable confidence
in the properly stochastic nature of the number generated though for this as in most shift

register generators the length of period dictates that no existing computer could run close

to full period tests without reaching obsolescence and therefore only relatively small

subsequences have been tested.

Major disadvantages of this generator are the computation involved in its initialisation and

the fact that there is no theoretical assurance of m-distributivity. Fushimi et al [122]

established a sufficient condition for the GFSR sequence to be m-distributed and also

proposed a relatively time efficient algorithm for testing the m-distributivity. Fushimi's

theorem is an advance on the GFSR algorithm. Another remaining disadvantage is that

since the relative delay between columns is suggested to be 100n, it cannot deliver more

than 100n numbers without correlation problems.

5.8.5 The Split-up feedback shift register generator

Arvillas and Maritas [123] have shown that the m-sequence based on the primitive

trinomial (x" + xk + 1) can be generated a splitting up a feedback shift register composed

of k-toggle and (n-k) shift elements. They state that for k being coprime to (2"-1) the split

up shift register can generate, in parallel, k m-sequences each of which is a kth decimation

of the base trinomial sequence. These m-sequences are Tausworthe sequences with

statistical independence ensured over a length equal to [(2"-1) / k] -1.

This generator was first proposed as a hardware implementation of the Tausworthe

sequence. Arvillas and Mantas suggested that for efficient software implementation using

split-up feedback shift registers based on the trinomial (x° + xk + 1) where k=2; i EI

[124]. Here the k outputs of the leading stages of the sub-registers are phase-shifted

versions of the basic m-sequence based on the trinomial.

The main advantage of this technique is that it gives fast algorithms. However the

statistical properties can vary greatly for sequences of the same length but having different

characteristic polynomials.

131

ýýýIlf
ýi

5.8.6 The Barel generator

Barei [125] proposed a hardware Tausworthe pseudorandom number generator based on n-
wise decimation of primitive trinomials (x" + x' + 1). His method is advantageous in that
it is very fast and independent of the number of bits or the trinomial characteristics. Barel's

algorithm is given below

i) Start with an initial seed, say B'1

ii) Store B', in locations A and B

iii) Shift contents of Bk positions to the right, replacing the contents of bits 1

to k by zeros.
iv) Add contents of A and B modulo 2

v) Store result in A and B

vi) Shift contents of B (n-k) positions to the left, replacing the contents of bits

K+1.. n by zeros

vii) Add contents of A and B modulo 2

viii) Store result B't+, in A and B

ix) Repeat from step (iii) to generate next number

Barel's hardware implementation of this algorithm is very fast as it replaces all n bits of

the register in parallel. It is also very component efficient as it requires only two registers

and two layers of exclusive OR gates but it is very powerful.

Barel used this generator to test three primitive trinomial generators giving 31 bit random

numbers and obtained satisfactory results. However it is significant that the number of

dimensions in achieved by these types of generators will never exceed one. From

Tausworthe's theory the number of dimensions is equal to [n/q] where q is the order of

decimation. Since n=q, then in = 1. Tootill et al [118] have shown that the number of

dimensions influences the runs up and down properties and hence Barel's generator will not

give good results in this respect.

132

5.8.7 A proposed software fast Tausworthe generator

Talib [7] proposed a hardware Tausworthe generator which was a development of Barel's

but used k-wise decimation to give a higher number of dimensions. Here we develop

Talib's proposals and suggest a fast software Tausworthe generator.

Let b; be an m-sequence based on the primitive trinomial (x" + xk + 1)in which (k, P) =1

and k< n/2 (Tootill's first and second criteria [118]). Let So = (b,,
_,

bn_2 ... b2 b, b0) be the

starting n-tuple of the sequence. By applying the base recurrence relationship to So we get

the following succession of sequences

S, =(boED bk)b.,
_I ...

b2b,

S2=(b1 (D bk+,)(bo®b3... b3b2

Sk = (bk-I 0 b2k-1)

""" (bo ® bk) b�_1 ... b3 b2

If A and B are integer variables then Sk can be generated from So by the following

algorithm
i) A=B=So
ii) B=B DIV 2k
iii) A=A®B
iv) A=A MUL 2-k
v) A=A®B
vi) Sk =B=A

This process can then be repeated (replacing So with Sk in the first step) to generate Sek ,
S3k ,...,

Sk for t=0,1,2,.... Sk is then a Tausworthe sequence based on k-wise decimation.

This generator produces the same sequence as the split-up feedback shift register type but

does not require any computations to determine the sub-register lengths.

Our algorithm is similar to Barel's but since we use k-wise decimation we have m= n/k

dimensions of uniformity. By choosing k to be not too small and k< n/2 (Tootill's third

criteria) we can satisfy the requirements for good runs properties. Note that this generator

produces ak bit random number. The value of k must be of an order such that the k-bit

accuracy is suitable. If a greater bit degree of accuracy is required then Barel's generator

133

may be used as it gives n-bit random numbers on each iteration.

5.8.7.1 Software implementation

With the use of bitwise arithmetic and replacing the DIV and MUL operations with shift
left and shift right respectively we can easily implement this algorithm in software. One

obstacle is that we would wish to use trinomials with a high order of n to give good

randomness properties. In most computers register and therefore software variable lengths

are limited to 32 bits. To overcome this we must concatenate variables and write routines

to model registers of the required length and this extra processing will have a detrimental

effect on the speed of the generator. Accepting this, the algorithm lends itself to efficient

software implementation and the use of shift rather than divide and multiply operations will

give and enhancement in computational speed in comparison to Lehmer generators.

5.8.7.2 Testing

The algorithm was implemented in the C programming language and tested by analysing

a number of generated sequences. The starting seeds for each sequence were always

chosen such that the delay between different sequences was always greater than the length

of subsequence being analysed. The same statistical tests were used as for the Park and

Miller generator and again a range of subsequences were tested with lengths ranging from

500 to 5000 samples to be representative of typical I SIM applications.

Talib [7] tested a number of characteristic polynomials for his proposed hardware

generator. We used his recommended optimal trinomial (x47 + x14 + 1). We also

implemented and tested the trinomial (x31 + x" + 1) and its compliment (x" + x20 + 1) as

recommended by Miller et al [126] for linear feedback shift register generators.

Best results were obtained for the trinomial (x47 + x14 + 1). These results varied depending

upon the initialisation seed. Generally results were acceptable at both the 10% and 2%

levels, falling within the limits of an ideal generator. However, on occasions failures at

the 10% level reached as high as 16.5% and at the 2%level, 7.5%. Clearly the

subsequences that gave these results are unacceptable. Conversely we obtained some

134

exceptionably good results with failures falling as low as 1% at the 10% level and 0 at the
2% level. From these results it may be concluded that the generator gives generally

acceptable results but the choice of initial seed for relatively shot runs is critical.

As was discussed earlier, what is required for I SIM is an efficient generator with good
local statistical properties over short subsequences and a table of 500 seeds to initialise

such subsequences. Our new generator matches these requirements provided the table of

seeds is suitably determined.

5.8.7.3 Timing of the generator

Theoretically a software implementation of the new generator should be faster then the Park

and Miller Lehmer generator as it replaces the computationally intensive divide and

multiply operations with shifting. Timing tests were conducted on both generators with

each going through an equal number of iterations. The results are given in table 5.7.

Amount of Numbers

Generated

Time Taken (seconds)

New Generator Park and Miller

106 5 21

10' 49 209

108 489 2083

Table 5.7 Timing of the Generators

The results reflect the theoretical predictions with the new generator being 4.25 times faster

than the implementation of the Park and Miller generator. Note these tests were run on a

100MHz computer to give an idea of scale relative to other machines. This is a significant

result for if we were to produce a Lehmer generator with a longer period the speed of

generation would increase. However even though we have decreased the speed we have

increased the period by 24' - 1/2" -1= 210 = 1024 times.

For interest, the time taken to generate one row of the parallelization matrix, ie a single

complete subsequence of length 224 numbers was 80 seconds.

135

From these timing results and the statistical results discussed in section 5.8.3.2 it can be

seen that our generator meets all of L'Ecuyer's [127] properties for a good generator. These

are: Good statistical properties [128]; long period [129]; speed; low memory usage [130];

portability [131]; reproducibility [132] and splitting facilities (ease of parallelization).

5.9 The generation of seeds to produce parallelized random number

sources

Some work has been done on the parallelization of random number sources. Durst [133]

suggests the use of random seeds whereas Makino [103] has proposed a formalised means

of producing a seed matrix whose rows are equipartitioned subsequences of the original

sequence. L'Ecuyer and Cöte support this approach in their random number package [105]

and it is also suitable for our generator. It is not always applicable to linear congruential

generators where bad long range correlations can occur between subsequences when the

modulus and length of subsequence are both powers of two. This is why Durst prefers

random seeds. By number theoretical argument Makino produced general conclusions

which depend upon the method of parallelization and the period of the source sequence.

It was decided to follow Makino's conclusions to produce an optimal matrix of

subsequences for our generator. This method satisfies Deng et al's criteria listed in section

5.4. Since each row of the matrix gives an independent subsequence , the first column of

the matrix may be used as a table of possible initialisation seeds.

The matrix may be produced to give either a vertical or horizontal configuration, here we

are considering the horizontal case. Properties of the original sequence will be reflected

in each row. A row is continued on the following row so that the delay between

subsequences is the row length, v. The two dimensional properties of such matrices have

been studied [134] where the numbers may be allocated to components in the orthogonal

direction. The statistical properties of these subsequences are not guaranteed. For the

proposed application orthogonal allocation would not be used. Our only concern would be

the allocation of numbers to an amount of components equal to the number of rows in a

constant uniform manner. In this rare but possible instance the delay between orthogonal

subsequences would be important. However this would only be a problem if the final row

136

of the matrix was continued with a re-run of the original sequence to produce extra rows.
Since the period of our generator is very long (241 - 1) there will be more than a sufficient
amount of numbers to give enough rows of good length and this will not be a problem.

Dimensioning of the matrix

Let P be the period of the generated sequence and v the chosen length of a row. The

number of rows, , u, will then be

A= rP/vl (5)

where rxl is the least integer greater than or equal to x. The rows will be of equal length

save for the final row which will be shorter than the others by k

k= uv -P (6)

terms. Note that for a shift register generator of period P= (2" - 1), if v is chosen such

that it is a power of 2 then k will always be equal to 1. From this it is apparent that all

rows, including the final row will be subsequences of suitable length.

The value of v is equal to the delay, d, between subsequences and as such must be chosen

to be suitably high. It was decided to set the value of v to be 224. Using equation 5 to

calculate , u, the number of columns

µ=rp/vl=x241-1/22 =223

Note that this is the maximum number of subsequences and as we have seen some initial

seeds produce unacceptable subsequences. To produce the required 500 initial seeds

software was written to generate a number of rows of the parallelization matrix. The first

column was noted and the values from this column were used as initialisation seeds for the

generator. Subsequences were produced of suitable length for analysis. The statistical tests

were run on each subsequence for sample lengths of 1000. A minimum of ten complete

runs of tests were conducted for each subsequence to give properly indicative results.

From these results a table of 500 initial seeds was selected from the first column of the

matrix. Seeds were only selected if they produced subsequences with statistical properties

137

matching or better than the ideal ie 10% failures at the 10% level and 2% failures at

the 2% level.

5.10 Conclusions

In this chapter we have reviewed the use or random number generation within I SIM and

proposed a fast software pseudo-random number generator.

The initial generator used was the popular Park and Miller generator. This has previously

been shown to be statistically good over long runs, however within I SIM a generator must

be used that demonstrates good statistical properties over various run lengths. In the first

implementation, one generator was used within I SIM and numbers produced were

allocated to stochastic and probabilistic transitions during the simulation as required. The

result of this was the creation of sub-streams which are generated by randomly sampling

the parent sequence. Investigation showed that these sub-streams were in some cases not

as statistically good as the parent sequence.

What is of concern is the effect of the random sequences on an I SIM simulation.

Through actual ICE examples it was shown that sub-streams with less than ideal statistical

properties could affect the simulation. However this is not always the case and it is

impossible to predict. For these reasons a new method of allocation is suggested whereby

each stochastic or probabilistic transition is allocated a unique seed for the parent sequence.

All streams of numbers then allocated are space shifted versions of the parent sequence.

The Park and Miller generator is a linear congruential generator and as such there is a

notable computational overhead occurred in the generation of numbers. Pseudo-random

generators of the shift register type previously used within hardware reliability simulators

were also considered. We have proposed a fast software implementation of a shift register

generator based on one of these hardware generators. It has been shown to be of a similar

statistical standard to the Park and Miller generator but over four times faster. For this

reason this proposed generator has been selected for use within I SIM.

138

Chapter 6

Computational models for ICE

6.1 Introduction

In this chapter we consider computational models for ICE. The purpose of this is

twofold, firstly to produce a formalised definition of the language's semantics and

secondly to compare ICE to a recognised modelling technique.

In chapter 3 it was shown how the language's simple syntax can hide some complex

semantics. A modeller may become competent with ICE and begin to apply it within

a few hours but for it's full power and flexibility to be utilised the underlying semantics

must be grasped. With the ethos during development being to keep the syntax as

intuitive as possible, consideration of this without the semantics would most likely give

an incomplete rather than erroneous understanding.

It was decided to adopt Petri nets, described in section 2.4.3, for the above purposes as

they are well documented and currently the most widely utilised technique for modelling

real time concurrent systems and in particular performability modelling. By producing

a detailed comparative study a credible recognition is obtained of ICE's relative power.

139

The chapter has two main sections. The first considers each ICE construct and builds up an

equivalent CGSPN model. We then go on in the second to identify some recurrent

problems in systems modelling and propose ICE solutions to these.

6.2 COMPONENT

The language .
is primarily concerned with interacting components, each of which will exist

in one of a number of states at any given instance in time. We may model a component

with a Coloured Petri Net (CPN). Each place will represent a state. A CPN representation

of a simple two state component is shown in figure 6.1. An explicitly defined colour

COMP with token c is used to show the current state of the component. The component is

shown in state idle which is also the initial state. The arc expressions and transition

markings would be determined by the component's BEHAVIOUR statement.

PC
COMP

1'c

id ec

T 1ý ýT2
ÄJ

c COMP

color COMP = with c

busy

Figure 6.1 Component

140

6.3 CONSTANTS

Constants may be defined as distinct colours using CPN ML. Each constant would be a

subset of the basic colour type int. An example of a constant and the equivalent colour is

CONSTANT ={ VALUE =4} <__> colour VALUE = int with 4;

6.4 STATE SETS and COUNTERS

A STATE SET defines the finite set of states that a component may exist in. Each state

may be represented by an individual place in a CPN. One token of a defined colour will be

shared between all state places. The current state will be indicated at any time by the place

which contains this token. An example of this was seen with the token c in figure 6.1.

Counters may also be represented by places within the same CPN. This highlights a

significant advantage of using CPNs rather than PNs to model the language. With PNs

counters would have to be modelled as separate nets or sub-nets interacting with the

component nets. The use of different coloured tokens in CPNs allows us to model using

one net, the token colours distinguishing the functionality of the components and the

counters.

Counter places will be connected to state places in a manner controlled by the counter

definitions within a STATE SET. The arc expressions will reflect the arithmetic statements

of the counter modifiers. As an example, the statement

STATE SET
COUNTER
STATES {

state 1
state 2
state 3

}
}

comp states {

.S count a, count b, count -c ;

{ count c= count -a
+2};

count b= count b-1};
{ count -c = count c/2};

may be modelled by the CPN shown in figure 6.2.

141

ýit'}ý

I T1 ' is PT3

cE
count a 1+ 3 >�c

COMP
pl ýl 1+(3) p3 COMP

is
state -I v state3

TcI Tc2

i
is I1'(°) I

c j/ic

count c T2 Div(ic, 2)
Köe

a+2COMP

p2

state -2
%U-7

ib
\ Cl'(10) I

count -b

(ib-1)

Figure 6.2 Counters

color E= with e;
color COMP =with c;

color I=int;

var ia, ib, is :I; j
funDiv(i: I, 2: I): I=idiv2;

Component and counter places are marked by C and I colour tokens respectively. Counter

values are given by the value of the integer tokens attached to the counter places. Updates

to these values are denoted by the counter transition post-arc expressions which reflect the

counter modifiers in the STATE SET expression. The initial values of counters are

component dependant and can be marked on the counter places. In this example the initial

values of count a, count b and count _c are 3,10 and 0 respectively.

142

6.5 SYSTEM

One way to represent a system statement by a CPN is to use a combination of integer

tokens as counters and Boolean tokens to monitor the state of the constituent Boolean

functions. Figure 6.3 shows the CPN which can be used to model the statement

SYSTEM sys. all = ALL { compl. statel, comp2. counter =2};

A single u token of colour Cond in one of the places sys true or sysfalse reflects the

condition that sys all is either true or false. The place list with token i of colour integer

keeps a count of the number of expressions within the system expression which are

currently true. When comp] moves into statel ac token is put in place state] and is

removed when compl leaves state]. The entering and leaving transitions TI and TI ' also

put enable, e, tokens in places cl -t and cl- f respectively. These tokens will enable

transitions TI t and TI f which, when fired, will update the list counter by modifying the

value of the list place token I.

The list counter must also be updated to reflect the condition of the expression

comp2. counter = 2. When any transition fires that will change the value of token cnt in

place counter (used to model the value of comp2. counter) e. g. T2 a token cnt of colour int

and value equal to the modified counter token is is put in place cnt mod. This token will

enable one of the two transitions Tct and Tcf. Which one is enabled is determined by the

guard expressions. We will consider the case when Tct is enabled, the complementary case

of Tcf being enabled is very similar. Transition Tct will fire and place an e token in place

cnt_t. If there is also an e token in place enable t, Tcl will fire putting an e token in place

cnt_1. An e token in this place makes it possible to move au token between places false

and true. The place that the u token is currently in reflects the condition of the expression

comp2. counter = 2. If the u token is currently in place false then along with the e token in

place cntl it will enable the transition TcJ. This transition will fire, removing the u token

from false and placing one in true. It will also place an e token back in enable t. If

however the u token is already in true the counter expression must already be true. The

inhibitor arc which disables transition Tc3 when there is au token in false would now,

along with the e token in cntl, enable Tc3, which would then fire and place an e token back

in enable t. Thus, in this second instance, the change in counter value has no effect on the

value of the counter expression. When either transition Tc tf or Tc_ft fires, signifying a

change in the value of the counter expression, an e token is placed in either place ct or cf to

143

enable transitions T2t and T2f respectively. These transitions, once fired, will update the

value of the list counter.

When any of the transition Tlt, Tlf, T2t or T2f, that change the value of the list counter

fire, they place a token si of colour integer in place sysmod. The value of si will be the

same as that of token Ii, the list counter. This token will enable one of the transitions Tst or

Tsf. Which one is enabled will be determined by the guard expressions which reflect the

condition of the overall system statement. These transitions will place an e token in either

sys t or sys f. Tokens in these places allow the overall system expression to be modified, if

required, by placing a single u token in either sys true or sys_false. The enabling

mechanism is the same as that used in the part of the net which models the comp2. counter

=2 expression.

The example given above was for a system statement of type ALL. We can also utilise

system statements of type ANYn and EXACTLYn. A very simple modification of the CPN

in figure 6.3 allows these different types of statements to be modified. All that need be

altered are the guard expressions on transitions Tst and Tsf. Table 6.1 shows the guard

expressions which would be used in each instance.

System Statement Transition Guard Expressions
Tst Tsf

ALL I=2 IQ2
ANY1 I>0 I=0
EXACTLY I I= 1 I <> 1

Table 6.1 Transition Guard Expressions for different System Statements

144

C cý c) ; T1'I
c-> is 10 'TI - >'state 1 Y---

T2'

e COMP ee
mod(ic)-ý

counter

E ci 1t '' E cý 1f `
(cnt = mod(ic))

cnt mod
e

Tit Tlf cnt cnt
(ii + 1) 1 [cnt = 2] i Tet Tcf [cnt <> 2]

enable t enable f
li

1e E1 'e E
j list

E
cnt tý cnt f

ee ee y_
TO J Tc2

(li - 1) e TO Tc4 e
(ii + 1) EeK

cnt2 cntl

T2f T2t u u Tc ft
G /ý v P7

E (ctý
_

false
-_

ý -e - ---

n Tc tf- -"

COND eu u)
sys_mo i e-- -{ true

of
COND

TI ct I [Ii . 71 E
'ý- e,

E 1'e

et IN I
e

E er
re

E Ve

Ps2 \
e1.

e

E Tsf 1 [ii p 2]
e

of

r IF color COW) = with u;
SU

color COMP = with c;
e color E= with e;

'4 color I= int ;

varic, cnt, ii: I;

uý

145

Figure 6.3 SYSTEM

6.6 RESOURCES

When representing RESOURCES and STOCK with CPNs we must consider both their
definition and allocation. The resources defined in the statement

RESOURCE { res -a :2; res b: 4};

may be represented by the CPN in figure 6.4.

A 2'a B 4'b

2'a 4'b color A= with a;

res a ýres b/' color B= with b;

Figure 6.4 Definition of Resources

The places res a and res -b
hold the free resources. Token colours have been defined for

each resource type. The initial marking will always reflect the number of resources given in

the resource statement, whereas the current marking will be modified as the CPN is

executed.

The allocation of resources may be represented as transition post-arcs. The non-

consumable nature of resources can be reflected by the use of post-arc `feedback loops'.

Figure 6.5 shows a CPN representation of the statement

01V
. _RESOURCE res -a = 1, res b=2{

state l -> state2 };

The transition Ti is only enabled when the component is in statel and the required number

of both res _a and res b resources are available (1 and 2 respectively). When TI fires it

removes this number of resources from res a and res b and puts an equivalent number of

each in place state2. This operation is detailed in the pre and post arc inscriptions of Ti.

When the component leaves state2, represented by the firing of transition T2, the resource

tokens must be returned to the resource places. This is shown on the post-arc inscriptions

of T2.

Stock may be modelled in a similar way. Stock however is consumable and therefore there

would be no returning of stock to the free stock places.

146

A 2'a 0 2'a

- res a
i

1'a 1'a
B 4b A\ 4'b

--ýres b--\
1.

2'b 2'b
COMP

COMP
t

-- yT1` -mss
te2

> T2,

state l -->- Cc -- --> tt
cc

Figure 6.5 Resource Allocation

6.7 BEHAVIOUR

color A= with a;
color B= with b;

color COMP = with c;

Behaviour statements can comprise of a number of different transition statements which

may have varying preconditions. We will first consider the transitions and then go on to

look at the preconditions.

6.7.1 Timed probabilistic transitions

Timed probabilistic transitions can simply be modelled by transitions in CPNs. For

example, figure 6.6 shows a CPN which represents the statement

7 statel -> state2 PROB(0.7) ;
exp(2) state1 -> state3 PROB(0.3) ;

The transition inscriptions show the firing times and the probabilities are shown on the pre-

arc inscriptions.

147

c rý c

Cl) VC ---> T1 j- state2
Jý 0.7

CC

21L T state3
0.3

exp(2)

color COMP = with c;

Figure 6.6 Timed Probabilistic Transitions

6.7.2 Transition firing policies

When modelling the different transitions within a behaviour statement the transition firing

policy of the equivalent CPN becomes critical. Various policies have been suggested and
[32] gives a detailed analysis.

The issue that is of most concern to us is when exactly a timed transition is fired. There are

two broad possibilities

1. When a transition is enabled the firing delay is started. Once this time has elapsed

the transition is fired, removing the enabling tokens from the input places, as listed in the

pre-arc expressions and places the tokens listed in the post-arc expressions are immediately

put in the output places. If during the time the firing delay is elapsing the enabling tokens

are removed from the input places, the transition is no longer enabled and will not fire.

2. As soon as a transition is enabled it fires, removing the enabling tokens listed in the

pre-arc expressions from the input places. Tokens are placed in the output places as listed

in the post-arc expressions but do not become active until the period of the firing delay has

elapsed.

The significance of the difference between these two possibilities with respect to model

behaviour is best illustrated by a simple example.

148

Part of a behaviour statement

5 state 1 -> state2 ;
ON EVENT comp2. statel {

2 state 1 -> state3 ;}

is modelled by the CPN in figure 6.7. Note that the control logic of the ON EVENT

precondition is not shown.

E

e
one

T1 sý tate3

->-'
c

COMP c2

lC(te1

--
> T2 -)P-! state2

cc ý77

5

Figure 6.7 Transition Firing Policies

color COMP=withc;

color E= with e;

Using the first firing possibility the model would be correct, however using the second

would cause an error. If at time ti =0 units ac token is put in place state] but there is no e

token in place one, transition T2 will be enabled but transition T1 will not and therefore T2

will fire, removing the c token from statel. If then at time t2 =1 unit an e token is put in

place one, T1 will not fire since it is still disabled due to the c token having been removed

from state], thus the ON EVENT will not be executed. Clearly this is incorrect as the

ON_EVENT transition would be completed at time t3 = t2 +2=3 units before the first

transition which would finish at t4 = ti +5=5 units and should then take priority.

This example would seem to dictate that the first firing possibility be adopted, however it is

the second that is now proving more popular in CPN modelling and simulation tools eg

SymNet. It would then be desirable to implement a solution which utilises the second

possibility. This may be done by using test arcs. Test arcs for CPNs have been formally

defined in [41].

A test arc behaves in a similar manner to a normal arc but they are conservative and several

test arcs may access the same enabling tokens concurrently. They may not however access

enabling tokens at the same time as normal arcs. Test arcs cannot change the marking of a

149

place. Figure 6.8 shows a solution to the timing problem utilising the second firing

possibility by using test arcs.

If a time ti =0 units ac token is placed in state], TI will be enabled and fire, but since the

pre-arc is a test arc, the token will not be removed from state]. If then at time t2 =1 unit

an e token is put in one, T2, will be enabled and fire. T2s firing time will elapse first at time

t3 = t2 +2=3 units and an e token will be put in place P2. This will enable T6 which will

fire, removing the c token from statel and placing ac token in state3. When TI s firing time

elapses at t4 = tI +5=5 units it will place an e token in P1. Since the c token will already

have been removed from statel, T3 will be disabled and instead T4 will fire to clear PI and

place an e token back in Pel. The inhibitor arc on transitions T4 and T5 will prevent any

conflict. T4 and T5 have no effect on the state of the component.

E Pe
Pel

e E COMP
ýe

-ýT1 e P1 T3ý--ý state2

r
T4 -j

statel color COMP = with c
c color E= with e;

e
c

COMP

c T2 P2 T61--- state3

E/_e

one, Pet
E 1I

Figure 6.8 Timing problem using Test Arcs

6.7.3 ON EVENT

It was shown in the previous section how it was possible to resolve firing conflict that may

arise when there are multiple transitions from the same state. Figure 6.9 shows a CPN

which models the interaction of components through the ON EVENT transition

150

ON EVENT compl. statey {
state 1 -> state3 };

Components 1 and 2 communicate via places P1, P2 and P3. When any transition fires that

moves component 1 into statey, eg T1, an e token is put in place P1. This, along with the e

token in place P2 enables T2 which will fire and place an e token in place P3. If component

2 is in state], transition T4, the `forced event', will be enabled and fire moving component 2

into state3. An e token will also be placed back in P2. Transition T3 is required to place an

e token back in P2 regardless of the state of component 2. The inhibitor pre-arc of T3

prevents conflict.

By combining the CPNs of figures 6.8 and 6.9 multiple possible transitions from the same

state can be modelled. Places one in figure 6.8 and P3 in figure 6.9 are the same place and

transitions T2 in figure 6.8 and T4 in figure 6.9 are the same transition. The resulting net

will model the statement

5 statel -> state2 ;
ON EVENT componentl. y {

2 state 1 -> state3 };

component 1 COMP

T1 statey

vi
E

E P1

- -----------------i
color COMP = with c;

color E= with e;

1'e

P2 -

1'e
T2

e
E

P3

73
component 2c

COMP eý--
-- - -ý COMP

state 1c T4 c
state3

Figure 6.9 ON EVENT

151

6.7.4 IF

A CPN representation of the statement using the precondition IF

IF compl. statey {
statel -> state3 };

is shown in figure 6.10.

component 1

i -_--, COM
c

-- >, ' TI
cc

statey ý---ý . 1. ýJ

(P1

C

I

e
E

1 p2

f
eeee

Y--Y
T3 T4

e

e

e

COMP

component 2cc
state 1 --* T5

Figure 6.10 IF

color COMP = with c;
color E= with e;

L --------------J

state3

The sub-net of places t and f is an indicator of the state of component 1. An e token in t

represents 4comp1. statey' and an e token in f represents ̀not comp1. statey'. Transition T5

will be enabled if there is an e token in t. An e token is placed in t whenever a transition

fires that places component 1 in statey, eg Ti. When T5 fires, if component 2 is in state]

(represented by ac token in place state]) it will move to state3. Whenever a transition fires

that takes component 1 out of statey an e token will be put in place P2 enabling T4 which,

when it fires, will remove the e token from t and place an e token inf. This will disable T5.

This represents very well the semantics of the IF precondition.

152

The CPN in figure 6.9 representing the ON EVENT precondition was combined with the
CPN of figure 6.8 to model multiple transitions from the same state. The CPN of figure

6.10 may be similarly manipulated to model multiple transitions.

6.8 WAIT FOR

We will consider firstly the use of the WAIT FOR statement to dynamically create

components. Figure 6.11 shows an example of a CPN which models the creation of a

component after some given time delay t.

WAIT FOR t{ COMPONENT... };

COMP

P1 -> Tl i
----- state ec

t

color COMP = with c;
colorE=withe;

IL------------------

Figure 6.11 WAIT FOR component

Transition Ti is initially enabled but will only complete firing after time t. The result of this

firing will be to place a component, c, token in place iniLstate and thereafter the

component will behave as a normal component. Notice that no other details of the

component are shown in figure 6.11.

The second use of the WAIT FOR statement is for the explicit creation and removal of

stock and resources during simulation time. Figure 6.12a gives an example of a CPN which

models the creation of resources, resl, when component A moves into state a. Figure

6.12b gives an example of a CPN which models the removal of stock, stkl, after a time

delay t.

153

COMP

--> T1 state 1

3'r
RES

res

color COMP = with c;
color E= with er
color RES = with r;

Figure 6.12a WAIT FOR component. state

e
-ý

E 1'e E E
e --ý

ýe
ee

7it T1 -->ý P 1ý >! T2 r- ->,
r P2 1

t

Figure 6.12b WAIT FOR time

6.9 ATTRIBUTES

2's
STK color COMP = with c;

stkl color E= with e;

color STK = with s;

Attributes have been defined as simply identifying a set of states. A group of states which

share a common property will be given the same attribute to denote this property thus

making it easier to refer to the group of states. Behaviour preconditions may refer to

component attributes as well as states. Defining CPNs which reflect the ON_, EVENT and

IF preconditions using attributes will simply involve extending the previous CPNs. Figure

6.13 shows a CPN which models the ON EVENT

ON EVENT comp6. a {
statel -> state3 };

154

component 1

c COMP

Tx-- c-- statex

e-1

c COMP

Ty c-> statey

e1

pl ---,
ýE

1'e

P2
ee1

l+e
T2

e
EY

C

>Tz-

i
e

COMP
_

state KLý

color COMP = with c;
P3 color E= with e;

yT3
------------------ e

component 2c

COMP -ý _ . -_-_---ý COMP
cý

state l- T4, r- --y, state3

__J

Figure 6.13 ON EVENT with Attributes

Notice that this is an extension to the CPN of figure 6.9. In this instance, the states x, y and

z of component 1 all possess the attribute a. The transition T4 which moves component 2

from state] into state3 will be enabled when component 1 moves into any of the states x, y

or z. The enabling place P1 is shared by all transitions which move the component into a

state which possesses the a attribute. There will only ever be a maximum of one e token in

P1 for by the definition of a component, all states are mutually exclusive.

The modification to the CPN of figure 6.10 for the IF precondition with the same

component attributes as above is shown in figure 6.14.

This CPN behaves in a similar manner to that in figure 6.10 although transition T3 is now

enabled by any transition which moves component 1 into a state which possesses the a

attribute. Transition T4 will be enabled by any transition which moves component 1 out of

a state which possesses the a attribute.

155

Tx - statex/ ýTx

ee

COMP
c cý c -i c `>

Tz > statez -> TZ >

ee

component 1

color COMP = with c;
color E= with e;

component

Figure 6.14 IF with Attributes

COMP

- statO
cc

The CPN of figure 6.12a which models a WAIT FOR statement may also be easily

modified to reflect the use of component attributes rather than a state. This would simply
involve duplicating the post-arc (including inscriptions) from transition TI for any other

transition which moves the component into a state which possesses the given attribute.

COMP
----! c c

TYP-->, statey ý--->, Ty' >

EY
/ P2

T4
A

156

6.10 Behavioural modelling with generalised stochastic Petri nets
(GSPN)and ICE.

In this section we compare the approach of ICE and GSPNs to some important

modelling conditions.

For a model to correctly encompass the functionality of a system all relevant events

must be specified as well as the pre-conditions that must hold for an event to occur and

the post-conditions that exist after an event has occurred [135].

Some fundamental properties of events which may occur within systems and have either

temporal or structural relations are identified below. Their GSPN models are shown

along with the ICE code which provides equivalent functionality. The inability to

implement any of these events would indicate an area for concern within the language

as it would not be universally suitable for all systems that we may in future wish to

model.

6.9.1 Dependency

When one event is dependant upon the pre-occurrence of other events. Shown in the

GSPN of figure 6.15, transition to is dependant upon the firing of transitions t;, and t12.

This property is utilised in applications such as software modelling [136].

COMP -1

comp _2

Figure 6.15 GSPN of dependency

157

PIA til '
1B

ICE equivalent :
SYSTEM dependent = ALL (comp 1. PIB , comp--2. P1A);

BEHAVIOUR be comp {

ON_EVENT dependent {
exp(t) P1B -> Po ;
exp(t,) Pia -> Po ;)

6.9.2 Concurrency

More than one event occurs simultaneously but these events do not interfere or interact

with one another. In the GSPN of figure 6.16 the transitions t;, and ti2 may be

simultaneously enabled but there is no interaction between the input and output places.

This property is applicable to such systems as concurrent software applications [137].

Pu t11 Pot
COMP -1 0---)PD-ý

Pl2 t12 P02
comp_2 CY---)PEY--->O

Figure 6.16 GSPN of concurrency

ICE equivalent :
BEHAVIOUR be comp 1{

exp(t; º) P1º -> Poº

}
BEHAVIOUR be comp 2{

e; p(t, z) Pºz -> Paz

}

158

6.9.3 Synchronisation

In a parallel application a number of tasks may have to synchronise at given stages of

operation. In the GSPN of figure 6.17 the immediate transition is synchronises

transitions t,, t2, ... , t, This may be used in systems where multiple resources are

required to complete a given task such as safety protection systems.

comp_i

comp -2

comp -P

Figure 6.17 GSPN of synchronisation

ICE equivalent :
SYSTEM synchronise = ALL (comp-1. P1. ; comp 2. P2s ; ... ; comp-JI. P. s ;)}

BEHAVIOUR be comp {

ON EVENT synchronise {
exp(ts) Px -> Ps ;}

}

6.9.4 Conflict

In a system more than one event may be possible at the same time and the occurrence

of one of these events may preclude the other. In the GSPN of figure 6.18 transitions

ti and t2 are simultaneously enabled. The firing of either will disable the other. This

concept is used to model such things as resource conflict within systems.

159

Pi t1 Pis

P,
comP_1

(-
P2

comp -.
2 c

P,
comp _3

/'

Figure 6.18 GSPN of conflict

ICE equivalent :
BEHAVIOUR be comp 1{

IF comp 2. P2 {
exp(tl) P, -> Po1 ;}

}
BEHAVIOUR be comp 2{

IF ANY {comp 1. P01, comp 3. P02} {
0 P2 -> P2-next ;}

}
BEHAVIOUR be-comp-3 {

IF comp_2. P2 {
exp(t2) P3 -> P02

}

Note that in the GSPN of figure 6.18 we assume that a transition firing policy is adopted

whereby tokens are not removed from input places when a transition is enabled but

when it is fired.

6.11 Conclusions

ICE components may be regarded as FSMs and are represented by PNs with a single token.

These basic models are built upon when counters are added. Counters contribute a

considerable increase in descriptive power and this is reflected by the increased complexity

of the PN model.

160

ICE uses constructs termed SYSTEM statements that provide a simple means of relating

what can be some very complex component interactions. It is not a trivial task representing

even a relatively simple SYSTEM statement with PNs. These PNs are the most

sophisticated of all that are used to model ICE and show how the apparently simple syntax

of ICE is founded upon some involved semantics. This comparison in particular shows the

modelling power that is achievable with ICE and which would require considerably more

complex representation with PNs.

Passive resources are similar to semaphores and can be shown as simple additions to the

component PNs. ICE attributes which are used to group together component states with

some form of commonality are modelled and it is apparent how they add power and

sophistication to behavioural statements.

Perhaps the most important constructs to be formally defined by PNs are behavioural

statements. They contain some of the languages most complex semantics and the PN

representation is a valuable aid in their understanding. Transition firing policies are of

significant importance and the PN models give some detailed insight and are a source of

notable discussion.

In producing all the PN models for ICE it was interesting to note that no single dissertation

on PNs contained all the high level extensions that were required. All of the ICE

constructs can be modelled with PNs, involving varying degrees of complexity and hence

we cannot state that ICE is more powerful. However it is evident from some of the

comparisons that the ICE implementations are considerably simpler.

We go on in the chapter to consider the challenges of dependency, concurrency,

synchronisation and conflict. Any modelling technique must be able to reflect all of these

if is to be of generic use in the modelling of systems. We derive both PN and ICE

solutions which are equally as simple to implement.. The ICE implementation of each of

these events is straightforward and does not involve any sophisticated manipulation of the

language.

161

Chapter 7

An ICE Performance Model of an ATM

Switch

7.1 Introduction

Performability as described earlier is a combined performance/reliability measure and as

such comprises both pure performance and pure reliability measures. In this chapter we

consider a pure performance model of an ATM Banyan switch.

Banyan switches have many constituent interacting components and are an ideal medium

for illustrating the high level declarative nature of the ICE language. The individual

components are described directly with a very low level of abstraction. Performance

parameters of interest in switch modelling are those which will give a good indication of

the theoretical Quality of Service (QoS) provided [138]. The ICE model is implemented

in such a way as to give both relevant measures of performance and to demonstrate the

flexibility of the model.

Banyan networks are recognised as being one of the most suitable architectures for ATM

switches [139]. They have received much attention in their various forms for modelling

by probabilistic means [140]. We have chosen one with a recognised buffering strategy

so that the assumptions made when modelling may be compared.

162

7.2 Asynchronous transfer mode

The existing Integrated Services Distribution Network (ISDN) is currently evolving into the

Broadband ISDN (BISDN). The BISDN will be required to transfer a much larger amount

and variety of traffic than the existing ISDN and will therefore impose constraints in terms

of throughput, delay, delay dispersion, reliability and sequenced delivery [141]. For this

reason the CCITT formed Study Group XVIII to select and standardise a suitable transfer

mode for the BISDN.

In 1988, CCITT selected Asynchronous Transfer Mode (ATM) as the transfer mode for

BISDN. In 1990, a first set of recommendations [142] was agreed upon worldwide. ATM

is being further refined and standardised by the ITU-T, ETSI and ANSI [143]. The

universal flexibility of ATM guarantees that it can support any service from simple

telephony to full multimedia, including HDTV, audio and high speed data [144].

ATM is based on switching small, fixed length packets of information (cells), and doing

it extremely quickly. All cells consist of a 48 byte information field and a5 byte header,

according to CCITT recommendations [145]. A connection within the network is defined

link-by-link by a label within the cell header, the virtual channel identifier (VCI) or virtual

path identifier (VPI). ATM operates in a connection oriented mode, thus a connection is

only established if sufficient resources are available. All cells are routed via one path to

maintain the cell sequence. All network links are interconnected by some type of ATM

switch or multiplexer. There has been considerable interest in the modelling of ATM

multiplexers [146.. 150], here we shall limit our investigation to switches. For an excellent

comprehensive treatise of ATM the text by Cuthbert and Sapanel [204] is recommended.

7.3 ATM switches

There has recently been much interest in the design of ATM switches [151,152]. Tobagi

[153] proposes three main types of ATM switch architectures, namely, (i) shared memory

[154] (ii) shared-medium [155] and (iii) space-division [156]. In further work Tobagi goes

on to explore the possibilities of combining architectures of different types (157]. All types

are limited in both size and line speed, making it necessary to connect many stages together

163

to form a multistage configuration [158], originally proposed for multiprocessor

applications, to produce practical switches. Many demands which must be adhered to are

placed on ATM switch design, such as (1) modularity, (2) relaxed synchronisation, (3)

guaranteed high performance without requiring internal speed-up and (4) maintenance of

packet sequence integrity [159]. Switches must be able to handle both point to point to

point connections and point to multipoint connections [160,161] as required by a wide

range of applications such as video-conferencing, entertainment video, LAN Bridging and
data distribution. Both types of connection normally utilise a multistage interconnection

network, with the latter also incorporating a proceeding copy network. For a

comprehensive introduction to ATM switching the reader is referred to either Onvural [162]

or Chen et al [163]. A common type of multistage interconnection network is the Banyan

Network [164]. Banyan Network space-division switches are being seen to play a major

role in ATM switching.

7.3.1 The architecture of banyan networks

There have been a number of detailed surveys of Banyan Networks in the literature. For

a good introduction the user is referred to Perros [165]. Feng [166] describes Banyan

Networks as having a dynamic topology belonging to the class of multistage

interconnection networks. They are constructed by interconnection of a number of discrete

Switching Elements (SEs). They have been comprehensively defined by Tubtiang et al's

general ATM switch classification method [167]. The class of Banyan Networks can be

divided into several subclasses, the most common, the one we will consider, is known as

L-level Banyan.

In L-level Banyan only adjacent stages are connected by links, therefore each path from

input to output leads through L stages. There are two types of L-level Banyans, Regular

and Irregular. Regular Banyans are constructed from one basic type of SE with F inputs

and S outputs, whereas the type of SEs in Irregular Banyans varies throughout the network.

For economic reasons Regular Banyans are preferred as they lend themselves to

straightforward VLSI implementation. Two subclasses of Regular Banyans are CC-

Banyans and SW-Banyans. We will confine our examination to SW-Banyans as they cover

nearly all existing implementations [168]. SW-Banyans are constructed from a number

of basic crossbar SEs with F inputs and S outputs.

164

Delta Networks have the topological structure of SW-Banyans. They have N stages
corresponding to the L levels. Each stage has a number of SEs, each with n inputs and m
outputs, thereby giving the network n'input ports and m ̂ ' output ports. Rectangular Delta

Networks are constructed from SEs which have the same number of inputs as outputs ie

n=m. The network will have a total of N= logt n stages. It follows that the number of

output ports, n, will be equal to the number of input ports and that the number of SEs per

stage will be constant ie "/2. A Delta Network which has SEs with n inputs is known as a
Delta-n Network. In hardware realisations n is limited if a single chip implementation is

required. An SE with n= 16 has been fabricated and required 0.8 micron Bi-CMOS

technology [169]. The most common form of Delta-n Network is the Delta-2 Network and
this has been the basis for many ATM switch models [139,140,170.. 175]. Figure 7.1

shows a 16-input Delta-2 Network.

INPUT

oE>. - 1 E-
2 C>-

o- 3
4 c-
5 o-
6
7 o-
S o-
9 a-

10 ý. - 11 o-
12 o-
13

14 o-
15 r}

OUTPUT
a 0000
a 0001
a 0010
Q 0011
Q 0100

0101
Q 0110

0111
1000
1001

Q 1010
Q 1011
a 1100
Q 1101
Q 1110
c-I 1111

Figure 7.1 Delta-2 16x16 Banyan switch architecture

The Delta-2 network is used as a point to point switch with a self routing algorithm. The

header of each incoming cell is given an bit destination address relating to its virtual path

or virtual channel address and routing inside the switch is done by decoding the header.

For example, a node at stage k sends the cell out on either link-O (up) or link-1 (down)

according to the k th bit of the header. The topology of the network ensures that the path

from any input to a given output is uniquely determined by the output address. The header

is independent of input link, as illustrated by the two routings shown in Figure 7.1 from

inputs 3 and 14 to output 0101. This type of routing also known as digit controlled

routing, can be fully implemented in hardware. It becomes apparent from examining such

a network that if any SE fails then certain paths which must utilise this SE will be blocked.

165

SWITCHING ELEMENTS

Techniques are available to increase the size of the network and thus provide alternative

paths [176], for example by using parallel layers of interconnection networks [177,178],

shuffle exchange networks [179], bypass connections [180], turn-back networks [181] or

dilated interconnection networks [182]. Whatever technique (if any) is used, switches

should be of modular design [183] to facilitate expansion if network traffic demands

dictate.

The Banyan Network is a blocking network [184], for two cells with different destination

addresses may be routed through the same internal link at the same time. One solution to

this problem is to sort arriving cells with distinct destination addresses into ascending or

descending order before transmission through the switch. Time overheads are incurred

however due to sorting time and only one cell per time slot being transmitted. It has

become clear that to provide satisfactory speed and cell loss performance as required in

ATM networks, it is necessary to provide buffering within the SEs. Cells are then

transmitted directly through the switch, being buffered at each stage, and if a required link

is busy between stages k and k+1 then the cell is retained in the buffer at stage k until

the link is free. Cells may also be retained in the buffer at stage k if the buffer at stage

k+1 is full. Buffers are normally also provided at the switch inputs and outputs to

compensate for the difference in speeds between the switch fabric and network links. The

buffers in the SEs can be located at the inputs, crosspoints, outputs or be shared as shown

in Figure

7.2.

(a) Input Buffering (b) Crosspoint Buffering

ITT

(c) Output Buffering (d) Shared Buffering

Figure 7.2 Switch buffering policies

166

In input buffering [185], buffers are located at the inputs of the SEs. When two cells in

different buffers contend for the same output only one can move to the next stage. The cell

loosing contention waits at the head of its input buffer blocking other cells which may be

destined for the other, idle, output. This is known as head-of-line (HOL) blocking. It has

been shown by Dias and Jump [186] that HOL blocking limits the maximum load to 0.75

in Delta-2 networks when input buffered SEs are used.

Output buffering [186] and shared buffering [158] allow higher loads by sharing the input

cells between the different outputs. In output buffering, buffers are placed at each output.

In a given time slot, n inputs may access the same output buffer, thus multi port buffers

are required. In shared buffering, cells from different inputs and destined for different

outputs share the same buffer. Therefore multi-port buffers are required of a size n times

of that which is required for output buffering [187].

In crosspoint buffering, buffers are required for each input-output pair. Arriving cells at

stage k are enqueued in the appropriate buffer according to the k th bit of their header. An

example of crosspoint buffering is the PHOENIX fault tolerant SE implemented at AT&T

Bell Laboratories [188].

7.4 The ICE model

In this section we discuss the development of the model, looking at each functional block

individually.

7.4.1 Overview

The first decision to make is how to subdivide the switch into a suitable combination of

components. A suitable balance is required between limiting complexity, which increases

with number of components and fully representing the functionality. Four functional units

are identified, namely the communications channel, input controllers, switching elements

and output controllers. Each is modelled with a component, save for the switching

elements which are best represented by four interacting components.

167

The design takes a modular approach both for simplicity and ease of expansion. In the

literature there are models for a great range of sizes, however the intention was to make

the ICE model representative of a practical switch. The size decided upon was 16x16,

chosen as an optimum size as it provides a high enough number of channels and 16

interface cards fit well into one module mounted in a standard 19" telecommunications

equipment rack [189].

A 16x16 Banyan switch has 4 levels of switching, each with 8 layers of switching

elements. The popular assumption made is that all cells arriving from the input channels

have output addresses which have an equal probability of being any of the output channels

[190]. If we adopt this assumption then it is safe to conclude that we need only model one

layer of switching elements and the behaviour of this layer will be representative of any

other [191]. To model all layers would only require reiterating the ICE code a further 7

times and editing component names in the behaviour statements: Such expansion would

not be practical in probabilistic models as the size of the expressions would become

unmanageable.

Thus the ICE model describes all 4 levels of switching elements for one layer of a 16x16

switch. Figure 7.3 is a diagram of the switch with the ICE components marked.

-----------" -----------" -----------" -----------"

III
sea0 seb0 soc0 sed3

C}l

q(O sea0_q seb0 q sec0_q "ecp q qoO

seal sebl secs aedl

E'_»_[ITJ
ýýý'

qi 1 seal_q sebl_q xcl_q sedl_q qol

'------------' ------------' ------------ ------------

OUTPUT
BUT INPUT SWITCHING ELEMENTS CONTROLLERS
CHANNELS CONTROLLERS

Figure 7.3 One layer of 16x 16 switch with components marked

The complete ICE program for the switch model is listed in appendix D. Below we shall

consider each type of constituent component.

168

7.4.2 The input traffic

The input traffic to the switch is described by modelling input channels that can either be

in an arrive (cell slot occupied) or quiet (cell slot empty) state. It was initially thought that

this could be incorporated as part of the behaviour of the input controllers but the

requirement that the load be constant prevented this. To expand on this point, to give a

true representation of an input channel the model must show a steady flow of cell slots

with the probability that any slot is occupied being equal to the required load. If the two

states that are described form part of a larger state set with other transitions, this would
jeopardise that requirement

In mathematical modelling it is necessary to select some appropriate stochastic distribution

that will closely reflect the behaviour of traffic. Uniform cell arrival rates may be

represented by either the Poisson or Bernoulli distributions. These may be utilised in ICE

by manipulation of the exponential transition firing rates. Bursty cell arrivals have been

modelled in ATM networks by Interrupted Poisson Processes (IPP) [192] and Bulk

Bernoulli Processes (BBP) [193]. Complex models of bursty traffic with both

exponentially distributed quiet and bursty periods can be modelled using a Markov

Modulated Poisson Process (MMPP) [192] as implemented in the BONeS simulator [194].

The MMPP can be implemented in ICE by building on the model for uniform cell arrival

which is shown below in figure 7.4.

PROB(x)

Y total = total +1

0 cetathve
Y

PROB(1-x)

Figure 7.4 State diagram of an input channel

By assigning probabilities to the output transitions from the quiet state we can directly

represent the channel in ICE with no level of abstraction. One component is used for each

input channel. This component can only exists in the states quiet or arrive and will move

between them with a probability equal to the load as shown by the behaviour statement in

listing 7.1. This gives a very simple but very accurate model of the input traffic. The

169

counter total which is shown being incremented in the arrive state keeps a tally of the

number of cells arriving. This is useful for validating loads during simulation.

BEHAVIOUR be ch in {
1 quiet -> arrive PROB(O. 6);
1 quiet -> quiet PROB(O. 4);
0 arrive -> quiet;

}
Listing 7.1 Input channel BEHAVIOUR statement

7.4.3 The input controllers

The input controllers buffer the cells arriving from the input channels before transmitting

them to the first switching elements. Each input controller is modelled as an individual

component. The state diagram for is given in figure 7.5.

total = total + 1; qlen = glen +1

inc
IF ch_inO. quiet IF gi0. qlen > FULL

0

0
IF ch_in0. arrive 0

wait drop
p ON EVENT (NeAO. read0, ! seAl. read0)

drop -1; qlen = glen -1 0 drop =.

IF (seAO. readO, seAl. readO)O
glen = glen "1

ON EVENT (! seAO. read0,
dec

Figure 7.5 State diagram of input controller

There is one buffer per input controller so that all cells that arrive at the same input share

the same buffer as in the architecture proposed by Del Re and Fantacci [195]. In ATM

there is a priority flag in the header data that facilitates two priorities of traffic. If this

model were expanded to have two buffers then behaviour for both priorities could be

measured [196]. There are four states. The quiescent state is wait. When a cell arrives

from the input channel it moves into state inc . If the buffer is already full the cell is

dropped (state drop) otherwise the buffer is incremented and the component returns to wait.

When a succeeding switching element reads a cell from the buffer it moves into state dec

170

and the buffer is decremented by one cell before returning to state wait.

Note that all of the transitions are immediate, this is in order to achieve synchronisation.

For example, consider the state inc. This state is entered when a cell arrives on channel

ch inO. Cells arrive in one time unit. This requires the component to move into inc and

back to wait in one time unit and hence this component would move into wait at the same

time the input channel is moving out of arrive. Since these two transitions are happening

in the same time unit the order cannot be guaranteed. If the inc ->wait occurs first, the

input channel will still be in state arrive causing this component to re-enter inc and falsely

record another cell arrival. By putting the transition condition that the component cannot

move out of state wait until the input controller moves out of state arrive this error is

prevented. The corresponding behaviour statement is shown in listing 7.2.

BEHAVIOUR be_gi0 {
IF ch inO. arrive {

0 wait -> inc; }
IF ANY(seaO. readO, seal. readO) {

0 wait -> dec; }
IF qiO. qlen > FULL {

0 inc -> drop; }
ON EVENT ch inO. quiet {

0 inc -> wait; }
ON_EVENT ALL(! seaO. readO, ! seal. read0) {

0 dec -> wait;
0 drop -> wait; }

Listing 7.2 Input controllers BEHAVIOUR statement

The counter total stores the total number of cells that have arrived, glen gives the

instantaneous length of the queue and drop gives the number of cells that have overflown

the buffer.

7.4.4 Operation of the cross-bar switches

From figure 7.3 it can be seen that each switching element contains a cross-bar switch. At

each time slot these switches will either be in the cross or bar state and thus dictate which

queue the switching element will be reading from. The operation of these switches is

modelled by two components per switch. One component represents the top branch of the

171

switch and one the lower. Each can exist in the two states cross or bar. The state

diagram is given in figure 7.6.

ON EVENT ANY(seAO. read0, seAl. readO)

PROB(x) 0
000

bar cross
PROB(1-x)

PROB(1-x) PROB(x)

Figure 7.6 State diagram of cross-bar component

For a balanced routing all probabilities will be 0.5. By changing these probabilities the

route can be altered. In the listing 7.3 of the BEHAVIOUR statement for an upper branch

component the probabilities are set so that there is a bias for the bar position. This means

there is more traffic arriving at the upper input destined for the upper output than for the

lower output. The probabilities for the lower branch are all set to 0.5, hence traffic arriving

at the lower input will have equal likelihood of being destined for either output. By

adopting this approach, which allows flexibility in the balance of traffic, we can investigate

Bruneeli and Wittevongel's [197] finding that queuing deteriorates in output buffered SEs

as correlation in the routing gets higher.

BEHAVIOUR be dest inO {
ON EVENT ANY(seaO. readO, seal. read0) {

0 cross -> bar PROB(O. 65);
0 cross -> cross PROB(O. 35);
0 bar -> cross PROB(O. 35);
0 bar -> bar PROB(O. 65);

}
}
BEHAVIOUR be Best inl {

ON_EVENT ANY(sea0. read1, seal. readl) {
0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

}
}

Listing 7.3 BEHAVIOUR statement for cell routing

Note that the component changes state each time the switching element has read a cell from

172

the proceeding buffer.

7.4.5 The switching elements

In many mathematical models a general expression is derived which expresses the output

conditions dependant upon the input and it is not possible to monitor the internal

performance of the switch. For many applications this type of method is appropriate as

loss probability is a comprehensive enough measure of performance [198]. In this model

however we wish to monitor the behaviour of various queues within the interconnection

network and switching elements are therefore modelled individually. Each switching

element is represented by four components. This seems verbose on first inspection but

when examined it allows for simplicity. Two components are required for the two queues.

It would be possible to represent the two queues by two counters in one component but by

using one counter each in separate components it allows the queues to function in parallel

without state transitions being delayed. This reflects the operation of the hardware design.

Initially each queue and its operation was modelled by one component. This is restrictive

as checks for read and write operations had to be made sequentially. The final

implementation uses two components. The first is used to monitor whether a queue may

read from a proceeding queue during each time slot and the second handles the actual

updating of the queue. The state diagram of the first component is shown in figure 7.7.

IFALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross)

0

0

IF ALL(! seal. readO, qiO. qlen > EMPTY, dest in0. bar)

Figure 7.7 State diagram of SE queue reading component

From the state diagram it can be seen that the queue can read from either the proceeding

0 (upper) or 1 (lower) queue. The conditions for reading the proceeding 0 buffer are that

the other queue in the SE is not currently reading from it, the queue is not empty and the

173

cross-bar is in the bar position. The conditions for reading from the proceeding lower

queue are similar but the cross-bar must be in the cross position. The position of the cross-

bar is determined by the cross-bar component discussed in section 7.4.4 which selects cell

routing. Note that only one cell may be read in one time slot, following the operational

procedure proposed by Jenq [191]. The behaviour statement for this component is shown

in listing 7.4.

BEHAVIOUR beseaO (
IF ON ALL(! seal. readO, giO. qlen > EMPTY, dest_inO. bar) {

1 wait -> read0; }
IF ON ALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) {

1 wait -> readl; }
0 readO -> wait;
0 readl -> wait;

}

Listing 7.4 BEHAVIOUR statement for queue reading component

The component will firstly check to see if there is a cell in the upper preceding buffer and

if it is destined for the upper queue. If so it will read it, if not it will check the lower

buffer. There is no read operation during the time slot if there are no cells available or if

the queue is blocked by the complimentary queue reading from the required preceding

buffer. By making the SE time slots faster than the networks time slots (say a speed-up

factor of two) it would be possible for each SE queue to read from the same preceding

buffer in the same SE time slot [199]. The model could be simply changed to encompass

this feature by changing the timing on the transitions. Speed-up can also be accomplished

at switch level [200] but is limited by the network speed.

The component that models the updating of the queues has the same state diagram as that

for the input controllers shown in figure 7.5 and the behaviour is identical. The

corresponding behaviour statement is given in listing 7.5.

BEHAVIOUR be sea0 q{
IF ON ANY(seaO. readO, seaO. readl) {

0 wait -> inc; }
IF sea0 q. glen > FULL {

0 inc -> drop;)
IF ON ANY(sebO. read0, seb I . readO) {

0 wait -> dec; }
ON EVENT ALL(! seaO. readO, ! seaO. readl) {

0 inc -> wait;
0 drop -> wait; }

174

ON EVENT ALL(! seb0. readO, ! sebl. readO) {
0 dec -> wait; }

Listing 7.5 BEHAVIOUR statement for queue updating component.

Note that all the transition timings are again 0. This allows the transitions to be wholly

determined by the queue reading components and facilitates the possibility of a cell being

read into and read from the same queue within one time slot.

7.4.6 The output controllers

The output controllers present a new challenge within themselves. What is required is a

suitable buffer on each output port with consideration of both capacity allocation and

overflow. This will be largely dependant upon the network to which the switch is

connected [201]. Our aim is to concentrate on the switches behaviour and thus we assume

infinite capacity queues in the output controllers. This assumption is equivalent to

assuming that the output network is available to read one cell per time slot. The space

diagram for the output controllers is shown in figure 7.8.

IF seDO_q > EMPTY

1 total = total +1

wait inc

Figure 7.8 Space diagram of output Controllers

The output controllers will read a cell from the final (4th) level switching elements each

time slot if there is a cell to read. There is one output controller dedicated to each output

port and hence there will be no blocking in these components. Counters have been

associated to each output so that the total number of cells leaving the switch may be

monitored. The behaviour statement is given in Listing 7.6.

BEHAVIOUR be qo0 {
II? ON sedO q. glen > EMPTY {

I wait -> inc; }
0 inc -> wait;

}

175

Listing 7.6 BEHAVIOUR statement of Output Controllers

7.5 Model validation

With a model of this size and complexity it is necessary to analyse its behaviour to ensure

that it reflects correctly the operation of the system being modelled. The post processor

viz is a suitable tool for this. Full validation required two steps, the first being to examine

a textual event trace of a simulation of the model to ensure components behave as

expected, and the second being to run a short simulation and examine the resulting counter

values.

For the first step a short simulation (100 time slots) was run. The textual event trace for

this simulation was obtained using viz. Each type of component was considered in turn.

Every transition was examined for each component type to ensure the firing and timing

corresponded to that which was expected. This step highlighted the timing problems that

were discussed in section 7.4.3 and thus proved a valuable technique.

For the second step all the counter values were noted at the end of simulation from the

previous event trace. These values are given in table 7.1. The validating technique is as

follows. For each pair of components, eg sea0 and seal, the sum of the total values minus

the sum of the glen values should be equal to the sum of the total values for the following

pair of components. By performing this check for each pair of components correct counter

operation can be confidently determined.

Cnt. Check Components

Counters

qiO qil seaO seal sebO sebl secO sec! sed0 sedi qol qoO

total 65 56 57 61 50 59 61 47 50 57 50 56

glen 2 1 1 8 0 1 1 0 0 1 50 56

Table 7.1 Validation of counter operation

176

7.6 Results

In this section we present some of the results from simulating the model.

7.6.1 Performance parameters

The performance parameters used are the mean queue length of each queue in the input

controllers and switching elements. These values can be directly determined from the

I SIM post processor tpp. The mean queue values are determined for various combinations

of traffic load and routing balance.

The switch model has two distinct routing paths, the upper and lower. These may be

considered as one for balanced routing conditions. In the case of unbalanced routing they

are taken separately and compared to determine the effect of the routing.

7.6.2 Simulation parameters

The model of the input traffic described in section 7.4.2 is manipulated to give the required

variation in load. Referring to listing 7.1, the transitional probabilities govern the load

value and are altered accordingly. The offered load is critical as cell loss is more sensitive

to load than to queuing delay [202]. For the results presented below the load was varied

from 0.50 to 0.65 in steps of 0.05.

The model of the cross-bar switches described in section 7.4.4 is manipulated to provide

different routing balances. Referring to listing 7.3, the transitional probabilities reflect the

routing balance. In this example input traffic on the upper link has a likelihood of 0.65

being destined for the upper output, whilst traffic from the lower input is balanced. For

the results presented below the lower path is kept balance and the balance of the upper path

is varied from 0.50 to 0.65 in steps of 0.05.

177

For each case the simulator was run for 10 trials of 10000 time slots each. Each group

of runs was analysed by the I SIM post processor tpp.

7.6.3 Simulation results and observations

The graphs below present a selection of the simulation results. Graph 7.1 shows the mean

queue lengths of the input controller and each stage for various traffic loads.

Queue Length Load
-*- OS -4- 09 -0- 0.! A 0! 6

10

8

8

4

2

0

2
-7

input 1st stage 2nd stage 3rd stage 4th stage

Switch Stage

Graph 4.1 Queue length for varied balanced loads

It is interesting to note the behaviour of the second stage queue and that the ratio of this

queue length to the others increases with load. As expected all queue lengths increase with

load save for the 4th stage which is modelled as feeding an infinite capacity network. The

most marked increase in queue length is from a load of 0.60 to 0.65, reflective of the

graduation towards maximum load. Each of the graphs 4.2 to 4.9 show the mean queue

lengths for different traffic loads as a function of routing balance.

178

Graphs 4.2 &4.3 Unbalanced upper and lower paths for load of 0.50

Que

Switch Stage

Q

Switch Stage

Graphs 4.4 & 4.5 Unbalanced upper and lower paths for a load of 0.55

Graphs 4.6 & 4.7 Unbalanced upper and lower paths for a load of 0.60

179

Graphs 4.8 & 4.9 Unbalanced upper and lower paths for a load of 0.65

These graphs again show the importance of the second stage queue, with the lower queue
being slightly longer due to the imbalance of traffic routing. The third stage queue on the

lower path shows a marked increase over its upper counterpart. This we can assume is due

to the priority given to the upper path causing the lower cross-bar, cross path, to be subject

to head of line blocking. As would be expected , the queue lengths increase with load.

Interestingly the disparity between the upper and lower paths also increases with traffic

load.

This model may be replicated to provide a two switch network and used to determine the

effect of switching and queuing on network performance. This work has been proposed

by Friesein and Wong [203] who modelled two switches with various source interacting

across a network for loads from 0.6 to 0.8. Expansion on this to examine the effects of the

network and other switches on the performance of the various stages of our switch would

be an interesting area of further work.

180

7.7 Conclusions

A complex performance model of an ATM Delta-2 16x16 Banyan switch architecture has

been developed in ICE. This has demonstrated that the ICE language is capable of

modelling intricate systems comprising inter-dependant components and the I SIM

simulator's ability to simulate and analyse such systems. Analysis of the textual event trace

was used to obtain a functually correct model and the results produced by the tpp post

processor revealed some interesting insights into the switches behaviour under various

conditions.

The tight timing restrictions of the model proved to be a rigorous testing ground for the

language. Initial development revealed some challenges to obtain correct sequencing of

simulation events. A solution was presented which facilitated correct synchronisation and

the lessons learned prove useful for future modelling.

The amount of code required was reasonable (-300 lines, formatted) for the complexity of

problem. The use of counters to model queues contributed considerably to the restriction

of the code to this size. The generic nature of the language allowed for a very modular

design with many constructs being reused with minimal editing.

The work presented in this chapter has been the subject of a published paper which is

reprinted in appendix E.

181

Chapter 8

Performability modelling with ICE

8.1 Introduction

In this chapter we come to a significant testing point for ICE. The language's ability

to model intricate systems comprising many interacting components has been

demonstrated as has it's use in obtaining performance and dependability measures from

such systems. We now turn our attention to the complex field of performability

modelling.

Chapter 2 gave a detailed account of the development of performability modelling and

the techniques employed were presented. In this chapter some of these techniques are

adopted and adapted for ICE. We identify some of the important measures previously

discussed and apply these to the ICE models.

Rather than develop specific models which may be limited to certain applications we

propose a generic ICE performability framework. This framework utilises the proven

concept of reward models. It is shown how this generic approach can be used to obtain

suitable performability measures. The method is illustrated by the use of an example

182

model of a multiprocessor system.

8.2 Distribution of accumulated reward

Distribution of accumulated reward is the classic performability measure. It gives a

revealing insight into a systems behaviour and facilitates a better understanding of its

operation. Smith et al [205] give an example of a multiprocessor system whose

behaviour is not fully described by expected values of reward but requires the

comprehensive information contained in the distribution of accumulated reward.

The distribution of accumulated reward is the probability a system will complete a given

number of tasks during the time interval [O, t). This is effectively an index of system

productivity and allows appropriate system capability to be determined. Reward rates

may be assigned to appropriate states. A task is taken to be completed once the

cumulative reward of the system is equal to or greater than that required by the task.

Let 7(t) be the instantaneous reward rate and F (t y) =P{ 7(t) y} denote the

distribution function of the accumulated reward. The complementary distribution

Fc (t, y) =1 -F(ty)=P {Y (t)>y)

can be used to answer the important question : What is the probability that an amount

of work, y, will be completed by the system during the interval [O, t) ?

? loo) is not defined for systems without absorbing states and hence when t --goo, the

distribution of accumulated reward can be fully defined only for a system with imperfect

repair. In this case Beaudry [52] proposes a method for calculating the distribution.

The approach is based on transforming the original Markov chain, X, into an equivalent

one, X', with the same state space but with the generic transition rate determined by

dividing the transition rate of the original chain by the reward rate of the departing state.

This effectively transforms a time domain representation of the system into a

computation (or reward) domain representation. The model changes state after a certain

amount of computation rather than a period of time. The accumulated reward is then

183

the analog of the time domain availability, i. e. rather than viewing the model as showing

the mean time to failure it shows the mean reward accumulated. The limiting

distribution of fit) for X can be obtained from the transient state probabilities of X as

it corresponds with the distribution of its time to failure. Ciardo et al [206] expanded

this technique removing the restriction of non-zero reward rates for transient states by

employing semi-Markov reward models.

8.3 The ICE reward model

In a performability model it is possible to allocate a reward assignment equal to a

simple function of the state index. As an example, in a simple multiprocessor

reliability/availability model the reward rate may be taken as being directly proportional

to the number of functioning processors [52]. This approach is employed in the

example of section 2.4.3.2 using stochastic reward nets (SRNs) and accommodates a

simple solution. However this assumption is often erroneous. More meaningful models

will normally require a performance evaluation of each state in the state space to derive

suitable reward rates. In this instance the reward rate of each combination of

functioning units is individually defined and thus accurately reflecs the real systesm.

This adds significant complexity to SRN and Markov performability models.

With the ICE reward model the objective is to facilitate an accurate method of assigning

correctly evaluated reward rates to each component state. This is implemented by using

COUNTERS to monitor reward rates. The generic framework is described below.

O An ICE model of the system of interest is developed as normal. The reward

model will be an extension to this, as opposed to a seperate model.

OO Each component within the system that we wish to obtain performability

measures from has a reward counter associated with it. When the component

enters a given state this counter is set to the reward rate of that state. The

reward rate is the reward per time unit (the size of the time unit being set

184

appropriately by the modeller). This counter therefore monitors the

instantaneous reward rate of the component. These counter values of different

components may be summed to give the instantaneous reward rate of the system.

3A separate component is used to monitor the cumulative reward rate of the

system. At the end of every reward time unit the value of this counter is

incremented by an amount equal to the instantaneous reward rate counter.

® By accessing the instantaneous reward rate and cumulative reward rate counters

any of the performability measures identified in section 2.4.2.1 can be

determined.

This ICE generic performability modelling framework is best demonstrated by

considering an example.

8.4 Multiprocessor example

In this example a typical multiprocessor system is modelled and performability measures

obtained.

The system considered contains 4 processing units and can handle several tasks

simultaneously. We are concerned with the processing of individual tasks that are

submitted to the system. Each processing unit can exist in one of the two states serve

or busy. In the serve state it is serving the specific task of interest. In the busy state

it is serving another task or performing housekeeping duties and therefore not

contributing towards the task of interest, i. e. it is a non-productive state. The state space

of one of these units is shown in figure 8.1 and the corresponding ICE code in listing

8.1.

185

exp(x)

(busy
ýerve

' exP(Y)

Figure 8.1 State space of unit component

STATE-SET ss unit {
COUNTERS:;
STATES {

busy :;
serve :;

BEHAVIOUR be unit {
exp(x) busy -> serve ;
exp(y) serve -> busy ;

}

COMPONENT unitl, unit2 , unit3 , unit4 (ss unit; be-unit; busy;)

Listing 8.1 ICE code for unit component

To determine the total amount of work being done on the task of interest at any given

time the SYSTEM statements in listing 8.2 are used.

SYSTEM upO = ALL(! unitl. serve,! unit2. serve,! unit3. serve,! unit4. serve);
SYSTEM upl = EXACTLY I(unit l. serve, unit2. serve, unit3. serve, unit4. serve);
SYSTEM up2 = EXACTLY2(unitl. serve, unit2. serve, unit3. serve, unit4. serve);
SYSTEM up3 = EXACTLY3(unitl. serve, unit2. serve, unit3. serve, unit4. serve);
SYSTEM up4 = EXACTLY4(unitl. serve, unit2. serve, unit3. serve, unit4. serve);

Listing 8.2 SYSTEM statements monitoring number of serving units

In each statement, upN, N denotes the number of processing units currently serving the

task of interest.

The state of the system and the instantaneous reward rate is modelled by the processor

186

component. It has 6 states, the initial state finit and states procO.. proc4, indicating how

many units are currently serving the task of interest as determined by the SYSTEM

statements of listing 8.3. This component has the counter reward. Reward is set on

entry to each state to be equal to the reward rate for that state and hence contains the

instantaneous reward rate of the system. The state space for the processor component
is shown in figure 8.2 and the corresponding ICE code in listing 8.3.

ON EVENT upl

procO pr(
ON-EVENT upO

finit

0

ON EVENT up2 ON EVENT up3

. 1) proc2

OON EVENT up] A ON EVENT up2

ON EVENT up4

ON EVENT up3

Figure 8.2 State space of processor component

STATE SET ss processor {
COUNTERS : reward;
STATES {

finit :;
procO : (reward = 0);
proc 1: (reward = 10);
proc2 : (reward = 15);
proc3 : (reward = 22);
proc4 : (reward = 27);

}
}
BEHAVIOUR be-processor {

0 finit -> proc2;
ON EVENT upO {0 prod -> procO; }
ON EVENT up1 {0 procO -> prod;

ONEVENT up2 {
0 proc2 -> procl; }
0 prod -> proc2;
0 prod proc2;)
0 proc2 -> proc3;
0 proc4 -> proc3; }
0 proc3 -> proc4;)

ON_EVENT up3 {

ON EVENT up4 (
}
COMPONENT proc(ss processor; be. processor; init(reward = 0);)

Listing 8.3 ICE code for processor component

187

The reward values shown in the STATE SET statement of listing 8.3 are typical values
for multiprocessor systems. These rewards are the performance measures of the system.

To obtain the cumulative reward rate a further component, check, is used. Check has

a counter record and two states, wait and inc. At the beginning of a simulation check

is in state wait and counter record is set to zero. At the end of every reward time unit

the state inc is entered. Record is incremented by an amount equal to the value of

counter reward of component processor (the instantaneous reward rate counter) and

hence contains the cumulative reward rate. The state space of check is shown in figure

8.3 and the corresponding ICE code in listing 8.4.

unit i

\ record =
Walt inc (record + processor. reward)

0

Figure 8.3 State space of check component

STATE SET ss check {
COUNTERS : record;
STATES(

wait :;
inc : (record = record + proc. reward);

}
}

BEHAVIOUR be check {
1 wait -> inc;
0 inc -> wait;

}

COMPONENT check (ss check; be check; wait(record = 0);)

Listing 8.4 ICE code for check component

188

8.4.1 Performability measures

The multiprocessor model was simulated using I SIM. The exponentially distributed

sojourn times of the processing units determine the availability of the system. These

sojourn times are dictated by the values of x and y in the unit component behaviour

statements. The ratio of time spent in the busy and serve states is the ratio of exp(x) to

exp(y). This was varied from 4: 4 to 16: 4 to determine the impact on the performability

measures. For each set of parameters 1000 runs were done. Statistical information on

the values of the instantaneous and cumulative reward rate counters was obtained using

the tpp analyzer. This information can be used to calculate the performability measures

described in chapter 2.

Distribution of accumulated reward

For a known size of task the probability of completing the task within a given time can
be determined from the distribution of accumulated reward. This distribution is obtained
by recording the value of the cumulative reward counter at known time intervals during

the simulations. Points are then plotted as the percentage of times the cumulative

reward is equal to or greater than the total reward a given task requires. In this example

the task size was 1000 reward units.

Probability
x: y=4: 4 x: y=8: 4 x: y=12: 4 x: y=16: 4

I

0.8

0.6

0.4

0.2

Graph 8.1 Distribution of accumulated reward for task size of 1000 reward units.

189

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Time

Graph 8.1 reveals that as the proportion of time the processing units spend serving the

given task decreases then the time to task completion increases as would intuitively be

expected. As the expected time to task completion increases so does the range of

possible completion times. This is due to the variations in state sojourn time around the

mean having an increased influence on the reward being accumulated.

Expected instantaneous reward

The expected instantaneous reward, E[2'(t)], was shown in section 2.4.2.1 to be

r1P1(x)
i¬S

where S is the set of states being monitored for reward. In this example all the states

of component processor. The subscript i denotes each state proc0 .. proc4. The reward

rate of each of these states is denoted by r; and Pi(x) is the probability of processor

being in state i at any time x during simulation. For each of the states the value of

reward rate used in the example and the values of P; obtained by tpp are given in table

8.1.

state r,
Pa(x)

x: y = 4: 4 x: y = 8: 4 x: y = 12: 4 x: y = 16: 4

procO 0 0.063 0.193 0.313 0.401

proc1 10 0.256 0.390 0.416 0.410

proc2 15 0.374 0.303 0.217 0.160

proc3 22 0.247 0.101 0.050 0.027

proc4 27 0.066 0.013 0.004 0.002

Table 8.1 Selected values of reward and calculated state occupancy probabilities

E[T (t)] can hence be calculated giving the results shown in table 8.2.

sojourn times 4: 4 8: 4 12: 4 16: 4

E[r(1)] 15.386 11.018 8.623 7.148

Table 8.2 Calculated values of expected instantaneous reward

190

The expected instantaneous reward decreases in an exponential manner as the ratio of

time the processing units spend servicing the given task decreases. If a number of task

were submitted to the system with known reward requirements this would be a very

useful measure for determining the processing unit service times required to complete

the tasks without incurring a backlog.

Expected accumulated reward

The expected accumulated reward, E[a(t)], was shown in section 2.4.2.1 to be

E[ý(t))=1 r; L; (t)
! ES

where L. is the total time spend in state i during the period [0, t]. The subscript i again

denotes states proc0.. proc4 in this example. Since this system is non-absorbing and

each processing unit follows a simple cyclic behaviour, L,, may be calculated as L, = P,

x t, other than for small values of t (< 2x) in which case L. may be obtained by

simulation. It follows that E[4 (t)] = E[7t)] x t, and thus may be simply determined for

any value of t.

8.5 Conclusions

In this chapter we have applied ICE to performability modelling. This has been a

significant testing area for the language to which it has proven well suited.

A generic ICE reward model framework has been proposed. This involves developing

a complete ICE model of a system and then adding counters to monitor instantaneous

and cumulative reward. The increase in complexity of the model due to the counters

is negligible. After simulation by I SIM the tpp analyzer can be used to obtain

statistical information on the reward counters. With this information all of the

performability measures identified in section 2.4.2.1 can be determined. The distribution

of accumulated reward may be plotted giving valuable insight into a system's behaviour.

191

Detailed performability measures were obtained for a multiprocessor system example
from a relatively simple ICE model. The operation of the system was investigated by

observing the effect that altering model parameters had on these measures.

A hybrid approach is taken to performability modelling. This is a combination of

measurement and model based evaluation. Performance parameters were measure based

in the form of the processor reward rates. Availability parameters were obtained from

simulating the system and hence are model based. This approach is flexible and should

be modified to suit the particular application.

In the ICE framework appropriate reward rates are assigned to each state of interest.

This is a notable benefit over Stochastic Reward Net and Markov techniques, where it

is significantly simpler to assign reward rates that are proportional to some system

parameter, such as number of functioning units, rather than on an individual state basis.

192

Chapter 9

Discussions and Conclusions

9.1 Overview

In this chapter we critically discuss some of the main issues presented in the thesis with

an emphasis on how the work measures against the original objectives and ways in which
it could be progressed. The conclusions given are additional to those at the end of each

preceding chapters.

There are 5 main areas that are considered, these are

1. The ICE language.

2. Implementation of the simulator.
3. Random number generation.
4. The computational models of ICE.

5. Performability modelling with ICE.

Following the general discussion on these areas some specific ideas for further research are

highlighted.

193

9.2 The ICE language

The objective of developing a simple, intuitive and powerful description and simulation
formalism has been successfully met.

Perceived complexity and modelling power

With any descriptive language there is a trade-off between volume and complexity. A

certain number of syntax constructs are required to provide a suitable descriptive space and

as this number increases so also does the complexity of the language. It is felt that with

ICE a good balance has been achieved. The syntax is relatively concise but yet powerful.

The use of COUNTERs within the language provides a novel means of considerably

increasing the descriptive space without increasing the state space of the model. The

additional features required for the counters has been kept to a minimum and maintains

continuity with the other constructs. The added burden to the syntax is far outweighed by

the increased descriptive power. ICE models may be viewed graphically by state transition

diagrams, as has been illustrated by many of the examples in this text. Component states

are simply represented as circles and transitions by arcs. The addition of counters requires

that extra inscriptions are required for the states to show where and how they are updated.

This is analogous of the development of coloured Petri nets (CPNs) from Petri nets (PNs).

CPNs, using coloured tokens, provide a significant increase in descriptive power over PNs

although extra net inscriptions are required to describe the tokens. With CPNs the use of

inscriptions is flexible. The modeller may use small nets with many inscriptions to

describe the functionality or large nets with few inscriptions that may be less tractable but

where the functionality is more easily apparent. With ICE the use of inscriptions is fixed

and detracts relatively little from the understanding of the state transition diagrams. Due

to the intuitive nature of counters and their expansive descriptive power modellers are

therefore encouraged to use them to describe as much system functionality as is practicable.

The ICE approach

The degree of complexity of any modelling technique as presented to the human modeller

should always be a primary concern. Many techniques may only be successfully adopted

by 'experts'. It is immediately obvious that ICE is inherently far simpler than formalisms

such as PNs. It's intuitive syntax and the reduced state space of the model should mean

194

that in can be learned and applied by a novice with only a few hours training.

As has been hinted at above, many practitioners find it easier to think in two dimensions

and resultingly their first approach to modelling all but very simple systems is to make a

spatial sketch. It would therefore be fair to make the comment that ICE is still just a

documentation of a diagram. The author would personally support this view rather than

defend against it. Recognising that when a state space approach to a problem is adopted

the simple first step of modelling is to represent the acquired information in some sort of

state transition diagram, the syntax and structure of ICE has been designed to make the

translation between diagram and formalised description as simple and fluid as possible.

This may indeed be seen as one of the languages main strengths. It captures what is to

many modellers the natural, intuitive approach. This being the case, the question may then

be raised, should some form of graphical user interface be provided whereby the user's

initial diagrammatic representation may be automatically compiled and converted into ICE

code ? At first this appeared to be a logical step but extended application of the language

now suggests that it would not be worthwhile. Considering the problems of layout and

connectivity experienced when using graphical software packages only very simple models

could be drawn easily and with such models it is easier to go straight to an ICE

implementation. The speed and ease with which 'paper and pen' diagrams can be drawn,

edited and converted into ICE suggests that even with a graphical interface, modellers

would revert back to such a technique.

Syntax and semantics

The syntax of the ICE constructs are mostly simple and intuitive although in a couple of

cases they hide some rather complex semantics. It is a fair criticism of the language that

a computational model should not be required to clarify the semantics. Ideally, all

semantics should be obvious from the syntax. This is largely true with the exception of

the conditional transition statements. If timing was removed from these statements then

their meaning would be wholly obvious. However it is felt that the timing is important as

it allows for more compact descriptions and ensures that all transitions follow a standard

format. The detrimental implication is that timing does add complexity. It is no longer

clear, exactly when transitions occur and what priority they take. The precise meaning of

the IF and ON EVENT transitions now become implementation dependent. The

sequencing of events is fully explained in chapter 3 and it is crucial that a modeller is au

195

fait with this. The approach taken follows what it is thought would be intuitive, although

without explanation it may be open to misunderstanding. It may be argued that in this

respect PNs have an advantage over ICE. They give an exact representation of a system

and leave no room for ambiguity in understanding. This consequently was one of the

reasons that PNs were used to develop a computational model for ICE. However this

argument is not quite correct when it is considered that for PNs a transition firing policy

may be required. This states when a transition is enabled and when tokens are removed

from input places and put in output places. Such factors are not apparent from the PN

diagram but must be explicitly given. It is conceded that the complexity of the semantics

is a necessary weakness of the language, however since it is relatively limited and they are

explicitly defined through the computational model, it is not considered to be a major issue.

The ethos of the language has encouraged a structure, style and choice of syntax that is

intuitive and simple. Most of the discussion of the language in this thesis has centred

around the syntax, which as we have discussed, does not fully define the language. It is

therefore suggested that any future discussions regarding modifying ICE should be based

equally around the computational model.

Static analysis

With PNs it is possible, depending upon the high level extensions used, to reduce the net

to an underlying Markov chain and perform static analysis. The ability to perform such

analysis on ICE models, e. g. the reachability of component states, would be a significant

benefit. To achieve this it was considered whether ICE or a meaningful sub-set of ICE

could be identified that would be reducible to a Markov chain. Firstly we shall examine

the most simple of ICE examples. A two component state transition model is shown on

the left in figure 9.1. Each of the components comp] and comp2 have only two states and

the transitions between the states are all deterministic. On the right in figure 9.1 an attempt

is shown at the construction of an equivalent Markov chain.

It can be seen that the attempted Markov chain has two AD states and that there is more

than one possible transition between many of the states. For clarity this figure only shows

the first three iterations but it is easy to project how further iterations would increase the

complexity. This state space diagram is clearly not memoryless and is therefore not a

Markov chain. It is worth noting that we get this duplication of a state and multiple paths
for even the most simple of ICE models. This suggests that the only possible sub-set of

196

ICE that could be reduced to an equivalent Markov chain would be for a single component

model. ICE is however designed for multiple component systems and this would not be

worthwhile. This example hints at the relative power of ICE. Many high-levels extensions

to PNs cannot be reduced to Markov chains and as was shown in chapter 6, a considerable

range of these extensions are required to represent the ICE syntax. This suggests that ICE

would be irreducible, and it is interesting that we cannot reduce even a very basic structure.

compl
5

B

comp2
7

LG4-1

Key : Ist iteration

2nd
3rd

2

AD
21

-ii
AC ---+-----------BD

---. ý 2
5S

AD

Figure 9.1 Conversion of simple state transition diagrams to a single
diagram

A worthy area of further work would be to investigate other possible means of

implementing static analysis on ICE model. An additional foreseeable challenge however

would be ICE's stochastic nature. Reachability graphs can be drawn of PNs with

deterministic transition firing rates, however the theoretical number of state consequences

becomes infinite when stochastic transition rates are allowed. In ICE, where transitions are

dependant upon the stochastic transitions of other components a similar problem would be

encountered. One possible way of accommodating this would be to place limits on all

stochastic transitions. For example, if a transitions timing was t= exp(30), we could set

the limits so that the transition must occur at time tE {5,10,15,20,25,30,35,40,45,50,55}.

This would theoretically make the reachability graph obtainable, though if there were more

than a few stochastic transitions it may not be tractable.

ICE as a descriptive formalism

Often formalisms are used to capture the description of a system and this representation is

then converted into a format suitable for simulation. ICE is beneficial in that it can be

197

used for both stages. The whole ethos of ICE dictates that there should be no need to

describe a system in terms of another formalism before creating a model. In this thesis we

have concentrated on using ICE to model systems for simulation but the language should

also be viewed as a formal tool for producing unambiguous system descriptions. This may

be suited for an application such as risk assessment where it may not be desired to simulate

a system but a complete and consistent means of description is essential.

Using the #include command in ICE it is possible to build up libraries of ICE code that can

be reused in different models. A criticism often made of simulation libraries that they are

too simple or if the modules are not in the format of source code, it is not known exactly

what they contain. As a result, libraries are often not used, modellers preferring to develop

their own modules. ICE libraries are of ICE source code and owing to the simple syntax

they should be inherently easy to comprehend and analyze, thus negating the latter problem.

The former is also manageable as the libraries may be copied into new files and edited to

suit a users requirements.

9.3 Implementation of the ICE simulator

The design and implementation of the ICE simulator, described in chapter 4, followed an

iterative process. The criticism could be made that a full system specification should have

been completed before the implementation began. This however was not possible as the

syntax of the language had not been finalised at that stage. In truth, this iterative process

proved to be valuable. Design of the simulation algorithm in particular led to some

interesting insights into further possible interpretations of the language's semantics and

transition timing issues. The exact definition of the algorithm required an exhaustive

examination of all possible combinations of event enabling and sequencing and following

from this an optimal understanding of the semantics was obtained. This understanding is

presented in the computational model of ICE.

The simulator is implemented in quite complex object oriented code. Due to the level of

abstraction inherent within object oriented programming and the number of data objects

required for an application such as this, obtaining an understanding of the code can be quite

daunting. The example presented in appendix B should prove useful and save much time

for anyone aiming to understand the software with a view to modifying it. Extensive use

198

of reusable libraries and dynamic data structures, whilst perhaps not optimal due to the

iterative design procedure, ensure that the code is relatively compact.

One weakness of the simulator is that it is subject to much possible conflict between

simulation events. A consequence tree is used to fire events that result from the occurrence

of previous events. This can result in many conflicting transitions being scheduled for the

same time. In such an instance, the order in which these transitions occur should be

random, however in practice they are dictated by the order in which they were submitted

to the event list. As a result, some of the supposedly random events are predictable. To

counteract this a random event scheduler is required as part of the simulation algorithm.
This should be able to identify occurrences of conflict and randomly prioritise the

conflicting events.

The range of statistics available from the analysis post processor is reasonably

comprehensive and easily expanded. This processor has efficiently produced meaningful

results from many of the models presented in this thesis. The flaw in this tool however

is the time consuming way in which the user must enter the information that is required.
The simulator has been written to run on a standard DOS environment. It would benefit

greatly from a Windows implementation. As this thesis is being written, analysis of the

software's graphical interface code is being done and a specification is being written for a

new project that will develop a Windows version of the software. As well as allowing

such things as the multiple editing of files and easy access to all functions this will

facilitate a user friendlier interface to the post processors.

ON EVENT main. failed

exp(x) 0

failed idle operate

exp(y 0
IF main. waläng

MAIN STANDBY

Figure 9.2 State transition diagram of standby redundant system.

199

Speed is of importance to the modeller, both during the model specification and simulation

phases. It has been shown how the nature of ICE allows for the relatively quick
development of models by 'non-experts'. The event scheduling nature of the simulator

enables impressive run times. To illustrate this we shall consider a simple example.

Figure 9.2 shows the state transition diagram of a standby redundant system. The

component main moves between the two states working and failed with failure and repair

rates exp(x) and exp(y) respectively. The component standby normally in state idle moves

into state operate on the event that main moves into state failed. When main returns to

state working, standby returns to state idle. This example thus has instances of all types

of stochastic and conditional statements and gives a true representation of typical tun times.

When implemented in ICE and simulated on a 486 DX4,100 MHz PC the time taken to

process one million events was 590 seconds. A large proportion of this time is due to the

generation of the stochastic distributions for the exponential transitions. If exp(x) and

exp(y) are replaced with the deterministic values x and y, the time taken to process one

million events is reduced to 83 seconds. This clearly demonstrates the value of reducing

the generation time of the pseudo random numbers.

9.4 Random number generation

The area of work on random number generation was not identified in the original

specification but was suggested during the development of the simulator. It looked to be

a fruitful area of research and was therefore pursued. The generator originally implemented

was chosen from the literature for its proven statistical properties. Further research

however revealed that these had been obtained for only long runs of generation. It was

shown in chapter 5 that the properties of a pseudo randomly generated sequence will not

necessarily be shared by sub-sequences. This implies that all sources within an application

that require a supply of random numbers must be supplied from independent sequences.

The length of sequences generated may then be of greatly varying ranges and the statistical

properties must remain good for runs of a few numbers to many thousands of numbers.

In specifying that all lengths of sequences must possess good statistical properties we must

be careful to recognise that this is on average. If each individual sequence generated

possessed good properties, then this, paradoxically, would be non-random, as we expect by

the law of probabilities to obtain some bad results. The longer a sequence that is used then

200

the more likely all random properties will be observed and the truer reflection of the actual

system will be obtained. In many instances of simulating a model, many of the sequences

used for the model will be of orders of magnitude longer than other sequences. To give

credible results it is therefore necessary to do many runs of the simulation.

The new fast shift register generator proposed in chapter 5, has similar statistical properties

to the proven industry standard generator but is over four times faster in operation. This

represents a significant saving in time intensive simulation environments with many

stochastic processes.

9.5 Computational models for ICE

Computational models for ICE were developed to both provide a concise description of the

language's semantics and to compare it to a recognised performability modelling technique.

ICE components may be regarded as finite state machines and are represented by PNs with

a single token. These basic models are built upon when counters are added. Counters

contribute a considerable increase in descriptive power and this is reflected by the increased

complexity of the PN model. Within ICE, SYSTEM statements provide a simple means

of relating what can be very complex component interactions. It is a non trivial task

representing even a relatively simple system statement with PNs. These PNs are the most

sophisticated of all that are used to model ICE and show how the simple syntax of the

language can hide some surprisingly powerful descriptive capabilities. The counters and

system statements make it possible to view ICE as a high level PN in the sense that due

to these constructs there is a significant reduction in state space complexity of some ICE

models relative to their PN equivalent.

In most of the PN models the transition firing policies are arbitrary though in a few they

have to be stated so that the model accurately reflects the ICE equivalent. It is in this one

aspect that the operation of the PNs is not wholly deterministic from the schematic alone.

The conflict inherent in some of the ICE constructs is modelled by the use of inhibitor arcs

and test arcs. This conflict results from the PNs being an exact representation of the

simulation algorithm described in chapter 4. These PNs help to quantify and provide

valuable insight into the problem of conflict that causes determinism in a random process,

201

as was discussed in section 9.3.

It would have been normal and perhaps beneficial to have developed a computational

model before implementing the language. Had this been done, the iterative procedure by

which the simulator was written would have been avoided. However, the learning process

that did take place was very beneficial and it is not felt that the order in which the project

progressed was detrimental in any way to the development of the language or simulator.

9.5.1 A macroscopic view

In chapter 6 all of the ICE constructs were modelled by PN equivalents in isolation. An

interesting exercise would be to produce macroscopic PN representations of complete ICE

models, though it is intuitively felt that these may quickly become unmanageably large.

A number of primitives could be constructed, existing mostly of the already defined PNs,

and these could be used to construct more complex features of a model. Such a

macroscopic model would give a truer comparison of the state space of ICE and PN

models. This exercise would identify the high and low level language features. By high

level, we denote constructs that require a number of places and arcs to build up a PN

model, such as the SYSTEM statement. Low level signifies where a construct can be

modelled by a one to one equivalent of language items to PN places such as the

RESOURCE statement. When these features are identified, it is the high level features that

represent a significant saving in state space of ICE over PNs.

Some of the computational models, such as the SYSTEM statement, are rather complex and

this defeats the purpose of using them to clarify the language's semantics. Perhaps the

most important constructs to be defined by the PNs are the behavioural statements as it is

in these that understanding of the semantics is open to misinterpretation. These PNs are

of a reasonable size and the semantics are clearly illustrated. Although a macroscopic view

of a system created by combining many primitive PNs may give a large and unmanageable

view of the modelled system, this may not be the optimal PN representation. The ICE and

PN approaches to system description are inherently different and therefore a direct

comparison between the ICE constructs and the equivalent PN models will not in all cases

give a definitive measure of relative model sizes.

202

Although it has been proven that ICE offers features that give a significantly more compact

descriptive space than is possible with PNs we cannot state that ICE is more powerful than

extended high level PNs. This is due to the ability to model all of the ICE syntax with

equivalent PNs. However it is very interesting to note that in producing these PNs, no one

dissertation on extended PNs contained all the high level extensions that were required.

The challenges to modelling of dependency, concurrency, synchronisation and conflict were

all considered and ICE solutions derived. These solutions took the form of very basic ICE

models, illustrating the practical nature of the language and giving confidence in its ability

to model more complex systems.

9.6 Performability modelling

From the background research presented in chapter 2 it can be concluded that

performability is a very important measure when analysing the behaviour of a system. It

often presents more complex challenges to the modeller than pure performance or

dependability measures. It was found that the techniques being developed to facilitate

performability modelling often involved rather complex definitions and solutions of the

problem suggesting that there is a need for an approach where the problem description

involves a low level of abstraction but is still powerful. Performability was chosen as a

good and thorough test bed for ICE and the work showed that ICE is well suited to this

type of problem.

The ATM switch model presented in chapter 7 illustrates ICE's approach and ability to

model complex system comprising many interacting components. It also demonstrates the

very low level of abstraction involved which consequently enables detailed and interesting

analysis of the switches behaviour. Such a model as this involves many simultaneous event

transitions and requires a lot of careful consideration. It is difficult to see how this

problem could be eased as the complexity is in the problem not the modelling technique.

For such complex models errors may be hidden and validation is essential before we can

have confidence in the results obtained. The textual and statistical post processors of the

simulator provide an efficient means of conducting this validation. Although ICE was well

suited to this application it is recognised that a state space approach may not always be the

most efficient means of pure performance modelling and when performance measures are

203

the only requirement other techniques should not be ignored.

The generic ICE performability modelling framework proved effective for obtaining

meaningful performability measures from a modelled system. This approach was based on

reward model techniques and was demonstrated to be stronger than either Markov reward

models or stochastic reward nets, in respect that the modelling of accurate non linear

reward involved no added complexity over the modelling of linear reward.

9.6.1 Problems encountered in modelling systems

Consideration of the literature on performability modelling revealed three recurrent

problems that are encountered, namely largeness, stiffness and non exponential behaviour.

In chapter 2 we considered the implications of these and some of the existing solution

techniques. Here be briefly consider how they can be handled by ICE.

Largeness

This problem can be elegantly handled by ICE in two ways. Firstly the use of counters can

greatly reduce the size of a model's state space hence possibly removing any requirement
for lumping and the consequent approximation. Secondly there is no requirement to detail

every possible combination of states, only the states for each individual component and

their interactions. This may avoid the need for truncation and again the approximation that

this involves. These techniques suggest that for many applications the problem of largeness

will not be significant when modelling with ICE.

Stiffness

The ability to reuse code libraries and perform decomposition within ICE models by

adopting hierarchical techniques will in some instances solve the problem of stiffness.

However some applications still present degrees of stiffness that are not possible to model

without some degree of approximation. Take as an example a typical ATM system. If we

assume a line speed of 155 Mbits" and 30% load, an error rate of 10-8 would represent one

erroneous cell per day ! Also errors tend to occur in bursts and this is a high error rate.

204

I SIM suffers from the weakness common to all simulators of not being able to handle this

dynamic range. For such situations analytical techniques will need to be applied.

Non exponential behaviour

This is not an issue with ICE as many types of stochastic distributions are facilitated and

any that are not currently implemented can be easily incorporated.

9.7 Suggested areas of further work

In this section possible areas of further work that have not been discussed elsewhere in this

chapter are suggested.

The ICE language

ICE is thought to be fairly optimal in its current state. A couple of changes have become

apparent during the performability modelling that would not add extra power to the

language but would assist in more elegant model implementations. These changes would

not increase the complexity of the syntax, fitting with the adopted ethos.

When using the generic performability framework a component is used to monitor the

cumulative reward after every reward time unit. In models where states have significantly

different sojourn times this becomes computationally intensive. It is suggested that

counters be given access to the system clock during simulation. With this facility it would

be possible to check state entry and exit times and thus determine the total accumulated

reward for that state when it is exited. This would save computation and therefore time

during simulation.

If the ATM switch model is examined it will be recognised that much of the code is

repetitive with some constructs being repeated many times over, the only difference being

some of the state names. Much editing could be saved if a functional approach was

adopted. By this we mean the introduction of variables. A construct that will be used

more than once could be defined and the changing state names replaced by these variables.

205

BEHAVIOUR be {2 idle -> varl;
3 varl -> busy;
I busy -> var2;
4 var2 -> idle; }

be (working-l; standby-1);
be (working-2; standby_2);

Listing 9.1 Example of functions

Consider as an example the BEHAVIOUR statement of listing 9.1. The statement contains

the two variables varl and var2. It may then be used many times over by giving the

statement name and in brackets afterwards the state names that the variables should be

substituted with. This is analogous to the use of functions in the C programming language.

If such an approach were used in the ATM switch model the amount of code would be

reduced by about 80%.

A third change to the language which would add complexity and significant power would

be the incorporation of intelligence. ICE can now be used to obtain performability

measures. A suitable progression would be the ability to optimise performability. This

would involve the capability for the dynamic adjustment of components and resources

during simulation so that different configurations could be tested based on intelligence of

the operation status of the system. It is envisaged that with such an implementation

desirable optimal states could be identified and it would be possible to dynamically re-

configure the model to obtain these states. It should also be capable of monitoring for the

occurrence of given states and work backwards to identify possible causes. This would be

an extremely useful tool for many applications where the emphasis would be shifted from

mitigation to prevention thus potentially offering significant savings in design time and

cost.

The ICE simulator

The conversion of the ICE simulator to a Windows based version, discussed in section 9.3,

will offer many benefits. It is necessary to analyse most models that are simulated to

obtain understanding of the system in question. The simulators post processors could be

improved to facilitate more options for this analysis.

206

Currently the analysis post processor will only perform analysis on whole runs of a

simulation. It would be beneficial to be able to select exact periods during simulation for

which analysis is required. This would save having to simulate the model to determine

steady state conditions or conditions at the start of the desired time of analysis which are

then fed back into the model.

Many of the results in this thesis have been presented in graphical format. This was

achieved by obtaining statistics from the post processors and then using these in a standard
drawing package. Often features and trends of the results do not become apparent until a

graphical plot is generated. As part of the revised post processor a graphing facility should
be provided, to plot any of the statistics obtained and be in a format suitable for direct

printing or import into a word processing or drawing package. An extension of this would
be on-line visualisation of results. Often it would be of great advantage to be able to view

the behaviour of a system as it is being simulated. This would involve much computation,

sacrificing simulation speed and therefore should be optional. On-line visualisation should

allow any of the obtainable statistics to be plotted as the simulator is running. These plots

could be updated after given time periods or by using a pause option, where the simulation

would be stopped at the user's discretion, plots updated then the simulation recommenced.

9.8 Conclusions

The achievements of the project are listed in section 1.4.

Overall the project has developed :

1. A generic description and simulation language that is intuitive and simple to apply

but powerful.

2. A tool that facilitates the attainment of performability measures and which may be

applied by an expert in the field rather than an expert in performability.

207

References

[1] . Silva M; Interleaving Functional and Performance Structural Analysis of Net

Models, 14th Conf on the Application and Theory of Petri Nets, Springer-Verlag,

pp 16-23, June 1993.

[2] Buchholz P; Hierarchies in Coloured GSPNs, 14th Conf on the Application and

Theory of Petri Nets, Springer-Verlag, pp 106-25, June 1993.

[3] Trivedi K S, Ciardo G, Malhotra M and Garg S; Dependability and Performability

Analysis Using Stochastic Petri Nets, Proc. of 11th International Conf. on Analysis

and Optimization of Systems - discrete event systems, pp144-57, Sophia Antiplois,

France, June 1994, Springer-Verlag.

[4] Jensen K; Coloured Petri Nets Basic Concepts, Analysis Methods and Practical

Use, volume 1, EATCS Monographs on Theoretical Computer Science, Springer-

Verlag, 1992.

[5] Deng Y, Chang S K, de Figueired JCA and Perkusich A; Integrating Software

Engineering Methods and Petri Nets for the Specification and Prototyping of

Complex Information Systems, 14th Conf. on the Application and Theory of Petri

Nets, Springer-Verlag, pp106-25, June 1993.

[6] Miller A J, Wells R and Walker K S; Simulation Using the Reliability Description

Language, Reliability '91, ed RH Matthews, 1991.

[7] Talib B; The theory and design of a stochastic reliability simulator for large scale

systems, PhD Thesis, Robert Gordon's Institute of Technology, 1988.

[8] Deans N D, Miller A J, Mann D; A reliability simulation language for reliability

analysis, In Proc. Eurodata Conference on Reliability Data Collection and Use in

208

Risk Availability Assessment, Heidelberg, 1986.

[9] Deans N D, Miller A J; Study of the feasibility of using a formalised language for

the description of reliability problems, Technical Report RGIT, EEC contract

number EC1-1479-B7222-86-UK, 1987.

[10] Scrase A S; On RDL and its Application to The Performability of Communication

Networks, PhD Thesis, The Robert Gordon University, 1991.

[11] Smith W; Design and Implementation of a Simulator for the Performance Analysis

of Manufacturing Systems, PhD Thesis, The Robert Gordon University 1991.

[12] Abdelmonem A H, Van Ryzin G J; A method for evaluating the effects of

performance degradations on communications network applications, ICC 90: Proc.

of IEEE Int. Conf. on communications, pp1307-13, Atlanta, USA, April 1990.

[13] Riebman A L; Modeling the Effect of Reliability on Performance, IEEE Trans. on

Reliability, Vol. 39, No. 3, pp314-9, Aug. 1990.

[14] Meyer J. F. Performability: a retrospective and some pointers to the future

Performance Evaluation, Vol. 14, pp139-56, Elsevier Science Pub. B. V. 1992.

[15] Meyer J F; On evaluating the performability of degradable computing systems

Proceedings of the 8th International Symposium on Fault-Tolerant Computing,

Toulouse, France, IEEE Computer Society Press, Silver Spring, MD, pp44-49,1978.

[16] Meyer J F; On evaluating the performability of degradable computing systems

, IEEE Trans. on computers, Vol. 29, No. 8, pp720-31, Aug. 1980.

[17] Meyer J F; Computation-based reliability analysis IEEE Trans. Computers, Vol.

C-25, No. 6, pp578-584,1976.
[18] Borgerson B R, Freitas R F; A reliability model for gracefully degrading and

standby-sparing systems IEEE Trans. Computers, Vol. C-24, No. 5, pp517-525,

1975.

[19] Meyer J. F. A model hierarchy for evaluating the effectiveness of computing systems

Proc. 3rd National Reliability Symposium, Perros-Guirec, France, CNET France,

pp539-555,1976.
[20] Trivedi K S, Haverkort B R, Rindos A and Mainkar V; Techniques and Tools for

Reliability and Performance Evaluation : Problems and Perspectives, 7th Int. Conf

on Techniques and Tools for Computer Performance Evaluation, Published as

Lecture notes in computer science 794, Ed. Haring G and Kotsis G, Springer

Verlag, 1994.

[21] Papoulis A; Probability, Random Variables and Stochastic Processes, Chapter 16,

McGraw Hill International Editions, 1991.

209

[22] Sahner R A, Trivedi K S; Reliability Modelling using SHARPE, IEEE Trans. on
Reliability, Vol. 36, No. 2, ppl86-193,1987.

[23] Hsueh M C, Iyer R K, Trivedi K S; Performability Modelling Based on Real Data:

A Case Study, IEEE Trans. on Computers, Vol. 37, No. 4, pp478-84, April 1988.

[24] Trivedi KS Probability and Statistics with Reliability, Queuing and Computer

Science Applications Prentice Hall, Englewood Cliffs, NJ, USA, 1982.

[25] Howard R A; Dynamic Probabilistic Systems, Vol II; Semi-Markov and Decision

Processes, Wiley, New York, 1971.

[26] Gelenebe E, Pujolle G Introduction to Queueing Networks Wiley, UK, 1987.

[27] Sahner R A, Trivedi K S, Puliafto A; Performance and reliability analysis of

computing systems, Chapter 4, Kluwer Academic Publishers, Dordrecht, the

Netherlands, 1996.

[28] Chou T. C. K., Abraham J. A. Performance/availability model of shared resource

multiprocessors IEEE Trans. Reliability Vol. 29, No. 1, pp70-6,1980.
[29] Trivedi KS et al Composite performance and dependability analysis Performance

Evaluation, Iss. 14, pp 197-215, North Holland, 1992.

[30] de Souza e Silva E, Gail H R; Performability analysis of computer systems,

Performance Evaluation, Vol. 14, Parts 3-4, pp l 57-196,1992.

[31] Malhotra M, Trivedi KSA methodology for formal expression of hierarchy in

model solution Proc. Petri Nets and Performance Models 1993, pp258-67 Toulouse,

France, Oct. 19-22,1993.

[32] Ajmone Marsan M, Conte G, Balbo G; On Petri nets with stochastic timing, In

proc. Int. workshop on Timed Petri nets, IEEE, Torino, Italy, 1985.

[33] Meyer J F, Movaghar A, Sanders W H; Stochastic Activity Networks : Structure,

Behaviour and Application, In proc. Int. workshop on Timed Petri nets, pp 106-15,

IEEE, Torino, Italy, 1985.

[34] Peterson J L; Petri Net Theory and the Modelling of Systems, Prentice Hall, N. J.

1981.

[35] Molloy M Performance analysis using stochastic Petri nets IEEE Trans. on

Computers, Vol. C-31, No. 9, pp913-17, Sept. 1982.

[36] Ciardo G et al Automated generation and analysis of Markov reward models using

stochastic Petri nets Linear Algebra, Markov Chains and Queuing Models, editors

: Mayer C and Plemmons R J, IMA Volumes in Mathematics and its Applications,

Vol. 48, pp145-91, Springer Verlag, Heidelberg, 1993.

[37] Catania V, Puliafito A, Vita L; A Modeling Framework To Evaluate Performability

210

Parameter In Gracefully Degrading Systems, IEEE Trans. on Industrial Electronics,

Vol. 40, No. 5, pp461-72, Oct. 1993.

[38] van der Aalst WMP; Interval Timed Coloured Petri Nets and their Analysis,

Application and Theory of Petri Nets, 14th International Conference, pp453-71,
Chicago, Springer-Verlag, June 1993.

[39] Berthelot G, Boucheneb H; Occurrence graphs for interval timed coloured nets,
Application and Theory of Petri Nets, 15th International Conference, pp78-98,

Spain, Springer-Verlag, June 1994.

[40] Christensen S, Hansen N D; Coloured Petri Nets Extended with channels for

Synchronous Communication, Application and Theory of Petri Nets, 15th

International Conference, pp159-77, Spain, Springer-Verlag, June 1994.

[41] Christensen S, Hansen N D; Coloured Petri Nets Extended with Place Capacities,

Test Arcs and Inhibitor Arcs, Application and Theory of Petri Nets, 15th

International Conference, pp186-205, Chicago, Springer-Verlag, June 1993.

[42] Evans J B; The Devnet :A Petri net for Discrete Event Simulation, Advances in

Petri nets, Ed. Rozenburg G, pp91-125,1993.
[43] Sanders W H, Meyer J F; Performance variable driven construction methods for

stochastic activity networks, In Ed. Coutois P J, Iazeolla G, Boxma 0 J, Elsevier

Science Publishers B. V. (North Holland), 1988.
[44] Sanders W H, Meyer J F; Performability evaluation of distributed systems using

stochastic activity networks, Ed. Bonatti M, Teletraffic Science, Aug. 1987.

[45] Sanders W H, Meyer J F; METASAN :a performability evaluation tool based on

stochastic activity networks, In Proc. ACM-IEEE Computer Society Fall Joint

Comp. Conf. Dallas, Texas, Nov. 1986.

[46] Ciardo G, Trivedi K S; Decomposition Approach for Stochastic Reward Net Models,

Performance Evaluation, Vol. 18, No. 1, pp37-59, July 1993.

[47] Balbo G, Bruell S C, Ghanta S; Combining Queueing Networks and Stochastic Petri

Nets for the Performance Evaluation of Multiprocessor Systems, IEEE Trans. on

Computers, Vol. 37, No. 10, ppl251-1268,1984.
[48] Szczerbicka H; A Combined queueing network and stochastic Petri-net approach

for evaluating the performability offault-tolerant computer systems, Performance

Evaluation, Vol. 14, pp217-26, North-Holland, 1992.

[49] Lopez-Benitez N, Trivedi K S; Multiprocessor PerformabilityAnalysis, IEEE Trans.

on Reliability, Vol. 42, No. 4, pp579-87,1993.
[50] Haverkort B R, Niemegeers I G; Using Dynamic Queueing Networks as a Tool for

211

Specifying Performability Models, ACM Performance Evaluation Review, Vol. 17,

No. 1, pp225,1989.
[51] Haverkort B R; Approximate performability and dependability analysis using

generalised stochastic Petri nets, Performance Evaluation, Vol. 18, pp6l-78, North-

Holland, 1993..

[52] Beaudry M D; Performance-related reliability measures for computer systems IEEE

Trans. on Computers, Vol C29, No. 6, pp501-9,1978.
[53] Iyer B R, Donatiello L, Heidelberger P; Analysis and Performabilityfor Stochastic

Models of Fault-Tolerant Systems, IEEE Trans. on Computers, Vol. 35, No. 10,

pp902-7, Oct. 1986.

[54] Meyer J F, Furchtgott D G, Wu L T; Performability evaluation of the SIFT

computer IEEE Trans. Computers, Vol. C29, No. 16, pp501-9,1980.
[55] Meyer J F; Closed-Form Solutions of Performability, IEEE Trans. on Computers,

Vol. 31. No. 7, pp648-57, July 1982.

[56] Couvillion J et al; Performability Modelling with U1traSAN, IEEE Software, pp69-

80, Sept. 1991.

[57] Prodromites K H, Sanders W H; Performability Evaluation of CSMA/CD &

CSMAIDCR Protocols Under Transient Fault Conditions, IEEE Trans. on

Reliability, Vol. 42, No. 1, pp 116-27, March 1993.

[58] Ciciani B, Grassi V; Performability Evaluation of Fault-Tolerant Satellite Systems,

IEEE Trans. on Communications, Vol. 35, No. 4, pp403-9, April 1987.

[59] Li V0K, Silvester J A; Performance analysis of networks with unreliable

components, IEEE Trans. on Communications, Vol. 32, No. 10, pp1105-10,

Oct. 1984.

[60] Goyal A, Tanawi A N; Evaluation of performability for degradable computer

systems, IEEE Trans. on Computers, Vol. 36, No. 6, pp738-44, June 1987.

[61] Brenner A; Performance and Dependability Analysis of Fault-Tolerant Networks,

Microelectronics Reliability, Vol. 36, No. 3, pp307-21, Elsevier Science Ltd, 1996.

[62] Rezal Islam S M, Ammar H H; Performability of the Hypercube, IEEE Trans. on

Reliability, Vol. 38, No. 5, pp518-25, Dec. 1989--

[63] van Dijk N M; Simple bounds for queuing systems with breakdowns, Performance

Evaluation, No. 8, pp 117-28,1988.

[64] van Dijk N M; Simple performability bounds for communications networks, In Proc.

Queueing, Performance and Control in ATM Networks, pp245-8, Elsevier Science

Publishers B. V. North Holland 1991.

212

[65] Jones D R, Malec H A; Communications systems performability: New horizons, In

proc. World Prosperity Through Communications: International Conference, Boston,

ppl5-23, IEEE, June 1989.

[66] Yang C-L, Kubat P; Efficient Computation of Most Probable States for

Communications Networks with Multimode Components, IEEE Trans. on

Communications, Vol. 37, No. 5, pp535-8, May 1989.

[67] Koren I, Koren Z; On Gracefully Degrading Multiprocessors With Multistage

Interconnection Networks, IEEE Trans. on Reliability, Vol. 38, No. 1, April 1989.

[68] Bhattacharya A, Rao R R, Lin T-T Y; Cumulative performance measure for

gracefully degradable multistage interconnection networks, In Proc. 1st International

Workshop on Parallel Processing, pp234-9, Dec. 1994.

[69] Feldbrugge F; Petri net tool overview 1992, Advances in Petri Nets 1993, Editor

Rozenberg G, Springer Verlag, Berlin, 1993.

[70] Lakos C A, Keen C D; Modelling Layered Protocols in LOOPN, IEEE pp106-15,

1991.

[71] Haverkort B R, Niemegeers I G, Veldhuyzen van Zanten P; DyQNtool: a

performability tool based on the dynamic queueing network concept, Modelling

Techniques and Tools for Computer Performance, Editor: Balbo G, North-Holland,

Amsterdam, 1991.

[72] Lindenmann C; Performance Modeling using DSPNexpress, In Proc. Measurement

and modelling of computer systems conference, Santa Clara, May 1993, Springer

Verlag, Berlin. 1993.

[73] Bavuso SJ et al; Analysis of Typical Fault-Tolerant Architectures using HARP,

IEEE Trans. on Reliability, Vol. 36, No. 2, ppl76-85, June 1987.

[74] Carrasco J A, Figueras J; METFAC. " Design and implementation of a software tool

for modeling and evaluation of complex fault-tolerant computing systems, In Proc.

FTCS 16, IEEE Computer Society Press, pp424-29,1986.
[75] Constantinescu C; Predicting Performability of a Fault-Tolerant Microcomputer for

Process Control, IEEE Trans. on Reliability, Vol. 41, No. 4, pp558-63, Dec. 1992.

[76] Trivedi K S, Kulkarni V G; FSPNs: Fluid Stochastic Petri Nets, Lecture Notes in

Computer Science, No. 691, Springer-Verlag, 1993.

[77] Trivedi et al; Dependability & Performability Analysis,, Measurement & Modelling

of Computer Systems Conference, Santa Clara, pp589-612, Springer Verlag, May

1993.

[78] Puttipati K R, Shah S A; On the Computational Aspects of Performability Models

213

of Fault-Tolerant Computer Systems, IEEE Trans. on Computers, Vol. 39, No. 6,

pp832-36, June 1990.

[79] Bobbio A, Trivedi K S; An aggregation technique for the transient analysis of stiff
Markov chains, IEEE Trans. on Computers, Vol. 35, No. 9, pp803-14, Sep. 1986.

[80] Bruel S C, Chen P Z, Balboa G; Alternative methods for incorporating non-

exponential distributions into stochastic timed Petri nets. In Proc. 3rd Int. Workshop

on Petri nets and Performance Models, Kyoto, Japan, 1989.

[81] Zeigler B P; Theory of Modelling and Simulation, John Wiley & Sons, New York,

1976.

[82] Law A M, Kelton W D; Simulation modelling and analysis, McGraw Hill, New

York, 1982.

[83] Schriber T; Perspectives on Simulation using GPSS, In Proc. 1988 Winter

Simulation Conf. San Diego, Dec. 12-14, pp71-84.
[84] O'Rielly J J, Lilegdon W R; Slam II Tutorial, In Proc. 1988 Winter Simulation

Conf. San Diego, Dec. 12-14, pp85-9.
[85] Delfossee C M; Continuous simulation and combined simulation in Simscript 11.5,

CACI, Arlington Virginia, 1976.

[86] Davis D A, Regden C D; Introduction to SIMAN, In Proc. 1988 Winter Simulation

Conf. San Diego, Dec. 12-14, pp61-70.
[87] Kreutzer W; System Simulation - Programming Styles and Languages, Addison

Wesley, 1986.

[88] McHaney R; Computer Simulation, A Practical Perspective, Academic Press Inc.

1991.

[89] Stroustrup B; The C++ Programming Language, Addison Wesley, 1986.

[90] Birtwistle G et al; Simula Begin, Petrocelli/Charter, New York, 1977.

[91] Goldberg A, Robson D; Smalltalk-80 The language and it's Implementation,

Addison Wesley, Mass. 1986.

[92] Pohl I; C++ for C programmers, Benjamin Cumming, 1989.

[93] Bratley P, Fox B L, Scharge L E; A Guide to Simulation, 2nd Ed. Springer Verlag,

New York, 1987.

[94] DE Knuth The Art of Computer Programming Vol 2, Seminumerical Algorithms,

2nd. Ed. Addison Wesley, Mass. USA, 1981.

[95] Vattulainen I, Kankaala K, Saarinen J, Ala-Nissila TA Comparative Study of some

Pseudorandom Number Generators Computer Physics Communications, Vol. 86,

pp209-26,1995.

214

[96] DH Lehmer, Mathematical Methods in Large Scale Computing Units, Annu.

Comp. Lab. Harvard University. 26[1951], [[141-146.

[97] Kwok HC et al Design and Analysis of parallel random number generators Proc.

31st Annual Southeast Conf. pp111-18, ACM, New York, 1993.

[98] SK Park, KW Miller, Random Number Generators : Good ones are hard to

find, CACM. Vol 31 No 10 pp 1192-1201.

[99] PA Lewis, AS Goodman &JM Miller, A Pseudo-Random Number Generator

for the System /360 IBM Systems Journal No 8 Vol 2, pp136-146.
[100] SK Park &KW Miller Technical Correspondence - Remarks on Choosing and

Implementing Random Number Generators, CACM Vol 36 No 7, pp108-110.

[101] Marsaglia G The Structure of Linear Congruential Generators Applications of

Number Theory to Numerical Analysis, Academic Press Inc. New York, 1992.

[102] Deng L-Y, Chan K H, Yuan Y Random Number Generators for Multiprocessor

Systems International Journal of Modelling and Simulation, Vol. 14, No. 4, pp185-

91,1994.

[103] Makino J On the structure of parellelized random number sources Computer

Physics Communications, Vol. 78, Iss. 1-2, pp 105-12, Dec. 1993.

[104] Burton FW& Page RL Distributed Random Number Generation Journal of

Functional Programming, Vol. 2, No. 2, pp203-12, April 1992.

[105] L'Ecuyer P, Cote S Implementing a Random Number Package with Splitting

Facilities AACM Trans. Mathematics Software, Vol. 17, pp98-111,1991.

[106] Eichenauer J, Lehn JA Non-linear Congruential Pseudorandom Number Generator

Statistical Papers, No. 27, pp 315-26,1986.

[107] Eichenauer J Inverse Congruential Pseudorandom Numbers :A Tutorial

International Statistics Review, No. 60, ppl67-76,1992.

[108] Neiderreiter H On a New Class of Pseudorandom Number Generators for

Simulation Methods Journal of Computational and Applied Mathematics, No. 56,

pp159-67,1994.
[109] Golom SW Shift Register Sequences Holden-Day Inc. San Francisco, 1967.

[110] Zierler N Primitive Trinomials whose Degree n is a Mersenne Exponent Int.

Control, Vol. 15, pp67-9,1969.

[111] Zierler W On Primitive Trinomials (mod 2) Part 1- Int. Control, Vol. 13, pp541-54

1968; Part 2- Int. Control, Vol. 14, pp566-69,1969.

[112] Hoffman de V Binary Sequences English Universities Press Ltd. 1971.

[113] Arazi B Decimation of m-sequnces leading to any desired phase shitf Electronics

215

Letters, Vol. 13, No. 7, pp213-22, Mar. 1977.

[114] Tomlinson G H, Galvin P High Speed Generation of Long in-sequences Electronics

Letters, Vol. 14, No. 7, pp212-13,1978.
[115] Hately MG Digital Simulation Methods Peregrinus Ltd. 1975.

[116] Birolini A Hardware Simulation of Semi Markov and Related Processes, Part 1:

A Versatile Generator Mathematics and Computers in Simulation, XiX, pp75-97,
1977.

[117] Tausworthe RC Random Numbers Generated by Linear Recurrence Modulo 2

Mathematics and Computing, Vol. 19, pp201-9,1965.
[118] Tootill JPR, Robinson W D, Adams AG The Runs Up an Down Performance of

Tausworthe Pseudorandom Number Generators Journal of the Association of

Computing Machinery, Vol. 18, No. 3, pp381-39,1971.
[119] Lewis T G, Payne WH Generalised Feedback Shift Register Pseudorandom

Number Algorithm Journal of the Association for Computing Machinery, Vol. 20.

No. 3, pp456-68,1973.
[120] Bright H S, Enison RL Quasi-Random Number Sequences Computing Surveys,

Vol. 11, No. 4, pp359-370,1979.
[121] Hamilton KGA Universal Random Number Generator for Personal Computers

Computer Physics Communications, Vol. 85, ppl27-52,1995.
[122] Fushimi M, Tezuka S The k-distribution of Generalised Feedback Shift Register

Pseudorandom Numbers Communications of the ACM, Vol. 26, No. 7, pp516-23,

1983.

[123] Arvillas A C, Maritsas DG Toggle-Register Generating in parallel kth Decimations

of m-sequences x+ nk + 1. Design Tables IEEE Transactions on Computers, Vol.

C-28, No. 2,1979.

[124] Arvillas A C, Maritsas DG Partitioning the Period of a Class of m-sequences and

Application to Pseudorandom Number Generation Journal of ACM, Vol. 25, No.

4, pp675-686,1978.
[125] Barel M Fast Hardware Random Number Generator of r the Tausworthe Sequence

16th Annual Simulation Symposium, Tampa, ppl2l-34,1983.
[126] Miller A J, Mars P Theory and Design of a Digital Stochastic Computer Random

Number Generator Mathematics and Computers in Simulation XIX, ppl98-216,

1977.

[127] L'Ecuyer P Uniform Random Number Generation Annals of Operations Research,

Vol. 53, pp77-120, JC Baltzer A. G. Science Publishers, 1994.

216

[128] L'Ecuyer P Testing Random Number Generators Proc. Winter Simulation Conf.

pp305-313,1992.
[129] Niederreiter H Random Number Generation and Quasi-Monte Carlo Mathods

SIAM, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63,

1992.

[130] Ripley JD Thoughts on Pseudorandom Number Generators Journal Computing

and Mathematics, Vol. 63,1992.

[131] Law A M, Kelton WD Simulation Modelling and Analysis 2nd Ed, McGraw Hill,

1991.

[132] James FA Review of Pseudorandom Number Generators Computer Physics

Communications, Vol. 60, pp329-44,1990.
[133] Durst MJ Using Linear Congruential Generators for Parallel Random Number

Generation Proc. Winter Simulation Conference, pp462-466,1989.
[134] De Matteis A, Pagiutti S, Numerical Mathematics, Vol. 53, pp595,1988.
[135] Trivedi K Set al; Dependability and performability analysis using stochastic Petri

nets 11th Int. Conf on Analysis and Optimisation of Systems - discrete event

systems, Sophia-Atipolis, France, June 1994, Springer Verlag, ppl44-57,1994.
[136] Ammar H H, Islam SMR, Deng S; Performability analysis of parallel and

distributed algorithms Proceedings of Petri nets and Performance Models, Kyoto,

Japan, pp240-8,1989.
[137] Ciardo G, Muppala J K, Trivedi K S; Analyzing concurrent and fault tolerant

software using stochastic Petri nets Journal of parallel and distributed computing,

Vol. 15, pp255-69,1992.
[138] Cochrane D, Quality of Service, Proc. 5th RACE TMN Conference, ppD31P/1/pl-

18, London, Nov. 1993, Cray Communications Watford, 1993.

[139] Santamaria M L, Puigjaner R; Banyan ATM switch: grade of service under

unbalanced load, Computer Networks, Architecture and Applications (C-13),

Elsevier Science Publishers B. V. pp261-70,1993.
[140] Morris T D, Perros H G; Performance modelling of a multi-buffered Banyan switch

under bursty traffic, INFOCOM 92, Florence, IEEE, pp3D. 2.1-10,1992.

[141] Pujolle G, Fayet C; On a new ATM architecture for the local area, ICCT'92 Proc.

of the 1992 International conference on communication theory, Beijing China, Sept.

1992, ppl6.01.1-4, International Academic Publishers, 1992.

[142] De Prycker M, Horwood E; Asynchronous Transfer Mode : Solution for Broadband

ISDN, Prentice Hall, London, Nov. 1993.

217

[143] Jeffry M; Asynchronous transfer mode: the ultimate broadband solution ?,

Electronics and Communications Engineering Journal, Vol. 6, No. 3, Jun. 1994,

IEE, pp 143-51.

[144] De Prycker M; Evolution to BISDN based on ATM, ICCT'92 Proc. of the 1992

International conference on communication theory, Beijing China, Sept. 1992,

ppl2.01.1-5, International Academic Publishers, 1992.

[145] CCITT Recommendations 1.361, SG XVII, 1991.

[146] Sun Z, Cosmas J, Cuthbert L G; Simulation Studies of Multiplexing and

Demultiplexing Performance in ATM Switch Fabrics 10th UK Teletraffic

Symposium : Performance Engineering in Telecommunications Networks,

Martlesham Heath, IEE, 14-16 April 1993, pp21/1-21/5.

[147] Baiocchi A, Blefari-Melazzi N, Roveri A, Salvatore F; Stochastic Fluid Analysis

of an ATM Multiplexer Loaded with Heterogeneous ON-OFF Sources: an Effective

Computational Approach Infocomm 92, Florence 1992 IEEE, pp3C. 3.1-10.

[148] Elwalid A I, Mitra D; Fluid Models for the Analysis and Design of a Statistical

Multiplexing with Loss Priorities on Multiple Classes of Bursty Traffic Infocomm

92, Florence 1992 IEEE, pp3C. 4.1-11.

[149] Karol M J, Eng K Y; Performance of Heirachical Multiplexing in ATM Switch

Design Supercomm 92, Chicago 14-18 June 1992, IEEE, pp311.4.1-7.

[150] Yegani P; Performance Models for ATM Switching of Mixed Continuous-Bit-Rate

and Bursty Traffic with Threshold-Based Discarding Supercomm 92, Chicago, June

1992 IEEE, pp354.3.1-7.

[151] Larsson M, ljungberg M, Rooth J; The ATM Switch Concept and the ATM Pipe

Switch Ericsson Review, Vol 70, Part 1,1993, pp12-20.

[152] Guangdong D, Zengji L, Zheng H; Design ofATMswitches, ICCT'92 Proc. of the

1992 International conference on communication theory, Beijing China, Sept. 1992,

ppl2.04.1-5, International Academic Publishers, 1992.

[153] Tobagi F A; Fast packet switch architectures for broadband integrated services

digital network, Proc. IEEE, Vol. 78, No. 1, ppl33-167,1990.

[154] Wei S H, Kumar V P; On the Multiple Shared Memory Module Approach to ATM

Switching Infocomm 92, Florence 1992 IEEE, ppID. 2.1-8.

[155] ME Bashai, EA Munter A Rotating Access ATM Switch Queuing, Performance and

Control in ATM, Elsevier Science Publishers BV (North Holland), 1991.

[156] Kim H S; Multinet Switch: Multistage ATM SWitch Architecture with Partially

Shared Buffers Infocomm 93, San Francisco, 28.3-1.4 1993, IEEE, pp4c. 3.1-8.

218

[157] Chiussi F M, Tobagi F A; A Hybrid Shared-Memory/Space-Division Architecture

for Large Fast Packet Switches Supercomm 92, Chicago 14-18 June 1992, IEEE,

pp332.5.1-7.
[158] Monterosso A, Pattavina A; Performance analysis of multistage interconnection

networks with shared-buffered switching elements for ATM switching, INFOCOM

92, Florence, IEEE, pp1D. 3.1-8,1992.

[159] Gupta A K, Barbosa L 0, Georganas N D; Limited Intermediate Buffer Switch

Modules and their Interconnection Networks for B-ISDN Supercomm 92, Chicago,

June 1992 IEEE, pp354.7.1-5.
[160] Turner J S; Design of a Broadcast Packet Switching Network IEEE Transactions on

Communications, Vol. 36, No. 8, June 1988, pp734-43.
[161] Lee T T; Nonblocking Copy Networks for Multicast Packet Switching IEEE Journal

on selected areas in Communications, Vol. 6, No. 9, Dec. 1988,

pp1455-66.
[162] Onvural R 0; Asynchronous transfer mode networks : performance issues, chapter

5,2nd edition, Artech House, UK, 1995.

[163] Chen T M, Liu S S; ATM Switching Systems, Artech House Inc. MA, USA, 1995.

[164] Venkatesan R, Mouftah H T; Performance Analysis of Multipath Banyan Networks,

Supercomm 92, Chicago, USA, IEEE, pp332.6.1-5, June 1992.

[165] Perros H; ATM Switch Architectures First UK Workshop on Performance Modelling

and Evaluation of ATM Networks, Bradford, 28-29th June 1993, pp tutorial 14-26.

[166] Feng T; A survey of interconnection networks, IEEE Trans. Computing, Vol. 14,

No. 12, pp 12-27, Dec. 1981.

[167] Tubtiang A, Kwon H I, Pujolle G; A method for ATM switches classification, Proc.

of ICCT'92, IEEE, ppl2.03.01-05.1992.
[168] Theimer T H, Rathbeg E P, Huber M N; Performance analysis of buffered banyan

networks, IEEE Trans. on Communications, Vol. 39, No. 2, Feb. 1991.

[169] Knorr R; Realization of a 16 to 16 ATM-switching element for 680 MBit/s,

ICCT'92 Proc. of the 1992 International conference on communication theory,

Beijing China, Sept. 1992, ppl6.09.1-4, International Academic Publishers, 1992.

[170] Seman K, Smith D G; Performance Analysis of an ATM Switch Capable of

Supporting Multiclass Traffic 10th UK Teletraffic Symposium : Performance

Engineering in Telecommunications Networks, Martlesham Heath, IEE, 14-16 April

1993, pp20/1-20/7.
[171] Fan Y, Wang J, Wang C; Performance Analysis of Banyan Network Based ATM

219

Switches IEEE International Conference on Communications, Chicago 1992, Vol.

3&4, pp354.1.1-5.
[172] Itoh A; A Fault-Tolerant Switching Architecture forATMNetworks Supercomm 92,

Chicago, June 1992 IEEE, pp354.6.1-7.
[173] Gianatti S, Pattavina A; Performance Analysis of Shared-buffered Banyan Networks

under Arbitrary Traffic Patterns Infocomm 93, San Francisco 28.3-1.4 1993, IEEE,

pp8b. 3.1-10.

[174] Sibal S, Zhang J; On a Class of Banyan Networks and Tandem Banyan Switching

Fabrics Infocomm 93, San Francisco 28.3-1.4 1993, IEEE, pp4c. 4.1-7.

[175] Wong P C, Yeung M S; Pipeline Banyan -A Parallel Fast Packet Switch

Architecture Supercomm 92, Chicago 14-18 June 1992, IEEE, pp332.1.1-6.
[176] Venkantesan R, Mouftah H T; Performance Analysis ofMultipath Banyan Networks

Supercomm 92, Chicago 14-18 June 1992, IEEE, pp332.6.1-5.

[177] Aramaki T, Suzuki H, Hayano S, Takeuchi T; Parallel 'ATOM" Switch

Architecture for High Speed ATM Networks Supercomm 92, Chicago 14-18 June

1992, IEEE, pp3ll. 11-4.

[178] Kim H S; Multichannel ATM Switch with Preserved Packet Sequence Supercomm

92, Chicago, June 1992 IEEE, pp354.5.1-5.
[179] Liew S C, Lee T T; N log N Dual Shuffle-Exchange Network with Error-Correcting

Routing Supercomm 92, Chicago 14-18 June 1992, IEEE, pp311.3.1-6.

[180] Jou Y F, Nilsson A A, Lai F; Approximate Analysis of an ATM Switching System

with Bursty Arrivals and Finite Capacity Modelling and Performance Evaluation

of ATM Technology (C-15), Elsevier Science Publishers B. V. (North Holland),

1993, pp23-39.

[181] Lin T, Kleinrock L; Performance Analysis of the Finite-Buffered "Turn-Back"

Multistage Interconnection Network Modelling and Performance Evaluation of

ATM Technology (C-15), Elsevier Science Publishers B. V. (North Holland), 1993,

pp3-22.
[182] Lee T T, Liew S C; Broadband Packet Switches based on Dilated Interconnection

Networks Supercomm 92, Chicago 14-18 June 1992, IEEE, pp311.2.1-7.

[183] Ferrari G, Lenti M, Pattavina A; A New Architecture for Modular Growability of

ATM Switches Supercomm 92, Chicago 14-18 June 1992, IEEE, pp311.5.1-5.

[184] Coppo P, D'Ambrosio M;, R Melen Optimal Cost/Performance DEsign of ATM

Switches Infocomm 92, Florence 1992 IEEE, pp3D. 3.1-13.

[185] Karol M J, Eng K Y;, H Obara Improving the Performance of Input-Queued ATM

220

Packet Switches Infocomm 92, Florence 1992 IEEE, pp 1 D. 1.1-6.
[186] Dias D M, Jump J R; Analysis and Simulation of Buffered Delta Networks IEEE

Transactions on Computers, Vol. C-30, No. 4, April 1981, pp273-283.
[187] Meyer J F, Montagna S, Paglino R; Dimensioning of an ATM switch with shared

buffer and threshold priority Computer Networks and ISDN systems, Elsevier

Science Publishers BV (North Holland), Vol. 26, Part 1, pp95-108.
[188] Goli P, Kumar V; Performance of a Crosspoint Buffered ATM Switch Fabric

Infocomm 92, Florence 1992 IEEE, pp3D. 1.1-10.

[189] DV2, ATM Switch, Technical Brochure, Netcomm Ltd, Essex, UK, 1993.

[190] Tubtiang A, Kwon H I, Pujolle G; A Simple ATM Switching Architecture for

Broadband-ISDN and its Performance Modelling and Performance Evaluation of
ATM Technology (C-15), Elsevier Science Publishers B. V. (North Holland), 1993,

pp361-371.
[191] Jenq Y-C; Performance Analysis of a Packet Switch Based on Single-Buffered

Banyan Network IEEE Journal on Selected Areas in Communications, Vol. SAC- i

No. 6, December 1983, pp401-8.
[192] Santamaria M L, Puigjaner R; Analysis of Grade of Service in an ATM Switch

Computer and Information Sciences VI, Elsevier Science Publishers BV (NOrth

Holland), 1991, pp515-23.
[193] Parr G P, Wright S, Marshall A; Modelling ATM Switch-Fabric Based on the

Knockout Principle 10th UK Teletraffic Symposium : Performance Engineering in

Telecommunications Networks, Martlesham Heath, IEE, 14-16 April 1993, pp22/1-

22/8.

[194] Kouvatsos D D, Tabet-Aouel N M, Denazis S G; A Discrete-Time Queuing Model

of a Shared Buffer ATM Switch Architecture with Bursty Arrivals 10th UK

Teletraffic Symposium : Performance Engineering in Telecommunications

Networks, Martlesham Heath, IEE, 14-16 April 1993, pp19/1-19/9.

[195] Del Re E, Fantacci R; Efficient fast packet switch fabric with shared input buffers

IEE Proceedings-I, Vol. 140, No. 5, October 1993.

[196] Dagiuklas A K, Ghanbari M; Priority Queuing Disciplines in ATM Switches

Carrying Two Layer Video Traffic 10th UK Teletraffic Symposium : Performance

Engineering in Telecommunications Networks, Martlesham Heath, IEE, 14-16 April

1993, pp4/1-4/6.
[197] Bruneel H, Wittenvrongel S; Analytic performance study ofATMswitching elements

with on/of sources and correlated routing Modelling and Performance Evaluation

221

of ATM Technology (C-15), Elsevier Science Publishers B. V. (North Holland),

1993, pp4l-59.
[198] Schulzrinne H, Kurose J F, Towsley D F; Loss Correlation for Queues with Bursty

Input Streams Supercomm 92, Chicago 14-18 June 1992, IEEE, pp308.4.1-6.
[199] Xiong Y, Bruneel H; Approximate Analytic Performance Study of an ATM

Switching Element with Train Arrivals Supercomm 92, Chicago, June 1992 IEEE,

pp354.2.1-7.
[200] Chen D X, Mark J W; A Buffer Managment Scheme for the SCOQ Switch Under

Nonuniform Traffic Loading Infocomm 92, Florence 1992 IEEE, pplD. 4.1-9.

[201] Chan D X, Mark J W; Delay and Loss Control of An Output Buffered Fast Packet

Switch Supporting Integrated Services Supercomm 92, Chicago 14-18 June 1992,

IEEE, pp335A. 1.1-5.

[202] Esaki H; Call Admission Control in ATM Networks Supercomm 92, Chicago, June

1992 IEEE, pp354.4.1-6.
[203] Freisen V J, Wong J W; The Effect of Multiplexing, Switching and Other Factors

on the Performance of Broadband Networks Infocomm 93, San Francisco 28.3-1.4

1993, IEEE, pplOa. 4.1-6.

[204] Cuthbert I G, Sapanel J C; ATM the broadband telecommunications solution,

IEE, London, UK, 1993.

[205] Smith R M, Trivedi K S, Ramesh A V; Performability analysis: measures, an

algorithm and a case study, IEEE Trans. on Computers, Vol. 37, No. 4, pp406-

17,1988.

[206] Ciardo G, Marie R, Sericola B and Trivedi K S; Performability Analysis using

Semi-Markov Reward Processes, IEEE Trans. on Computers, Vol. 39, No. 10,

ppl251-64,1992.

222

APPENDIX A

The ICE language

223

A. 1 Introduction

In this appendix we present the full syntax of ICE. The background of the language is

described in section 1.2 The semantics are further discussed in chapter 3, along with the

philosophy of some of the constructs. In chapter 6 we show the language to have the same

descriptive power as extended high-level Petri nets.

A. 2 Overview

The language has a declarative style that is based upon describing systems in terms of their

constituent interacting discrete state components. Each COMPONENT in a system has a

set of operational states. The component moves between the various states in its

STATE SET according to its predefined BEHAVIOUR. The transitions can be governed
by :

0 Time delays.

" Status of one or more components.

0 Behaviour, ie transition event of one or more components or component counters.

Components may also have an associated AGE which can be used to manipulate their

behaviour.

Components may also have COUNTERS associated with them. Counters are used to help

counteract the problem of state explosion. For example, if we wished to model a buffer

with 100 spaces, we could do so by using 101 states, ie 1 state for the empty condition and

100 for each of the levels of occupancy. Alternatively, we could use one state to represent

the buffer and a counter which may take any value [0,100] to represent the levels of

occupancy. This clearly allows the state complexity of models to be greatly reduced.

To fully define a component, three statements are required :

" STATE SET, which lists the finite set of states that the component can exist in and

any counters belonging to the component.

" BEHAVIOUR, which defines all possible transitions that can be made between

224

states.

0 COMPONENT, which defines a component with a specified STATE_SET and
BEHAVIOUR. It also defines an initial state and optionally an initial age and

counter values of the component.

As well as components we can also describe passive resources which may be allocated to

components. Resources may be consumable or non-consumable and are specified as
STOCK and RESOURCE respectively. The WAIT FOR statement allows dynamic creation

of components and the explicit manipulation of free component and resource levels during

the simulation.

The language is free format in the sense that blank space (spaces, tabs, new lines etc) are

ignored. The order of statements is unimportant, unless this would cause a semantic

conflict. This point is expanded in section A. 3.5.

A. 3 Language Syntax

In the examples of syntax given below the following conventions are used :

Keywords are shown in CAPITAL letters.

User defined names are shown in italics.

Optional syntax is shown in [square brackets].

A. 3.1 COMPONENT

The COMPONENT statement defines one or more components which share the same

STATE SET and BEHAVIOUR (both defined later). It also defines the initial state of the

component. It may define any initial counter values and the initial age of the component.

The general form of the statement is :

225

COMPONENT component list

[STATE SET :] stateset name ;
[BEHAVIOUR :] behaviour name ;
[INIT STATE :] state name [(counter init list)];
[INITAGE :] [age] ;
}

The component list can consist of one or more names separated by commas. Alternatively,

each name may be in array form, eg switch[1O], would define ten components with the

name switchO... switch9.

The counter finit list can consist of one or more names which are assigned integer values

separated by commas, for example

(buffer a=0, buffer b=7)

A. 3.2 STATE SET

The STATE SET statement is used to define a finite set of states that a component can

exist in and the counters belonging to the component. It also shows the operations which

are performed on the counters when the component enters any of the given states. The

statement is of the general form :

STATE SET name {
COUNTERS :[counter list];
STATES {

[attribute] [%] statename :[{ counter modifier list }];

}
}

An attribute is used to define a sub-set of states within the state set and is specified by one

or more capital letters. The % indicates that a component is ageing when it is in the given

state. A components age is a positive integer number that is incremented by the amount of

simulation time that elapses while the component is in the ageing state.

The counter list is a list of names of counters sepperated by commas. The

226

counter-modifier-list describes how counters are modified when the component enters the

associated state. It consists of one or more counter modifiers sepperated by commas. A

counter modifier will take one of the three general forms

9 counter name = any_countername

0 counter name = any_counter name expr any_b counter name

0 counter name = any_counter name expr integer value

The counter name is the name of the counter to be modified. Any_counter_name and

any_b counter name are the names of the same counter or any other counters belonging

to the same component. Expr is one of the arithmetical expressions in the set

}, representing addition, subtraction, multiplication and division respectively.

For example, the statement

STATE SET switchingelement {
COUNTERS : tx, rx, total;
STATES {

A transmit : (tx = tx + 1) ;
A receive : (rx = rx + 1) ;

clear: (tx=0, rx=0);
update (total =tx+rx
idle;

defines the STATE SET with name switching-element which has three counters tx, tx and

total and five states transmit, receive, clear, update and idle. The attribute A is logically

true when the component resides in the 'active' states transmit or receive. The component

will age while in the state idle. The counters tx and rx will be incremented when the

component enters states transmit and receive respectively and they will both be set to 0

when the component enters state clear. The counter total will be set to the sum of the

counters tx and rx when the component enters state update.

227

A. 3.3 SYSTEM

The SYSTEM statement is used to form complex boolean functions of component state

pairs. The statement is of the form

SYSTEM system name = function (namelist);

There are three types of function

0 ANYn, where n is a positive integer. This will take the value 1 if at least n of the

members of namelist are true, else it will take the value 0.

0 EXACTLYn, where n is a positive integer. This will take the value 1 if exactly n

of the members of namelist are true, else it will take the value 0.

". ALL. This will take the value 1 if all the members of namelist are true, else it will

take the value 0.

A namelist is of the form

[!]name], [!]name2, ..., [!]nameN

where name is one of the formats

"A component state pair of the form component. state. Takes the value 1 when

component is in state, else it takes the value 0.

"A component attribute pair of the form component. attribute. Takes the value 1 when

the component is in a state which posseses the attribute, else it takes the value 0.

"A component counter expression of the form component. counter expr value. Where

expr e{_, <, >} and value may be either an integer value or a component counter

value. Takes the value 1 when the expression is true else it takes the value 0.

"A SYSTEM function of the form ANYn(namelist); ALL(namelist);

EXACTLYn(namelist).

0A SYSTEM name that is defined elsewhere.

A preceding ! would indicate a logical NOT.

228

The final SYSTEM format allows SYSTEM statements to be build up recursively. Consider

for example

SYSTEM level! = ANY2 (compl. receive, comp2. buffer > 7, comp3. A);
SYSTEM level2 = ALL (level!, EXACTLY2 (comp4.3, comp5.3, comp6.3);

Levell has value 1 if any two (or more) of the elements in the list have value 1. That is

if two of the following are true : compl is in state receive, the counter buffer belonging to

comp2 has a value greater than 7 or compB is in a state which posseses the attribute A.

Level2 has value 1 if all the elements in the list have value 1. That isif levell =I and

exactly two of the components comp4, comps and comp6 are in a state which possesses the

attribute A.

A. 3.4 RESOURCE

Resources are passive entities which can be allocated and deallocated to and from

components to modify their behaviour. Consumable resources are specified by the STOCK

statement, non-consumable resources are specified by the RESOURCE statement. These

statements take the form

RESOURCE { name-quantity list };

The name-quantity list is of the form

namel: quantityl, name2: quantity2, ..., nameN. "quantityN

this indicates that resource name] has the initial value quantity] etc. . The form of the

STOCK statement follows the same syntax.

A. 3.5 BEHAVIOUR

A BEHAVIOUR statement contains a set of statements that describe the transitions between

states in a STATE SET. A BEHAVIOUR statement takes the form

229

BEHAVIOUR name {
[precondition {] time initial state -> final state [PROB(n)] [}];

}

The component will stay in initial state exactly time time units after entering and then

immediately moves to finalstate.

The time function can be of the two forms

" %, a deterministic delay, where X >_ 0.

" distribution(. i, [where the distribution is one of a defined set, eg exp, Weibull,

gamma, beta etc.

The precondition is of the form

PRECONDITION TYPE condition

Where the PRECONDITION-TYPE can be one of

" ON EVENT

" IF

" ON RESOURCE

" ON AGE

These are described in turn below

ON EVENT condition

This means that if the component is in initial state when the condition becomes true then

it will make the timed transition into finaLstate. Note that if the time of the transition is

0 then this acts as a forced transition. The condition can be any valid name. The condition

is an event generated by a state transition. Therefore if the component enters the

initial state after the condition becomes true then no transition is made, the event has

passed.

230

For example, consider the following transitions

exp(70) first -> alt 1;
ON EVENT other. fail { exp(50) first -> alt 2; }

If the component described by the transitions enters the state first then normally it would

move to state alt 1 after a random time, T1, determined by the exp(70) function. However

if after any time t during the components existence in state first the component other

moves to state fail then a random time, T2, is generated by the function exp(50) and this

component will move into alt 2 if T2 < Tl - t.

IF condition

This is a conditional statement which contains two basic parts. Firstly, if the condition is

true upon the component entering the initial state then the timed transition is made.

Secondly, on the event the condition becomes true at any point while the component is in

the initaLstate then the timed transition is then made. The condition is the same as that in

the ON EVENT pre-condition.

For example, consider the following transition

IF other. fail {7 first -> second;)

When this component described by the transition moves into state first, if the component

other is in state fail then this component will move into state second after a time delay of

7. If however, component other is not in state fail when state first is entered but

consequently moves into fail at time t, while state first is still occupied, the transition to

state second will occur at time t+7.

ON RESOURCE condition

The ON RESOURCE pre-condition describes transitions that are enabled by the allocation

of resources to a component. The condition is a resource list which takes the form

resourcel: quantityl, resource2: quantity2 ,..., resourceN. "quantityN
where N >_ 1.

231

When the component enters initial state then it demands the resources detailed in the

resource list. If all the resources are available then they are allocated to the component and
it moves into state final state. If the resources are not available, then the component will

wait in state initial state until they become free. If the component moves out of

initial state meantime then the request for resources is cancelled.

Note that the ON RESOURCE condition is forced and hence the accompanying transitions

cannot be timed or have associated probabilities.

ON AGE condition

The condition specifies an age value for the component. If the component reaches this age

when in the initial state then it is forced into final state. Note that since this is forced, the

accompanying transitions cannot be timed or have associated probabilities.

Alternative transitions

Alternative Transitions may be made from an initial state in one of two ways.

" With the PROB(n) keyword; where 0SnS1.

0 By specifying two or more unconditional transitions from an initial state.

The PROB keyword allows us to list alternative transitions out of a state and the relative

probabilities with which they will occur. The probabilities of transitions from an

initial state within a single pre-condition statement or BEHAVIOUR statement must sum

to 1. When a component enters the initial state the transition is selected randomly from

the alternatives and the time of the transition is then calculated.

The second way of specifying alternatives is to list more than one transition from the same

state without specifying any probabilities. In this instance the time for each transition is

calculated and the one with the shortest time is made. If more than one time is equal then

the transition declared first is made.

232

A. 3.6 WAIT FOR

The WAIT FOR statement allows dynamic creation of components and explicit

manipulation of free resource and stock levels during simulation. It takes the general form

WAIT FOR condition { action }

The condition is one of two types

0 fixed time

0 component. state

The fixed time option allows an action to be enabled at a defined time during the

simulation. The time is specified by an integer or a symbolic constant.

The component. state option behaves like an ON EVENT precondition. That is at the instant

the component enters the state the action is enabled.

The action may either be a component decleration, using the COMPONENT statement or

it may be the increment or decrement of free resources or stock levels, taking the general

form

RESOURCE { name quantity _list
}

The name quantity_list will consist of one or more lines of the form

name :[sign] quantity ;

The name is any resource name. The sign is either + or - which represents increment of

decrement respectively, the default being +. The quantity may be either an integer value

or a symbolic constant. Note that STOCK levels are manipulated in exactly the same way.

233

Appendix B

Data Structures, Objects and Files created
during Simulation

234

B. 1 An Ice program - 'logger. ice'

Figure B. 1 shows the block diagram of a simple data logger system. The logger records
incoming datB. At given time intervals the controller polls the logger and the recorded
data is down-loaded to the controller. The state diagram of the system operation we wish

to consider is given in figure B. 2.

poll data-in
LOGGER

data out
CONTROLLER

Figure B. 1 Block diagram of Data Logger and Controller

CONTROLLER LOGGER
exp(8) 0

busy
2 ýp iäe ecor buffer = buffer +1

2

0

IF controller. poll
2

send 1 buffer= 0

Figure B. 2 State diagram of Data Logger and Controller

235

From the state diagram we can model the system in Ice using the code given in listing

B. I. Note that line numbers are for reference and not part of the code.

01 // File : logger. ice
02 // Author : GAC
03 // Date : 21.06.95
04 // Purpose : Models a simple data logger. Used to illustrate
05 // : timed conditional transitions and Counters.
06
07 // Value above which data load considered high
08 CONSTANT {HIGH VAL = 4;)
09
10 STATE SET ss control {
11 COUNTERS :;
12 STATES {
13 busy :;
14 poll :;
15 }
16)
17 BEHAVIOUR be_control {
18 exp(6) busy -> poll ;
19 2 poll busy
20 }
21 COMPONENT control {ss control; be control; busy;)
22
23 STATE SET ss logger {

; 24 COUNTERS : buffer, empty
25 STATES (
26 idle :;
27 record :{ buffer = buffer +1
28 send :{ buffer = empty
29 }
30)
31 BEHAVIOUR be logger {
32 2 idle -> record ;
33 0 record -> idle ;
34 IF_ON control. poll {
35 3 idle -> send
36 0 send -> idle ;
37 }
38 COMPONENT logger {ss logger; be logger; idle(buffer = 0, empty = 0); }
39
40 SYSTEM data high = (logger. buffer > HIGH_VAL);
41
42 RUN(1);
43 STOPTIME(1000);

Listing B. 1 Ice code to model the data logger system - 'logger. ice'

236

B. 2 Parsing of 'logger. ice'

Figures B. 3 - B. 5 show the links between the data structures produced when the 'logger. ice'

code is parsed. Section B. 2.1 lists the actual data structures. Every data structure is given

a name shown in bold. It is these names that are used in the linking diagrams. It is

important to note that for clarity only partial data structures are shown. Whenever a

structure utitlises a Union ie a single variable which may take on different types, only the

type used in the particular instance is given.

237

Figure B. 3 STATE SET and related structures

238

Figure B. 4 BEHAVIOUR and related structures

239

Figure B. 5 COMPONENT, SYSTEM and related structures

240

B. 2.1 Simulation data structures

struct symtabentry SS1

char *name ss control

int linen 16

int objno -
int flags -

struct symtabentry *next symtab[ss control]

struct symtabentry *nexft SS2

Symtypes type Sym. state set

Union U struct states int 2

StateList *list SLl

StateList **hashtable -
Counter *clist NULL

Counter **counterhtable NULL

int ncounters 0

struct StateList SLl

struct StateList *next SL2

struct StateList *hnext htable[SL1]

char *name busy

long attribs 0

int flow 0

int no 0

FnExp fnlist NULL

struct StateList SL2

struct StateList *next NULL

strut StateList *hnext htable[SL2]

char *name poll

long attribs 0

int flow 0

int no I

FnExp fnlist NULL

241

struct symtabentry SS2

char *name ss logger

int linen 23

int objno -

int flags -

struct symtabentry *next symtab[ss logger]

struct symtabentry *nextt NULL

Symtypes type Synt. state set

Union U struct states int 3

StateList *list SL3

StateList **hashtable -

Counter *clist Cntl

Counter **counterhtable countertable_ýSS2

int ncounters 2

struct Counter Cntl

struct Counter *next Cnt2

char *name buffer

int value -

struct Counter *hnext counthtable[1]

int no 0

struct counter I: nu
struct Counter *next NULL

char *name empty

int value -

struct Counter *hnext counthtable[2]

int no 1

242

struct StateList SL3

struct StateList *next SL4

struct StateList *hnext htable[SL3]

char *name idle

long attribs 0

int flow 0

int no 0

FnExp fnlist NULL

struct StateList SL4

struct StateList *next SL5

struct StateList *hnext htable[SL4]

char *name record

long attribs 0

int flow 0

int no 1

FnExp fnlist Fn1

struct FnExp Fnl

struct FnExp *nextfn NULL

char *name functions

statexp *fexp SX7

int countemo 0

struct Statexp SX7
int lineno 26

SXnodes type SXassign

Union U struct op struct Statexp *left SX3

struct Statexp *right SX6

struct Statexp SX3
int linen 26

SXnodes type SXstr

Union U char *str buffer

243

struct Statexp SX6
int lineno 26

SXnodes type SXplus

Union U struct op struct Statexp *left SX4

struct Statexp *right SX5

struct Statexp SX4
int linen 26

SXnodes type SXstr

Union U char *str buffer

struct Statexp SX5
int lineno 26

SXnodes type SXconst

Union U double dconst 1

struct StateList SL5

struct StateList *next NULL

struct StateList *hnext htable[SL5]

char *name send

long attribs 0

int now 0

int no 2

FnExp fnlist Fn2

struct FnExp Fn2

struct FnExp *nextfn NULL

char *name function2

statexp *fexp SX10

int counterno 0

244

struct Statexp SX10
int linen 27

SXnodes type SXassign

Union U struct op struct Statexp *left SX8

struct Statexp *right SX9

struct Statexp b2 a;

int linen 27

SXnodes type SXstr

Union U char *str buffer

struct Statexp SX9
int linen 27

SXnodes type SXstr

Union U char *str empty

struct symtabentry BE1

char *name be control

int linen 9

int objno -1

int flags -

struct symtabentry *next symtab[be control]

struct symtabentry *nextt BE2

Symtypes type Syrbehaviour

Union U Tran *trans T2

struct Tran T2

struct Tran *next Ti

int linen 18

float prob 0.0

char *frotn name busy

char *to name poll

int tc state I

Trantypes type TR-exp

Condtypes cond TR-notcond

! uni ist params NLl

struct NumList NL2

struct Numlist *next NULL

float f 4

245

struct Tran Tl

struct Tran *next NULL

int linen 19

float prob 0.0

char *from name poll

char *to name busy

int tc state 0

Trantypes type TR fixed

Condtypes cond TR-notcond

NumList params NL2

struct NumList NLl

struct Numlist *next NULL

float f 2

struct symtabentry BE1

char *name be logger

int lineno 32

int objno -1

int flags -

struct symtabentry *next symtab[be logger]

struct symtabentry *nextt NULL

Symtypes type Sym behaviour

Union U Tran *trans T6

246

struct Tran T6

struct Tran *next T5

int linen 32

float prob 0.0

char *from name idle

char *to name record

int to state 1

Trantypes type TR fixed

Condtypes cond TR notcond

NumList params NL6

struct NumList NL6

struct NumList *next NULL

float f 2

struct Tran T5

struct Tran *next T4

int lineno 33

float prob 0.0

char *fron_name record

char *to name idle

int to state 0

Trantypes type TR fixed

Condtypes cond TR-notcond

NumList params NL5

struct NumList NL5

struct Numlist *next NULL

float f 0

247

struct Tran T4

struct Tran *next T3

int lineno 35

float prob 0.0

char *from name idle

char *to name send

int to state 2

Trantypes type TR`fixed

Condtypes cond TR ifon

NumList params NL4

struct NumList NL4

struct Numlist *next NULL
1

float f 21

struct Tran T3

struct Tran *next NULL

int linen 36

float prob 0.0

char *fromname send

char *to name idle

int to state 0

Trantypes type TR fixed

Condtypes cond TR`notcond

NumList params NL3

struct NumList NL3

struct Numlist *next NULL

float f 0

248

struct symtabentry CO1

char *name control

int lineno 21

int objno 0

int flags

struct symtabentry *next symtab[control]

struct symtabentry *nextt C02

Symtypes type Sym component

Union U struct comp char *ss ss control

char *be be control

char *is busy

int PI 0

int nparams NULL

CounterExp initclist NULL

struct symtabentry C02

char *name logger

int lineno 38

int objno 2

int flags

struct symtabentry *next symtab[logger]

struct symtabentry *nextt NULL

Symtypes type Sym component

Union U struct comp char *ss ss logger

char *be be_logger

char *is idle

int PI 2

int nparams NULL

CounterExp initclist CLl

249

struct CounterExp CL1

struct CounterExp *next CL2

char *name counterO

Statexp *exp SX20

int Countemo 1 0

struct Statexp SX20
int linen 38

SXnodes type SXassign

Union U struct op struct Statexp *left SX18

struct Statexp *right SX19

struct Statexp SX18
int linen 38

SXnodes type SXstr

Union U char *str buffer

struct Statexp SX19
int linen 38

SXnodes type SXconst

Union U double dconst 0

struct CounterExp CL2

struct CounterExp *next NULL

char *name counter!

Statexp *exp SX23

int Counterno 1

struct Statexp SX23
int linen 38

SXnodes type SXassign

Union U struct op struct Statexp *Ieft SX21

structStatexp*right SX22

250

Struct Statexp SX21
int lineno 38

SXnodes type SXstr

Union U char *str empty

struct Statexp SX22
int linen 38

SXnodes type SXconst

Union U double dconst 0

struct symtabentry SYS1

char *name <anon system 1>

int linen 34

int objno 1

int flags NO TRACE

struct symtabentry *next -

struct symtabentry *nextt SYS2

Symtypes type SynLsystem

Union U Statexp *sexp SX14

struct Statexp SX14
int lineno 34

SXnodes type SXdot

Union U struct op struct Statexp *left SX12

structStatexp*right SX13

struct Statexp SX12

int lineno 34

SXnodes type SXstr

Union U char *str control

struct Statexp SX13
int linen 34

SXnodes type SXstr

Union U char "str poll

251

struct symtabentry SYS2

char *name data high

int linen 40

int objno 3

int flags

struct symtabentry *next symtab[data high]

struct symtabentry *nextt NULL

Symtypes type Syncsystem

Union U Statexp *sexp SX28

struct Statexp SX28
int lineno 40

SXnodes type SXgt

Union U struct op struct Statexp *left SX26

structStatexp*right SX27

struct Statexp SX26
int linen 40

SXnodes type SXdot

Union U struct op struct Statexp *left SX24

structStatexp*right SX25

struct Statexp SX24
int lineno 40

SXnodes type SXstr

Union U char *str logger

struct Statexp SX25
int linen 40

SXnodes type SXstr

Union U char *str buffer

struct Statexp SX27
int linen 40

SXnodes type SXstr

Union U char *str HIGH_VAL

252

B. 3 Compilation

This section gives the simulation objects that are created when the simulation data

structures listed in section B. 2.1 are compiled.

The Component objects OBJO and OBJ2 are created by the compilation of symtabentries

COI and C02.

Object Component OBJO, OBJ2
OBJO OBJ2

long next time 0 0

int next _state
0 0

int pl 0 2

ResList *resources NULL NULL

public:

Statespace *space SP1 SP2

int flags - -

char *name control logger

int objno 0 2

int finit state 0 0

int state 0 0

int flow 0 0

long attribs 0 0

CqGraph CQ 1 CQ2

CqGraph *pprev this this

CqGraph *pnext this this

CqGraph *cprev this this

CqGraph *cnext this this

int pno -1 -1

int cno -1 -1

Counter *counters NULL [CntlICnt2]

FnExp **functions NULL [Fn1IFn2]

Note that Cntl, Cnt2, Fn1 and Fn2 are the data structures shown in section B. 2.1. The

*fezp fields of Fnland Fn2 will have been changed to SX35 and SX38 respectively, these

structures are shown below.

253

struct Statexp SX35
int linen {

SXnodes type SXplus

Union U struct op struct Statexp *Ieft SX33

structStatexp*right SX34

struct Statexp SX33

int lineno {

SXnodes type Mounter

Union U struct op struct Statexp *1eft SX31

structStatexp*right SX32

Struct Statexp SX31
int linen {

SXnodes type SXiconst

Union U int iconst 2

struct Statexp SX32
int linen {

SXnodes type SXiconst

Union U int iconst 0

struct Statexp SX34
int lineno {

SXnodes type SXiconst

Union U int iconst 1

struct Statexp SX38
int lineno {

SXnodes type Mounter

Union U struct op struct Statexp *left SX36

structStatexp*right SX37

5truct btatexp Aso
int linen {

SXnodes type SXiconst

Union U int iconst 2

254

struct Statexp SX37
int linen {

SXnodes type SXiconst

Union U int iconst 1

The Sexp objects OBJ1 and OBJ3 are created by the compilation of the symtabentries
SYS1 and SYS2.

Object Sexp OBJ1, OBJ3
OBJ1 OBJ3

Statexp *sexp SX14 SX28

public:

int flags NO TRACE NO-TRACE

char *name <anon system 1> data high

int objno 1 3

int initstate 0 0

int state 0 0

int now 0 0

long attribs - -

CqGraph CQ3 CQ4

CqGraph *pprev this this

CqGraph *pnext this this

CqGraph *cprev this this

CqGraph *cnext this this

int pno -1 -1

int cno -1 -1

The Statespace structures SP1 and SP2 are created by the compilation of symtabentries

BE1 and BE2. The state objects S1 and S2 are created by the compilate of symtabentries

SS1, SL1 and SL2. The state objects S3, S4, and S5 are created by the compilation of

symtabentries SS2, SL3, SL4 and SL5.

255

Object StateSpace SP1, SP2
SP1 SP2

char *name be control be logger

int nstates 2 3

int nparams 0 0

State *states [SIIS2] [S31S41S5]

Object State S1, S2, S3, S4, S5
S1 S2 S3 S4 S5

Tran *trans T2 T1 T4 T5 T3

FnExp *fnlist Null Null Null Fn1 Fn2

public:

char name busy poll idle record send

int no 0 1 0 1 2

int now 0 0 0 0 0

long attribs 0 0 0 0 0

256

B. 3.1 Consequence graphs

Consider the conditional statement in the BEHAVIOUR statement of component logger of
the previous exampl.

34 IF control. poll {
35 2 idle -> send; }

As we saw during compilation, three objects were created which relate to this statement

OBJO for component control
OBJ1 for the anonymous system statement control-poll
OBJ2 for component logger

These objects would be permanently linked together during compilation as shown in figure

B. 6. Note that for clarity only the consequence graph part of the objects is shown.

During the simulation phase, when component control is not in state poll then this would
be the only link. Whenever it is in state poll a temporary (or dynamic) link must be

provided so that the transition in component logger from state idle to state send may be

implemented. This dynamic link that would be created is shown in figure B. 7. In this

instance the derived class OnNode is used.

In this example the conditional statement was straightforward and only dependant upon one

external component. In the case of complex conditional statements links must be provided

to all interacting objects. This is facilitated by the use of the consequence graphs parent

and child, previous and next pointers which would indicate each nodes position in a chain

of linked parent and child objects.

257

Figure 4.6 The permanent consequence graph links created at compile time between the
component logger and the IF statement.

258

OHJ I

*pprev
*pnext
*cprev

_
"cnext

pno 0

cno 2

OnNode

value 0
forced state 2

time_inc 2
*pprev
"pnext
*cprev

'cnext

pno 1

cno 2

ODJ2

"pprev
'pnext

_
*cprev

"cnext

Pao 1

cno

Figure B. 7 The dynamic consequence graph links created during simulation when
component control enters state poll.

259

B. 4 Simulation - The event data file

The listing in figure B. 8 shows the start of the event data file for the previous example.
All simulation object data is shown as well as the first few events. Note that the control

codes ED xxxxxx are used by the analyser when reading the file to determine the nature

of the data on the preceding line. Note that the comments are shown to aid understanding

and are not part of the actual file.

TECSIM. EVT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

ED MAGIC 4 1000
ED STATESET ss control
ED_STATE 0 busy
ED STATE 0 poll
ED STATESET ss logger
ED COUNTER buffer
ED COUNTER empty
ED STATE 0 idle
ED STATE 0 record
ED STATE 0 send
ED COMPONENT 0 contorl ss control
ED COMPONENT 2 logger ss logger
ED SYSTEM 1 <anon system 1>
ED_SYSTEM 3 data_high
ED START 1000
ED TIME 0 ED Trans 10
ED TIME 0 ED Trans 30
ED TIME 0 ED Trans 00
ED TIME 0 ED Trans 20
ED TIME 2 ED Trans 21 ED CTrans 201

H start string, number of objects, runs
// state set name
// state attributes, name
//a

// state_set name
// counter name
//�
// state attributes, name
// �

// "

// component object no, name, state set
//"
// system object no, name

start of simulation, stop time
time, transition object no, state

// ", counter object no, counter no, value

B. 5 Statistical analysis data

This section shows the data objects that are created from the event data file shown in

section B. 4 and the user analysis specification in figure 4.9.

B. 5.1 Objects created from the event data file

Shown below are the TDthing data objects that are created from the STATE SET,
COMPONENT and SYSTEM information in the event data file. The format used is to give
the line of the event data file and the corresponding data structures.

2 ED STATESET ss logger
3 ED_STATE 0 busy
4 ED_STATE 0 poll

260

struct TDthing tdtl, stl, st2
tdtl sti st2

char *name ss control busy poll

long value 0

int monitor 0

int objno - - -

enum TDthing type TDstateset TDstates TDstates

union {

struct TDthing **states [stl, st2]

char *attribs

int decvalue)

5 ED_STATESET ss logger
6 ED_COUNTER buffer
7 ED_COUNTER empty
8 ED_STATE 0 idle
9 ED_STATE 0 record
10 ED STATE 0 send

struct TDthing tdt2, col, co2

char *name

long value

int monitor

int objno

enum TDthing type

union {

struct TDthing **states

char *attribs

int decvalue}

tdt2 col co2

ss logger buffer empty

2

0

TDstateset Mounter TDcounter

[col, co2, st3, st4, st5] I1 11

261

struct TDthing st3, st4, st5

char *name

long value

int monitor

int objno

enum TDthing type

union {

struct TDthing **states

char *attribs

int decvalue}

st3 st4 sty

idle record send

TDstates TDstates TDstates

11 ED COMPONENT 0 contorl ss control // component object no, name, state set
12 ED COMPONENT 2 logger ss logger // "
13 ED SYSTEM 1 <anon system 1> // system object no, name
14 ED SYSTEM 3 data high // "

struct TDthing tdt3, tdt4, tdt5, tdt6
tdt3 tdt4 tdt5 tdt6

char *name control logger <anon
system 1>

data high

long value 0 0 0 0

int monitor 1 1 0 1

int objno 0 2 1 3

enum TDthing type TDcomps TDcomps TDsyss TDsyss

union {

struct TDthing **states

char *attribs

int decvalue) 0 1 - -

262

B. 5.2 Objects created from the analysis file

Shown below are the ANA, Statexp, stats and Stats objects created from the statistical

analysis information given in the analysis file data structures shown in figure 3.10.

struct ANA anal, ana2, ana3
anal anal ana3

Statexp *sexp sexpl sexp2 sexp3

int countval -1 -1 0

int cval 0 0 0

TDthing *obj

int flags STAT2 IGNORESPIKES

ANstats format[] [ANgstij
ANmeani
ANnulli...

.. ANpercentage]

[ANgstj
ANpercentaget
ANnull]

[ANgstrj
ANmeanj
ANnull]

int formatparams[]

char *formatgstrs[]

char *headings[]

char *title

char *filename

double classify

long account

int conf 95 95 95

long ovalue 0 0 0

long otime 0 0 0

stats *statl stanI statsB statsC

stats *stat2 statsA

Flist results FLresl FLres2 FLres3

Flistelem *currentj. esult eA eB eC

long soacc 0 0 0

long eoacc
-

0 1 0 0

263

struct Statexpsexpl, tmp, tmp2

SXnodes type

Union U struct op struct Statexp *left

struct Statexp *right

TDthing *obj

int val

sexpi tmp tmp2

SXdot SXobj SXint

tmp

tmp2

tdt3

struct Statexpsexp2, tmpa, tmp2a

SXnodes type

Union U struct op struct Statexp *left

struct Statexp *right

TDthing *obj

int val

sexp2 tmpa tmp2a

SXdot SXobj SXint

tmpa

tmp2a

tdt6

1

struct Statexpsexp3, tmpb, tmp2b

SXnodes type

Union U struct op struct Statexp *left

struct Statexp *right

TDthing *obj

int val

sexp3 tmpb tmp2b

SXdot SXobj SXint

tmpb

tmp2b

tdt4

0

Note that in the stats structures the union fields that are not used in this exampl are not

shown.

struct stats statl, stat2, stat3

statt statt statt

char *object control data high logger

char *state poll T buffer

ANstats type ANmean ANpercentage ANmean

ANstats stats on ANpercentage -1 -1

264

Note that only one of the three Stats structures is shown. The other two would be similar.

This example has been shown with the fields being filled in with the appropriate data as

a sample simulaiton is run.

struct Stats stanl
long nsamples 0 -2 3

double sum 0-246

double SumSq 04S 12

double SumExp 0

double max 2

double min 2

start save data 0

float *data[] [21212...]

float *cdata [01010...]

int sizeoLdata 256

short sorted 0

265

Appendix C

ICE listing of communication network

sources model

266

File : rantest. ice

Author : GAC

Date : 06.11.95

// Purpose : Checks effect on queues of random number streams

// Counter reference values

CONSTANT {EMPTY = 0; FULL = 20;)

// Model of network traffic

STATE SET ss ch {
COUNTERS : total;
STATES{

quiet :;
arrive : (total = total +1);

}
}
BEHAVIOUR be chA {

I quiet -> arrive PROB(O. 4);
1 quiet -> quiet PROB(0.6);
0 arrive -> quiet;

}
BEHAVIOUR be chB {

1 quiet -> arrive PROB(O. 5);
1 quiet -> quiet PROB(O. 5);

0 arrive -> quiet;
}
COMPONENT chA {ss ch; be chA; quiet(total = 0);)
COMPONENT chB {ss ch; be chB; quiet(total = 0); }

// Model of a fifo queue

STATE_SET ss q{
COUNTERS : glen, drop, total;
STATES(

wait :;
inc : {glen = glen + 1, total = total + 1);
dec : {glen = qlen - 1);
drop : {glen = glen - 1, drop = drop + 1);

}
}

BEHAVIOUR be qiA {
IF ON chA. arrive {

0 wait -> inc; }
IF ON seA. read {

0 wait -> dec; }
IF qiA. qlen > FULL {

0 inc -> drop; }
ON_EVENT chA. quiet {

0 inc -> wait;)
ON EVENT ! seA. read {

0 dec -> wait;
0 drop -> wait; }

}

267

BEHAVIOUR beqiB {
IF ON chB. arrive {

0 wait -> inc; }
IF ON seB. read {

0 wait -> dec; }
IF qiB. qlen > FULL {

0 inc -> drop; }
ON EVENT ! chB. arrive

0 inc -> wait;)
ON EVENT ! seB. read {

0 dec -> wait;
0 drop -> wait; }

H Model of network terminating units (NTUs)

COMPONENT qiA {ss q; be qiA; wait(qlen = 0, drop = 0);)
COMPONENT qiB {ss q; be qiB; wait(qlen = 0, drop = 0);)

// Model of switching elements

STATE SET ss_se
COUNTERS:;
STATES{

wait:;
read :;

}
BEHAVIOUR be seA {

Ii? ON qiA. qlen > EMPTY {
2 wait -> read; }

0 read -> wait;
}
COMPONENT seA {ss se; be seA; wait; }

// Model of switching element queues

BEHAVIOUR be seA q{
IF_ON seA. read {

0 wait -> inc; }
IF seA_q. glen > FULL {

0 inc -> drop; }
ON_EVENT ! seA. read {

0 inc -> wait;
0 drop -> wait; }

}
COMPONENT seAAq {ss q; be_se&q; wait(qlen = 0, drop = 0);)

H Model of switching element

BEHAVIOUR be_seB {
IF_ON qiB. qlen > EMPTY {

2 wait -> read; }
0 read -> wait;

}
COMPONENT seB {ss se; be seB; wait; }

268

H Model of switching element queues

BEHAVIOUR be seB q{
IF ON seB. read {

0 wait -> inc; }
IF seB q. glen > FULL {

0 inc -> drop; }
ON EVENT ! seB. read {

0 inc -> wait;
0 drop -> wait; }

COMPONENT seB q {ss q; be seB q; wait(qlen = 0, drop = 0);)

H Simulation control

STOPTIME(1000);
RUN(1);
SEED(370829552);

269

Appendix D

ICE listing of Delta-2 Banyan switch

architecture model

270

// File : asw4a. ice

// Author : GAC

// Date : 13.02.96

// Purpose : Models four layers of a 161/p Delta-2 Banyan Switch with

// o/p buffered SEs. Has both Up and o/p controllers.

H Counter reference values

CONSTANT (EMPTY = 0; FULL = 20;)

H Model of network traffic

STATE SET ss chjn {
COUNTERS : total;
STATES{

quiet :;
arrive : {total = total +1};

}
}
BEHAVIOUR be_cl-in {

1 quiet -> arrive PROB(O. 65);
I quiet -> quiet PROB(O. 35);
0 arrive -> quiet;

}
COMPONENT ch inl, c1L-inO (ss ch in; be cl-in; quiet(total = 0);)

// Model of traffic routing through switch

STATE SET ss dest {
COUNTERS:;
STATES(

cross :;
bar :;

}
}

BEHAVIOUR bedest inO {
ON_EVENT ANY(seaO. readO, seal. readO) {

0 cross -> bar PROB(0.5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(0.5);

}
}

BEHAVIOUR beBest inl {
ON EVENT ANY(seaO. readl, seal. readl) {

0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

}
}

271

BEHAVIOUR be dest seaO {
ON EVENT ANY(sebO. read0, sebl. readO) {

0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

BEHAVIOUR be dest seal {
ON EVENT ANY(sebO. read 1, seb 1. read 1) {

0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(0.5);

}
BEHAVIOUR be Best sebO {

ON_EVENT ANY(sec0. readO, sec1. readO) {
0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

}
BEHAVIOUR be_desLsebl {

ON_EVENT ANY(secO. readl, secl. readl) {
0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(0.5);

}
BEHAVIOUR be des secO {

ON_EVENT ANY(sedO. read0, sedl. readO)
0 cross -> bar PROB(O. 65);
0 cross -> cross PROB(O. 35);
0 bar -> cross PROB(O. 35);
0 bar -> bar PROB(O. 65);

}
BEHAVIOUR be desUsecI {

ON__EVENT ANY(sedO. readl, sedl. readl) {
0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

}
}

COMPONENT destjnO {ss dest; be Best sec0; bar; }
COMPONENT destinl {ss dest; be desLsec1; bar; }
COMPONENT dest_seaO {ss dest; be_destsecO; bar;)
COMPONENT dest_seal {ss dest; be dest_sec1; bar;)
COMPONENT dest sebO {ss dest; be dest sec0; bar;)
COMPONENT dest sebl {ss dest; be dest secl; bar;)
COMPONENT dest sec0 {ss dest; be dest sec0; bar,)
COMPONENT dest_secl {ss dest; be Best

_secl;
bar; }

272

H Model of Input Controllers

STATE SET ss q{
COUNTERS : glen, drop, total;
STATES(

wait:;
inc : {glen = glen + 1, total = total + I);
dec : {glen = glen - 1};
drop : {qlen = glen - 1, drop = drop + 1);

}
BEHAVIOUR be qiO {

IF ON c1-inO. arrive {
0 wait -> inc; }

IF ON ANY(sea0. read0, seal. readO) {
0 wait -> dec; }

IF giO. qlen > FULL {
0 inc -> drop;)

ON EVENT ch inO. quiet {
0 inc -> wait;)

ON EVENT ALL(! seaO. readO, ! seal. readO) {
0 dec -> wait;

0 drop -> wait; }
}
BEHAVIOUR be qil {

IF ON ch_jnl. arrive {
0 wait -> inc; }

IF ON ANY(sea0. readl, seal. readl) {
0 wait -> dec; }

IF qil. qlen > FULL {
0 inc -> drop; }

ON_EVENT ! chjnl. arrive {
0 inc -> wait;)

ON EVENT ALL(! seaO. readl, ! seal. readl) {
0 dec -> wait;
0 drop -> wait; }

}
COMPONENT qi1 {ss q; be qi1; wait(glen = 0, drop = 0);)
COMPONENT qi0 {ss q; be qi0; wait(qlen = 0, drop = 0); }

// Model of Switching Elements

STATE-SET ssL-se
COUNTERS:;
STATES{

wait :;
readO :;
readl :;

}
BEHAVIOUR be_seaO {

IF_ON ALL(! seal. readO, gi0. qlen > EMPTY, dest inO. bar) {
1 wait -> readO; }

IF_ON ALL(! seal. readl, gil. qlen > EMPTY, destnl. cross) {
} 1 wait -> read I;

0 readO -> wait;
0 read 1 -> wait;

}
COMPONENT seaO {ss se; be seaO; wait; }

273

BEHAVIOUR be sea0 q{
IF ON ANY(seaO. readO, sea0. readl) {

0 wait -> inc; }
IF sea0 q. glen > FULL {

0 inc -> drop; }
IF_ON ANY(sebO. readO, sebl. readO) {

0 wait -> dec; }
ON_EVENT ALL(! sea0. readO, ! seaO. readl) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! sebO. readO, ! sebl. readO) {
0 dec -> wait; }

}
COMPONENT sea0 q (ss q; be sea0 q; wait(qlen = 0, drop = 0);)
BEHAVIOUR be--seal f

IF_ON ALL(! seaO. readl, gi1. qlen > EMPTY, destjnl. bar) {
I wait -> read I;)

IF_ON ALL(! sea0. readO, gi0. qlen > EMPTY, dest_}n0. cross) {
1 wait -> readO; }

0 readO -> wait;
0 read 1 -> wait;

}
COMPONENT seal Iss

-se;
be seal; wait; }

BEHAVIOUR be seal q{
IF_ON ANY(seal. read0, seal. readl) {

0 wait -> inc;)
IF seal_q. glen > FULL {

0 inc -> drop; }
IF ON ANY(seb0. readl, sebl. readl) {

0 wait -> dec; }
ON EVENT ALL(! seal. read0, ! seal. readl) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! seb0. read1, ! seblsead1) {
0 dec -> wait; }

}
COMPONENT seal -q

{ss q; be seal q; wait(glen = 0, drop = 0);)
BEHAVIOUR be sebO {

EF ON ALL(! sebl. readO, sea0 q. glen > EMPTY, dest sea0. bar) {
1 wait -> readO; }

IF ON ALL(! seb1. readl, seal q. glen > EMPTY, dest_sea1. cross) {
} 1 wait -> read I;

0 readO -> wait;
0 readl -> wait;

COMPONENT sebO {ss se; bcsebO; wait; }
BEHAVIOUR be_seb0 q{

IF_ON ANY(sebO. readO, sebO. readl) {
0 wait -> inc; }

IF seb0_q. glen > FULL {
0 inc -> drop; }

IF_ON ANY(sec0. read0, sec l. read0) {
0 wait -> dec;)

ON EVENT ALL(! sebO. read0, ! sebO. read1) {
0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! secO. read0, ! secl. readO) {
0 dec -> wait; }

COMPONENT seb0 q (ss q; be_seb0 q; wait(qlen = 0, drop = 0);)

274

BEHAVIOUR be_sebl {
IF ON ALL(! sebO. readl, seal q. glen > EMPTY, dest seal. bar) {

I wait -> read!; }
IF ON ALL(! seb0. read0, seaO q. glen > EMPTY, dest sea0. cross)

1 wait -> read0; }
0 readO -> wait;
0 read 1 -> wait;

}
COMPONENT sebl {ss se; bcsebl; wait; }

BEHAVIOUR be sebl_q (
IF_ON ANY(sebl. read0, sebl. readl) {

0 wait -> inc; }
IF sebl q. glen > FULL {

0 inc -> drop; }
IF_ON ANY(sec0. readl, secl. readl) {

0 wait -> dec; }
ON EVENT ALL(! seb1. readO, ! seb1. read1) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! sec0. read1, ! secl. readl) {
0 dec -> wait; }

}
COMPONENT seb lq {ss q; be seb l q; wait(qlen = 0, drop = 0);)

BEHAVIOUR be sec0 (
IF ON ALL(! secl. readO, seb0 q. glen > EMPTY, dest sebO. bar) {

1 wait -> read0; }
IF ON ALL(! sec 1. read 1, seb l q. glen > EMPTY, dest seb 1. cross) {

1 wait -> read!; }
0 readO -> wait;
0 read! -> wait;

}
COMPONENT secO {ss se; be secO; wait; }

BEHAVIOUR be sec(q (
IF_ON ANY(sec0. readO, secO. readl) {

0 wait -> inc; }
IF secO q. glen > FULL {

0 inc -> drop; }
IF_ON ANY(sedO. readO, sed1. readO) {

0 wait -> dec;)
ON_EVENT ALL(! secO. readO, ! sec0. readl) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! sedO. readO, ! sedl. read0) {
0 dec -> wait;)

}
COMPONENT sec0_q {ss q; be secO q; wait(qlen = 0, drop = 0);)

BEHAVIOUR be sect (
IF_ON ALL(! secO. readl, sebl q. glen > EMPTY, dest sebl. bar) {

1 wait -> read!; }
IF_ON ALL(! secO. read0, sebO q. glen > EMPTY, dest_seb0. cross) {

1 wait -> read0; }
0 readO -> wait;
0 read! -> wait;

}
COMPONENT sect Iss , -se;

be sec1; wait; }

275

BEHAVIOUR be_sec1_q {
IF ON ANY(sec1. read0, sec!. read1) {

0 wait -> inc; }
IF secl q. glen > FULL {

0 inc -> drop; }
IF_ON ANY(sedO. readl, sedl. readl) {

0 wait -> dec; }
ON EVENT ALL(! sec1. read0, ! secl. readl) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! sedO. readl, ! sedl. readl) {
0 dec -> wait; }

}
COMPONENT sec lq {ss q; be sec l q; wait(qlen = 0, drop = 0);)
BEHAVIOUR be sedO (

IF_ON ALL(! sedl. readO, secO q. glen > EMPTY, dest sec0. bar) {
1 wait -> read0;)

IF ON ALL(! sedl. readl, secl q. glen > EMPTY, dest secl. cross) {
I wait -> readl; }

0 readO -> wait;
0 read 1 -> wait;

}
COMPONENT sedO {ss se; be sed0; wait; }
BEHAVIOUR be sed0 q{

IF ON ANY(sedO. read0, sed0. readl) {
0 wait -> inc; }

IF sed0 q. glen > FULL {
0 inc -> drop; }

IF_ON qoO. inc {
0 wait -> dec; }

ON EVENT ALL(! sedO. read0, ! sedO. readl) {
0 inc -> wait;
0 drop -> wait; }

ON EVENT ! goO. inc {
0 dec -> wait; }

}
COMPONENT sed0 q (ss q; be sed0 q; wait(qlen = 0, drop = 0);)
BEHAVIOUR be sedI (

IF_ON ALL(! sedO. readl, secl_q. glen > EMPTY, dest_secl. bar) {
I wait -> read!;)

IF_ON ALL(! sed0. read0, sec0 q. glen > EMPTY, dest sec0. cross) {
1 wait -> readO; }

0 readO -> wait;
0 read 1 -> wait;

}
COMPONENT sedl {ss se; be sedl; wait; }
BEHAVIOUR be_sedl q(

IF_ON ANY(sedl. readO, sedl. readl) {
0 wait -> inc; }

IF sedl_q. glen > FULL {
0 inc -> drop; }

IF_ON qol. inc {
0 wait -> dec; }

ON_EVENT ALL(! sedl. readO, ! sedl. readl) {
0 inc -> wait;
0 drop -> wait; }

ON_EVENT ! gol. inc {
0 dec -> wait; }

}
COMPONENT sedl_q {ss q; besedl q; wait(qlen = 0, drop = 0);)

276

// Model of Output Controllers

BEHAVIOUR be qoO {
IF ON sedO q. glen > EMPTY

I wait -> inc; }
0 inc -> wait;

}
BEHAVIOUR be qol {

II? ON sedl q. glen> EMPTY
1 wait -> inc; }

0 inc -> wait;
}
COMPONENT qoO {ss q; be qoO; wait(qlen = 0, total = 0, drop = 0);)
COMPONENT qol {ss q; be qol; wait(qlen = 0, total = 0, drop = 0);)

// Simulation Control

SEED(21747007);
STOPTIME(10000);
RUN(10);

277

Appendix E

Reprint of published paper

278

A NOVEL APPROACH TO SIMULATING THE PERFORMANCE OF ATM SWITCHES

GA Corr and AJ Miller

Abstract
This paper addresses the problem of the descriptive complexity presented by systems involving a high number
of interacting components. The declarative language, ICE, is described and applied to an ATM switch of
Banyan architecture. Results of simulating the ICE model are presented and discussed.

1 Introduction

Much work has been done on modelling the performance of complex ATM switch architectures [1,2,3).
Modelling space division architectures such as the popular Banyan network design [4] involves the complex
task of describing the interaction of a set of inter-dependant switching elements which may incorporate more
than one queuing strategy [5,6,7].

Stochastic Petri-Nets and related techniques have traditionally been used as a generalised approach to
modelling concurrent systems [8]. Although there are now tools to support a hierarchial approach [9] to
problem specification, the underlying philosophy is to produce a monolithic Markovian model describing the
entire system. The resulting model can be of the order of many thousands of states although analytic
procedures, with their underlying assumptions [10], are available to make the mathematics tractable.

An alternative approach is to use the formalisms offered by higher level Petri Nets such as coloured [11] and
object oriented Petri Nets [12]. These however require to be simulated unless restrictive assumptions are made.

Complexity is a problem not only for computational analysis but for the system description itself. There is
a need for a problem specification formalism which supports descriptions proportional to the size of the
physical system rather than the overall system state space. This is an approach which addresses the problem
of complexity as presented to the human modeller rather than the computing hardware. Whereas computing
architecture continues to become increasingly more powerful, we can safely predict that human capability to
intellectually grasp the operation of highly interconnected systems will remain relatively limited.

In order to simplify the problem description a novel specification language has been developed, known as the
ICE (Interacting ComponEnts) language. Its attractiveness lies in its transparency, inherent simplicity and
surprising descriptive power.

ICE is a general purpose language, not linked to any application area. Systems are described as a number of
interacting components. Each component may be thought of as a finite state machine with external inputs.
The basic concepts and the language structure are easily understood allowing complex models to be constructed
within a relatively short time. Once models have been built they may be simulated using the bespoke package
ISIM. Simulations are in discrete time, the duration of time units being determined by the user. It is possible
to examine every step of the simulation and to determine a range of statistics on the model's behaviour both

at a component and system level.

The ICE language may be used to describe any type of system and some work has been done on the behaviour

of communication protocols [13] and flexible manufacturing systems [14]. This paper covers the syntax and
semantics of the language and demonstrates its descriptive power by application to the performance modelling
of replicated Banyan switches.

The paper describes how a model of a 16 input/output switch can be constructed by representing the output
buffered switching elements (SEs) as interacting components. This approach allows access to the buffers

279

within the SEs at all points during simulation. Our interest is in the study of queue behaviour at the different
switch levels as a consequence of varying input loads. Results are presented for the case of both balanced and
unbalanced traffic. Statistical analysis is performed on the buffers providing valuable information on relative
buffer sizes that may be used in the design of stage dependant SEs.

2.0 ICE Language

2.1 Background
This language was originally conceived as a purely declarative language for modelling reliability problems.
The syntax of the language was formally presented in [15]. Subsequent to this, the language compiler and
simulator were developed [14]. Experience with the applications resulted in some development of the original
syntax although this was adhered to as closely as possible.

The language was later applied to the modelling of both the performance and reliability of communication
systems [13]. This proved to be a rigorous testing ground and highlighted further areas of improvement. The
language underwent some significant modifications and the simulator was updated to facilitate these. However
the description of components with a high number of states, for example queues, still presented a significant
challenge. The desire to apply the language to communication networks encouraged a major development of
the language and the simulator. The language ICE is the result of subsequent research.

The inherent simplicity of the syntax is one of the major strengths of the language however it has been shown,
[13], to be equivalent in descriptive power to timed stochastic Petri Nets with inhibitor arcs.

2.2 Overview
The language has a declarative style that is based upon describing systems in terms of their constituent
interacting discrete state components. Each COMPONENT in a system has a set of operational states. The

component moves between the various states in its STATE SET according to its predefined BEHAVIOUR.
The transitions can be governed by :

Time delays.
Status, ie state occupancy of one or more components.
Behaviour, ie transition event of one or more components or component counters.

Components may also have an associated AGE which can be used to manipulate their behaviour.

Components may also have COUNTERS associated with them. Counters are used to help address the problem

of state explosion. For example, if we wished to model a buffer with 100 spaces, we could do so by using a

component with 101 states, ie 1 state for the empty condition and 100 for each of the levels of occupancy.
Alternatively, we could use one state to represent the buffer and a counter which may take any value [0,100]

to represent the levels of occupancy. This clearly allows the state complexity of models to be greatly reduced.

To fully define a component, three statements are required :

STATE_SET, which lists the finite set of states that the component can exist in and any
counters belonging to the component.
BEHAVIOUR, which defines all possible transitions that can be made between states.
COMPONENT, which defines a component with a specified STATE_SET and BEHAVIOUR.
It also defines an initial state and optionally an initial age and counter values of the

component.

As well as components we can also describe passive resources which may be allocated to components.
Resources may be consumable or non-consumable and are specified as STOCK and RESOURCE respectively.

280

The WAIT'
_FOR statement allows dynamic creation of components and the explicit manipulation of free stock

and resource levels during the simulation.

The language is free format in the sense that blank space (spaces, tabs, new lines etc) are ignored the order
of statements is unimportant. A full description of the languages syntax and semantics is given in [28], but
an appreciation can be drawn from the ICE listing in Appendix A.

3.0 The Software Simulator

The language is translated using a lexical analyzer and a parser. The lexical analyzer is handwritten whereas
the parser used is a DOS version of the UNIX YACC tool. A text file of language statements is converted to
data structures . The lexical analyzer and parser check for syntax errors and a successful compilation produces
linked lists of C structures, one list corresponding to each type of language statement.

Further software cross-checks the data structures for consistency (eg between STATE SET and BEHAVIOUR
statements). An error free input will produce lists of C++ objects which form the basis of the discrete event
simulation.

To provide control over simulation runs, extra statements are required. These include the ability to define
simulation runtimes and setting the seed of the random number generator. To gain statistical accuracy it is
possible to specify a number of multiple runs of the simulator, each covering a lifetime of system operation.

Post simulation software allows the users to view an event trace of the entire simulation and to generate a
range of statistics as to the behaviour of the components and systems. Work is proceeding on producing a
facility for presenting statistics in a graphical format.

4.0 Example ; an ICE model of an ATM Delta-2 Banyan Switch

4.1 Overview
The first decision to make is how to subdivide the switch into a suitable combination of components. A
suitable balance is required between limiting complexity, which increases with number of components and fully
representing the functionality. Four functional units are identified, namely the communications channel, input
controllers, switching elements and output controllers. Each is modelled with a component, save for the
switching elements which are best represented by four interacting components.

The design takes a modular approach both for simplicity and ease of expansion. In the literature there are
models for a great range of sizes, however the intention was to make the ICE model representative of a
practical switch. The size decided upon was 16x16, chosen as an optimum size as it provides a high enough
number of channels and 16 interface cards fit well into one module mounted in a standard 19"
telecommunications equipment rack.

A 16x16 Banyan switch has 4 levels of switching, each with 8 layers of switching elements. The popular
assumption made is that all cells arriving from the input channels have output addresses which have an equal
probability of being any of the output channels [16]. If we adopt this assumption then it is safe to conclude
that we need only model one layer of switching elements and the behaviour of this layer will be representative
of any other [17]. To model all layers would only require reiterating the ICE code a further 7 times and
editing component names in the behaviour statements. Such expansion would not be practical in probabilistic
models as the size of the expressions would become unmanageable.

Thus the ICE model describes all 4 levels of switching elements for one layer of a 16x16 switch. Figure 4.1

is a diagram of the switch with the ICE components marked.

281

------------ , ------ ------ ---- ------- I ----------

sew

qi 0 sea0_q sc60_9 socLq
_q qoO

inl ch _
seal , sebl sect sell ,

qi_1 swi_q sebl_q secl_q wdl_q qol

----------- '----- ------ '----- ------ '-

INPUT INPUT

Ct ANNELS CONTROLLERS
SWITCHNG ELEMENTS

oUn, Jr
CONTROLLERS

Figure 4.1 One layer of 16x16 switch with components marked

The complete ICE program for the switch model is listed in appendix A. Below we shall consider each type
of constituent component.

4.2 The input traffic
The input traffic to the switch is described by modelling input channels that can either be in an arrive (cell

slot occupied) or quiet (cell slot empty) state. It was initially thought that this could be incorporated as part
of the behaviour of the input controllers but the requirement that the load be constant prevented this. To

expand on this point, to give a true representation of an input channel the model must show a steady flow of
cell slots with the probability that any slot is occupied being equal to the required load. If the two states that
are described form part of a larger state set with other transitions, this would jeopardise that requirement

In mathematical modelling it is necessary to select some appropriate stochastic distribution that will closely
reflect the behaviour of traffic. Uniform cell arrival rates may be represented by either the Poison or Bernoulli
distributions. These may be utilised in ICE by manipulation of the exponential transition firing rates. Bursty

cell arrivals have been modelled in ATM networks by Interrupted Poison Processes (IPP) [18] and Bulk
Bernoulli Processes (BBP) [19]. Complex models of bursty traffic with both exponentially distributed quiet

and bursty periods can be modelled using a Markov Modulated Poison Process (MMPP) [18] as implemented

in the BONeS simulator [20]. The MMPP can be implemented in ICE by building on the model for uniform

cell arrival which is shown below in figure 4.2.

PROB(x)

y total a total +1

cquiet
arrive

0

y
PROB(1-x)

Figure 4.2 State diagram
of an input
channel

By assigning probabilities to the output transitions from the quiet state we can directly represent the channel

282

in ICE with no level of abstraction. One component is used for each input channel. This component can only
exists in the states quiet or arrive and will move between them with a probability equal to the load as shown by the behaviour statement in listing 4.1. This gives a very simple but very accurate model of the input traffic.
The counter total which is shown being incremented in the arrive state keeps a tally of the number of cells
arriving. This is useful for validating loads during simulation.

BEHAVIOUR be ch in {
1 quiet -> arrive PROB(O. 6);
1 quiet -> quiet PROB(O. 4);
0 arrive -> quiet;

}

Listing 4.1 Input channel BEHAVIOUR statement

43 The Input Controllers
The input controllers buffer the cells arriving form the input channels before transmitting them to the first
switching elements. Each input controller is modelled as an individual component. The state diagram for is
given in figure 4.3.

total = total + 1; qlen = qlen +1

inc
IF ch_inO. quiet IF qiO. qlen > FULL

IF ch in0. arrive 0

wait drop
0 ON EVENT (! seAO. read0, ! seAlsead0)

0 drop = drop -1; glen - qlen -1

IF (seAO. readO, seAl. readO)O jglen
= glen -1

ON EVENT (! seAareaaa
acc

Figure 4.3 State diagram of input controller

There is one buffer per input controller so that all cells that arrive at the same input share the same buffer as
in the architecture proposed by Del Re and Fantacci [21]. In ATM there is a priority flag in the header data
that facilitates two priorities of traffic. If this model were expanded to have two buffers then behaviour for
both priorities could be measured [22]. There are four states. The quiescent state is wait. When a cell arrives
from the input channel it moves into state inc . If the buffer is already full the cell is dropped (state drop)

otherwise the buffer is incremented and the component returns to wait. When a succeeding switching element
reads a cell from the buffer it moves into state dec and the buffer is decremented by one cell before returning
to state wait.

Note that all of the transitions are immediate, this is in order to achieve synchronisation. For example,
consider the state inc. This state is entered when a cell arrives on channel chino. Cells arrive in one time

unit, this requires the component to move into inc and back to wait in one time unit and hence this component
would move into wait at the same time the input channel is moving out of arrive. Since these two transitions

are happening in the same time unit the order cannot be guaranteed. If the inc ->wait occurs first, the input

channel will still be in state arrive causing this component to re-enter inc and falsely record another cell

arrival. By putting the transition condition that the component cannot move out of state wait until the input

283

controller moves out of state arrive this error is prevented. The corresponding behaviour statement is shown
in listing 4.2.

BEHAVIOUR be qi0 {
IF ch_inO. arrive {

0 wait -> inc; }
IF ANY(seaO. read0, seal. readO) {

0 wait -> dec; }
IF giO. qlen > FULL {

0 inc -> drop; }
ON EVENT ch in0. quiet {

0 inc -> wait; }
ON EVENT ALL(! seaO. readO, ! seal. readO) {

0 dec -> wait;
0 drop -> wait; }

Listing 4.2 Input controllers BEHAVIOUR statement

The counter total stores the total number of cells that have arrived, glen gives the instantaneous length of the
queue and drop gives the number of cells that have overflown the buffer.

4.4 Operation of the Cross-Bar Switches
From figure 4.1 it can be seen that each switching element contains a cross-bar switch. At each time slot these
switches will either be in the cross or bar state and thus dictate which queue the switching element will be
reading from. The operation of these switches is modelled by two components per switch. One component
represents the top branch of the switch and one the lower. Each can exist in the two states cross or bar. The
state diagram is given in figure 4.4.

ON EVENT ANY(seAO. readO, seAl. read0)

PROB(x) 0
000

bar cross cOBt1xJ)

PROB(1-x) PROB(x)

Figure 4.4 State diagram of cross-bar component

For a balanced routing all probabilities will be 0.5. By changing these probabilities the route can be altered.
In the listing 4.3 of the BEHAVIOUR statement for an upper branch component the probabilities are set so
that there is a bias for the bar position. This means there is more traffic arriving at the upper input destined
for the upper output than for the lower output. The probabilities for the lower branch are all set to 0.5, hence

traffic arriving at the lower input will have equal likelihood of being destined for either output. By adopting
this approach, which allows flexibility in the balance of traffic, we can investigate Bruneeli and Wittevongel's
[23] finding that queuing deteriorates in output buffered SEs as correlation in the routing gets higher.

284

BEHAVIOUR be Best inO {
ON EVENT ANY(sea0. readO, seal. readO) {

0 cross -> bar PROB(O. 65);
0 cross -> cross PROB(O. 35);
0 bar -> cross PROB(0.35);
0 bar -> bar PROB(0.65);

}
BEHAVIOUR be_des>`inl {

ON_EVENT ANY(seaO. readI, seal. readI) {
0 cross -> bar PROB(O. 5);
0 cross -> cross PROB(O. 5);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(0.5);

Listing 4.3 BEHAVIOUR statement for cell routing

Note that the component changes state each time the switching element has read a cell from the proceeding
buffer.

4.5 The Switching Elements

In many mathematical models a general expression is derived which expresses the output conditions dependant

upon the input and it is not possible to monitor the internal performance of the switch. For many applications
this type of method is appropriate as loss probability is a comprehensive enough measure of performance [24].

In this model however we wish to monitor the behaviour of various queues within the interconnection network

and switching elements are therefore modelled individually. Each switching element is represented by four

components.
This seems verbose on first inspection but when examined it allows for simplicity. Two

components are required for the two queues. It would be possible to represent the two queues by two counters
in one component but by using one counter each in separate components it allows the queues to function in

parallel without state transitions being delayed. This reflects the operation of the hardware design.

Initially each queue and its operation was modelled by one component. This is restrictive as checks for read

and write operations had to be made sequentially. The final implementation uses two components. The first

is used to monitor whether a queue may read from a proceeding queue during each time slot and the second

handles the actual updating of the queue. The state diagram of the first component is shown in figure 4.5.

IFALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross)

w, ý
dread

IF ALL(! seal. readO, gi0. qlen > EMPTY, dest inO. bar)

Figure 4.5 State diagram of SE queue reading component

From the state diagram it can be seen that the queue can read from either the proceeding 0 (upper) or 1 (lower)

queue. The conditions for reading the proceeding 0 buffer are that the other queue in the SE is not currently

285

reading from it, the queue is not empty and the cross-bar is in the bar position. The conditions for reading
from the proceeding lower queue are similar but the cross-bar must be in the cross position. The position of
the cross-bar is determined by the cross-bar component discussed in section 7.4.4 which selects cell routing.
Note that only one cell may be read in one time slot, following the operational procedure proposed by Jenq
[17]. The behaviour statement for this component is shown in listing 7.4.

BEHAVIOUR be seaO {
IF ON ALL(! seal. readO, giO. qlen > EMPTY, destinO. bar) {

1 wait -> read0;)
IF_ON ALL(! seal. readl, qil. qlen > EMPTY, dest_inl. cross) {

1 wait -> read I; }
0 readO -> wait;
0 read 1 -> wait;

Listing 4.4 BEHAVIOUR statement for queue reading component

The component will firstly check to see if there is a cell in the upper preceding buffer and if it is destined for
the upper queue. If so it will read it, if not it will check the lower buffer. There is no read operation during
the time slot if there are no cells available or if the queue is blocked by the complimentary queue reading from
the required preceding buffer. By making the SE timeslots faster than the networks timeslots (say a speed-up
factor of two) it would be possible for each SE queue to read from the same preceding buffer in the same SE
timeslot [25]. The model could be simply changed to encompass this feature by changing the timing on the
transitions. Speed-up can also be accomplished at switch level [26] but is limited by the network speed.

The component that models the updating of the queues has the same state diagram as that for the input

controllers shown in figure 4.3 and the behaviour is identical. The corresponding behaviour statement is given
in listing 4.5.

BEHAVIOUR be_seaO_q {
IF ON ANY(seaO. read0, sea0. readl) {

0 wait -> inc; }
IF seaO_q. glen > FULL {

0 inc -> drop;)
IF ON ANY(sebO. readO, seb 1. readO) {

0 wait -> dec; }
ON_EVENT ALL(! seaO. readO, ! seaO. readl) {

0 inc -> wait;
0 drop -> wait; }

ON_EVENT ALL(! sebO. readO, ! sebl. read0)
0 dec -> wait; }

Listing 4.5 BEHAVIOUR statement for queue updating component.

Note that all the transition timings are again 0. This allows the transitions to be wholly determined by the

queue reading components and facilitates the possibility of a cell being read into and read from the same queue

within one time slot.

4.6 The Output Controllers

The output controllers present a new challenge within themselves. What is required is a suitable buffer on

each output port with consideration of both capacity allocation and overflow. This will be largely dependant

upon the network to which the switch is connected [27]. Our aim is to concentrate on the switches behaviour

and thus we assume infinite capacity queues in the output controllers. This assumption is equivalent to

286

assuming that the output network is available to read one cell per time slot. The space diagram for the output
controllers is shown in figure 4.6.

IF seDO_q > EMPTY

total = total +1

wait inc

Figure 4.6 Space diagram of Output Controllers

The output controllers will read a cell from the final (4th) level switching elements each time slot if there is
a cell to read. There is one output controller dedicated to each output port and hence there will be no blocking
in these components. Counters have been associated to each output so that the total number of cells leaving
the switch may be monitored. The behaviour statement is given in Listing 4.6.

BEHAVIOUR be qoO {
IF ON sedO q. glen > EMPTY {

1 wait -> inc; }
0 inc -> wait;

Listing 4.6 BEHAVIOUR statement of Output Controllers

4.7 Model Validation

With a model of this size and complexity it is necessary to analyse its behaviour to ensure that it reflects
correctly the operation of the system being modelled. The post-processor viz is a suitable tool for this. Full
validation required two steps, the first being to examine a textual event trace of a simulation of the model to
ensure components behave as expected, and the second being to run a short simulation examine the resulting
counter values.

For the first step a short simulation (100 time slots) was run. The textual event trace for this simulation was
obtained using viz. Each type of component was considered in turn. Every transition was examined for each
component type to ensure the firing and timing corresponded to that which was expected. This step
highlighted the timing problems that were discussed in section 4.3 and thus proved a valuable technique.

For the second step all the counter values were noted at the end of simulation from the previous event trace.
These values are given in table 4.1. The validating technique is as follows. For each pair of components, eg
sea0 and seal, the sum of the total values minus the sum of the glen values should be equal to the sum of the

total values for the following pair of components. By performing this check for each pair of components
correct counter operation can be confidently determined.

Cnt. Check Components

Counters

qiO qil seaO seal sebO sebl sec0 secl sedO sedl qol qoO

total 65 56 57 61 50 59 61 47 50 57 50 56

glen 2 1 1 8 0 1 1 0 0 1 50 56

Table 4.1 Validation of counter operation

287

4.8 Simulation Results

The model of the ATM switch was run on the I_SIM software to investigate the mean queue length at each

stage dependant upon both the load presented to the switch and the routing balance. For each case the

simulator was run for 10 trials of 10000 time slots each. Traffic loading was varied from 0.5 to 0.8 in steps

of 0.05. For each of these runs the routing balance was varied from 0.5 (balanced) to 0.65/0.35 in steps of
0.05. A sample of the outcomes are plotted in graphs 4.1-4.3.

Queue Length

10

8

6

4

2

input 1st stage 2nd stage 3rd stage 4th stage

Switch Stage

Graph 4.1 Queue length for varied balanced loads

It is interesting to note the behaviour of the second stage queue and that the ratio of this queue length to the

others increases with load. As expected all queue lengths increase with load save for the 4th stage which is

modelled as feeding an infinite capacity network.

Queue

Switch Stage

Graph 4.2 Queue lengths for unbalanced upper path for a load of 0.50

288

Load
. i' +. I- a6 :e X65

Queue

Switch Stage

Graph 4.3 Queue lengths for unbalanced lower path for a load of 0.50

The upper two graphs again show the importance of the second stage queue, with the lower queue being

slightly longer due to the imbalance of traffic routing. The third stage queue on the lower path shows a

marked increase over its upper counterpart. This we can assume is due to the priority given to the upper path

causing the lower cross-bar, cross path, to be subject to head of line blocking.

5.0 Conclusions

The ATM switch example has demonstrated the ICE language's ability to model complex interacting

components with a low level of abstraction and a manageable descriptive state space. The I_SIM software is

capable of generating appropriate statistics on each component, state and counter. The generic nature of the
language provides flexibility for the modelling of all types of systems. The approach is limited by the lack

of static analysis capability which stems from the descriptive power of the language that takes it beyond

solution by analytic or numerical techniques.

References

[1] Sun Z, Cosmas J, Cuthbert L G, "Simulation Studies of Multiplexing and Demultiplexing Performance
in ATM Switch Fabrics" 10th UK Teletraphic Symposium : Performance engineering in

telecommunications networks, pp21/1-5, IEE, April 1993.
[2] Santamaria M L, Puigjaner R; Banvan A TM switch: grade ofservice under unbalanced load, Computer

Networks, Architecture and Applications (C-13), Elsevier Science Publishers B. V. pp261-70,1993.
[3] Tobagi F A; Fast packet switch architectures for broadband integrated services digital network, Proc.

IEEE, Vol. 78, No. 1, pp133-167,1990.
[4] Tubtiang A. Kwon H I. Pujolle G: "A method for ATM switches classification", ICCT'92 Proc. of

1992 International Conf. on Communication Technology, Vol. 1, ppl2.03.1-5, Sept 1992.

[5] Fan Y, Wang J and Wang C: "Performance Analysis of Banyan Network Based ATM Switches" IEEE

International Conf. on Communications, Vol. 3-4, pp, June 1992.
[6] Morris T D, Perros 1-I G: "Performance Modelling of a Multi-Buffered Banyan Switch under Bursty

Traffic" In Proc. of Infocom 92, Vol. 1, IEEE, 1992.
[7] Yegani P, "Performance Models for ATM Switching of Mixed Continuous-Bit-Rate and Bursty Traffic

with Threshold-Based Discarding" Supercomm 92 Discovering a New World of Communication, Vol.

289

3, pp354.3.1-7, IEEE, June 1992.
[8] Silva M, "Interleaving Functional and Performance Structural Analysis of Net Models", 14th Conf.

on the Application and Theory of Petri Nets, Springer-Verlag, pp 16-23, June 1993.
[9] Buchholz P, "Hierarchies in Coloured GSPNs" 14th Conf. on the Application and Theory of Petri Nets,

Springer-Verlag, pp 106-25, June 1993.
[10] Trivedi K S, Ciardo G, Malhotra M and Garg S: "Dependability and Performability Analysis Using

Stochastic Petri Nets", Proc. of 11th International Conf. on Analysis and Optimization of Systems -
discrete event systems, pp144-57, June 1994, Springer-Verlag.

[11] Jensen K: "Coloured Petri Nets, volume 1", EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, 1992.

[12] Deng Y, Chang S K, de Figueired JCA and Perkusich A, "Integrating Software Engineering Methods
and Petri Nets for the Specification and Prototyping of Complex Information Systems", 14th Conf. on
the Application and Theory of Petri Nets, Springer-Verlag, pp 106-25, June 1993.

[13] Scrase A S, "On RDL and its Application to The Performability of Communication Networks", PhD
Thesis, The Robert Gordon University, 1991.

[14] Smith W, "Design and Implementation of a Simulator for the Performance Analysis of Manufacturing
Systems", PhD Thesis, The Robert Gordon University 1991.

[15] Miller A J, Wells R and Walker K S, "Simulation Using the Reliability Description Language",
Reliability '91, ed RH Matthews, 1991.

[16] Tubtiang A, Kwon H I, Pujolle G; A Simple ATM Switching Architecture for Broadband-ISDN and
its Performance Modelling and Performance Evaluation of ATM Technology (C-15), Elsevier Science
Publishers B. V. (North Holland), 1993, pp361-371.

[17] Jenq Y-C; Performance Analysis of a Packet Switch Based on Single-Buffered Banyan Network IEEE
Journal on Selected Areas in Communications, Vol. SAC-1 No. 6, December 1983, pp401-8.

[18] Santamaria M L, Puigjaner R; Analysis of Grade of Service in an ATM Switch Computer and
Information Scences VI, Elsevier Science Publishers BV (NOrth Holland), 1991, pp515-23.

[19] Parr G P, Wright S, Marshall A; Modelling ATM Switch-Fabric Based on the Knockout Principle 10th
UK TeletrafficSymposium : Performance Engineering in Telecommunications Networks, Martlesham
Heath, IEE, 14-16 April 1993, pp22/1-2218.

[20] Kouvatsos D D, Tabet-Aouel N M, Denazis S G; A Discrete-Time Queuing Model of a Shared Buffer
ATM Switch Architecture with Bursty Arrivals 10th UK TeletrafficSymposium : Performance
Engineering in Telecommunications Networks, Martlesham Heath, IEE, 14-16 April 1993, pp 19/1-19/9.

[21] Del Re E, Fantacci R; Efficient fast packet switch fabric with shared input buffers lEE Proceedings-I,
Vol. 140, No. 5, October 1993.

[22] Dagiuklas A K, Ghanbari M; Priority Queuing Disciplines in ATM Switches Carrying Two Layer
Video Traffic 10th UK TeletrafficSymposium : Performance Engineering in Telecommunications
Networks, Martlesham Heath, IEE, 14-16 April 1993, pp4/1-4/6.

[23] Bruneel H, Wittenvrongel S; Analytic performance study of ATM switching elements with on/of
sources and correlated routing Modelling and Performance Evaluation of ATM Technology (C-15),
Elsevier Science Publishers B. V. (North Holland), 1993, pp4l-59.

[24] Schulzrinne H, Kurose J F, Towsley D F; Loss Correlation for Queues with Bursty Input Streams
Supercomm 92, Chicago 14-18 June 1992, IEEE, pp308.4.1-6.

[25] Xiong Y, Bruneel H; Approximate Analytic Performace Study of an ATM Switching Element with
Train Arrivals Supercomm 92, Chicago, June 1992 IEEE, pp354.2.1-7.

[26] Chan D X, Mark J W; Delay and Loss Control ofAn Output Buffered Fast Packet Switch Supporting
Integrated Services Supercomm 92, Chicago 14-18 June 1992, IEEE, pp335A. 1.1-5.

[27] Chen D X, Mark J W; A Buffer Managment Scheme for the SCOQ Switch Under Nonuniform Traffic
Loading Infocomm 92, Florence 1992 IEEE, pp1D. 4.1-9.

[28] Corr G A, "On ICE and its Application to Performability", PhD Thesis, The Robert Gordon University,
1996.

Appendix A Partial ICE listing of 16x16 Delta-2 Banyan switch model

290

H File : asw4a. ice
Author : GAC
Date 31.10.94
Purpose : Models four layers of a 16i/p Delta-2 Banyan Switch with

o/p buffered SEs. Has both I/p and o/p controllers.

CONSTANT {EMPTY = 0; FULL = 20; }

// Input traffic model

STATE SET ss_ch_in {
COUNTERS : total;
STATES f

quiet :;
arrive : (total = total +1);

}
}
BEHAVIOUR be ch in {

1 quiet -> arrive PROB(0.65);
1 quiet -> quiet PROB(035);
0 arrive -> quiet;

}
COMPONENT ch_inl, ch in0 {ss ch in; be ch in; quiet(total = 0); }

/1 Traffic routing balance model

STATE SET ss dest {
COUNTERS:;
STATES I

cross :;
bar :;

}
BEHAVIOUR be dest inO {

ON EVENT ANY(sea0. readO, seal. read0) {
0 cross -> bar PROB(0.5);
0 cross -> cross PROB(0S);
0 bar -> cross PROB(O. 5);
0 bar -> bar PROB(O. 5);

}
}
COMPONENT dest in0 (ss dest; be_dest secO; bar;)

// Switching element and controllers queue model

STATE SET ss_q {
COUNTERS : glen, drop, total;
STATES(

wait :;
inc : {glen = glen + 1, total = total + 1);
dec : {glen = glen - 1);
drop : {glen = qlen - 1, drop = drop + 11;

// Input controller model

BEHAVIOUR be_qiO (
IF ON ch inO. arrive {

0 wait -> inc; }
IF ON ANY(seaO. readO, seal. readO) {

0 wait -> dec; }
IF gi0. q! en > FULL {

0 inc -> drop; }
ON EVENT ch inO. quiet {

0 inc -> wait; }
ON EVENT ALL(! sea0. readO, ! seal. readO) {

0 dec -> wait;

291

0 drop -> wait; }
}
COMPONENT qi0 {ss_q; be_gi0; wait(qlen = 0, drop = 0); }

// Cross-bar element model

{ STATE_SET ss_se
COUNTERS:;
STATES {

wait :;
readO :;
readl :;

}
}
BEHAVIOUR be_sea0 {

IF_ON ALL(! seal. read0, gi0. qlen > EMPTY, dest_inO. bar) {
I wait -> read0; }

IF ON ALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) {
I wait -> readl; }

0 readO -> wait;
0 readl -> wait;

}
COMPONENT sea0 {ss_se; be sea0; wait; }

BEHAVIOUR be sea0_q {
IF ON ANY(sea0. read0, seaO. readl) {

0 wait -> inc; }
IF sea0_q. glen > FULL {

0 inc -> drop; }
IF ON ANY(sebO. read0, sebl. read0) {

0 wait -> dec; }
ON EVENT ALL(! sea0. read0, ! sea0. read1) {

0 inc -> wait;
0 drop -> wait; }

ON EVENT ALL(! seb0. read0, ! sebl. read0)
0{ dec -> wait; }

}
COMPONENT sea0_q {ss_q; be sea0_q; wait(qlen = 0, drop = 0); }

// Output controller model

BEHAVIOUR be_go0 {
IF_ON sed0_q. glen > EMPTY {

1 wait "> inc; }
0 inc -> wait;

}
COMPONENT qo0 {ss_q; be_go0; wait(qlen = 0, total = 0, drop = 0); }

// Simulation Control

SEED(23452);
STOPTIME(10000);
RUN(10);

// Ends

292

	Corr thesis coversheet
	Corr thesis

