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Abstract 

This thesis addresses the problem of descriptive complexity presented by systems involving 

a high number of interacting components. It investigates the evaluation measure of 

performability and its application to such systems. 

A new description and simulation language, ICE and it's application to performability 

modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description 

language which was first proposed for defining reliability problems. ICE is declarative in 

style and has a limited number of keywords. The ethos in the development of the language 

has been to provide an intuitive formalism with a powerful descriptive space. The full 

syntax of the language is presented with discussion as to its philosophy. The 

implementation of a discrete event simulator using an ICE interface is described, with use 
being made of examples to illustrate the functionality of the code and the semantics of the 
language. 

Random numbers are used to provide the required stochastic behaviour within the 

simulator. The behaviour of an industry standard generator within the simulator and 

different methods of number allocation are shown. A new generator is proposed that is a 
development of a fast hardware shift register generator and is demonstrated to possess good 

statistical properties and operational speed. 

For the purpose of providing a rigorous description of the language and clarification of its 

semantics, a computational model is developed using the formalism of extended coloured 

Petri nets. This model also gives an indication of the language's descriptive power relative 

to that of a recognised and well developed technique. Some recognised temporal and 

structural problems of system event modelling are identified. and ICE solutions given. 

The growing research area of ATM communication networks is introduced and a 

sophisticated top down model of an ATM switch presented. This model is simulated and 

interesting results are given. A generic ICE framework for performability modelling is 

developed and demonstrated. This is considered as a positive contribution to the general 

field of performability research. 
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Chapter 1 

Introduction 

1.1 Project objectives 

The aim of this project was to research a new approach to describing and simulating 

complex systems involving multiple interacting components. 

Complexity is a problem not only for computational analysis but for the system description 

itself. There is a need for a problem specification formalism which supports descriptions 

proportional to the size of the physical system rather than the overall system state space. 

This is an approach which addresses the problem of complexity as presented to the human 

modeller rather than the computing hardware. Whereas computing architecture continues 

to become increasingly more powerful, we can safely predict that human capability to 

intellectually grasp the operation of highly interconnected systems will remain relatively 

limited. 

To facilitate the simplified modelling of systems the first objective was to develop a new 

approach of describing each component in a system separately. This was to include means 

of specifying inter-component relationships so that all component interaction could be left 

to simulation. This formalism has been called the ICE (Interacting ComponEnts) language. 
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The foundation for ICE is an earlier reliability description language (RDL) [6] which has 

been used to successfully model a number of reliability problems. While it is recognised 

that a state space approach such as that adopted by ICE is not as universally applicable to 

performance measures as it is to reliability measures, an objective of the language was to 

be able to model the performance of complex systems in an efficient manner. Further to 

this, to provide a rigorous testing ground for ICE's descriptive power, it was decided to 

focus on performability measures in modelling and to develop a generic performability 

modelling framework using the language. Performability is a composite measure of 

performance and dependability and as such presents a more significant challenge to the 

modeller and the modelling technique than either pure performance or dependability 

modelling. Here we take dependability to be a collective term for both reliability and 

availability measures. 

When considering the field of performability it was important to recognise the existing 
formalisms and their relative merits. It was thus necessary to consider the popular 

approach of stochastic Petri nets in some detail and derive detailed comparisons between 

these and the ICE technique. There was also a recognised need for a rigorous 

mathematical definition of the languages semantics. Stochastic Petri nets were identified 

as a medium for achieving this. 

ICE describes systems in a generic manner in terms or their functionality and performance, 
dependability and performability measures. A further objective was to develop a bespoke 

software package that could perform discrete event simulations on ICE descriptions. 

A summary of what has been achieved and to what extent the objectives have been met is 

given in section 1.4. 

The project specification was roughly followed though due to the interesting nature of the 

work a number of additional avenues of investigation were considered as they presented 

themselves. Particularly the evolution of the simulator and the simulation algorithms 

posed some interesting questions about the language's semantics and they accordingly 

underwent an iterative process of modification. Related issues arose as the performability 

framework was investigated and attractive and fruitful areas of further work were identified. 

An outline of the general development of the project is given in section 1.3. 
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1.2 Historical background to project 

There has been research conducted into reliability modelling at the Robert Gordon 

University since the late seventies. Work within the School of Electronic and Electrical 

Engineering in this area started in the field of hardware reliability simulators [7]. These 

simulators were dedicated microprocessor implementations that facilitated the accelerated 

simulation of multi-component concurrent systems. It was possible to enter data as to the 

behaviour and reliability characteristics of individual components and their inter-dependant 

relationships. Simulations could then be conducted over the modelled systems life cycle 

and measures determined for the reliability of the complete system. 

Prior to simulating a system on such hardware it was necessary to describe the functionality 

of the model in an appropriate manner. There are a number of ways to describe reliability 
problems such as task graphs, fault trees, mathematical statements. There was however no 

standard technique. System designers and evaluators may describe the same system in 
different ways and this can have a corresponding impact on the types of analysis possible 
and the results obtainable. 

It was this situation that was the catalyst for the idea of a reliability description language 

(RDL). The language was to act both as an input for the hardware simulators and as a 

generic method for describing systems in terms of reliability. It was also to provide a 

method which would encourage greater coherence between the approaches of designers and 
evaluators. 

The initial outline of RDL was first presented in 1986 [8]. It was identified by the 

European Commission in Brussels as a possible standard for formalised reliability 

descriptions. This interest lead to refinements in the language and this revised version was 

presented to the EEC in 1987 [9]. 

Up to this point the language was purely a descriptive tool and no simulator existed. In 

1987 Scrase, a research assistant in the school, began work on further refining the 

language and writing a software simulator [10]. Once a simulator had been developed 

Scrase went on to apply the language to a number of standard reliability problems and 

investigated its use in the modelling of communications networks. The final version of 

RDL was documented in 1991 [6]. 
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In 1988 Walker, a teaching company associate, started work on the simulator. His remit 

was to revise it to be of such a standard so as to be of use as an industry tool. At about 

the same time, Smith, another research assistant, applied RDL to flexible manufacturing 

systems (FMS) [11]. He developed a super-set of the language with added constructs 

unique to FMS modelling. 

In 1993 it had been recognised that RDL was limited in that the ethos behind its 

development was focused on the reliability measures of a system. The first objective of 

this project was to develop a declarative language which would be a super-set of RDL 

facilitating generic modelling of universal systems. 

1.3 Project development 

This section describes the general progress of the project and the extent to which the initial 

specification in section 1.1 was followed. 

Initial work focused on the development of the ICE language, with the main focus being 

on increasing its descriptive space and reviewing all means to facilitate component 
interaction. A general philosophy was adopted at this stage to make the language as 

intuitive as possible. The observation was made that often an expert is required to model 

a system due to the complexity of the modelling technique. We wished to remove this 

complexity and the involved level of abstraction to produce a tool which could be used 

directly by design and evaluation engineers. 

As work progressed on the language development began on the simulator. It was decided 

to use the Tecsim simulator that had been written for RDL as a basis and build upon it. 

A suitable compiler writer was identified and the first stage of the software was 

implemented. Once the compiler had been completed, attention focused on the discrete 

event simulator and the simulation algorithms. From development of the algorithms it 

became apparent that although the language syntax was relatively simple, some of the 

semantics were necessarily complex and would be implementation dependant. The 

questions that arose during the implementation of the simulator lead to further reviews of 

the language, especially in relation to event priority and timing. It could be argued that 

these matters should have been finalised before work on the simulator began but it was the 
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experience of event scheduling within the simulator that directed our thinking towards these 

modifications. 

Any model that is simulated must then be analysed to extract meaningful results. To ease 

this process it was decided to automate an analysis process and incorporate it into the 

simulation software. To this end two post processors for the simulator were developed. 

One post processor was implemented to provide textual analysis of a complete simulation 

event list or a subset there of. The other was designed to provide statistical analysis on the 

event list. For ease of use it was decided to make the user interface to the post processor 

resemble a spreadsheet. 

In parallel to the development of the language and simulator, extensive literary research 

was conducted into the area of performability. The evolution of this field was investigated 

as was the variety of modelling techniques that have been presented. There was much 

evidence in the more recent literature of the suitability of reward type techniques to 

performability modelling. Further examination of these techniques highlighted some 

underlying principles that could be adopted within ICE and therefore suggested this to be 

a promising area of research and application for the language. This research also 

confirmed the suspected complexity of performability modelling showing it to be both a 

rigorous testing area and an area in which simplified approaches are required. 

As the simulator was nearing completion a tangential but fruitful area of investigation 

presented itself. Initially an industry standard random number generator had been chosen 
for the simulator. Further consideration revealed that this generator was designed to 

provide a constant stream of numbers for use by a single consumer and that it had only 
been proven to be statistically good over runs of close to a full period. Our use of the 

generator was to provide numbers for multiple consumers and the run of numbers allocated 

to a consumer may be of any duration. Statistical tests were run on numbers generated 

during actual simulations and this revealed that the technique of randomly allocating 

numbers to different components from a single source was not always satisfactory. 

Prompted by these results we adopted a new approach to number allocation. It was also 

noted that while the generators used were statistically good they were computationally 
intensive. For this reason it was decided to consider the custom generator that had been 

developed for the preceding hardware reliability simulators. A software implementation 

based on this generator was developed which proved to be over four times faster in 
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operation and thus it was chosen as the preferred generator for the ICE simulator. 

At this point, the uncovered complexity of the language's semantics and the requirement 

to compare ICE to existing performability formalisms lead to an extensive investigation of 

stochastic Petri nets. It was soon discovered that the descriptive power of basic stochastic 

Petri nets was too limited to properly describe all of the ICE constructs. Further research 

into recent high-level developments of Petri nets however uncovered additions that 

countered this problem and a rigorous description of ICE was derived. 

Following the initial objectives, the next stage of the project was to apply ICE to complex 

performance problems. The application area of communications systems was chosen. 

Research revealed that the area of significant current interest was ATM networks. Other 

research in the school at the time was pursuing the implications of transferring video data 

across ATM networks. It was felt that we could add valuable input to this work and thus 

focused on ATM systems. Extensive investigation into ATM networks by literary searches 

and conference attendance narrowed our focus further to ATM switches. Different types 

of switches and their constituent parts were considered and sophisticated performance 

models were developed and simulated with ICE, showing its applicability to performance 

problems. 

Once the performance models had been built and tested, attention was turned to the 

rigorous testing area of performability, and results from this were very promising. It was 

decided to research a generic performability modelling framework using ICE that could be 

applied to a variety of problems. This work has illuminated a number of fruitful areas of 

further work. 

1.4 What has been achieved ? 

In this section we summarise the main achievements of the project. 

A formal descriptive language, ICE, has been developed and revised. ICE has been proven 

to be generic, transparent and inherently lucid. Although it is simple to learn and apply 

it has surprising power whilst maintaining a relatively limited state space. 
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An object oriented software modelling tool, I SIM, has been built around the ICE language. 

I SIM facilitates the compilation, discrete event simulation and analysis of ICE models. 
The simulator is appropriately powerful and flexible. All applications described in this 

thesis had simulation run times of less than 5 minutes. Analysis is achieved both by 

observation of a selected event list and by statistical analysis of this event list. 

In relation to I SIM, investigation has been conducted into the generation and allocation 

of pseudo-random numbers. A novel software implementation of a linear feedback shift 

register pseudo-random number generator has been proposed. The generator has been 

demonstrated to operate at a rate of over four times faster than an industry standard linear 

congruential generator whilst possessing guaranteed statistical properties when applied to 

concurrent systems. 

A rigorous definition of ICE has been demonstrated by the manipulation of extended 

coloured generalised stochastic Petri nets. This has also given an indication of the 

comparable power of ICE to these nets which are a standard formalism applied to 

performability modelling. 

ICE has been used to produce performance measures of complex concurrent systems. 
Whilst it has been recognised that a state space approach is not always the most suitable 
for performance measures, ICE has proven that in some instances it can give considerable 
insight into a systems behaviour by virtue of its low level of abstraction and inherent 

transparency. 

A generic framework for the performability modelling of systems incorporating interacting 

components has been proposed. This framework uses the notion of stochastic reward 

models. It is of comparable power to a stochastic reward net approach but notably simpler 

to apply. 

1.5 Guide for the reader 

In this section we give a guide as to how to read the thesis. The document flows in a 
logical progression, though depending upon specific interest, the first time reader may wish 

to miss out some chapters. 
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Figure 1.1 is a schematic representation of the thesis. This is intended as a broad guide 

only and should not be perceived as being restrictive. Related themes are shown together 

and the links between the appendices and the chapters they relate to are detailed. 

Chapter 2 gives a detailed look at performability modelling, introducing the different 

approaches and implications. For readers already familiar with this field or for those who 

are interested in ICE for another application this chapter may be missed on a first reading. 

A full listing of the constructs and syntax of ICE is presented in appendix A and chapter 

3 discusses some of the significant aspects in greater detail. These sections should be read 

together as appropriate. 

Chapter 4 tells of the development if I SIM. This is rather a complex software tool and 

to aid in understanding a complete step by step example to its operation is listed in 

appendix B. Chapter 5 describes the work done in developing the random number 

generator. These chapters may be missed by those whose sole interest is in applying ICE. 

Chapter 6 describes the computational models for ICE using Petri nets. This is a valuable 

guide for a full understanding of the semantics. 

Chapter 7 presents a detailed ICE performance model of an ATM switch. A full listing of 

the model is given at appendix C and a published paper on this area is reprinted in 

appendix D. These chapters provide insight into the use of ICE for performance modelling 
but can be bypassed for those who wish to focus on performability modelling. 

Chapter 8 introduces the ICE framework for performability modelling. A reasonable 

understanding of the work presented in chapter 3 and the techniques of performability 

modelling described in chapter 2 will be required before reading this chapter. 

Chapter 9 brings our conclusions from the work together and discusses areas of possible 

further work. 
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1.5.1 ICE for the first time 

ICE has a relatively limited number of constructs and its structure is logical and should be 

quite straightforward to gain familiarity with the language. The apparently simple syntax 

does however hide some complex semantics which may at first be hard to grasp. 

The starting point for learning the language should be sections 3.1 and 3.2 which provide 

a broad overview of the language's approach. The reader is then referred to appendix A 

which gives a thorough presentation and explanation of the entire syntax. 

When this is understood, we would suggest the remainder of chapter 3 be read. This will 

give further insight into the operation and implications of some of the languages more 

sophisticated constructs. At this point a reasonable grasp of ICE should have been 

obtained. To enforce this, consideration of the performability example in section 8.3 is 

advised. 

For a thorough insight into the semantics and an example of ICE's use in modelling 

complex systems comprising inter-acting components, study of the ATM switch model in 

section 7.4 is recommended. This example takes the reader through the modelling process 
from conceptual system diagrams, via state transition diagrams for the constituent 

components to the ICE code for each component. A full listing of the model is given in 

appendix D. 
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Chapter 2 

Performability Modelling 

2.1 Introduction 

In this chapter we present some general background to the project, with reference to 

established methodologies and published literature. 

The term performability is that given to the composite measure of performance and 

dependability. We take dependability to be a global term encompassing reliability and 

availability. The reasons for considering such a composite measure will be discussed 

later in the chapter. 

Historically, dependability and performance modelling developed as separate fields until 

the increasing complexity of interacting systems dictated the need for combined 

measures. For this reason initially we shall consider the requirement for and meaning 

of performability, performance and dependability measures. A formal definition will be 

given of performability and from there some of the known approaches to performability 

modelling will be presented, along with a unified framework of measures. We shall 

then consider the evolution of research regarding this topic and mention some of the 
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tools that have been developed to define and analyse systems. Finally we examine some 

of the recognised problems that the performability modeller must be aware of. 

2.2 Performability 

The continuing growth of the sophistication of computer and communications systems 
has dictated the requirement for increased innovation in model construction/solution, tool 

development and the definition of analysis measures. This is especially so for 

networked systems comprised of a number of interacting components [12]. 

When evaluating a system the requirement is to relate what it is and does to what it is 

required to be and do. Two measures may be of interest for this evaluation, namely 

performance and dependability. Performance in this context, generally refers to how 

effectively or efficiently a system delivers a specified Quality of Service (QoS) provided 
it is delivered correctly. Dependability is taken as the reliance to be justifiably placed 

on the service it delivers. Dependability encompasses both reliability and availability. 
Reliability is the continuous delivery of proper service and availability the alternation 
between deliveries of proper and improper service. 

Both performance and dependability have evolved as individual fields. If separate 

evaluations of performance and dependability are done to determine a deliverable QoS 

then appropriate constraints must be stated on how properties affecting performance 

interact with those effecting dependability. Results of each type of evaluation may be 

taken together to provide a complete assessment of overall QoS [13]. Generally 

however they are not easy to combine particularly if performance in the presence of 

faults is degradable, i. e. faults may reduce performance and thus QoS even though the 

system is still in the proper state. Analysis of degradable systems from a pure 

performance stance is therefore often optimistic as it ignores fault repair and gracefully 

degrading operation. Conversely pure reliability analysis tends to be overly pessimistic 

as no account of performance is taken [14]. Rather, a degradable system's probity 

should be viewed as a multi-valued variable reflecting the degree to which the system 

is operational. The need to accommodate this property using model based evaluation 
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methods was the raison d'etre for performability. 

The general framework for model-based performability evaluation was first published 
in 1978 by Meyer [15]. He produced a more refined description in 1980 [16]. The 

framework was a development from his earlier notion on "computer based reliability" 
[17] and recognises the work done at that time by Borgerson and Freitas [18] who noted 

that degradable systems require special attention compared to non-degradable systems 

when developing measures and models to evaluate them. 

The initial application area was the evaluation of ultra-reliable aircraft control computers 
being developed by the U. S. Space Agency (NASA). One aim of these systems was the 

ability to shed workload beginning with the least critical tasks if a loss of processing 

power due to faults occurred. This enabled the systems to operate at various degrees 

of service over a specified period of use. 

In Meyer's earlier work [ 19] he viewed the unification of performance and dependability 

(or reliability as it was then referred to) as a measure of system effectiveness where its 

formulation depended on an intermediate association of 'worth' (defined as reward, 
benefit, utility) with each possible level of accomplishment. 

As the concepts developed the desired amount of generality evolved and led to the 

conclusion that the performability-dependability aspects of effectiveness should be 

separate from worths that may be associated with their outcomes. The resulting refined 

concept could still however be employed at higher level worth-oriented evaluations of 

systems effectiveness. The term 'performability was adopted in 1980 [16] and can be 

simply stated to be a measure of a systems ability to perform in a designated 

environment. 

In early work performability was taken to mean only distribution functions of 

accumulated reward. Since the calculation of distribution functions can be very complex 
it is often considered that the expected values of these distributions can be taken as 

performability measures. Using steady state values has also been debated. It is now 

common to consider any measure that takes both performance and dependability into 
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account as a performability measure and we shall take this same definition here. 

2.3 Formal probability-theoretic definition of performability models 

We use the term "model" to refer to a representation of a total system. Let S denote the 

total system in question, where S consists of an object system C (the communication or 

computing system being evaluated) and it's environment E (the workload and external 
faults etc. ) thus 

S=(C, E) 

should be regarded as a probabilistic description of the total system that is sufficiently 
detailed to support a particular type of evaluation. Given an accepted set of interacting 

components, the distinction between C and E is dependant upon the subset of 

components, C, which is being investigated and its ability to perform. This comprises 

of C. The remaining components, lying outside the system boundary but whose 
interaction with C may affect the performability, form E. 

The performance of S over a specified utilization period T is a random variable Y taking 

values in a set A; elements of A are the accomplishment levels (or performance 

outcomes) that might possible be obtained by S. T is the time period of use over which 

system performance is summarised (by the value of Y). T is an interval that may be 

discrete or continuous and either bounded or for systems that demonstrate meaningful 

steady state behaviour, unbounded. 

Note that the interpretation of "performance" here is more general than in the context 

of traditional computing. It connotes any designated aspect of the total systems 

behaviour relative to which the object systems ability to perform is being measured. 

This permits choices of Y to be almost limitless, ranging from a binary variable that 

distinguishes whether or not a specified service is performed correctly throughout T up 

to a high level representation of service quality with a continuum of service levels. 

Meyer [14] states the generic meaning of performance within this context to be "what 
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a system accomplishes during its use". A systems ability to so perform, expressed by 

probabilities, is its performability. 

Performability may be defined as follows. For a system S with performance Y taking 

values in accomplishment set A, the performability of S is the probability measure Perf 

(often denoted p) induced by Y where, for any measurable set B of accomplishment 

levels (B c A), 

Perf (B) = P[Y eB ]= the probability that S performs at a level in B. 

This measure applies to any set B for which the event Y=B has a probability although 

in practice these sets are typically intervals of accomplishment expressing performance 

requirements. Hence, for example, if A= (-oo, oo) and B= [a, oo) then Perf(B) is the 

probability that S performs at or above the level a. 

These probabilities are determined via an underlying stochastic process X referred to as 

the base model of S. X is a time indexed set of random variables 

X={XJtEI }, 

where the time set I must include the utilization period T associated with the 

performance variable Y. Hence X may be continuous-time or discrete-time, depending 

on the nature of the system. For any t EI, the value of the random variable Xr is the 

state of the system S at time t given a state space Q. The state space Q may be 

considered as the product space Qc x QE where Qc and QE are the state spaces of the 

object system and environment respectively. This process, when restricted to the period 

T associated with Y conveys the dynamics of an object system's structure, internal state 

and environment during that period. 

The base model must also, by definition, support a solution of performability in that, for 

any accomplishment set B of interest, Perf(B) is indeed determinable, at least 

theoretically, from the probabilistic nature of X restricted to T. This requirement is 

ensured via a capabilityfunction which maps trajectories ofXinto corresponding values 
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of Y. A base model X together with a performance variable Y is a performability model 

of S. 

When a performability model is solved analytically, the base model must be 

characterised explicitly in some suitable form, e. g. a state-transition-rate matrix in the 

case of a continuous time, time homogenous, finite state Markov process. If 

performability is estimated via simulation techniques then X refers to the behaviour of 

some simulation model S. Model-based performability evaluation thus involves two 

steps. Firstly performability model construction which consists of specifying the 

performance variable Y, relative to which Perf is defined and determination of a base 

model X that supports its solution. 

2.4 Modelling techniques 

We distinguish three methods for system performance, dependability and performability 

evaluation : measurement based, model based and hybrid methods [20]. 

Measurement based evaluation (also called empirical evaluation) requires access to a 

measurable system. This is often not possible, especially in development applications. 

Also obtaining measurements is often a complicated and expensive process and may be 

impractical for dependability events which often require extremely long measurement 

sessions. 

Model based evaluation is an alternative. Models can be as simple or complex as the 

situation dictates. Once a model has been constructed it must be solved. This can be 

done using simulation or analytical techniques. Analytical techniques can be full 

symbolic, semi-symbolic or numerical. A distinction that can be made is whether the 

model solution requires the entire state space to be generated or not. The most common 

example of the former is the solution of a large but finite Markov model [21]. An 

example of the latter is the use of fault-trees for reliability analysis [22]. 

Many useful practical evaluations use a suitable combination of different modelling 

23 



approaches with measurements, e. g. fault injection simulation with the faults being 

measured values from an operational system. An example of this is given in Hsueh et 

al [23]. They use real error and resource usage data from a multiprocessor system in 

a semi-Markov process model with reward functions based on the service and error rates 

of each state. The model is solved to estimate system performability and depict the cost 

of different types of errors. 

The state behaviour of a model is identified with X. The performability model solution 
is the procedure that yields values Perf(B) for accomplishment levels in set B. B is 

chosen to contain levels that are of interest to the modeller. In general, knowledge of 
the probability distribution function (PDF) of Y suffices to determine such values and 
hence the performability model can be regarded as fully solved once the PDF of Y has 

been determined. Typically solutions of the PDF must be determined via numerical or 
simulation techniques though closed-form solutions are sometimes possible. In some 

applications it may be the case where only certain of the application sets have useful 
interpretations and hence a full solution will be unnecessary. 

Numerous techniques exist for modelling systems. The factors which determine the 

technique chosen are the balance between ease of modelling and accuracy, the measures 

of system behaviour that are to be obtained and the properties of the system which are 

to be modelled. Below we discuss 4 main approaches. In section 2.4.1 non-state space 

models where explicit knowledge and numeration of the state space of the model is not 

required for evaluation are considered. In section 2.4.2 we discuss Markov chain type 

models and in section 2.4.3 Stochastic Petri Net (SPN) based models. In section 2.4.4 

we introduce hierarchial and approximate modelling approaches. 

2.4.1 Non-state space 

Non-state space methods are attractive in that state space tends to increase exponentially 

with problem size. Four of the better know non-state space methods are fault trees 

(FTs), task graphs (TGs), product form queuing networks (PFQNs) and matrix geometric 

methods (MGMs). 
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Fault tree methods and reliability block diagrams give very accurate representations of 

systems and efficient solution algorithms exist. These techniques are mostly used for 

dependability and safety analysis. With FTs a tree structure with logic gates is used to 

express how systems fail. The leaves of a tree express component failures. System 

failure is expresses as a logical function of the failure of components and subsystems 

and this provides a combinatorial means of solving measures of interest. Subsystems 

and components must have stochastically independent failure behaviour and hence the 

limitation of these techniques is the complex compensation techniques required to 

model interaction between the constituent components of a system [24]. 

TGs [25] are a technique often applied for performance modelling of concurrent 

systems. These however make the assumption that resources within a system are infinite 

and for many applications this is not acceptable. 

A method which does allow for finite resource contention is PFQNs [26]. In a PFQN 

the number of resources (queues and servers) as well as the way in which customers use 

these resources are specified. The active elements are the queues which may serve the 

customers in any of the recognised scheduling disciplines. Routing chains govern how 

customers move through a network and these customers may be grouped into classes. 

At each queue customers belonging to specific classes request a general differential 

service time distribution. After service the customers proceeds to the next queue along 

its routing chain. A vector giving the number of customers of each class at each queue 

specifies the state of the PFQN. The arrival of a new job or the completed service of 

a customer at a queue causes a change of state. Techniques that exploit the model 

structure and are much less memory intensive than solving the model at state space level 

can be employed to analyse the model. PFQNs are often applied in situations where 

there are finite resources but may not be extended in cases where concurrency or 

synchronisation is required as in these instances the product form is violated. 

MGMs exploit the repetitive underlying Markov chain of a queuing model. The 

generating matrix for many queuing models often has a number of so called boundary 

columns and from some point all other columns are the same save that they shift 

downwards. Due to this special structure solutions can be obtained by solving a number 
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of linear equations [20]. By contrast the original Markov model would have involved 

the solution of an infinite system of linear equations. MGMs cannot be extended to 

cases where concurrency and synchronisation is required. 

2.4.2 Markov reward models 

A more powerful technique, free from any such limitations are Markov Models [27]. 

They are extensively used with equal effectiveness in modelling concurrency, 

synchronisation, resource contention, system dependencies, fault tolerance, system re- 

configuration etc. A Markov chain has a discrete state space and is a stochastic process 

whose past has no influence on its future if the present state is specified. We use the 

term stochastic process to indicate a continuous time parameter as opposed to sequence 

which would indicate a discrete time parameter. Formally X(t) is a Markov chain if 

Pr { X(t) =jI X(tn-, ) = In-1 ) 

A Markov chain is memoryless. This implies that the amount of time spent in its 

current state, known as the sojourn time, is irrelevant to its probability of being in any 

other state. A semi-Markov chain is similar in most respects to a Markov chain except 

that its sojourn time does have an effect on the state transition probabilities and thus it 

does not posses the memoryless property. 

An extension to this is the Markov Reward Model (MRM) which can be used to model 

degradable performance. In a MRM, a real variable termed the reward rate is associated 

with each state of the underlying state-space. The reward rate is an indication of the 

useful work of interest done by the system while it exists in any given state. It is also 

possible to associate reward impulses with state transitions. Hence it facilitates the 

calculation of performability measures such as total work done within a finite time 

interval, this being equivalent to the accumulated reward within that interval. 

Formally, an MRM consists of an underlying continuous time Markov chain (CTMC), 

X={ X(t), t> 0} with a finite state space S, and a reward function r where r: S -* 
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R. Xis completely described by its generator matrix Q and the initial probability vector 

7r(0). For each state i ES, r(i), usually written as r, , represents the reward obtained per 

unit time spent by X in that state, hence we can state a performance variable Y(t) as the 

total reward accumulated over time t as 

I 
Y(t) =fr (Xs ) ds 

0 

A solution of performability F is the PDF of Y(t) ie for any accomplishment level y the 

probability 

Fnr) (Y) = P[Y(t) 
- y] 

This type of rate based model is given in [28] for a special class of degradable 

microprocessor model. Here the base model is a Markov process and a closed form 

solution of performability is presented. 

CTMCs have equivalent modelling power. There are well known methods and software 

tools available for solving CTMCs but the solution methods are far more cumbersome. 

The primary disadvantage of the MRM technique is the large size of their state-space 

even for simple small systems. This frequently causes verbose specifications and 

ineffective solutions. Possible means of avoiding largeness will be discussed later. 

A comprehensive treatise on Markov reward models for performability analysis is given 

in [29]. Krieger [28], describes a range of numerical solution methods which may be 

applied to these models. 
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2.4.2.1 Unified performability, performance and dependability 

framework 

In this section we present a unified framework for developing performability, 

performance and dependability models in terms of MRMs. Although MRMs are the 

underlying medium, the measures derived may be applied to other techniques e. g. 

stochastic reward nets and discrete event simulations. 

Definitions 

If the analysis types applicable to stochastic processes are defined, it is then possible to 

derive performability measures that can be used to determine the behavioural properties 

of a system [3]. Where the performability measures incorporate reward rates, these 

reward rates can be reduced to give binary rewards between states and thus give 
dependability measures. 

There are 4 categories of analysis applicable to stochastic processes 

1. Transient Analysis 

2. Steady State Analysis 

3. Cumulative Transient Analysis 

4. Sensitivity Analysis 

Let (e(t), tý 0) be a continuous-time, finite state, homogenous Markov chain (CTMC) 

with state space denoted by S and a constant reward r; assigned to each state i. With 

the reward rate specifications the CTMC can be specified as an MRM. If the MRM 

spends i, time units in state i then the accumulated reward is r; T,.. It is also possible to 

associate rewards with the transitions of the CTMC. The reader is referred to [25] for 

a basic coverage of MRMs. 

Let P(t) be the state probability vector of the model , where Pi(t) is the instantaneous 

probability that the MRM is in state i at time t. Let P(O) be the initial probability vector 

and Q be the generator matrix. Transient analysis of the models behaviour is dependant 
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upon the existence of P(O) and is given by the Kolmogorov differential equation: 

dP t= P(t)Q 
(1) 

dt 

Steady state analysis is conducted by determining it, the steady state probability vector: 

it = lim P(t) 

given the limit exists. Note that this is independent of P(O) and is obtained by setting 

the l. h. s. of equation (1) to zero : 

'rrQ=o, Evi=1 (2) 
! ES 

Here 7r, is the steady state probability of the MRM being in state i. 

Cumulative transient analysis involves computing the total time spent in state i during 

the time interval [0, t). Let L; (t) denote this value. In vector terms, integrating equation 

(1): 

r 
z(t) = 

fP(x)dx 

0 

This value can be determined by solving: 

dL t= L(t)Q + P(0) (3) 
dt 

When the MRM has absorbing states, the state space S can be partitioned into the two 

subsets : SA (absorbing states) and S. (transient states). The sub-matrix QT of Q can be 

defined, corresponding to the non-absorbent states. The mean time spent by the MRM 

in state i is given by 
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00 
Ti =f Pi ()dx 

0 

which can be computed by integrating equation (1) from 0 to 00 : 

TQT + P7(O) =0 (4) 

For such a Markov chain the mean time to absorption can be calculated by : 

MTTA =E -r; 
(5) 

I ¬ST 

If it is assumed that all the entries in Q are functions of some parameter vector 0, 

sensitivity analysis involves computing the variation in the state probability vector with 

respect to the model parameters i. e. 

dP t (6) 
d9 

Using the above formulae it is possible to define performability, dependability and 

performance measures for the MRM. 

Performability measures 

Let the instantaneous reward rate of a MRM be T(t) = r®(,, ). The reward accumulated 

in the time interval [0, t) is given by: 

Ir 
«t) =f r(x)dx =f re(., ) 

(7) 

00 

Figure 2.1 shows an MRM with possible rewards and corresponding values ofX(t) (state 
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of Markov chain at time t), 2^(t) (the reward rate at time t) and q (t) (the accumulated 

reward at time t). 

21 A 
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2 

li µ 

X(t) 
4 
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2 
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t 

T(t) 4 4(t) 
44 
33 
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--b rý -> 

1 

0 ý t 

Figure 2.1 Example 3 state MRM with graphs of X(t), T (t) and rp (t). 

The instantaneous availability of the system is given by the expected, instantaneous 

reward rate at time t, computed by: 

E ýýt)] = Er, Pi(x) (8) 
IES 

In [7], Beaudry calls this value computation availability. The expected availability when 

the system has reached steady state is given by lim,. E [1(t)]: 

E (Y'ýý _ F, r17ri 
i¬S 

(9) 

The expected accumulated reward in the interval [0, t) denotes the total time the system 

is available in this interval and is given by: 

E ýý(t)] = 1: r, L1(t) (10) 
! ES 

If the MRM has absorbing states it is often desirable to determine the mean time to 

failure (MTTF). With the binary reward assignment the MTTF is the expected 

accumulated reward until absorption, given by: 
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E [4 (oo)] = EriTi (11) 
! ES 

where ti; = timt. L; (t ). A measure that is commonly required is the distribution of 

accumulated reward, Y(t). This can be computed as 

P [T(t) `-x] =E Pi (t) (12) 
rt Sx, i eS 

For example, the distribution of time to complete a task that requires r time units can 
be computed by: 

P[ (r): ý t]=1-P[4(t)<r] X13) 

where x(r) is a random variable denoting the time to accumulate reward r. 

Dependability measures 

In dependability modelling a reward rate of 1 is assigned to all the working (or up) 

states and a rate of 0 to all the fault (or down) states. The instantaneous availability of 

a system is then E[ 2 t)] and the steady state availability is E[ Tom]. The cumulative 

operational time of the system in the interval [0, t) is E[¢(t)]. Interval availability is the 

proportion that a system is available in a given interval t and is given by E[(A(t)]/t. 

Measures relating to the first system failure are also of interest. To determine these, all 

states must be absorbing, ie all outgoing arcs are removed. Reliability is then given by 

E[ 2"(t)]. A systems lifetime, analogous to the cumulative operational time [30], of the 

system interval [0, t) is E[O(t)] and mean time to system failure MTTF is E[«(too)]. Note 

that steady state measures can only be computed when none of the systems states are 

absorbing. Conversely, reliability measures such as MTTF can only be determined if 

all the systems fault states are absorbing states. 
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Performance measures 

Performance measures are determined by identifying some suitable reward assignment. 
For example the queue length at a particular part of the system. Then E[T J and E[ 21t)] 

will give the average steady state and average transient queue lengths, respectively. 

In a performability model, the reward assignment will typically be determined from a 

performance model, which is computed for varying states of a dependability model. The 

performance probability measures can then be computed incorporating the effect of 
dependability. 

The reader is referred to [31] for a comprehensive discussion on the hierarchy of 

techniques applicable to dependability modelling. 

2.4.3 Stochastic Petri nets 

Stochastic Petri Nets (SPN) have been developed by Marsan et al [32] and Meyer et al 
[33] and are an extension to Petri Nets (PN) [34] and differ in that their transitions have 

exponentially distributed firing times as opposed to being untimed and immediate. They 

provide a concise graphical means of high-level representation for modelling a system's 
behaviour and have been traditionally used in the modelling of concurrent systems [1]. 

With a SPN a set of places, P (depicted as circles), a set of transitions, T (depicted as 

bars) and a set of arcs, A (depicted as arrows) between circles and arcs and vice-versa 

:Ac (P x 7) v (T x P). Each place can contain zero or more tokens (depicted as dots 

within places). The distribution of dots is termed the marking and is analogous to the 

state of an MRM. Arcs from places to transitions are termed input arcs and arcs from 

transitions to places output arcs. A transition may fire when it is enabled, that is when 

there is a token in each of its input places. Upon a transition firing, one token is 

removed from each of its input places and one token is put in each of its output places. 

This will result in a new marking, ie state. The firing of transitions takes an 

exponentially distributed firing time. 
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The time variant behaviour of an SPN is given by its reachability graph and this has 

been shown to be isomorphic to a CTMC [35]. Their evaluation is therefore conducted 

by generating and solving the underlying CTMC. Software tools exist which facilitate 

this, using as input an SPN specification [36]. 

An extension to the SPN which is applicable to dependability and performability 

modelling is the Stochastic Reward Net (SRN). Analogous to the MRM, in an SRN 

reward rates may be associated with the place markings and impulse rewards with the 

firing of transitions. The SRN is therefore a high level specification of the MRM. 

It should be noted that even though SPNs provide an exact and efficient specification 

technique, their modelling power is the same as that of Markov models. 

In dependability modelling a reward rate of I is assigned to all the working (or up) 

states and a rate of 0 to all the fault (or down) states. When describing the system by 

the use of SRNs the corresponding values are assigned to place markings which denote 

the working and failure states. 

Catania et at [37] propose a generic framework using GSPNs that can be applied to all 

gracefully degrading systems to obtain performability measures. The procedure is based 

in the definition of three fundamental models that all system components can be 

represented by. The approach is certainly flexible and easy to apply but it's generic 

nature dictates that for many applications there may not be scope for the required 

amount of detail. 

2.4.3.1 High-level Petri nets 

There have been a number of extensions made to the basic SPN model described above 

resulting in a variety of types of high-level Petri nets. Below we introduce some of the 

more significant advances. 

Coloured Petri nets [4] (CPN) where each token has an attached data value known as 
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the token colour. This provides the ability to produce a significantly more compact 

representation. The use of coloured tokens is flexible. Using a single colour is 

equivalent to an SPN. A number of colours proportionately reduces the size of the net 

and more information is given in a textual manner on the net. These textual descriptions 

are termed net inscriptions. A descriptive language coloured Petri net - modelling 

language (CPN-ML) can be used for the net inscriptions. 

Generalised coloured stochastic Petri nets [2] (GCSPN) are more flexible than SPNs as 

they allow for immediate deterministic transition timings as well as stochastic timings. 

Interval timed coloured Petri nets [38,39] (ITCPN) provide timing intervals for 

transitions. These are stochastic timings with a specified minimum and maximum firing 

time. Object oriented Petri nets [5] are an extension to GCSPNs where tokens are 

grouped into types (equivalent to sets of colours) relevant to the application. This 

enables data abstraction and inheritance. 

Channels for synchronous communication have been suggested to connect transitions. 
These allow transitions to communicate via complex values and have been applied to 

modelling synchronous communication systems [40]. 

Three extensions that have a significant impact on the descriptive power of Petri nets 

are place capacities, test arcs and inhibitor arcs [41]. Place capacities restrict the colour 

and number of tokens that can exist in places to a specified value. Several test arcs are 

allowed to access the same token in a place but not in the same step as ordinary arcs. 

Test arcs cannot change the marking of a place and aid the modelling of concurrency. 

Inhibitor arcs can be considered to be the opposite of ordinary arcs. They are always 

input arcs to a transition and prevent the transition from firing if a corresponding token 

exists in the input place. 

The Devnet [42] introduced by Evans is an adaptation of SPNs which is used as a 

graphical description of discrete event simulations. 

A recognised limitation of Petri nets is their very small number of primitives which 

means models can quickly become complex. An extension which has been developed 
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by Sanders and Meyer [33,43] is the stochastic activity net (SAN). SANs are similar 

to SPNs having places, activities (analogous to transitions) and gates. The gates form 

the fundamental difference between SANs and SPNs. They can be of two types, input 

gates which have inputs from several places and an output to one activity and output 

gates which have an input from one activity and outputs to several places. Gate 

functions prescribe how gates are enabled and the passing of tokens. The gates give 

SANs a greater flexibility and allow for increased conciseness over SPNs. In [44] a 

SAN performability model of a multiprocessor system is presented. The performance 

and reliability parts of the model are divided into sub-nets facilitating a hierarchial 

approach. This avoids the stiff problem caused by the large order of difference in 

timings between the two aspects. Sanders and Meyer developed METASAN [45] which 

allows for model specification using SANs. Solution is facilitated by either simulation 

or analytical techniques [56]. An input descriptive language similar to CPN-ML 

describes the SAN by specifying all places, activities, gates, the links between them and 

the gate functions. 

2.4.3.2 Modelling and analysis with stochastic reward nets 

Modelling and analysis is facilitated using SRNs by a3 stage process. 

i) The system is described with a SPN. The rates of timed transitions must be 

specified along with probabilities for immediate transitions. Priorities and 

weights are used to solve conflict between simultaneously enabled transitions. 

Some of the many extensions to Petri Nets e. g. inhibitor arcs, transition guards, 

marking dependant arc cardinalities etc may be required to produce a concise 

description. 

ii) Generation of the underlying MRM. This requires the construction of the 

reachability graph. One of two techniques may be applied. Either it may be 

transformed into the equivalent MRM by elimination of all the vanishing 

markings [36] or the vanishing markings may be preserved and the stochastic 

process can be converted into a Discrete Time Markov Chain (DTMC). 
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iii) The MRM is solved for the system characteristics which are of interest. 

Performability can be evaluated by replacing the binary reward values in the MRM with 
different reward rates appropriate to the individual states of the system. To illustrate 

this, consider a multiprocessor system which has N processors. Each processor is 

susceptible to failure. These failures occur with a rate X. A single resource facilitates 

repair with a rate µ. The CTMC of this system is shown in figure 2.1. This is a finite 

birth-death process and can be simply specified by the two place SPN of figure 2.2. 

NA (N-1)A (N-k+1)A 2A A 

I ego 

µ li Il li 

; 

'I'll 
N N-1 N-K+1 N-K 10 

Figure 2.1 CTMC of multiprocessor system 

Figure 2.2 SPN of multiprocessor system 

If each processor possesses a processing rate of a the reward rate assigned to each state 

is different and is equal to ka, given that 0kN. The SPN can be specified as a 

SRN with rewards associated to each place. The place marking would be o#(p�p), given 

that #(pup) is the number of tokens in the place pup, each token representing a processor. 
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2.4.4 Hybrid and hierarchical Models 

When two or more techniques are applied to the construction and solution of a single 

model the approach is termed hybrid. Often this takes the form of hierarchial 

modelling. Submodels may be specified and analysed using one methodology and the 

results incorporated into a higher level model. It should be noted however that not all 

hierarchial models are hybrid, for example the decomposition result in PFQN is a form 

of non-hybrid hierarchial modelling. 

Malhotra and Trivedi [31] suggest a formal generic methodology for expressing 

hierarchy both within model specification and solution. The approach is flexible being 

suitable for both hybrid and non-hybrid specifications. A unified view is taken of all 

modelling techniques so that the hierarchial structure of the model is brought to the fore. 

An introduction to the theory of hierarchical SPNs is given in [46] and Buchholz 

describes a developed approach for CGSPNs in [2]. Although this approach is based 

in CGSPNs it is portable to other high-level Petri net types. 

Balbo et al [47] combine queuing networks and GSPNs for the pure performance 

analysis of models with non-product form characteristics. The non-product form parts 

of the system are solved using GSPNs, the results of which are used in load dependant 

queues which are PFQNs. Szczerbicka [48] develops this approach using a 

decomposition approach where the system is split into both GSPN submodels and a 

special class of queuing models, termed BCMPs. The submodels are solved in isolation 

and replaced as marking dependant GSPN submodels in a high level GSPN model which 

can be solved to give performability measures. 

The software tool, SHARPE [22] (described in section 2.5) allows many model types 

to be analysed using a variety of techniques. Results from submodel analysis can be 

incorporated into other models. This can also be done in a cyclic way with fixed point 

iteration techniques being applied to solve the whole model. A number of base model 

types are provided and the number of models of each type at any level and the 

information passed between models is left to the users discretion. Benitez and Trivedi 

[49] propose a method of multiprocessor performability analysis where queuing networks 
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are used to define performance measures and solved to derive reward rates that are used 

within an overall Markov failure-repair model. Several combinations are solved using 

SHARPE and compared. 

Haverkort proposes a dynamic queuing network concept [50] where queuing networks 

are used to describe the performance aspects and GSPNs the dependability aspects of 

fault tolerant computer systems. A combined model is not explicitly constructed rather 

an approximate behavioural decomposition solution is presented, as is common in 

performability modelling. In [51 ] Haverkort develops a model where the performance 

aspects are also modelled with GSPNs and two heuristic state space truncation 

techniques, that allow good approximations of steady state performability values, are 

introduced. 

2.4.5 How should realistic systems be modelled ? 

Many of the characteristics of real systems cannot be modelled using current analytic 

techniques. Many systems cannot be separated into smaller independent subsystems and 

their detailed state representation may be excessively large. Also, the events in real 

systems may not be "memoryless" and event times can differ by several orders of 

magnitude. These factors imply that simple analytical models such as product form 

queuing networks may not be powerful enough, and detailed analytic models such as 

Markov chains, may be unmanageably large and stiff. This has lead to a dependence 

upon discrete event simulation in many instances. Discrete event simulation is often 

improperly used and complex models are applied to situations when simpler techniques 

would suffice. In the authors opinion correct implementations of discrete event 

simulation is often the most applicable method when accurate predictions of the 

performance, dependability and performability of systems comprising interacting 

components is required. 
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2.5 The evolution of performability 

Initial work in the mid 1970s investigated a variety of alternative formulations for 

combined performance-dependability measures. This was motivated by different systems 

and application considerations. A major contribution was Beaudrey's treatment of 
"performance-related reliability" [52]. She associated a fixed computation rate with each 

structure state and thus constant fault arrival rates (in a Markov reliability model) are 

translated into "faults per unit of computation". As an example this method would 

translate a reliability measure such as "mean time to failure" to the performance related 

measure "mean computation to failure". Advantageously, techniques for evaluating the 

reliability measure also apply to the performance related measure since the translated 

model is also Markovian. 

Meyer was one of the main contributors to the field and first proposed the term 

performability in 1978 [15]. His initial contributions are described in section 2.2. 

Most of the work however came from interests in fault-tolerant computing. A number 

of contributions were made ranging from general evaluation methods to specific 

applications [53,28]. 

The initial performability work focused on evaluation with respect to discrete valued 

performance. This was the focus of Meyer's paper [16]. In this case, for any level of 

accomplishment a r= A, the ability to perform exactly at that level is measurable. To 

account for variations in user demands during a bounded period T, the construction of 

the base model X could employ the notion of a phased model [28] where T is split into 

a finite number of consecutive time periods. For each period the systems intra-period 

behaviour is represented by a continuous time, finite state Markov process. The driving 

application for this work was the performability evaluation of fault-tolerant 

multiprocessors for aircraft control [54]. 

In the early to mid 1980s there was a concentration on the development of model based 

performability evaluation [55,53]. The methods developed then are the basis of current 

techniques. One of the most influential advances was the introduction in the early 1980s 

40 



[28] of solution methods based on reward models as discussed in section 2.4.2. 

It was also in the early 1980s that the development of stochastic Petri nets became an 

area of considerable interest to modellers. Their use in performance and dependability 

evaluation began. Motivated by the consideration of further features, such as extended 

timing and coloured tokens, they became suitable for performability modelling. 

Stochastic net models, particularly SANs and SRNs (section 2.4.3.2), are now the 

normal means used for automated performability evaluation. Prodromides and Sanders 

[57] show the ease of specification using such a graphical technique by evaluate two 

types of CSMA protocols, defining performance and dependability measures using SANs 

and producing results through simulation with METASAN. 

To this point the only application area had been computer systems. As interest grew 

performability measures were applied to other fields such as satellite systems [58] and 

communications systems [59] which are now a major area. 

Since the mid 1980s there has been increased interest in performability model 

construction and solution techniques, model based evaluation and the applying of these 

techniques to the areas of computer and communication systems. 

Many of the solution methods focus on performability models incorporating some type 

of Markov reward model with accumulated reward, Y(t), as the performance variable. 
Closed form solutions of performability, F1(1), have been developed for acyclic, non- 

recoverable Markov reward models [60]. Using transform techniques e. g. Laplace 

transform, to derive solutions is a popular technique. If only the expected value E[Y(t)] 

is required, solutions tend to be less complex as the expectation is normally of a linear 

value. 

When systems incorporating some form of repair are considered the underlying process 

model is no longer acyclic. In these models, solutions of the PDF of Fn, ) are more 

complex [61]. Solutions appropriate to rate based Markov reward models have been 

based on Laplace transforms [53] that involve the transformation of both the time 

variable t and the accomplishment level y. Laguerre transforms have also been used 
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[62]. There have also been solution techniques developed for steady state performability 

measures. These are typically based on queuing network models of systems [63] for 

which repairs can be continually repeated giving meaningful steady state behaviour. 

Application areas 

Performability evaluation has proven useful when applied to a variety of aspects of 

communication systems. Van Dijk presents performability bounds for communications 

networks using a message throughput as a performability measures [64]. Jones and 

Malec [65] look at overall system performability and imply that it is the control software 

that has a major impact though no actual results are given. Yang and Kubat [66] 

propose a fast algorithm where the performability of a network is taken as the average 

performance over the most probable network states. This algorithm is fast and efficient 

but the approximation is made that states with a low probability of entry are never 

entered. Koren and Koren [67] have applied performability measures to gracefully 

degrading multiprocessor networks identifying a number of performance measures. 

These networks are very similar to the Banyan class of network which is a popular 

interconnection network used in ATM switches, discussed in chapter 7. Bhattacharya 

et al [68] model such a Banyan network with the performability measure relating to the 

likelihood of correct routing. They make the popular assumption that all input traffic 

has a uniform distribution of output addresses. This would not always be a valid 

assumption to make in the case of ATM networks as traffic is often bursty. 

2.6 Tools 

An onus is often put on system designers to develop the best possible product in the 

shortest possible time with minimum use of resources. For these reasons, tools that are 

quick to learn, easy to use and allow models to be constructed quickly will be highly 

sought after. Tools that are to be of practical use should have simple, self explanatory 

graphical user interfaces. Also the capability to define and reuse submodels that can be 

combined to produce large models and provide the ability of multiple instances is 

essential. 
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A variety of performability modelling and evaluation tools have been developed. A 

brief description is given of a number of them below. Most of the tools use either a 
Petri net or Markov process formalism for constructing base models. A comprehensive 

guide to Petri net tools is given in [69]. 

LOOPN [70] is a language and simulator for specifying systems in terms of coloured 

timed Petri nets. It utilises an object oriented approach and includes many of the 

features of extended Petri nets. The use of objects facilitates the use of existing Petri 

net models. CPN simulator [4] is another tool which uses CPNs to construct a base 

model. It enables graphical input in the form of CPNs with net inscriptions. The split 
between detail contained in the net and in the inscriptions is determined by the user. 
It does not support object oriented features. 

DyQNtool [71 ] uses extended GSPNs to construct a base model. Reward rates are 

enabled through the use of PFQNs. This tool is one of the most advanced with respect 

to automating reward model construction using a separate window permitting designation 

of the source and type of performance values obtained via the queuing model analysis. 

DSPNexpress [72] was initially developed as a performance and dependability analysis 

tool using DSPNs to generate base models. It has been well proven in producing steady 

state solutions for some quite complex systems. However it suffers from the restriction 

that no more that one deterministic transition in any marking may be enabled. This 

precludes its use in modelling many systems. The use of complimentary variables for 

analysis has been proposed to circumvent this, though it adds to the complexity. 

METASAN [28] employs SANs to construct base models and has separate facilities for 

describing (i) the total system model and (ii) the performance variables used along with 

the performability solution required. (i) is facilitated by the use of an input language 

called Sanscript. (ii) includes both transient and steady state variables solved by either 

analysis (for Markov base models) or simulation otherwise. 

HARP [73] uses a behavioural decomposition approach to model the reliability and 

performability of fault tolerant systems. Analysis is done via fault trees. It has been 
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used for quite large systems (> 24500 states). SHARPE [22] facilitates a number of 

approaches (e. g. reliability block diagrams, PFQNs, MRMs) and allows true hierarchial 

and combinatorial modelling. Using decomposition and aggregation (section 2.7.2) it 

can model large systems with Markov and semi-Markov submodels. 

METFAC [74] utilises Markov base models which are generated by a production rule 

system. It has been used to model the performance, dependability and performability 

of computer systems giving steady state and transient as well as cumulative measures. 

Many other simulation tools and languages exists, however we have limited our 

consideration to those that have been directly applied to performability modelling. 

2.7 Problems encountered in modelling systems 

In this section we consider some of the recurring problems in performance, 
dependability and performability modelling. They are largeness and stiffness of the 

model and the need for transition rates between model states to be non-exponential. 
Some methods which can overcome these problems to an extent are described. 

2.7.1 Largeness 

A model can be constructed that incorporates the performance level of a system (e. g. 

throughput, service times, cell loss) and the structural variations (due to failure, repair, 

reconfiguration etc) but due to the large number of states required the model may reach 

a prohibitive size very quickly. This is the largeness problem and is a main obstruction 

to the monolithic approach to modelling degrading systems. This poses problems in 

both model specification and analysis. Largeness must be either tolerated or avoided. 

It is important to distinguish between descriptive and computational largeness. Often 

largeness is taken as a composite term covering both but in truth they are quite different. 

Whereas computing architecture continues to become increasingly more powerful, we 
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can safely predict that human capability to intellectually grasp the operation of highly 

interconnected systems will remain relatively limited. We are therefore primarily 

concerned with the descriptive largeness as presented to the modeller. 

Using an GSPN framework to describe a model, whereby all that is specified is the 

GSPN and the underlying CTMC/MRM is automatically generated is a method of 

complexity hiding. The modeller need only be concerned with a degree of the entire 

complexity. When the state space is too large to be either efficiently stored or solved 

largeness must be avoided. This may be achieved by using approximation techniques 

such as truncation, lumping, decomposition and fluid models. 

With truncation a number of similar states or those with a low probability of entry are 

combined [49]. Formally, given a reachability graph (S, A), (where S represents the set 

of states and A the set of connecting arcs), the state truncation results in a truncated 

reachability graph (S, A). If (S, A) (S, A), the method is called strict truncation. 

Alternatively (S, A) might be a sub-graph of (S, A) augmented with one or more states 

and arcs, known as the aggregation-truncation. Constantinescu [75] uses this approach 

to model a fault-tolerant microcomputer with separate Markov models being used for 

fault handling and fault occurrence events. 

In lumping the system is decomposed into a number of constituent subsystems with 

smaller state spaces. These are analysed separately and then recomposed to form the 

lumped model [36]. Lumping results in a state space reduction which is significant 

when the number of subsystems is large and their constituent number of states is small. 

If the subsystems have interactions then the application of lumping requires considerable 

care. 

With decomposition, when there is a large difference between the rates of performance 

related events with respect to dependability related events which are rare, it is acceptable 

to assume that the system maintains a pseudo steady state with respect to performance 

related events in between occurrences of failure related events. The performance 

measures of the system for each of these pseudo steady states can then be calculated and 

the overall system characterised by weighting each of them by the structure state 
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probabilities. 

In general, rather than solving a monolithic model, two submodels are solved 
independently, one to represent performance (the reward model) and one to capture the 

structural variations (the structure state model). The decomposition technique leads to 

a natural hierarchy of models. The structure state model is the higher level 

reliability/availability model representing the failure/repair/reconfiguration processes of 

the systems components. Each state in the structure state model will have an associated 

reward model which is a performance model for the system with the given stationary 

structural state. The performability measure is obtained by combining the performance 

measures associated with each structural state with the probabilities obtained from the 

structure state model. This is a common approach taken by Meyer [24] and Beaudry 

[52]. Most of the proposed approaches are based on the common theory of MRMs, 

introduced in section 2.4.2. 

Fluid models with respect to GSPNs make use of the idea that as the number of tokens 

in a place becomes large and the underlying CTMC grows, it may be possible to 

approximate the number of tokens as a non-negative real number. From this it is then 

possible to write the differential equations for the dynamic behaviour of the model and 

in some cases, determine solutions. For this purpose Trivedi and Kulkarni [76] have 

proposed fluid SPNs. 

2.7.2 Stiffness 

Combined modelling of performance levels and structural changes can also cause 

stiffness, which is a direct result of extreme disparity between the occurrence rates of 

performance related events and failure/repair events. Stiffness can cause considerable 

problems during the analysis of a model that adversely affect its stability, accuracy and 

efficiency, even if the model is not large. This is especially true in monolithic models 

where performance related transitions can occur far more frequently (e. g. -109 times 

more) than dependability related events. As with largeness, stiffness may be overcome 

by either tolerance or avoidance. 
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Tolerance is achieved by implementing special mathematical techniques for the solution 

of the system of differential equations [77,78]. Avoidance is linked to that of largeness 

avoidance in that the same approximation techniques may be applied. Hierarchical 

modelling using aggregation such as that proposed by Bobbio and Trivedi [79] is an 

applicable method. 

2.7.3 Non exponential behaviour 

With some modelling techniques such as SPNs and some types of PFQNs, it is assumed 

that all transition rates are exponentially distributed. In many applications this is not 

acceptable as non-exponential rates may occur. Examples of this may be deterministic 

times in communications protocols and Weibull distributions for message 

acknowledgements. 

With CTMCs one solution is to use a range of states each with exponential holding 

times whose overall transition rate approximates the non-exponential firing rate [80]. 

This approach is conceptually simple but it increases the state space and there may be 

a significant problem approximating the desired rate. Many stochastic extensions have 

been suggested for SPNs which facilitate non-exponential rates. As well as GSPNs 

discussed in section 2.4.3.1 these include DSPNs (Deterministic SPNs) deterministic and 

exponential rates and ESPNs (Extended SPNs) which allow generally distributed rates. 

When a simulation approach is taken, non-exponential timing is not a problem. 

2.8 Conclusions 

In this chapter we have considered the field of performability modelling. An 

introduction has been given to the topic and performability has been formally defined. 

We have discussed the evolution of performability from the first requirement that lead 

to its development up to current issues. Four modelling techniques were examined, 

these being non-state space, Markov, stochastic Petri nets and hierarchial and hybrid. 
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When considering the development of performability modelling tools it was noted that 

most utilised Markov chains and/or Petri nets. We have presented a unified framework 

for performability, performance and dependability measures in terms of Markov chains. 

Problems encountered in the modelling of systems have been discussed and the 

implication of these considered. 

We have seen that when investigating modelling techniques it is important to consider 

the implications of the method on the descriptive complexity of a problem. It is the 

human interface to an approach that will often dictate its worth. In chapter 3 we present 

a novel formalism for the description and simulation of complex systems that addresses 

this issue. This new approach builds on many of the ideas presented in this chapter. 
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Chapter 3 

The ICE Language 

3.1 Introduction 

In this chapter we describe the current implementation of the ICE language. 

What became very clear during the development of the language was that its semantics 

are paramount to its understanding. The ethos adopted has been to make the syntax as 

intuitive as possible thus making the translation of real problems into language models as 

simple as possible. Although the nature of the syntax is declarative it is supported by a 

computational model which must be understood before the language can be used to solve 

real problems accurately. Additional modifications to the syntax have been adopted to give 

the language greater uniformity and to clarify the computational model. 

The development of the compiler and simulator gave a clearer view of the potential uses 

of the language. Further examination of possible application areas has since shown a 

number of shortcomings in the original syntax. A main objective has been to increase the 

modelling power of the language but without significantly increasing its complexity. 

For the sake of completeness, continuity of argument and preserving the flow of the text 
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a short overview of the language is given in section 3.2. Readers already familiar with the 

language may proceed to section 3.3. In the remainder of the chapter we limit our 

discussion to a few of the language's more interesting features and semantic considerations 

are discussed to illustrate the reasoning behind the developments. A complete description 

of the entire syntax and all the language's constructs is given in appendix A. This chapter 

should therefore be read in conjunction with appendix A. 

3.2 Overview 

The language has a declarative style that is based upon describing systems in terms of their 

constituent interacting discrete state components. 

Each COMPONENT in a system has a finite number of operational states. The component 
moves between the various states in this STATE SET according to its predefined 

BEHAVIOUR. 

COUNTERS are component variables which are primarily used to counteract the problem 

of state explosion. For example, if we wished to model a buffer with 100 spaces, we could 
do so by using 101 states, i. e. 1 state for the empty condition and 100 for each of the levels 

of occupancy. Alternatively, there could be 1 state to represent the buffer and a counter 

which may take any value i where {0 <_ i _< 
100 1iEN}. This clearly allows the state 

complexity of models to be greatly reduced. 

The transitions between states may be governed by : 

0 Time delays, both deterministic and stochastic. 

"A boolean function of one or more component states, known as a SYSTEM. 

" The event of a transition between states of another component. 

0 The value or change in value of a COUNTER associated with this or 

another component. 

Components may also have associated with them a variable AGE which can be used to 

manipulate their behaviour. 
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To fully define a component , three statements are required : 

" STATE_SET, which lists the finite set of states a component can exist in, 

any counters belonging to the component and any modifications to be made 

to these counters when the component enters the different states. 

0 BEHAVIOUR, which defines all possible transitions that can be made 

between states. 

0 COMPONENT, which defines a component with a specified STATE SET 

and BEHAVIOUR. It also gives the initial state of the component and 

optionally an initial age and initial counter values. 

As well as components we can also describe passive resources which may be allocated to 

components. Resources may be consumable or non-consumable and are specified as 

STOCK and RESOURCE respectively. The WAIT FOR statement allows the explicit 

manipulation of resource levels during simulation. 

The language syntax is free-format in the sense that blank spaces (spaces, tabs, new lines 

etc) are ignored. The order of the statements is unimportant, except in the instance where 

this would cause a semantic conflict. This point is expanded in section A1.5. 

3.3 Language details 

In the examples of syntax given the following conventions are used : 

Keywords are shown in UPPERCASE. 

User defined names are shown in italics. 

Optional syntax is shown in [square brackets]. 

The complete language syntax is described in appendix A. 
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3.3.1 Counters 

One problem that became immediately apparent when considering modelling with the 

language was that of state explosion. In the original language each component in a system 

could be thought of as a finite state machine with inputs. A separate state was required 

to represent every possible condition of the component. This is feasible when conditions 

are distinct. However conditions are often very similar and using a large number of states 

to describe similar conditions was considered to be an inefficient way of modelling. 

To illustrate this we consider the modelling of a buffer which has N places. Three distinct 

conditions may be empty, occupied and full. We might however wish to know each level 

of occupancy and this would result in a model with N+1 states as shown in figure 3.1. 

O-O-D&-C empty occupied occupied occupied full 
12 N-1 

component states 

Figure 3.1 State diagram of N-place buffer 

Models of this nature would obviously soon become very large. Consider say a simple 

multiplexer which has 8 inputs and 1 output all with a 100 place buffer. It was for this 

reason it was decided to add an extra descriptor to a component so that similar conditions 

could be grouped into a single state, whilst still retaining a mechanism to distinguish 

between them. In the buffer example this could reduce the number of states required to 

3 i. e. one for each distinct condition with the extra descriptor being used to distinguish 

between the levels of occupied or indeed to just one state which covers all conditions. 

These simplifications are shown in figure 3.2. 

descriptor 

empty , occupied full 

descriptor 

OR 

buffer 

Figure 3.2 State diagram of N-place buffer 
using an extra descriptor 
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3.3.1.1 State integer attributes 

The first possibility investigated was to utilise the component state attributes. These are 

boolean variables which are solely used to group together selected states. Consider as an 

example the state set 

STATE_SET link 
{ 

O busy; 
O idle; 
F broken; 
F erroneous; 

} 

The uppercase letters preceding the states are the state attributes. The attribute '0' groups 

together the operational states busy and idle and the attribute 'F groups together the failed 

states broken and erroneous. An attribute is considered to be 'true' for all states that 

posseses the attribute and false' for all other states. 

An extra descriptor could be introduced by allowing integer state attributes which may take 

on any integer value rather than a boolean value. This seemed like a simple way to 

augment the description of a state. However upon reflection some disadvantages were 
identified. 

Firstly, the existing attributes exist solely to link states together. Integer attributes would 

be used to enhance the description of a state thus having a different meaning altogether. 

This was considered unacceptable as it would remove the simplicity of the attribute concept 

by giving it two conflicting meanings. Secondly, attributes are only available when a 

component is in a state that possesses that attribute. This was envisaged to be highly 

restrictive as the integer value may be required to be known when the component is in any 

state. For these reasons it was decided to discard the idea of integer state attributes and 

seek an alternative which would avoid conflict with existing constructs and be accessible 

when a component is in any state. 
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3.3.1.2 Resources as state descriptors 

Resources are passive entities which may be allocated to components. They are created 

either by use of the RESOURCE statement in a system model or during simulation time 

by the WAIT FOR statement, as described in appendix A. 5. A dynamic count of the 

number of resources available is kept and this is decremented when an ON RESOURCE 

transition is activated. The number of resources specified is decremented from the count 

and they are considered to be allocated to the state the component has moved into. When 

the component moves out of this state the resources are freed and the count is incremented 

accordingly. 

The inherent counting which takes place as resources are manipulated suggests that there 

may be a way to utilise resources as state descriptors. We will use the previously 
described buffer example to illustrate this concept. The buffer may be described by use 

of a single state component buffer and the resource space of which 100 entities are initially 

created as shown in figure 3.3. 

Initially there will be 100 space resources none of which are allocated to state normal of 
buffer. Whenever a get space transition occurs the number of 'free' space resources will 

be decremented by one and this resource will be allocated to state normal. The 

complementary operation will occur when the drop space transition occurs. The level of 

occupancy of the buffer is now represented by the number of resources allocated to the 

component. This approach seemed quite promising initially but upon reflection a number 

of problems were identified. 

BUFFER SPACE 

get space 

idle 100 

drop space 

Figure 3.3 Buffer using Resources 

The transitions get space and drop space are irregular in that they do not change the 

component state but only affect the resource allocation. This was thought to be 
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inappropriate as this would introduce transitions with no state change, conflicting with the 

intuitive understanding of a transition. This confuses the semantics and as was stated 

earlier the aim is to keep the semantics as intuitive as possible. In the traditional sense of 

resources we normally wish to know the number of free resources and this is immediately 

available. In this instance however we would wish to know the number of resources 

allocated which would involve determining the initial number of resources and calculating 

those allocated by subtracting the number which are free. Currently we only inspect 

resource levels when using ON RESOURCE pre-conditions and when these are enabled 

and transitions occur resource levels are changed. We would now have to create new pre- 

conditions which could inspect initial resource levels and current resource levels but have 

no ability to change these levels. This of course could be done but it would change the 

concept of resources which would confuse their use. 

A further problem is that component descriptions would no longer be self contained but 

have a level of abstraction. To fully obtain a components condition we would have to 

consider its state and the condition of an external resource. It was decided that the best 

solution would be to provide some means within a component statement to provide extra 
descriptive power but which would not be confined to any single state as with integer state 

attributes. To this end the concept of component integer attributes was developed. These 

have been named counters. 

3.3.1.3 Component integer attributes 

From the reasoning expounded above it was decided to use component integer attributes 

as the means by which to increase the descriptive power of components. Component 

integer attributes have been called COUNTERS. When considering the integration of 

counters into the language several questions had to be considered 

1. Where to declare them and the syntax to use ? 

2. Where and how to initialise them ? 

3. Where to modify them and the method to use ? 

4. How to use them as transition pre-conditions ? 
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3.3.1.3.1 Counter declaration 

Since counters are component attributes the options for declaring them was either in the 

COMPONENT statement or in the STATE SET statement. Since it is highly likely that 

components which share the same STATE SET would also require the same counters it 

was decided to add them there. The modified STATE SET takes the following form 

STATE SET name { 
COUNTERS :[ counter list ]; 
STATES { 

state list ; 

The counter list is an optional list of user defined counter names separated by commas. 

A full description of the statement is given in section A. 2. 

3.3.1.3.2 Counter initialisation 

All counters associated with a component's state set must be given an initial value just as 

it is mandatory to define an initial state for each component. This value will be component 

dependant and not fixed for a given state set and therefore it was decided to initialise the 

counters in the COMPONENT statement. For continuity this is done in the same line as 

the setting of the initial state modifying this line to be 

[INIT STATE :] state name [( counter finit list) ]; 

The counter init list is optional, any counters not initialised default to 0. It will consist 

of one or more counter names which are assigned integer values separated by commas, for 

example 

( counter a=3, counter b=7) 
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3.3.1.3.3 Counter modification 

When considering the possible uses of counters the modifiers identified as being neccesary 

were incrementing, decrementing, addition, subtraction, multiplication and division. It was 

also perceived that in certain scenarios modulo arithmetic may be necessary. 

Incrementing and decrementing are of course specific cases of addition and subtraction 

therefore leaving the four standard arithmetical operations to be implemented. This could 
be done in two ways, either by 

i) using a function type operation, e. g. ADD( counter -a , 
7) or 

ii) an arithmetical statement, e. g. counter a+7 

Functions could be built into the language or defined by the user at the time of modelling. 

Inbuilt functions would provide a powerful set of tools for the user but unless they were 

restricted to basic single operations this could lead to quite an increase in syntax. It would 

be possible to have a mixture of inbuilt and user defined functions. Arithmetical statements 

have the disadvantage of having to be repeated if required in different places but they are 

more intuitive and provide the modeller with a large degree of flexibility. 

A major influence in deciding what form to use was the consideration of the impact on the 

existing syntax. Arithmetical statements could be easily supported as they are already used 

within SYSTEM statements. However, use of one should not exclude the other and it was 

decided to utilise both. 

The syntax for updating a counter is 

counter name = expression 

where expression is any arithmetic statement supported by the expressions used in 

SYSTEM statements, eg 

countera = counter a+7; 
counter b= counter c/ 12 
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The single addition to this is a function type operation for modulo arithmetic, MODn( 

expression ), where expression is consistent with the above. 

Once the syntax of counter modification was identified it was neccesary to consider where 

the operation would occur. Counters are global to a component and their manipulation is 

state dependant. This follows the ethos of the language in following a Moore model 

where actions are a function of current state rather than the Mealy model where actions are 

a function of transitions. This gives two possibilities for methods of updating 

i) The update could be linked to a given state in the state set, as shown in the 

partial statement 

STATE_SET comp --g 
{ 

{ 
COUNTERS counter a; 
STATES { 

state d: (counter counterl_a+7); 

ii) The update could incorporated into a state transition within a behaviour 

statement, as shown in the partial statement 

ON EVENT comp b. state b 
{ 

statejz -> stated :( counter -a = counter a+ 7) ; 

The original concept of counters was to add extra descriptive power to states. Updating 

a counter after a transition into the given state was felt to detract from this. It would mean 

that there would not be a consistent link between counters and states for the updating 

would become dependant upon how a component entered the state. The other disadvantage 

of this is that it would add more complexity to the already detailed behaviour statement. 

The one disadvantage of adding the update to the given state definition is that in some 

cases we may want an update to be dependant to the way a state is entered. In these 

situations though, we can use an additional state and preserve the state counter identity and 

for these reasons it was decided to link counter modification to the state set. 
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3.3.1.3.4 Counters as transition pre-conditions 

Transitions can be enabled by pre-conditions which depend on the state of other 

components. Since counters are an extension of the state description it is desirable to be 

able to use them in pre-conditions also. It was decided to expand the expression fields of 

the ON EVENT and IF pre-condition statements to include boolean counter expressions, 

eg 

ON EVENT ( counter a>9) 
{ 

state x -> statey ; 
} 
IF ( ALL ( comp2. state a, counter a == 2, counter b< 3) ) 
{ 

state x ->state z; 

Since the boolean expressions used are the same as those that may be used in SYSTEM 

statements, counters by default may also be used in SYSTEM statements. Note that the 

equality symbol used is '=='. This is due to a single '=' signifying assignment and '==' was 

considered the next most intuitive syntax to denote equality. 

3.3.2 The syntax of transitions 

The originally proposed way of specifying transitions was 

PROB( 0.3) state a -> state b 12 ; 
PROB( 0.7) state _a -> state c 18 ; 

Probabilities must sum to 1 and they default to 1. Times are given at the end of a 

statement and default to 0, i. e. and immediate transition. 

This syntax was satisfactory when first devised. When we start considering the language 

more as a tool for modelling real time systems, the timing of events becomes of greater 

interest. The simulator developed conducts discrete event simulation and the relative 

timing of events must be considered in all instances. To reflect this change in emphasis 

it was decided to restructure the ordering of transitions to be 

59 



12 state a -> state -b 
PROB( 0.3) ; 

18 state -a -> state -c 
PROB( 0.7) ; 

Although this is a minor change it does preserve syntax consistency and is more intuitive. 

3.3.3 Timing with transition pre-conditions 

A fundamental feature of the language is the interaction of different components. This 

interaction is controlled by transition pre-conditions which enable the transitions depending 

upon the condition of other components. A review of these pre-conditions has lead to 

some major modifications. 

A full explanation of all pre-conditions is given in section A. 5, the three we are primarily 
interested in are ON EVENT, IF and IF ON. We will take a brief look at how these may 

be used by considering some examples 

i) exp(70) first -> alt -I ON EVENT other. fail { 
first -> alt -2 } 

If the component described by the transitions enters the state first then normally it 

would move to state alt 1 after a random time, T, determined by the exp(70) 

function. However if after any time, t, during the components existence in state 

first the component other moves into state fail then the component will be forced 

immediately into state alt 2. 

ii) exp(70) first -> alt -1 IF other. fail { 
first -> alt -2 } 

If the component other is in state fail when the compongnt enters state first then it 

will immediately be forced in to state alt 2, otherwise it would move to state alt -1 
after a random time, T, determined by the exp(70) function. If the component other 

moved into state fail at any time after the component had entered state first it 

would have no effect. 
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iii) exp(70) first -> alt 1 
IF ON other. fail { 

first -> alt -2 } 

If the component other is in state fail when the component enters state first then it 

will immediately be forced in to state alt_2, otherwise it would move to state alt 1 

after a random time, T, determined by the exp(70) function. If the component other 

moved into state fail at any time, t, after the component had entered state first then 

at time t it would be forced immediately into state alt -2 and the transition to alt-1 

would be disabled. 

Upon reflection ON EVENT and IF_ON were thought to provide very useful means by 

which to model component interaction and they are both quite intuitive. IF on the other 

hand was thought to be quite confusing. II? ON is a composite operation, whereas IF is 

a primitive and more favoured by purists. 

As was shown in the example the IF expression is only checked upon entering a state and 

thereafter it is not considered. This conflicts with the intuitive feel for 'IF' and was thought 

to be misleading. Unless a modeller has an exact grasp of the sequencing of events the IF 

pre-condition could be misused and produce confusing results. From this reasoning it was 

decided to drop the IF precondition as it stood and to rename the II? ON precondition IF. 

The result of this is no noticeable loss in modelling power and a 'safer' set of commands. 

As shown in the examples there can be no timing associated with transitions which are 

enabled by a pre-condition. The original reasoning behind this is that all transitions of such 

a nature should be forced and thereby have the effect of an immediate interrupt on current 

processing. This was thought to be too restrictive. In many instances we will not want 

forced transitions to be immediate but have some time associated with them. In the 

original language this was done by adding dummy states. A pre-condition would enable 

a transition which would force the component into a dummy state and a second transition 

would move the component from this dummy state into the final state in the time desired. 

This is adding extra state complexity to the model which is never desirable. If timing were 

incorporated into the precondition dependant transitions then these would not be required. 

Another problem which is not immediately apparent is that of the effect that different 
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preconditions have on each other. Consider the example of modelling a car. We may wish 

to model the scenario where on the event of the petrol light coming on we will wish to stop 

for fuel in 5 time units and on the event of the oil light coming on we will wish to stop 

for oil in 3 time units. To model this in the original language we could use the following 

ON EVENT car. fuel light { 
running -> need fuel ; 

} 
5 need fuel -> getting-fuel ; 
ON EVENT car. oil light { 

running -> need oil ; 

3 need oil -> getting-oil ; 

Consider the following possibility. At some time t, the fuel light comes on. This will 

cause the component to immediately go into state need fuel and in 5 time units go into the 

state getting-fuel. Say then at time t2 = t, +1 the oil light comes on. Since the component 
is no longer in state running this will have no effect and although in reality the car will 

need oil before it needs fuel, this will not be modelled. The only way to effectively solve 

this problem is to split the component into two individual components, one which models 

fuel required and another which models oil required and then the pre-conditions will not 

interrupt one another. This however is not very satisfactory when we are modelling a large 

system as it will result in a great number of components, all closely related but with their 

own behaviours. The modeller would have to break down the functionality and at the same 

time ensure all interaction is catered for. This is a philosophy of the language but any 

reduction in complexity is desirable. 

These two problems are very significant and can cause the modeller significant problems. 

Models of real problems could grow to be quite complex and loose their simple connection 

to the real problem. Investigation showed that adding timing to transitions which are 

enabled by pre-conditions could solve both problems. This would appear like a simple step 

to take but it has some significant and interesting consequences. 
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We will consider again the previous car scenario now modelled by adding timing 

ON EVENT car. fuel light { 
5 running -> getting-fuel 

} 
ON EVENT car. oil light { 

3 running -> getting-oil 
} 

We have now got rid of the dummy states and immediately reduced the state complexity. 

The question then raised is when in time are the transitions enabled ? If the fuel light 

comes on do we immediately suspend any further interaction with the component until in 

5 time units it moves into state getting, fuel thereby maintaining the forced nature of the 

ON EVENT or will the component move to getting fuel in 5 time units with the possibility 

that another transition may affect it before then and hence an ON EVENT is no longer a 

forced event ? 

By choosing the second alternative the problem of pre-condition interaction can be avoided. 

Consider applying this timing principle to the above scenario. If at time t, = 0, the fuel 

light comes on we can say that at time, T, = t, + 5, the component will move into state 

getting. fuel. If at time, t2 =1, the oil light comes on we can say that the component will 

move into state gettingoil at time, T2 = t2 +3=4. Since T, is less than T2, the transition 

to gettinauel will be cancelled and instead the transition to getting oil will occur. Notice 

also; that if t2 occurred at time 3 then T1= 6 so that now T2 is less than T, and hence the 

transition to getting_fuel will occur before the transition to getting oil. The transitions 

enabled by the pre-conditions can now interact effectively. They can interrupt one another 

but they do so whilst maintaining correct timing integrity. We are therefore now able to 

model scenarios like the one above by just using the one component. This facilitates a 

significant saving in the complexity and ease of designing models to represent real 

situations. 

It is however now the case that transitions enabled by pre-conditions are not forced and 

will not necessarily interrupt current processing. This significant change must be 

understood but it is not a problem. If we still wish to provide forced events we can simply 

do so by using pre-conditions with transitions that have timing equal to 0 and are therefore 

immediate. 
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3.3.4 Hierarchical editing of models 

When the language was first developed the only systems modelled were quite small test 

applications. When considering the modelling of real systems two things became apparent. 

Firstly, models could grow to a very significant size producing quite a large language 

description and secondly, there may be duplication of code within the same model. To 

tackle these problems it was decided to implement some sort of hierarchial editing. 

In the C programming language hierarchial editing is enabled by the use of 'include' files. 

These are files which contain listings of C code. Any file may incorporate these include 

files by using the command 

#include<file name> 

This allows the programmer to build up a programme from a group of smaller programs, 

keeping all files to a manageable size and providing a means of reusing sections of code. 

The code is not immediately compiled but is first run through a pre-compiler which when 

it sees any include commands expands them by copying in a new source file, the file 

specified within the command. This is transparent to the user and will not change the 

original source file in any way. 

Such a mechanism was deemed to by ideal for our purposes and it was decided to 

incorporate a similar command into the language. The syntax chosen is 

#<file name> 

This command is a simple modification to the language and has no effect on the 

processing. It does however have very significant implications for the simulator for it has 

meant the writing of a pre-processor. This is described in chapter 4. 
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3.4 Conclusions 

The complete syntax of the ICE language is given in appendix A. This chapter has 

presented some of the significant features and the philosophy behind them. 

The objective during the development of ICE has been to achieve a compact and intuitive 

syntax that provides a powerful descriptive space. A vital concern is the user interface to 

the language. When a modeller takes a state space view of a system it is desirable that the 

language can describe the system so visualised with a minimum level of abstraction. 

The development of COUNTERs which add descriptive power without a corresponding 

increase in the underlying state space have been discussed. The additional syntax required 

is minimal in comparison to the modelling capability they contribute. The language 

possesses an inherent simplicity that makes it favourable as a generic modelling tool. Any 

changes to the syntax, no matter how apparently simple they may appear, must be 

considered on a global context. It is paramount that the language's intuitive approach and 

favourable human interface is maintained. 

Consideration of the timing and priority of conditional transitions demonstrated the complex 

semantics that are behind the language. Seemingly simple constructs can model a range 

of different types of component interaction and it is therefore essential that the modeller 

has a firm understanding of these semantics. The computational models of chapter 6 

provide a rigorous definition. 
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Chapter 4 

Implementation of the ICE Simulator 

4.1 Overview 

This chapter describes the simulator that facilitates the compilation and simulation of ICE 

files. 

In this chapter we give a brief introduction to simulation styles and languages and show 
how these relate to ICE. We then go on to consider in some detail the development of 

I SIM, which is an event-scheduling discrete event simulator with an ICE interface. 

Files containing ICE code may be edited hierarchically. These files are integrated using 

a pre-compiler. The code is then parsed to produced data structures. These data structures 

are compiled into simulation data objects and checked for any syntactical errors. The C++ 

simulation objects interact under the control of the simulation algorithm. A timed log of 

the object interaction is kept throughout simulation and may then be interpreted to produce 

a text listing of all simulation events. The post processor analyses these events to produce 

statistical information specified by the user on a spreadsheet. 

Section 4.2 gives some background to simulation and simulation languages, specifically 
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discrete event simulation. Section 4.3 considers the operation of the pre-compiler, parser 

and compiler in converting the ICE code into simulation data objects. Section 4.4 

investigates the flow of control and the functions used by the simulation algorithm. Section 

4.5 explains the development of the post processors which produce event listings and 

statistically analyse the simulation. 

Figure 4.1 shows the distinct stages of the simulator and the data flow between each stage. 

Hierarchical ICE source file, filename. ICE 

PRECOMPILER 

expanded ICE source file 

COMPILER 

simulation objects 

SIMULATOR 

event data file, i_sim. evt 

EVENT VIEWER 

listing of simulation events 

Figure 4.1 

POST PROCESSORS 

analysis specification, 
filename. ana 

ANALYZER 

results 

Overview of the Software 
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To provide a clear understanding of the operation of the software an example is given. 
A sample ICE program is listed in Appendix B. This is considered in parallel with the 

explanation of the software. We shall effectively consider the results of parsing, compiling, 

simulating and analysing this program. All data structures, objects and files created for this 

specific example are also given in Appendix B and will be referred to throughout the 

discussions. 

4.1.1 I SIM directory structure 

A tree diagram of the I SIM directory structure is shown in figure 4.2 along with a 

description of the type of files each directory contains. 

I_SIM 

1-- BIN Executable Code 

--- NEWLIB Libraries of Object Code 

--- ICE Files containing system descriptions written in ICE 

SRC 

- CORE 

GRAPHICS 

--- INCLUDE 

1--- MAIN 

--- POST 

--- SIM 

- STD 

1 ---WIDGETS 

Functions shared by simulation and post processing software 

Low level graphics functions 

Header (. h) files 

The main functions which call all others 

Post processing functions 

Simulation (parsing/compilation/simulation) functions 

General purpose functions 

High level graphics functions 

Figure 4.2 I SIM Directory Structure 

The total size of the combined source, object and executable code is about 4Mbytes. 

I_SIM is comprised of four executable files. I SIM is the main graphical environment 

which provides the user interface. ICE runs the simulation software i. e. the pre- 

compilation, parsing, compilation and simulation of ICE code. VIZ runs the textual post 
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processor which gives a chronological listing of all events which occurred during 

simulation. TPP runs the statistical post processor. ICE, VIZ and TPP are all called from 

within I SIM transparent to the user. 

4.2 Background 

In this section we give a brief overview of discrete event simulation. 

4.2.1 Simulation styles and languages 

There exist specific simulation languages. These are normally programming languages 

which have special constructs applicable to simulation. Often commercial languages are 

based upon the popular programming languages C, C++, FORTRAN and Pascal. These 

languages can be classified into three categories [81] 

Monte Carlo 

0 Discrete Event (asynchronous) 

0 Quasi Continuous (synchronous) 

Monte Carlo simulation may be defined as 'a scheme employing random numbers that is 

used for solving certain stochastic and deterministic problems where the passage of time 

plays no role' [82]. Monte Carlo simulators have features that allow random events to be 

generated internally and they are often used in quantum physics modelling. 

Discrete event simulation is characterised by the passage of blocks of time during which 

nothing happens and is punctuated by events that change the state of the system. Emphasis 

is placed on these events which show the interaction of the modelled components. It is 

assumed that all important features of the system's behaviour may be modelled by these 

events. The blocks of time vary in length dependant upon the occurrence of events and 

therefore since the updating of the clock is not regular this type of simulation is also known 

as asynchronous. It is often used in the modelling of digital communications systems and 

in operations research. 
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Quasi Continuous simulation is concerned with modelling a set of equations that represent 
a system over time. The system may consist of algebraic, differential or difference 

equations whose solution continually vary with time. The simulation is 'quasi' continuous 

as the system time is updated by some fixed time interval At with the system parameters 
being re-evaluate within each time step. The length of At is a compromise between 

accuracy (sufficiently close to continuity) and computational overheads. It is suited to 

applications such as biological systems and computer aided design. 

Owing to the nature of ICE we are interested in discrete event simulation. This can be 

further subdivided into three classes 

Activity scanning models a system by a set of activities which all have start and 
finish conditions. The simulator scans all the activities starting conditions to 
determine if they may be operated. The system clock is then advanced to the 

shortest of these activities finishing times. The consequences of the finishing 

conditions of all activities that will finish are then implemented. 

20 Process orientation models a system by the flow of constituent processes. These 

processes can communicate and interact with one another during simulation. They 

may also utilise various defined resources. 

I Event scheduling models system behaviour by a set of events which are stored 

time sequentially in an event list. The simulator advances the system clock to the 

first event in the list, determines any conditional events which are activated by the 

execution of this event and places them in the appropriate place in the event list. 

The process is then repeated by advancing the clock to the next event in the list. 

These categories do not provide a strict framework but may be combined to provide the 

most suitable simulator for a given language. 

4.2.1.1 Examples of specific simulation languages 

Here we briefly consider a few modem simulation languages to give an idea of the variety 

available. 

General Purpose Simulation System (GPSS) [83] is a discrete process interaction language. 
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It is most often used to model systems that consist of customer entities which compete for 

limited resources. 

Simulation Language for Alternative Modelling (SLAM) [84] is a FORTRAN based 

language that was the first to allow modellers to approach a system with a discrete, 

continuous or combined view. It is powerful due to it's flexibility and FORTRAN 

subroutines may be called from within the language and run during simulation. 

Simscript [85] is a FORTRAN based simulator that is not dependant upon a FORTRAN 

compiler as it translates code into assembly language. It has constructs which support a 

discrete event view with event scheduling and process orientation 

SIMAN [86] like SLAM allows discrete event process oriented, event scheduled and 

continuous components integrated into a single system model. A SIMAN model typically 

consists of model code and a series of statements which are a framework for describing 

experiments. 

Other languages include DYNAMO which is FORTRAN based and facilitates continuous 

simulation and SIMULA which is a PL1 based discrete event language. For a fuller 

description of these and a comparison between simulation languages the user is referred to 

Kreutzer [87]. 

All the languages mentioned are general purpose and suitable for the modelling of a wide 

variety of systems. The nature of ICE however is quite specific and prescriptive of the 

type of simulation required. The finite discrete state modelling of components suggests a 

discrete event style and the interactive nature implies an event scheduled approach. Given 

this we shall now consider the features of such a simulator. 

4.2.2 Features of a discrete event simulator 

Several generic features are important for all discrete event simulators. These have been 

extensively investigated and comprehensive lists of requirements exist e. g. [88]. The main 

features we need to consider are 
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DA system clock for advancing simulation time to order the events. In the instance 

of an event scheduled simulator this should be a global variable, advanced to the 

next event once all the events of the current time have been activated and their 

consequences implemented. 

0 General frameworks for model creation and editing. This is obviously the role of 

the simulation language. A compiler is required to convert models described by the 

language into suitable representation which may then be manipulated by the 

simulator. The I SIM precompiler and simulator is detailed in section 4.2. 

OO A method to schedule the occurrence of events. This requires two components, the 

scheduling algorithm and the event list. The scheduling algorithm is the main 

controlling function during simulation and dictates the simulators behaviour. The 

event list is the time ordered list of events, normally a doubly linked list for ease 

of insertion and deletion of events during simulation. The I SIM scheduler is 

described in section 4.3. 

® Tools to aid in the collection, analysis and reporting of the behaviour of the 

modelled system during simulation. I SIM has two analysis tools described in 

section 4.4. 

SA random number generator which must produce a uniform and statistically 

independent series of random numbers over a variable length of runs. These should 

include tools for mapping the numbers into applicable distributions. The generation 

of random numbers is a large field in itself and one that is considered in some 

detail in chapter 5. 

4.2.3 The development environment 

I_SIM was developed on a 486DX2 PC running a DOS environment. It is written in C++ 

which supports object oriented programming (OOP) 

This style of programming allows the programmer to model components found in the 

problem domain as a set of abstract data types or objects which interact by parameter 

passing. Objects may be created that inherit properties from other objects thus allowing 

proven code to be reused for different applications. An excellent overview of OOP is given 
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in [89]. 

OOP is very suited to discrete event simulation. Its emphasis on communicating objects 

matches well a modellers view of a system as a set of interacting components. The first 

OOP language Simula67 [90] was written especially for simulation applications. From the 

ideas first proposed in Simula67, the two currently popular OOP languages Smalltalk [91] 

and C++ [92] were developed. Smalltalk was entirely based on the OOP concept whereas 

C++, was developed by Stroustrup [89], as a superclass of the language C. Due to the 

already established popularity of C, C++ is emerging as the dominant OOP language. 

I SIM utilises many of the benefits of C++, especially inheritance and data hiding. 

Simulation elements are represented as objects which simplifies the design and 

understanding. Similar objects are constructed by inheriting common features of a base 

class. Data hiding allows data within objects to be categorised so that it may only be 

altered by functions which are given specific access. 

Development of I SIM was both helped and hindered by the desire to re-use much of the 

code of the earlier Tecsim simulator. This saved rewriting many proven routines but it also 

restricted some of the data structuring. 

4.3 Compilation of the language 

The file ICE (MAIN) contains the main function which calls the compilation functions. 

4.3.1 The precompiler 

The precompiler was designed to facilitate hierarchical editing which allows files of ICE 

code to be kept to an easily manageable size and also makes it easier to re-use sections of 

code. The flow of control of file merge (MAIN/ICE) the main function of the precompiler 

is best illustrated by considering the flowchart of figure 4.3. 
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Figure 4.3 Flow of control of file merge 

74 



As an example, given the three files, file 1, file-2 and file 3 with contents 

FILE 1 FILE 2 FILE 3 

LINE 1 LINE 4 LINE 6 
LINE 2 #<FILE 3> LINE 7 
#<FILE 2> LINE 5 
LINE 3 
END 

If file 1 was passed to the pre-compiler the resulting input file would be file l. new with 
contents 

FILE 1. NEW 

#<FILE_1> 

LINE 1 
LINE 2 
#<FILE 2> 
LINE 4 
#<FILE3> 

LINE 6 

LINE 7 

LINE 5 
#! 

LINE 3 
END 
#! 

At first this file would seem rather verbose. Why write the individual files names and use 

end of file characters in the new file when what we are aiming to achieve is an expanded 
file containing all the ICE code ? The reason has nothing to do with the meaning of the 

code but is solely used for error reporting. When the new ICE input file is passed to the 

parser, all the lines beginning with a '#' will be ignored and thus have no effect on the 

processing. However if there is a syntactical or logical error in the code we want to be 

able to locate which file and on which line in this file the error occurred. 

4.3.1.1 Error reporting 

Prior to the introduction of the pre-compiler, error reporting was a simple task. For every 
line in the ICE file which was converted into a data structure for compilation, the line 

number was stored. If any errors were detected during compilation into simulation objects, 

they were reported with this line number being given and of course there was only the one 
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source file. The line number that is now stored is that in the resulting new source file. 
This is meaningless to the user as this file is created transparently. We are now required 
to translate this line number into the line number in the appropriate source file. This is 

done by creating a stack of file elements. Each element takes the form of a structure 
shown in table 4.1. 

char sfname[13]; // the name of the source file 

int line; // count of number of line read from file 

struct stack *next; // points to next stack element 

Table 4.1 Structure of error reporting stack elements 

When an error is detected a stack element is created for the first source file. The lines of 

the new file are read sequentially and the line field of the stack element is incremented for 

each line read. When a '#<file name>' line is encountered a new element is pushed onto 

the top of the stack for this new file file name. Now as the lines are sequentially read the 

line field of the new stack element is incremented. This process is repeated each time a 
'#<file line>' is encountered. Whenever a'#! ' line is encountered the top element is popped 

off the stack and the reading of lines continues using the element which is again on top of 

the stack. When the total number of lines read is equal to the line number of the error then 

the top stack element will contain the name of the original source file and line number. 

4.3.2 The parser 

This section describes how the ICE source code is converted into data structures which are 

entered into a symbol table. This parsing phase uses two tools, one a hand written lexical 

analyzer based on the Unix tool Lex and secondly a Dos version of the Unix compiler 

writing utility Yacc. It is beyond the scope of this text to give a detailed description of 

Lex and Yacc and the reader is therefore referred to the excellent text by Levine et al [88]. 

Both Lex and Yacc are program generators which take a high level lexical or syntax 

description and generate C[92] or C++[89] programs. The lexical analyzer function yylex 

(src\lex. cpp) recognises character patterns in an input file and converts them into a stream 

of tokens. The set of character patterns is written to suit the application and is known as 
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the lex specification. Tokens may take integer values or represent language features such 

as integers, ICE keywords or proper names. Associated with each token are variables 

which may represent the actual value of an integer or proper name. 

The I SIM compiler identifies the declarations, expressions, statements and blocks in an 

ICE program. This task is known as parsing and the list of rules that define the 

relationships that the program understands is a grammar. Yacc (Yet Another Compiler 

Compiler) generates a parser which generates a C++ function yyparse (sim\ytab. cpp). The 

grammar is a declarative style syntax description describing the language in terms of the 

tokens defined in yylex. Linked with each element of the grammar are possible actions, 

which are portions of C code that define and build the data structures used to hold all 

required information about the ICE code. 

The parser also provides syntax error detection by noting mismatches between the tokens 

produced by yylex and the given grammar. The error reporting is handled as described in 

section 4.3.1.1. Syntax errors produce an appropriate error message and the parser will 

then attempt to recover so that further syntax errors are noted. 

The data structures produced take the form of linked lists of C structures, one list for each 

type of ICE statement. The main structure is the symbol table entry (symtabentry). There 

are symbol table entries for each STATE_SET, BEHAVIOUR, COMPONENT, SYSTEM, 

STOCK and WAIT FOR statement. Further types of structures are used for the component 

parts of these statements such as transitions, state expressions, lists of states, lists of 

resources etc and are linked via pointers to the symbol table entries to produce a complete 

description of the ICE code. These collective data structures, all accessed by the single 

array symlist of pointers to each linked list, provide the link to the compilation phase. 

An example of an ICE program and a description of the system it models is given in 

Appendix B section B. 1. Section B. 2 goes on to show the data structures produced when 

this program is parsed. 
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4.3.3 The compiler 

In ICE the order of statement declarations is unimportant. This means that items may not 
be defined until after they are used and thus ICE code cannot be fully checked for errors 
during the parsing phase, e. g. a STATE SET may be defined after a BEHAVIOUR 

statement and hence during parsing it is not possible to check the state names given in the 

transitions. This allows code to be entered in whatever order the modeller wished, it is 

however recommended that a structured design procedure is adopted. The majority of error 

checking is done in the compilation phase. The related information in the symbol table 

entry linked lists is cross checked and converted into a set of self-consistent C++ 

simulation objects. 

4.3.3.1 Simulation objects 

There are C++ simulation objects for all active parts of the ICE description. By active we 

mean those parts such as component states, counter values and resource levels etc which 

may change state or value during simulation. All objects are derived classes from the base 

class Object. Table 4.2 lists the different objects and gives a summary of their functions. 

Base Class Derived Class Function 

Object 

Component Component description including pointers to behaviour and 

state information. 

Sexp State and Counter Expressions. 

Resource Resource name and current quantity. 

Waitfor Interrupt which causes change to a component or resource 

description. 

Table 4.2 Simulation object classes 

4.3.3.2 General compiler operation 

At the start of this phase an array object of pointers to simulation objects is created with 

enough elements for the number of objects required. A simulation object is created for 
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each symtabenrty (discussed in section 4.3.2) created during parsing, except for 

STATE_SETs and BEHAVIOUR statements which are handled differently, as will be 

discussed. The order of conversion is as follows. 

Function state set check (sim\tables. cpp) checks that each state and counter name is 

unique, and gives each a corresponding number. These numbers are entered into the state 

set symtabentry and the names are entered in a hash table for quick lookup in checking 
further names. 

Function resource check (sim\tables. cpp) creates a separate resource object for each 

resource and stock structure. 

Objects are created for each component and state expression or system statement, then 

function component check (sim\compile. cpp) checks and converts the component 

symtabentry into an object. An array is created to hold all the components counters and 

their initial values are stored. All counter function expressions for these counters are added 

to the component. A statespace object is created for each distinct behaviour and state set 

symtabentry. The initial state of the component is set. 

System symtabentries and the anonymous system symtabentries created for IF, ON EVENT 

and counter expressions are checked. Anonymous denotes that the expression is not an 

explicit component but a conditional clause which may be related to any component. The 

format of the expressions are checked for validity. A permanent consequence graph link 

is made from the state expression to the parent object. Section 4.3.3.4 describes the 

function of consequence graphs. The expression is evaluated and the initial value entered 

into the object. 

Waitfor symtabentries are checked and converted into objects. 

Thus in summary, during the compilation phase, the component, resource and system 

symtabentries are converted into simulation objects, the state set and behaviour 

symtabentries are converted into StateSpace objects and system objects are linked to their 

parent objects by consequence graphs. 

In appendix B, section B. 3 all the objects created during the compilation of the 
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symtabentries listed in section B. 2 are given. 

4.3.3.3 The StateSpace 

Information about which state a component can exist in and the transitions between states 
is stored in a StateSpace object. 

A StateSpace object is created for each behaviour symtabentry. It contains an array of 

pointers to State objects. One State object is created for each state in the STATE SET. 

Each transition in the BEHAVIOUR statement is converted into a transition node by the 

parser (refer section B. 2.1). Transition nodes store the names of the states the transition 

is from and to. The State objects for each state reference each transition node who's 

from state is this state. Also during parsing, any counter expressions associated with a 

particular state are referenced by the statelist structure created for the state. This reference 

is copied into the corresponding State object during compilation. 

The StateSpace objects created for the behaviour and state set symtabentries of section 

B. 2.1 are shown in section B. 3. 

4.3.3.4 Consequence graphs 

A consequence graph is the method by which objects that interact during simulation are 

linked together. Consider the conditional statement 

IF comp1. active { 
4 comp2. first -> comp2. second ; 

} 

At compile time a permanent link is set up between the component comp] and the state 

active. The compl end of the link is known as the parent and the active end the child. 

During simulation, when comp] is not in state active this is the only link. If comp] enters 

state active a further dynamic link is established between the state active and the 

component comp2. In this link, active is the parent and comp2 the child. When component 
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comp] moves out of state active this link is removed. This dynamic link will enable the 

transition from state first to state second if comp2 enters state first. These consequence 

graph links provide the current state of component interaction during simulation. 

The simulation objects all have the class Object as their base class. This is a composite 

object as it has another class as one of its members. This class forms part of Objects 

private data and is an instance of the class CqGraph. CqGraph is used in its basic form 

and it also forms the base class of three other types of consequence graph. These are listed 

along with their prospective uses in table 4.3. 

Base Class Derived Class Use 

OnNode Links objects related by ON EVENT expressions. 

CqGraph 
ResrsNode Used to link component objects to resource objects when resources 

are required for a change of state. 

ForceNode Links an object to another object which is forcing it to change state. 

Table 4.3 Consequence Graph types 

The CqGraph node has four pointers. These are used to point to the previous and next 

nodes in its parent link and to the previous and next nodes in its children's links. It also 

contains the object numbers of its parent and child thus allowing any object to be doubly 

linked to any other object via these nodes. 

Consequence graphs may be used to connect objects for the various purposes listed in table 

4.3. The way in which they work is the same in each instance. 

Their operation is best understood by the use of an example. A detailed example using of 

the consequence graphs created for one of the conditional statements of the program in 

section B. 1 is given in section B. 3.1. 
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4.4 Simulation phase 

The simulation software uses as its input the set of C++ objects that have been built during 

the parsing and compiling stages and models the interaction of these objects under the 

control of a simulation algorithm. The overall flow of control of the simulator is shown 
in figure 4.4. 

Before commencing the simulation the stop time (which must be given in the ICE code) 
is recorded and the current time of simulation is set to 0, to indicate the start of a new 

simulation. 

A new Event Manager is created. This contains all the control information for the calender 

queue of events. It has an array of pointers which form a linked list of the fundamental 

simulation object type, Event. An Event object is created for every scheduled event (state 

change) and is deleted once this event has occurred or has been surpassed by the 

occurrence of another event. This linked list forms a calender queue of simulation events. 

The simulation objects are initialised in two stages, the initialisation being dependant upon 

the type of object. All objects contain a field state which holds the state of an object 

during simulation. All these fields are set to the initial state. For components this will be 

the initial state the component resides in and for state expressions it will be the initial 

condition of the corresponding SYSTEM statement i. e. true or false. 

For components, any attributes of the current state are entered into the component object. 

Any events which are a consequence of this component being in the current state are 

processed and if any IF state expressions for transitions from the current state are true the 

component changes state. The next timed event is determined and a new Event object is 

created for it and entered into the calendar queue. The state that this component will move 

into upon the occurrence of this event is entered into the component object as the 

next state. If there are any ON EVENT or ON RESOURCE transitions from the current 

state then an OnNode consequence graph is created to link this component as a child of the 

anonymous system expression object of the ON EVENT or ON RESOURCE statement. 

If the resources listed in an ON RESOURCE statement are free then the resource transition 

is activated. 
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Start 

Record simulation stop time 
Simulation time set to 0 

Create Event Manager with 
enough space for all objects 

Phase one of initialising objects 

Phase two of initialising objects 
(components and state expressions) 

Get next scheduled event 
from calendar queue 

Yes 
Stop time exceeded ? Process the event 

No 

Yes 
Any further events ? 

No 

End 

Figure 4.4 Flow of control of simulation phase 
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Once all objects have been initialised and any state changes that this instigates processed, 
the first scheduled event is retrieved from the calendar queue. Providing the occurrence 
time of this event is not greater then the stop time it is processed and consequences of this 

event implemented. The next scheduled event is then retrieved and so the process 

continues until the stop time is reached. 

4.4.1 The event processing cycle 

Scheduled events relate to component state changes. The function Component:: event 

common() forms the heart of the simulator as it coordinates the processing of every event 
i. e. every state change. It calls other functions, come of which effect the processing of 

events are listed in table 4.4. 

Name Description 

event commonO Main routine that processes the event calendar queue. 

applyfnsO Modifies counter values by applying counter functions linked to the current state. 

triggerChildreno Activates any child consequence graph nodes that are enabled in the current state. These 

are links to IF, ON EVENT and ON RESOURCE statements in other components. 

nextlFstateo Selects the next enabled IF transition from the current state. 

nextTstateo Selects the next unconditional timed transition from the current state. 

AddCnodesO Creates dynamic consequence graphs and links for any ON EVENT, ON RESOURCE or 

SYSTEM statements that are enabled in the current state. 

Table 4.4 Key simulation functions 

event commonQ 

The flow chart of figure 4.5 shows the flow of control of event commonO. 
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Start 

Remove any consequence graph nodes 
of which the component is a child 

I Move to next state 

next state = to stateof IF transition 

Apply any counter functions to this state 

Record attributes of new state 
Record change of state 
Release any resources held by previous state 
Trigger any child consequence graphs of new 

nextIFstnteO Yes Yes 
Is there an IF tranistion for Is the time of the IF transition 
this state that is valid ? 

No I No 

neatTstateO Yes next state = to state of this transition 
Are there any timed Put event for this transition in calendar queue 
transitions from this state ? 

No 

AddCnodesll Yes For each one, link the component to the 
Are there any ON EVENT or state expression object of the statement 
ON_RESOURCE transitions using a child consequence graph node 
from this state ? 

No 

End 

Figure 4.5 Flow of control of event common() 

The first action is to remove any consequence graph modes of which this object is a child. 

These links were created when the component moved into the current state and link the 

component to any ON_EVENT or ON RESOURCE statements which could move the 

component out of this state. As the component moves into the next state they no longer 

85 



can effect the components operation, unless they apply to the new state as well, in which 
case they will be added again at the end of the processing for this event. 

The component changes state into the next state and adopts the attributes of this state. If 

there are any functions attached to this state that manipulate any counters then the function 

applyfnsO calculates the new counter values and enters them into the corresponding 

components counter list. 

The new state and any change in counter values are recorded in the event date file. This 

file is described in section 4.4.2. 

Any resources the last state held are released and any resources required by the new state 

are held. The free resource levels updated accordingly. The changes in resource levels are 

recorded in the event date file. When resources are released any other ON RESOURCE 

statements now enabled are activated. 

If the component has any consequence graph links to children, e. g. for system statements 

that are enabled when the component is in the new sate they are activated by the function 

triggerChildren() and the events generated processed. 

Function neztlFstateO determines if there are any IF transitions from the new state which 

are enabled then the timing of the transition is determined. If the transition is immediate 

then the new event is generated and processed. If it has a time delay the next state is set 

and this new event is entered in the calendar queue. 

If there are no timed IF transitions then function nextTstate determines whether there are 

any timed transitions from this state. In the occurrence of there being more than one, the 

one with the shortest transition time is selected. The to state of this transition is set as the 

next state and a new event generated and entered in the calendar queue. 

Function AddCnodesO determines if there are any ON EVENT or ON RESOURCE 

transitions from the new state a child consequence graph node is created for each to link 

the component to the related state expression. 
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Applyfnso 

This function ensures that all counter values are updated as required. Counter values are 

calculated by functions which are associated with component states. ApplyfnsO applies on 
functions which are related to the current state and updates the associated counters. 

triggerChildrenO 

This function checks any consequence graph nodes of this component. These nodes will 

be for SYSTEM or ON EVENT statements which are dependant upon this component. 

If any of these statements are enabled by the component moving into this state an event 

is created for the associated transition and placed in the calendar event queue. 

nextlFstateO 

This function reads through all the possible transitions from the current state and selects 

only those which are conditionally governed by an IF statement. If a transition is found 

which has a zero transition time i. e. an immediate forced transition, the one that is listed 

first in the source code is selected. 

If there are no immediate IF transitions, the timed IF transitions are considered. The 

random number generator is used in determining the transition time when the timing is 

given in terms of a time distribution. The transition with the shortest time is selected. 

Again if there is more than one transition with the same timing then that listed first is 

selected. 

It is possible for more than one transition to be governed by the source IF statement. In 

this case each transition will have a probability of occurrence. nextlFstateo uses the 

random number generator to give a random selection of one of the possible transitions. 

nextTstateO 

This function selects all non conditional timed transitions from the current state. If the 

transitions are probabilistic then the random number generator is called to randomly select 
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one. In the instance where there is more than one timed transition the one with the shortest 
time is selected. The random number generator is called to determine times for transitions 

with time distributions. IF more than one transition has the same time, the transition listed 
first in the source code is selected. 

AddCnodeso 

The function AddCnodes checks if there are any ON EVENT or ON RESOURCE 

statements which can enable transitions from the current state. For each conditional 
transition a dynamic control consequence graph node is created to link the component 

object to the ON EVENT or ON RESOURCE statement state expression. 

If the ON_EVENT or ON RESOURCE enables a number of transitions from the current 

state, each transition will have an associated probability. AddCnodesO calls the random 

number generator to select which transition will be used. 

If enough free resources exist to enable any ON. RESOURCE transitions an object is 

created for this transition and placed in the event calendar queue. 

4.4.2 The event data file 

The event data file, I SIM. EVT, forms the interface between the simulator and the post 

processors. 

The file is comprised of two main parts. The first section is a description of the simulation 

objects, written as they are created. This is used by the analyzer to construct analysis 

objects and as a means of validating component, state, counter and system names in the 

analysis specification. The second section is written during simulation and is a record of 

every simulation event. When each event occurs the current simulation time, component 

or system object number, state number and if appropriate counter number and value is 

written to the file. 

The start of the event data file that is written for the simulation objects in section B. 3 and 

a few sample lines of simulation is listed in section B. 4. 
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4.5 Post processing 

The event data file is the interface between the simulator and the post processors. 
There are two post processors; VIZ, the visual post processor which provides a textual 

listing of all simulation events and TPP the analyzer which performs statistical analysis on 

the simulation data. 

4.5.1 VIZ the visual post processor 

A fundamental requirement of the post processor is to be able to view all of the simulation 

events in the order in which they occurred. This is critical when analysing a models 

behaviour. All events are listed in chronological order in the event data file. To provide 

a listing of these events the relevant data must be retrieved, interpreted and displayed. 

The initial facility sequentially read the event data file, interpreted all transition data and 

created a textual file of events. Experimentation with the software found this method to 

be impractical for a few reasons. The text file may be very large which is a waste of disc 

space when often we just wish to view part of the simulation. Secondly, to be viewed from 

within the software it was necessary to incorporate the use of an editor. This is wasteful 

of resources as we only require to view the file and not to modify it. For large files that 

cannot be handled in their whole by an editor it was necessary to swap in and out sections 

of the file as required. This is untidy and annoying to the user. 

The solution that was decided upon was to interpret and display one screen of event data 

at a time as required. This alleviates the need to create a text file of the entire simulation 

which saves space and means an editor is no longer required thus solving all the 

aforementioned problems. 

Operation of the event viewer 

To provide access to the events in the event data file, the file is sequentially read once. 

Whenever a transition or counter modification is detected an index is constructed to the 

corresponding line of the file as shown in figure 4.6. A binary file of the complete set of 
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indices is written to disc. It is never known how many indices may be required so they 

are created dynamically and added to a doubly linked list. The first list element is an index 

to the first event in the event data file and the indices are chronologically ordered from 

there. The list is doubly linked so that it may be read in either direction. 

Index File Event File 

0 ----> 15 0 ED Trans 10 

1 -----------> 16 0 ED Trans 30 

INI -- > 977 0 ED Trans 11 

Figure 4.6 Index for accessing the transitions in the event data file 

The events are displayed in a screen window. The window has a fixed number of rows, 

n. Only enough events are interpreted at a time to fill one window. When the window is 

first opened a pointer is set to the start of the index file. The first n indices in the index 

file are used to read the corresponding n lines of the event data file. The pointer is now 

placed at n-I index in the index file. The events listed in these lines are interpreted and 

displayed in the window as shown in figure 4.7. 

Esc=Exit UIEY EVENTS F3=Search PgUp PgDn Hoge End 

8 datajiigh 6 
8 control busy 
0 logger idle 
2 logger record 

buffer a1 
2 logger idle 
4 logger record 

buffer a2 
4 logger idle 
6 logger record 

buffer -3 
6 logger Idle 
8 logger record 

buffer -4 
8 logger idle 
18 logger record 

buffer  5 
18 datajtigh I 

Figure 4.7 The event viewer screen 
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Commands used in the event viewer 

As figure 4.7 shows, a number of user commands may be utilised in the event viewer. 

Search enables the user to enter a string of search conditions. The index pointer is reset 

to the start of the index file. The pointer is incremented through the indices and each 

reference in the event data file is examined to see if it matches the search conditions. 

When an event is found the search stops. That event which matched the search conditions 

at the top of the screen and the other n-1 lines are the events which chronologically follow. 

PgUp reads the previous n indices from where the index pointer is currently located and 

displays the corresponding n events. 

PgDn reads the next n indices from where the index pointer is currently located and 

displays the corresponding n events. 

Home moves the index pointer to the top of the index file and reads the first n indices. 

These are used to locate the corresponding first n events which are then converted and 

displayed. 

End moves the index pointer to the last -n index i. e. the index file. The last n indices may f; J i` 

then be read and used to locate the corresponding last n events which are then interpreted 

and displayed. 

The above listed functions provide an easy and complete method of viewing all or selected 

sections of events. 

4.5.2 TPP the statistical analyzer 

When we model systems using the language and simulator we will often wish to perform 

analysis upon the resulting list of events to gain greater understanding of the system. To 

this end the statistical analyzer was developed. 

When considering the development of such a tool two requirements were identified: 
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i) A means by which the user can select the required statistics 
ii) Given this input, a method of interpreting the event data file to provide the 

required statistics. 

The analysis editor 

The initial idea for allowing the user to select required statistics was by the use of an 

analysis language. This language would describe which statistics were required for which 

component states, counters and system expressions. This method was cumbersome and 

presented challenges to the user. A parser was written to interpret the language and 

convert it into useful data structures. This was reasonably efficient but the main problem 

was that the user had to learn an extra language. A prime object has been to keep the 

software as simple to operate as possible and it was felt that this extra analysis language 

was an unnecessary complexity. It was therefore decided to design and implement a simple 

graphical interface resembling a spreadsheet to allow the analysis data to be entered. 

To give a complete understanding of this tool we shall consider both the users perspective 

of entering requirements and viewing results and also how this 'specification' is stored for 

input into the analyzer. 

The users perspective 

The analysis editor that the user is provided with is shown in figure 4.8. The screen has 

three sections, a key prompt at the top, a7x 12 editing grid and an editing window at the 

bottom. The editing grid provides a suitably formatted layout for the requirements to be 

entered and displayed. Each grid location is known as a slot. The editing window is used 

to edit text to be input to the individual slots. 

ýý0 
ýý 

92 



F1=help F2=history TECSII V 5.0 Aug 30 15: 18 

Esc=Exit Edit analysis F3Clear F4=Save C=Cut P=Paste R=Rem Del 

AB CDE F G 
0 logger poll data high buffer 
1 (State) (Stats) (Stats) 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Select statistics: yZ variance stddeu min max 
sum sumsq '/. ptile samples 
conf lou confup tconf low tconfup accnumber 

Figure 4.8 The Analysis Editor Screen 

The key prompts are to remind the user of the various editing commands. These functions 

are as follows. 

F3 = clear Clears the entire editing grid 
F4 = save Saves the grid contents to a filename and analysis file. The user will be 

prompted for a filename and appropriate comment. This comment is 
displayed when the user selects an analysis file for editing as a reminder of 
the contents. 

C= Cut Removes the contents of the slot the cursor is currently in and stores them 
in an editing buffer. 

P= Paste Pastes the contents of the editing buffer into the slot the cursor is currently 
in. 

D= Del Removes the contents of the slot the cursor is currently in but does not store 
them in the editing buffer. 

The slot the cursor is currently in will have its colours inverted. The selection of the slot 

is altered by using the cursor control arrow keys. 

When editing the grid any slot may have one of three content types. These are: - 

empty : When nothing is in a slot it is denoted empty and has no effect on the 

analyzer. 
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text . This is user entered text. It serves only as a comment of what statistical 
information is displayed and has no effect on the analyzer. 

stats These are user defined statistics. When a statistical specification is entered 
in a slot, the slot will just display the text "[stats]" during editing. On 

displaying results the statistical information is displayed in this slot. The 

user should use a neighbouring slot for text as a reminder of what is 

displayed. 

To insert text in a chosen slot the user presses <enter> and to insert stats <ins>. All 

editing of text and stats is done in the editing window not on the grid. 

When statistics are required a menu of those available is displayed. Statistical information 

is available on component states, system statement states and counters. 

The statistics available and their meaning for component states and system statement states 

is identical but varies for counters. Details of the statistics are given in tables 4.5 and 4.6. 

Stats Meaning 

mean The mean length of time the state is occupied. 

variance The variance from the mean value. 

stddev The standard deviation from the mean value. 

min The minimum length of time the state is occupied. 

max The maximum length of time the state is occupied. 

sum The total time spent in the state during the simulation run. 

sumSq The sum of the squares of the individual times spent in the state. 

% The percentage of the total simulation time spent in the state. 

ptile The percentile value of the state. 

samples The number of individual times the state was entered. 

conflow The lower confidence interval for a normal distribution. 

confup The upper confidence interval for a normal distribution. 

tconflow The lower confidence interval for at type distribution. 

tconfup The upper confidence interval for at type distribution. 

accnumber Prompts the analyzer to create a file which contains every sample recorded for this state. 

Each sample is the individual time spent in the state. This file may be used for external 

analysis and graphing of results. 

I aolo '+. -+ ... «",.,.. -., "--_ ,.,,.. ý,......, ý,,.., 
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Statistics Meaning 

mean The mean counter value during simulation. 

variance The variance form the mean. 

stddev The standard deviation from the mean value. 

min The minimum counter value. 

max The maximum counter value. 

sum The sum of the product of each counter value and the duration for which it held that value. 

sumSq the sum of the product of the square of each counter value and the duration for which it held 

that value. 

samples The number of times the counter changed value. 

accnumber Prompts the analyzer to create a file which contains every sample recorded for the counter. A 

sample is the counter value and the duration for which the counter held this value. This file 

may be used by externally for further analysis and the graphing of results. 

'l able 4. b biausucs for counters 

It is possible to determine statistics on statistics when more than one run of a simulation 

is done. For example we may run a simulation ten times and be interested in the 

percentage value of a certain state occupancy over the complete number of runs. In this 

instance we would denote the StatsOn to be percentage, which would denote the calculation 

of percentage of total simulation spent in the given state during each individual run, and 

the Stats to be mean which would calculate the mean value of the ten percentage values. 

This is an important feature as in modelling a system it is normal to run a large number 

of simulation runs to gain a truer understanding of the systems behaviour. 

Processing of the analysis editor input 

A data structure of the type slot is created for every slot on the editing grid. For the grid 

shown in figure 4.8 the structures created would be as shown in figure 4.9. Note that for 

clarity only the structures created for slots OA.. 1 G are shown, the other slots being 

'EMPTY' slots. Note also that only the fields within the structures used for this specific 

example are shown. 
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struct slot OA OB OC OD OE OF OG 

t TEXT EMPTY TEXT TEXT TEXT EMPTY EMPTY 

U{*text logger - poll datahigh buffer - - 

*next} - - - - - - 

struct slot 1A 1B IC 1D 1E IF 1G F 

EMPTY EMPTY STATS STATS STATS EMPTY EMPTY 

U{*text - - - - - - 

*next} - - STA STB STC - - 

struct Stats STA STB STC 

*object control data_high logger 

*state poll T buffer 

type ANmean ANpercentage ANmean 

stats on ANpercentage -1 -1 

Figure 4.9 Data structures produced from the Analysis Editor 
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Input : filename. ana (analysis editor file) 
i sim. evt (event data file) 

Read simulation object information from i sim. evt, Create TDthings data structures for each 
STATE SET, COMPONENT and SYSTEM statement 

Readfilename. ana ignoring all but 'STATS' slots. Check slot details for errors by comparing 
COMPONENT, STATE, SYSTEM and COUNTER names given in the 7Dthing data struct 

Create an ana struct for each 'STAT' slot and a nested state expression to hold the object and 
state/counter details. Create a Stats struct to hold results for each slot. 

Set the monitor flag in each COMPONENT TDthing struct if any stats refer to a state or counter 
of this component and in each SYSTEM TDthing struct that the stats refer to 

Read line of transition data from i sim. evt (transition lines start with ED_Time) 

Process the transition data 
function DANrunO 

End of file ? 
No 

Yes 

Using the data recorded in the Stats structs calculate the required statistil 

Oatpat : write a file of slots, similar tofilename. ana but with 
the results calculated in place of the stats requirements 

Figure 4.10 Flow of control of the Statistical Analyzer 

When the grid is saved every slot is written sequentially to the filename. ana analysis file. 

The file is used as the second input to the analyzer, the first being the event data file. 
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The statistical analyzer 

The statistical analyzer takes as input the analysis file produced by the analysis editor and 

the event data file produce by the simulator. The analysis file is effectively the 

specification of the statistics required by the user and the event data file is the raw data of 

the simulation upon which the analysis is performed. The flow of control of the analyzer 
is shown in figure 4.10. 

The processing of the analyzer is best understood by referring to an example. Given the 

event data file in section B. 4 the data structures created by the analyzer are as shown in 

section B. 5.1. Given the stats structs created by the analysis editor in the example above 

(figure 4.9) the corresponding data structures produced by the analyzer are as shown in 

section B. 5.2. 

DANrunO 

This function is the heart of the analysis software. It reads each line of the event data file 

after the EDstart line and updates the data held in the Stats structures accordingly. 

For each line that is read all the ana structs are considered. If the line refers to the same 

component or system statement as the ana Statexp reference then it checks to see if the 

state or counter value has changed since the previous recording. 

In the case of component. state or system statements ana structs, eg anal and anal in our 

example, then we record the time given in the I SIM. EVT line minus the time of the 

previous recording, but only when the item has just exited the state of interest. This in 

effect gives a record of the individual duration times spent in the state of interest. For 

counter ana structs, i. e. ana3 in our example, then every time the counter changes value 

the previous counter value and the duration for which the counter held this value is 

recorded. 
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4.6 Conclusions 

In this chapter we have considered the implementation of I SIM the software language 

simulator. 

Due to the nature of the language the simulation algorithm that has been developed is very 

complex. This meant that extensive system testing was required which has proven the 

software to be reasonably robust. 

Implementation of the simulator proceeded concurrently with the development of the 

language. Consideration of the various aspects of the simulation algorithm has lead to 

reflection upon and hence greater understanding of the language. By using a variety of 

simulation examples many ideas were formulated about the nature of the languages 

semantics. This caused considerable debate about the merits of alternative semantics and 

greatly helped to refine the language to its current form. At the time of writing, this was 

thought to be optimal for the proposed applications though as different uses are considered 

it may be necessary to re-evaluate some aspects of the semantics. The refined knowledge 

of the semantics in turn helped in the development of the software. 

The nature of the software development has been iterative in that it has undergone a 

number of cycles of testing, debugging and modifying, both to correct errors and implement 

changes in semantics. This approach is typical when prototyping a system but is not 

optimal for producing a final product. With hindsight there are some parts of the software 

which could be written in a more efficient manner. The observed robustness and 

satisfactory simulation times indicates that this is not critical but may be worth considering 

in future developments. 
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CHAPTER 5 

Random Number Generation 

5.1 Overview 

Random numbers are used to provide the required stochastic behaviour within software 

simulation. Due to the increasing variety of contexts within which random numbers are 

used, such as for the generation of test data for algorithm checking and the simulation of 

games of chance, extensive study has been conducted into techniques for their generation. 

The ICE language facilitates stochastic and probabilistic modelling. Random numbers are 

required to determine transition times from stochastic distributions and to select between 

probabilistic transitions. It is therefore essential that the numbers used appear truly random 

for the accurate simulation of models. This requirement is especially true when modelling 

such things as queues. Queues are particularly sensitive to any disparity in the timing of 

arrivals and departures and any small disruption in reading or writing rates can significantly 

effect mean queue lengths [26]. 

An obvious source of true randomness is white noise. Hardware simulation systems may 

periodically quantise the output of decaying pn junctions to produce streams of random 

numbers [93]. The obvious disadvantage of such techniques is the inability to reproduce 
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the obtained sequences. The natural solution to this was the development of deterministic 

algorithms to generate sequences which although entirely predictable behave as if they 

were truly random. The accepted criteria for measuring their randomness is the application 
of a suite of statistical tests. Many tests have been proposed and the consensus view [94] 
is that a combination of tests checking a variety of properties must be passed for a 
sequence to be considered random. A large number of algorithms have been developed. 

These vary not only in the techniques employed but also in the speed of generation, length 

of repeatable sequence and ease of software implementation. 

The pseudo random number generators which produce maximum length binary sequences 

or m-sequences (i. e. a sequence where all numbers in a range 0 or 1 to m are generated 
before any are repeated) are of interest as they are known for their good randomness 

properties. Each number generated is normalised to give a number, n, where 0ns1. 

Any point in the sequence can be used as a starting point by stating an initial seed. Any 

run of the generator starting with the same initial seed will produce identical results. The 

seed is revised every time a number is generated and indicates the current point in the 

sequence. 

In this chapter we are concerned with the production of sequences of random numbers 

within the I SIM software. 
, If 

I SIM facilitates the simulation of systems which can contain a variable number of 

components. Each component may also have a variable number of transitions between its 

constituent states. What is required is the generation of streams of random numbers for 

every stochastic and probabilistic transition. The initial implementation used one generator 

to produce a single stream of random numbers and these numbers were distributed to the 

different transitions as required. The result is many streams of random numbers each of 

which is comprised of random samples of the original sequence. These sequences will not 

necessarily hold the same properties of randomness as the original sequence. 

The I_SIM generator is discussed and statistical tests applied to the generated sequence. 

Original modelling with I SIM did not suggest any loss of randomness with these 

subsequences however the occasional questionable result when Counters were implemented 

caused suspicion and lead to the decision to investigate the randomness of these 

subsequences. The same tests when applied to the subsequences gave some interesting 
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results. 

To guarantee the integrity of the sub sequences a new method of number allocation is 

suggested and implemented. The statistical tests are repeated to ensure the randomness of 
the improved implementation. 

Finally a novel generator is proposed and implemented. This new generator shows a 

number of desirable properties and is compared with the previous one. 

5.2 The random number generator 

Many deterministic methods of producing random numbers have been proposed. The 

majority fall into one of five categories, 

prime modulus multiplitive linear congruential generators or Lehmer generator 

OO mixed linear congruential method generators 

O additive random number generators 

® shift register random number generators 

OO combined random number generators 

A good recent comparative study of public domain pseudorandom number generators is 

given by Vattulainen et al [95]. 

5.2.1 The Lehmer random number generator 

These algorithms were first proposed by DH Lehmer in 1951 [96] and have become one 

of the most accepted and widely used methods of generating pseudo random number 

sequences. 

The Lehmer generator takes as its input a seed and performs a mathematical operation upon 

it to produce another number, statistically independent from the first. The mathematical 
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operation used is multiplication by an integer, a, modulus a large prime integer, in. The 

multiplier is an integer in the range [2, m-1]. The generating function is then 

x,,., ,=a x� mod in ; where x� is the nth number in an integer sequence. 

The values of a and m determine the statistical randomness of the generated sequence and 
if chosen correctly a pseudo random sequence comprised of integers in the range [1, m-1] 

will be produced. The divisor m must be prime (known as the Mersenne prime) to prevent 

the sequence from collapsing to 0 which would occur in the event of a. x = m. In this 

occurrence the subsequent seed would remain zero, terminating the sequence. This limits 

the seed to the range, 0< seed < m. The number produced is normalised by division by 

m to produce a number in the range, (0< number < 1.0). Many excellent Lehmer 

generators exist and they are used widely in multiprocessor platforms [97]. 

The Lehmer generator is periodic as it produces a deterministic sequence of numbers and 

then repeats. Ideally this sequence should be as long as possible and this is achieved by 

selecting values for a and m that yield a full period multiplier. This is a generator that will 

not repeat until it has selected every value in the range 1 to m-1 once. The necessary and 

sufficient condition for this is that a is relatively prime to m ie the greatest common 

divisor of a and m is 1. The disadvantage of this is that ideally we would wish to have a 

sequence with replacement, ie if a number is selected then there is an equal likelihood of 

it being selected again. With the Lehmer generator once a number has been selected it will 

not be selected again until all other numbers in the sequence have been selected. Hence 

the concept of equal probability for all numbers is violated. Another known but accepted 

possible problem is that the pseudorandom numbers may lie in a relatively small number 

of parallel hyperplanes. Hyperplanes are bands of values in which the generated numbers 

lie. For example, numbers generated in the range 0.3 to 0.4 may not be distributed across 

the entire range but limited to the field, or hyperplane, of 0.34 to 0.36 [95]. 

5.2.2 The Park and Miller generator 

A vast amount of work has been done on Lehmer generators to determine good and bad 

values of a and m. The Lehmer generator originally chosen for use within I SIM was that 
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proposed as an industry minimal standard by Park and Miller [98]. It was chosen for three 

reasons : 

1. It is a full period generator. 
2. It has passed a number of empirical tests [99]. 

3. The algorithm is easily implemented in software. 

The values for a and m selected were 

a= 75= 16807 

m= 231 -1= 2147483647 

This generator has since been updated by the original authors who now recommend the 

values 

a= 48271 

m= 231 - 1= 2147483647 

stating that the original generator is suitable for most situations but the new generator is 

"a little better" [100]. Note here that both moduli are prime. Moduli that are a power of 

two are never used as Marsaglia has shown [101] that they may produce sequences that 

demonstrate bad randomness properties. 

Initial simulations within I SIM using this Lehmer generator seemed to produce satisfactory 

results. However it was occasionally noticed that results obtained were not as expected and 

this lead to some suspicion as to the quality of the generator. The Park and Miller generator 

had previously been shown to produce a sequence of numbers with good randomness 

properties but what was being used within I SIM was a number of sequences each of 

which was comprised of numbers obtained by randomly sampling the original sequence. 

To our knowledge no tests had been conducted upon randomly generated subsequences of 

the Park and Miller generator. It was therefore considered necessary to test the statistical 

properties of the subsequences and if results were unfavourable devise an alternative 

method of random number allocation to stochastic transitions within I SIM. 
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5.2.3 Statistical properties of random number sequences 

There are two categories of statistical tests that may be performed on a random number 

generator. The first are theoretical tests which mathematically analyse the generator itself. 

The second are empirical tests which involve the analysis of the sequences of numbers 

produced by the generator. 

Since theoretical tests are designed for the analysis of the sequence directly produce by the 

generator they are no use for the analysis of subsequences unless these subsequences are 

reproductions of the original sequence. Most empirical tests hold good for subsequences 

as well as for full periods and it was therefore decided to use these. 

The empirical tests are based on the theoretical properties of an ideal random sequence. 

Pseudo random number sequences are predictable and therefore non ideal. We can 

consider a pseudo random sequence as approximating the ideal if it passes a variety of 

statistical tests which would be passed by a true-non deterministic sequence. 

5.3 random number properties 

If B. is an N bit random number uniformly distributed in the interval (0,2N-1] then each 

number should be equally as likely to appear at any point in the sequence. Each number 

should be independent of all previous numbers in the sequence. This criteria would seem 

hard to satisfy as each number is strictly determined by the previous number. However if 

the numbers produced pass a series of statistical tests they are deemed acceptable. The 

number of runs of consecutively increasing or decreasing values should be directly related 

to the length of the run, 

half the runs should be of length 1, 

a fourth of length 2, 

an eighth of length 3, 

Also the autocorrelation function should be peaked at zero phase shift and near zero for all 

other values. 

i 
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In addition to the above properties of randomness a good sequence should be m distributed. 

That is, the generator should be capable of producing m independent pseudorandom 

numbers which are uniformly distributed over the interval (0,2w']. Such a generator is 

said to be uniformly distributed in m dimensional space. 

5.3.1 Statistical tests 

Statistical test performed on a sequence of random numbers are designed to measure the 

closeness of selected properties to the theoretical properties of an "ideal" sequence. Due 

to their statistical nature it is not possible to state categorically whether a sequence has 

passed a given test, but rather we can state that a test has been passed with a given degree 

of confidence. If the degree of confidence chosen was 95% then we would expect the test 

to be failed one time in twenty on average. We may then categorise a bad random number 

generator as one that fails the tests on average more often then it should. It is common 

practice to perform multiple runs of tests to determine reliable results. 

A variety of proven tests are available. Different tests are designed to measure the 

different desired properties of a random number sequence. When choosing tests to apply 

to a sequence we must select those that will give a comprehensive guide to the 

"randomness" of the sequence. The tests that were chosen analyse different properties of 

the sequence, many other tests could have been done but would have overlapped on the 

properties being examined. Below is given a brief description of the tests selected for 

application to the Park and Miller generator. These tests chosen were all equally applicable 

to subsequences as to an entire sequence. All of the tests except the serial correlation use 

the Chi-square test for analysis of results. This facilitates the ability to directly compare 

results between the test ie we are able to say that a sequence performs better on test A than 

on test B. 

5.3.1.1 The Chi-square test 

The Chi-square test gives a measure of the difference between the observed frequencies of 

a number of events and the theoretically predicted frequencies of events. It is used to 
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interpret the results of most of the tests used here. 

The Chi-square test is best illustrated by an example. Consider a six sided unbiased die. 

The probability of rolling any number is 1/6. Therefore if the die is rolled n times we 

would expect each number to come up n/6 times. If what was observed differed from this 

value then it would be possible to say, with a degree of certainty, that the die is biased. 

The difference is expressed by the equation 

V=E (Y8 - nps)2 / nps ; where :Y is the observed frequency 

: np is the expected frequency 

The computed value of V is compared to the Chi-square distribution table of 

percentage points. The row of the table is selected dependant upon the number of degrees 

of freedom required which is one less then the number of possible outcomes tested for ie 

5 in the die example. The column of the table is selected dependant upon the desired 

confidence limit. 

This procedure is important as it gives an indication of how close test results are to the 

results that would be expected, thus providing a performance measure. 

The Equidistribution test 

This test is based on the requirement that a random sequence of numbers should be equally 

distributed between the minimum and maximum numbers. We achieve this by multiplying 

each number by a constant number d and rounding the result to the nearest integer. The 

expected frequency of occurrence of each integer value is therefore m/d (where m is the 

length of the sequence). 

The Serial test 

This test is preformed for the same reason as the equidistribution test but it uses pairs of 

values. This measure gives the distribution of a sequence of numbers from 0 to d over d2 

possible values. The expected frequency of occurrence of each pair as 1/d2. The increased 

range of values dictates that the sequence to be analysed must be of sufficient length to 

validate the Chi-square test conducted on the integer pairs. The rule proposed by Knuth 

�I 
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[94] was used, which states that each category suggested should be expected to occur at 
least 5 times and hence the use of sequences of length >- 5d2 is required. 

The Gap test 

Gap tests check the distribution of lengths of gaps between numbers within a specified 

range. This is important as we can check for the clustering of values within a chosen 

range. It was decided to use the ranges 0 to 0.5 and 0.5 to 1 to test for runs above and 
below the mean respectively. 

The Poker test 

This test analyses the sequence of numbers five at a time, recording the occurrence of a 

number of patterns. This detects if patterns are repeated too frequently or significantly 

more than other patterns. The patterns that were selected are one, two, three, four and five 

numbers falling within the same division. The range of possible values 0 to 1 being split 

into ten divisions of equal length. This is a simplification of the classical poker test which 

has seven categories. The five categories are sufficient for our purposes and are 

significantly simpler to implement. 

The Permutation test 

This test is similar to the Poker test, splitting the sequence into groups of numbers of size 

t. The numbers in any group can then have t! possible relative orderings. The algorithm 

then counts the number of occurrences of each possible ordering. The expected frequency 

of occurrence of each ordering is n/t!. The value oft was chosen as 5 to be suitable for 

analysis. 

The Run test 

The run test analyses the distribution of runs for consecutive numbers up and down in the 

sequence. Subsequences of the original sequence in which all the numbers are either 

running up and down are examined. Each sequence analysed was offset from previous 

sequences by at least one number to ensure that adjacent runs were independent. This is 

a proviso of the Chi-square test that all events analysed be independent of each other. 

t 
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Maximum of t test 

This test splits the sequence into groups of length t and records the maximum value in each 

group hence checking for any bias in groups of values. These recorded results are 

effectively a new sequence of length m/t. This new subsequence can then be analysed by 

the equidistribution test. The value of t was again chosen as five for the previously given 

reasons. 

The Serial Correlation test 

This test generates a serial correlation coefficient which is a measure of how much any 

number within the sequence is dependant upon any of the previous numbers. This is a 

valuable test as it gives an indication as to the unpredictability of a number sequence. 

5.3.2 The testing procedure 

Large sequences of numbers were taken from generated sequences. The poker and 

permutation tests required numbers to be split into groups of five and the serial test 

required pairs therefore the amount of numbers used had to be divisible by ten. The 

amount of numbers tested at any one time must also be representative of typical I SIM 

applications and for this reason tests were done on sequences of numbers from 500 to 

5000. 

All of the tests were implemented in software. These tests took as their input a file of 

random numbers. The relevant parts of the Chi-square tables were also implemented in 

software to facilitate immediate analysis. All results were considered to fall into one of 

three categories 

i) Pass. The result is what would be expected to occur 90% of the time for 

a truly random sequence. 

ii) Suspect. The result is one which would only be expected to occur 10% of 

the time. 
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iii) Reject. The result is one which would only be expected to occur 2% of the 

time. 

Each test was repeated at least ten times using different subsequences. When results were 
inconclusive the tests were repeated in blocks of ten. When generating subsequences seeds 

were chosen such that different subsequences would have no overlap. 

5.4 Testing the Park and Miller generator 

The first step of testing was to apply the statistical tests to the Park and Miller Generator. 

Park and Miller's original spectral tests were global. Knuth [95] has shown that this is not 

a sufficient test and that local randomness must also be tested. What we are testing here 

are relatively short subsequences ie the local properties. The Lehmer generator originally 

proposed [98] was tested as well as the modified generator [94]. Each generator was tested 

with multiple runs incorporating 500 to 5000 samples. 

A typical set of results for the Chi-square tests on the first generator are shown in table 5.1. 

The results shown are for 2000 samples. The failure rate here is 12% at the 10% 

confidence level and 2% at the 2% confidence level. These results are almost perfect. Any 

discrepancies in these tests were small enough to be incidental to the tests and did not 

indicate any statistical inadequacies. The results from the serial correlation tests applied 

to the same 10 runs are shown in table 5.2. There is no indication of significant levels of 

correlation. 
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Table 5.1 Test results for Park and Miller generator with multiplier 16807 

Run # % failing at 

5% level 

1 5.20 

2 3.35 

3 4.90 

4 3.80 

5 5.20 

6 5.80 

7 4.10 

8 4.30 

9 4.75 

10 4.20 

Average 4.56 

Table 5.2 Serial Correlation result or Par c an Miller generator with multiplier 

16807 

The generator tested above was that which was first implemented in I SIM. This was 

updated by Park and Miller who now suggest a multiplier of 48271. A typical set of 

results for the Chi-square test, again for 2000 samples per test is shown in table 5.3. The 

results were very similar to the previous ones. In this example it failed the same number 

of tests as the first generator at the 10% level, ie 12% but slightly more at the 2% level, 

3% as opposed to 2%. These results are typical of all the tests done. The serial correlation 

tests also produced results very close to those of the first sequence. 
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Table 5.3 Test results for Park and Miller generator with mu tiplier 48271 

Run # % failing at 

5% level 

1 5.00 

2 5.60 

3 4.80 

4 5.25 

5 3.50 

6 6.35 

7 7.20 

8 3.65 

9 3.70 

10 3.90 

Average 4.895 

Table 5.4 Serial Correlation results for Park and Miller generator with multiplier 
48271 

From the tests it may be concluded that there is neither generator is appreciably statistically 

better then the other. It can also be stated that with respect to the statistical tests used, the 

Park and Miller generator is virtually ideal and therefore suitable for use within I SIM. 

5.5 Random number allocation 

Some systems may have a number of independent components which require random 

numbers. Such is the case with I SIM. Deng et al [102] considered the similar case of 

the allocation of random numbers within multiprocessor systems. They identified four 

criteria that should be satisfied, three of which are equally applicable to the instance of 

multi-component systems. These are 

i) Each subsequence should be indistinguishable from that produced by a 
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random sequence of standard uniformly distributed random variables. 
ii) A subsequence generated for one process should be independent of the 

subsequence generated for another process. 
iii) The random numbers subsequences should be identically reproducible on 

a subsequent execution of the same program. 

Makino [103] considered randomness of a parallelized source with application to 

congruential and shift register generators used within parallel computers. He found that 

the randomness of the parallelized streams or subsequences ranged from being good to bad 

dependant upon the method by which the source is parallelized. This work concentrated 

on uniform means of parallelization, within I SIM the subsequences will be generated in 

a random manner dependant entirely upon the individual model being simulated. 

Random number allocation may be implemented sequentially, parallely or randomly. With 

sequential allocation each of n components will be allocated every nth number from the 

sequence. This is simple and requires no set up procedures however it has been recognised 
that the subsequences may not be statistically as good as the original [103]. If the 

components consume elements at variable rates then there may be space leakage, a problem 

which is only partially solved by the wasteful solution of providing buffering for each 

component. Space leakage is the loss of elements allocated to components which require 

numbers at lower rates than those dictating the speed of allocation. Buffering is a wasteful 
0 

solution as it necessitates the use of extra resources to store the elements allocated to these 

components. For this reason sequential allocation was unsuitable for I SIM. 

In parallel allocation the generated sequence is split into n sequential sources so that each 

component has its own linear non overlapping subsequence of the original sequence. The 

statistical goodness of the subsequences should then be identical to that of the generator. 
The primary problem with this method is what Burton and Page [ 104] refer to as "awkward 

plumbing". Each component must have its own seed sufficiently far apart in the sequence 

to avoid overlap. The allocation of seeds must be set up initially and this task becomes 

complicated when the number of components is unknown. 

Random allocation, allocates numbers from the generated sequence to components as they 

are required. This results in subsequences which are a non deterministic irregular sampling 

of the generated sequence. In one sense this is a refinement on sequential allocation as it 
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solves the problem of space leakage and saves on the use of component buffering. For 

these reasons, random allocation was the method chosen for I SIM. However the statistical 

quality of the subsequences is non determinable by theoretical means. 

Deng at el [102] proposed a novel method of allocation for multiplitive linear congruential 

generators that they have termed the systematic random leapfrog method. This involves 

systematically choosing different multipliers for each of the different random number 

generators allocated to each process. They have shown this method to be robust if a good 

modulus is used. It is however not ideal for our purpose as we wish to use the Park and 

Miller generator and therefore the multiplier must be constant. This is not an 

insurmountable problem, though the implementation of such a means of allocation would 

require the testing of a number of multipliers. 

5.6 Testing the subsequences produced by the Park and Miller 

generator within I SIM 

We have seen that the random sequence produced by the Park and Miller generator is 

virtually ideal. In section 5.4 it was explained how random allocation is used to provide 

the stochastic transitions within aI SIM simulation with randomly sampled subsequences 

of the generated sequence. As Makino [103] has shown we cannot assume that these 

subsequences will exhibit the same statistical properties of the generated sequence. 

The subsequences will be unique to individual models therefore to provide a representative 

set of data for analysis it was necessary to collect data from a variety of 'typical' ICE 

programs. The remit for these programs was that they should include all of the stochastic 

and probabilistic features of the language that require random numbers and that they should 

generate a suitably large number of calls to the random number generator for each 

transition under analysis so that an acceptable amount of test data could be produced. 

5.6.1 Data logging modification to I SIM 

A number of modifications were required by the I SIM software to produce the data for 
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analysis. All of the modifications were functionally transparent to the user. The data 

logging software creates a file which contains all data required for analysis. Every time 

the random number generator is called a string of data is written to the file including the 

transitions to and from states, whether the call was for a probabilistic or stochastic decision, 

the seed to be used by the generator and the random number produced. This data allows 

the analysis software to pick out any individual subsequence of random numbers and create 
files containing the subsequence for any chosen transition. 

5.6.2 Example results of I SIM generated subsequences 

Three ICE files were used to produce typical subsequences for analysis. The results 

obtained from each were all quite similar as would be expected. We present here one of 

the models and the results obtained. 

The model has two components with the same state space. The state space for a 

component is shown in figure 5.1. All transitions are stochastic and two of them are 

probabilistic. 

exp(50) 

Prob(O. 6) f exp(20) 

exp(40) exp(10) 
Running Waiting_ 

Prob(0.4) 

exp(30) 

Figure 5.1 State space of model used for analysis of Subsequences 

The subsequences applied to each transition were analysed. In the case of the transitions 

from the running state to the waiting states the subsequences used for the stochastic 

behaviour and for the probabilistic behaviour were both analysed separately. Graph 5.1 

shows the number of tests failed at both the 10% and 2% levels for a selection of the 

,ý 
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transitions. These results are typical of all the results obtained for this and the other test 

programs. 
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Graph 5.1 Tests failed at the 10% and 2% levels for selected transitions 

There is a considerable range of results. They range from less than 7% of tests failed at 

the 10% level and 0% of tests failed at the 2% level, which is better than would be 

expected for an 'ideal' sequence to 19 % of tests failed at the 10% level and 5.6% failed 

at the 2% level. By random chance we would expect to have some very good results and 

some poor results. What is significant is the proliferation of failures of 4 out of 90 at the 

2% level. This is twice as many as would be expected and though not very bad is certainly 

a strong enough trend to be able to state that the subsequences on average are not as 

statistically good as the generated sequence. This evidence indicates that the initial method 

of random number allocation is not acceptable and must be improved if all transitions are 

to be provided with random numbers as statistically good as the generated sequence. 

An interesting point to note is that all tests were failed with equal likelihood. The 

subsequences were statistically poorer in general and not with relation to any specific 

attribute. 
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5.6.3 Detection of any predictably statistically poor subsequences 

The test program described above requires random numbers to be allocated to the various 

transitions in a random unpredictable manner. It was decided to investigate alternative 

sampling procedures that would produce significantly better or worse subsequences eg 

regularly sampling every nth number from the generated sequence or regularly dropping 

every nth number from the generated sequence. 

A number of different sampling algorithms were tried. Again tests were done on numbers 

of samples ranging from 500 to 5000. All tests were applied to each pattern a minimum 

of ten times on sequences with seeds selected to prevent overlap. Graph 5.2 presents the 

minimum and maximum number of tests failed, out of 90, at the 2% level for ten runs of 

each of the nine tests described in section 5.3.2.1. Here, 2% denotes the Chi-square test 

when 2% failures would be expected. Graph 5.3 presents the minimum and maximum 

number of tests failed, out of 90, at the 10% level for the same range of tests. 

Legend 
® max tails [I mm lads 

Graph 5.2 Minimum and maximum number of tests failed at the 2% level 
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raph 5.3 Minimum and maximum number of tests failed at the 10% level 

Considering the results at the 10% level we cannot detect any particular trends. The values 

range from less than 7% to 21 % ie from very good to unacceptable. This confirms the 

results obtained for the random subsequences generated by the 1_SIM test programs. 

More interesting revelations are shown by the results at the 2% level. More tests are failed 

in the sequences where every nth number is dropped from the generated sequence than 

when we form a subsequence with every nth number of the generated sequence. The 

variance of results are shown and due to the probabilistic nature of the tests we cannot state 

explicitly that any specific sequence is particularly good or bad but we can with confidence 

make the observation that the generated sequences with equidistantly dropped numbers are 

demonstrably worse than subsequences formed by uniformly dropped numbers when the 

gap between numbers is small. 

It should also be noted that the results can vary significantly for the same pattern of 

samplings done on different parts of the same generated sequence. Consider the instance 

when a subsequence is created by sampling every 6th number in the generated sequence 

ie 'I miss 5' on the graphs. The tests failed at the 2% level range from 0% to 6.67%. This 

is a large margin at the 2% level ie from better than expected to over three times as worse 
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than expected. A number of extra tests were done on this sampling pattern and no other 
tests were found that were worse than 2.22%. From this we can see that the 6.67% was 

a rare chance result. Rare results are to be expected with statistical testing, however no 

results with such great a range were obtained in the testing of either of the main Park and 
Miller sequences indicating that subsequences constructed by sampling can produce 

unpredictable significantly bad results and this suggests they cannot be thought of as 

representative of the original pseudo-random sequences. 

5.6.4 The effect of statistically poor subsequences on I SIM models 

All the results prevented so far have been statistical. What is of real importance within 

LSIM is the question, can statistically bad results have a noticeably detrimental effect upon 

the simulation of models ? 

To investigate this a number of ICE programs were written which incorporated a mixture 

of stochastic and probabilistic transitions. These programs were kept simple so that the 

relative order in which transitions would call the random number generator could be 

predicted. This allows transitions to be fed with subsequences that are known to be 

statistically bad. Statistically bad subsequences were chosen from tables of results and the 

related starting seed used within the simulation. 

We shall consider here one of the models used and the range of results obtained. This 

model is of two communication network sources. It comprises two channels which feed 

fifo queues in two network terminating units (NTUs). Each NTU is connected to the queue 

of a switching element within a switch. The two sources are theoretically independent 

though we shall introduce statistical independence via the traffic loads. A block diagram 

of the model is shown in figure 5.2. The state space diagram for one source is shown in 

figure 5.3. 
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Figure 5.3 State space diagram of a model of communication sources 

We shall briefly consider the functionality of the model by reference to the state space 

diagrams for each of the four components in turn. 

The channel component generates traffic at any time instant with probability x. By setting 

I 
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the values of x in the two different sources we can achieve the desired pattern for 

generating the subsequences of random numbers. For example if we set x to be 1 in 

channel chA and 5 in channel chB then the subsequences used by chA will be equivalent 
to missing every 6th number from the generated sequence ie 5 miss 1. Conversely this will 

set the subsequence used by chB to be every 6th number from the generated sequence ie 

1 miss 5. This probabilistic method of determining the load creates the statistical 
interdependence between the theoretically independent models. By choosing the starting 

seed in the ICE program we can recreate any of the subsequences statistically analysed 

previously. 

The NIU queuing component qiA models the queue of traffic generated by chA. Whenever 

traffic arrives the queue is incremented. If it grows to be over a given length, FULL, it is 

decremented to remain at this maximum value, ie this simulates queue overflow. The 

queue is decremented whenever the switching element seA reads from it. The rate at which 

seA reads is 2y ie twice the rate at which traffic arrives. Using this ratio we can set the 

load so that traffic in the queues should either build up, stay stable or decrease. If we set 

the load to be 0.5 the level of the NIU queues should stay reasonably steady. When seA 

reads traffic from qiA the queue seA_q is incremented. The counters total associated with 

chA, qiA and seA_q show the total amount of traffic that has arrived at the respective 

components. The counter glen associated with qiA keeps a running check of the amount 

of traffic in the queue. 

The values of the traffic load in both channels were set to different ratios to recreate some 

of the traffic patterns previously analysed. As an indicator of the effect the subsequences 

have on the model's behaviour we consider the mean length of the queues qiA. qlen and 

qiB. qlen. Since the ratio between the feeding and reading of each queue is the same the 

mean values should be similar. 

This model was coded, see appendix C, and simulated. A number of simulations were 

observed with the mean values of corresponding queues not usually deviating by greater 

than 1 when runs lasting at least 1000 traffic arrivals were done. 

To test if statistically bad subsequences would effect the models behaviour, the 

subsequences that gave particularly bad results with the sampling pattern 5 miss 1 were 

chosen. The starting seeds were selected to run simulations that would recreate the 
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subsequences previously recorded. The results of the mean values for the lengths of qiA 
and qiB are shown in table 5.5. 

qiA qiB 

2.105 1.925 

2.875 3.820 

10.27 4.25 

15.407 3.753 

2.5 1.575 

Table 5.5 Mean queue lengths from simulations using statistically bad subsequences. 

Some of the results are reasonable and are not affected by the statistically bad 

subsequences. However there are two results which are significantly bad. To investigate 

this further the result with the biggest difference between queue lengths, qiA = 15.407 and 

qiB = 3.753, was considered. By taking the generated subsequence, splitting it into ten 

equisized sequences and taking the seed at the start of each of these sequences we could 

run ten individual simulations each of one tenth of the length of the original and thus when 

concatenated they are directly equivalent to the original. Table 5.6 shows the mean lengths 

of the queues for each of the individual simulations. 

q1A qiB 

1 1.66 1.6 

2 2.92 1.45 

3 2.29 1.65 

4 4.17 3.55 

5 4.05 0.45 

6 3.24 1.05 

7 7.35 2.95 

8 5.14 1.45 

9 2.47 0.85 

10 1.66 2.3 

Table 5.6 Mean queue lengths from one simulation broken down into ten equisized 
constituent parts 
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It can be seen that the mean value of qiA increases by over 4 from the 6th to the 7th run. 

Significantly the highest mean is 7.35 for the 7th run which is less then half the mean of 

15.407 for the complete sequence. When the file of random numbers forming this 

subsequence was examined there were two extended runs of values greater than 0.5. This 

would have caused channel chA to produce traffic feeding qiA at a greater rate it than it 

was been read by seA thereby causing the queues length to increase. This was an 

interesting result as the statistical test for runs up was failed badly by this subsequence. 

Since qiA is being read at a steady rate any runs up in the traffic can take an 

undeterminable time to clear from the queue dependant upon the rate of arrivals. When, 

as in the case being examined, runs up in traffic are interspersed with steady traffic without 

any runs down then the queues mean values can be falsely high. 

This example has shown how statistically bad subsequences can produce actual bad 

simulation results. The inherent nature of queues effectively illustrated how the poor 

subsequence of random numbers directly altered the results from the simulation. Counters 

and queues within ICE models can be significantly effected by statistically bad 

subsequences. It was also observed that not all statistically bad subsequences will effect 

the behaviour of the model. Some statistically bad subsequences will have no noticeable 

effect on the models. It will also often be the case that the effect will be entirely 

dependant upon the model itself. The nature of the transition interactions within a model 

and their dependency upon the subsequences can vary substantially and a statistically bad 

subsequence may significantly effect one model and have no apparent effect upon another. 

5.7 A revised scheme for random number allocation within I SIM 

It was shown in section 5.6 that the random method of allocating random numbers to 

transitions from the generated random number sequence produced subsequences which 

could be statistically poor. These subsequences could have a detrimental influence on the 

behaviour of simulations producing unexpected and sometime erroneous results. For this 

reason it was decided to revise the method of random number allocation. 

In the random method of random number allocation there is only one generated sequence 

being consumed by a number of components. The logical progression is to have an 

independent random number sequence for each consuming component. This may be 
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achieved by having one random number generator and using the parallel allocation method 
described in section 5.4. 

Within I SIM parallel allocation was implemented by giving each probabilistic and 

stochastic transition its own seed. This is the equivalent of splitting the sequence into a 

number of disjoint subsequences, each of which should act like a virtual generator [105]. 

When any transition requires a random number to generate a probability or time it calls the 

random number generator with its own seed. The generator produces a random number 

using this seed and in the process will produce the sequentially following seed. This new 

seed is returned to the calling transition. This process allows each transition to generate 

its own independent sequence as required. 

The main problem with random number allocation is determining the initial seeds. Burton 

and Page discuss several methods in [104]. The primary concern is that each seed should 

be sufficiently spaced within the overall sequence so that no part of the same linear 

sequence will be used by more than one component within the same simulation run. If this 

did occur then there would be high levels of correlation between the sequences being 

allocated to supposedly independent components. 

The method of determining the initial seeds was that which would give the greatest relief 

from cross correlation. It was predicted that the highest conceivable amount of transitions 

requiring random number sequences would be 500 (this may be simply changed if future 

application areas require it). It was then predicted that the maximum amount of random 

numbers required by any transition would be no greater then 1000000. Using these figures 

the generator was run for 500 x 1000000 iterations and every 500th seed generated 

recorded. A table was created with these seeds and they are used as the initial seeds within 

I SIM. Within a simulation these seeds are allocated to transitions as required. It is 

assured that the maximum spread of seeds is used. For example, if a model requires 10 

seeds every 50th seeds in the table will be allocated to a transition. 

It is desirable to be able to repeat simulations and to run simulations with different seeds. 

To facilitate this the SEED command is used within an ICE model. The value of SEED 

may be from 1 to 500 and dictates the starting point in the table from which seeds are 

allocated. This will allow 500 different simulation runs of the same model, which if 

deemed insufficient at some point may be increased by increasing the table size. 
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The statistical properties of the subsequences produced by this revised method of allocation 

should in theory be equal to that of the parent generated sequence. To test this the same 

programs were used as described in section 5.3.2. We shall consider here the model with 
the state space shown in figure 5.1. Graph 5.4 presents the test results for the same 

transitions as in graph 5.1, which shows the test results produced for the subsequences 

created using the previous method of random allocation. 

16 
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4 

0 
Legend... 

0 10% level 0 2% level 

Graph 5.4 Test results for 10% and 2% levels using subsequences produced by parallel 

allocation. 

It can be seen that these results are comparable to those for the generated sequence (table 

5.1). It is interesting to compare these results to the results for the equivalent tests in graph 

5.1. It can be seen that there are slightly less failures at the 10% level and on average half 

the failures at the 2% level. For all the tests done on this improved method of allocation 

the average percentage of failures at the 10% level was 131/o and at the 2% level 1.67%. 

These results are very close to what would be expected for an 'ideal' random number 

generator. 

The revised method of parallel random number allocation has significantly improved the 

statistical goodness of the subsequences being used by the transitions within 1_SIM 

simulations. The subsequences are now close enough to the theoretical ideal to be 
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considered ideal. Out of all the tests done there were no particularly bad results, the worst 

number of failures being 15.5 % at the 10% level and 3.3% at the 2% level. These values 

are still within acceptable limits and we can therefore be confident in the statistical 

goodness of all random number subsequences being used within I SIM. 

5.8 The development of a novel pseudorandom number generator 

The results obtained for the Park and Miller generator was acceptable but it was decided 

to investigate the development of a novel generator. Current research suggested two 

possible methods of generation. 

The first was nonlinear congruential methods which are an extension of linear congruential 

methods. This includes the promising inverse congruential approach first proposed and 

then developed by Eichenauer et al [106,107]. This method has been proven to have a 

number of good statistical properties and Neiderreiter [108] showed that it is suitable for 

producing a number of parallel subsequences which are statistically independent. 

The second area was in the development of fast generators based on the shift register 

method. It was decided to investigate further this method due to the inherent properties 

of long period and fast iteration of such generators. The long periods possible offer the 

possibility of the production of uncorrelated parallel subsequences. 

5.8.1 Linear feedback shift register sequences 

Using hardware shift registers to generate binary sequences has been extensively researched 

[109]. In this method selected bits of a shift register are added modulo 2 to the least 

significant bit to compute the next logical input level. This level is input to the register 

on the next clock pulse during which the contents of the register are shifted along one bit. 

The succession of states in the register is periodic with the period, P, being 

P:: 9 2"-1; where n is the number of bits in the register. 
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To produce a new number of bit length n there must be n iterations of the feedback 

operation. Each state is wholly determined by the previous state. Obviously the all zeros 

state is not allowed as this would result in logic zero being fed back and the register would 

remain in this state. 

Let X be the sequence of l's and 0's generated by the linear recursion relationship, where 

X={x; }; where i=0,1,2,... 

The feedback operations, ie the definition of which bits are added modulo 2 and fed back, 

is given by the feedback equation 

x; = alx; _1 
+ a2x; -2 

+... + a�x1-n (1) 

where a; (j = 1,2, ... , n) takes the value 1 or 0. For the sequence to be of degree n, a,, 

must be 1. The integers a, determine which stages of the register are fed back. Equation 

(1) shows that the sequence x; depends only upon the preceding n-tuple (x; 
_t, x; _I ,..., x;. 1 ). 

Each new n-tuple has a unique successor determined only by the recursion formula. The 

maximum period P of x; is P= 2" - 1. When the period is maximum the sequence is 

called a maximal length linear recurring sequence or m-sequence. 

For the sequence to be an m-sequence the polynomial 

f(x) =1+ ax + a, x2 + ... +e (2) 

must be primitive over the Galois field of order 2 [109]. Zieler [110,111] has compiled 

lists of primitive polynomials. 

Equation 2 is known as the characteristic equation. For computational ease the 

characteristic equation is normally a primitive trinomial. When the period is prime, P is 

known as the Mersenne prime and n is termed the Mersenne exponent. 
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5.8.1.1 Decimation of m-sequences 

Decimation is an important principle used in newer shift register pseudorandom number 

generators. Let x be an m-sequence. Let x(k) be a sequence generated by sampling every 
kth bit of x. This operation is termed decimation of order k [112]. 

If k and P are coprime, (k, 2"- 1) = 1, the decimation is known as proper decimation and 

x(k) is also an m-sequence with the same period. If k= 28 (a E I), x(k) is a shifted version 

of X. 

Let y be a binary m-sequence such that y= x(k). It is possible to determine the sequence 

x by decimation of y. The order of the decimation should be such that [113] for k= 2° 

m=2 "-a (3) 

Consider two m-sequences xl(k) and x2(k) generated by sampling every kth bit of x 

starting with the first bit for xl(k) and the second bit for x2(k). The sequences xl(k) and 

x2(k) represent the same m-sequence with a phase shift between them. From equation 3, 

if we assume x2(k) is delayed with respect to xl(k) by d bits, d can be shown to be 

d=2°-8; when k=28 

d=2"/k; whenk: P, - 2' 

We can generalise this. Let x,,, (k) be the kth decimated sequence starting with the mth term 

of x. The phase shift between x1 (k) and xm(k) is 

d= m/k (mod P) (4) 

This result has been used extensively in the development of linear feedback shift register 

pseudorandom number generators. 

Tomlinson et al [114] compared the m-type weight distributions of an m-sequence based 

on a primitive trinomial and its decimation by consideration of a third central moment 

which is a measure of skewness and is zero for symmetrical distribution. They have shown 

that the third central moment can be very much less for the decimated sequence than for 
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the trinomial sequence. 

5.8.2 The generation of random numbers from linear feedback shift 

register sequences 

Most of the techniques for producing random numbers from m-sequences rely on the fact 

that a collection of N independently derived random binary digits when assembled in an 

N-bit word may be interpreted as a number provided a suitable weighting is applied to each 
bit in the word [115]. In this way a number B; in the range (0,2" - 1] may be created. 

Assuming each digit is generated by a source which produces 0's and l's with equal 

probability the N-bit composite number will be random and uniformly distributed over its 

range. The difficulty lies in producing and N-bit number from n independent sources. 

Using N stages of an n stage shift register presents itself as a simple solution but it is 

undesirable as the generated numbers are cross correlated. It is therefore desirable to 

spread the pick off positions by shifting the N digits adequately relative to each dther. 

Two techniques are proposed to generate these n shifted version of the m-sequence 

i) Linear Combination of the n register stages of the feedback shift register. 

ii) Decimation of the m-sequence 

The former requires the calculation of the proper stages to be added modulo 2 to get the 

required shifts. The latter is simpler but slower due to the sampling. For n shifted 

versions of the m-sequence to be independent the shift d must be high enough to ensure 

there is no overlapping of the shifted subsequences. This calls for the use of high degree 

polynomials representing the feedback shift register. In this way the generated 

pseudorandom number sequences are uncorrelated to shifts up to d. Techniques were 

proposed which use N different m-sequences to generate N-bit pseudorandom numbers but 

they received little attention because of the correlation between the individual bits [116]. 

5.8.3 The Tausworthe generator 

Tausworthe [117] proposed a method of pseudorandom number generation by decimation 
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of m-sequences produced by a feedback shift register. The advantages of this method is 

the theoretical guarantee of good properties of randomness. Tausworthe showed that the 

numbers produced had good mean, variance, autocorrelation and uniformity properties. 

Tootill et al [118] observed however that these results applied to global characteristics and 

give no insight into local behaviour. Local behaviour in our application is critical as we 

will only use relatively small subsequences for any given application. They investigated 

the runs properties of k-decimated generators based on the primitive trinomials (x° + xk + 

1) and their compliment (x° + x°-'` + 1) and showed that sequences of k-bit numbers may 

have good runs and uniformity properties provided the following criteria are met 

i) The greatest common divisor between (km) and P is 1 for m= [n/k]. 

ii) k must be less that n/2. 
iii) k is neither too small nor too close to n/2. 

Provided neither k nor n was too small a generator meeting the above requirements has 

predictably good runs properties. The main disadvantage of the Tausworthe generator is 

its slow speed due to the sampling required for decimation. It does however remain a 

widely used generator due to its theoretical randomness properties. 

5.8.4 The Lewis Payne generator 

Lewis and Payne [119] proposed a generalised feedback shift register generator (GFSR) 

algorithm capable of producing long sequences of pseudorandom numbers which may 

posseses m-space properties for any word size of machine. Their algorithm is commonly 

used in cryptography where it as known as the TLP algorithm [120]. Their algorithm relies 

upon shifted versions of the m-sequence and involves the introduction of delays between 

words. 

The GFSR algorithm is again based on a primitive polynomial, generally a trinomial (x° 

+ xk + 1). A recurrence relation is used to produce a pseudorandom m-sequence b;. The 

algorithm is initialised by the selection of suitable initial words. If N-bit words are desired, 

the GFSR sequence is initialised by setting the elements of b; into N columns with a 

suitable delay between adjacent columns. 
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This generator is fast and widely used. There exists efficient software implementations 

including Hamilton's [121]. Tests on this generator demonstrated reasonable confidence 
in the properly stochastic nature of the number generated though for this as in most shift 

register generators the length of period dictates that no existing computer could run close 

to full period tests without reaching obsolescence and therefore only relatively small 

subsequences have been tested. 

Major disadvantages of this generator are the computation involved in its initialisation and 

the fact that there is no theoretical assurance of m-distributivity. Fushimi et al [122] 

established a sufficient condition for the GFSR sequence to be m-distributed and also 

proposed a relatively time efficient algorithm for testing the m-distributivity. Fushimi's 

theorem is an advance on the GFSR algorithm. Another remaining disadvantage is that 

since the relative delay between columns is suggested to be 100n, it cannot deliver more 

than 100n numbers without correlation problems. 

5.8.5 The Split-up feedback shift register generator 

Arvillas and Maritas [123] have shown that the m-sequence based on the primitive 

trinomial (x" + xk + 1) can be generated a splitting up a feedback shift register composed 

of k-toggle and (n-k) shift elements. They state that for k being coprime to (2"-1) the split 

up shift register can generate, in parallel, k m-sequences each of which is a kth decimation 

of the base trinomial sequence. These m-sequences are Tausworthe sequences with 

statistical independence ensured over a length equal to [(2"-1) / k] -1. 

This generator was first proposed as a hardware implementation of the Tausworthe 

sequence. Arvillas and Mantas suggested that for efficient software implementation using 

split-up feedback shift registers based on the trinomial (x° + xk + 1) where k=2; i EI 

[124]. Here the k outputs of the leading stages of the sub-registers are phase-shifted 

versions of the basic m-sequence based on the trinomial. 

The main advantage of this technique is that it gives fast algorithms. However the 

statistical properties can vary greatly for sequences of the same length but having different 

characteristic polynomials. 
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5.8.6 The Barel generator 

Barei [125] proposed a hardware Tausworthe pseudorandom number generator based on n- 
wise decimation of primitive trinomials (x" + x' + 1). His method is advantageous in that 
it is very fast and independent of the number of bits or the trinomial characteristics. Barel's 

algorithm is given below 

i) Start with an initial seed, say B'1 

ii) Store B', in locations A and B 

iii) Shift contents of Bk positions to the right, replacing the contents of bits 1 

to k by zeros. 
iv) Add contents of A and B modulo 2 

v) Store result in A and B 

vi) Shift contents of B (n-k) positions to the left, replacing the contents of bits 

K+1.. n by zeros 

vii) Add contents of A and B modulo 2 

viii) Store result B't+, in A and B 

ix) Repeat from step (iii) to generate next number 

Barel's hardware implementation of this algorithm is very fast as it replaces all n bits of 

the register in parallel. It is also very component efficient as it requires only two registers 

and two layers of exclusive OR gates but it is very powerful. 

Barel used this generator to test three primitive trinomial generators giving 31 bit random 

numbers and obtained satisfactory results. However it is significant that the number of 

dimensions in achieved by these types of generators will never exceed one. From 

Tausworthe's theory the number of dimensions is equal to [n/q] where q is the order of 

decimation. Since n=q, then in = 1. Tootill et al [118] have shown that the number of 

dimensions influences the runs up and down properties and hence Barel's generator will not 

give good results in this respect. 

132 



5.8.7 A proposed software fast Tausworthe generator 

Talib [7] proposed a hardware Tausworthe generator which was a development of Barel's 

but used k-wise decimation to give a higher number of dimensions. Here we develop 

Talib's proposals and suggest a fast software Tausworthe generator. 

Let b; be an m-sequence based on the primitive trinomial (x" + xk + 1)in which (k, P) =1 

and k< n/2 (Tootill's first and second criteria [118]). Let So = (b,, 
_, 

bn_2 ... b2 b, b0) be the 

starting n-tuple of the sequence. By applying the base recurrence relationship to So we get 

the following succession of sequences 

S, =(boED bk)b., 
_I ... 

b2b, 

S2=(b1 (D bk+, )(bo®b3... b3b2 

Sk = (bk-I 0 b2k-1) 

""" (bo ® bk) b�_1 ... b3 b2 

If A and B are integer variables then Sk can be generated from So by the following 

algorithm 
i) A=B=So 
ii) B=B DIV 2k 
iii) A=A®B 
iv) A=A MUL 2-k 
v) A=A®B 
vi) Sk =B=A 

This process can then be repeated (replacing So with Sk in the first step) to generate Sek , 
S3k ,..., 

Sk for t=0,1,2,.... Sk is then a Tausworthe sequence based on k-wise decimation. 

This generator produces the same sequence as the split-up feedback shift register type but 

does not require any computations to determine the sub-register lengths. 

Our algorithm is similar to Barel's but since we use k-wise decimation we have m= n/k 

dimensions of uniformity. By choosing k to be not too small and k< n/2 (Tootill's third 

criteria) we can satisfy the requirements for good runs properties. Note that this generator 

produces ak bit random number. The value of k must be of an order such that the k-bit 

accuracy is suitable. If a greater bit degree of accuracy is required then Barel's generator 
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may be used as it gives n-bit random numbers on each iteration. 

5.8.7.1 Software implementation 

With the use of bitwise arithmetic and replacing the DIV and MUL operations with shift 
left and shift right respectively we can easily implement this algorithm in software. One 

obstacle is that we would wish to use trinomials with a high order of n to give good 

randomness properties. In most computers register and therefore software variable lengths 

are limited to 32 bits. To overcome this we must concatenate variables and write routines 

to model registers of the required length and this extra processing will have a detrimental 

effect on the speed of the generator. Accepting this, the algorithm lends itself to efficient 

software implementation and the use of shift rather than divide and multiply operations will 

give and enhancement in computational speed in comparison to Lehmer generators. 

5.8.7.2 Testing 

The algorithm was implemented in the C programming language and tested by analysing 

a number of generated sequences. The starting seeds for each sequence were always 

chosen such that the delay between different sequences was always greater than the length 

of subsequence being analysed. The same statistical tests were used as for the Park and 

Miller generator and again a range of subsequences were tested with lengths ranging from 

500 to 5000 samples to be representative of typical I SIM applications. 

Talib [7] tested a number of characteristic polynomials for his proposed hardware 

generator. We used his recommended optimal trinomial (x47 + x14 + 1). We also 

implemented and tested the trinomial (x31 + x" + 1) and its compliment (x" + x20 + 1) as 

recommended by Miller et al [126] for linear feedback shift register generators. 

Best results were obtained for the trinomial (x47 + x14 + 1). These results varied depending 

upon the initialisation seed. Generally results were acceptable at both the 10% and 2% 

levels, falling within the limits of an ideal generator. However, on occasions failures at 

the 10% level reached as high as 16.5% and at the 2%level, 7.5%. Clearly the 

subsequences that gave these results are unacceptable. Conversely we obtained some 
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exceptionably good results with failures falling as low as 1% at the 10% level and 0 at the 
2% level. From these results it may be concluded that the generator gives generally 

acceptable results but the choice of initial seed for relatively shot runs is critical. 

As was discussed earlier, what is required for I SIM is an efficient generator with good 
local statistical properties over short subsequences and a table of 500 seeds to initialise 

such subsequences. Our new generator matches these requirements provided the table of 

seeds is suitably determined. 

5.8.7.3 Timing of the generator 

Theoretically a software implementation of the new generator should be faster then the Park 

and Miller Lehmer generator as it replaces the computationally intensive divide and 

multiply operations with shifting. Timing tests were conducted on both generators with 

each going through an equal number of iterations. The results are given in table 5.7. 

Amount of Numbers 

Generated 

Time Taken (seconds) 

New Generator Park and Miller 

106 5 21 

10' 49 209 

108 489 2083 

Table 5.7 Timing of the Generators 

The results reflect the theoretical predictions with the new generator being 4.25 times faster 

than the implementation of the Park and Miller generator. Note these tests were run on a 

100MHz computer to give an idea of scale relative to other machines. This is a significant 

result for if we were to produce a Lehmer generator with a longer period the speed of 

generation would increase. However even though we have decreased the speed we have 

increased the period by 24' - 1/2" -1= 210 = 1024 times. 

For interest, the time taken to generate one row of the parallelization matrix, ie a single 

complete subsequence of length 224 numbers was 80 seconds. 
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From these timing results and the statistical results discussed in section 5.8.3.2 it can be 

seen that our generator meets all of L'Ecuyer's [ 127] properties for a good generator. These 

are: Good statistical properties [128]; long period [129]; speed; low memory usage [130]; 

portability [131]; reproducibility [132] and splitting facilities (ease of parallelization). 

5.9 The generation of seeds to produce parallelized random number 

sources 

Some work has been done on the parallelization of random number sources. Durst [133] 

suggests the use of random seeds whereas Makino [103] has proposed a formalised means 

of producing a seed matrix whose rows are equipartitioned subsequences of the original 

sequence. L'Ecuyer and Cöte support this approach in their random number package [105] 

and it is also suitable for our generator. It is not always applicable to linear congruential 

generators where bad long range correlations can occur between subsequences when the 

modulus and length of subsequence are both powers of two. This is why Durst prefers 

random seeds. By number theoretical argument Makino produced general conclusions 

which depend upon the method of parallelization and the period of the source sequence. 

It was decided to follow Makino's conclusions to produce an optimal matrix of 

subsequences for our generator. This method satisfies Deng et al's criteria listed in section 

5.4. Since each row of the matrix gives an independent subsequence , the first column of 

the matrix may be used as a table of possible initialisation seeds. 

The matrix may be produced to give either a vertical or horizontal configuration, here we 

are considering the horizontal case. Properties of the original sequence will be reflected 

in each row. A row is continued on the following row so that the delay between 

subsequences is the row length, v. The two dimensional properties of such matrices have 

been studied [134] where the numbers may be allocated to components in the orthogonal 

direction. The statistical properties of these subsequences are not guaranteed. For the 

proposed application orthogonal allocation would not be used. Our only concern would be 

the allocation of numbers to an amount of components equal to the number of rows in a 

constant uniform manner. In this rare but possible instance the delay between orthogonal 

subsequences would be important. However this would only be a problem if the final row 
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of the matrix was continued with a re-run of the original sequence to produce extra rows. 
Since the period of our generator is very long (241 - 1) there will be more than a sufficient 
amount of numbers to give enough rows of good length and this will not be a problem. 

Dimensioning of the matrix 

Let P be the period of the generated sequence and v the chosen length of a row. The 

number of rows, , u, will then be 

A= rP/vl (5) 

where rxl is the least integer greater than or equal to x. The rows will be of equal length 

save for the final row which will be shorter than the others by k 

k= uv -P (6) 

terms. Note that for a shift register generator of period P= (2" - 1), if v is chosen such 

that it is a power of 2 then k will always be equal to 1. From this it is apparent that all 

rows, including the final row will be subsequences of suitable length. 

The value of v is equal to the delay, d, between subsequences and as such must be chosen 

to be suitably high. It was decided to set the value of v to be 224. Using equation 5 to 

calculate , u, the number of columns 

µ=rp/vl=x241-1/22 =223 

Note that this is the maximum number of subsequences and as we have seen some initial 

seeds produce unacceptable subsequences. To produce the required 500 initial seeds 

software was written to generate a number of rows of the parallelization matrix. The first 

column was noted and the values from this column were used as initialisation seeds for the 

generator. Subsequences were produced of suitable length for analysis. The statistical tests 

were run on each subsequence for sample lengths of 1000. A minimum of ten complete 

runs of tests were conducted for each subsequence to give properly indicative results. 

From these results a table of 500 initial seeds was selected from the first column of the 

matrix. Seeds were only selected if they produced subsequences with statistical properties 
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matching or better than the ideal ie 10% failures at the 10% level and 2% failures at 

the 2% level. 

5.10 Conclusions 

In this chapter we have reviewed the use or random number generation within I SIM and 

proposed a fast software pseudo-random number generator. 

The initial generator used was the popular Park and Miller generator. This has previously 

been shown to be statistically good over long runs, however within I SIM a generator must 

be used that demonstrates good statistical properties over various run lengths. In the first 

implementation, one generator was used within I SIM and numbers produced were 

allocated to stochastic and probabilistic transitions during the simulation as required. The 

result of this was the creation of sub-streams which are generated by randomly sampling 

the parent sequence. Investigation showed that these sub-streams were in some cases not 

as statistically good as the parent sequence. 

What is of concern is the effect of the random sequences on an I SIM simulation. 

Through actual ICE examples it was shown that sub-streams with less than ideal statistical 

properties could affect the simulation. However this is not always the case and it is 

impossible to predict. For these reasons a new method of allocation is suggested whereby 

each stochastic or probabilistic transition is allocated a unique seed for the parent sequence. 

All streams of numbers then allocated are space shifted versions of the parent sequence. 

The Park and Miller generator is a linear congruential generator and as such there is a 

notable computational overhead occurred in the generation of numbers. Pseudo-random 

generators of the shift register type previously used within hardware reliability simulators 

were also considered. We have proposed a fast software implementation of a shift register 

generator based on one of these hardware generators. It has been shown to be of a similar 

statistical standard to the Park and Miller generator but over four times faster. For this 

reason this proposed generator has been selected for use within I SIM. 
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Chapter 6 

Computational models for ICE 

6.1 Introduction 

In this chapter we consider computational models for ICE. The purpose of this is 

twofold, firstly to produce a formalised definition of the language's semantics and 

secondly to compare ICE to a recognised modelling technique. 

In chapter 3 it was shown how the language's simple syntax can hide some complex 

semantics. A modeller may become competent with ICE and begin to apply it within 

a few hours but for it's full power and flexibility to be utilised the underlying semantics 

must be grasped. With the ethos during development being to keep the syntax as 

intuitive as possible, consideration of this without the semantics would most likely give 

an incomplete rather than erroneous understanding. 

It was decided to adopt Petri nets, described in section 2.4.3, for the above purposes as 

they are well documented and currently the most widely utilised technique for modelling 

real time concurrent systems and in particular performability modelling. By producing 

a detailed comparative study a credible recognition is obtained of ICE's relative power. 
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The chapter has two main sections. The first considers each ICE construct and builds up an 

equivalent CGSPN model. We then go on in the second to identify some recurrent 

problems in systems modelling and propose ICE solutions to these. 

6.2 COMPONENT 

The language . 
is primarily concerned with interacting components, each of which will exist 

in one of a number of states at any given instance in time. We may model a component 

with a Coloured Petri Net (CPN). Each place will represent a state. A CPN representation 

of a simple two state component is shown in figure 6.1. An explicitly defined colour 

COMP with token c is used to show the current state of the component. The component is 

shown in state idle which is also the initial state. The arc expressions and transition 

markings would be determined by the component's BEHAVIOUR statement. 

PC 
COMP 

1'c 

id ec 

T 1ý ýT2 
ÄJ 

c COMP 
--------------------- 

color COMP = with c 

busy 

Figure 6.1 Component 
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6.3 CONSTANTS 

Constants may be defined as distinct colours using CPN ML. Each constant would be a 

subset of the basic colour type int. An example of a constant and the equivalent colour is 

CONSTANT ={ VALUE =4} <__> colour VALUE = int with 4; 

6.4 STATE SETS and COUNTERS 

A STATE SET defines the finite set of states that a component may exist in. Each state 

may be represented by an individual place in a CPN. One token of a defined colour will be 

shared between all state places. The current state will be indicated at any time by the place 

which contains this token. An example of this was seen with the token c in figure 6.1. 

Counters may also be represented by places within the same CPN. This highlights a 

significant advantage of using CPNs rather than PNs to model the language. With PNs 

counters would have to be modelled as separate nets or sub-nets interacting with the 

component nets. The use of different coloured tokens in CPNs allows us to model using 

one net, the token colours distinguishing the functionality of the components and the 

counters. 

Counter places will be connected to state places in a manner controlled by the counter 

definitions within a STATE SET. The arc expressions will reflect the arithmetic statements 

of the counter modifiers. As an example, the statement 

STATE SET 
COUNTER 
STATES { 

state 1 
state 2 
state 3 

} 
} 

comp states { 

.S count a, count b, count -c ; 

{ count c= count -a 
+2}; 

count b= count b-1}; 
{ count -c = count c/2}; 

may be modelled by the CPN shown in figure 6.2. 
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pl ýl 1+(3) p3 COMP 

is 
state -I v state3 

TcI Tc2 

i 
is I1'(°) I 

c j/ic 

count c T2 Div(ic, 2) 
Köe 

a+2COMP 

p2 
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count -b 
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Figure 6.2 Counters 

color E= with e; 
color COMP =with c; 

color I=int; 

var ia, ib, is :I; j 
funDiv( i: I, 2: I): I=idiv2; 

Component and counter places are marked by C and I colour tokens respectively. Counter 

values are given by the value of the integer tokens attached to the counter places. Updates 

to these values are denoted by the counter transition post-arc expressions which reflect the 

counter modifiers in the STATE SET expression. The initial values of counters are 

component dependant and can be marked on the counter places. In this example the initial 

values of count a, count b and count _c are 3,10 and 0 respectively. 
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6.5 SYSTEM 

One way to represent a system statement by a CPN is to use a combination of integer 

tokens as counters and Boolean tokens to monitor the state of the constituent Boolean 

functions. Figure 6.3 shows the CPN which can be used to model the statement 

SYSTEM sys. all = ALL { compl. statel, comp2. counter =2}; 

A single u token of colour Cond in one of the places sys true or sysfalse reflects the 

condition that sys all is either true or false. The place list with token i of colour integer 

keeps a count of the number of expressions within the system expression which are 

currently true. When comp] moves into statel ac token is put in place state] and is 

removed when compl leaves state]. The entering and leaving transitions TI and TI ' also 

put enable, e, tokens in places cl -t and cl- f respectively. These tokens will enable 

transitions TI t and TI f which, when fired, will update the list counter by modifying the 

value of the list place token I. 

The list counter must also be updated to reflect the condition of the expression 

comp2. counter = 2. When any transition fires that will change the value of token cnt in 

place counter (used to model the value of comp2. counter) e. g. T2 a token cnt of colour int 

and value equal to the modified counter token is is put in place cnt mod. This token will 

enable one of the two transitions Tct and Tcf. Which one is enabled is determined by the 

guard expressions. We will consider the case when Tct is enabled, the complementary case 

of Tcf being enabled is very similar. Transition Tct will fire and place an e token in place 

cnt_t. If there is also an e token in place enable t, Tcl will fire putting an e token in place 

cnt_1. An e token in this place makes it possible to move au token between places false 

and true. The place that the u token is currently in reflects the condition of the expression 

comp2. counter = 2. If the u token is currently in place false then along with the e token in 

place cntl it will enable the transition TcJ. This transition will fire, removing the u token 

from false and placing one in true. It will also place an e token back in enable t. If 

however the u token is already in true the counter expression must already be true. The 

inhibitor arc which disables transition Tc3 when there is au token in false would now, 

along with the e token in cntl, enable Tc3, which would then fire and place an e token back 

in enable t. Thus, in this second instance, the change in counter value has no effect on the 

value of the counter expression. When either transition Tc tf or Tc_ft fires, signifying a 

change in the value of the counter expression, an e token is placed in either place ct or cf to 
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enable transitions T2t and T2f respectively. These transitions, once fired, will update the 

value of the list counter. 

When any of the transition Tlt, Tlf, T2t or T2f, that change the value of the list counter 

fire, they place a token si of colour integer in place sysmod. The value of si will be the 

same as that of token Ii, the list counter. This token will enable one of the transitions Tst or 

Tsf. Which one is enabled will be determined by the guard expressions which reflect the 

condition of the overall system statement. These transitions will place an e token in either 

sys t or sys f. Tokens in these places allow the overall system expression to be modified, if 

required, by placing a single u token in either sys true or sys_false. The enabling 

mechanism is the same as that used in the part of the net which models the comp2. counter 

=2 expression. 

The example given above was for a system statement of type ALL. We can also utilise 

system statements of type ANYn and EXACTLYn. A very simple modification of the CPN 

in figure 6.3 allows these different types of statements to be modified. All that need be 

altered are the guard expressions on transitions Tst and Tsf. Table 6.1 shows the guard 

expressions which would be used in each instance. 

System Statement Transition Guard Expressions 
Tst Tsf 

ALL I=2 IQ2 
ANY1 I>0 I=0 
EXACTLY I I= 1 I <> 1 

Table 6.1 Transition Guard Expressions for different System Statements 
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6.6 RESOURCES 

When representing RESOURCES and STOCK with CPNs we must consider both their 
definition and allocation. The resources defined in the statement 

RESOURCE { res -a :2; res b: 4}; 

may be represented by the CPN in figure 6.4. 

A 2'a B 4'b 
--- 

2'a 4'b color A= with a; 

res a ýres b/' color B= with b; 

Figure 6.4 Definition of Resources 

The places res a and res -b 
hold the free resources. Token colours have been defined for 

each resource type. The initial marking will always reflect the number of resources given in 

the resource statement, whereas the current marking will be modified as the CPN is 

executed. 

The allocation of resources may be represented as transition post-arcs. The non- 

consumable nature of resources can be reflected by the use of post-arc `feedback loops'. 

Figure 6.5 shows a CPN representation of the statement 

01V 
. _RESOURCE res -a = 1, res b=2{ 

state l -> state2 }; 

The transition Ti is only enabled when the component is in statel and the required number 

of both res _a and res b resources are available (1 and 2 respectively). When TI fires it 

removes this number of resources from res a and res b and puts an equivalent number of 

each in place state2. This operation is detailed in the pre and post arc inscriptions of Ti. 

When the component leaves state2, represented by the firing of transition T2, the resource 

tokens must be returned to the resource places. This is shown on the post-arc inscriptions 

of T2. 

Stock may be modelled in a similar way. Stock however is consumable and therefore there 

would be no returning of stock to the free stock places. 
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Figure 6.5 Resource Allocation 

6.7 BEHAVIOUR 

color A= with a; 
color B= with b; 

color COMP = with c; 

Behaviour statements can comprise of a number of different transition statements which 

may have varying preconditions. We will first consider the transitions and then go on to 

look at the preconditions. 

6.7.1 Timed probabilistic transitions 

Timed probabilistic transitions can simply be modelled by transitions in CPNs. For 

example, figure 6.6 shows a CPN which represents the statement 

7 statel -> state2 PROB(0.7) ; 
exp(2) state1 -> state3 PROB(0.3) ; 

The transition inscriptions show the firing times and the probabilities are shown on the pre- 

arc inscriptions. 
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color COMP = with c; 

Figure 6.6 Timed Probabilistic Transitions 

6.7.2 Transition firing policies 

When modelling the different transitions within a behaviour statement the transition firing 

policy of the equivalent CPN becomes critical. Various policies have been suggested and 
[32] gives a detailed analysis. 

The issue that is of most concern to us is when exactly a timed transition is fired. There are 

two broad possibilities 

1. When a transition is enabled the firing delay is started. Once this time has elapsed 

the transition is fired, removing the enabling tokens from the input places, as listed in the 

pre-arc expressions and places the tokens listed in the post-arc expressions are immediately 

put in the output places. If during the time the firing delay is elapsing the enabling tokens 

are removed from the input places, the transition is no longer enabled and will not fire. 

2. As soon as a transition is enabled it fires, removing the enabling tokens listed in the 

pre-arc expressions from the input places. Tokens are placed in the output places as listed 

in the post-arc expressions but do not become active until the period of the firing delay has 

elapsed. 

The significance of the difference between these two possibilities with respect to model 

behaviour is best illustrated by a simple example. 
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Part of a behaviour statement 

5 state 1 -> state2 ; 
ON EVENT comp2. statel { 

2 state 1 -> state3 ;} 

is modelled by the CPN in figure 6.7. Note that the control logic of the ON EVENT 

precondition is not shown. 

E 

e 
one 

T1 sý tate3 

->-' 
c 

COMP c2 

lC( te1 

-- 
> T2 -)P-! state2 

cc ý77 

5 

Figure 6.7 Transition Firing Policies 

color COMP=withc; 

color E= with e; 

Using the first firing possibility the model would be correct, however using the second 

would cause an error. If at time ti =0 units ac token is put in place state] but there is no e 

token in place one, transition T2 will be enabled but transition T1 will not and therefore T2 

will fire, removing the c token from statel. If then at time t2 =1 unit an e token is put in 

place one, T1 will not fire since it is still disabled due to the c token having been removed 

from state], thus the ON EVENT will not be executed. Clearly this is incorrect as the 

ON_EVENT transition would be completed at time t3 = t2 +2=3 units before the first 

transition which would finish at t4 = ti +5=5 units and should then take priority. 

This example would seem to dictate that the first firing possibility be adopted, however it is 

the second that is now proving more popular in CPN modelling and simulation tools eg 

SymNet. It would then be desirable to implement a solution which utilises the second 

possibility. This may be done by using test arcs. Test arcs for CPNs have been formally 

defined in [41 ]. 

A test arc behaves in a similar manner to a normal arc but they are conservative and several 

test arcs may access the same enabling tokens concurrently. They may not however access 

enabling tokens at the same time as normal arcs. Test arcs cannot change the marking of a 
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place. Figure 6.8 shows a solution to the timing problem utilising the second firing 

possibility by using test arcs. 

If a time ti =0 units ac token is placed in state], TI will be enabled and fire, but since the 

pre-arc is a test arc, the token will not be removed from state]. If then at time t2 =1 unit 

an e token is put in one, T2, will be enabled and fire. T2s firing time will elapse first at time 

t3 = t2 +2=3 units and an e token will be put in place P2. This will enable T6 which will 

fire, removing the c token from statel and placing ac token in state3. When TI s firing time 

elapses at t4 = tI +5=5 units it will place an e token in P1. Since the c token will already 

have been removed from statel, T3 will be disabled and instead T4 will fire to clear PI and 

place an e token back in Pel. The inhibitor arc on transitions T4 and T5 will prevent any 

conflict. T4 and T5 have no effect on the state of the component. 

E Pe 
Pel 

e E COMP 
ýe 

-ýT1 e P1 T3ý--ý state2 

r 
T4 -j 

statel color COMP = with c 
c color E= with e; 

e 
c 

COMP 

c T2 P2 T61--- state3 

E/_e 

one, Pet 
E 1I 

Figure 6.8 Timing problem using Test Arcs 

6.7.3 ON EVENT 

It was shown in the previous section how it was possible to resolve firing conflict that may 

arise when there are multiple transitions from the same state. Figure 6.9 shows a CPN 

which models the interaction of components through the ON EVENT transition 
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ON EVENT compl. statey { 
state 1 -> state3 }; 

Components 1 and 2 communicate via places P1, P2 and P3. When any transition fires that 

moves component 1 into statey, eg T1, an e token is put in place P1. This, along with the e 

token in place P2 enables T2 which will fire and place an e token in place P3. If component 

2 is in state], transition T4, the `forced event', will be enabled and fire moving component 2 

into state3. An e token will also be placed back in P2. Transition T3 is required to place an 

e token back in P2 regardless of the state of component 2. The inhibitor pre-arc of T3 

prevents conflict. 

By combining the CPNs of figures 6.8 and 6.9 multiple possible transitions from the same 

state can be modelled. Places one in figure 6.8 and P3 in figure 6.9 are the same place and 

transitions T2 in figure 6.8 and T4 in figure 6.9 are the same transition. The resulting net 

will model the statement 

5 statel -> state2 ; 
ON EVENT componentl. y { 

2 state 1 -> state3 }; 

component 1 COMP 

T1 statey 

vi 
E 

E P1 

- -----------------i 
color COMP = with c; 

color E= with e; 

1'e 

P2 - 

1'e 
T2 

e 
E 

P3 

73 
component 2c 

COMP eý-- 
-- - -ý COMP 

state 1c T4 c 
state3 

Figure 6.9 ON EVENT 
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6.7.4 IF 

A CPN representation of the statement using the precondition IF 

IF compl. statey { 
statel -> state3 }; 

is shown in figure 6.10. 

component 1 

i -_--, COM 
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component 2cc 
state 1 --* T5 

Figure 6.10 IF 

color COMP = with c; 
color E= with e; 

L --------------J 

state3 

The sub-net of places t and f is an indicator of the state of component 1. An e token in t 

represents 4comp1. statey' and an e token in f represents ̀not comp1. statey'. Transition T5 

will be enabled if there is an e token in t. An e token is placed in t whenever a transition 

fires that places component 1 in statey, eg Ti. When T5 fires, if component 2 is in state] 

(represented by ac token in place state]) it will move to state3. Whenever a transition fires 

that takes component 1 out of statey an e token will be put in place P2 enabling T4 which, 

when it fires, will remove the e token from t and place an e token inf. This will disable T5. 

This represents very well the semantics of the IF precondition. 
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The CPN in figure 6.9 representing the ON EVENT precondition was combined with the 
CPN of figure 6.8 to model multiple transitions from the same state. The CPN of figure 

6.10 may be similarly manipulated to model multiple transitions. 

6.8 WAIT FOR 

We will consider firstly the use of the WAIT FOR statement to dynamically create 

components. Figure 6.11 shows an example of a CPN which models the creation of a 

component after some given time delay t. 

WAIT FOR t{ COMPONENT... }; 

COMP 

P1 -> Tl i 
----- state ec 

t 

color COMP = with c; 
colorE=withe; 

IL------------------ 

Figure 6.11 WAIT FOR component 

Transition Ti is initially enabled but will only complete firing after time t. The result of this 

firing will be to place a component, c, token in place iniLstate and thereafter the 

component will behave as a normal component. Notice that no other details of the 

component are shown in figure 6.11. 

The second use of the WAIT FOR statement is for the explicit creation and removal of 

stock and resources during simulation time. Figure 6.12a gives an example of a CPN which 

models the creation of resources, resl, when component A moves into state a. Figure 

6.12b gives an example of a CPN which models the removal of stock, stkl, after a time 

delay t. 
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Figure 6.12b WAIT FOR time 

6.9 ATTRIBUTES 

2's 
STK color COMP = with c; 

stkl color E= with e; 

color STK = with s; 

Attributes have been defined as simply identifying a set of states. A group of states which 

share a common property will be given the same attribute to denote this property thus 

making it easier to refer to the group of states. Behaviour preconditions may refer to 

component attributes as well as states. Defining CPNs which reflect the ON_, EVENT and 

IF preconditions using attributes will simply involve extending the previous CPNs. Figure 

6.13 shows a CPN which models the ON EVENT 

ON EVENT comp6. a { 
statel -> state3 }; 
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Figure 6.13 ON EVENT with Attributes 

Notice that this is an extension to the CPN of figure 6.9. In this instance, the states x, y and 

z of component 1 all possess the attribute a. The transition T4 which moves component 2 

from state] into state3 will be enabled when component 1 moves into any of the states x, y 

or z. The enabling place P1 is shared by all transitions which move the component into a 

state which possesses the a attribute. There will only ever be a maximum of one e token in 

P1 for by the definition of a component, all states are mutually exclusive. 

The modification to the CPN of figure 6.10 for the IF precondition with the same 

component attributes as above is shown in figure 6.14. 

This CPN behaves in a similar manner to that in figure 6.10 although transition T3 is now 

enabled by any transition which moves component 1 into a state which possesses the a 

attribute. Transition T4 will be enabled by any transition which moves component 1 out of 

a state which possesses the a attribute. 
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The CPN of figure 6.12a which models a WAIT FOR statement may also be easily 

modified to reflect the use of component attributes rather than a state. This would simply 
involve duplicating the post-arc (including inscriptions) from transition TI for any other 

transition which moves the component into a state which possesses the given attribute. 
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6.10 Behavioural modelling with generalised stochastic Petri nets 
(GSPN)and ICE. 

In this section we compare the approach of ICE and GSPNs to some important 

modelling conditions. 

For a model to correctly encompass the functionality of a system all relevant events 

must be specified as well as the pre-conditions that must hold for an event to occur and 

the post-conditions that exist after an event has occurred [135]. 

Some fundamental properties of events which may occur within systems and have either 

temporal or structural relations are identified below. Their GSPN models are shown 

along with the ICE code which provides equivalent functionality. The inability to 

implement any of these events would indicate an area for concern within the language 

as it would not be universally suitable for all systems that we may in future wish to 

model. 

6.9.1 Dependency 

When one event is dependant upon the pre-occurrence of other events. Shown in the 

GSPN of figure 6.15, transition to is dependant upon the firing of transitions t;, and t12. 

This property is utilised in applications such as software modelling [136]. 

COMP -1 

comp _2 

Figure 6.15 GSPN of dependency 
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ICE equivalent : 
SYSTEM dependent = ALL (comp 1. PIB , comp--2. P1A ); 

BEHAVIOUR be comp { 

ON_EVENT dependent { 
exp(t) P1B -> Po ; 
exp(t, ) Pia -> Po ;) 

6.9.2 Concurrency 

More than one event occurs simultaneously but these events do not interfere or interact 

with one another. In the GSPN of figure 6.16 the transitions t;, and ti2 may be 

simultaneously enabled but there is no interaction between the input and output places. 

This property is applicable to such systems as concurrent software applications [137]. 

Pu t11 Pot 
COMP -1 0---)PD-ý 

Pl2 t12 P02 
comp_2 CY---)PEY--->O 

Figure 6.16 GSPN of concurrency 

ICE equivalent : 
BEHAVIOUR be comp 1{ 

exp(t; º) P1º -> Poº 

} 
BEHAVIOUR be comp 2{ 

e; p(t, z) Pºz -> Paz 

} 
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6.9.3 Synchronisation 

In a parallel application a number of tasks may have to synchronise at given stages of 

operation. In the GSPN of figure 6.17 the immediate transition is synchronises 

transitions t,, t2, ... , t, This may be used in systems where multiple resources are 

required to complete a given task such as safety protection systems. 

comp_i 

comp -2 

comp -P 

Figure 6.17 GSPN of synchronisation 

ICE equivalent : 
SYSTEM synchronise = ALL (comp-1. P1. ; comp 2. P2s ; ... ; comp-JI. P. s ; )} 

BEHAVIOUR be comp { 

ON EVENT synchronise { 
exp(ts) Px -> Ps ;} 

} 

6.9.4 Conflict 

In a system more than one event may be possible at the same time and the occurrence 

of one of these events may preclude the other. In the GSPN of figure 6.18 transitions 

ti and t2 are simultaneously enabled. The firing of either will disable the other. This 

concept is used to model such things as resource conflict within systems. 
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Figure 6.18 GSPN of conflict 

ICE equivalent : 
BEHAVIOUR be comp 1{ 

IF comp 2. P2 { 
exp(tl) P, -> Po1 ;} 

} 
BEHAVIOUR be comp 2{ 

IF ANY {comp 1. P01, comp 3. P02} { 
0 P2 -> P2-next ;} 

} 
BEHAVIOUR be-comp-3 { 

IF comp_2. P2 { 
exp(t2) P3 -> P02 

} 

Note that in the GSPN of figure 6.18 we assume that a transition firing policy is adopted 

whereby tokens are not removed from input places when a transition is enabled but 

when it is fired. 

6.11 Conclusions 

ICE components may be regarded as FSMs and are represented by PNs with a single token. 

These basic models are built upon when counters are added. Counters contribute a 

considerable increase in descriptive power and this is reflected by the increased complexity 

of the PN model. 
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ICE uses constructs termed SYSTEM statements that provide a simple means of relating 

what can be some very complex component interactions. It is not a trivial task representing 

even a relatively simple SYSTEM statement with PNs. These PNs are the most 

sophisticated of all that are used to model ICE and show how the apparently simple syntax 

of ICE is founded upon some involved semantics. This comparison in particular shows the 

modelling power that is achievable with ICE and which would require considerably more 

complex representation with PNs. 

Passive resources are similar to semaphores and can be shown as simple additions to the 

component PNs. ICE attributes which are used to group together component states with 

some form of commonality are modelled and it is apparent how they add power and 

sophistication to behavioural statements. 

Perhaps the most important constructs to be formally defined by PNs are behavioural 

statements. They contain some of the languages most complex semantics and the PN 

representation is a valuable aid in their understanding. Transition firing policies are of 

significant importance and the PN models give some detailed insight and are a source of 

notable discussion. 

In producing all the PN models for ICE it was interesting to note that no single dissertation 

on PNs contained all the high level extensions that were required. All of the ICE 

constructs can be modelled with PNs, involving varying degrees of complexity and hence 

we cannot state that ICE is more powerful. However it is evident from some of the 

comparisons that the ICE implementations are considerably simpler. 

We go on in the chapter to consider the challenges of dependency, concurrency, 

synchronisation and conflict. Any modelling technique must be able to reflect all of these 

if is to be of generic use in the modelling of systems. We derive both PN and ICE 

solutions which are equally as simple to implement.. The ICE implementation of each of 

these events is straightforward and does not involve any sophisticated manipulation of the 

language. 
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Chapter 7 

An ICE Performance Model of an ATM 

Switch 

7.1 Introduction 

Performability as described earlier is a combined performance/reliability measure and as 

such comprises both pure performance and pure reliability measures. In this chapter we 

consider a pure performance model of an ATM Banyan switch. 

Banyan switches have many constituent interacting components and are an ideal medium 

for illustrating the high level declarative nature of the ICE language. The individual 

components are described directly with a very low level of abstraction. Performance 

parameters of interest in switch modelling are those which will give a good indication of 

the theoretical Quality of Service (QoS) provided [138]. The ICE model is implemented 

in such a way as to give both relevant measures of performance and to demonstrate the 

flexibility of the model. 

Banyan networks are recognised as being one of the most suitable architectures for ATM 

switches [139]. They have received much attention in their various forms for modelling 

by probabilistic means [140]. We have chosen one with a recognised buffering strategy 

so that the assumptions made when modelling may be compared. 
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7.2 Asynchronous transfer mode 

The existing Integrated Services Distribution Network (ISDN) is currently evolving into the 

Broadband ISDN (BISDN). The BISDN will be required to transfer a much larger amount 

and variety of traffic than the existing ISDN and will therefore impose constraints in terms 

of throughput, delay, delay dispersion, reliability and sequenced delivery [141]. For this 

reason the CCITT formed Study Group XVIII to select and standardise a suitable transfer 

mode for the BISDN. 

In 1988, CCITT selected Asynchronous Transfer Mode (ATM) as the transfer mode for 

BISDN. In 1990, a first set of recommendations [142] was agreed upon worldwide. ATM 

is being further refined and standardised by the ITU-T, ETSI and ANSI [143]. The 

universal flexibility of ATM guarantees that it can support any service from simple 

telephony to full multimedia, including HDTV, audio and high speed data [144]. 

ATM is based on switching small, fixed length packets of information (cells), and doing 

it extremely quickly. All cells consist of a 48 byte information field and a5 byte header, 

according to CCITT recommendations [145]. A connection within the network is defined 

link-by-link by a label within the cell header, the virtual channel identifier (VCI) or virtual 

path identifier (VPI). ATM operates in a connection oriented mode, thus a connection is 

only established if sufficient resources are available. All cells are routed via one path to 

maintain the cell sequence. All network links are interconnected by some type of ATM 

switch or multiplexer. There has been considerable interest in the modelling of ATM 

multiplexers [146.. 150], here we shall limit our investigation to switches. For an excellent 

comprehensive treatise of ATM the text by Cuthbert and Sapanel [204] is recommended. 

7.3 ATM switches 

There has recently been much interest in the design of ATM switches [151,152]. Tobagi 

[153] proposes three main types of ATM switch architectures, namely, (i) shared memory 

[154] (ii) shared-medium [155] and (iii) space-division [156]. In further work Tobagi goes 

on to explore the possibilities of combining architectures of different types (157]. All types 

are limited in both size and line speed, making it necessary to connect many stages together 
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to form a multistage configuration [158], originally proposed for multiprocessor 

applications, to produce practical switches. Many demands which must be adhered to are 

placed on ATM switch design, such as (1) modularity, (2) relaxed synchronisation, (3) 

guaranteed high performance without requiring internal speed-up and (4) maintenance of 

packet sequence integrity [159]. Switches must be able to handle both point to point to 

point connections and point to multipoint connections [160,161] as required by a wide 

range of applications such as video-conferencing, entertainment video, LAN Bridging and 
data distribution. Both types of connection normally utilise a multistage interconnection 

network, with the latter also incorporating a proceeding copy network. For a 

comprehensive introduction to ATM switching the reader is referred to either Onvural [ 162] 

or Chen et al [163]. A common type of multistage interconnection network is the Banyan 

Network [164]. Banyan Network space-division switches are being seen to play a major 

role in ATM switching. 

7.3.1 The architecture of banyan networks 

There have been a number of detailed surveys of Banyan Networks in the literature. For 

a good introduction the user is referred to Perros [165]. Feng [166] describes Banyan 

Networks as having a dynamic topology belonging to the class of multistage 

interconnection networks. They are constructed by interconnection of a number of discrete 

Switching Elements (SEs). They have been comprehensively defined by Tubtiang et al's 

general ATM switch classification method [167]. The class of Banyan Networks can be 

divided into several subclasses, the most common, the one we will consider, is known as 

L-level Banyan. 

In L-level Banyan only adjacent stages are connected by links, therefore each path from 

input to output leads through L stages. There are two types of L-level Banyans, Regular 

and Irregular. Regular Banyans are constructed from one basic type of SE with F inputs 

and S outputs, whereas the type of SEs in Irregular Banyans varies throughout the network. 

For economic reasons Regular Banyans are preferred as they lend themselves to 

straightforward VLSI implementation. Two subclasses of Regular Banyans are CC- 

Banyans and SW-Banyans. We will confine our examination to SW-Banyans as they cover 

nearly all existing implementations [168]. SW-Banyans are constructed from a number 

of basic crossbar SEs with F inputs and S outputs. 

164 



Delta Networks have the topological structure of SW-Banyans. They have N stages 
corresponding to the L levels. Each stage has a number of SEs, each with n inputs and m 
outputs, thereby giving the network n'input ports and m ̂ ' output ports. Rectangular Delta 

Networks are constructed from SEs which have the same number of inputs as outputs ie 

n=m. The network will have a total of N= logt n stages. It follows that the number of 

output ports, n, will be equal to the number of input ports and that the number of SEs per 

stage will be constant ie "/2. A Delta Network which has SEs with n inputs is known as a 
Delta-n Network. In hardware realisations n is limited if a single chip implementation is 

required. An SE with n= 16 has been fabricated and required 0.8 micron Bi-CMOS 

technology [ 169]. The most common form of Delta-n Network is the Delta-2 Network and 
this has been the basis for many ATM switch models [139,140,170.. 175]. Figure 7.1 

shows a 16-input Delta-2 Network. 

INPUT 

oE>. - 1 E- 
2 C>- 

o- 3 
4 c- 
5 o- 
6 
7 o- 
S o- 
9 a- 

10 ý. - 11 o- 
12 o- 
13 

14 o- 
15 r} 

OUTPUT 
a 0000 
a 0001 
a 0010 
Q 0011 
Q 0100 

0101 
Q 0110 

0111 
1000 
1001 

Q 1010 
Q 1011 
a 1100 
Q 1101 
Q 1110 
c-I 1111 

Figure 7.1 Delta-2 16x16 Banyan switch architecture 

The Delta-2 network is used as a point to point switch with a self routing algorithm. The 

header of each incoming cell is given an bit destination address relating to its virtual path 

or virtual channel address and routing inside the switch is done by decoding the header. 

For example, a node at stage k sends the cell out on either link-O (up) or link-1 (down) 

according to the k th bit of the header. The topology of the network ensures that the path 

from any input to a given output is uniquely determined by the output address. The header 

is independent of input link, as illustrated by the two routings shown in Figure 7.1 from 

inputs 3 and 14 to output 0101. This type of routing also known as digit controlled 

routing, can be fully implemented in hardware. It becomes apparent from examining such 

a network that if any SE fails then certain paths which must utilise this SE will be blocked. 
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Techniques are available to increase the size of the network and thus provide alternative 

paths [176], for example by using parallel layers of interconnection networks [177,178], 

shuffle exchange networks [179], bypass connections [180], turn-back networks [181] or 

dilated interconnection networks [182]. Whatever technique (if any) is used, switches 

should be of modular design [183] to facilitate expansion if network traffic demands 

dictate. 

The Banyan Network is a blocking network [184], for two cells with different destination 

addresses may be routed through the same internal link at the same time. One solution to 

this problem is to sort arriving cells with distinct destination addresses into ascending or 

descending order before transmission through the switch. Time overheads are incurred 

however due to sorting time and only one cell per time slot being transmitted. It has 

become clear that to provide satisfactory speed and cell loss performance as required in 

ATM networks, it is necessary to provide buffering within the SEs. Cells are then 

transmitted directly through the switch, being buffered at each stage, and if a required link 

is busy between stages k and k+1 then the cell is retained in the buffer at stage k until 

the link is free. Cells may also be retained in the buffer at stage k if the buffer at stage 

k+1 is full. Buffers are normally also provided at the switch inputs and outputs to 

compensate for the difference in speeds between the switch fabric and network links. The 

buffers in the SEs can be located at the inputs, crosspoints, outputs or be shared as shown 

in Figure 

7.2. 

----------- 

(a) Input Buffering (b) Crosspoint Buffering 

ITT 

(c) Output Buffering (d) Shared Buffering 

Figure 7.2 Switch buffering policies 
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In input buffering [185], buffers are located at the inputs of the SEs. When two cells in 

different buffers contend for the same output only one can move to the next stage. The cell 

loosing contention waits at the head of its input buffer blocking other cells which may be 

destined for the other, idle, output. This is known as head-of-line (HOL) blocking. It has 

been shown by Dias and Jump [186] that HOL blocking limits the maximum load to 0.75 

in Delta-2 networks when input buffered SEs are used. 

Output buffering [186] and shared buffering [158] allow higher loads by sharing the input 

cells between the different outputs. In output buffering, buffers are placed at each output. 

In a given time slot, n inputs may access the same output buffer, thus multi port buffers 

are required. In shared buffering, cells from different inputs and destined for different 

outputs share the same buffer. Therefore multi-port buffers are required of a size n times 

of that which is required for output buffering [187]. 

In crosspoint buffering, buffers are required for each input-output pair. Arriving cells at 

stage k are enqueued in the appropriate buffer according to the k th bit of their header. An 

example of crosspoint buffering is the PHOENIX fault tolerant SE implemented at AT&T 

Bell Laboratories [188]. 

7.4 The ICE model 

In this section we discuss the development of the model, looking at each functional block 

individually. 

7.4.1 Overview 

The first decision to make is how to subdivide the switch into a suitable combination of 

components. A suitable balance is required between limiting complexity, which increases 

with number of components and fully representing the functionality. Four functional units 

are identified, namely the communications channel, input controllers, switching elements 

and output controllers. Each is modelled with a component, save for the switching 

elements which are best represented by four interacting components. 
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The design takes a modular approach both for simplicity and ease of expansion. In the 

literature there are models for a great range of sizes, however the intention was to make 

the ICE model representative of a practical switch. The size decided upon was 16x16, 

chosen as an optimum size as it provides a high enough number of channels and 16 

interface cards fit well into one module mounted in a standard 19" telecommunications 

equipment rack [189]. 

A 16x16 Banyan switch has 4 levels of switching, each with 8 layers of switching 

elements. The popular assumption made is that all cells arriving from the input channels 

have output addresses which have an equal probability of being any of the output channels 

[190]. If we adopt this assumption then it is safe to conclude that we need only model one 

layer of switching elements and the behaviour of this layer will be representative of any 

other [191]. To model all layers would only require reiterating the ICE code a further 7 

times and editing component names in the behaviour statements: Such expansion would 

not be practical in probabilistic models as the size of the expressions would become 

unmanageable. 

Thus the ICE model describes all 4 levels of switching elements for one layer of a 16x16 

switch. Figure 7.3 is a diagram of the switch with the ICE components marked. 

-----------" -----------" -----------" -----------" 

III 
sea0 seb0 soc0 sed3 

C}l 

q(O sea0_q seb0 q sec0_q "ecp q qoO 

seal sebl secs aedl 

E'_»_[ITJ 
ýýý' 

qi 1 seal_q sebl_q xcl_q sedl_q qol 

'------------' ------------' ------------ ------------ 

OUTPUT 
BUT INPUT SWITCHING ELEMENTS CONTROLLERS 
CHANNELS CONTROLLERS 

Figure 7.3 One layer of 16x 16 switch with components marked 

The complete ICE program for the switch model is listed in appendix D. Below we shall 

consider each type of constituent component. 

168 



7.4.2 The input traffic 

The input traffic to the switch is described by modelling input channels that can either be 

in an arrive (cell slot occupied) or quiet (cell slot empty) state. It was initially thought that 

this could be incorporated as part of the behaviour of the input controllers but the 

requirement that the load be constant prevented this. To expand on this point, to give a 

true representation of an input channel the model must show a steady flow of cell slots 

with the probability that any slot is occupied being equal to the required load. If the two 

states that are described form part of a larger state set with other transitions, this would 
jeopardise that requirement 

In mathematical modelling it is necessary to select some appropriate stochastic distribution 

that will closely reflect the behaviour of traffic. Uniform cell arrival rates may be 

represented by either the Poisson or Bernoulli distributions. These may be utilised in ICE 

by manipulation of the exponential transition firing rates. Bursty cell arrivals have been 

modelled in ATM networks by Interrupted Poisson Processes (IPP) [192] and Bulk 

Bernoulli Processes (BBP) [193]. Complex models of bursty traffic with both 

exponentially distributed quiet and bursty periods can be modelled using a Markov 

Modulated Poisson Process (MMPP) [192] as implemented in the BONeS simulator [194]. 

The MMPP can be implemented in ICE by building on the model for uniform cell arrival 

which is shown below in figure 7.4. 

PROB(x) 

Y total = total +1 

0 cetathve 
Y 

PROB(1-x) 

Figure 7.4 State diagram of an input channel 

By assigning probabilities to the output transitions from the quiet state we can directly 

represent the channel in ICE with no level of abstraction. One component is used for each 

input channel. This component can only exists in the states quiet or arrive and will move 

between them with a probability equal to the load as shown by the behaviour statement in 

listing 7.1. This gives a very simple but very accurate model of the input traffic. The 
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counter total which is shown being incremented in the arrive state keeps a tally of the 

number of cells arriving. This is useful for validating loads during simulation. 

BEHAVIOUR be ch in { 
1 quiet -> arrive PROB(O. 6); 
1 quiet -> quiet PROB(O. 4); 
0 arrive -> quiet; 

} 
Listing 7.1 Input channel BEHAVIOUR statement 

7.4.3 The input controllers 

The input controllers buffer the cells arriving from the input channels before transmitting 

them to the first switching elements. Each input controller is modelled as an individual 

component. The state diagram for is given in figure 7.5. 

total = total + 1; qlen = glen +1 

inc 
IF ch_inO. quiet IF gi0. qlen > FULL 

0 

0 
IF ch_in0. arrive 0 

wait drop 
p ON EVENT (NeAO. read0, ! seAl. read0) 

drop -1; qlen = glen -1 0 drop =. 

IF (seAO. readO, seAl. readO)O 
glen = glen "1 

ON EVENT (! seAO. read0, 
dec 

Figure 7.5 State diagram of input controller 

There is one buffer per input controller so that all cells that arrive at the same input share 

the same buffer as in the architecture proposed by Del Re and Fantacci [195]. In ATM 

there is a priority flag in the header data that facilitates two priorities of traffic. If this 

model were expanded to have two buffers then behaviour for both priorities could be 

measured [196]. There are four states. The quiescent state is wait. When a cell arrives 

from the input channel it moves into state inc . If the buffer is already full the cell is 

dropped (state drop) otherwise the buffer is incremented and the component returns to wait. 

When a succeeding switching element reads a cell from the buffer it moves into state dec 
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and the buffer is decremented by one cell before returning to state wait. 

Note that all of the transitions are immediate, this is in order to achieve synchronisation. 

For example, consider the state inc. This state is entered when a cell arrives on channel 

ch inO. Cells arrive in one time unit. This requires the component to move into inc and 

back to wait in one time unit and hence this component would move into wait at the same 

time the input channel is moving out of arrive. Since these two transitions are happening 

in the same time unit the order cannot be guaranteed. If the inc ->wait occurs first, the 

input channel will still be in state arrive causing this component to re-enter inc and falsely 

record another cell arrival. By putting the transition condition that the component cannot 

move out of state wait until the input controller moves out of state arrive this error is 

prevented. The corresponding behaviour statement is shown in listing 7.2. 

BEHAVIOUR be_gi0 { 
IF ch inO. arrive { 

0 wait -> inc; } 
IF ANY(seaO. readO, seal. readO) { 

0 wait -> dec; } 
IF qiO. qlen > FULL { 

0 inc -> drop; } 
ON EVENT ch inO. quiet { 

0 inc -> wait; } 
ON_EVENT ALL(! seaO. readO, ! seal. read0) { 

0 dec -> wait; 
0 drop -> wait; } 

Listing 7.2 Input controllers BEHAVIOUR statement 

The counter total stores the total number of cells that have arrived, glen gives the 

instantaneous length of the queue and drop gives the number of cells that have overflown 

the buffer. 

7.4.4 Operation of the cross-bar switches 

From figure 7.3 it can be seen that each switching element contains a cross-bar switch. At 

each time slot these switches will either be in the cross or bar state and thus dictate which 

queue the switching element will be reading from. The operation of these switches is 

modelled by two components per switch. One component represents the top branch of the 
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switch and one the lower. Each can exist in the two states cross or bar. The state 

diagram is given in figure 7.6. 

ON EVENT ANY(seAO. read0, seAl. readO) 

PROB(x) 0 
000 

bar cross 
PROB(1-x) 

PROB(1-x) PROB(x) 

Figure 7.6 State diagram of cross-bar component 

For a balanced routing all probabilities will be 0.5. By changing these probabilities the 

route can be altered. In the listing 7.3 of the BEHAVIOUR statement for an upper branch 

component the probabilities are set so that there is a bias for the bar position. This means 

there is more traffic arriving at the upper input destined for the upper output than for the 

lower output. The probabilities for the lower branch are all set to 0.5, hence traffic arriving 

at the lower input will have equal likelihood of being destined for either output. By 

adopting this approach, which allows flexibility in the balance of traffic, we can investigate 

Bruneeli and Wittevongel's [197] finding that queuing deteriorates in output buffered SEs 

as correlation in the routing gets higher. 

BEHAVIOUR be dest inO { 
ON EVENT ANY(seaO. readO, seal. read0) { 

0 cross -> bar PROB(O. 65); 
0 cross -> cross PROB(O. 35); 
0 bar -> cross PROB(O. 35); 
0 bar -> bar PROB(O. 65); 

} 
} 
BEHAVIOUR be Best inl { 

ON_EVENT ANY(sea0. read1, seal. readl) { 
0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

} 
} 

Listing 7.3 BEHAVIOUR statement for cell routing 

Note that the component changes state each time the switching element has read a cell from 
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the proceeding buffer. 

7.4.5 The switching elements 

In many mathematical models a general expression is derived which expresses the output 

conditions dependant upon the input and it is not possible to monitor the internal 

performance of the switch. For many applications this type of method is appropriate as 

loss probability is a comprehensive enough measure of performance [198]. In this model 

however we wish to monitor the behaviour of various queues within the interconnection 

network and switching elements are therefore modelled individually. Each switching 

element is represented by four components. This seems verbose on first inspection but 

when examined it allows for simplicity. Two components are required for the two queues. 

It would be possible to represent the two queues by two counters in one component but by 

using one counter each in separate components it allows the queues to function in parallel 

without state transitions being delayed. This reflects the operation of the hardware design. 

Initially each queue and its operation was modelled by one component. This is restrictive 

as checks for read and write operations had to be made sequentially. The final 

implementation uses two components. The first is used to monitor whether a queue may 

read from a proceeding queue during each time slot and the second handles the actual 

updating of the queue. The state diagram of the first component is shown in figure 7.7. 

IFALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) 

0 

0 

IF ALL(! seal. readO, qiO. qlen > EMPTY, dest in0. bar) 

Figure 7.7 State diagram of SE queue reading component 

From the state diagram it can be seen that the queue can read from either the proceeding 

0 (upper) or 1 (lower) queue. The conditions for reading the proceeding 0 buffer are that 

the other queue in the SE is not currently reading from it, the queue is not empty and the 
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cross-bar is in the bar position. The conditions for reading from the proceeding lower 

queue are similar but the cross-bar must be in the cross position. The position of the cross- 

bar is determined by the cross-bar component discussed in section 7.4.4 which selects cell 

routing. Note that only one cell may be read in one time slot, following the operational 

procedure proposed by Jenq [191]. The behaviour statement for this component is shown 

in listing 7.4. 

BEHAVIOUR beseaO ( 
IF ON ALL(! seal. readO, giO. qlen > EMPTY, dest_inO. bar) { 

1 wait -> read0; } 
IF ON ALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) { 

1 wait -> readl; } 
0 readO -> wait; 
0 readl -> wait; 

} 

Listing 7.4 BEHAVIOUR statement for queue reading component 

The component will firstly check to see if there is a cell in the upper preceding buffer and 

if it is destined for the upper queue. If so it will read it, if not it will check the lower 

buffer. There is no read operation during the time slot if there are no cells available or if 

the queue is blocked by the complimentary queue reading from the required preceding 

buffer. By making the SE time slots faster than the networks time slots (say a speed-up 

factor of two) it would be possible for each SE queue to read from the same preceding 

buffer in the same SE time slot [199]. The model could be simply changed to encompass 

this feature by changing the timing on the transitions. Speed-up can also be accomplished 

at switch level [200] but is limited by the network speed. 

The component that models the updating of the queues has the same state diagram as that 

for the input controllers shown in figure 7.5 and the behaviour is identical. The 

corresponding behaviour statement is given in listing 7.5. 

BEHAVIOUR be sea0 q{ 
IF ON ANY(seaO. readO, seaO. readl) { 

0 wait -> inc; } 
IF sea0 q. glen > FULL { 

0 inc -> drop; ) 
IF ON ANY(sebO. read0, seb I . readO) { 

0 wait -> dec; } 
ON EVENT ALL(! seaO. readO, ! seaO. readl) { 

0 inc -> wait; 
0 drop -> wait; } 
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ON EVENT ALL(! seb0. readO, ! sebl. readO) { 
0 dec -> wait; } 

Listing 7.5 BEHAVIOUR statement for queue updating component. 

Note that all the transition timings are again 0. This allows the transitions to be wholly 

determined by the queue reading components and facilitates the possibility of a cell being 

read into and read from the same queue within one time slot. 

7.4.6 The output controllers 

The output controllers present a new challenge within themselves. What is required is a 

suitable buffer on each output port with consideration of both capacity allocation and 

overflow. This will be largely dependant upon the network to which the switch is 

connected [201]. Our aim is to concentrate on the switches behaviour and thus we assume 

infinite capacity queues in the output controllers. This assumption is equivalent to 

assuming that the output network is available to read one cell per time slot. The space 

diagram for the output controllers is shown in figure 7.8. 

IF seDO_q > EMPTY 

1 total = total +1 

wait inc 

Figure 7.8 Space diagram of output Controllers 

The output controllers will read a cell from the final (4th) level switching elements each 

time slot if there is a cell to read. There is one output controller dedicated to each output 

port and hence there will be no blocking in these components. Counters have been 

associated to each output so that the total number of cells leaving the switch may be 

monitored. The behaviour statement is given in Listing 7.6. 

BEHAVIOUR be qo0 { 
II? ON sedO q. glen > EMPTY { 

I wait -> inc; } 
0 inc -> wait; 

} 
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Listing 7.6 BEHAVIOUR statement of Output Controllers 

7.5 Model validation 

With a model of this size and complexity it is necessary to analyse its behaviour to ensure 

that it reflects correctly the operation of the system being modelled. The post processor 

viz is a suitable tool for this. Full validation required two steps, the first being to examine 

a textual event trace of a simulation of the model to ensure components behave as 

expected, and the second being to run a short simulation and examine the resulting counter 

values. 

For the first step a short simulation (100 time slots) was run. The textual event trace for 

this simulation was obtained using viz. Each type of component was considered in turn. 

Every transition was examined for each component type to ensure the firing and timing 

corresponded to that which was expected. This step highlighted the timing problems that 

were discussed in section 7.4.3 and thus proved a valuable technique. 

For the second step all the counter values were noted at the end of simulation from the 

previous event trace. These values are given in table 7.1. The validating technique is as 

follows. For each pair of components, eg sea0 and seal, the sum of the total values minus 

the sum of the glen values should be equal to the sum of the total values for the following 

pair of components. By performing this check for each pair of components correct counter 

operation can be confidently determined. 

Cnt. Check Components 

Counters 

qiO qil seaO seal sebO sebl secO sec! sed0 sedi qol qoO 

total 65 56 57 61 50 59 61 47 50 57 50 56 

glen 2 1 1 8 0 1 1 0 0 1 50 56 

Table 7.1 Validation of counter operation 
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7.6 Results 

In this section we present some of the results from simulating the model. 

7.6.1 Performance parameters 

The performance parameters used are the mean queue length of each queue in the input 

controllers and switching elements. These values can be directly determined from the 

I SIM post processor tpp. The mean queue values are determined for various combinations 

of traffic load and routing balance. 

The switch model has two distinct routing paths, the upper and lower. These may be 

considered as one for balanced routing conditions. In the case of unbalanced routing they 

are taken separately and compared to determine the effect of the routing. 

7.6.2 Simulation parameters 

The model of the input traffic described in section 7.4.2 is manipulated to give the required 

variation in load. Referring to listing 7.1, the transitional probabilities govern the load 

value and are altered accordingly. The offered load is critical as cell loss is more sensitive 

to load than to queuing delay [202]. For the results presented below the load was varied 

from 0.50 to 0.65 in steps of 0.05. 

The model of the cross-bar switches described in section 7.4.4 is manipulated to provide 

different routing balances. Referring to listing 7.3, the transitional probabilities reflect the 

routing balance. In this example input traffic on the upper link has a likelihood of 0.65 

being destined for the upper output, whilst traffic from the lower input is balanced. For 

the results presented below the lower path is kept balance and the balance of the upper path 

is varied from 0.50 to 0.65 in steps of 0.05. 
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For each case the simulator was run for 10 trials of 10000 time slots each. Each group 

of runs was analysed by the I SIM post processor tpp. 

7.6.3 Simulation results and observations 

The graphs below present a selection of the simulation results. Graph 7.1 shows the mean 

queue lengths of the input controller and each stage for various traffic loads. 

Queue Length Load 
-*- OS -4- 09 -0- 0.! A 0! 6 

10 

8 

8 

4 

2 

0 

2 
-7 

input 1st stage 2nd stage 3rd stage 4th stage 

Switch Stage 

Graph 4.1 Queue length for varied balanced loads 

It is interesting to note the behaviour of the second stage queue and that the ratio of this 

queue length to the others increases with load. As expected all queue lengths increase with 

load save for the 4th stage which is modelled as feeding an infinite capacity network. The 

most marked increase in queue length is from a load of 0.60 to 0.65, reflective of the 

graduation towards maximum load. Each of the graphs 4.2 to 4.9 show the mean queue 

lengths for different traffic loads as a function of routing balance. 
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Graphs 4.2 &4.3 Unbalanced upper and lower paths for load of 0.50 

Que 

Switch Stage 

Q 

Switch Stage 

Graphs 4.4 & 4.5 Unbalanced upper and lower paths for a load of 0.55 

Graphs 4.6 & 4.7 Unbalanced upper and lower paths for a load of 0.60 
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Graphs 4.8 & 4.9 Unbalanced upper and lower paths for a load of 0.65 

These graphs again show the importance of the second stage queue, with the lower queue 
being slightly longer due to the imbalance of traffic routing. The third stage queue on the 

lower path shows a marked increase over its upper counterpart. This we can assume is due 

to the priority given to the upper path causing the lower cross-bar, cross path, to be subject 

to head of line blocking. As would be expected , the queue lengths increase with load. 

Interestingly the disparity between the upper and lower paths also increases with traffic 

load. 

This model may be replicated to provide a two switch network and used to determine the 

effect of switching and queuing on network performance. This work has been proposed 

by Friesein and Wong [203] who modelled two switches with various source interacting 

across a network for loads from 0.6 to 0.8. Expansion on this to examine the effects of the 

network and other switches on the performance of the various stages of our switch would 

be an interesting area of further work. 
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7.7 Conclusions 

A complex performance model of an ATM Delta-2 16x16 Banyan switch architecture has 

been developed in ICE. This has demonstrated that the ICE language is capable of 

modelling intricate systems comprising inter-dependant components and the I SIM 

simulator's ability to simulate and analyse such systems. Analysis of the textual event trace 

was used to obtain a functually correct model and the results produced by the tpp post 

processor revealed some interesting insights into the switches behaviour under various 

conditions. 

The tight timing restrictions of the model proved to be a rigorous testing ground for the 

language. Initial development revealed some challenges to obtain correct sequencing of 

simulation events. A solution was presented which facilitated correct synchronisation and 

the lessons learned prove useful for future modelling. 

The amount of code required was reasonable (-300 lines, formatted) for the complexity of 

problem. The use of counters to model queues contributed considerably to the restriction 

of the code to this size. The generic nature of the language allowed for a very modular 

design with many constructs being reused with minimal editing. 

The work presented in this chapter has been the subject of a published paper which is 

reprinted in appendix E. 
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Chapter 8 

Performability modelling with ICE 

8.1 Introduction 

In this chapter we come to a significant testing point for ICE. The language's ability 

to model intricate systems comprising many interacting components has been 

demonstrated as has it's use in obtaining performance and dependability measures from 

such systems. We now turn our attention to the complex field of performability 

modelling. 

Chapter 2 gave a detailed account of the development of performability modelling and 

the techniques employed were presented. In this chapter some of these techniques are 

adopted and adapted for ICE. We identify some of the important measures previously 

discussed and apply these to the ICE models. 

Rather than develop specific models which may be limited to certain applications we 

propose a generic ICE performability framework. This framework utilises the proven 

concept of reward models. It is shown how this generic approach can be used to obtain 

suitable performability measures. The method is illustrated by the use of an example 
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model of a multiprocessor system. 

8.2 Distribution of accumulated reward 

Distribution of accumulated reward is the classic performability measure. It gives a 

revealing insight into a systems behaviour and facilitates a better understanding of its 

operation. Smith et al [205] give an example of a multiprocessor system whose 

behaviour is not fully described by expected values of reward but requires the 

comprehensive information contained in the distribution of accumulated reward. 

The distribution of accumulated reward is the probability a system will complete a given 

number of tasks during the time interval [O, t). This is effectively an index of system 

productivity and allows appropriate system capability to be determined. Reward rates 

may be assigned to appropriate states. A task is taken to be completed once the 

cumulative reward of the system is equal to or greater than that required by the task. 

Let 7(t) be the instantaneous reward rate and F (t y) =P{ 7(t) y} denote the 

distribution function of the accumulated reward. The complementary distribution 

Fc (t, y) =1 -F(ty)=P {Y (t)>y) 

can be used to answer the important question : What is the probability that an amount 

of work, y, will be completed by the system during the interval [O, t) ? 

? loo) is not defined for systems without absorbing states and hence when t --goo, the 

distribution of accumulated reward can be fully defined only for a system with imperfect 

repair. In this case Beaudry [52] proposes a method for calculating the distribution. 

The approach is based on transforming the original Markov chain, X, into an equivalent 

one, X', with the same state space but with the generic transition rate determined by 

dividing the transition rate of the original chain by the reward rate of the departing state. 

This effectively transforms a time domain representation of the system into a 

computation (or reward) domain representation. The model changes state after a certain 

amount of computation rather than a period of time. The accumulated reward is then 
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the analog of the time domain availability, i. e. rather than viewing the model as showing 

the mean time to failure it shows the mean reward accumulated. The limiting 

distribution of fit) for X can be obtained from the transient state probabilities of X as 

it corresponds with the distribution of its time to failure. Ciardo et al [206] expanded 

this technique removing the restriction of non-zero reward rates for transient states by 

employing semi-Markov reward models. 

8.3 The ICE reward model 

In a performability model it is possible to allocate a reward assignment equal to a 

simple function of the state index. As an example, in a simple multiprocessor 

reliability/availability model the reward rate may be taken as being directly proportional 

to the number of functioning processors [52]. This approach is employed in the 

example of section 2.4.3.2 using stochastic reward nets (SRNs) and accommodates a 

simple solution. However this assumption is often erroneous. More meaningful models 

will normally require a performance evaluation of each state in the state space to derive 

suitable reward rates. In this instance the reward rate of each combination of 

functioning units is individually defined and thus accurately reflecs the real systesm. 

This adds significant complexity to SRN and Markov performability models. 

With the ICE reward model the objective is to facilitate an accurate method of assigning 

correctly evaluated reward rates to each component state. This is implemented by using 

COUNTERS to monitor reward rates. The generic framework is described below. 

O An ICE model of the system of interest is developed as normal. The reward 

model will be an extension to this, as opposed to a seperate model. 

OO Each component within the system that we wish to obtain performability 

measures from has a reward counter associated with it. When the component 

enters a given state this counter is set to the reward rate of that state. The 

reward rate is the reward per time unit (the size of the time unit being set 
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appropriately by the modeller). This counter therefore monitors the 

instantaneous reward rate of the component. These counter values of different 

components may be summed to give the instantaneous reward rate of the system. 

3A separate component is used to monitor the cumulative reward rate of the 

system. At the end of every reward time unit the value of this counter is 

incremented by an amount equal to the instantaneous reward rate counter. 

® By accessing the instantaneous reward rate and cumulative reward rate counters 

any of the performability measures identified in section 2.4.2.1 can be 

determined. 

This ICE generic performability modelling framework is best demonstrated by 

considering an example. 

8.4 Multiprocessor example 

In this example a typical multiprocessor system is modelled and performability measures 

obtained. 

The system considered contains 4 processing units and can handle several tasks 

simultaneously. We are concerned with the processing of individual tasks that are 

submitted to the system. Each processing unit can exist in one of the two states serve 

or busy. In the serve state it is serving the specific task of interest. In the busy state 

it is serving another task or performing housekeeping duties and therefore not 

contributing towards the task of interest, i. e. it is a non-productive state. The state space 

of one of these units is shown in figure 8.1 and the corresponding ICE code in listing 

8.1. 
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exp(x) 

(busy 
ýerve 

' exP(Y) 

Figure 8.1 State space of unit component 

STATE-SET ss unit { 
COUNTERS:; 
STATES { 

busy :; 
serve :; 

BEHAVIOUR be unit { 
exp(x) busy -> serve ; 
exp(y) serve -> busy ; 

} 

COMPONENT unitl, unit2 , unit3 , unit4 (ss unit; be-unit; busy; ) 

Listing 8.1 ICE code for unit component 

To determine the total amount of work being done on the task of interest at any given 

time the SYSTEM statements in listing 8.2 are used. 

SYSTEM upO = ALL(! unitl. serve,! unit2. serve,! unit3. serve,! unit4. serve); 
SYSTEM upl = EXACTLY I(unit l. serve, unit2. serve, unit3. serve, unit4. serve); 
SYSTEM up2 = EXACTLY2(unitl. serve, unit2. serve, unit3. serve, unit4. serve); 
SYSTEM up3 = EXACTLY3(unitl. serve, unit2. serve, unit3. serve, unit4. serve); 
SYSTEM up4 = EXACTLY4(unitl. serve, unit2. serve, unit3. serve, unit4. serve); 

Listing 8.2 SYSTEM statements monitoring number of serving units 

In each statement, upN, N denotes the number of processing units currently serving the 

task of interest. 

The state of the system and the instantaneous reward rate is modelled by the processor 
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component. It has 6 states, the initial state finit and states procO.. proc4, indicating how 

many units are currently serving the task of interest as determined by the SYSTEM 

statements of listing 8.3. This component has the counter reward. Reward is set on 

entry to each state to be equal to the reward rate for that state and hence contains the 

instantaneous reward rate of the system. The state space for the processor component 
is shown in figure 8.2 and the corresponding ICE code in listing 8.3. 

ON EVENT upl 

procO pr( 
ON-EVENT upO 

finit 

0 

ON EVENT up2 ON EVENT up3 

. 1) proc2 

OON EVENT up] A ON EVENT up2 

ON EVENT up4 

ON EVENT up3 

Figure 8.2 State space of processor component 

STATE SET ss processor { 
COUNTERS : reward; 
STATES { 

finit :; 
procO : (reward = 0); 
proc 1: (reward = 10); 
proc2 : (reward = 15); 
proc3 : (reward = 22); 
proc4 : (reward = 27); 

} 
} 
BEHAVIOUR be-processor { 

0 finit -> proc2; 
ON EVENT upO {0 prod -> procO; } 
ON EVENT up1 {0 procO -> prod; 

ONEVENT up2 { 
0 proc2 -> procl; } 
0 prod -> proc2; 
0 prod proc2; ) 
0 proc2 -> proc3; 
0 proc4 -> proc3; } 
0 proc3 -> proc4; ) 

ON_EVENT up3 { 

ON EVENT up4 ( 
} 
COMPONENT proc(ss processor; be. processor; init(reward = 0); ) 

Listing 8.3 ICE code for processor component 
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The reward values shown in the STATE SET statement of listing 8.3 are typical values 
for multiprocessor systems. These rewards are the performance measures of the system. 

To obtain the cumulative reward rate a further component, check, is used. Check has 

a counter record and two states, wait and inc. At the beginning of a simulation check 

is in state wait and counter record is set to zero. At the end of every reward time unit 

the state inc is entered. Record is incremented by an amount equal to the value of 

counter reward of component processor (the instantaneous reward rate counter) and 

hence contains the cumulative reward rate. The state space of check is shown in figure 

8.3 and the corresponding ICE code in listing 8.4. 

unit i 

\ record = 
Walt inc (record + processor. reward) 

0 

Figure 8.3 State space of check component 

STATE SET ss check { 
COUNTERS : record; 
STATES( 

wait :; 
inc : (record = record + proc. reward); 

} 
} 

BEHAVIOUR be check { 
1 wait -> inc; 
0 inc -> wait; 

} 

COMPONENT check (ss check; be check; wait(record = 0); ) 

Listing 8.4 ICE code for check component 
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8.4.1 Performability measures 

The multiprocessor model was simulated using I SIM. The exponentially distributed 

sojourn times of the processing units determine the availability of the system. These 

sojourn times are dictated by the values of x and y in the unit component behaviour 

statements. The ratio of time spent in the busy and serve states is the ratio of exp(x) to 

exp(y). This was varied from 4: 4 to 16: 4 to determine the impact on the performability 

measures. For each set of parameters 1000 runs were done. Statistical information on 

the values of the instantaneous and cumulative reward rate counters was obtained using 

the tpp analyzer. This information can be used to calculate the performability measures 

described in chapter 2. 

Distribution of accumulated reward 

For a known size of task the probability of completing the task within a given time can 
be determined from the distribution of accumulated reward. This distribution is obtained 
by recording the value of the cumulative reward counter at known time intervals during 

the simulations. Points are then plotted as the percentage of times the cumulative 

reward is equal to or greater than the total reward a given task requires. In this example 

the task size was 1000 reward units. 

Probability 
x: y=4: 4 x: y=8: 4 x: y=12: 4 x: y=16: 4 

I 

0.8 

0.6 

0.4 

0.2 

Graph 8.1 Distribution of accumulated reward for task size of 1000 reward units. 
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Graph 8.1 reveals that as the proportion of time the processing units spend serving the 

given task decreases then the time to task completion increases as would intuitively be 

expected. As the expected time to task completion increases so does the range of 

possible completion times. This is due to the variations in state sojourn time around the 

mean having an increased influence on the reward being accumulated. 

Expected instantaneous reward 

The expected instantaneous reward, E[ 2'(t)], was shown in section 2.4.2.1 to be 

r1P1(x) 
i¬S 

where S is the set of states being monitored for reward. In this example all the states 

of component processor. The subscript i denotes each state proc0 .. proc4. The reward 

rate of each of these states is denoted by r; and Pi(x) is the probability of processor 

being in state i at any time x during simulation. For each of the states the value of 

reward rate used in the example and the values of P; obtained by tpp are given in table 

8.1. 

state r, 
Pa(x) 

x: y = 4: 4 x: y = 8: 4 x: y = 12: 4 x: y = 16: 4 

procO 0 0.063 0.193 0.313 0.401 

proc1 10 0.256 0.390 0.416 0.410 

proc2 15 0.374 0.303 0.217 0.160 

proc3 22 0.247 0.101 0.050 0.027 

proc4 27 0.066 0.013 0.004 0.002 

Table 8.1 Selected values of reward and calculated state occupancy probabilities 

E[ T (t)] can hence be calculated giving the results shown in table 8.2. 

sojourn times 4: 4 8: 4 12: 4 16: 4 

E[r(1)] 15.386 11.018 8.623 7.148 

Table 8.2 Calculated values of expected instantaneous reward 
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The expected instantaneous reward decreases in an exponential manner as the ratio of 

time the processing units spend servicing the given task decreases. If a number of task 

were submitted to the system with known reward requirements this would be a very 

useful measure for determining the processing unit service times required to complete 

the tasks without incurring a backlog. 

Expected accumulated reward 

The expected accumulated reward, E[a(t)], was shown in section 2.4.2.1 to be 

E[ý(t))=1 r; L; (t) 
! ES 

where L. is the total time spend in state i during the period [0, t ]. The subscript i again 

denotes states proc0.. proc4 in this example. Since this system is non-absorbing and 

each processing unit follows a simple cyclic behaviour, L,, may be calculated as L, = P, 

x t, other than for small values of t (< 2x) in which case L. may be obtained by 

simulation. It follows that E[4 (t)] = E[ 7t)] x t, and thus may be simply determined for 

any value of t. 

8.5 Conclusions 

In this chapter we have applied ICE to performability modelling. This has been a 

significant testing area for the language to which it has proven well suited. 

A generic ICE reward model framework has been proposed. This involves developing 

a complete ICE model of a system and then adding counters to monitor instantaneous 

and cumulative reward. The increase in complexity of the model due to the counters 

is negligible. After simulation by I SIM the tpp analyzer can be used to obtain 

statistical information on the reward counters. With this information all of the 

performability measures identified in section 2.4.2.1 can be determined. The distribution 

of accumulated reward may be plotted giving valuable insight into a system's behaviour. 
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Detailed performability measures were obtained for a multiprocessor system example 
from a relatively simple ICE model. The operation of the system was investigated by 

observing the effect that altering model parameters had on these measures. 

A hybrid approach is taken to performability modelling. This is a combination of 

measurement and model based evaluation. Performance parameters were measure based 

in the form of the processor reward rates. Availability parameters were obtained from 

simulating the system and hence are model based. This approach is flexible and should 

be modified to suit the particular application. 

In the ICE framework appropriate reward rates are assigned to each state of interest. 

This is a notable benefit over Stochastic Reward Net and Markov techniques, where it 

is significantly simpler to assign reward rates that are proportional to some system 

parameter, such as number of functioning units, rather than on an individual state basis. 
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Chapter 9 

Discussions and Conclusions 

9.1 Overview 

In this chapter we critically discuss some of the main issues presented in the thesis with 

an emphasis on how the work measures against the original objectives and ways in which 
it could be progressed. The conclusions given are additional to those at the end of each 

preceding chapters. 

There are 5 main areas that are considered, these are 

1. The ICE language. 

2. Implementation of the simulator. 
3. Random number generation. 
4. The computational models of ICE. 

5. Performability modelling with ICE. 

Following the general discussion on these areas some specific ideas for further research are 

highlighted. 
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9.2 The ICE language 

The objective of developing a simple, intuitive and powerful description and simulation 
formalism has been successfully met. 

Perceived complexity and modelling power 

With any descriptive language there is a trade-off between volume and complexity. A 

certain number of syntax constructs are required to provide a suitable descriptive space and 

as this number increases so also does the complexity of the language. It is felt that with 

ICE a good balance has been achieved. The syntax is relatively concise but yet powerful. 

The use of COUNTERs within the language provides a novel means of considerably 

increasing the descriptive space without increasing the state space of the model. The 

additional features required for the counters has been kept to a minimum and maintains 

continuity with the other constructs. The added burden to the syntax is far outweighed by 

the increased descriptive power. ICE models may be viewed graphically by state transition 

diagrams, as has been illustrated by many of the examples in this text. Component states 

are simply represented as circles and transitions by arcs. The addition of counters requires 

that extra inscriptions are required for the states to show where and how they are updated. 

This is analogous of the development of coloured Petri nets (CPNs) from Petri nets (PNs). 

CPNs, using coloured tokens, provide a significant increase in descriptive power over PNs 

although extra net inscriptions are required to describe the tokens. With CPNs the use of 

inscriptions is flexible. The modeller may use small nets with many inscriptions to 

describe the functionality or large nets with few inscriptions that may be less tractable but 

where the functionality is more easily apparent. With ICE the use of inscriptions is fixed 

and detracts relatively little from the understanding of the state transition diagrams. Due 

to the intuitive nature of counters and their expansive descriptive power modellers are 

therefore encouraged to use them to describe as much system functionality as is practicable. 

The ICE approach 

The degree of complexity of any modelling technique as presented to the human modeller 

should always be a primary concern. Many techniques may only be successfully adopted 

by 'experts'. It is immediately obvious that ICE is inherently far simpler than formalisms 

such as PNs. It's intuitive syntax and the reduced state space of the model should mean 
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that in can be learned and applied by a novice with only a few hours training. 

As has been hinted at above, many practitioners find it easier to think in two dimensions 

and resultingly their first approach to modelling all but very simple systems is to make a 

spatial sketch. It would therefore be fair to make the comment that ICE is still just a 

documentation of a diagram. The author would personally support this view rather than 

defend against it. Recognising that when a state space approach to a problem is adopted 

the simple first step of modelling is to represent the acquired information in some sort of 

state transition diagram, the syntax and structure of ICE has been designed to make the 

translation between diagram and formalised description as simple and fluid as possible. 

This may indeed be seen as one of the languages main strengths. It captures what is to 

many modellers the natural, intuitive approach. This being the case, the question may then 

be raised, should some form of graphical user interface be provided whereby the user's 

initial diagrammatic representation may be automatically compiled and converted into ICE 

code ? At first this appeared to be a logical step but extended application of the language 

now suggests that it would not be worthwhile. Considering the problems of layout and 

connectivity experienced when using graphical software packages only very simple models 

could be drawn easily and with such models it is easier to go straight to an ICE 

implementation. The speed and ease with which 'paper and pen' diagrams can be drawn, 

edited and converted into ICE suggests that even with a graphical interface, modellers 

would revert back to such a technique. 

Syntax and semantics 

The syntax of the ICE constructs are mostly simple and intuitive although in a couple of 

cases they hide some rather complex semantics. It is a fair criticism of the language that 

a computational model should not be required to clarify the semantics. Ideally, all 

semantics should be obvious from the syntax. This is largely true with the exception of 

the conditional transition statements. If timing was removed from these statements then 

their meaning would be wholly obvious. However it is felt that the timing is important as 

it allows for more compact descriptions and ensures that all transitions follow a standard 

format. The detrimental implication is that timing does add complexity. It is no longer 

clear, exactly when transitions occur and what priority they take. The precise meaning of 

the IF and ON EVENT transitions now become implementation dependent. The 

sequencing of events is fully explained in chapter 3 and it is crucial that a modeller is au 

195 



fait with this. The approach taken follows what it is thought would be intuitive, although 

without explanation it may be open to misunderstanding. It may be argued that in this 

respect PNs have an advantage over ICE. They give an exact representation of a system 

and leave no room for ambiguity in understanding. This consequently was one of the 

reasons that PNs were used to develop a computational model for ICE. However this 

argument is not quite correct when it is considered that for PNs a transition firing policy 

may be required. This states when a transition is enabled and when tokens are removed 

from input places and put in output places. Such factors are not apparent from the PN 

diagram but must be explicitly given. It is conceded that the complexity of the semantics 

is a necessary weakness of the language, however since it is relatively limited and they are 

explicitly defined through the computational model, it is not considered to be a major issue. 

The ethos of the language has encouraged a structure, style and choice of syntax that is 

intuitive and simple. Most of the discussion of the language in this thesis has centred 

around the syntax, which as we have discussed, does not fully define the language. It is 

therefore suggested that any future discussions regarding modifying ICE should be based 

equally around the computational model. 

Static analysis 

With PNs it is possible, depending upon the high level extensions used, to reduce the net 

to an underlying Markov chain and perform static analysis. The ability to perform such 

analysis on ICE models, e. g. the reachability of component states, would be a significant 

benefit. To achieve this it was considered whether ICE or a meaningful sub-set of ICE 

could be identified that would be reducible to a Markov chain. Firstly we shall examine 

the most simple of ICE examples. A two component state transition model is shown on 

the left in figure 9.1. Each of the components comp] and comp2 have only two states and 

the transitions between the states are all deterministic. On the right in figure 9.1 an attempt 

is shown at the construction of an equivalent Markov chain. 

It can be seen that the attempted Markov chain has two AD states and that there is more 

than one possible transition between many of the states. For clarity this figure only shows 

the first three iterations but it is easy to project how further iterations would increase the 

complexity. This state space diagram is clearly not memoryless and is therefore not a 

Markov chain. It is worth noting that we get this duplication of a state and multiple paths 
for even the most simple of ICE models. This suggests that the only possible sub-set of 
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ICE that could be reduced to an equivalent Markov chain would be for a single component 

model. ICE is however designed for multiple component systems and this would not be 

worthwhile. This example hints at the relative power of ICE. Many high-levels extensions 

to PNs cannot be reduced to Markov chains and as was shown in chapter 6, a considerable 

range of these extensions are required to represent the ICE syntax. This suggests that ICE 

would be irreducible, and it is interesting that we cannot reduce even a very basic structure. 

compl 
5 

B 

comp2 
7 

LG4-1 

Key : Ist iteration 

2nd 
3rd 

2 

AD 
21 

-ii 
AC ---+-----------BD 

---. ý 2 
5S 

AD 

Figure 9.1 Conversion of simple state transition diagrams to a single 
diagram 

A worthy area of further work would be to investigate other possible means of 

implementing static analysis on ICE model. An additional foreseeable challenge however 

would be ICE's stochastic nature. Reachability graphs can be drawn of PNs with 

deterministic transition firing rates, however the theoretical number of state consequences 

becomes infinite when stochastic transition rates are allowed. In ICE, where transitions are 

dependant upon the stochastic transitions of other components a similar problem would be 

encountered. One possible way of accommodating this would be to place limits on all 

stochastic transitions. For example, if a transitions timing was t= exp(30), we could set 

the limits so that the transition must occur at time tE {5,10,15,20,25,30,35,40,45,50,55}. 

This would theoretically make the reachability graph obtainable, though if there were more 

than a few stochastic transitions it may not be tractable. 

ICE as a descriptive formalism 

Often formalisms are used to capture the description of a system and this representation is 

then converted into a format suitable for simulation. ICE is beneficial in that it can be 
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used for both stages. The whole ethos of ICE dictates that there should be no need to 

describe a system in terms of another formalism before creating a model. In this thesis we 

have concentrated on using ICE to model systems for simulation but the language should 

also be viewed as a formal tool for producing unambiguous system descriptions. This may 

be suited for an application such as risk assessment where it may not be desired to simulate 

a system but a complete and consistent means of description is essential. 

Using the #include command in ICE it is possible to build up libraries of ICE code that can 

be reused in different models. A criticism often made of simulation libraries that they are 

too simple or if the modules are not in the format of source code, it is not known exactly 

what they contain. As a result, libraries are often not used, modellers preferring to develop 

their own modules. ICE libraries are of ICE source code and owing to the simple syntax 

they should be inherently easy to comprehend and analyze, thus negating the latter problem. 

The former is also manageable as the libraries may be copied into new files and edited to 

suit a users requirements. 

9.3 Implementation of the ICE simulator 

The design and implementation of the ICE simulator, described in chapter 4, followed an 

iterative process. The criticism could be made that a full system specification should have 

been completed before the implementation began. This however was not possible as the 

syntax of the language had not been finalised at that stage. In truth, this iterative process 

proved to be valuable. Design of the simulation algorithm in particular led to some 

interesting insights into further possible interpretations of the language's semantics and 

transition timing issues. The exact definition of the algorithm required an exhaustive 

examination of all possible combinations of event enabling and sequencing and following 

from this an optimal understanding of the semantics was obtained. This understanding is 

presented in the computational model of ICE. 

The simulator is implemented in quite complex object oriented code. Due to the level of 

abstraction inherent within object oriented programming and the number of data objects 

required for an application such as this, obtaining an understanding of the code can be quite 

daunting. The example presented in appendix B should prove useful and save much time 

for anyone aiming to understand the software with a view to modifying it. Extensive use 
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of reusable libraries and dynamic data structures, whilst perhaps not optimal due to the 

iterative design procedure, ensure that the code is relatively compact. 

One weakness of the simulator is that it is subject to much possible conflict between 

simulation events. A consequence tree is used to fire events that result from the occurrence 

of previous events. This can result in many conflicting transitions being scheduled for the 

same time. In such an instance, the order in which these transitions occur should be 

random, however in practice they are dictated by the order in which they were submitted 

to the event list. As a result, some of the supposedly random events are predictable. To 

counteract this a random event scheduler is required as part of the simulation algorithm. 
This should be able to identify occurrences of conflict and randomly prioritise the 

conflicting events. 

The range of statistics available from the analysis post processor is reasonably 

comprehensive and easily expanded. This processor has efficiently produced meaningful 

results from many of the models presented in this thesis. The flaw in this tool however 

is the time consuming way in which the user must enter the information that is required. 
The simulator has been written to run on a standard DOS environment. It would benefit 

greatly from a Windows implementation. As this thesis is being written, analysis of the 

software's graphical interface code is being done and a specification is being written for a 

new project that will develop a Windows version of the software. As well as allowing 

such things as the multiple editing of files and easy access to all functions this will 

facilitate a user friendlier interface to the post processors. 

ON EVENT main. failed 

exp(x) 0 

failed idle operate 

exp(y 0 
IF main. waläng 

MAIN STANDBY 

Figure 9.2 State transition diagram of standby redundant system. 
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Speed is of importance to the modeller, both during the model specification and simulation 

phases. It has been shown how the nature of ICE allows for the relatively quick 
development of models by 'non-experts'. The event scheduling nature of the simulator 

enables impressive run times. To illustrate this we shall consider a simple example. 

Figure 9.2 shows the state transition diagram of a standby redundant system. The 

component main moves between the two states working and failed with failure and repair 

rates exp(x) and exp(y) respectively. The component standby normally in state idle moves 

into state operate on the event that main moves into state failed. When main returns to 

state working, standby returns to state idle. This example thus has instances of all types 

of stochastic and conditional statements and gives a true representation of typical tun times. 

When implemented in ICE and simulated on a 486 DX4,100 MHz PC the time taken to 

process one million events was 590 seconds. A large proportion of this time is due to the 

generation of the stochastic distributions for the exponential transitions. If exp(x) and 

exp(y) are replaced with the deterministic values x and y, the time taken to process one 

million events is reduced to 83 seconds. This clearly demonstrates the value of reducing 

the generation time of the pseudo random numbers. 

9.4 Random number generation 

The area of work on random number generation was not identified in the original 

specification but was suggested during the development of the simulator. It looked to be 

a fruitful area of research and was therefore pursued. The generator originally implemented 

was chosen from the literature for its proven statistical properties. Further research 

however revealed that these had been obtained for only long runs of generation. It was 

shown in chapter 5 that the properties of a pseudo randomly generated sequence will not 

necessarily be shared by sub-sequences. This implies that all sources within an application 

that require a supply of random numbers must be supplied from independent sequences. 

The length of sequences generated may then be of greatly varying ranges and the statistical 

properties must remain good for runs of a few numbers to many thousands of numbers. 

In specifying that all lengths of sequences must possess good statistical properties we must 

be careful to recognise that this is on average. If each individual sequence generated 

possessed good properties, then this, paradoxically, would be non-random, as we expect by 

the law of probabilities to obtain some bad results. The longer a sequence that is used then 
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the more likely all random properties will be observed and the truer reflection of the actual 

system will be obtained. In many instances of simulating a model, many of the sequences 

used for the model will be of orders of magnitude longer than other sequences. To give 

credible results it is therefore necessary to do many runs of the simulation. 

The new fast shift register generator proposed in chapter 5, has similar statistical properties 

to the proven industry standard generator but is over four times faster in operation. This 

represents a significant saving in time intensive simulation environments with many 

stochastic processes. 

9.5 Computational models for ICE 

Computational models for ICE were developed to both provide a concise description of the 

language's semantics and to compare it to a recognised performability modelling technique. 

ICE components may be regarded as finite state machines and are represented by PNs with 

a single token. These basic models are built upon when counters are added. Counters 

contribute a considerable increase in descriptive power and this is reflected by the increased 

complexity of the PN model. Within ICE, SYSTEM statements provide a simple means 

of relating what can be very complex component interactions. It is a non trivial task 

representing even a relatively simple system statement with PNs. These PNs are the most 

sophisticated of all that are used to model ICE and show how the simple syntax of the 

language can hide some surprisingly powerful descriptive capabilities. The counters and 

system statements make it possible to view ICE as a high level PN in the sense that due 

to these constructs there is a significant reduction in state space complexity of some ICE 

models relative to their PN equivalent. 

In most of the PN models the transition firing policies are arbitrary though in a few they 

have to be stated so that the model accurately reflects the ICE equivalent. It is in this one 

aspect that the operation of the PNs is not wholly deterministic from the schematic alone. 

The conflict inherent in some of the ICE constructs is modelled by the use of inhibitor arcs 

and test arcs. This conflict results from the PNs being an exact representation of the 

simulation algorithm described in chapter 4. These PNs help to quantify and provide 

valuable insight into the problem of conflict that causes determinism in a random process, 
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as was discussed in section 9.3. 

It would have been normal and perhaps beneficial to have developed a computational 

model before implementing the language. Had this been done, the iterative procedure by 

which the simulator was written would have been avoided. However, the learning process 

that did take place was very beneficial and it is not felt that the order in which the project 

progressed was detrimental in any way to the development of the language or simulator. 

9.5.1 A macroscopic view 

In chapter 6 all of the ICE constructs were modelled by PN equivalents in isolation. An 

interesting exercise would be to produce macroscopic PN representations of complete ICE 

models, though it is intuitively felt that these may quickly become unmanageably large. 

A number of primitives could be constructed, existing mostly of the already defined PNs, 

and these could be used to construct more complex features of a model. Such a 

macroscopic model would give a truer comparison of the state space of ICE and PN 

models. This exercise would identify the high and low level language features. By high 

level, we denote constructs that require a number of places and arcs to build up a PN 

model, such as the SYSTEM statement. Low level signifies where a construct can be 

modelled by a one to one equivalent of language items to PN places such as the 

RESOURCE statement. When these features are identified, it is the high level features that 

represent a significant saving in state space of ICE over PNs. 

Some of the computational models, such as the SYSTEM statement, are rather complex and 

this defeats the purpose of using them to clarify the language's semantics. Perhaps the 

most important constructs to be defined by the PNs are the behavioural statements as it is 

in these that understanding of the semantics is open to misinterpretation. These PNs are 

of a reasonable size and the semantics are clearly illustrated. Although a macroscopic view 

of a system created by combining many primitive PNs may give a large and unmanageable 

view of the modelled system, this may not be the optimal PN representation. The ICE and 

PN approaches to system description are inherently different and therefore a direct 

comparison between the ICE constructs and the equivalent PN models will not in all cases 

give a definitive measure of relative model sizes. 
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Although it has been proven that ICE offers features that give a significantly more compact 

descriptive space than is possible with PNs we cannot state that ICE is more powerful than 

extended high level PNs. This is due to the ability to model all of the ICE syntax with 

equivalent PNs. However it is very interesting to note that in producing these PNs, no one 

dissertation on extended PNs contained all the high level extensions that were required. 

The challenges to modelling of dependency, concurrency, synchronisation and conflict were 

all considered and ICE solutions derived. These solutions took the form of very basic ICE 

models, illustrating the practical nature of the language and giving confidence in its ability 

to model more complex systems. 

9.6 Performability modelling 

From the background research presented in chapter 2 it can be concluded that 

performability is a very important measure when analysing the behaviour of a system. It 

often presents more complex challenges to the modeller than pure performance or 

dependability measures. It was found that the techniques being developed to facilitate 

performability modelling often involved rather complex definitions and solutions of the 

problem suggesting that there is a need for an approach where the problem description 

involves a low level of abstraction but is still powerful. Performability was chosen as a 

good and thorough test bed for ICE and the work showed that ICE is well suited to this 

type of problem. 

The ATM switch model presented in chapter 7 illustrates ICE's approach and ability to 

model complex system comprising many interacting components. It also demonstrates the 

very low level of abstraction involved which consequently enables detailed and interesting 

analysis of the switches behaviour. Such a model as this involves many simultaneous event 

transitions and requires a lot of careful consideration. It is difficult to see how this 

problem could be eased as the complexity is in the problem not the modelling technique. 

For such complex models errors may be hidden and validation is essential before we can 

have confidence in the results obtained. The textual and statistical post processors of the 

simulator provide an efficient means of conducting this validation. Although ICE was well 

suited to this application it is recognised that a state space approach may not always be the 

most efficient means of pure performance modelling and when performance measures are 
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the only requirement other techniques should not be ignored. 

The generic ICE performability modelling framework proved effective for obtaining 

meaningful performability measures from a modelled system. This approach was based on 

reward model techniques and was demonstrated to be stronger than either Markov reward 

models or stochastic reward nets, in respect that the modelling of accurate non linear 

reward involved no added complexity over the modelling of linear reward. 

9.6.1 Problems encountered in modelling systems 

Consideration of the literature on performability modelling revealed three recurrent 

problems that are encountered, namely largeness, stiffness and non exponential behaviour. 

In chapter 2 we considered the implications of these and some of the existing solution 

techniques. Here be briefly consider how they can be handled by ICE. 

Largeness 

This problem can be elegantly handled by ICE in two ways. Firstly the use of counters can 

greatly reduce the size of a model's state space hence possibly removing any requirement 
for lumping and the consequent approximation. Secondly there is no requirement to detail 

every possible combination of states, only the states for each individual component and 

their interactions. This may avoid the need for truncation and again the approximation that 

this involves. These techniques suggest that for many applications the problem of largeness 

will not be significant when modelling with ICE. 

Stiffness 

The ability to reuse code libraries and perform decomposition within ICE models by 

adopting hierarchical techniques will in some instances solve the problem of stiffness. 

However some applications still present degrees of stiffness that are not possible to model 

without some degree of approximation. Take as an example a typical ATM system. If we 

assume a line speed of 155 Mbits" and 30% load, an error rate of 10-8 would represent one 

erroneous cell per day ! Also errors tend to occur in bursts and this is a high error rate. 
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I SIM suffers from the weakness common to all simulators of not being able to handle this 

dynamic range. For such situations analytical techniques will need to be applied. 

Non exponential behaviour 

This is not an issue with ICE as many types of stochastic distributions are facilitated and 

any that are not currently implemented can be easily incorporated. 

9.7 Suggested areas of further work 

In this section possible areas of further work that have not been discussed elsewhere in this 

chapter are suggested. 

The ICE language 

ICE is thought to be fairly optimal in its current state. A couple of changes have become 

apparent during the performability modelling that would not add extra power to the 

language but would assist in more elegant model implementations. These changes would 

not increase the complexity of the syntax, fitting with the adopted ethos. 

When using the generic performability framework a component is used to monitor the 

cumulative reward after every reward time unit. In models where states have significantly 

different sojourn times this becomes computationally intensive. It is suggested that 

counters be given access to the system clock during simulation. With this facility it would 

be possible to check state entry and exit times and thus determine the total accumulated 

reward for that state when it is exited. This would save computation and therefore time 

during simulation. 

If the ATM switch model is examined it will be recognised that much of the code is 

repetitive with some constructs being repeated many times over, the only difference being 

some of the state names. Much editing could be saved if a functional approach was 

adopted. By this we mean the introduction of variables. A construct that will be used 

more than once could be defined and the changing state names replaced by these variables. 
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BEHAVIOUR be {2 idle -> varl; 
3 varl -> busy; 
I busy -> var2; 
4 var2 -> idle; } 

be ( working-l; standby-1 ); 
be ( working-2; standby_2 ); 

Listing 9.1 Example of functions 

Consider as an example the BEHAVIOUR statement of listing 9.1. The statement contains 

the two variables varl and var2. It may then be used many times over by giving the 

statement name and in brackets afterwards the state names that the variables should be 

substituted with. This is analogous to the use of functions in the C programming language. 

If such an approach were used in the ATM switch model the amount of code would be 

reduced by about 80%. 

A third change to the language which would add complexity and significant power would 

be the incorporation of intelligence. ICE can now be used to obtain performability 

measures. A suitable progression would be the ability to optimise performability. This 

would involve the capability for the dynamic adjustment of components and resources 

during simulation so that different configurations could be tested based on intelligence of 

the operation status of the system. It is envisaged that with such an implementation 

desirable optimal states could be identified and it would be possible to dynamically re- 

configure the model to obtain these states. It should also be capable of monitoring for the 

occurrence of given states and work backwards to identify possible causes. This would be 

an extremely useful tool for many applications where the emphasis would be shifted from 

mitigation to prevention thus potentially offering significant savings in design time and 

cost. 

The ICE simulator 

The conversion of the ICE simulator to a Windows based version, discussed in section 9.3, 

will offer many benefits. It is necessary to analyse most models that are simulated to 

obtain understanding of the system in question. The simulators post processors could be 

improved to facilitate more options for this analysis. 
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Currently the analysis post processor will only perform analysis on whole runs of a 

simulation. It would be beneficial to be able to select exact periods during simulation for 

which analysis is required. This would save having to simulate the model to determine 

steady state conditions or conditions at the start of the desired time of analysis which are 

then fed back into the model. 

Many of the results in this thesis have been presented in graphical format. This was 

achieved by obtaining statistics from the post processors and then using these in a standard 
drawing package. Often features and trends of the results do not become apparent until a 

graphical plot is generated. As part of the revised post processor a graphing facility should 
be provided, to plot any of the statistics obtained and be in a format suitable for direct 

printing or import into a word processing or drawing package. An extension of this would 
be on-line visualisation of results. Often it would be of great advantage to be able to view 

the behaviour of a system as it is being simulated. This would involve much computation, 

sacrificing simulation speed and therefore should be optional. On-line visualisation should 

allow any of the obtainable statistics to be plotted as the simulator is running. These plots 

could be updated after given time periods or by using a pause option, where the simulation 

would be stopped at the user's discretion, plots updated then the simulation recommenced. 

9.8 Conclusions 

The achievements of the project are listed in section 1.4. 

Overall the project has developed : 

1. A generic description and simulation language that is intuitive and simple to apply 

but powerful. 

2. A tool that facilitates the attainment of performability measures and which may be 

applied by an expert in the field rather than an expert in performability. 
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APPENDIX A 

The ICE language 
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A. 1 Introduction 

In this appendix we present the full syntax of ICE. The background of the language is 

described in section 1.2 The semantics are further discussed in chapter 3, along with the 

philosophy of some of the constructs. In chapter 6 we show the language to have the same 

descriptive power as extended high-level Petri nets. 

A. 2 Overview 

The language has a declarative style that is based upon describing systems in terms of their 

constituent interacting discrete state components. Each COMPONENT in a system has a 

set of operational states. The component moves between the various states in its 

STATE SET according to its predefined BEHAVIOUR. The transitions can be governed 
by : 

0 Time delays. 

" Status of one or more components. 

0 Behaviour, ie transition event of one or more components or component counters. 

Components may also have an associated AGE which can be used to manipulate their 

behaviour. 

Components may also have COUNTERS associated with them. Counters are used to help 

counteract the problem of state explosion. For example, if we wished to model a buffer 

with 100 spaces, we could do so by using 101 states, ie 1 state for the empty condition and 

100 for each of the levels of occupancy. Alternatively, we could use one state to represent 

the buffer and a counter which may take any value [0,100] to represent the levels of 

occupancy. This clearly allows the state complexity of models to be greatly reduced. 

To fully define a component, three statements are required : 

" STATE SET, which lists the finite set of states that the component can exist in and 

any counters belonging to the component. 

" BEHAVIOUR, which defines all possible transitions that can be made between 
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states. 

0 COMPONENT, which defines a component with a specified STATE_SET and 
BEHAVIOUR. It also defines an initial state and optionally an initial age and 

counter values of the component. 

As well as components we can also describe passive resources which may be allocated to 

components. Resources may be consumable or non-consumable and are specified as 
STOCK and RESOURCE respectively. The WAIT FOR statement allows dynamic creation 

of components and the explicit manipulation of free component and resource levels during 

the simulation. 

The language is free format in the sense that blank space (spaces, tabs, new lines etc) are 

ignored. The order of statements is unimportant, unless this would cause a semantic 

conflict. This point is expanded in section A. 3.5. 

A. 3 Language Syntax 

In the examples of syntax given below the following conventions are used : 

Keywords are shown in CAPITAL letters. 

User defined names are shown in italics. 

Optional syntax is shown in [square brackets]. 

A. 3.1 COMPONENT 

The COMPONENT statement defines one or more components which share the same 

STATE SET and BEHAVIOUR (both defined later). It also defines the initial state of the 

component. It may define any initial counter values and the initial age of the component. 

The general form of the statement is : 
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COMPONENT component list 

[STATE SET :] stateset name ; 
[BEHAVIOUR :] behaviour name ; 
[INIT STATE :] state name [( counter init list) ]; 
[INITAGE :] [age] ; 
} 

The component list can consist of one or more names separated by commas. Alternatively, 

each name may be in array form, eg switch[1O], would define ten components with the 

name switchO... switch9. 

The counter finit list can consist of one or more names which are assigned integer values 

separated by commas, for example 

(buffer a=0, buffer b=7) 

A. 3.2 STATE SET 

The STATE SET statement is used to define a finite set of states that a component can 

exist in and the counters belonging to the component. It also shows the operations which 

are performed on the counters when the component enters any of the given states. The 

statement is of the general form : 

STATE SET name { 
COUNTERS :[ counter list ]; 
STATES { 

[attribute] [%] statename :[{ counter modifier list }]; 

} 
} 

An attribute is used to define a sub-set of states within the state set and is specified by one 

or more capital letters. The % indicates that a component is ageing when it is in the given 

state. A components age is a positive integer number that is incremented by the amount of 

simulation time that elapses while the component is in the ageing state. 

The counter list is a list of names of counters sepperated by commas. The 
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counter-modifier-list describes how counters are modified when the component enters the 

associated state. It consists of one or more counter modifiers sepperated by commas. A 

counter modifier will take one of the three general forms 

9 counter name = any_countername 

0 counter name = any_counter name expr any_b counter name 

0 counter name = any_counter name expr integer value 

The counter name is the name of the counter to be modified. Any_counter_name and 

any_b counter name are the names of the same counter or any other counters belonging 

to the same component. Expr is one of the arithmetical expressions in the set 

}, representing addition, subtraction, multiplication and division respectively. 

For example, the statement 

STATE SET switchingelement { 
COUNTERS : tx, rx, total; 
STATES { 

A transmit : (tx = tx + 1) ; 
A receive : (rx = rx + 1) ; 

clear: (tx=0, rx=0); 
update (total =tx+rx 
idle; 

defines the STATE SET with name switching-element which has three counters tx, tx and 

total and five states transmit, receive, clear, update and idle. The attribute A is logically 

true when the component resides in the 'active' states transmit or receive. The component 

will age while in the state idle. The counters tx and rx will be incremented when the 

component enters states transmit and receive respectively and they will both be set to 0 

when the component enters state clear. The counter total will be set to the sum of the 

counters tx and rx when the component enters state update. 
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A. 3.3 SYSTEM 

The SYSTEM statement is used to form complex boolean functions of component state 

pairs. The statement is of the form 

SYSTEM system name = function (namelist ); 

There are three types of function 

0 ANYn, where n is a positive integer. This will take the value 1 if at least n of the 

members of namelist are true, else it will take the value 0. 

0 EXACTLYn, where n is a positive integer. This will take the value 1 if exactly n 

of the members of namelist are true, else it will take the value 0. 

". ALL. This will take the value 1 if all the members of namelist are true, else it will 

take the value 0. 

A namelist is of the form 

[! ]name], [! ]name2, ..., [! ]nameN 

where name is one of the formats 

"A component state pair of the form component. state. Takes the value 1 when 

component is in state, else it takes the value 0. 

"A component attribute pair of the form component. attribute. Takes the value 1 when 

the component is in a state which posseses the attribute, else it takes the value 0. 

"A component counter expression of the form component. counter expr value. Where 

expr e{_, <, >} and value may be either an integer value or a component counter 

value. Takes the value 1 when the expression is true else it takes the value 0. 

"A SYSTEM function of the form ANYn(namelist); ALL(namelist); 

EXACTLYn(namelist). 

0A SYSTEM name that is defined elsewhere. 

A preceding ! would indicate a logical NOT. 
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The final SYSTEM format allows SYSTEM statements to be build up recursively. Consider 

for example 

SYSTEM level! = ANY2 (compl. receive, comp2. buffer > 7, comp3. A ); 
SYSTEM level2 = ALL ( level!, EXACTLY2 (comp4.3, comp5.3, comp6.3 ); 

Levell has value 1 if any two (or more) of the elements in the list have value 1. That is 

if two of the following are true : compl is in state receive, the counter buffer belonging to 

comp2 has a value greater than 7 or compB is in a state which posseses the attribute A. 

Level2 has value 1 if all the elements in the list have value 1. That isif levell =I and 

exactly two of the components comp4, comps and comp6 are in a state which possesses the 

attribute A. 

A. 3.4 RESOURCE 

Resources are passive entities which can be allocated and deallocated to and from 

components to modify their behaviour. Consumable resources are specified by the STOCK 

statement, non-consumable resources are specified by the RESOURCE statement. These 

statements take the form 

RESOURCE { name-quantity list }; 

The name-quantity list is of the form 

namel: quantityl, name2: quantity2, ..., nameN. "quantityN 

this indicates that resource name] has the initial value quantity] etc. . The form of the 

STOCK statement follows the same syntax. 

A. 3.5 BEHAVIOUR 

A BEHAVIOUR statement contains a set of statements that describe the transitions between 

states in a STATE SET. A BEHAVIOUR statement takes the form 
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BEHAVIOUR name { 
[precondition {] time initial state -> final state [PROB(n)] [}]; 

} 

The component will stay in initial state exactly time time units after entering and then 

immediately moves to finalstate. 

The time function can be of the two forms 

" %, a deterministic delay, where X >_ 0. 

" distribution(. i, [where the distribution is one of a defined set, eg exp, Weibull, 

gamma, beta etc. 

The precondition is of the form 

PRECONDITION TYPE condition 

Where the PRECONDITION-TYPE can be one of 

" ON EVENT 

" IF 

" ON RESOURCE 

" ON AGE 

These are described in turn below 

ON EVENT condition 

This means that if the component is in initial state when the condition becomes true then 

it will make the timed transition into finaLstate. Note that if the time of the transition is 

0 then this acts as a forced transition. The condition can be any valid name. The condition 

is an event generated by a state transition. Therefore if the component enters the 

initial state after the condition becomes true then no transition is made, the event has 

passed. 
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For example, consider the following transitions 

exp(70) first -> alt 1; 
ON EVENT other. fail { exp(50) first -> alt 2; } 

If the component described by the transitions enters the state first then normally it would 

move to state alt 1 after a random time, T1, determined by the exp(70) function. However 

if after any time t during the components existence in state first the component other 

moves to state fail then a random time, T2, is generated by the function exp(50) and this 

component will move into alt 2 if T2 < Tl - t. 

IF condition 

This is a conditional statement which contains two basic parts. Firstly, if the condition is 

true upon the component entering the initial state then the timed transition is made. 

Secondly, on the event the condition becomes true at any point while the component is in 

the initaLstate then the timed transition is then made. The condition is the same as that in 

the ON EVENT pre-condition. 

For example, consider the following transition 

IF other. fail {7 first -> second; ) 

When this component described by the transition moves into state first, if the component 

other is in state fail then this component will move into state second after a time delay of 

7. If however, component other is not in state fail when state first is entered but 

consequently moves into fail at time t, while state first is still occupied, the transition to 

state second will occur at time t+7. 

ON RESOURCE condition 

The ON RESOURCE pre-condition describes transitions that are enabled by the allocation 

of resources to a component. The condition is a resource list which takes the form 

resourcel: quantityl, resource2: quantity2 ,..., resourceN. "quantityN 
where N >_ 1. 

231 



When the component enters initial state then it demands the resources detailed in the 

resource list. If all the resources are available then they are allocated to the component and 
it moves into state final state. If the resources are not available, then the component will 

wait in state initial state until they become free. If the component moves out of 

initial state meantime then the request for resources is cancelled. 

Note that the ON RESOURCE condition is forced and hence the accompanying transitions 

cannot be timed or have associated probabilities. 

ON AGE condition 

The condition specifies an age value for the component. If the component reaches this age 

when in the initial state then it is forced into final state. Note that since this is forced, the 

accompanying transitions cannot be timed or have associated probabilities. 

Alternative transitions 

Alternative Transitions may be made from an initial state in one of two ways. 

" With the PROB(n) keyword; where 0SnS1. 

0 By specifying two or more unconditional transitions from an initial state. 

The PROB keyword allows us to list alternative transitions out of a state and the relative 

probabilities with which they will occur. The probabilities of transitions from an 

initial state within a single pre-condition statement or BEHAVIOUR statement must sum 

to 1. When a component enters the initial state the transition is selected randomly from 

the alternatives and the time of the transition is then calculated. 

The second way of specifying alternatives is to list more than one transition from the same 

state without specifying any probabilities. In this instance the time for each transition is 

calculated and the one with the shortest time is made. If more than one time is equal then 

the transition declared first is made. 

232 



A. 3.6 WAIT FOR 

The WAIT FOR statement allows dynamic creation of components and explicit 

manipulation of free resource and stock levels during simulation. It takes the general form 

WAIT FOR condition { action } 

The condition is one of two types 

0 fixed time 

0 component. state 

The fixed time option allows an action to be enabled at a defined time during the 

simulation. The time is specified by an integer or a symbolic constant. 

The component. state option behaves like an ON EVENT precondition. That is at the instant 

the component enters the state the action is enabled. 

The action may either be a component decleration, using the COMPONENT statement or 

it may be the increment or decrement of free resources or stock levels, taking the general 

form 

RESOURCE { name quantity _list 
} 

The name quantity_list will consist of one or more lines of the form 

name :[ sign ] quantity ; 

The name is any resource name. The sign is either + or - which represents increment of 

decrement respectively, the default being +. The quantity may be either an integer value 

or a symbolic constant. Note that STOCK levels are manipulated in exactly the same way. 

233 



Appendix B 

Data Structures, Objects and Files created 
during Simulation 
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B. 1 An Ice program - 'logger. ice' 

Figure B. 1 shows the block diagram of a simple data logger system. The logger records 
incoming datB. At given time intervals the controller polls the logger and the recorded 
data is down-loaded to the controller. The state diagram of the system operation we wish 

to consider is given in figure B. 2. 

poll data-in 
LOGGER 

data out 
CONTROLLER 

Figure B. 1 Block diagram of Data Logger and Controller 

CONTROLLER LOGGER 
exp(8) 0 

busy 
2 ýp iäe ecor buffer = buffer +1 

2 

0 

IF controller. poll 
2 

send 1 buffer= 0 

Figure B. 2 State diagram of Data Logger and Controller 
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From the state diagram we can model the system in Ice using the code given in listing 

B. I. Note that line numbers are for reference and not part of the code. 

01 // File : logger. ice 
02 // Author : GAC 
03 // Date : 21.06.95 
04 // Purpose : Models a simple data logger. Used to illustrate 
05 // : timed conditional transitions and Counters. 
06 
07 // Value above which data load considered high 
08 CONSTANT {HIGH VAL = 4; ) 
09 
10 STATE SET ss control { 
11 COUNTERS :; 
12 STATES { 
13 busy :; 
14 poll :; 
15 } 
16) 
17 BEHAVIOUR be_control { 
18 exp(6) busy -> poll ; 
19 2 poll busy 
20 } 
21 COMPONENT control {ss control; be control; busy; ) 
22 
23 STATE SET ss logger { 

; 24 COUNTERS : buffer, empty 
25 STATES ( 
26 idle :; 
27 record :{ buffer = buffer +1 
28 send :{ buffer = empty 
29 } 
30 ) 
31 BEHAVIOUR be logger { 
32 2 idle -> record ; 
33 0 record -> idle ; 
34 IF_ON control. poll { 
35 3 idle -> send 
36 0 send -> idle ; 
37 } 
38 COMPONENT logger {ss logger; be logger; idle(buffer = 0, empty = 0); } 
39 
40 SYSTEM data high = (logger. buffer > HIGH_VAL); 
41 
42 RUN(1); 
43 STOPTIME(1000); 

Listing B. 1 Ice code to model the data logger system - 'logger. ice' 
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B. 2 Parsing of 'logger. ice' 

Figures B. 3 - B. 5 show the links between the data structures produced when the 'logger. ice' 

code is parsed. Section B. 2.1 lists the actual data structures. Every data structure is given 

a name shown in bold. It is these names that are used in the linking diagrams. It is 

important to note that for clarity only partial data structures are shown. Whenever a 

structure utitlises a Union ie a single variable which may take on different types, only the 

type used in the particular instance is given. 
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Figure B. 3 STATE SET and related structures 
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Figure B. 4 BEHAVIOUR and related structures 
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Figure B. 5 COMPONENT, SYSTEM and related structures 
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B. 2.1 Simulation data structures 

struct symtabentry SS1 

char *name ss control 

int linen 16 

int objno - 
int flags - 

struct symtabentry *next symtab[ss control] 

struct symtabentry *nexft SS2 

Symtypes type Sym. state set 

Union U struct states int 2 

StateList *list SLl 

StateList **hashtable - 
Counter *clist NULL 

Counter **counterhtable NULL 

int ncounters 0 

struct StateList SLl 

struct StateList *next SL2 

struct StateList *hnext htable[SL1] 

char *name busy 

long attribs 0 

int flow 0 

int no 0 

FnExp fnlist NULL 

struct StateList SL2 

struct StateList *next NULL 

strut StateList *hnext htable[SL2] 

char *name poll 

long attribs 0 

int flow 0 

int no I 

FnExp fnlist NULL 
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struct symtabentry SS2 

char *name ss logger 

int linen 23 

int objno - 

int flags - 

struct symtabentry *next symtab[ss logger] 

struct symtabentry *nextt NULL 

Symtypes type Synt. state set 

Union U struct states int 3 

StateList *list SL3 

StateList **hashtable - 

Counter *clist Cntl 

Counter **counterhtable countertable_ýSS2 

int ncounters 2 

struct Counter Cntl 

struct Counter *next Cnt2 

char *name buffer 

int value - 

struct Counter *hnext counthtable[1] 

int no 0 

struct counter I: nu 
struct Counter *next NULL 

char *name empty 

int value - 

struct Counter *hnext counthtable[2] 

int no 1 
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struct StateList SL3 

struct StateList *next SL4 

struct StateList *hnext htable[SL3] 

char *name idle 

long attribs 0 

int flow 0 

int no 0 

FnExp fnlist NULL 

struct StateList SL4 

struct StateList *next SL5 

struct StateList *hnext htable[SL4] 

char *name record 

long attribs 0 

int flow 0 

int no 1 

FnExp fnlist Fn1 

struct FnExp Fnl 

struct FnExp *nextfn NULL 

char *name functions 

statexp *fexp SX7 

int countemo 0 

struct Statexp SX7 
int lineno 26 

SXnodes type SXassign 

Union U struct op struct Statexp *left SX3 

struct Statexp *right SX6 

struct Statexp SX3 
int linen 26 

SXnodes type SXstr 

Union U char *str buffer 
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struct Statexp SX6 
int lineno 26 

SXnodes type SXplus 

Union U struct op struct Statexp *left SX4 

struct Statexp *right SX5 

struct Statexp SX4 
int linen 26 

SXnodes type SXstr 

Union U char *str buffer 

struct Statexp SX5 
int lineno 26 

SXnodes type SXconst 

Union U double dconst 1 

struct StateList SL5 

struct StateList *next NULL 

struct StateList *hnext htable[SL5] 

char *name send 

long attribs 0 

int now 0 

int no 2 

FnExp fnlist Fn2 

struct FnExp Fn2 

struct FnExp *nextfn NULL 

char *name function2 

statexp *fexp SX10 

int counterno 0 
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struct Statexp SX10 
int linen 27 

SXnodes type SXassign 

Union U struct op struct Statexp *left SX8 

struct Statexp *right SX9 

struct Statexp b2 a; 

int linen 27 

SXnodes type SXstr 

Union U char *str buffer 

struct Statexp SX9 
int linen 27 

SXnodes type SXstr 

Union U char *str empty 

struct symtabentry BE1 

char *name be control 

int linen 9 

int objno -1 

int flags - 

struct symtabentry *next symtab[be control] 

struct symtabentry *nextt BE2 

Symtypes type Syrbehaviour 

Union U Tran *trans T2 

struct Tran T2 

struct Tran *next Ti 

int linen 18 

float prob 0.0 

char *frotn name busy 

char *to name poll 

int tc state I 

Trantypes type TR-exp 

Condtypes cond TR-notcond 

! uni ist params NLl 

struct NumList NL2 

struct Numlist *next NULL 

float f 4 
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struct Tran Tl 

struct Tran *next NULL 

int linen 19 

float prob 0.0 

char *from name poll 

char *to name busy 

int tc state 0 

Trantypes type TR fixed 

Condtypes cond TR-notcond 

NumList params NL2 

struct NumList NLl 

struct Numlist *next NULL 

float f 2 

struct symtabentry BE1 

char *name be logger 

int lineno 32 

int objno -1 

int flags - 

struct symtabentry *next symtab[be logger] 

struct symtabentry *nextt NULL 

Symtypes type Sym behaviour 

Union U Tran *trans T6 

246 



struct Tran T6 

struct Tran *next T5 

int linen 32 

float prob 0.0 

char *from name idle 

char *to name record 

int to state 1 

Trantypes type TR fixed 

Condtypes cond TR notcond 

NumList params NL6 

struct NumList NL6 

struct NumList *next NULL 

float f 2 

struct Tran T5 

struct Tran *next T4 

int lineno 33 

float prob 0.0 

char *fron_name record 

char *to name idle 

int to state 0 

Trantypes type TR fixed 

Condtypes cond TR-notcond 

NumList params NL5 

struct NumList NL5 

struct Numlist *next NULL 

float f 0 
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struct Tran T4 

struct Tran *next T3 

int lineno 35 

float prob 0.0 

char *from name idle 

char *to name send 

int to state 2 

Trantypes type TR`fixed 

Condtypes cond TR ifon 

NumList params NL4 

struct NumList NL4 

struct Numlist *next NULL 
1 

float f 21 

struct Tran T3 

struct Tran *next NULL 

int linen 36 

float prob 0.0 

char *fromname send 

char *to name idle 

int to state 0 

Trantypes type TR fixed 

Condtypes cond TR`notcond 

NumList params NL3 

struct NumList NL3 

struct Numlist *next NULL 

float f 0 
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struct symtabentry CO1 

char *name control 

int lineno 21 

int objno 0 

int flags 

struct symtabentry *next symtab[control] 

struct symtabentry *nextt C02 

Symtypes type Sym component 

Union U struct comp char *ss ss control 

char *be be control 

char *is busy 

int PI 0 

int nparams NULL 

CounterExp initclist NULL 

struct symtabentry C02 

char *name logger 

int lineno 38 

int objno 2 

int flags 

struct symtabentry *next symtab[logger] 

struct symtabentry *nextt NULL 

Symtypes type Sym component 

Union U struct comp char *ss ss logger 

char *be be_logger 

char *is idle 

int PI 2 

int nparams NULL 

CounterExp initclist CLl 
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struct CounterExp CL1 

struct CounterExp *next CL2 

char *name counterO 

Statexp *exp SX20 

int Countemo 1 0 

struct Statexp SX20 
int linen 38 

SXnodes type SXassign 

Union U struct op struct Statexp *left SX18 

struct Statexp *right SX19 

struct Statexp SX18 
int linen 38 

SXnodes type SXstr 

Union U char *str buffer 

struct Statexp SX19 
int linen 38 

SXnodes type SXconst 

Union U double dconst 0 

struct CounterExp CL2 

struct CounterExp *next NULL 

char *name counter! 

Statexp *exp SX23 

int Counterno 1 

struct Statexp SX23 
int linen 38 

SXnodes type SXassign 

Union U struct op struct Statexp *Ieft SX21 

structStatexp*right SX22 
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Struct Statexp SX21 
int lineno 38 

SXnodes type SXstr 

Union U char *str empty 

struct Statexp SX22 
int linen 38 

SXnodes type SXconst 

Union U double dconst 0 

struct symtabentry SYS1 

char *name <anon system 1> 

int linen 34 

int objno 1 

int flags NO TRACE 

struct symtabentry *next - 

struct symtabentry *nextt SYS2 

Symtypes type SynLsystem 

Union U Statexp *sexp SX14 

struct Statexp SX14 
int lineno 34 

SXnodes type SXdot 

Union U struct op struct Statexp *left SX12 

structStatexp*right SX13 

struct Statexp SX12 

int lineno 34 

SXnodes type SXstr 

Union U char *str control 

struct Statexp SX13 
int linen 34 

SXnodes type SXstr 

Union U char "str poll 
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struct symtabentry SYS2 

char *name data high 

int linen 40 

int objno 3 

int flags 

struct symtabentry *next symtab[data high] 

struct symtabentry *nextt NULL 

Symtypes type Syncsystem 

Union U Statexp *sexp SX28 

struct Statexp SX28 
int lineno 40 

SXnodes type SXgt 

Union U struct op struct Statexp *left SX26 

structStatexp*right SX27 

struct Statexp SX26 
int linen 40 

SXnodes type SXdot 

Union U struct op struct Statexp *left SX24 

structStatexp*right SX25 

struct Statexp SX24 
int lineno 40 

SXnodes type SXstr 

Union U char *str logger 

struct Statexp SX25 
int linen 40 

SXnodes type SXstr 

Union U char *str buffer 

struct Statexp SX27 
int linen 40 

SXnodes type SXstr 

Union U char *str HIGH_VAL 
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B. 3 Compilation 

This section gives the simulation objects that are created when the simulation data 

structures listed in section B. 2.1 are compiled. 

The Component objects OBJO and OBJ2 are created by the compilation of symtabentries 

COI and C02. 

Object Component OBJO, OBJ2 
OBJO OBJ2 

long next time 0 0 

int next _state 
0 0 

int pl 0 2 

ResList *resources NULL NULL 

public: 

Statespace *space SP1 SP2 

int flags - - 

char *name control logger 

int objno 0 2 

int finit state 0 0 

int state 0 0 

int flow 0 0 

long attribs 0 0 

CqGraph CQ 1 CQ2 

CqGraph *pprev this this 

CqGraph *pnext this this 

CqGraph *cprev this this 

CqGraph *cnext this this 

int pno -1 -1 

int cno -1 -1 

Counter *counters NULL [CntlICnt2] 

FnExp **functions NULL [Fn1IFn2] 

Note that Cntl, Cnt2, Fn1 and Fn2 are the data structures shown in section B. 2.1. The 

*fezp fields of Fnland Fn2 will have been changed to SX35 and SX38 respectively, these 

structures are shown below. 
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struct Statexp SX35 
int linen { 

SXnodes type SXplus 

Union U struct op struct Statexp *Ieft SX33 

structStatexp*right SX34 

struct Statexp SX33 

int lineno { 

SXnodes type Mounter 

Union U struct op struct Statexp *1eft SX31 

structStatexp*right SX32 

Struct Statexp SX31 
int linen { 

SXnodes type SXiconst 

Union U int iconst 2 

struct Statexp SX32 
int linen { 

SXnodes type SXiconst 

Union U int iconst 0 

struct Statexp SX34 
int lineno { 

SXnodes type SXiconst 

Union U int iconst 1 

struct Statexp SX38 
int lineno { 

SXnodes type Mounter 

Union U struct op struct Statexp *left SX36 

structStatexp*right SX37 

5truct btatexp Aso 
int linen { 

SXnodes type SXiconst 

Union U int iconst 2 
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struct Statexp SX37 
int linen { 

SXnodes type SXiconst 

Union U int iconst 1 

The Sexp objects OBJ1 and OBJ3 are created by the compilation of the symtabentries 
SYS1 and SYS2. 

Object Sexp OBJ1, OBJ3 
OBJ1 OBJ3 

Statexp *sexp SX14 SX28 

public: 

int flags NO TRACE NO-TRACE 

char *name <anon system 1> data high 

int objno 1 3 

int initstate 0 0 

int state 0 0 

int now 0 0 

long attribs - - 

CqGraph CQ3 CQ4 

CqGraph *pprev this this 

CqGraph *pnext this this 

CqGraph *cprev this this 

CqGraph *cnext this this 

int pno -1 -1 

int cno -1 -1 

The Statespace structures SP1 and SP2 are created by the compilation of symtabentries 

BE1 and BE2. The state objects S1 and S2 are created by the compilate of symtabentries 

SS1, SL1 and SL2. The state objects S3, S4, and S5 are created by the compilation of 

symtabentries SS2, SL3, SL4 and SL5. 
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Object StateSpace SP1, SP2 
SP1 SP2 

char *name be control be logger 

int nstates 2 3 

int nparams 0 0 

State *states [SIIS2] [S31S41S5] 

Object State S1, S2, S3, S4, S5 
S1 S2 S3 S4 S5 

Tran *trans T2 T1 T4 T5 T3 

FnExp *fnlist Null Null Null Fn1 Fn2 

public: 

char name busy poll idle record send 

int no 0 1 0 1 2 

int now 0 0 0 0 0 

long attribs 0 0 0 0 0 
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B. 3.1 Consequence graphs 

Consider the conditional statement in the BEHAVIOUR statement of component logger of 
the previous exampl. 

34 IF control. poll { 
35 2 idle -> send; } 

As we saw during compilation, three objects were created which relate to this statement 

OBJO for component control 
OBJ1 for the anonymous system statement control-poll 
OBJ2 for component logger 

These objects would be permanently linked together during compilation as shown in figure 

B. 6. Note that for clarity only the consequence graph part of the objects is shown. 

During the simulation phase, when component control is not in state poll then this would 
be the only link. Whenever it is in state poll a temporary (or dynamic) link must be 

provided so that the transition in component logger from state idle to state send may be 

implemented. This dynamic link that would be created is shown in figure B. 7. In this 

instance the derived class OnNode is used. 

In this example the conditional statement was straightforward and only dependant upon one 

external component. In the case of complex conditional statements links must be provided 

to all interacting objects. This is facilitated by the use of the consequence graphs parent 

and child, previous and next pointers which would indicate each nodes position in a chain 

of linked parent and child objects. 
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Figure 4.6 The permanent consequence graph links created at compile time between the 
component logger and the IF statement. 
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OHJ I 

*pprev 
*pnext 
*cprev 

_ 
"cnext 

pno 0 

cno 2 

OnNode 

value 0 
forced state 2 

time_inc 2 
*pprev 
"pnext 
*cprev 

'cnext 

pno 1 

cno 2 

ODJ2 

"pprev 
'pnext 

_ 
*cprev 

"cnext 

Pao 1 

cno 

Figure B. 7 The dynamic consequence graph links created during simulation when 
component control enters state poll. 
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B. 4 Simulation - The event data file 

The listing in figure B. 8 shows the start of the event data file for the previous example. 
All simulation object data is shown as well as the first few events. Note that the control 

codes ED xxxxxx are used by the analyser when reading the file to determine the nature 

of the data on the preceding line. Note that the comments are shown to aid understanding 

and are not part of the actual file. 

TECSIM. EVT 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

ED MAGIC 4 1000 
ED STATESET ss control 
ED_STATE 0 busy 
ED STATE 0 poll 
ED STATESET ss logger 
ED COUNTER buffer 
ED COUNTER empty 
ED STATE 0 idle 
ED STATE 0 record 
ED STATE 0 send 
ED COMPONENT 0 contorl ss control 
ED COMPONENT 2 logger ss logger 
ED SYSTEM 1 <anon system 1> 
ED_SYSTEM 3 data_high 
ED START 1000 
ED TIME 0 ED Trans 10 
ED TIME 0 ED Trans 30 
ED TIME 0 ED Trans 00 
ED TIME 0 ED Trans 20 
ED TIME 2 ED Trans 21 ED CTrans 201 

H start string, number of objects, runs 
// state set name 
// state attributes, name 
//a 

// state_set name 
// counter name 
//� 
// state attributes, name 
// � 

// " 

// component object no, name, state set 
//" 
// system object no, name 

start of simulation, stop time 
time, transition object no, state 

// ", counter object no, counter no, value 

B. 5 Statistical analysis data 

This section shows the data objects that are created from the event data file shown in 

section B. 4 and the user analysis specification in figure 4.9. 

B. 5.1 Objects created from the event data file 

Shown below are the TDthing data objects that are created from the STATE SET, 
COMPONENT and SYSTEM information in the event data file. The format used is to give 
the line of the event data file and the corresponding data structures. 

2 ED STATESET ss logger 
3 ED_STATE 0 busy 
4 ED_STATE 0 poll 
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struct TDthing tdtl, stl, st2 
tdtl sti st2 

char *name ss control busy poll 

long value 0 

int monitor 0 

int objno - - - 

enum TDthing type TDstateset TDstates TDstates 

union { 

struct TDthing **states [stl, st2] 

char *attribs 

int decvalue) 

5 ED_STATESET ss logger 
6 ED_COUNTER buffer 
7 ED_COUNTER empty 
8 ED_STATE 0 idle 
9 ED_STATE 0 record 
10 ED STATE 0 send 

struct TDthing tdt2, col, co2 

char *name 

long value 

int monitor 

int objno 

enum TDthing type 

union { 

struct TDthing **states 

char *attribs 

int decvalue} 

tdt2 col co2 

ss logger buffer empty 

2 

0 

TDstateset Mounter TDcounter 

[col, co2, st3, st4, st5] I1 11 
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struct TDthing st3, st4, st5 

char *name 

long value 

int monitor 

int objno 

enum TDthing type 

union { 

struct TDthing **states 

char *attribs 

int decvalue} 

st3 st4 sty 

idle record send 

TDstates TDstates TDstates 

11 ED COMPONENT 0 contorl ss control // component object no, name, state set 
12 ED COMPONENT 2 logger ss logger // " 
13 ED SYSTEM 1 <anon system 1> // system object no, name 
14 ED SYSTEM 3 data high // " 

struct TDthing tdt3, tdt4, tdt5, tdt6 
tdt3 tdt4 tdt5 tdt6 

char *name control logger <anon 
system 1> 

data high 

long value 0 0 0 0 

int monitor 1 1 0 1 

int objno 0 2 1 3 

enum TDthing type TDcomps TDcomps TDsyss TDsyss 

union { 

struct TDthing **states 

char *attribs 

int decvalue) 0 1 - - 
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B. 5.2 Objects created from the analysis file 

Shown below are the ANA, Statexp, stats and Stats objects created from the statistical 

analysis information given in the analysis file data structures shown in figure 3.10. 

struct ANA anal, ana2, ana3 
anal anal ana3 

Statexp *sexp sexpl sexp2 sexp3 

int countval -1 -1 0 

int cval 0 0 0 

TDthing *obj 

int flags STAT2 IGNORESPIKES 

ANstats format[] [ANgstij 
ANmeani 
ANnulli... 

.. ANpercentage] 

[ANgstj 
ANpercentaget 
ANnull] 

[ANgstrj 
ANmeanj 
ANnull] 

int formatparams[] 

char *formatgstrs[] 

char *headings[] 

char *title 

char *filename 

double classify 

long account 

int conf 95 95 95 

long ovalue 0 0 0 

long otime 0 0 0 

stats *statl stanI statsB statsC 

stats *stat2 statsA 

Flist results FLresl FLres2 FLres3 

Flistelem *currentj. esult eA eB eC 

long soacc 0 0 0 

long eoacc 
- 

0 1 0 0 
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struct Statexpsexpl, tmp, tmp2 

SXnodes type 

Union U struct op struct Statexp *left 

struct Statexp *right 

TDthing *obj 

int val 

sexpi tmp tmp2 

SXdot SXobj SXint 

tmp 

tmp2 

tdt3 

struct Statexpsexp2, tmpa, tmp2a 

SXnodes type 

Union U struct op struct Statexp *left 

struct Statexp *right 

TDthing *obj 

int val 

sexp2 tmpa tmp2a 

SXdot SXobj SXint 

tmpa 

tmp2a 

tdt6 

1 

struct Statexpsexp3, tmpb, tmp2b 

SXnodes type 

Union U struct op struct Statexp *left 

struct Statexp *right 

TDthing *obj 

int val 

sexp3 tmpb tmp2b 

SXdot SXobj SXint 

tmpb 

tmp2b 

tdt4 

0 

Note that in the stats structures the union fields that are not used in this exampl are not 

shown. 

struct stats statl, stat2, stat3 

statt statt statt 

char *object control data high logger 

char *state poll T buffer 

ANstats type ANmean ANpercentage ANmean 

ANstats stats on ANpercentage -1 -1 
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Note that only one of the three Stats structures is shown. The other two would be similar. 

This example has been shown with the fields being filled in with the appropriate data as 

a sample simulaiton is run. 

struct Stats stanl 
long nsamples 0 -2 3 

double sum 0-246 

double SumSq 04S 12 

double SumExp 0 

double max 2 

double min 2 

start save data 0 

float *data[] [21212... ] 

float *cdata [01010... ] 

int sizeoLdata 256 

short sorted 0 
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Appendix C 

ICE listing of communication network 

sources model 
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File : rantest. ice 

Author : GAC 

Date : 06.11.95 

// Purpose : Checks effect on queues of random number streams 

// Counter reference values 

CONSTANT {EMPTY = 0; FULL = 20; ) 

// Model of network traffic 

STATE SET ss ch { 
COUNTERS : total; 
STATES{ 

quiet :; 
arrive : (total = total +1); 

} 
} 
BEHAVIOUR be chA { 

I quiet -> arrive PROB(O. 4); 
1 quiet -> quiet PROB(0.6); 
0 arrive -> quiet; 

} 
BEHAVIOUR be chB { 

1 quiet -> arrive PROB(O. 5); 
1 quiet -> quiet PROB(O. 5); 

0 arrive -> quiet; 
} 
COMPONENT chA {ss ch; be chA; quiet(total = 0); ) 
COMPONENT chB {ss ch; be chB; quiet(total = 0); } 

// Model of a fifo queue 

STATE_SET ss q{ 
COUNTERS : glen, drop, total; 
STATES( 

wait :; 
inc : {glen = glen + 1, total = total + 1); 
dec : {glen = qlen - 1); 
drop : {glen = glen - 1, drop = drop + 1); 

} 
} 

BEHAVIOUR be qiA { 
IF ON chA. arrive { 

0 wait -> inc; } 
IF ON seA. read { 

0 wait -> dec; } 
IF qiA. qlen > FULL { 

0 inc -> drop; } 
ON_EVENT chA. quiet { 

0 inc -> wait; ) 
ON EVENT ! seA. read { 

0 dec -> wait; 
0 drop -> wait; } 

} 
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BEHAVIOUR beqiB { 
IF ON chB. arrive { 

0 wait -> inc; } 
IF ON seB. read { 

0 wait -> dec; } 
IF qiB. qlen > FULL { 

0 inc -> drop; } 
ON EVENT ! chB. arrive 

0 inc -> wait; ) 
ON EVENT ! seB. read { 

0 dec -> wait; 
0 drop -> wait; } 

H Model of network terminating units (NTUs) 

COMPONENT qiA {ss q; be qiA; wait(qlen = 0, drop = 0); ) 
COMPONENT qiB {ss q; be qiB; wait(qlen = 0, drop = 0); ) 

// Model of switching elements 

STATE SET ss_se 
COUNTERS:; 
STATES{ 

wait:; 
read :; 

} 
BEHAVIOUR be seA { 

Ii? ON qiA. qlen > EMPTY { 
2 wait -> read; } 

0 read -> wait; 
} 
COMPONENT seA {ss se; be seA; wait; } 

// Model of switching element queues 

BEHAVIOUR be seA q{ 
IF_ON seA. read { 

0 wait -> inc; } 
IF seA_q. glen > FULL { 

0 inc -> drop; } 
ON_EVENT ! seA. read { 

0 inc -> wait; 
0 drop -> wait; } 

} 
COMPONENT seAAq {ss q; be_se&q; wait(qlen = 0, drop = 0); ) 

H Model of switching element 

BEHAVIOUR be_seB { 
IF_ON qiB. qlen > EMPTY { 

2 wait -> read; } 
0 read -> wait; 

} 
COMPONENT seB {ss se; be seB; wait; } 
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H Model of switching element queues 

BEHAVIOUR be seB q{ 
IF ON seB. read { 

0 wait -> inc; } 
IF seB q. glen > FULL { 

0 inc -> drop; } 
ON EVENT ! seB. read { 

0 inc -> wait; 
0 drop -> wait; } 

COMPONENT seB q {ss q; be seB q; wait(qlen = 0, drop = 0); ) 

H Simulation control 

STOPTIME(1000); 
RUN(1); 
SEED(370829552); 
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Appendix D 

ICE listing of Delta-2 Banyan switch 

architecture model 

270 



// File : asw4a. ice 

// Author : GAC 

// Date : 13.02.96 

// Purpose : Models four layers of a 161/p Delta-2 Banyan Switch with 

// o/p buffered SEs. Has both Up and o/p controllers. 

H Counter reference values 

CONSTANT (EMPTY = 0; FULL = 20; ) 

H Model of network traffic 

STATE SET ss chjn { 
COUNTERS : total; 
STATES{ 

quiet :; 
arrive : {total = total +1}; 

} 
} 
BEHAVIOUR be_cl-in { 

1 quiet -> arrive PROB(O. 65); 
I quiet -> quiet PROB(O. 35); 
0 arrive -> quiet; 

} 
COMPONENT ch inl, c1L-inO (ss ch in; be cl-in; quiet(total = 0); ) 

// Model of traffic routing through switch 

STATE SET ss dest { 
COUNTERS:; 
STATES( 

cross :; 
bar :; 

} 
} 

BEHAVIOUR bedest inO { 
ON_EVENT ANY(seaO. readO, seal. readO) { 

0 cross -> bar PROB(0.5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(0.5); 

} 
} 

BEHAVIOUR beBest inl { 
ON EVENT ANY(seaO. readl, seal. readl) { 

0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

} 
} 
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BEHAVIOUR be dest seaO { 
ON EVENT ANY(sebO. read0, sebl. readO) { 

0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

BEHAVIOUR be dest seal { 
ON EVENT ANY(sebO. read 1, seb 1. read 1) { 

0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(0.5); 

} 
BEHAVIOUR be Best sebO { 

ON_EVENT ANY(sec0. readO, sec1. readO) { 
0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

} 
BEHAVIOUR be_desLsebl { 

ON_EVENT ANY(secO. readl, secl. readl) { 
0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(0.5); 

} 
BEHAVIOUR be des secO { 

ON_EVENT ANY(sedO. read0, sedl. readO) 
0 cross -> bar PROB(O. 65); 
0 cross -> cross PROB(O. 35); 
0 bar -> cross PROB(O. 35); 
0 bar -> bar PROB(O. 65); 

} 
BEHAVIOUR be desUsecI { 

ON__EVENT ANY(sedO. readl, sedl. readl) { 
0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

} 
} 

COMPONENT destjnO {ss dest; be Best sec0; bar; } 
COMPONENT destinl {ss dest; be desLsec1; bar; } 
COMPONENT dest_seaO {ss dest; be_destsecO; bar; ) 
COMPONENT dest_seal {ss dest; be dest_sec1; bar; ) 
COMPONENT dest sebO {ss dest; be dest sec0; bar; ) 
COMPONENT dest sebl {ss dest; be dest secl; bar; ) 
COMPONENT dest sec0 {ss dest; be dest sec0; bar, ) 
COMPONENT dest_secl {ss dest; be Best 

_secl; 
bar; } 
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H Model of Input Controllers 

STATE SET ss q{ 
COUNTERS : glen, drop, total; 
STATES( 

wait:; 
inc : {glen = glen + 1, total = total + I); 
dec : {glen = glen - 1}; 
drop : {qlen = glen - 1, drop = drop + 1); 

} 
BEHAVIOUR be qiO { 

IF ON c1-inO. arrive { 
0 wait -> inc; } 

IF ON ANY(sea0. read0, seal. readO) { 
0 wait -> dec; } 

IF giO. qlen > FULL { 
0 inc -> drop; ) 

ON EVENT ch inO. quiet { 
0 inc -> wait; ) 

ON EVENT ALL(! seaO. readO, ! seal. readO) { 
0 dec -> wait; 

0 drop -> wait; } 
} 
BEHAVIOUR be qil { 

IF ON ch_jnl. arrive { 
0 wait -> inc; } 

IF ON ANY(sea0. readl, seal. readl) { 
0 wait -> dec; } 

IF qil. qlen > FULL { 
0 inc -> drop; } 

ON_EVENT ! chjnl. arrive { 
0 inc -> wait; ) 

ON EVENT ALL(! seaO. readl, ! seal. readl) { 
0 dec -> wait; 
0 drop -> wait; } 

} 
COMPONENT qi1 {ss q; be qi1; wait(glen = 0, drop = 0); ) 
COMPONENT qi0 {ss q; be qi0; wait(qlen = 0, drop = 0); } 

// Model of Switching Elements 

STATE-SET ssL-se 
COUNTERS:; 
STATES{ 

wait :; 
readO :; 
readl :; 

} 
BEHAVIOUR be_seaO { 

IF_ON ALL(! seal. readO, gi0. qlen > EMPTY, dest inO. bar) { 
1 wait -> readO; } 

IF_ON ALL(! seal. readl, gil. qlen > EMPTY, destnl. cross) { 
} 1 wait -> read I; 

0 readO -> wait; 
0 read 1 -> wait; 

} 
COMPONENT seaO {ss se; be seaO; wait; } 
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BEHAVIOUR be sea0 q{ 
IF ON ANY(seaO. readO, sea0. readl) { 

0 wait -> inc; } 
IF sea0 q. glen > FULL { 

0 inc -> drop; } 
IF_ON ANY(sebO. readO, sebl. readO) { 

0 wait -> dec; } 
ON_EVENT ALL(! sea0. readO, ! seaO. readl) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! sebO. readO, ! sebl. readO) { 
0 dec -> wait; } 

} 
COMPONENT sea0 q (ss q; be sea0 q; wait(qlen = 0, drop = 0); ) 
BEHAVIOUR be--seal f 

IF_ON ALL(! seaO. readl, gi1. qlen > EMPTY, destjnl. bar) { 
I wait -> read I; ) 

IF_ON ALL(! sea0. readO, gi0. qlen > EMPTY, dest_}n0. cross) { 
1 wait -> readO; } 

0 readO -> wait; 
0 read 1 -> wait; 

} 
COMPONENT seal Iss 

-se; 
be seal; wait; } 

BEHAVIOUR be seal q{ 
IF_ON ANY(seal. read0, seal. readl) { 

0 wait -> inc; ) 
IF seal_q. glen > FULL { 

0 inc -> drop; } 
IF ON ANY(seb0. readl, sebl. readl) { 

0 wait -> dec; } 
ON EVENT ALL(! seal. read0, ! seal. readl) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! seb0. read1, ! seblsead1) { 
0 dec -> wait; } 

} 
COMPONENT seal -q 

{ss q; be seal q; wait(glen = 0, drop = 0); ) 
BEHAVIOUR be sebO { 

EF ON ALL(! sebl. readO, sea0 q. glen > EMPTY, dest sea0. bar) { 
1 wait -> readO; } 

IF ON ALL(! seb1. readl, seal q. glen > EMPTY, dest_sea1. cross) { 
} 1 wait -> read I; 

0 readO -> wait; 
0 readl -> wait; 

COMPONENT sebO {ss se; bcsebO; wait; } 
BEHAVIOUR be_seb0 q{ 

IF_ON ANY(sebO. readO, sebO. readl) { 
0 wait -> inc; } 

IF seb0_q. glen > FULL { 
0 inc -> drop; } 

IF_ON ANY(sec0. read0, sec l. read0) { 
0 wait -> dec; ) 

ON EVENT ALL(! sebO. read0, ! sebO. read1) { 
0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! secO. read0, ! secl. readO) { 
0 dec -> wait; } 

COMPONENT seb0 q (ss q; be_seb0 q; wait(qlen = 0, drop = 0); ) 
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BEHAVIOUR be_sebl { 
IF ON ALL(! sebO. readl, seal q. glen > EMPTY, dest seal. bar) { 

I wait -> read!; } 
IF ON ALL(! seb0. read0, seaO q. glen > EMPTY, dest sea0. cross) 

1 wait -> read0; } 
0 readO -> wait; 
0 read 1 -> wait; 

} 
COMPONENT sebl {ss se; bcsebl; wait; } 

BEHAVIOUR be sebl_q ( 
IF_ON ANY(sebl. read0, sebl. readl) { 

0 wait -> inc; } 
IF sebl q. glen > FULL { 

0 inc -> drop; } 
IF_ON ANY(sec0. readl, secl. readl) { 

0 wait -> dec; } 
ON EVENT ALL(! seb1. readO, ! seb1. read1) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! sec0. read1, ! secl. readl) { 
0 dec -> wait; } 

} 
COMPONENT seb lq {ss q; be seb l q; wait(qlen = 0, drop = 0); ) 

BEHAVIOUR be sec0 ( 
IF ON ALL(! secl. readO, seb0 q. glen > EMPTY, dest sebO. bar) { 

1 wait -> read0; } 
IF ON ALL(! sec 1. read 1, seb l q. glen > EMPTY, dest seb 1. cross) { 

1 wait -> read!; } 
0 readO -> wait; 
0 read! -> wait; 

} 
COMPONENT secO {ss se; be secO; wait; } 

BEHAVIOUR be sec(q ( 
IF_ON ANY(sec0. readO, secO. readl) { 

0 wait -> inc; } 
IF secO q. glen > FULL { 

0 inc -> drop; } 
IF_ON ANY(sedO. readO, sed1. readO) { 

0 wait -> dec; ) 
ON_EVENT ALL(! secO. readO, ! sec0. readl) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! sedO. readO, ! sedl. read0) { 
0 dec -> wait; ) 

} 
COMPONENT sec0_q {ss q; be secO q; wait(qlen = 0, drop = 0); ) 

BEHAVIOUR be sect ( 
IF_ON ALL(! secO. readl, sebl q. glen > EMPTY, dest sebl. bar) { 

1 wait -> read!; } 
IF_ON ALL(! secO. read0, sebO q. glen > EMPTY, dest_seb0. cross) { 

1 wait -> read0; } 
0 readO -> wait; 
0 read! -> wait; 

} 
COMPONENT sect Iss , -se; 

be sec1; wait; } 
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BEHAVIOUR be_sec1_q { 
IF ON ANY(sec1. read0, sec!. read1) { 

0 wait -> inc; } 
IF secl q. glen > FULL { 

0 inc -> drop; } 
IF_ON ANY(sedO. readl, sedl. readl) { 

0 wait -> dec; } 
ON EVENT ALL(! sec1. read0, ! secl. readl) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! sedO. readl, ! sedl. readl) { 
0 dec -> wait; } 

} 
COMPONENT sec lq {ss q; be sec l q; wait(qlen = 0, drop = 0); ) 
BEHAVIOUR be sedO ( 

IF_ON ALL(! sedl. readO, secO q. glen > EMPTY, dest sec0. bar) { 
1 wait -> read0; ) 

IF ON ALL(! sedl. readl, secl q. glen > EMPTY, dest secl. cross) { 
I wait -> readl; } 

0 readO -> wait; 
0 read 1 -> wait; 

} 
COMPONENT sedO {ss se; be sed0; wait; } 
BEHAVIOUR be sed0 q{ 

IF ON ANY(sedO. read0, sed0. readl) { 
0 wait -> inc; } 

IF sed0 q. glen > FULL { 
0 inc -> drop; } 

IF_ON qoO. inc { 
0 wait -> dec; } 

ON EVENT ALL(! sedO. read0, ! sedO. readl) { 
0 inc -> wait; 
0 drop -> wait; } 

ON EVENT ! goO. inc { 
0 dec -> wait; } 

} 
COMPONENT sed0 q (ss q; be sed0 q; wait(qlen = 0, drop = 0); ) 
BEHAVIOUR be sedI ( 

IF_ON ALL(! sedO. readl, secl_q. glen > EMPTY, dest_secl. bar) { 
I wait -> read!; ) 

IF_ON ALL(! sed0. read0, sec0 q. glen > EMPTY, dest sec0. cross) { 
1 wait -> readO; } 

0 readO -> wait; 
0 read 1 -> wait; 

} 
COMPONENT sedl {ss se; be sedl; wait; } 
BEHAVIOUR be_sedl q( 

IF_ON ANY(sedl. readO, sedl. readl) { 
0 wait -> inc; } 

IF sedl_q. glen > FULL { 
0 inc -> drop; } 

IF_ON qol. inc { 
0 wait -> dec; } 

ON_EVENT ALL(! sedl. readO, ! sedl. readl) { 
0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ! gol. inc { 
0 dec -> wait; } 

} 
COMPONENT sedl_q {ss q; besedl q; wait(qlen = 0, drop = 0); ) 
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// Model of Output Controllers 

BEHAVIOUR be qoO { 
IF ON sedO q. glen > EMPTY 

I wait -> inc; } 
0 inc -> wait; 

} 
BEHAVIOUR be qol { 

II? ON sedl q. glen> EMPTY 
1 wait -> inc; } 

0 inc -> wait; 
} 
COMPONENT qoO {ss q; be qoO; wait(qlen = 0, total = 0, drop = 0); ) 
COMPONENT qol {ss q; be qol; wait(qlen = 0, total = 0, drop = 0); ) 

// Simulation Control 

SEED(21747007); 
STOPTIME(10000); 
RUN(10); 
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Appendix E 

Reprint of published paper 
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A NOVEL APPROACH TO SIMULATING THE PERFORMANCE OF ATM SWITCHES 

GA Corr and AJ Miller 

Abstract 
This paper addresses the problem of the descriptive complexity presented by systems involving a high number 
of interacting components. The declarative language, ICE, is described and applied to an ATM switch of 
Banyan architecture. Results of simulating the ICE model are presented and discussed. 

1 Introduction 

Much work has been done on modelling the performance of complex ATM switch architectures [1,2,3). 
Modelling space division architectures such as the popular Banyan network design [4] involves the complex 
task of describing the interaction of a set of inter-dependant switching elements which may incorporate more 
than one queuing strategy [5,6,7]. 

Stochastic Petri-Nets and related techniques have traditionally been used as a generalised approach to 
modelling concurrent systems [8]. Although there are now tools to support a hierarchial approach [9] to 
problem specification, the underlying philosophy is to produce a monolithic Markovian model describing the 
entire system. The resulting model can be of the order of many thousands of states although analytic 
procedures, with their underlying assumptions [10], are available to make the mathematics tractable. 

An alternative approach is to use the formalisms offered by higher level Petri Nets such as coloured [11] and 
object oriented Petri Nets [12]. These however require to be simulated unless restrictive assumptions are made. 

Complexity is a problem not only for computational analysis but for the system description itself. There is 
a need for a problem specification formalism which supports descriptions proportional to the size of the 
physical system rather than the overall system state space. This is an approach which addresses the problem 
of complexity as presented to the human modeller rather than the computing hardware. Whereas computing 
architecture continues to become increasingly more powerful, we can safely predict that human capability to 
intellectually grasp the operation of highly interconnected systems will remain relatively limited. 

In order to simplify the problem description a novel specification language has been developed, known as the 
ICE (Interacting ComponEnts) language. Its attractiveness lies in its transparency, inherent simplicity and 
surprising descriptive power. 

ICE is a general purpose language, not linked to any application area. Systems are described as a number of 
interacting components. Each component may be thought of as a finite state machine with external inputs. 
The basic concepts and the language structure are easily understood allowing complex models to be constructed 
within a relatively short time. Once models have been built they may be simulated using the bespoke package 
ISIM. Simulations are in discrete time, the duration of time units being determined by the user. It is possible 
to examine every step of the simulation and to determine a range of statistics on the model's behaviour both 

at a component and system level. 

The ICE language may be used to describe any type of system and some work has been done on the behaviour 

of communication protocols [13] and flexible manufacturing systems [14]. This paper covers the syntax and 
semantics of the language and demonstrates its descriptive power by application to the performance modelling 
of replicated Banyan switches. 

The paper describes how a model of a 16 input/output switch can be constructed by representing the output 
buffered switching elements (SEs) as interacting components. This approach allows access to the buffers 
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within the SEs at all points during simulation. Our interest is in the study of queue behaviour at the different 
switch levels as a consequence of varying input loads. Results are presented for the case of both balanced and 
unbalanced traffic. Statistical analysis is performed on the buffers providing valuable information on relative 
buffer sizes that may be used in the design of stage dependant SEs. 

2.0 ICE Language 

2.1 Background 
This language was originally conceived as a purely declarative language for modelling reliability problems. 
The syntax of the language was formally presented in [15]. Subsequent to this, the language compiler and 
simulator were developed [14]. Experience with the applications resulted in some development of the original 
syntax although this was adhered to as closely as possible. 

The language was later applied to the modelling of both the performance and reliability of communication 
systems [13]. This proved to be a rigorous testing ground and highlighted further areas of improvement. The 
language underwent some significant modifications and the simulator was updated to facilitate these. However 
the description of components with a high number of states, for example queues, still presented a significant 
challenge. The desire to apply the language to communication networks encouraged a major development of 
the language and the simulator. The language ICE is the result of subsequent research. 

The inherent simplicity of the syntax is one of the major strengths of the language however it has been shown, 
[13], to be equivalent in descriptive power to timed stochastic Petri Nets with inhibitor arcs. 

2.2 Overview 
The language has a declarative style that is based upon describing systems in terms of their constituent 
interacting discrete state components. Each COMPONENT in a system has a set of operational states. The 

component moves between the various states in its STATE SET according to its predefined BEHAVIOUR. 
The transitions can be governed by : 

Time delays. 
Status, ie state occupancy of one or more components. 
Behaviour, ie transition event of one or more components or component counters. 

Components may also have an associated AGE which can be used to manipulate their behaviour. 

Components may also have COUNTERS associated with them. Counters are used to help address the problem 

of state explosion. For example, if we wished to model a buffer with 100 spaces, we could do so by using a 

component with 101 states, ie 1 state for the empty condition and 100 for each of the levels of occupancy. 
Alternatively, we could use one state to represent the buffer and a counter which may take any value [0,100] 

to represent the levels of occupancy. This clearly allows the state complexity of models to be greatly reduced. 

To fully define a component, three statements are required : 

STATE_SET, which lists the finite set of states that the component can exist in and any 
counters belonging to the component. 
BEHAVIOUR, which defines all possible transitions that can be made between states. 
COMPONENT, which defines a component with a specified STATE_SET and BEHAVIOUR. 
It also defines an initial state and optionally an initial age and counter values of the 

component. 

As well as components we can also describe passive resources which may be allocated to components. 
Resources may be consumable or non-consumable and are specified as STOCK and RESOURCE respectively. 
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The WAIT' 
_FOR statement allows dynamic creation of components and the explicit manipulation of free stock 

and resource levels during the simulation. 

The language is free format in the sense that blank space (spaces, tabs, new lines etc) are ignored the order 
of statements is unimportant. A full description of the languages syntax and semantics is given in [28], but 
an appreciation can be drawn from the ICE listing in Appendix A. 

3.0 The Software Simulator 

The language is translated using a lexical analyzer and a parser. The lexical analyzer is handwritten whereas 
the parser used is a DOS version of the UNIX YACC tool. A text file of language statements is converted to 
data structures . The lexical analyzer and parser check for syntax errors and a successful compilation produces 
linked lists of C structures, one list corresponding to each type of language statement. 

Further software cross-checks the data structures for consistency (eg between STATE SET and BEHAVIOUR 
statements). An error free input will produce lists of C++ objects which form the basis of the discrete event 
simulation. 

To provide control over simulation runs, extra statements are required. These include the ability to define 
simulation runtimes and setting the seed of the random number generator. To gain statistical accuracy it is 
possible to specify a number of multiple runs of the simulator, each covering a lifetime of system operation. 

Post simulation software allows the users to view an event trace of the entire simulation and to generate a 
range of statistics as to the behaviour of the components and systems. Work is proceeding on producing a 
facility for presenting statistics in a graphical format. 

4.0 Example ; an ICE model of an ATM Delta-2 Banyan Switch 

4.1 Overview 
The first decision to make is how to subdivide the switch into a suitable combination of components. A 
suitable balance is required between limiting complexity, which increases with number of components and fully 
representing the functionality. Four functional units are identified, namely the communications channel, input 
controllers, switching elements and output controllers. Each is modelled with a component, save for the 
switching elements which are best represented by four interacting components. 

The design takes a modular approach both for simplicity and ease of expansion. In the literature there are 
models for a great range of sizes, however the intention was to make the ICE model representative of a 
practical switch. The size decided upon was 16x16, chosen as an optimum size as it provides a high enough 
number of channels and 16 interface cards fit well into one module mounted in a standard 19" 
telecommunications equipment rack. 

A 16x16 Banyan switch has 4 levels of switching, each with 8 layers of switching elements. The popular 
assumption made is that all cells arriving from the input channels have output addresses which have an equal 
probability of being any of the output channels [16]. If we adopt this assumption then it is safe to conclude 
that we need only model one layer of switching elements and the behaviour of this layer will be representative 
of any other [17]. To model all layers would only require reiterating the ICE code a further 7 times and 
editing component names in the behaviour statements. Such expansion would not be practical in probabilistic 
models as the size of the expressions would become unmanageable. 

Thus the ICE model describes all 4 levels of switching elements for one layer of a 16x16 switch. Figure 4.1 

is a diagram of the switch with the ICE components marked. 
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Figure 4.1 One layer of 16x16 switch with components marked 

The complete ICE program for the switch model is listed in appendix A. Below we shall consider each type 
of constituent component. 

4.2 The input traffic 
The input traffic to the switch is described by modelling input channels that can either be in an arrive (cell 

slot occupied) or quiet (cell slot empty) state. It was initially thought that this could be incorporated as part 
of the behaviour of the input controllers but the requirement that the load be constant prevented this. To 

expand on this point, to give a true representation of an input channel the model must show a steady flow of 
cell slots with the probability that any slot is occupied being equal to the required load. If the two states that 
are described form part of a larger state set with other transitions, this would jeopardise that requirement 

In mathematical modelling it is necessary to select some appropriate stochastic distribution that will closely 
reflect the behaviour of traffic. Uniform cell arrival rates may be represented by either the Poison or Bernoulli 
distributions. These may be utilised in ICE by manipulation of the exponential transition firing rates. Bursty 

cell arrivals have been modelled in ATM networks by Interrupted Poison Processes (IPP) [18] and Bulk 
Bernoulli Processes (BBP) [19]. Complex models of bursty traffic with both exponentially distributed quiet 

and bursty periods can be modelled using a Markov Modulated Poison Process (MMPP) [18] as implemented 

in the BONeS simulator [20]. The MMPP can be implemented in ICE by building on the model for uniform 

cell arrival which is shown below in figure 4.2. 

PROB(x) 

y total a total +1 

cquiet 
arrive 

0 

y 
PROB(1-x) 

Figure 4.2 State diagram 
of an input 
channel 

By assigning probabilities to the output transitions from the quiet state we can directly represent the channel 
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in ICE with no level of abstraction. One component is used for each input channel. This component can only 
exists in the states quiet or arrive and will move between them with a probability equal to the load as shown by the behaviour statement in listing 4.1. This gives a very simple but very accurate model of the input traffic. 
The counter total which is shown being incremented in the arrive state keeps a tally of the number of cells 
arriving. This is useful for validating loads during simulation. 

BEHAVIOUR be ch in { 
1 quiet -> arrive PROB(O. 6); 
1 quiet -> quiet PROB(O. 4); 
0 arrive -> quiet; 

} 

Listing 4.1 Input channel BEHAVIOUR statement 

43 The Input Controllers 
The input controllers buffer the cells arriving form the input channels before transmitting them to the first 
switching elements. Each input controller is modelled as an individual component. The state diagram for is 
given in figure 4.3. 

total = total + 1; qlen = qlen +1 

inc 
IF ch_inO. quiet IF qiO. qlen > FULL 

IF ch in0. arrive 0 

wait drop 
0 ON EVENT (! seAO. read0, ! seAlsead0) 

0 drop = drop -1; glen - qlen -1 

IF (seAO. readO, seAl. readO)O jglen 
= glen -1 

ON EVENT (! seAareaaa 
acc 

Figure 4.3 State diagram of input controller 

There is one buffer per input controller so that all cells that arrive at the same input share the same buffer as 
in the architecture proposed by Del Re and Fantacci [21]. In ATM there is a priority flag in the header data 
that facilitates two priorities of traffic. If this model were expanded to have two buffers then behaviour for 
both priorities could be measured [22]. There are four states. The quiescent state is wait. When a cell arrives 
from the input channel it moves into state inc . If the buffer is already full the cell is dropped (state drop) 

otherwise the buffer is incremented and the component returns to wait. When a succeeding switching element 
reads a cell from the buffer it moves into state dec and the buffer is decremented by one cell before returning 
to state wait. 

Note that all of the transitions are immediate, this is in order to achieve synchronisation. For example, 
consider the state inc. This state is entered when a cell arrives on channel chino. Cells arrive in one time 

unit, this requires the component to move into inc and back to wait in one time unit and hence this component 
would move into wait at the same time the input channel is moving out of arrive. Since these two transitions 

are happening in the same time unit the order cannot be guaranteed. If the inc ->wait occurs first, the input 

channel will still be in state arrive causing this component to re-enter inc and falsely record another cell 

arrival. By putting the transition condition that the component cannot move out of state wait until the input 
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controller moves out of state arrive this error is prevented. The corresponding behaviour statement is shown 
in listing 4.2. 

BEHAVIOUR be qi0 { 
IF ch_inO. arrive { 

0 wait -> inc; } 
IF ANY(seaO. read0, seal. readO) { 

0 wait -> dec; } 
IF giO. qlen > FULL { 

0 inc -> drop; } 
ON EVENT ch in0. quiet { 

0 inc -> wait; } 
ON EVENT ALL(! seaO. readO, ! seal. readO) { 

0 dec -> wait; 
0 drop -> wait; } 

Listing 4.2 Input controllers BEHAVIOUR statement 

The counter total stores the total number of cells that have arrived, glen gives the instantaneous length of the 
queue and drop gives the number of cells that have overflown the buffer. 

4.4 Operation of the Cross-Bar Switches 
From figure 4.1 it can be seen that each switching element contains a cross-bar switch. At each time slot these 
switches will either be in the cross or bar state and thus dictate which queue the switching element will be 
reading from. The operation of these switches is modelled by two components per switch. One component 
represents the top branch of the switch and one the lower. Each can exist in the two states cross or bar. The 
state diagram is given in figure 4.4. 

ON EVENT ANY(seAO. readO, seAl. read0) 

PROB(x) 0 
000 

bar cross cOBt1xJ) 

PROB(1-x) PROB(x) 

Figure 4.4 State diagram of cross-bar component 

For a balanced routing all probabilities will be 0.5. By changing these probabilities the route can be altered. 
In the listing 4.3 of the BEHAVIOUR statement for an upper branch component the probabilities are set so 
that there is a bias for the bar position. This means there is more traffic arriving at the upper input destined 
for the upper output than for the lower output. The probabilities for the lower branch are all set to 0.5, hence 

traffic arriving at the lower input will have equal likelihood of being destined for either output. By adopting 
this approach, which allows flexibility in the balance of traffic, we can investigate Bruneeli and Wittevongel's 
[23] finding that queuing deteriorates in output buffered SEs as correlation in the routing gets higher. 
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BEHAVIOUR be Best inO { 
ON EVENT ANY(sea0. readO, seal. readO) { 

0 cross -> bar PROB(O. 65); 
0 cross -> cross PROB(O. 35); 
0 bar -> cross PROB(0.35); 
0 bar -> bar PROB(0.65); 

} 
BEHAVIOUR be_des>`inl { 

ON_EVENT ANY(seaO. readI, seal. readI) { 
0 cross -> bar PROB(O. 5); 
0 cross -> cross PROB(O. 5); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(0.5); 

Listing 4.3 BEHAVIOUR statement for cell routing 

Note that the component changes state each time the switching element has read a cell from the proceeding 
buffer. 

4.5 The Switching Elements 

In many mathematical models a general expression is derived which expresses the output conditions dependant 

upon the input and it is not possible to monitor the internal performance of the switch. For many applications 
this type of method is appropriate as loss probability is a comprehensive enough measure of performance [24]. 

In this model however we wish to monitor the behaviour of various queues within the interconnection network 

and switching elements are therefore modelled individually. Each switching element is represented by four 

components. 
This seems verbose on first inspection but when examined it allows for simplicity. Two 

components are required for the two queues. It would be possible to represent the two queues by two counters 
in one component but by using one counter each in separate components it allows the queues to function in 

parallel without state transitions being delayed. This reflects the operation of the hardware design. 

Initially each queue and its operation was modelled by one component. This is restrictive as checks for read 

and write operations had to be made sequentially. The final implementation uses two components. The first 

is used to monitor whether a queue may read from a proceeding queue during each time slot and the second 

handles the actual updating of the queue. The state diagram of the first component is shown in figure 4.5. 

IFALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) 

w, ý 
dread 

IF ALL(! seal. readO, gi0. qlen > EMPTY, dest inO. bar) 

Figure 4.5 State diagram of SE queue reading component 

From the state diagram it can be seen that the queue can read from either the proceeding 0 (upper) or 1 (lower) 

queue. The conditions for reading the proceeding 0 buffer are that the other queue in the SE is not currently 
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reading from it, the queue is not empty and the cross-bar is in the bar position. The conditions for reading 
from the proceeding lower queue are similar but the cross-bar must be in the cross position. The position of 
the cross-bar is determined by the cross-bar component discussed in section 7.4.4 which selects cell routing. 
Note that only one cell may be read in one time slot, following the operational procedure proposed by Jenq 
[17]. The behaviour statement for this component is shown in listing 7.4. 

BEHAVIOUR be seaO { 
IF ON ALL(! seal. readO, giO. qlen > EMPTY, destinO. bar) { 

1 wait -> read0; ) 
IF_ON ALL(! seal. readl, qil. qlen > EMPTY, dest_inl. cross) { 

1 wait -> read I; } 
0 readO -> wait; 
0 read 1 -> wait; 

Listing 4.4 BEHAVIOUR statement for queue reading component 

The component will firstly check to see if there is a cell in the upper preceding buffer and if it is destined for 
the upper queue. If so it will read it, if not it will check the lower buffer. There is no read operation during 
the time slot if there are no cells available or if the queue is blocked by the complimentary queue reading from 
the required preceding buffer. By making the SE timeslots faster than the networks timeslots (say a speed-up 
factor of two) it would be possible for each SE queue to read from the same preceding buffer in the same SE 
timeslot [25]. The model could be simply changed to encompass this feature by changing the timing on the 
transitions. Speed-up can also be accomplished at switch level [26] but is limited by the network speed. 

The component that models the updating of the queues has the same state diagram as that for the input 

controllers shown in figure 4.3 and the behaviour is identical. The corresponding behaviour statement is given 
in listing 4.5. 

BEHAVIOUR be_seaO_q { 
IF ON ANY(seaO. read0, sea0. readl) { 

0 wait -> inc; } 
IF seaO_q. glen > FULL { 

0 inc -> drop; ) 
IF ON ANY(sebO. readO, seb 1. readO) { 

0 wait -> dec; } 
ON_EVENT ALL(! seaO. readO, ! seaO. readl) { 

0 inc -> wait; 
0 drop -> wait; } 

ON_EVENT ALL(! sebO. readO, ! sebl. read0) 
0 dec -> wait; } 

Listing 4.5 BEHAVIOUR statement for queue updating component. 

Note that all the transition timings are again 0. This allows the transitions to be wholly determined by the 

queue reading components and facilitates the possibility of a cell being read into and read from the same queue 

within one time slot. 

4.6 The Output Controllers 

The output controllers present a new challenge within themselves. What is required is a suitable buffer on 

each output port with consideration of both capacity allocation and overflow. This will be largely dependant 

upon the network to which the switch is connected [27]. Our aim is to concentrate on the switches behaviour 

and thus we assume infinite capacity queues in the output controllers. This assumption is equivalent to 
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assuming that the output network is available to read one cell per time slot. The space diagram for the output 
controllers is shown in figure 4.6. 

IF seDO_q > EMPTY 

total = total +1 

wait inc 

Figure 4.6 Space diagram of Output Controllers 

The output controllers will read a cell from the final (4th) level switching elements each time slot if there is 
a cell to read. There is one output controller dedicated to each output port and hence there will be no blocking 
in these components. Counters have been associated to each output so that the total number of cells leaving 
the switch may be monitored. The behaviour statement is given in Listing 4.6. 

BEHAVIOUR be qoO { 
IF ON sedO q. glen > EMPTY { 

1 wait -> inc; } 
0 inc -> wait; 

Listing 4.6 BEHAVIOUR statement of Output Controllers 

4.7 Model Validation 

With a model of this size and complexity it is necessary to analyse its behaviour to ensure that it reflects 
correctly the operation of the system being modelled. The post-processor viz is a suitable tool for this. Full 
validation required two steps, the first being to examine a textual event trace of a simulation of the model to 
ensure components behave as expected, and the second being to run a short simulation examine the resulting 
counter values. 

For the first step a short simulation (100 time slots) was run. The textual event trace for this simulation was 
obtained using viz. Each type of component was considered in turn. Every transition was examined for each 
component type to ensure the firing and timing corresponded to that which was expected. This step 
highlighted the timing problems that were discussed in section 4.3 and thus proved a valuable technique. 

For the second step all the counter values were noted at the end of simulation from the previous event trace. 
These values are given in table 4.1. The validating technique is as follows. For each pair of components, eg 
sea0 and seal, the sum of the total values minus the sum of the glen values should be equal to the sum of the 

total values for the following pair of components. By performing this check for each pair of components 
correct counter operation can be confidently determined. 

Cnt. Check Components 

Counters 

qiO qil seaO seal sebO sebl sec0 secl sedO sedl qol qoO 

total 65 56 57 61 50 59 61 47 50 57 50 56 

glen 2 1 1 8 0 1 1 0 0 1 50 56 

Table 4.1 Validation of counter operation 
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4.8 Simulation Results 

The model of the ATM switch was run on the I_SIM software to investigate the mean queue length at each 

stage dependant upon both the load presented to the switch and the routing balance. For each case the 

simulator was run for 10 trials of 10000 time slots each. Traffic loading was varied from 0.5 to 0.8 in steps 

of 0.05. For each of these runs the routing balance was varied from 0.5 (balanced) to 0.65/0.35 in steps of 
0.05. A sample of the outcomes are plotted in graphs 4.1-4.3. 

Queue Length 

10 

8 

6 

4 

2 

input 1st stage 2nd stage 3rd stage 4th stage 

Switch Stage 

Graph 4.1 Queue length for varied balanced loads 

It is interesting to note the behaviour of the second stage queue and that the ratio of this queue length to the 

others increases with load. As expected all queue lengths increase with load save for the 4th stage which is 

modelled as feeding an infinite capacity network. 

Queue 

Switch Stage 

Graph 4.2 Queue lengths for unbalanced upper path for a load of 0.50 
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Graph 4.3 Queue lengths for unbalanced lower path for a load of 0.50 

The upper two graphs again show the importance of the second stage queue, with the lower queue being 

slightly longer due to the imbalance of traffic routing. The third stage queue on the lower path shows a 

marked increase over its upper counterpart. This we can assume is due to the priority given to the upper path 

causing the lower cross-bar, cross path, to be subject to head of line blocking. 

5.0 Conclusions 

The ATM switch example has demonstrated the ICE language's ability to model complex interacting 

components with a low level of abstraction and a manageable descriptive state space. The I_SIM software is 

capable of generating appropriate statistics on each component, state and counter. The generic nature of the 
language provides flexibility for the modelling of all types of systems. The approach is limited by the lack 

of static analysis capability which stems from the descriptive power of the language that takes it beyond 

solution by analytic or numerical techniques. 
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Appendix A Partial ICE listing of 16x16 Delta-2 Banyan switch model 
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H File : asw4a. ice 
Author : GAC 
Date 31.10.94 
Purpose : Models four layers of a 16i/p Delta-2 Banyan Switch with 

o/p buffered SEs. Has both I/p and o/p controllers. 

CONSTANT {EMPTY = 0; FULL = 20; } 

// Input traffic model 

STATE SET ss_ch_in { 
COUNTERS : total; 
STATES f 

quiet :; 
arrive : (total = total +1); 

} 
} 
BEHAVIOUR be ch in { 

1 quiet -> arrive PROB(0.65); 
1 quiet -> quiet PROB(035); 
0 arrive -> quiet; 

} 
COMPONENT ch_inl, ch in0 {ss ch in; be ch in; quiet(total = 0); } 

/1 Traffic routing balance model 

STATE SET ss dest { 
COUNTERS:; 
STATES I 

cross :; 
bar :; 

} 
BEHAVIOUR be dest inO { 

ON EVENT ANY(sea0. readO, seal. read0) { 
0 cross -> bar PROB(0.5); 
0 cross -> cross PROB(0S); 
0 bar -> cross PROB(O. 5); 
0 bar -> bar PROB(O. 5); 

} 
} 
COMPONENT dest in0 (ss dest; be_dest secO; bar; ) 

// Switching element and controllers queue model 

STATE SET ss_q { 
COUNTERS : glen, drop, total; 
STATES( 

wait :; 
inc : {glen = glen + 1, total = total + 1); 
dec : {glen = glen - 1); 
drop : {glen = qlen - 1, drop = drop + 11; 

// Input controller model 

BEHAVIOUR be_qiO ( 
IF ON ch inO. arrive { 

0 wait -> inc; } 
IF ON ANY(seaO. readO, seal. readO) { 

0 wait -> dec; } 
IF gi0. q! en > FULL { 

0 inc -> drop; } 
ON EVENT ch inO. quiet { 

0 inc -> wait; } 
ON EVENT ALL(! sea0. readO, ! seal. readO) { 

0 dec -> wait; 
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0 drop -> wait; } 
} 
COMPONENT qi0 {ss_q; be_gi0; wait(qlen = 0, drop = 0); } 

// Cross-bar element model 

{ STATE_SET ss_se 
COUNTERS:; 
STATES { 

wait :; 
readO :; 
readl :; 

} 
} 
BEHAVIOUR be_sea0 { 

IF_ON ALL(! seal. read0, gi0. qlen > EMPTY, dest_inO. bar) { 
I wait -> read0; } 

IF ON ALL(! seal. readl, qil. qlen > EMPTY, dest inl. cross) { 
I wait -> readl; } 

0 readO -> wait; 
0 readl -> wait; 

} 
COMPONENT sea0 {ss_se; be sea0; wait; } 

BEHAVIOUR be sea0_q { 
IF ON ANY(sea0. read0, seaO. readl) { 

0 wait -> inc; } 
IF sea0_q. glen > FULL { 

0 inc -> drop; } 
IF ON ANY(sebO. read0, sebl. read0) { 

0 wait -> dec; } 
ON EVENT ALL(! sea0. read0, ! sea0. read1) { 

0 inc -> wait; 
0 drop -> wait; } 

ON EVENT ALL(! seb0. read0, ! sebl. read0) 
0{ dec -> wait; } 

} 
COMPONENT sea0_q {ss_q; be sea0_q; wait(qlen = 0, drop = 0); } 

// Output controller model 

BEHAVIOUR be_go0 { 
IF_ON sed0_q. glen > EMPTY { 

1 wait "> inc; } 
0 inc -> wait; 

} 
COMPONENT qo0 {ss_q; be_go0; wait(qlen = 0, total = 0, drop = 0); } 

// Simulation Control 

SEED(23452); 
STOPTIME(10000); 
RUN(10); 

// Ends 
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