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Abstract

Communication latency is a critical determinant of the amount of exploitable parallelism
and the cost of synchronization in massively parallel processors. At the same time, some
provisions for fault-tolerance is needed in building a large practical parallel processor system.
Because commodity processor technology is improving very rapidly, exploiting this fact
through fabrication with the latest technology in the shortest time possible will become
more and more desirable to be competitive in the industry. This thesis presents a practical
and economical chip design that can be used as a component of a Multistage Interconnection
Network called the Transit network for improving both communication latency and fault-
tolerance.
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Chapter 1

Introduction

While fiber optics technology provides the necessary bandwidth for transmission of data,

the creation of a network that can provide high bandwidth services to the users remains a

challenge. One of the difficulties encountered comes from switching. In the telecommuni-

cation field, it is projected that such high speed networks will carry various data such as

voice, data, images and video in an integrated manner. In such a class of network, provi-

sions to handle wide diversity of data rates and latency requirements are of great necessity.

Asynchronous Transfer Mode, or ATM has emerged as a promising technology , which deals

with 53 bytes of fixed size packets with line speeds of 155 Mb/s, 620 Mb/s and 2.4 Gb/s.

Whereas data rates and latency requirements are likely to be more uniform in the

context of a multiprocessors' communication fabric, no one class of network architecture

has yet established itself as such.

As the technology drive continues to enhance commodity processors' performance, it

becomes more attractive to build large-scale multiprocessors employing commodity pro-

cessors from both economic and performance viewpoints. However, the same challenge as

the telecommunication field holds here; that is how to provide sufficient inter-processor

communication performance at a reasonable cost.

1.1 Problem

Arvind and Iannucci identified memory latency and synchronization overhead as two fun-

damental issues which limit multiprocessor performance [1]. Communication latency is a

critical determinant of the amount of exploitable parallelism and the cost of synchronization

11



and memory access in massively parallel processors. To hide latency, dataflow architectures

[6] and multithreaded architectures [4, 7] have been developed. However, these architectures

rely on the abundance of parallelism which fills all the hardware contexts. Even if those

latency-hiding schemes are used, it is reported that remote access transactions contribute

a large percentage of the cost of running an application [5].

In order to make high-performance scalable multiprocessors, low-latency communication

networks are essential. Because communication latency grows with the number of processors

in a system, the relative cost of remote transactions increases. This trend indicates that

communication latency is a tremendously critical factor.

1.2 Motivations

To build a scalable Multiple Instructions Multiple Data (MIMD) processor, we are concerned

about two aspects. In order for MIMD processors to work efficiently, communication fabrics

have to offer high bandwidth and low communication latency.

For a system to be truly scalable, fault-tolerant provisions are also necessary, since the

number of components and wires in the network increase at least linearly with the num-

ber of processors connected in the network. Without such provisions, the overall network

performance degrades significantly with a single fault of a switching component.

1.3 Organization

In this thesis, a low-latency network component in such a network and its implementation

are presented. In chapter 2, background material is presented for network architectures and

component architectures. In chapter 3, the Transit network is described together with a

low-overhead protocol and packaging technology. In chapter 4, the chip implementation and

design alternatives are discussed in the context of performance and design economics. In

chapter 5, verification methodology and testability issues of the chip design are presented.

Finally, in chapter 6, conclusions are presented.

12



Chapter 2

Background

In this chapter, background material is covered for later development of this thesis. We

have two questions in mind: What kind of topology facilitates multiprocessor networks to

exploit their attributes most? What components enable building efficient networks?

2.1 Network Topology Review

This section describes different classes of switching networks. Before analyzing various

network topologies, some terminology needs to be defined. The number of links or channels

on a node is called a node degree. This reflects the number of I/O ports required per node,

thus the cost of a node. Therefore, the node degree should be kept as small as possible. A

constant node degree is favorable to achieve modularity for scalable systems.

The diameter of a network is the maximum shortest path between any two nodes. To

determine the diameter, consider all pairs of nodes and find the shortest path. Then, take

the maximum of this path length over all pairs of points. The path length is measured by

the number of links traversed. Consequently, the network diameter is a upper bound on

network latency; therefore, this should be kept as small as possible to reduce communication

latency between nodes.

A network is symmetric if it is isomorphic to itself with respect to any node. In a

symmetric network, every node sees exactly the same topology.

13



Figure 2-1: Ring

2.1.1 Static Connection Networks (Direct Networks)

Static Connection Networks use direct fixed links once the systems are built. This class of

networks is suited to such systems that have predictable communication patterns.

2.1.1.1 Overview

Ring, Chordal Ring and Completely Connected A ring is a two-dimensional net-

work as shown in Figure 2-1, in which N nodes are connected by N - 1 links in a circle. IBM

token ring has this topology, in which messages circulate along the ring until they reach the

destination with a matching token.

Chordal rings are obtained by increasing the node degree. In Figure 2-2, chordal rings

of degree of three and four are depicted. In the extreme, completely connected network has

a node degree of N - 1 shown in Figure 2-3.

Tree and Star A binary tree has a tree-like structure depicted in Figure 2-4. With a

constant node degree, the binary tree is a scalable architecture; however, the diameter is

rather long and the root is susceptible to congestion, because cluster-to-cluster traffic has

always to go up to the direction of the root.

A star as shown in Figure 2-5 is a two-level tree with a node degree of N - 1 and a

constant diameter of two.

Fat-Tree To alleviate the bottleneck problem, a fat-tree shown in Figure 2-6 is introduced

by Leiserson [23]. The channel width of a fat tree increases as we ascend from leaves to the

14



Figure 2-2: Chordal Ring

Figure 2-3: Completely Connected

Figure 2-4: Binary Tree
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Figure 2-5: Star

Figure 2-6: Fat-Tree

root. Leiserson shows that with proper channel capacity allocation, fat-trees are volume-

universal networks, that is, for a given volume of hardware, a fat-tree is nearly the best

routing network one can build, and the fat-tree can simulate any other network with at most

a polylogarithmic degradation in time. This network architecture is used in Connection

Machine CM-5.

Mesh and Torus A mesh network is depicted in Figure 2-7 (1). In general, a k-

dimensional mesh with N = nk nodes has an interior node degree of 2k and a network

diameter of k(n - 1). A torus in Figure 2-7 (2) has ring connections along each row and

along each column of the array. In general, n x n binary torus has a node degree of four and

a diameter of 2[n]. Additional wraparound connections reduce the diameter by one-half

from that of the mesh network.

Systolic Arrays Static systolic arrays are pipelined with multidirectional flow of data

streams as shown in Figure 2-7 (3). With fixed interconnection and synchronous operation,

a systolic array matches the communication structure of the algorithm. For special appli-

16
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Figure 2-8: 4-cube

cations such as signal processing, this may offer a better cost performance ratio; however,

the structure has limited applicability and can be very difficult to program.

Hypercubes (binary n-cube) An n-cube consists of N = 2n nodes spanning along n

dimensions, with two nodes per dimension. An example of n = 4 is shown in Figure 2-8.

nCUBE and CM-2 were implemented in this architecture. The node degree and the network

diameter are both n; therefore, the hypercube is not scalable.

k-ary n-cube In k-ary n-cubes, n represents the dimension of the cube and k is the

number of nodes along each dimension. Thus, the number of overall nodes is N = kn. An

example of 3-ary 3-cube is shown in Figure 2-9. Rings, meshes, hypercubes and the Omega

networks 1 are topologically isomorphic to k-ary n-cube networks.

'The Omega networks are described in the later section.
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Figure 2-9: 3-ary 3-cube

2.1.1.2 Discussion

Table 2.1 shows some characteristics of static networks. A symmetric attribute of networks

has good effects on scalability and routing efficiency. For example, given a uniform traffic

pattern, symmetric networks result in uniform loading of network channels. Network cost is

affected by the number of links and network diameter. Communication latency is affected

by network diameter, but average distance of all nodes is more desirable for this measure.

The bisection width is related to the network bandwidth and a lower bound on wire density.

The bottom line for survival of an architecture is packaging efficiency and scalability

to allow modular growth. Because of poor scalability and difficulty in packaging higher-

dimensional hypercubes, they are being replaced by other architectures. For example, hy-

percube CM-2 was replaced by fat-tree CM-5. Daily revealed that low-dimensional networks

outperform high-dimensional networks when wire density is the limiting factor in construct-

ing the network [13].

2.1.2 Dynamic Connection Networks (Indirect Networks)

For general purpose applications, dynamic connections that can implement any communi-

cation patterns are necessary. Instead of using fixed node-to-node links, switches must be

used along the paths to provide dynamic connectivity in a Dynamic Connection Network.

18



Network [ Symmetry Locality Node Degree Bisection Width
Ring Yes Yes 2 2

Fully Connected Yes N/A N- 1 (N/2) 2

Binary Tree No Yes 3 1

Star No No N- i [N/2]
Mesh No Yes 4

Torus Yes Yes 4 2 /N
Hypercube Yes Yes log102N N/2

k-ary n-cube Yes Yes 2n 2k n - 1

MIN Yes No 2k N/2

Network Network Diameter Number of Links Latency
Ring [N/2] N 0(N)

Fully Connected 1 N(N - 1)/2
Binary Tree 2(log2N - 1) N- 1 0(log 2N)

Star 2 N - -
Mesh 2(xQ - 1) 2(N - N) O(v-N)
Torus 2[vN/2] 2N O(v/N)

Hypercube log2N Nlog2N 0(log 2N)2
k-ary n-cube n[k/2] nN 0(logkN)

MIN n + nN 0(logkN)

Comparison is done in the case of N nodes, where N = kn.

Table 2.1: Network Comparison

19



crosspoint array

Figure 2-10: 4 x 4 Crossbar Network

2.1.2.1 Crossbar Network

A crossbar network consists of an array of crosspoints. Each crosspoint switch can provide a

dedicated connection path between a source and a destination as shown in Figure 2-10. The

switches can be set on or off dynamically according to the demand. Therefore, a crossbar

network can implement any permutation without blocking.

2.1.2.2 Multistage Interconnection Networks

Multistage Interconnection Networks (MINs) comprise alternately placed n x k crossbar

switch stage and fixed interstage connections. Different classes of MINs differs in the switch

modules and the kind of interstage connection patterns used. Due to a regular structure,

MINs are modular, allowing construction of larger networks to use a small network as a

building block.

In general, a MIN has logkN stages, when N is the number of the nodes and k is the radix

of the router. Radix is the number of logically distinct directions in which each crossbar

switch can route messages. Message routing is controlled by inspecting the destination code

of the message header in binary representation. For example, when ith high-order bit of the

destination code is a 0, a 2 x 2 crossbar switch at stage i connects the input to the upper

output. Otherwise, the input is directed to the lower output (See Figure 2-11). This way of

distributed routing is called self-routing, since only an in-band message header is used for

routing. A multistage interconnection network is called non-blocking if it can perform all

possible connections between inputs and outputs.

20
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Thick lines indicate that the message from node 5 to node 15 is
routed by the binary representation of the destination address 1111.

(Drawn by Andre DeHon)

Figure 2-11: 16 x 16 Omega Network Constructed from 2 x 2 Crossbars

000 , 000
v I
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1"In

, I
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011
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1n

111 P ' 111

Figure 2-12: Perfect Shuffle

In this section, several MINs are discussed.

Omega Network The Omega network, as shown in Figure 2-11, has the perfect shuffle

as interstage connection patterns. Perfect shuffle is a special permutation function for

parallel processing application. To shuffle n = 2k objects, each object is numbered in

binary representation such as (ak-1, ak-2, ... , ao). Then, the perfect shuffle function maps

this object to (ak-2,..., a, ak-1) by shifting one bit to the left and wrapping around the

most significant bit to the right of the least significant bit. An example of this function is

illustrated in Figure 2-12.

The Banyan network and the Bidelta network are shown in Figure 2-13 and Figure 2-14

respectively. The Omega network, the Banyan network and the Bidelta network are all

blocking networks. In general, MINs are blocking without any provisions that can manage

21



Figure 2-13: 16 x 16 Banyan Network

output conflicts in the network components such as buffers or redundant paths.

Clos Network One of non-blocking MINs is the Clos network as shown in Figure 2-

15. The Clos network is often used in telephone switching systems, since it can be used

recursively to construct a larger non-blocking network. Clos network comprises three stages

of crossbar switches. The first stage consists of r n x m crossbar switches, and the second

stage consists of m r x r crossbar switches. The third stage consists of r m x n crossbar

switches. The example in Figure 2-15 illustrates the case where n = 2, m = 3 and r = 4.

In general, it is proved that when m >= 2n - 1, all permutations are possible [2]. However,

the central controller needs to have global knowledge of the states of all switches and to

route the traffic appropriately.

Multibutterfly Network A multibutterfly network has a random connection between

logically equivalent paths as an interstage connection as shown in Figure 2-16 [28]. A

multibutterfly network has a property called expansion2 which, in theory, shows substan-

tial performance and fault-tolerance benefits [28, 25]. This class of networks are further

discussed in the following chapter Transit Network.

2 Expansion is defined in the next chapter Transit Network.
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(Drawn by Andr6 DeHon)

Figure 2-14: 16 x 16 Bidelta Network

Figure 2-15: Clos Network
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(Drawn by Andr6 DeHon)

Figure 2-16: 16 x 16 Multibutterfly Network

2.1.3 Discussion

The highest bandwidth and interconnection capability are provided by crossbar networks.

However, the hardware complexity increases in proportion to N 2. If a network is parti-

tioned such that it allows the use of a small crossbar switch as a building block, such an

implementation will be the most desirable.

MINs have scalability with modular construction. Moreover, the network latency in-

creases in proportion to log109adiN (See Table 2.1 for comparison.). For smaller networks,

k-ary n-cubes and MINs are desirable with respect to low communication latency. For fault

tolerance and further expandability, MINs are more desirable. Consequently, we focus on

MINs in the remainder of this thesis.

2.2 Network Component

This section describes different types of network component architectures.

24



INPUT OUTPUT
PORTS PORTS

Figure 2-17: Shared Memory Architecture

2.2.1 Shared Memory Architecture

A shared memory architecture switch comprises a dual-ported memory, an input multiplexer

and an output demultiplexer as depicted in Figure 2-17. Data arriving on all input lines are

multiplexed into a single stream which is written into the shared memory. This memory is

organized to provide separate FIFOs for each output line. Simultaneously, the data stored

in the shared memory are read out sequentially from each FIFO and demultiplexed to form

an output stream for each output line.

2.2.2 Shared Medium Architecture

A shared medium architecture switch multiplexes all incoming data into a single stream

onto a common high speed medium such as a bus (See Figure 2-18). Each output port

connected to the intermediate bus comprises an address filter (AF) and an output FIFO

buffer. The address filter checks the output address of the data on the bus and determines

whether the data should be written to the FIFO buffer. Thus, a multiplexed data stream

on the bus is demultiplexed into individual streams for each output line. The ATOMswitch

developed by NEC is an example of this architecture.

2.2.3 Space Division Architecture

In a space division architecture switch, point-to-point paths are established from input lines

to output lines. There is no multiplexed intermediate entity, so that the maximum data rate
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Figure 2-18: Shared Medium Architecture

of the circuit is significantly lower than the other architectures. Moreover, the switching

control does not have to be centralized. In the case of Banyan-based configuration as shown

in Figure 2-13, each 2 x 2 crossbar switch can make local decisions, which may lead to less

complexity of the circuit. However, space division architecture switches inherently tend to

be blocking, depending on implementations of hardware.

2.2.3.1 Crossbar Switch

A crossbar switch consists of an array of crosspoint switches in the same manner as shown

in Figure 2-103. In a crossbar switch, as long as there is no output conflict, all incoming

data can be routed to respective destinations. Therefore, all permutations are possible.

2.2.3.2 Banyan-based Switches

MIN-based switches have been introduced for the same reason that MIN networks were

developed; that is to reduce hardware complexity. N 2 crosspoints must be present in the

crossbar network. The switch architecture is constructed in the same configuration as

Figure 2-13; therefore, this architecture is inherently blocking without special provisions.

3In a crossbar switch, the nodes in the figure are replaced with input ports and output ports.
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Figure 2-19: Batcher-banyan Switch

Buffered Banyan Switch A simple way to reduce a blocking rate is to put buffers at

each input of Banyan switch. Buffered banyan switch has buffers at the inputs to resolve

the conflicts. When a conflict occurs, one of the data is chosen to be forwarded and the

other remains in its buffer.

Batcher-banyan Switch Another way to reduce a blocking rate is to put a sorting

network [3] before Banyan switch. It is proved that any set of packets less than N, which

is free of output conflicts, sorted according to destination addresses, and concentrated at

the top k lines is realizable by the Omega network [8]. Figure 2-19 shows Batcher-banyan

switch architecture. The routing procedure is as follows:

1. The Batcher sorting network sorts the input packets according to their output ad-

dresses.

2. Packets causing output conflicts are removed by checking their output addresses over

pairs of consecutive output lines of the sorter in the trap network.

3. The remaining packets are concentrated to the top lines by the reverse Omega network.

4. The concentrated packets are routed by the Banyan network.

5. The remaining packets are recirculated and fed into the reserved input ports of the

Batcher sorting network.
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2.2.3.3 Switches with N2 Disjoint Paths

Bus Matrix Switch A bus matrix switch has N2 buffers, one at each crosspoint to

resolve output conflicts (See Figure 2-20). Each crosspoint must have switch control logics

and FIFO control logics; therefore, this architecture incurs a large amount of hardware

complexity.

Knockout Switch Each input port of a knockout switch broadcast data to every output

port on broadcast buses as depicted in Figure 2-21. Each output port bus interface has a

knockout concentrator (Shown in Figure 2-22 is an example of 8 to 5 concentrator.) which

resembles the tournament algorithm. Each pair of two incoming data competes with each

other and the winners stay in the same network, whereas the losers go down to another

network. (Each tournament network can be viewed as a reversed binary router.) As the

same process continues, the necessary subset of data is chosen and multiplexed into an

output buffer.

Integrated Switch In an integrated switch, a binary tree is used to route incoming data

to the appropriate output port as shown in Figure 2-23. Each output port has a designated

buffer for each input port interface to store the data until it is read out. Then the data are
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Figure 2-21: Knockout Switch

multiplexed into output FIFO.

2.2.4 Discussion

Each component architecture has its advantages and disadvantages. In shared memory

architecture switches, memory resources can be shared and yield efficient use of hardware;

however, all incoming messages are multiplexed onto the shared memory interface, which

is required to operate at N times higher frequency than that of input ports. The central

controller which handles all incoming and outgoing messages sequentially is also needed.

Those characteristics limit the operating frequency of the circuit implementation.

In shared medium architecture switches, there are distinct FIFOs for each output port

so that the operating frequency can be reduced; however, the intermediate bus still needs

to operate at N times as high frequency as that of input ports.

In space division architecture switches, multiple concurrent paths from the inputs and

the outputs can be established to avoid multiplexing. The controller can be distributed

throughout the switches if self-routing schemes are employed. Therefore, the operating

frequency of the circuitry is almost the same as the input ports and have the potential

to lead to faster switches. Contrary to shared medium architecture switches and shared

medium architecture switches, blocking inside the switch can become an issue. In space

division architecture switches, it is not possible to have buffers close to the outputs. Instead,
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Each box has two states. When there is no message at input A, message B is routed
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Figure 2-22: Knockout Concentrator
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the buffers must be placed where potential conflicts among paths may occur, or upstream

of them.

Buffer placement has an important effect on throughput of the space division switches.

Because input buffering mixes messages destined to different outputs in the same queue,

it can degrade the performance significantly if the most common first-come-first-served

service discipline is employed. While the head of the queue is waiting for the destined

output port, the rest of the messages in the queue has to wait even though their destined

output ports are available. Instead, checking several consecutive messages in the queue to

pick up a message sent to the switching fabric or implementing a central controller which

is capable of maximizing an efficient usage of the switching fabric by checking all input

queues and scheduling them are needed. However, these schemes incur a great deal of

hardware complexity, and are not suited to high frequency operations. Consequently, it is

very difficult to achieve the same throughput of output buffering by space division switches

with input buffering.

In the multi-processing context, blocking of messages can be tolerable with some pro-

visions of reducing blocking rate and a low overhead protocol. Space division architecture
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switches have less hardware complexity, thus have a good potential to exploit high-speed de-

sign implementation. Consequently, we opt for space division architecture switches, specif-

ically a dilated crossbar switch4 , and concentrate on it in the remainder of this thesis.

2.3 Summary

In this chapter, various classes of networks and routing components are described. We

conclude that the combination of MINs and space division switches, in particular a dilated

crossbar switch, is the best choice with respect to low communication latency, fault tolerance

and scalability.

4A dilated crossbar switch is a crossbar switch which has redundant output ports for each logical output.
A dilated crossbar switch is described more in detail in Section 3.2.
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Chapter 3

Transit Network

In this chapter, we shall look at a class of networks which focuses on low latency and

fault-tolerance in MINs. This class of networks is specifically tuned for multi-processor

interconnections in that blocking is assumed tolerable. Because network injection time is

small compared with message length, and the source is actually a processor, the penalty of

blocking is smaller than for long-haul networks.

Then, a very simple connection-oriented protocol, test provisions and packaging issues

are presented. Protocol is an important consideration, since a low overhead protocol sub-

stantially increases overall performance. Test interface and packaging are also crucial to

augment system performance by fault tolerance and compact efficient designs.

3.1 Characteristics of the Transit Network

There is considerable freedom as to how the multiple paths between the stages in MINs

are constructed. In this section, we look at some characteristics which make the Transit

network robust and high-performance.

3.1.1 Interwired Networks

To provide fault tolerance in MINs, a multipath MINprovides multiple paths between each

pair comprised of source and destination. The predominant method has been to construct

a network with more stages of switching than are necessary to deliver a message to a

destination. Since any of several paths can reach the destination, it is possible to choose a

path which avoids any fault in the network. However, the drawback to this scheme is that
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Figure 3-1: 16 x 16 Transit Network composed of METRO routing components

the communication latency will increase due to the introduction of extra switching stages.

As an alternative to building such networks, dilated network components can be used.

A dilated network component has more than one output for each logical direction, so that

a dilation-d component can have d redundant outputs in each logical direction.

To achieve greater fault tolerance, interwired networks can be employed for fixed in-

terstage connections of MINs. Figure 3-1 shows an example of a network constructed

with radix-21, dilation-2 crossbar switches. As described in the previous chapter, a MIN

subdivides at each stage the set of possible destinations into a number of distinct classes

determined by the radix of the routing components. Successive stages recursively subdivide

the destination class until each output node from the network is uniquely identified. The

interstage connection wiring must provide each component in an equivalence class with con-

nections to the appropriate classes. Moreover, in multipath networks, dilated paths must

be connected. Interwiring is used to connect these redundant outputs of the components to

different components in the appropriate class for fault tolerance. Interwiring ensures that

any one component failure does not lead to a loss of connection between a pair of nodes.

'Radix is the number of logically distinct directions of the switch.
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Figure 3-2: An M-input splitter with (a, /)-expansion.

3.1.2 Expansion

In general, the switches in a block B of size M = N on stage s have neighbors in two blocks,

B. and B1, on stage s + 1, where u stands for upper and I stands for lower. The upper

block, Bu, contains the switches on stage s + 1 that are in the same rows as the upper M

switches of B. The three blocks, B, Bu and B1, and the edges between them are collectively

called a splitter. The switches in B are called the splitter inputs, and those in Bu and B1

are called the splitter outputs.

Randomized interwirings, with high probability, provide a property of expansion. In

particular, an M-input splitter is said to have (a,/3)-expansion if every set of k <= aM

inputs is connected to at least Pk up outputs and pk down outputs, where a > 0 and > 1

are fixed constants [24]. An M-input splitter is illustrated in Figure 3-2. A splitter network

is said to have (a, /)-expansion if all of its splitters have (a, /)-expansion. A splitter network

with expansion is called multibutterfly network, as described in the previous chapter.

(a, /)-expansion has been proven to have good fault tolerance and performance between

groups of nodes.

3.1.3 Maximal-Fanout

Maximal-fanout is an enhancement to fault tolerance by making the paths between any

two nodes use as many distinct network components as possible. A network can be said to

have maximal-fanout up to stage s, if paths between any pair of nodes use min(d8 , rlogr N- s )

distinct components at stage s. The left term shows that the number of the paths between a
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single source destination pair expands further away from the source into the network at the

rate of dilation, d. Thus, we can have at most d8 distinct components at stage s. After this

stage, the paths will have to diminish by the network radix in order to connect to the proper

destination. The number of the rest of the stages is logN - s; therefore the components at

stage s must be less than or equal to r logr N -8. Chong shows that maximal-fanout increases

fault tolerance and performance between any single pair of nodes, but sacrifices expansion

[10].

Although the worst case bound becomes even worse as the maximal-fanout extends

further into the network, Chong also indicates that the lower bound of worst case routing

time of permutation such as in bit-reversal and transpose 2 does not look significantly bad,

as long as N is not large 3 [10].

3.2 Transit Network

The Transit network is a communication fabric which connects the processing nodes in the

MIT Transit Project. The Transit network is an indirect, multistage network built from

METRO routing components4 which are dilated crossbar switches as shown in Figure 3-3;

and it is organized with the components in a deterministic, maximal-fanout configuration

(See Figure 3-1). A radix-r, dilation-d dilated crossbar switch has r x d inputs and r logical

distinct paths, each of which consists of d redundant outputs.

The goals of the Transit network are low-latency communication, high-bandwidth com-

munication and fault-tolerant communication. Note that communication latency grows as

O(logN) instead of O(vN) in the case of mesh. Consequently, the Transit network can be

potentially scalable.

The features of the Transit network are as follows:

* Low latency communication

* High bandwidth, pipelined circuit-switched operation

* Path expansion

2By randomizing connections of the interstage network, these worst cases can be avoided. However, it is
always possible to generate worst-case permutation.

3 That is 1024 or less.
4The details of the component are described in the next chapter, Implementation.
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Figure 3-3: Dilated Crossbar Switch

* Fault identification and localization

* Low overhead protocol

* Distributed self-routing

* Gradual performance degradation in the presence of fault

As can be seen in the discussion of maximal-fanout, the first and last stages are most

vulnerable to faults. To enhance fault tolerance in the Transit network, every processing

node has two links which are connected to different routers. Therefore, it takes at least two

router failures to isolate a processing node.

If the system application cannot tolerate any node isolation, clustering nodes and con-

necting them to the same routers will yield the longest expected time to system failure (See

the first stage of Figure 3-1). However, when we lose nodes, all the nodes in the cluster are

lost at once.

3.3 Overview of Protocol

The Transit network employs a connection oriented source-responsible routing protocol5 . A

source processor injects a message annotated with a routing header into the Transit network,

while retaining a copy of the message. A communication link between a source processor

and a destination processor is established semi-permanently, once the routing header reaches

the destination. The communication link can be reversed so that an acknowledgment and

5 This protocol is originally presented in [14].
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optional data flow back from the destination to the source. If the connection establishment

fails at all, the source processor is responsible to retransmit the message.

The choice to discard blocked messages and retry failed communications leads to a

great deal of simplification in the design of routing components, since buffers and precise

flow control are not necessary. We do not have to worry about eliminating the duplication

of a message caused by faults in the network.6 In the design of routing components, we opt

for simplifications to exploit high-speed circuit technology.

One of the advantages of connection reversal is that an acknowledgment can be combined

with data. Hence, actual opening connection traffic does not increase so much. Another

advantage is that an acknowledgment cannot be blocked, since the communication link is

already established. Note that connection reversal is not mandatory and if so chosen, an

acknowledgment can be transmitted as another message depending upon the needs of the

applications.

3.3.1 Control Word

Table 3.1 shows the meanings of control words, which command state control of the data

transaction in each router through which the message proceeds.

When the connection state is in IDLE 7, a forward port is configured as an input and a

backward port as an output whose output is an idle pattern. When ROUTE comes along,

the router tries to establish a connection. Depending on the configured dilation mode, the

top two (in the case of dilation-i) or one bit (dilation-2) is used to choose one logical output

out of four or two. If the connection is established successfully, the control word ROUTE is

forwarded to the downstream routers.

The control word TURN causes the direction of the data transmission established to

be reversed. In the forward direction, STATUS and CHECKSUM are returned during the

pipeline slacks caused by the connection reversal. The data word STATUS informs the

source processor which output port is used. The data word CHECKSUM is generated from

the data sent after the connection establishment so that the source processor can verify the

6 When an acknowledgment, with a less probability than a packet being corrupted, is corrupted, the
message can be duplicated in the long run. However, the duplication occurs at a message level, not at a
packet level, which is more tractable and less compute-intensive.

7The idle state is an initial reset state as depicted in Figure 3-4.
8In the case of a dilation-2 Transit network, the interstage wiring should rotate data two bits leftward so

that the next router sees the right routing information in the top two bits.
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Data Class Symbolic Representation || Meaning
Control Word IDLE/DROP idle pattern or dropping connection
Control Word ROUTE direction specification
Control Word TURN reversal of connection

hold pattern
Control Word DATA-IDLE (place holder for connection)

Data STATUS connection status
Data CHECKSUM checksum bits
Data DATA arbitrary data

Table 3.1: Control Word and Data

integrity of the message it sent. In the backward direction, DATA-IDLE is transmitted during

the pipeline slacks to hold the connection open until the meaningful data flow in.

The control word DROP causes the connection to be released, but DROP itself is forwarded

before the connection is dropped. Another way that the connection is dropped is by fast

path reclamation. Instead of waiting for the source processing node to realize that the

connection is blocked and to send DROP, a backward control bit (BCB0) is used to notify

upstream routers to drop the connection immediately for reuse. This feature helps enhance

the network performance and fault tolerance by freeing resources quickly and giving the

destination end the freedom to drop the connection in case of faults9 .

3.3.2 Connection State Machine

The connection state transition is depicted in Figure 3-410. The SWALLOW state is only

used when there is a defunct control word ROUTE and therefore it has to be removed. As

described in the footnote in Section 3.3.1, ROUTE is rotated and consumed partly in each

stage. Consequently, when the entire word is consumed and there are more stages to route

through, the first ROUTE should be removed and the second ROUTE should be used from

the next stage.

9There might be a case where the higher-level protocol is terminated, but the data persistently continue
to flow in because of a faulty router.

l°The implemented finite state machines are slightly different from the diagram. The details are discussed
in Section 4.2.3.
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data/data<-
vtd/dataidle-> turn/dataidle->

turn<-

As a connection is opened, used, reversed, and dropped, a link of the network goes
through a series of connection states as shown above. In the implementation, the
state machine is implemented in a distributed way. (See Section 4.2.3.) Transi-
tions are initiated by the receipt of a control word depending on the local state
of the router. Each transition is labeled as (The notation is introduced in [14].):
<event>/<result><dir>. <event> is a control word received or control signals;
<result> is an output word resulting from the event; <dir> is an arrow indicating
the direction which the <result> is sent.

Figure 3-4: State Transition Diagram
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3.3.3 Routing Examples

Figure 3-5, Figure 3-6 and Figure 3-7 show step-by-step examples of state transitions of

opening a connection, turning a connection and dropping a connection respectively.

Time
IDLE IDLE --- IDLE IDLE - IDLE

NROUTE" | IDLE | | IDLE r , IDLE i IDLE 

DAT | o ROUTErAT IDLE | O IDLE | | IDLE

DATA1 DATA..,.DAA RO~E 1 IDLE IDLE

DATd | | DATA r | DATN g RO SE|g IDLE
DATA3 DATA DATA1 DATAA ROUTE "

C Route r b Router b Router b Roubr .

DATA DAT DATA DATA1 DAT o{9Cr·l · hr Ra,h u.. oh. . t, h t, ncrT

Shown above is a cycle-by-cycle progression of control and data through the network
as a connection is successfully opened from one endpoint to another. The message
snakes through the network advancing one routing stage on each clock cycle. The
first word in the message is the routing word.

(Courtesy of Andr6 DeHon)

Figure 3-5: Successful Route through Network

3.4 Scalability

MINs are scalable up to some point, but wire density becomes a problem as the number

of processors increases beyond the limit. Also, whatever network topologies are used, the

communication latency degrades as the number of the processors is increased. To avoid

these problems and to take advantage of communication locality", the Transit network can

be constructed combined with a fat-tree. Consequently, the average communication latency

becomes lower than that of a flat MIN.

llAll processors do not have to be equally placed/uniformly distributed with respect to distance. Instead,
they can be clustered and processes are mapped taking geometric advantage into account. In that case,
communications tend to be among the processors in the same cluster.
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Time
DATA _ 1 DATApI DATA _I DATA, . 1 ATA,;n_ Fouler rourer_ nourer_ lourer _;

TURN | |DATAq |DATAp | DATA DATA,

~STATUS1TURN DDATq DATAp SR Rouber Router Router Router DS)

CHECK1 r"STATUS2 I TUR N DATA DAT

SQ AUi CEKSTATU S TURN HDAT
Rou Router 4Router Router DS)

R- iRCHECK2S TATUS CHEC3 1SATUS4 1 I TURN
vRC Router Z Router Router Routerll

$Q STATUS3 1EK XTTS CHECK SDATATUSS~~~~~~ RI-ot' Rut--e't'r lelr C H uECK STATS

CHECK3 1 gSTATUS4 1 ~CHECK4 1~DATAODATA1
)1STC] I RmarT IORmitsr I nusl I~ Rmiltpr7 --T

When the source wishes to know the state of its connection and get a reply from
the destination, it feeds a TURN into the network following the end of its forward
transmitted data. As the TURN works its way through the network, the links it
traverses are reversed. In the pipeline delay required for the link to begin receiving
data in the reverse direction, each routing component sends status and checksum
information to inform the source of the connection state. After the TURN has
propagated all the way through the network and all routers along the connection
have sent status and checksum words, data flows backward along the connection.

(Courtesy of Andre DeHon)

Figure 3-6: Reversing an Open Network Connection
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SR Router Router Router Router _C)

IDLE I I DROP _ ATA4 DATA14 DATA 3 .2 I Router ~" Route Router '" ,

IDLE I I IDLE M I DROP DAT1R DATA14
( IC Router Rout r Router Router DS

IDLE I I IDLE I I IDLE I I DROP DATA4
SR Route r Router Router Router 5- ~ S

IDLE | | IDLE I | IDLE | | IDIE | | DROP 

IDLE I I IDLE I I IDLE I 1 IDLE | | IDLE
(SRC -'nitr PIaialbrnirld -I mtrl d · nT}

When the transmitting network endpoint decides to terminate a message, it ends
the message with a DROP control word. The DROP follows the message through the
network resetting each link in the connection to idle after traversing the link.

(Courtesy of Andre DeHon)

Figure 3-7: Dropping a Network Connection

Knight and DeHon introduced a hybrid fat-tree, which is a compromise between the

close uniform connections in the flat MIN and the locality and scalability of the fat-tree

network. In a hybrid fat-tree, the leaves of the hybrid fat-tree are small MINs instead of

individual processing nodes [15]. DeHon shows the same dilated crossbar switches that are

used in MINs can construct a hybrid fat-tree [14].

3.5 Multiple Test Access Ports

For the purpose of fault tolerance, each routing component in the Transit network has

multiple test access ports (TAPs). The IEEE standard test access port and boundary scan

architecture is emerging as an industry standard for component and board testing [11].

However, the serial nature of scan based testing is prone to suffer from a single fault in a

large-scale system.

Therefore, in the Transit network, multiple TAPs are supported. l2 Any of TAPs can

12See an example of dual TAP implementation in Figure 4-8 in Chapter 4.
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In a large system, parallel scan is employed. With dual-scan com-
ponents, only one redundant serial scan will save any of n parallel
scan circuitry.

Figure 3-8: Example of Parallel Scan System with Dual-Scan Components.

initiate component testing. When there is a conflict of resources between multiple TAP

controllers, the most recently accessing controller has the right of the control and the others

are reset to the bypass instruction. Figure 3-8 shows how such a redundant scan circuit

is employed in a system. An example of dual TAPs diagram is shown in Figure 4-8 in

Section 4.2.7.

To further enhance fault tolerance, a sparse scan instruction encoding scheme which

allows strong protection against data corruption was introduced. All legal instruction en-

codings are sparsely distributed to allow maximun tolerance to erroneous data. All illegal

encodings are treated as the bypass instruction so that they cannot interfere with the normal

operation of the component. Issues that arise from adapting multiple TAPs are discussed

in detail in [14].

3.6 Packaging

The system packaging has an great impact on the system performance. The Transit net-

work is packaged in stack packaging which enables roughly equivalent wiring density in all

three dimensions. Figure 3-9 depicts this packaging scheme in which contact between the
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printed circuit boards is provided with button boards3 [27]. This contact allows reliable,

controlled-impedance contact to be made without solder by using self-aligning compressional

connectors.

The routing components are housed in dual-sided pad-grid arrays (DSPGAs), which have

flat pads located on both the top and bottom of the chip carrier instead of conventional

pins [14]. Each vertical pad pair can be connected or disconnected. At the same time, each

pad can be connected or disconnected to internal circuitry. Consequently, a pad pair can

be used either as a signal path between PCBs, an I/O pad of the same signal or I/O pads

of different signals. DSPGA provides through holes for cooling channels.

DSPGAs sandwiched by button boards and PCBs are alternately placed to form a dense

three-dimensional stack structure, which is horizontally and vertically aligned so that the

signals can travel through this stack structure vertically. Horizontal signals are provided by

PCBs. Figure 3-10 depicts an example of the Transit stack structure.

Note that processing nodes can be placed on top of this stack structure 4 . Because the

network inputs and outputs of a processing node must be in physical proximity, the return

paths from the bottom of the stack must go up straight vertically on additional signaling

channels.

The stack packaging can reduce the wire length, so that the communication latency

becomes smaller than conventional backplane packaging. The dense packaging does not

necessarily mean impractical maintenance and debugging supports. Because there is no

soldering, the components are easily repaired and the overall system maintenance, on the

contrary, will improve. Debugging packages, whenever necessary, can be inserted to examine

the signals between stages, which is also favorable because no permanent means of signal

observation 15 is needed in the system.

13A button is a compressed fine wire pushed into a cylindrical hole drilled in a printed circuit board.
Button boards serve as extremely dense connectors between layers of the packaging.

14 The processing nodes can also be placed at the bottom, but this incurs mild nonuniformity of commu-
nication latency due to the difference of wire length between processing nodes.

15These circuits are usually a burden of system performance.
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The diagram above depicts how a logical stack is mapped into the stack structure.
The interconnect between each pair of routing stages is implemented as a PCB in
the stack. Each stage of routing components becomes a layer of routing components
packaged in DSPGA packages.

(Courtesy of Andre DeHon)

Figure 3-9: Mapping of Network Logical Structure onto Physical Stack Packaging
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Shown above is an enlarged cross-section of a network component stack.

(Original Diagram courtesy of Fred Drenckhahn)

Figure 3-10: Cross-section of Routing Stack
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Chapter 4

Implementation

As seen in Chapter 2, buffering in the space division switches degrades the communication

latency or throughput significantly depending on where the buffers are placed. A scheme us-

ing multi-queue input buffers is proposed in [12] to solve the latter problem, but it demands

hardware complexity and it is difficult to exploit the technology for low communication

latency.

In this chapter, the design implementation of the network component METROSC is

presented as a space division switch without buffering in the Transit network described in

Chapter 3.

4.1 METRO Routing Component

The METRO routing component, METROSC, is a standard-cell VLSI chip, optimized for

low-latency, fault-tolerant communications in tightly-coupled multiprocessors. Complexity

is avoided as much as possible in the design, following contemporary trends in processor

designs. Rather than supporting message buffering, congestion handling and fault handling

in the network hardware, they are passed on to the node processors.

METROSC can be configured as a 4 x 2 dilation-2 crossbar switch or a 4 x 4 dilation-1

crossbar switch. When the dilation is configured to one, all the output ports become distinct

logical paths. The first two bits of data are used for the routing information that indicates

to the allocate block which backward port should be used. When dilation is two, two

backward ports are treated as logically equivalent. Consequently, only one bit is consumed

as the routing information.
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From the standpoint of fault tolerance, the last stage of the network should be composed

of dilation-1 components 1, so that the chip is configurable accordingly.

The features of the routing component are as follows:

* Low latency connection establishment and data transmission

The routing component decodes the routing bits, arbitrates requests, allocates an

appropriate backward port and transmits the data in one clock cycle.

* Router width cascading

To achieve high bandwidth and system flexibility, it is desirable and economical to

have capability to cascade chips to widen the data path rather than having a variety

of different width routers. This capability can be used to enhance fault tolerance as

described in Section 4.3.3.

* Multiple test access ports support

* Port-by-port enabling/disabling

The input ports and output ports can be disabled port-by-port by way of scan-based

TAP. This feature makes it possible to eliminate dead-end paths caused by component

or wire failures by disabling corresponding output ports, which results in choosing an

alternative path in an upstream router. Input port disabling makes it possible to

exclude incoming garbage data caused by wire failures.

* Configurable dilation

The routing component should be configurable depending on what stage in the net-

work it is located in for the purpose of fault tolerance and system flexibility.

* Connection reversal and variable turn delay

The connection can be reversed by sending a special command called CONTROL WORD.

Since the delay between two stages of the network (that is, the delay between two

routing components) may vary, the turn delay is configurable.

10Otherwise, we have to connect all equivalent outputs to a destination processing node to deliver a
message correctly. This incurs a serious problem in the presence of faulty routers in the last stage, since all
the connections to the node are lost by a single point of failure.
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* Stochastic path selection

When the dilation is configured to two, one of the two equivalent backward ports is

selected based on a random bit (RND) to reduce the possibility of creating a hot spot

in the network. If one port is being used, the other will be selected.

DeHon et al. describe the METRO architecture in detail and discusses its projected

performance in [31].

4.2 Overview of the Chip Architecture

The chip functional organization and rough floorplan are depicted in Figure 4-1. The

crosspoint array is the main source of capacitive load of the datapath. To effectively reduce

the transit time, we have to partition the array into forward and backward crosspoint arrays.

One of the critical paths is in the allocate cycle operation which deals with the opening of

a connection from a forward port to a backward port from the results of tentative simulation

analysis. In this implementation, regular data flowing through the chip cannot proceed any

faster than the time required for the initial allocate operation. Therefore, it is crucial to

speed up the allocate path for the entire performance.

The crosspoint array design is also critical to the speed of the data transmission. As

all the data go through this array, the propagation delay should be minimal; therefore, the

loading capacitance and the length of the paths must be kept to a minimum.

To alleviate these problems, specially tuned allocate cell and crosspoint cell were de-

signed. Most of the designs were done using an optimized standard cell library.

4.2.1 Circuit Switch versus Packet Switch

In long-haul networks such as ISDN, the time it takes to inject an entire message into the

network can be small compared to the time required to deliver it; therefore, interconnec-

tion bandwidth is utilized most efficiently by packet switching. In contrast, in short-haul

networks such as tightly-coupled multiprocessors, the node-to-node communication delays

are smaller than or comparable to the message injection and reception time; therefore, if

the resource is dedicated to a single message for the duration of its communication, there

is little impact on network bandwidth.
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(2) CNF is comprised of configuration register, delay register, impedance register
and boundary-scan register.

Figure 4-1: (1) Chip Organization and (2) Chip Floorplan
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Circuit switching has some advantages over packet switching in the multiprocessor in-

terconnection context:

* Simple architecture

Simple architecture makes it possible to employ high-speed circuit implementation.

* No message storage element inside the routing component

Communication latency can be low. Less complexity yields higher performance and

less probability of fault. Buffering control circuits and buffers limit the upper bound

of operation frequency. Buffering also causes jitters in transmission time, whereas

non-buffering in most cases leads to predictable transmission time. This property

is beneficial in multithreaded architecture in which scheduling of multiple threads is

necessary.

* Fast, secured acknowledgment

Connection is already established when acknowledgment starts to come back from the

destination.

* Memoryless network

There is no message stored in the network; therefore, there is no need to duplicate

messages in case of fault or to keep track of duplicate messages to prevent them from

being delivered to the destination multiple times. Thus, context switching can be done

quickly, so that multithreaded architecture benefits a great deal in reducing overhead.

* Preserved message sequence

All messages are delivered sequentially and corresponding acknowledgment in a hand-

shake manner, so that there is no need to reconstruct messages and check if there are

any missing messages or duplicate messages.

A negative aspect is that blocking can occur more frequently. The trade-off between

retry penalty due to blocking and buffering delays has to be evaluated. This evaluation

typically depends heavily upon network loading and traffic patterns.
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Design Style || Max Clock Chip Size Power
Full Custom 200% 65% 85%

Standard Cell 100% 100% 100%
Gate Array 75% 120% 110%

Comparison is done by using standard cell design as a basis; there-
fore, the row of standard cell is always 100%.

Table 4.1: Design Style Comparison

4.2.2 Design Methodology/Economics

In general, we have three options in chip designs; full custom design, standard cell design,

and gate array design. Maximum system clock frequency, chip size and power dissipation

will be affected by this decision as shown in Table 4.1.

Another consideration is whether static logic or dynamic logic is used in the design. A

typical characteristic of precharged dynamic logic is lower transistor count with a reduced

capacitive load that gives rise to higher speed capability and less area than static logic.

However, dynamic logic sacrifices noise immunity inherent in CMOS technology.

Dynamic logic may generate large current pulses by precharging and evaluating many

nodes simultaneously causing dI/dt noise. Precharged dynamic logic cannot recover from

noise induced logic errors if the precharged node has been discharged by noise. Static logic,

in contrast, may recover unless there is a feedback loop in a circuit.

Unfortunately, the dynamic logic race condition is only apparent in SPICE simulation.

Charge redistribution could be a major concern in the circuit designs. The interface of

static and dynamic logic must be included in complete simulation with back-annotated

capacitances from the layout with effects of power and ground bounce is needed to ensure

correct operation.

Static logic, on the other hand, is robust to noise, modular and easy to handle, so that

the gates can be easily cascaded to construct complex functions without simulating the

circuits extensively for correct operation. A fully static design can accommodate IDDQ

(supply current quiescent) testing for finding bridging faults, which improves testability of

a chip.

This choice will also affect power dissipation. It is reported that when the logic depth is
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larger than a certain value2, dynamic logic consumes more power than static logic [18]. In

our design, messages have to go through the router in one clock cycle; therefore, the logic

depth is relatively deep, and consequently favors static logic.

Therefore, design complexity, size, power dissipation, and reduced noise immunity have

to be taken into account in deciding a design scheme. In the design of METROSC, we

choose the static logic in standard cell design for ease of development. The macro cells'

layout style generally complies with the standard cell library so that overall chip layout can

be done efficiently and easily.

By using macro cells in the standard cell design to speed up circuits in critical paths, rel-

atively high performance can be obtained without exhaustive simulation and tuning efforts,

both of which will arise in the dynamic logic in the full custom design.

4.2.3 Forward Port

The diagram of the forward port is shown in Figure 4-2. The forward port is initially an

input port and requests the allocate block to open a connection using the allocate request

generator (ALLOC GEN) when ROUTE comes in. When the control word TURN comes

along, the forward port becomes an output port after variable turn delay (VTD).

When TURN is received, the status and checksum are added. The checksum block is

basically a linear feedback shift registers and computes x16 + 1 2 + 5 + 1 as a cyclic

redundancy code in CCITT. In the forward turn, the checksum block in the backward port

is used in order to improve circuit observability.

Distributed Finite State Machines

The finite state machine (FSM) of the connection state transition in Figure 3-4 in Chapter 3

has some difficulty in being implemented, since a forward port can be connected to any

backward port. To cut down a large number of signals which have to run across the

chip, we implemented the FSMs in parallel decomposition as shown in Figure 4-3. This

decomposition also leads to the reduction of the input and output signals of the FSM and

contributes to circuit minimization.
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Variable Turn Delay (VTD) tells when to expect meaningful data
using the configuration register in the scan register.

Figure 4-2: Forward Port

Finite State Machine

Figure 4-3: Parallel Decomposition of Finite State Machine
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Checksum generates checksum data for health check and also serves as a chip testing
provision of loop back.

Figure 4-4: Backward Port

4.2.4 Backward Port

The diagram of the backward port is shown in Figure 4-4. The basic structure is the same

as the forward port except that there is no allocate request generator.

The backward FSM is simpler than the forward FSM, since there is no connection

opening capability.

4.2.5 Crosspoint Array

The basic function of crosspoint is to select one of the input ports and transmit the data

to the specific output port. Naive implementation is to put 4 n-channel transistors whose

sources are connected together. Originally, to improve performance, an extra n-channel

transistor was put in series to limit the voltage swing of the heavily loaded intermediate

node. In this implementation, getting full swing output voltage was difficult, since the
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output inverter operates in a high gain region and the trip point has to be shifted to ensure

correct operations in all process corners.

Therefore, a differential scheme is chosen to exploit the fact that differential receivers

are potentially faster than single-polarity receivers. Since the datapath has to run across

the chip, minimal propagation delay is to be ensured by repeaters. As a result of fine tuning

of the repeaters, it is possible to have both polarities of the signals in approximately equal

delay. Using a differential amplifier and a matching trip point inverter makes the output

signal full swing. Figure 4-5 depicts a differential multiplexor of the crosspoint array3 .

However, from the results of SPICE (level 28) simulations, an alternative crosspoint

design without an n-channel transistor in series (1) was faster in this particular case. The

reason was that the intermediate node is not loaded heavily enough in the case of a 4-input

crosspoint and also that the bias voltage has to be carefully chosen. As a circuit scales, the

design (2) will outperform the design (1).

The biasing scheme of the differential amplifier is similar to CMOS ECL receivers intro-

duced by Chappell et al. [9]. The double-feedback biasing of both the load p-device and the

current-source n-device provides good compensation for power supply and P-relative-to-N

device common-mode shifts.

4.2.6 Allocate Block

The allocate block is depicted in Figure 4-6. Figure 4-7 depicts an allocate logic (ALC)

of the allocate block4. The allocate block allocates the crosspoint array connections to

requesting forward ports, which implies arbitrating the requests from the forward ports and

turn on appropriate crosspoint switches.

Low-power implementation of this allocate logic is depicted in a complementary manner

in Figure 4-7 (1). Three output inverters are sized to ensure proper voltage level of output

signals X, Y, Z, because p-channel transistors in series cannot pass voltage low without

degradation.

High-speed implementation of this allocate logic is depicted in Figure 4-7 (2). This

circuit consists of a receiver stage, a priority stage and a driver stage. The pull-up p-

channel transistors in the receiver stage and pull-down n-channel transistors in the priority

3 The layout of the circuit is found in Appendix A.
4The layouts of these circuits are found in Appendix A.
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C
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(1) Signals A through D come from the allocate block to open and close the con-
nections. Signals AD, ADN through DD, DDN are datapaths of both polarities. As
the number of inputs increases, the cascoded version performs better.

(2) The simulation circuit for a cascoded version. Bias voltage can be applied to
the gate of cascode NFET to limit the voltage swing of the heavily loaded crosspoint
nodes such as CASCODE and CASCODEN in the figure, since with the gate of the
series transistor being held at a constant voltage, the drain of the driver transistor
will be held to a threshold below it. The series transistor, in effect, acts as a common
gate amplifier.

Figure 4-5: Crosspoint Differential Multiplexor
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FWD FWD FWD FWD

Figure 4-6: Allocate Block

stage are ratioed such that VIL of last stage inverters is reasonably low. This ratio-circuit

version is much faster and smaller in layout area than the complementary implementation,

but incurs static power dissipation.

In the Hewlett Packard's 0.8y effective gate-length process cMos26, the simulations

show the high-speed version achieves 0.6 ns delay with moderate loading.

However, as the number of input increases, the circuit size grows due to the pull-down

transistors. With large number of inputs, Manchester carry chain style arbitration becomes

more attractive [26].

4.2.7 Test Access Port and Configuration Registers

The configuration of the chip is provided by way of TAPs depicted in Figure 4-8. The

dilation mode, variable turn delay value, port enabling, fast reclamation mode, swallow

mode, impedance control value5 and signal delays can be configured.

4.2.8 Pad Ring

The power dissipated for off-chip driving is very dominant in the total chip power dissi-

pation and becomes even more dominant with scaling of a chip size. To reduce power

dissipation and achieve low communication latency, point-to-point signalling with reduced

voltage swing and matched impedance is essential. Since there is no DC power dissipation,

series termination has an advantage over parallel termination.
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(1) Signals A through D come from the forward ports requesting the same backward port.
The fixed priority is applied to these requests and the winner gets a grant signal.

BI

Cl

D

Cl

(2) Signals A through D come from the forward ports that are requesting the same backward
port. In this example, extra gating logic is included. The pull-down transistors have to be
properly sized for correct operations.

Figure 4-7: Allocate logic
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Each scan path has its own instruction register, bypass register, and TAP controller.
The difference between single TAP and the multiple TAPs is an addition of conflict
resolution unit.

Figure 4-8: Scan Architecture for Dual-TAPs
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As long as the gate voltage can go one device-threshold higher than the signalling high

voltage, n-channel devices can be used as pull-ups of the drivers. The n-channel devices

have advantages over p-channel devices in speed and size; therefore, the driver constructed

with only n-channel devices achieves lower output capacitance, lower internal capacitance,

smaller layout, faster operation, lower power dissipation, and good latchup prevention 6.

As for impedance matching, [16] introduced an on-chip impedance control pad for re-

duced voltage swing transmission. Figure 4-9 shows an example of such a bidirectional

pad. The impedance control register in TAP controls the pull-up and pull-down networks

to match the characteristic impedance outside the chip. The impedance selection algorithm

is described in [14]. The receiver circuitry is a cascode amplifier. When the input signal

falls one-threshold below the reference voltage, the input transistor conducts, pulling down

the input to the inverter below its trip point. When the input signal rises, the input tran-

sistor shuts off, and the current source (grounded p-channel transistor) pulls the input of

the inverter up to the supply voltage.

The total I/O delay of this bidirectional pad in CMos26 process accounts for only one-

third 7 of conventional 5V full-swing pads.

To adjust the delay for making the signal transmission time a multiple of a clock cycle,

an adjustable delay circuit is employed as depicted in Figure 4-10. The signal delay is

controlled by serially connected inverters and RC load similar to the voltage-controlled

delay line [17]. Note that in this circuit the capacitance is split into two moving it toward

both rails to sharpen the edge rate equally for the rising and falling.

Alternatively, if we were short of I/O pins, we could go into full-duplex bidirectional

pads. Dally, Dennison and Lam introduced a current steering bidirectional pad [19]. The

full-duplex bidirectional communication will extremely simplify the protocol and reduce the

size of FSMs.

4.2.9 Global Routing

The global routing is preferably done in thick metal layers rather than thinner layers such as

metal-1 and metal-2, whereas the local routing is done in poly and metal-1. When necessary,

6If a p-channel transistor is used and the input voltage becomes higher than VaignaZ-swing + Vbel, the
leak current flows from the input terminal to the back-gate of the p-channel transistor.

7The driver approximately consumes 2 ns and the receiver consumes 1 ns, whereas the conventional pads
consume around 10 ns.
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A bidirectional pad contains both low-voltage automatic-impedance-controlled
driver and receiver circuitry. Shown here is a typical bidirectional pad configu-
ration. The protection circuit is not shown for the sake of clarity. Note that pull-up
devices are slightly larger to compensate for the difference of (VGS - VT), since the
operating voltages of the sources differ and the body effect changes VT at the same
time.

Figure 4-9: Bidirectional Pad
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An adjustable delay circuit feeds a signal into a pad driver circuit, which scales up
to drive a large load. The control voltage of the adjustable delay circuit typically
comes from a D/A converter which generates a bias voltage from the values in the
delay register in TAP.

Figure 4-10: Pad Driver with Adjustable Delay

wide wires are used to reduce the interconnect delay, since the resistance decreases linearly

with the wire width while only the area capacitance portion increases and the relative

fringing field effect diminishes 8.

Clocking

A single-phase clocking scheme with edge-triggered flip-flops is used in the chip design.

The main reason is because clock distribution becomes considerably easier than two-phase

clocking. The amount of signals that have to be distributed all over the chip is reduced

by adapting a single phase clock scheme. Problems with clock pulse-width narrowing, and

race conditions associated with a single-phase clocking with latches 9can also be avoided

with a little performance and area penalty. The other reason is because guaranteeing the

nonoverlap time for a two-phase clocking scheme over all process corners can cut significantly

into the cycle time.

From our experiences, the hardware description language (HDL) codes were good in

SHowever, large buffers are needed to drive large capacitance. Overall delay time has to be evaluated by
simulations.

9The problem is caused by data transparency during the clock cycle; therefore, the clock skew and the
gate delay have to be managed in every logic stage. This problem can be alleviated by distributing the clock
in the opposite direction to the data stream, but this does not guarantee correct operation all the time.
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terms of efficient implementation of specification, but the clock input of each module had

to be one pinl °. Therefore, the clock signals had to be buffered inside each module, which

incurs clock skews, since the load of each clock signal is different from one module to another.

The partial solutions to this problem are either to feed a clock signal which is faster than

others to a certain module that has heavier clock loading or to edit synthesized schematics

and create equally loaded clock input pins.

The clock buffer consists of cascaded inverters scaling up approximately three times

in each stage except the last stage. The final inverter size is calculated to satisfy the

transmission line termination condition. The inverter before the final one is slightly larger

than the final inverter to achieve a sharp waveform.

Clock distribution is done from the center of the chip outward following the ground

and power distribution tree. Ideally, the H-clock tree with line width reduced at each

branching point for proper impedance matching is desirable to reduce the clock skew1 l

[20, 21]. Alternatively, in the datapath where intentional skew is sometimes needed, a

powering clock tree is suited. The stage-connecting-wire scheme12 is reported to reduce the

clock skew down to one-third in a 500 MHz clock distribution tree [29].

Power and Ground Routing

The global power/ground routing uses wide metal-3 as much as possible because metal-

3 is thicker and farther from ground than the other metal layers so both resistance and

capacitance are lower per unit length; therefore, it can avoid the voltage drop and sustain

noise marginsl 3 .

In other layers of ground and power supply distribution, jogs of wires should be avoided

as much as possible to avert any electromigration probleml 4 and to reduce the wire in-

ductance. Depending on the length and number of rows (accumulated Ids, to be precise),

the wire width should be increased to keep maximum current density less than the rule of

thumb value, mA/square micron, and to reduce the voltage drop.

l°The real reason is the discrepancy between a functionality block unit and a physical clock distribution
unit. Usually, this is not a significant problem in cell-based designs.

"The process variation is less severe for wires than transistors.
12The outputs of the buffers in the same stage are connected by wire to equalize the clock skew.
13Also, if necessary, on-chip bypass capacitors can be placed under metal-3 power lines to reduce power-

supply noise.
14 This should be considered at the worst-power corner including the effect of power supply noise.
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The power/ground supply nets to internal circuitry and off-chip drivers have to be

separated to avoid disturbance of the internal circuitry (fluctuations at the power lines)

that will otherwise be caused by the simultaneous switching of output buffers.

In high-speed designs, power and ground cannot be treated as DC signals but rather

AC signals, since transistor switching noise creates a considerable amount of noise in power

supply lines. They should be considered to be return paths of transient current when

switching occurs.

4.3 Hot Spot Avoidance

4.3.1 Problem Statement

When the dilation is configured to be one, the routing method of the Transit network

becomes fully deterministic in that the path a message follows is determined only by a

source node and a destination node.

When the dilation is configured to be more than one, the routing method of the Transit

network becomes oblivious routing in that a router can choose a path among different paths,

but without global information about the network state.

In either case, the source-responsible protocol described in the previous chapter suffers

from performance degradation if there is a hot spot in the network. In general, Pfister and

Norton showed that the presence of hot spots can severely degrade performance for not only

traffic due to synchronizing processors, but also all traffic in MINs [22].

4.3.2 Solution

The scheme which is employed here is similar to adaptive routing. The probability of

getting busy from a downstream router to an upstream router is to be propagated back

(See Figure 4-11) so that the upstream router can have some information of a hot spot in

the network. Then, this information effectively prioritizes paths among maximal-fanouts

and allows the upstream router to choose an alternative path to alleviate the congestion.

The probability of an incoming message's getting blocked can be assessed by the ratio of

free output ports to used output ports. Each output port has an IN-USE bit that represents

whether the output port is being used or cannot be used for an incoming message because

of a faulty downstream router. All the free input ports propagate back the probability to
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A router at stage n + 1 propagates back two INUSE bits in every clock cycle repeat-
edly by way of free links. The sequence does not matter, but logically equivalent
ports are transmitted in the same cycle.

Figure 4-11: Hot Spot Avoidance

upstream routers by way of backward control bits (BCBO and BCB1) that are used for fast

path reclamation and backward port disabling (See Table 4.2). Since only free links are

utilized, there is no need for extra hardware cost.

The output ports of the upstream routers accumulate the serially transmitted probability

and use this information to decide which path to choose among logically equivalent paths.

(See Figure 4-12) Since our protocol is source-responsible and the penalty of being blocked

in later stages is rather large, avoidance of being blocked is especially beneficial to overall

performance.

Note that the the serially transmitted probability does not slow down crosspoint allo-

cation. Because we do not have to distinguish each bit, a downstream router can simply

send it recursively, and an upstream router accumulate it in a fixed time window and use

this information as approximate priority at the time of allocation.

4.3.3 On-Line Dynamic Reconfiguration

As a network size becomes larger, mean time to failure (MTTF) of the system gets smaller.

To build a practical system, faults in the system should be tolerated and contained.

In general networks, Leighton and Maggs introduced a theory for on-line reconfiguration
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Signals || Usage Polarity
BCBO fast path reclamation while in use active low

hot spot avoidance while idle high: busy
BCB1 backward port disable active low

hot spot avoidance while idle high: busy
IN-USE backward port in use high: in use

Table 4.2: Signals for Fault Propagation

BCBO BCBO

IN_USE bits are fed into shift registers for priority comparison. In the case of dilation-
2 mode, a blocking state of logical paths is incorporated as an extra bit in the
decision making.

Figure 4-12: Hot Spot Avoidance Circuit
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[25, 24]. Chong explored analog-controlled adaptive routing in [30] and also introduced the

simplified algorithm of Leighton and Maggs [10]. However, those schemes need a central

entity which can control all routers or a distinct network from the one in which messages

are delivered. Hence, the cost of hardware is substantially large. Also, analog circuits suffer

from variation of power and ground in the system, and that may lead to malfunction due

to reduced signal to noise ratio'5 .

On-line dynamic reconfiguration, on the other hand, only needs a local decision and

no extra network is necessary. This scheme intends to provide a cost-effective method to

alleviate the problem locally as a quick-fix or first aid before network-level reconfiguration

is required.

Before we discuss faults in a network, fault model should be defined. We assume that

faults occur either in routers or in wires without correlation and that there is always at

least one TAP controller operational in each router.

When width cascading is employed, a fault detection scheme is needed to prevent mes-

sages from splitting because of faulty routers or flipped bits. Figure 4-13 illustrates this

message splitting. A discrepancy of IN-USE bits results if one router misroutes a message.

Then, the routers report to the upstream routers to drop this message by sending BCBO and

BCB1sl. The faulty routers are marked faulty in the corresponding upstream router's output

port controller and are eliminated from the choices it can make.

After isolating suspects for faulty routers or links, a health check message has to be

delivered fully deterministically through the specific routers to check the sanity of these

deactivated routers and links. Because there might be a possibility of intermittent errors

of links, those routers and links cannot be determined faulty until this is confirmed by a

health check message.

One way of conducting a sanity check is to configure the entire network to dilation-1 by

way of TAP, and launch a health check message with a fully specified destination address 16

in order to deterministically route it through intended routers.

This could also be done within a set of routers without stopping the entire network, while

other routers are operating in another dilation mode. First, all ports of the selected routers

15 When analog circuits are integrated in digital circuits, they have to be protected by shielding or separate
power lines from noise caused by switching of digital circuits.

16The number of bits consumed in each router changes depending on the dilation mode. To fully specify
the route from a source to a destination, extra bits are needed besides a destination address.
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When misrouting is detected by wired-AND of each INUSE bit, BCBO signals to the
upstream routers to drop the connection mimicking blocked routing. At the same
time, BCB1 signals to disable the output port until a health check is conducted.

Figure 4-13: Fault Detection

are disabled and the routers are configured to dilation-1 by TAP. Second, the ports which

are going to be used are enabled. As long as health check messages and ordinary messages

are not mixed up in the routers under sanity checks, this procedure can be conducted in

parallel to normal operations.

Such on-line configuration and health check techniques will become more critical as the

network size scales up, since the cost of reconfiguration (down time) goes up accordingly.

4.3.4 Procedure Implementation

The implemented procedure is as follows:

1. While the link between the input port of a router and the output port of the connected

router is idle, IN-USE bits of all output ports of the downstream router are serially

transmitted to the upstream router repeatedly in BCBO and Bcsl. To alleviate the ef-

fects of stuck-at-faults, the polarity of each signal has to be chosen carefully. Table 4.2

explains each signal in detail.

2. The output ports of the upstream routers accumulate the serially transmitted prob-

ability. In choosing among logically equivalent paths, the upstream router compares
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each probability and chooses the most unused downstream router. If the probability

is the same, random bits are used to decide.

3. When the state of the link changes to FORWARD, the output port disregards the prob-

ability. After variable turn delay, it treats BCBO and BCB1 as fast path reclamation

and backward port disable. When misrouting is detected by wired-and of each INUSE

bit, BCBO signals to the upstream routers to drop the faulty connection by mimick-

ing blocked routing. At the same time, BCB1 signals to disable the output port as a

suspect until a health check is conducted.

Even though the propagated probability does not accurately correspond to a congestion

in the network and steering of a message can be done only one-stage upstream, this proce-

dure is a cheap way to resolve the problem of oblivious routing. Moreover, this scheme does

not incur any increase of communication latency nor any increase of protocol complexity.

In conjunction with fault detection, the messages are effectively managed to stay away

from a troubled spot, whether it is caused by temporary congestion or a faulty part.

4.3.5 Circuit Implementation

Figure 4-14 shows a circuit implementation of priority comparison function. Note that a

randomly generated bit is used to determine an output only when the two priority inputs

are even. This, in effect, serves as stochastic path selection. Some of the results of SPICE

simulations are found in Appendix A.

4.4 Areas for Improvement

1. Retransmission Policy

When a message is blocked in a router, checksum and status information are sent back

to the source node. The checksum data can show whether the path that the message

traversed was erroneous or not. The status information can give some information as

to how congested the network was.

If any source node is not allowed to send messages to other nodes other than the

destination as an intermediate node in a multihop scheme, the source node has two

choices in retransmitting a message. One is to wait for a while and retransmit the
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Two priority inputs are compared using a double-feedback-biasing differential am-
plifier whose output level matches the trip point of the output inverter. When in
a draw, the random bit is used to decide the output by a parallel driver properly
sized for correct operations.

Figure 4-14: Priority Comparator among Maximal Fanout

message. The other is to retransmit it as soon as possible. This policy is highly

dependent on applications, but we might want some support in the network to estimate

waiting time in order to improve overall performance, since in the multithreaded

architecture, scheduled waiting time is not a penalty at all.

2. Synchronization Support

Synchronization variable access can severely degrade network performance. Therefore,

software combining or some measures to reduce hot spots is indispensable in MINs.

One hardware method is wired barrier synchronization scheme, which has a separate

network used only for barrier synchronization to achieve low overhead. The drawbacks

of this scheme are that the synchronization pattern has to be predicted at compile

time and that the bus-based wired-NOR barrier line inherently does not scale with

the number of processors.

3. Performance Monitoring

From the standpoint of software development, it would be beneficial to have perfor-

mance monitoring and debug support engineered directly into the hardware.
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4.5 Summary

In this chapter, METROSC implementation is described. With low communication latency

and fault-tolerant provisions, the chip will achieve substantial performance gain. However,

building a large crossbar switch is still a challenge limited by electrical constraints. The

partial solution17 to this problem at this moment is a hierarchical network construction

presented in Chapter 3.

70Optical interconnect seems to be a promising technology to build a large crossbar switch.
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Chapter 5

Design Verification and Testing

The chip design was done in register-transfer-level (RTL) descriptions in an HDL called

Transit Canonical Form (TCF) [32] to make the design specifications independent from any

HDL tools. This TCF descriptions were transformed into Verilog HDL descriptions and

used in the simulation and synthesis. In this chapter, design validation of the netlists and

testing of the chip are discussed.

5.1 Design Validation

As chip size scales up, the challenge of capturing large amounts of functionality and getting it

correct becomes overwhelming. It is not possible to know if the behavioral code is completely

validated. One way to get around this problem is to construct a testbench similar to the

real system as accurately as possible and to test all possible test combinations. The closer

the testbench looks to the real system, the better chance we have to achieve correct designs.

A well-constructed test provides informative log messages if sophisticated self-checking

codes are incorporated. It is important to automate some checking process, anticipating

many iterations of running the same test vectors.

5.1.1 Simulation Model

Different simulation models are used depending on the level at which each simulation tries

to verify. We move up the simulation hierarchy as modules1 become verified at lower

1A module here refers to an entity which has distinct functionality from others and whose layout is usually
done in the proximity.
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levels. For instance, at the lowest submodule level, SPICE simulation is done for timing

and functional verification. Then, at the module level, interface signals are fed into the

module by a waveform editor and verified by observing waveforms of output signals. For

the modules that contain FSMs, it is also necessary to monitor state encoding signals.

Finally, at the chip level, all the modules are connected and the input signals are fed by a

pseudo-system model such as illustrated in Figure 5-1. This model is written in Verilog HDL

and C. For the purpose of functional simulations, the special modules that are designed at

the transistor level have to be described in RTL. These models are verified prior to the chip

simulation.

System Simulation Model

The system simulation model mimics a network by connecting the backward ports to the

forward ports of the subsequent router to verify the functionality. Figure 5-1 illustrates the

system simulation model. The processing node contains the Intel 80960 hardware verifica-

tion processor model which executes commands in the Logic Automation Processor Control

Language (PCL) and represents the processor within the simulated design by simulating

bus cycles. The processing node model is depicted in Figure 5-2. The interface of the node

processor with the network is handled by Net-In [34] and Net-Out [33] which are connected

through the pipelined internal 64-bit bus to the processor.

The system-simulation testbench is constructed in the Verilog environment that consists

mainly of three parts: the initialization and configuration, the monitoring and error check-

ing, and the simulation control. The scenarios which the simulation follows are written in

PCL, and the codes generate message traffic through the constructed network. By using

PCL, the processor can configure Net-In and Net-Out, inject or abort network operations,

and check the status of the ongoing or recently completed network operations. Depending

on the contents of the simulation, different system simulation models and configuration files

are used to verify the design.

5.1.2 Test Vectors

In the system simulation, test vectors to the router are generated by PCL codes in the

pseudo-system simulation model. These test vectors should be as rigorous as possible.

Arbitrary combinations of test vectors are necessary to shake off bugs in the design, since
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In this example, two routers are cascaded resulting in a 16-bit datapath. A dual
scan path scheme is employed. A four-stage network is mimicked by this model.
Note that the directions of datapaths are for initial data injections and can be
independently reversed by TURN.

Figure 5-1: System Simulation Model

STRAM stands for a synchronously timed SRAM. Net-In and Net-Out are network
interface chips designed by Andre DeHon.

Figure 5-2: Processing Element Model
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it is often the case that bugs come in from designers' blind spots.

Simulation invocation is automated so that only newly changed modules are compiled

and simulation is invoked properly. This also helps improve the verification productivity.

Whenever a change to a module is made, a set of regression tests are run to verify correctness.

The checking tools are incorporated in the simulator in PCL codes so that tedious

error checking of the simulation results can be avoided2. The output of the checking and

simulation progress reports are stored in a log file in a format which computer programs

can easily parse for automated verification. Only crucial parts of the results are condensed

to a note file that will give minimal information about errors and pointers to a log file.

5.2 Testing

5.2.1 Manufacturing Test

Manufacturing test vectors can be derived from the simulation results, but they have to

be condensed because of the limitation of tester requirements. Ideally, we like to activate

the circuit 100 percent and to propagate the results out to see if all circuitry works. To

generate effective test vectors, the controllability and observability of the circuit have to be

improved.

5.2.2 Circuitry Facilitating Chip-Testing

Since the advent of ASIC, the desire for reliable VLSIs and rapid time-to-market has forced

the test problem earlier in the design cycle. It is becoming increasingly important to think

how to test a chip and to design in testability early in the design cycle. For instance, to make

simulation effective, we have to pay attention to the observability of the circuit. Otherwise,

the test vectors may easily exceed the practical limit of simulation time, or, even worse, it

would become impossible to test the whole circuit.

The controllability and observability of the circuit are improved by scan-based TAP

interface. For instance, to minimize the test vectors of sequential circuits, the initial states

of large FSMs can be set by the scan interface. After some testing of combinational circuits,

the state encoding can be read out from TAP to strengthen the observability of the circuits.

2Since launched messages are received by the same node, the checking is trivial and easily automated.
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When a full serial-scan is impractical, even a partial scan can be very helpful in testing.

Extra circuits required for scanning can be placed selectively so as not to affect critical

paths.

5.3 Future Improvements and Observations

The allocate block is not scalable for a large number of inputs to a crosspoint array. One

way to cope with an increase of inputs is through partitioning. The allocate operation can

be sped up by partitioning and using a tournament-style structure. In the crosspoint array,

the delay of row direction is overcome by proper repeaters, and the column is divided in the

same manner as the allocate block. Then, the output of the proper division of the column

is selected by the result of the tournament.

If a process that enables the cells to be covered with routing is combined with a good

automatic placement tool, very high density of layout can be achieved. With a library in

which the size of the transistors is parameterized and some generator support for regular-

array structures, such as datapath, is available, the density can rival that of a full-custom

design.

As the cycle time continues to be reduced, we will face tester limitations, and on-chip

test circuitry such as Built-In Self Test (BIST) will become necessary to match the speed of

the chip. Also, for the testing at the wafer level, generating the test vectors on-chip avoids

the difficult problem of transmitting synchronized very-high-speed signals through probe

impedance discontinuities.

At the system level, BIST, after power-on reset, would also be helpful to determine

component failures in a large system. By obtaining the results by way of TAP or other

dedicated hardware, the system can change its configuration promptly before the system

starts operation.

When a complicated ASIC is developed, to fully test a chip in itself is a challenge.

Incorporating Automatic Test Pattern Generation (ATPG) is helpful in effectively reduc-

ing manufacturing-test-vector-production time. A rigorous test-vector-generation program

that can test all combinations of test vectors automatically would be a powerful aide for

simulations.

For the system simulations, including "demon" models that could be programmed to
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pseudo-randomly generate events, such as the message launch of a processing node or the

injection of errors, would help to find bugs in the designs.

We used self-checking codes at the chip boundary, but code assertions at the module

boundaries can give more precise checking capability. The usage of code assertions, which

is a technique that operating system vendors, compiler writers and those who designed

large complex systems have found useful in the past, exploits the fact that the designers

can capture the specific knowledge they have about some boundary conditions inside the

module when they are writing RTL codes. In the simulations, these boundary conditions are

checked automatically and an alerting message will be printed out when they are violated,

such as multiple bus drivers, protocol violations, and invalid states. These codes are kept

to a minimum and cover design aspects not easily checked by comparing state information.

Coverage tools can also be deployed in the validation to know which sections of the

overall design are being very well tested and which ones need extra coverage. This allows

us to steer our efforts toward the places that need improvements of test vectors, which is a

much more efficient way to use resources.
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Chapter 6

Conclusions

This thesis presented a practical implementation for scalable multiprocessor-interconnect

component designs. Issues of our concerns which are involved in developing scalable pro-

cessors are low communication latency and fault tolerance. Since our approach seeks for

a low-overhead unreliable protocol, the chip under development intends to offer a minimal

set of functionality tuned for low communication latency and fault tolerance.

We find a full containment of network errors in hardware can lead to increased commu-

nication latency. In the past, the ARPA net was supposed to guarantee reliable message

delivery without TCP/IP by the network hardware, but it turned out to be expensive and

error prone. The degree of reliable message-delivery support of the hardware has to be

carefully evaluated in a given technology.

When technology is rapidly advancing, delaying designs to seek for complexity is not a

good idea. Simple, modular design is best, if possible at all. Using efforts only where crucial

designs are needed is likely to yield cost-effective designs. Ideally, full-custom designs can

take full advantage of what the technology offers at any point in time. However, the design

complexity it will impose on designers is increasingly demanding. As systems becomes more

complicated and a chip size gets larger, the productivity of the chip designers has to go up

accordingly. For instance, behavioral synthesis of datapaths and regular arrays would be

promising to improve productivity.

Regular structures, such as datapaths, and crucial parts are suited for full-custom de-

signs, whereas the random logic of control signals can be cost-effectively implemented in

cell-based designs. Some CAD tools start to support optimization of gate sizing of cell-

80



based designs for high performance. Thus, hybrid designs exploiting available tools and a

finely-tuned parameterized library to improve productivity and performance will be proven

to be a key methodology of VLSI design.
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Appendix A

Datasheet

A.1 Signalling

The chip-signal decomposition of METROSC is tabulated in Table A.1. The random output

signal is used in router width cascading. In order for all cascaded routers to choose the

same output port among equivalent paths, one of the random output signals is shared by

the cascaded routers.

A.2 Encoding

The encodings of the control words of METROSC are tabulated in Table A.2. The encodings

are such that the detection of ROUTE and TURN is fast, since these control words initiate

the critical paths of METROSC.

A.3 Layout Examples

Some of the circuits presented in Chapter 4 in this thesis are shown in Figure A-1, Figure A-

2 and Figure A-3. Figure A-4 depicts the minimum-sized edge-triggered static D-FF in the

standard-cell library developed for METROSC.

The standard-cell library was developed in CMos26 process, which has three metal layers

and one polysilicon layer. As a convention, input signals of the library cells are in poly layer

and output signals are in metal-2. Power and ground are supplied by metal-1. Each row of

standard cells has 12p wide metal-1 Vdd at the top and Gnd at the bottom. We followed a

82



Signals Number of Pins Usage
Test Access Port 4 x 2 system configuration

TMS, TDI, TDO, TCK and testing
Forward Port (8 + 3) x 4 link connection

CB, BCBO, BCB1, D<7:0>

Backward Port (8 + 4) x 4 link connection
IN-USE, CB, BCBO, BCB1, D<7:0>

Random Output 1 equivalence path selection
Random Input 1 equivalence path selection
CLK 1 clock input
Reset 1 reset input

Table A.1: Pin Summary

Logical Port Bits
Signal control bit = B data = <7:0>

IDLE/DROP 0 -00
ROUTE 1 -rlr 0

TURN 0 -11

STATUS 1 inuse<3:0>
CHECKO 1 checksum< 15:8>
CH ECK1 1 checksum< 7:0>

DATAIDLE 0 -10
DATA 1

Table A.2: Control Word Encodings
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Signals A through D come from the allocate block to open and close the connections.
Signals AD, ADN through DD, DDN are datapath of both polarities. As the number
of inputs increases, the cascoded version performs better.

Figure A-1: Crosspoint Differential Receiver

convention that metal-1 for horizontal wiring and metal-2 for vertical wiring.

A.4 HSPICE Simulation Results

Some of the simulation results of the priority comparator depicted in Figure 4-14 in Chap-

ter 4 is shown in Figure A-5. Only a random bit input RND, an intermediate signal TRIP,

and an output signal Y are shown for clarity. Note that only in the case of tie where the

input priorities are equal does the signal TRIP result in staying in half Vdd, and a random

bit affects the output.
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Signals A through D come from the forward ports that are requesting the same
backward port. The other signals are used for gating logics incorporated for fast
operation. The fixed priority is applied to these requests and the winner gets a
grant signal. The pull-down transistors are properly sized for correct operations.

Figure A-2: Allocate logic (high speed)
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The gating logics are not incorporated in this version, which yields small layout
area and low power dissipation.

Figure A-3: Allocate logic (low power)
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Figure A-4: D Filp Flop

Figure A-5: HSPICE Simulation Results of Priority Comparator
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