6 research outputs found

    From Monolithic Systems to Microservices: An Assessment Framework

    Get PDF
    Context. Re-architecting monolithic systems with Microservices-based architecture is a common trend. Various companies are migrating to Microservices for different reasons. However, making such an important decision like re-architecting an entire system must be based on real facts and not only on gut feelings. Objective. The goal of this work is to propose an evidence-based decision support framework for companies that need to migrate to Microservices, based on the analysis of a set of characteristics and metrics they should collect before re-architecting their monolithic system. Method. We designed this study with a mixed-methods approach combining a Systematic Mapping Study with a survey done in the form of interviews with professionals to derive the assessment framework based on Grounded Theory. Results. We identified a set consisting of information and metrics that companies can use to decide whether to migrate to Microservices or not. The proposed assessment framework, based on the aforementioned metrics, could be useful for companies if they need to migrate to Microservices and do not want to run the risk of failing to consider some important information

    Evaluating Performance of Serverless Virtualization

    Get PDF
    Abstract. The serverless computing has posed new challenges for cloud vendors that are difficult to solve with existing virtualization technologies. Maintaining security, resource isolation, backwards compatibility and scalability is extremely difficult when the platform should be able to deliver native performance. This paper contains a literature review of recently published results related to the performance of virtualization technologies such as KVM and Docker, and further reports a DESMET benchmarking evaluation against KVM and Docker, as well as Firecracker and gVisor, which are being used by Amazon Web Services and Google Cloud in their cloud services. The context for this research is coming from education, where students return their programming assignments into a source code repository system that further triggers automated tests and potentially other tasks against the submitted code. The used environment consists of several software components, such as web server, database and job executor, and thus represents a common architecture in web-based applications. The results of the research show that Docker is still the most performant virtualization technology amongst the selected ones. Additionally, Firecracker and gVisor perform better in some areas than KVM and thus are viable options for single-tenant environments. Lastly, applications that run untrusted code or have otherwise really high security requirements could potentially leverage from using either Firecracker or gVisor

    A Taxonomy of container security on computational clouds: concerns and solutions

    Get PDF
    VirtualizationincloudcomputinghasbeenusedincombinationwithenvironmentsPlatformas a Service (PaaS) and Infrastructure as a Service (IaaS) in order to provide performance, isolation, and scalability. However, containers and virtual machines (VMs) are susceptible to the vulnerabilities present in the core of operating system as well as container solutions, which are a risk for information and service operation of all entities sharing a same host. The safety recommendation guides aims to mitigate the security in this scenario, but the selection of containerization solutions taking into account security requirements is a complex task. Thus, we propose a security taxonomy focused on containers to cloud computing in order to assist the classification and evaluation containers security mechanisms and solutions
    corecore