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Abstract 

The serverless computing has posed new challenges for cloud vendors that are difficult 

to solve with existing virtualization technologies. Maintaining security, resource 

isolation, backwards compatibility and scalability is extremely difficult when the 

platform should be able to deliver native performance. This paper contains a literature 

review of recently published results related to the performance of virtualization 

technologies such as KVM and Docker, and further reports a DESMET benchmarking 

evaluation against KVM and Docker, as well as Firecracker and gVisor, which are being 

used by Amazon Web Services and Google Cloud in their cloud services. 

The context for this research is coming from education, where students return their 

programming assignments into a source code repository system that further triggers 

automated tests and potentially other tasks against the submitted code. The used 

environment consists of several software components, such as web server, database and 

job executor, and thus represents a common architecture in web-based applications. 

The results of the research show that Docker is still the most performant virtualization 

technology amongst the selected ones. Additionally, Firecracker and gVisor perform 

better in some areas than KVM and thus are viable options for single-tenant 

environments. Lastly, applications that run untrusted code or have otherwise really high 

security requirements could potentially leverage from using either Firecracker or gVisor.  
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1. Introduction 

Cloud computing has made virtualization an ordinary thing in software engineering. 

Services are more and more built cloud native, which enables leveraging operational 

features provided by cloud vendors. One of the emerging trends during the past decade 

has been serverless computing. While the term might suggest that there are no servers 

used, its official definition is not well established. Within this paper, the definition by 

Jonas et al. (2019) is used: “for a service to be considered to be serverless, it must scale 

automatically with no need for explicit provisioning, and be billed based on usage”. Some 

of the common serverless services are FaaS (Function as a Service) services such as AWS 

(Amazon Web Services) Lambda  (Amazon Web Services, 2021d), Microsoft Azure 

Functions (Microsoft, 2019) and Google Cloud Functions (Google, 2016). Typically, 

those services allow developers to write the application code in terms of functions that 

are triggered by events, such as HTTP requests, whereas running the code and managing 

the infrastructure is fully done by the cloud provider. While serverless is often used as a 

synonym with the term FaaS, they are not the same thing, and there exists other serverless 

services as well, such as AWS Fargate (Amazon Web Services, 2021c) and AWS 

DynamoDB (Amazon Web Services, 2021a). 

Multitenant cloud computing and serverless computing has brought new requirements to 

virtualization. The first public serverless service (Baldini et al., 2017), AWS Lambda, 

was initially running function workloads on container-per-function basis, in dedicated 

EC2 instances for each customer (Agache et al., 2020). While traditional hypervisor-

based virtual machines (VM) are working as virtual private servers, Agache et al. (2020) 

state that their long boot time and resource overhead is not very efficient and scalable for 

serverless computing, where workloads are often small. They mention also that container-

based solutions are efficient on resources and boot time, but lack in security by default. 

In order to overcome this, AWS developed a new “MicroVM” called Firecracker, which 

they use for serverless services such as AWS Lambda and AWS Fargate (Barr, 2018). 

Google addresses the same issue by extending the security of containers with gVisor 

(Manor, 2018). 

Previous literature, as presented in section 3, contains lots of studies regarding the 

performance and resource utilization of hypervisor-based virtualization and both LXC- 

(Linux container) and Docker container-based virtualization. While it is obvious that in 

most cases container-based virtualization overperforms the heavier hypervisor-based 

virtualization, it is not clear where the virtualization technologies used in serverless 

services, such as AWS Lamda and Google Cloud Functions, stand, when compared to the 

other technologies. Caraza-Harter and Swift (2020) compared Firecracker and gVisor to 

bare metal host, and found out that Firecracker has near-native performance in 

networking, CPU speed, file access and memory management, whereas gVisor seems to 

have significant overhead in memory management and networking. Young, Zhu, Caraza-

Harter Arpaci-Dusseau and Arpaci-Dusseau (2019) compared gVisor runsc runtime for 

Docker containers to the default runc runtime, and concluded that “system calls are 2.2x 

slower, memory allocations are 2.5x slower, large downloads are 2.8x slower and file 

opens are 216x slower” when using runsc instead of runc for Docker containers. 

Within this research, the performance differences between traditional KVM (kernel-based 

virtual machine), Docker containers both with runc (default) and runsc (gVisor) runtimes, 

Firecracker, and bare metal host, were investigated. In order to achieve that, a set of 
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systematic benchmarks were conducted against each virtualization solution, as well as a 

simple end-to-end use case test was done and relevant metrics collected. The end-to-end 

test case was an imitation of a programming course assignment submission environment 

used at the University of Oulu, in which the code is submitted into a pipeline that runs 

automated tasks, such as building the source code and running a set of unit tests against 

it. As the existing literature does not describe the ideal features of a serverless computing 

hardware, the reasoning behind the development of Firecracker provided by Agache et 

al. (2020) was used as a base for evaluation. More specifically, the research questions that 

are addressed in this paper are: 

1. Which virtualization technology is the most performant in terms of 

1. CPU events? 

2. Filesystem I/O? 

3. Network bandwidth and jitter? 

2. Which virtualization technology provides the fastest launch time? 

The context for the research questions is simple single-instance deployment without 

application-level multithreading. The CPU and filesystem performance were measured 

with sysbench benchmarking tool, and networking performance was measured with 

iperf3. Further constraints regarding the benchmarking are presented in section 5. 

Arguably also security and isolation are extremely important for serverless computing, 

but unfortunately the security has been left out of this paper due to time constraints. 

The rest of the paper is organized as follows: section 2 contains related background 

information, section 3 presents a systematic literature review which describes the existing 

scientific knowledge about performance differences between containers and VMs, section 

4 describes the research method, section 5 describes the empirical benchmarking 

evaluation, section 6 presents the results of the benchmarking, section 7 contains an 

analysis of the results, section 8 contains discussion and implications of the research and 

section 9 contains conclusions. 



8 

   

 

2. Background 

The virtualization is a vague term that is frequently used in the domain of software 

engineering and computer science, regardless of the specific area. However, there is 

actually several different kinds of virtualization methods out there, that all work slightly 

differently and solve different problems. This section describes the background and key 

features of the virtualization technologies discussed in this paper, as well as how they are 

used on the industry. 

2.1. Virtual Machine 

According to Denning (2001), the origins of virtual machines (VM) can be traced back to 

1960s, when the first projects around virtualization, such as M44/44X at IBM Yorktown 

Research Center, were started. Denning states, that the term “virtual” was coined from 

the field of optics, where “images in mirrors or at the focal points of lenses can be 

analysed as if the object’s reversed or inverted copy were present”. Since the 1960s, 

virtualization has become a major part of computer science and software engineering, not 

only in academia but also on the industry. 

To the field of computer science, the term “virtual” refers to operating system components 

that simulate machines or devices (Denning, 2001). In practice, the machine needs an 

additional layer of software implemented to support virtualization (Smith & Nair, 2005), 

and it is possible to virtualize only parts of the system instead of full system. Today, there 

exists two different types of virtual machines: process VMs (or application VMs), and 

system VMs. 

Process VMs are created and used solely as a runtime for a single application process 

(Smith & Nair, 2005). While the additional layer of VM brings some overhead to the 

application, one of the key objectives of process VM is to give cross-platform 

compatibility, meaning that programs written for the process VM can be run on top of 

different platforms (Smith & Nair, 2005). The process VMs become popular in early 

1990s when the first implementation of Java was implemented along with Java Virtual 

Machine (JVM) (Binstock, 2015), and these days various languages are run on top of 

process VMs, such as .Net runs on top of Common Language Runtime (CLR)  (Dykstra 

et al., 2020). 

System VMs on the other hand offer a complete environment with guest operating system 

and multiple processes (Smith & Nair, 2005), and requires a hypervisor, which is the 

software layer that implements the required abstraction for system virtualization. 

Hypervisor can be either type-1 hypervisor (see Fig. 1), which is running directly on top 

of a host machine hardware, or type-2 hypervisor, which is running as a software on top 

of host machine operating system (Morabito, Kjällman, & Komu, 2015). Some examples 

of virtual machines are Xen  (The Linux Foundation, 2016), Kernel-based Virtual 

Machine (KVM)  (KVM contributors, 2016) and VMWare ESXi (VMWare Inc, 2021) 

with type 1 hypervisor, and Oracle VM VirtualBox (Oracle, 2021) and VMWare 

Workstation Pro (VMWare Inc, 2020) with type 2 hypervisor. Within this paper, KVM, 

which is built directly into Linux kernel, is used as a case example of VM. 

Virtual machines are often used in modern software development, as practically all of 

cloud-based workloads are run on top of them. Typical use-cases are, for example, private 
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virtual servers such as Digital Ocean Droplets (Digital Ocean, 2021) or AWS EC2 

(Amazon Web Services, 2021b). Further use-cases of VMs are described in section 2.6. 

2.2. Containers 

Control groups (cgroups), that has been a part of Linux kernel since the version 2.6.24, is 

a feature that allows users to run processes and tasks with limited or shared set of 

resources such as memory, CPU and I/O bandwidth (Bellasi, Massari, & Fornaciari, 

2015). Linux container (LXC) is a technology that utilizes cgroups and Linux namespaces 

among other things to provide a “environment as close as possible to a standard Linux 

installation but without the need for a separate kernel” (LXC contributors, 2021). What 

this means is, that whereas virtual machines virtualize the underlying hardware, Linux 

containers virtualize only the operating system. 

According to Boettiger (2015), Docker is a popular open source technology for managing 

and running Linux containers. In addition to be able just run containers, Docker offers a 

platform to share, reuse, version and archive containers (Boettiger, 2015). Docker 

containers can be used in similar manner as virtual machines, but they work slightly 

differently. According to Docker Inc (2021), “a container is a standard unit of software 

that packages up code and all its dependencies so the application runs quickly and reliably 

from one computing environment to another”. The users can build Docker images by 

defining build steps in a file called Dockerfile, and the built image is used by a container 

when it’s running. Figure 1 describes the high-level architecture of Docker Engine and 

type-1 virtual machine for reference. 

 

Figure 1. Docker Engine and type-1 hypervisor virtual machine. 

Docker, CoreOS and some other container industry leaders launched a project called 

Open Container Initiative (OCI) in 2015 in order to come up with an open standard for 

container images and runtimes  (The Linux Foundation, 2021). Docker donated their 

container runtime implementation, called runc, to the OCI as a reference implementation 

of a container runtime (The Linux Foundation, 2021), and that is the default runtime 

containers have when initiated with Docker’s command line tools. Further in this paper, 

when Docker is referred to as virtualization or container technology, it means a container 

that uses runc as a runtime.  
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2.3. Sandboxed containers 

One of the criticized things in Docker containers is their poor security, which is at least 

partially caused by the architecture of sharing the host kernel between containers (Combe, 

Martin, & Di Pietro, 2016; Yasrab, 2018) instead of using a separate guest kernel for each. 

One of the methods to fight this issue is to prohibit direct access from the container to the 

host kernel by introducing an additional layer that acts as a protective proxy between the 

host kernel and the container runtime. One of the technologies that uses this approach is 

gVisor. 

According to Google LLC (2021a), “gVisor is an application kernel for containers that 

provides efficient defense-in-depth anywhere”. Being an open source technology initially 

developed by Google, it has been in use at least in Google App Engine and Google Cloud 

Functions for several years now (Manor, 2018). Whereas default Docker containers are 

traditionally seen as rather unsecure for multitenant cloud, gVisor is at least part of the 

solution Google has come up with. 

Since gVisor implements the OCI model, Docker users can switch from the default runc 

runtime engine to gVisor runtime engine, called runsc (Young et al., 2019). Similarly as 

runc, runsc is implemented in Go language, and it contains several important components; 

Sentry, which receives the system calls from application, and Gofer, which “is a standard 

host process which is started with each container and communicates with the Sentry via 

the 9P protocol over a socket or shared memory channel” (Google LLC, 2021). This 

architecture makes it more secure than the default Docker runc runtime. The architecture 

of gVisor is presented in Figure 2. 

 

Figure 2. Architecture of gVisor. 

Further in this paper, when gVisor is referred to as virtualization or container technology, 

it means a container that uses runsc as a runtime. 
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2.4. Firecracker 

Firecracker is an open source Virtual Machine Monitor (VMM) developed by AWS, 

which uses KVM to provision lightweight VMs, called microVMs (Agache et al., 2020). 

According to Agache et al. (2020), Firecracker was developed for serverless cloud as a 

replacement of their first production implementation for AWS Lambda, which used per-

customer EC2 instances to run functions in containers. The requirements that serverless 

computing and especially function workloads pose are quite extensive: 1) it must be safe 

in multi-tenant cloud, which essentially means that it must be safe to run workloads from 

different customers on the same hardware, 2) it must be possible to oversubscribe the 

resources of the host machine to maximize the ability to use resources efficiently, which 

means that the guest VMs must come with minimal overhead, and launching and cleaning 

them up must be fast, 3) it must be able to run workloads in native performance and 4) it 

must be able to support arbitrary Linux  libraries and binaries  (Agache et al., 2020). From 

the two available options, existing VMs and containers, neither were able to fulfil the 

requirements properly. Container-based solution with enhanced security, such as gVisor, 

were relatively fast and safe, but they were unable to support arbitrary Linux libraries and 

binaries. Existing VMs on the other hand were safe and able to support code in backward 

compatible manner, but they were either too immature or heavy for this kind of use-case  

(Agache et al., 2020). Thus, AWS started the development of Firecracker by re-using 

some of the components of Google’s Chrome OS VMM (Agache et al., 2020). Firecracker 

has been used for several years in serverless services such as AWS Lambda and AWS 

Fargate, and according to Agache et al. (2020), it offers launch times even down to 125ms, 

low overhead as single microVM consumes only 5MB of memory, and enhanced security. 

The security of Firecracker is based on simple guest model, which means that the guest 

machines have access only to limited device model which reduces attack surface, and “the 

Firecracker process is jailed using cgroups and seccomp BPF (SECure COMPuting with 

filters; Berkley Packet Filter), and has access to a small, tightly controlled list of system 

calls” (Barr, 2018). Seccomp filtering allows reducing kernel call surface of userland 

applications by using a filter program language, that can be used to define a set of rules 

for each specific system call (The kernel development community, 2020). For example, 

it would be possible to define a rule that causes the kernel to kill the thread or even the 

entire process making a forbidden system call to the kernel without executing the call. 

 

Figure 3. High-level architecture of Firecracker. 
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This allows AWS to run workloads from multiple customers in the same host machine 

with sufficient security, which is vital for multi-tenant cloud. 

Firecracker VMM itself contains several components, such as a metadata service, 

networking and filesystem storage, rate limiting for fine grained resource management, 

and RESTful API that can be used to control the guest machines and, for example, rate 

limiting. The high-level architecture of Firecracker as a virtual machine is presented in 

Figure 3. 

2.5. Serverless 

The “serverless” as a term seems still to be a bit vague term on the industry. While there 

has been various suggestions for the definition of the term, generally accepted consensus 

is still missing. McGrath and Brenner (2017) define serverless computing as “a partial 

realization of an event-driven ideal, in which applications are defined by actions and the 

events that trigger them”, and Adzic and Chatley (2017) define serverless as “a new 

generation of platform-as-a-service offerings where the infrastructure provider takes 

responsibility for receiving client requests and responding to them, capacity planning, 

task scheduling and operational monitoring”. However, in this paper the definition is not 

limited to Function-as-a-Service computing, and hence a definition by Jonas et al. (2019) 

is used: in order to be a serverless service, it “must scale automatically with no need for 

explicit provisioning, and be billed based on usage”. A few of the services from different 

cloud vendors that fall under that definition are: 

• Amazon Web Services 

o AWS Lambda 

o AWS Fargate 

o AWS DynamoDB 

• Google Cloud 

o Google Cloud Functions 

o Google App Engine 

• Microsoft Azure 

o Azure Functions 

o Azure App Service 

 Serverless computing brings new challenges to the cloud. As the definition explains, the 

vendors should be able to monitor the resources carefully in order to be able to bill based 

on usage, as well as enable automatic scaling for the service. In many services, such as 

FaaS, the deployed code is often run in ad-hoc manner and shut down when not needed. 

Yet still, cloud vendors that provide serverless services are responsible for providing 

efficient, isolated and secure environments for their customers. According to Agache et 

al. (2020), to address this kind of need for dynamic and multitenant environment, the 

cloud vendors have to choose from two: either use traditional hypervisor-based 

virtualization with heavy overhead, or rely on containerized runtime environment with 

limited support for system calls, which might break support for many applications. 

AWS came up with a solution to this problem by developing Firecracker, a new kind of 

virtual machine that does not contain as much overhead as traditional VM does, but still 

provides strong isolation and security for the host. Before Firecracker AWS was running 

AWS Lambda functions in Docker containers, and each container was deployed to an 

EC2 instance that was dedicated to the customer. These days their AWS Lambda service 
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runs on top of EC2 bare metal instances, where one Firecracker microVM instance is 

allocated for each function (Agache et al., 2020). Since Google does not reveal their 

serverless platform architecture as openly as AWS does, the public knows only that many 

of their serverless services, such as Google Cloud Functions and Google App Engine uses 

gVisor as a runtime environment (Manor, 2018). 

2.6. Virtualization in modern software development  

Modern software development relies extensively on virtualization technologies. 

Virtualization, both lightweight and heavy, can be a part of development workflow all the 

way from developer’s machine to the production system. For example, during 

development on a local machine, the developers can run external dependencies and 

components from pre-built VM or Docker images instead of installing it all individually 

(Boettiger, 2015), or they can launch multiple VMs to replicate a distributed production 

system locally (Duenas, Ruiz, Cuadrado, & Garcia, 2009). After the code changes have 

been committed, a set of automated tasks can be done to them with tools such as Jenkins 

(Lwakatare et al., 2019), which is also capable of running tasks in Docker containers (CD 

Foundation, 2020). When running services in production, it is common to rely on cloud 

service providers as their services are flexible, available on-demand, scalable and for 

many cases, affordable (Armbrust et al., 2010).  

According to Kang, Le and Tao (2016), Development Operations (DevOps) “is a set of 

techniques for streamlining and integrating the software development process with the 

deployment and operations of said software”. Practically it means wiring up the required 

pieces in the software development and operations in a way, that communication between 

the two is as easy as possible, and testing, deploying and maintenance of software is as 

automated as possible. Lwakatare et al. (2019) also point out that one of the objectives of 

DevOps is to enable rapid releases which makes it easier to gain feedback from users 

faster. 

Whether to use, and what kind of virtualization to use in local development environment 

or in production is one of the DevOps decisions. According to Ebert, Gallardo, Hernantes 

and Serrano (2016), “virtualization technologies focus on security and multitenancy, 

whereas in application development, environmental consistency is the main goal”. 

Moreover, they point out that usage of virtual machines can lead into compatibility issues 

when migrating between cloud vendors, while containers are practically cloud platform 

agnostic. Hence, it is important to understand the consequences of choices related to 

virtualization. 
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3. Literature review 

In order to understand the current state of the art in research of performance differences 

between different virtualization technologies, a simplified version of systematic literature 

review (Kitchenham & Charters, 2007) was conducted. In the following sections the 

methodology and findings of the systematic literature review are reported. 

3.1. Review methods 

The method of the conducted literature review is based on the systematic literature review 

method introduced by Kitchenham and Charters (2007), with a few exceptions. The 

literature review helps us to understand the current state of art in research of computer 

virtualization performance and gives us a chance to reflect our own empirical research 

results against previous research. 

The following subsections cover the steps, that are 1) Data sources and strategy, 2) Study 

selection, 3) Data extraction and 4) Data synthesis. Study quality assessment has been left 

out of this study due to the fact that this literature review was not conducted as a primary 

study. 

3.1.1. Data sources and strategy 

The data source used in this study was the Scopus database. The objective of the literature 

review was to find out how the container and hypervisor-based virtualization technologies 

have performed in previous studies. In order to limit the search into relevant studies, a set 

of inclusion criteria was developed in iterations based on research results. The initial 

search string was: 

”performance” AND (”evaluation” OR ”comparison” OR “assessment”) 

AND (“virtual machine” OR “kernel virtual machine” OR “kvm” OR “micro 

virtual machine” OR “microvm” OR “firecracker”) AND (“container” OR 

“lxc” OR “docker” OR “gvisor”) 

The search string requires that the result contains word “performance”, as well as 

“evaluation” or a synonym for it, and a word referencing to VM or microVM, and 

container technology. With the initial search string, the results consisted of 157 papers 

when searching from title, abstract and keywords. After applying the inclusion criteria to 

the search string, the final search string was: 

TITLE-ABS-KEY ( "performance" AND ( "evaluation" OR "comparison" OR 

"assessment" ) AND ( "virtual machine" OR "kernel virtual machine" OR "kvm" 

OR "micro virtual machine" OR "microvm" OR "firecracker" ) AND ( 

"container" OR "lxc" OR "docker" OR "gvisor" ) ) AND ( LIMIT-TO ( 

PUBSTAGE , "final" ) ) AND ( LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO 

( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( 

PUBYEAR , 2017 ) OR LIMIT-TO ( PUBYEAR , 2016 ) OR LIMIT-TO ( 

PUBYEAR , 2015 ) ) AND ( LIMIT-TO ( DOCTYPE , "cp" ) OR LIMIT-TO ( 

DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( SUBJAREA , "COMP" ) ) AND ( 

LIMIT-TO ( LANGUAGE , "English" ) ) 
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The final inclusion criteria for the search string is as follows: 

• Study published between 2015 and 2020 

• Subject area is either computer science or software engineering 

• Document type is either conference paper or article 

• Language is English 

• Publication stage is final 

As the technologies involved in the study are quickly evolving and the purpose of the 

study is not to compare the results of literature over long period of time but rather 

understand how the technologies perform today, papers older than five years were not 

considered to be relevant. The count of results from the query was 123 articles, which 

were exported for further selection. 

3.1.2. Study selection 

Within the study selection phase, another set of inclusion criteria was applied to the set 

of articles exported from Scopus. The study selection was conducted manually, and 

contained three phases: 

• Inclusion based on title 

• Inclusion based on abstract 

• Inclusion based on availability 

Within the first phase, the authors made judgements based on article titles whether or not 

they are relevant to this particular literature review. 67 papers were excluded based on 

the title, and after conducting similar process for abstracts, another 16 papers were 

excluded. Thus, the set of accepted articles contained 50 papers, of which 44 were fully 

available for the authors. Finally, there was 44 articles that went through the final steps 

of the review, which are data extraction and data synthesis.  

3.1.3. Data extraction 

The data extraction was a manual process where each paper was examined by the author 

and relevant information was extracted into pre-defined data form. The exported data was 

then used to in data synthesis, which in turn reveals how the virtualization technologies 

have performed in previous studies. 

Due to resource constraints and the fact that the literature review conducted here is not a 

primary study, no cross-checking was done. Table 1 presents an example of data 

extraction form. 

3.1.4. Data synthesis 

The data synthesis was conducted manually, after the data extraction. During the 

synthesis, the extracted data was combined and systematically reviewed. This allows 

finding similarities and anomalies within the existing research. The findings were further 

labelled and categorized in order to be able to find relevant comparison points for 
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reporting purposes, as well as to find suitable tooling for the empirical part of this 

research.  

Table 1. Sample from data extraction forms. 

Data item Value Notes 

Study ID S1  

Authors Shirinbab, S., Lundberg, L., Casalicchio, E.  

Year 2020  

Title Performance evaluation of containers and virtual 

machines when running Cassandra workload 

concurrently 

 

Data extractor Perttu Kärnä  

Date of data extraction 12.10.2020  

Context Databases, concurrent workload  

Domain Telecommunication (Ericsson)  

Research method Experimental research Assumed, not 

explicitly 

mentioned 

Findings Docker has near native performance and outperforms 

VM. Security is better in VM, as Docker containers 

share the underlying kernel and thus a trigger on single 

bug in the kernel will impact all containers. 

 

 

The data synthesis revealed over 10 different candidates for performance evaluation 

purposes, based on which the tools used in the empirical section of this research were 

selected. The results of the data synthesis are documented in section 3.3, and the tools 

used in the empirical part of this research are presented in section 5 and Table 4. 

3.2. Included and excluded studies 

From the original set of 123 articles, 44 were selected to the literature review. The 

inclusion was done based on inclusion criteria (see section 3.1.2), and all included studies 

are both used in the results and presented in references. 

3.3. Results 

The results of the literature review were categorized into several different categories, 

which are presented in the following subsections. 

3.3.1. File I/O 

Based on the results, the existing literature contains several studies that are focusing 

partially or fully into databases, big data and disk I/O, all of which are now presented 

under the same category for the sake of simplicity. Shirinbab, Lundberg and Casalicchio 

(2018; 2020) studied the performance of containerized and virtualized Cassandra 

workloads, and concluded that containerized solutions consume less resources than fully 
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virtualized solutions, and perform nearly as good as native solutions. Seybold, Hauser, 

Eisenhart, Volpert and Domaschka (2019) concluded that host filesystem outperforms 

container filesystems, and that running databases in containers on top of VM results in 

significant overhead. 

In the domain of big data applications, Chung and Nah (2017), Jlassi and Martineau 

(2016), and Zhang et al. (2018) reported containers in general perform better under big 

data workloads when compared to virtual machines, albeit Chung and Nah (2017) note 

that Xen -based server outperforms containers for write-bound applications where block 

size is 128MB or 64MB. Bhimani, Yang, Leeser and Mi (2017) claims that containers 

suit map and calculation intensive applications, whereas they do not perform well under 

shuffle intensive Spark applications. Ruan, Huang, Wu and Jin (2016) claim that system 

containers suit I/O-bound applications better, and that additional layer of virtual machine 

can “result in severe disk I/O performance degradation up to 42,7%”. Morabito (2015) 

state that Docker containers beat LXC and KVM in disk I/O, and that KVM in general 

performs worse than the other two in disk I/O. 

3.3.2. Networking 

In the area of networking, different virtualization methods have been studied under 

various applications. For Network Function Virtualization (NFV) usage, containers beat 

unikernels in memory usage, CPU usage and image size (Behravesh, Coronado, & 

Riggio, 2019), and VMs in memory consumption, throughput and provision time (Gedia 

& Perigo, 2018). Eiras, Couto and Rubinstein (2017) suggest that containers are up to two 

times faster than KVM for NFV, whereas Bonafiglia, Cerrato, Ciaccia, Nemirovsky and 

Risso (2015) state that Docker containers are unsuitable for “VNFs (Virtualized Network 

Functions) implemented as callbacks to be implemented in the kernel”. 

While Felter, Ferreira, Rajamony and Rubio (2015), Ramalho and Neto (2016), and Ruan 

et al. (2016) state that containers perform better in network I/O than hypervisor-based 

VMs, Felter et al. (2015) point out that Docker NAT introduces significant overhead that 

can be avoided with host networking. Ramalho and Neto (2016) made a note that both 

container-based and hypervisor-based virtualization perform poorly on TCP/UDP 

request/response benchmark. Chang et al. (2018) ran some experiments in the domain of 

5G networks, and state that virtualization of Evolved Packet Core is possible especially 

with Docker “because of low virtualization overhead”. Weerasinghe, Abel, Hagleitner 

and Herkersdorf (2016) studied the suitability of virtualization technologies for Field 

Programmable Gate Arrays (FPGAs), and while they found out that disaggregated FPGA 

outperforms everything else on the table, containers are more performant than VMs and 

not far behind bare metal. 

3.3.3. High Performance Computing 

Beserra et al. (2015), Beserra et al. (2017), Kovács (2017), and Sande Veiga et al. (2019) 

conclude all that containers are more suitable for High Performance Computing (HPC) 

than VMs. Chung, Nguyen, Nguyen-Huynh, Thong and Thoai (2017) confirm similar 

results by stating that for VM it takes 1,6 times longer than for Docker container to run 

their HPC simulations. Beserra, Moreno, Endo and Barreto (2017) state that containers 

suit I/O-bound HPC applications better than KVM, and that the overhead of VM grows 

when the number of instances scale up. Zhang, Lu and Panda (2016) claim that 
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“container-based solutions can deliver better performance than the hypervisor-based 

solution (VM-PT and VM-SR-IOV) overall”, even if their study shows that Docker-based 

solution has up to 9% of overhead to the native solution for HPC applications. Shirinbab, 

Lundberg and Casalicchio (2020) argue that “increasing the level of multitasking 

amplifies the overhead of containers”, and Abuabdo and Al-Sharif (2019) point out that 

there is no point in using threading for 1-CPU virtual machines. 

3.3.4. Cloud computing and auto-scaling 

In terms of generic cloud computing, several studies (Chae, Lee, & Lee, 2019; Felter et 

al., 2015; Jaikar, Shah, Bae, & Noh, 2016; Lingayat, Badre, & Gupta, 2018; Maliszewski 

et al., 2018; Poojara, Ghule, Birje, & Dharwadkar, 2018; Potdar, Narayan, Kengond, & 

Mulla, 2020; Xie, Wang, & Wang, 2018) show that container technologies (Docker or 

LXC) beat hypervisor-based virtualization in resource usage and performance. Joy (2015) 

found out that containers in Kubernetes cluster scale up 22 times faster than virtual 

machines when using AWS EC2 Auto Scaling. Also Chae et al. (2019) and Khalid, Ismail 

and Mydin (2017) made a conclusion that containers boot up faster than VMs. Abdullah, 

Iqbal and Bukhari (2019) found out that “the number of requests rejected during the auto-

scaling of multi-tier application deployed on containers is significantly less than using 

VMs”. Beserra, Moreno, Endo and Barreto (2017) state that the overhead of hypervisor-

based virtualization grows significantly when scaling up instances. Opposite to that, 

Chung and Nah (2017) argue interestingly that increasing the number of nodes in Xen-

based cluster for big data processing has a positive effect, whereas for Docker it has 

negative effect due to increased need for resource management and scheduling in time-

sharing environment. 

Ruan et al. (2016) evaluate the performance of cloud services for containers (Google 

Container Engine, renamed to Google Kubernetes Engine later, and Amazon Elastic 

Container Service), and conclude that the additional layer of VM can “result in severe 

disk I/O performance degradation up to 42,7%, and network latency up to 233%”. Naik 

(2016) did some performance evaluation for distributed systems and found out that 

container-based distributed system Docker Swarm consumed less resources than type-2 

hypervisor VM -based distributed system, and has built-in load balancing and 

networking. Salah, Zemerly, Yeun, Al-Qutayri and Al-Hammadi (2017) tested cloud-

based services and discovered that “VM-based web services outperform container-based 

web services with respect to all performance metrics”, although they mention that the 

container service they use, Amazon Elastic Container Service, runs containers on top of 

VMs. Barik, Lenka, Rao and Ghose (2017) found out also that containers beat VMs with 

minimal difference, although their weakness is security, which is not covered in this 

paper. 

3.3.5. Other results 

Existing literature contains also a few studies that compare unikernels and containers. 

Mavridis and Karatza (2019b) found out that containers have higher request rate than 

unikernels in most cases, whereas they state that “for latency, MirageOs, IncludeOS and 

Rumprun showed significantly lower and more stable values compared to containers”. 

Behraves et al. (2019) and Goethals, Sebrechts, Atrey, Volckaert and De Turk (2018) 

argue that containers beat unikernels under heavy workload that does not contain lots of 
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context switching, since unikernels suit better applications that contain lots of context 

switching. 

Lin, Pai and Chou (2018) compared containers and VMs when using Tensorflow for 

image classification and concluded that without network and filesystem I/O 

virtualization, even when using container on top of VM, no significant overhead was 

observed. However, they state that for distributed usage of Tensorflow, container on top 

of VM can render over 35% throughput degradation. 

Morabito (2015) found out that power consumption seems to be quite similar between all 

virtualization technologies, except for networking, which causes hypervisor-based 

virtualization to consume significantly more energy than containers. Mavridis and 

Karatza (2019a) found out that between hypervisor-based virtualizations, “Xen 

hypervisor is more energy demanding compared to KVM” under stress. 
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4. Research method 

The selected empirical research method for this study is DESMET (Kitchenham, 

Linkman, & Law, 1997), which provides a systematic framework for evaluating software 

engineering tools and methods. The chosen DESMET evaluation method for this 

particular study was benchmarking, which supports the research problem well as the 

objective was to conduct systematic benchmarks against the candidates. The research 

method is described in detail in the following sections.  

4.1. Selecting an appropriate evaluation method 

According to Kitchenham et al. (1997), conducting a research with the DESMET method 

starts by selecting an appropriate evaluation method. DESMET describes quantitative 

evaluation methods, case studies and surveys, and qualitative evaluation methods, 

qualitative experiment, qualitative case study and qualitative survey. In addition to those 

methods, they mention two hybrid evaluation methods: collated expert opinion and 

benchmarking. In order to find proper evaluation method for the case in research, 

Kitchenham et al. (1997) propose that the following items should be considered: 

1. The evaluation context. 

2. The nature of the expected impact of using the method/tool. 

3. The nature of the object (i.e. method/tool/generic method) to be evaluated. 

4. The scope of impact of the method/tool. 

5. The maturity of the method/tool. 

6. The learning curve associated with the method/tool. 

7. The measurement capability of the organisation undertaking the evaluation. 

The evaluation context in the case of this research was generic, as this work was not done 

for any organization, but rather for anyone interested. When it comes to the nature of the 

expected impact of using the tool(s), the results are directly measurable and thus it has 

quantitative impact. Since the objects under evaluation are tools, and for conducting the 

evaluation no user intervention was needed, benchmarking evaluation was the best fit. 

The scope of the impact of the tool affects at module level, and single process stage at a 

time, and thus the effects can be measured as an output of the stage. The tools under the 

evaluation are widely used on the industry, and since the tools do not require user 

intervention in the evaluation, the learning curve was not relevant. Lastly, the 

measurement capability of the organization undertaking the evaluation was not relevant, 

as the objective was not to make direct changes to software engineering processes. 

As a summary, the hybrid evaluation model benchmarking was the best fit for this 

purpose. As the original description of DESMET by Kitchenham et al. (1997) do not 

provide guidelines for conducting a benchmarking evaluation, the steps of feature 

analysis are applied into this study, with minimal changes.  

4.2. Feature analysis 

According to Kictchenham et al. (1997), “a feature analysis type of evaluation is an 

attempt to put rationale behind a ‘gut feeling’ for the right product”. It provides a flexible, 

but systematic method for evaluating different kind of software engineering tools or 
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methods. Within this research, the following steps presented by Kitchenham et al. (1997) 

with minimal changes for benchmarking evaluation were applied: 

1. Select a set of candidate method/tools to evaluate. 

2. Decide the required properties or features of the item being evaluated. 

3. Prioritise those properties or features with respect to the requirements of the 

method/tool users. 

4. Decide the level of confidence that is required in the results and therefore 

select the level of rigour required of the feature analysis. 

5. Agree on a scoring/ranking system that can be applied to all the features. 

6. Allocate the responsibilities for carrying out the actual feature evaluation. 

7. Implement the benchmarking test suites for evaluation. 

8. Carry out the evaluation to determine how well the products being evaluated 

meet the criteria that have been set. 

9. Analyse and interpret the results. 

10. Present the results to the appropriate decision-makers. 

The only notable change to the original list of steps provided by Kitchenham et al. (1997) 

is step 7, “implement the benchmarking test suites for evaluation”, which was a 

completely new step. It should be also noted, that as this research was not done for any 

specific organization, step 10 was achieved by constructing this report. 

Table 2. The selected features, and their importance and measurement for feature evaluation. 

 

In this particular study, the selected tools, or virtualization technologies, are selected 

based on their usage on the industry. Thus, the selected technologies are Docker, gVisor 

(with Docker), Firecracker and KVM. As a baseline result, the evaluations are run against 

a bare metal server, which is described in detail in section 5.1.1. 

Feature Description Importance Measurement 

Disk – File I/O Filesystem read and write operations. High MiB / sec, higher is 

better 

Networking – Jitter Variance in network latency, i.e. how 

much the round-trip time changes during 

the network transmission. 

High Milliseconds, lower 

is better 

Networking - 

Bandwidth 

How much data can be transmitted (sent 

and received) over the network per 

second. 

High Mbps, higher is 

better 

CPU Events Calculate prime numbers as fast as 

possible. 

High Events / sec, higher 

is better 

Boot up time Booting up the system to a state where 

it’s responsive. 

High Seconds, lower is 

better 

Database Relational database operations, both read 

and write. 

Low Transactions / sec, 

higher is better 

Pipeline turnover 

time 

Continuous integration pipeline runs with 

case application setup. 

Low Seconds, lower is 

better 

HTTP response 

time 

HTTP request benchmarking with 

simultaneous HTTP calls against the 

system. 

Low Mean response time 

(ms / req), lower is 

better 
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The required features for the benchmark of the virtualization technologies are decided 

based on the example usage case, which is described in section 5. In order to find out 

typical low-level resource constraints of these technologies, networking, disk I/O and 

CPU performance were selected as the first set of so-called low-level features. More 

specifically, the measured features contain networking jitter and bandwidth, disk file I/O 

read and write, CPU prime number calculation performance, and system boot up time. 

Their importance in this study is high because they are less complex than real 

applications, and thus are likely to be less prone to resource contention or other side-

effects in the system. In addition, several high-level features were selected to help the 

evaluation of performance of these technologies closer to real world usage scenarios. 

Those features are database performance and a case application, which contains HTTP 

server benchmarking and a continuous integration pipeline job benchmarking. The high-

level features are described in detail in section 5.1.6 and 5.1.7, and their importance is 

considered to be low due to the high complexity and increased likelihood of 

uncontrollable resource contamination in the system. All tests are repeated 10 times in 

order to mitigate the possibility of circumstantial bias. See Table 2 for the final set of 

features, and their respective prioritization. Since this report is a master’s thesis work, all 

steps are carried out by the author. 

4.3. Benchmarking 

In benchmarking, the selected features are evaluated by running a set of custom 

benchmarks. Since Kitchenham et al. (1997) do not describe how the benchmarking 

should be carried out, the benchmarking in this study contains three steps: 1) preparing 

the tests and gathering all required resources, 2) running the tests, and 3) collecting the 

results. The benchmarking is described in detail in section 5.  

4.4. Benchmarking analysis 

Within the analysis, the results are analysed in order to find out which candidate fits the 

requirements the best. Typically, in DESMET the results are collected into a score sheet 

called an evaluation profile, which can be used to determine the final score of the 

candidates (Kitchenham et al., 1997). The score sheet contains the priority of a feature, 

the minimal acceptance threshold scores and the scores the candidate received, which 

allows the comparison of results in a coherent manner. 

Table 3. Sample of an evaluation profile score sheet for gVisor. 

Feature Priority Score 

File I/O read High 2 

File I/O write High 0 

Network jitter High 4 

Network bandwidth received High 4 

Network bandwidth sent High 4 

 

However, this research does not have minimal acceptance thresholds as the goal was to 

do comparative benchmarking of the candidates, and that is why the scoring sheet is 

missing the minimal acceptance threshold column in this research. Table 3 presents a 
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sample of an evaluation profile scoring sheet. The benchmarking test results are reported 

in section 6 and the benchmarking analysis is reported in section 7. 
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5. Benchmarking 

Benchmarking consists of preparing and running a set of automated tests and collecting 
the results. The tests are always designed for the particular case in study, and thus no 
general-purpose tests are available. The following subsections describe the preparations 
and environmental details regarding the benchmarking, as well as how the individual tests 
were run and the results collected after the benchmarking. 

5.1. Preparing the tests 

The test preparation was the first thing that was done in feature evaluation phase. Being 
arguably one of the most critical parts of the research, test preparation was a heavy process 
including constant decision making and trial and error. The scripts used for the 
benchmarking are stored in a publicly available repository1. This section covers the details 
of the benchmarking environment setup and each test, what it does, what it measures, and 
the motivation behind using it. 

5.1.1. Environment setup 

The environment used for running the benchmarking was built on top of commodity 
hardware available due to heavy resource constraints. The setup consists of 2010-era 
desktop computer with Intel® Core™ 2 Quad Q6600 2.40GHz processor, 4GiB of 
memory and 500GB SSD disk, running Ubuntu Server 20.04.1 with Linux Kernel version 
5.4, and a MacBook Pro 2017 with Intel® Core™ i7 2.9GHz processor and 16GB of  

 

Figure 4. Environment setup for benchmarking. 

 

1 https://github.com/ppeerttu/virtualization-benchmarks 
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memory. The Ubuntu Server was used as a host machine for virtualization platforms in 

all tests, while the MacBook was acting as a client in some of the tests, such as database 

and HTTP benchmarking tests. In between these computers was a cable connected Asus 

router with 1 Gb transfer rate. In order to mitigate possible resource contention, the host 

machine was not running anything else besides what was required for conducting the 

tests. Figure 4 describes the high-level setup of the testing environment from 

networking perspective. 

Table 4. Versions of tools, applications and operating systems used in the benchmarking. 

Tool / Application / Operating System Version 

Ubuntu Server 20.04.1 

Docker 20.10.2, build 2291f61 

gVisor / runsc release-20201208.0 

Firecracker 0.23.1 

MySQL 8.0.22 

sysbench 1.0.20 

iperf3 3.9 

ab 2.3 

GitLab Server Enterprise Edition 13.2.0 

GitLab Runner 13.2.4 

macOS 11.1 Big Sur 

 

All containers that were used were based on official Ubuntu 20.04 image. KVM guest 

was installed similarly from Ubuntu 20.04 Server installer, but the operating system for 

Firecracker guest machine was built with Debian bootstrap tool as it was easier to come 

up with suitable setup that way. The baseline operating system was still Ubuntu 20.04, 

and Linux Kernel for Firecracker guest was built manually from version 5.4 source 

files, with similar configuration as in the host machine. Table 4 describes detailed 

versions of each tool, application and operating system used in the benchmarking. 

5.1.2. Boot time 

The purpose of the boot time test was to find out how quickly and reliably the machine 

can launch up from an existing image. The motivation for this test comes from the 

definition of serverless computing by Jonas et al. (2019): the serverless services need to 

be able to scale automatically and “be billed based on usage”. Both of those requirements 

advocate the idea of runtimes that are capable of launching and shutting down rapidly in 

order to match the load with minimal cost. 

The boot time test is heavily debatable from two viewpoints: 1) internal and external 

factors, such as both host and guest operating system, pre-installed software, and system 

configuration, can affect heavily the boot time of a machine, and 2) it’s not easy to 

determine at which point the machine is considered to be fully launched. For example, 

Agache et al. (2020) consider the boot time of a Firecracker microVM to be the time 

between “VMM process is forked and the guest kernel forks its init process”. As this kind 

of detailed low-level measurement would require custom implementation in underlying 
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virtualization platforms, the boot time in this study was measured with existing tools 

without any modifications in any of the virtualization platforms. As such, the results are 

not highly accurate and should be treated only as approximate guidelines. 

For container technologies, the container was considered to be fully launched once 

“docker run” -command has returned to the foreground, and the time is measured with 

the Unix “time” -command. In the case of other platforms, including both virtual 

machines and bare metal, the machine was considered to be up once its network stack 

was up and able to respond to the Unix “ping” -command. 

5.1.3. CPU events 

The purpose of the CPU test was to measure the performance of the platform under 

generic computing-intensive tasks. In order to simplify the test setup, a generic 

benchmarking tool called sysbench was used as it supports testing properties other than 

just CPU performance. However, more extensive tools such as High Performance 

Linpack have been used at various times in previous studies (Beserra et al., 2015; Beserra 

et al., 2017; Mavridis & Karatza, 2019; Ramalho & Neto, 2016), whilst sysbench has 

been used for CPU benchmarking several times (Morabito, 2015; Potdar et al., 2020; 

Ramalho & Neto, 2016). 

The test counts how many events the system is able to process during the period of test. 

Within an event, the system calculates and stores in a list all prime numbers between one 

and 10 000, and the duration for one run was 10 seconds. The test was run on each 

platform directly by using the sysbench command. 

5.1.4. File I/O 

The file I/O test is measuring the system under generic file read and write workload. 

Within the previous literature, tools such as Bonnie++  (Morabito et al., 2015; Ramalho 

& Neto, 2016; Xie et al., 2018) and IOzone (Barik et al., 2017; Mavridis & Karatza, 2019; 

Potdar et al., 2020) have been used, but since sysbench was already selected for 

benchmarking several other features, it was chosen for file I/O benchmarking as well. 

The file I/O benchmarking conducted in this research contains two sysbench tests: seqrd, 

which means sequential read, and seqwr, which means sequential write. In both tests the 

total size of files within the test was five gigabytes, and the test time 30 seconds. File 

operation mode was synchronous, which is default, and number of files was also the 

default, 128. Within the test, the files are either written or read in sequential order, and 

the speed of reading or writing was measured and reported as Mebibytes per second. The 

tests were conducted in similar manner as CPU tests, which was command line invocation 

directly on the virtualization platform. 

5.1.5. Network bandwidth and jitter 

The network bandwidth and jitter tests are measuring the network performance of the 

virtualization platforms. The bandwidth means how much data can be transmitted within 

specified period of time over the network, while the jitter means the variance of latency 

in the network. 
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The selected tool for this task was iperf version 3 (often called iperf3), because it has been 

used in previous studies (Barik et al., 2017; Morabito, 2015), as well as it is capable of 

measuring both bandwidth and jitter. More specifically, it supports both TCP and UDP 

protocol, both of which are relevant in this case. 

In order to be able to measure both bandwidth and jitter, the same benchmarking suite 

was run twice, but TCP was used for measuring the bandwidth, and UDP was used for 

measuring the jitter. Within the test, the iperf3 server was launched on the virtualization 

platform, and then the iperf3 client on another machine connected to the server and started 

the actual test. The results are visible for both the client and the server, but in this case 

they were collected from both. 

5.1.6. Database 

In order to approach the performance from more practical perspective, database 

benchmarking was conducted. Databases are a common part of web applications, and 

they heavily utilize memory, CPU, filesystem and network. Similarly as in several 

previous studies (Felter et al., 2015; Mavridis & Karatza, 2019; Ruan et al., 2016), 

sysbench was used to run a set of OLTP-like transactions against MySQL relational 

database. 

Setting up the test contained two steps: first preparing the database by launching it and 

seeding it with the initial data, and then running the benchmarking test suite. The initial 

seed data contained eight identical tables containing two integer columns and two char 

columns, and they were all filled with a million rows of data. The test suite contained 

three different kind of tests: read only, write only, and read write. Read only test consists 

of transactions that contain five different SELECT queries. Write only test consists of 

transactions that contain two UPDATE statements, one DELETE statement and one 

INSERT statement. Read write test suite consists of transactions that contain both read 

only and write only statements. For each virtualization platform, the database was 

launched on the virtualized platform first, and then the sysbench client performing the 

queries was launched on another machine. Each individual test duration was 20 seconds, 

and they were run on concurrency levels of 10, 20, 30, 40, 50, 60, and 70. In order to 

mitigate potential bias, each concurrency level was repeated 10 times. 

Due to obscure network issues when reaching out to Ubuntu repositories from the 

Firecracker guest, it was not possible to install MySQL to the Firecracker guest machine 

this time. This problem was most likely caused by the networking setup, but as the time 

for benchmarking was limited, it was not possible to spend more time on investigating 

that issue. As a result, database benchmarking was not conducted against Firecracker. 

5.1.7. Case application 

In order to simulate potential real-world usage of these virtualization technologies, a case 

application was selected for benchmarking. After brief investigation, a suitable use-case 

was found: a source code submission environment for programming courses at the 

University of Oulu. In this case, GitLab (GitLab, 2021) was selected as the case 

application which serves as source code repository host, as well as pipeline runner for 

automated programming assignment evaluation. This setup allows students to test their 
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code against pre-defined testbed in automated pipelines and return their assignment by 

tagging their final commit, for example. 

Based on this use-case, two different kind of tests were seen suitable for benchmarking 

evaluation. First of them was traditional HTTP request benchmarking, as it is common to 

see increased HTTP traffic in the server near assignment deadlines. For this purpose, a 

HTTP benchmarking tool called ApacheBench (also known as ab), that has seen use in 

previous studies (Barik et al., 2017; Behravesh et al., 2019; Poojara et al., 2018; Potdar 

et al., 2020), was used to send simple HTTP GET requests to the server with concurrency 

levels of 10, 30, 60, 90, 120, 150, 180, and 200, whereby average response times were 

collected. This test was repeated 10 times for each concurrency level in order to mitigate 

potential bias. 

The second potential target identified for testing was pipeline turnover time. Pipeline 

turnover time means the time it takes for an automated pipeline to run series of tasks for 

the source code after a student has submitted their assignment. In this particular test, the 

assignment contained a simple matrix calculator written in C++, and the pipeline tasks 

contained code compilation, running unit tests, collecting code coverage and a static code 

analysis. The pipeline runner was a single instance of GitLab runner, which was running 

on the same guest machine with the GitLab server, except for Docker platform, in which 

case the server and runner were running in different containers. The pipeline was 

manually re-launched 10 times in order to mitigate potential bias. 

Unfortunately, due to the way GitLab server was installed on Linux containers, it was not 

possible to get GitLab working with gVisor runtime. As a result, gVisor was not 

benchmarked in case application tests. 

5.2. Running the tests 

The tests were run in sequential order, so none of the tests were run concurrently. 

Primarily, the following order of platforms were used: bare metal, KVM, Docker and 

gVisor, and Firecracker. Because Docker CLI tool was used to run containers with runc 

and runsc runtimes, each test was run for both runtimes before moving to the next one.  

Exceptions were file I/O test and boot time test, both of which had to be rerun for all 

platforms afterwards due to bug in the testing script. 

The tests were run for each platform in the following order: boot time, file I/O, CPU, 

network bandwidth (TCP), network jitter (UDP), database, case application HTTP and 

case application pipeline. An exception for this was Firecracker, for which some of the 

tests required a bit more preparations than initially anticipated, and thus they were run in 

the following order: CPU, network bandwidth (TCP), network jitter (UDP), case 

application HTTP, case application pipeline and file I/O. 

During benchmarking, it was noticed that the GitLab server was unable to be installed on 

containers using gVisor runsc runtime. After investigating the issue further, it was 

concluded that the issue was related to a step where the GitLab installation script attempts 

to change directory permissions in certain locations of the filesystem, which was 

assumably prevented by the runsc runtime. Due to resource constraints, it was decided to 

drop gVisor from case application benchmarking altogether due to this issue. Similarly, 

when installing the tooling to Firecracker guest VM in order to conduct the 

benchmarking, it was noticed that the guest machine was not able to reach out to Ubuntu 
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repositories. Even after several hours of further investigating this issue, it was never 

understood what caused this to happen. As a result, the tools that had to be installed from 

Ubuntu repositories were pre-installed during disk image creation instead of when 

running the actual guest VM. However, this solution proved to be inadequate for installing 

MySQL, which meant that database benchmarking could not be done for Firecracker at 

this time. 

5.3. Collecting the results 

The results were collected from logfiles generated during the test run. In most of the tests, 

the relevant log output was directly piped to a known directory that was then submitted 

to version control along with the test scripts in order to guarantee persistence and 

transparency. However, there were two tests that required also manual work for collecting 

results: 1) running the tests with iperf3 server required fetching the server log output from 

the remote machine, and 2) running the pipeline test with GitLab required manually 

collecting results from the GitLab web user interface. 

After collecting the results, the results were pre-processed before further analysis. Some 

of the data was collected in JSON format, but most of it was generic, non-structured, free 

text output. During the pre-processing, the results were parsed and formatted into a set of 

CSV files, which were then used for the analysis. 
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6. Results 

Within this section, the results of the benchmarking tests are presented by each feature, 
and the further feature evaluation analysis is presented in section 7. All the results for 
each individual test including mean values and standard deviations are included as 
Appendix A. The results of tests where the level of concurrency was variable are 
aggregated into mean value across all concurrency levels. 

6.1. Boot time 

The mean boot time and standard deviation for each platform is presented in Figure 5. 
The benefits of container technologies are clearly visible here; both Docker and gVisor 
reach to sub-second boot times with average result of 0,69 and 0,83 seconds respectively, 
whereas KVM and Firecracker boot times are in the order of seconds rather than 
milliseconds. Nevertheless, they both still perform still better than the bare metal, as the 
metal takes 58,46 seconds to boot up on average, while KVM reached to 19,34 seconds 
and Firecracker to 5,13 seconds. An interesting result here is the standard deviation of  

 

Figure 5. Mean time to boot up a machine (lower is better) with standard deviation. 

values, because both KVM and metal have a lot of variation in their bootup time, whereas 
Firecracker, gVisor and Docker are much more stable. Based on the results of the boot 
time benchmark, the answer to the RQ2 is: the fastest virtualization technology in terms 
of boot up time was Docker. 

6.2. CPU events 

The mean count of events per second for all platforms is presented in Figure 6. The results 
show that none of the virtualization platforms can reach up to the level of bare metal. 
Firecracker and gVisor are both 19% slower than the metal while Docker and KVM are 
16% and 9% slower, respectively. It is also interesting finding that the standard deviation 
of all virtualization platforms is roughly at least five times as high as the one of bare  
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Figure 6. Mean count of CPU events per second (higher is better) with standard deviation. 

metal. Based on these results, the answer to the RQ1.1 is: KVM is the most performant 
virtualization technology in terms of CPU events. 

6.3. File I/O 

The file read and write performance is presented in Figure 7 and Figure 8. Based on the 
results of file reading, Firecracker performs the worst of all platforms. Its result is 
dramatic 66% worse than the bare metal, which reaches up to 318,82 MiB/s. Contrary to 
that, Firecracker is the most performant virtualization platform in file writing, being only 
12% percent less performant than the bare metal.  

KVM is 47% slower than the bare metal in file reading and 30% slower in file writing. 
Interestingly KVM is faster than Firecracker in file reading, but slower in file writing, 
which seems counterintuitive when considering the seccomp filtering Firecracker uses. 

 

 

Figure 7. Mean file read performance (higher is better) with standard deviation. 
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Figure 8. Mean file write performance (higher is better) with standard deviation. 

Docker performs adequately in both filesystem operations, losing 29% in file reading and 
15% in file writing to the bare metal host. While the cost of enhanced security in gVisor 
is insignificant in file reading, it becomes clearly visible in the file writing, which is 56% 
less performant than in bare metal. Based on the results, Firecracker is the fastest in file 
writing but the slowest in file reading, whereas gVisor is almost the fastest in file reading 
but the slowest in file writing. Docker seems to be the most stable platform, leaving KVM 
behind in both tests. Overall, these results reveal that as an answer for the RQ1.2, Docker 
is the most performant virtualization technology in file reading, whereas Firecracker is 
the most performant in file writing. 

6.4. Network 

The network TCP bandwidth is presented in Figure 9, and UDP jitter is presented in 
Figure 10. When looking at the bandwidth, gVisor performs the worst by losing 7% to 
the bare metal in both sending and receiving data. Network bandwidth performance  

 

Figure 9. Network bandwidth (higher is better) using TCP traffic. 
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overhead of the other virtualization platforms is almost negligible, as Firecracker 
performs only 2% worse than the bare metal, and both Docker and KVM lose to bare 
metal by less than 1%. 

 

Figure 10. Network jitter (higher is better) using UDP traffic. 

When looking at the UDP jitter results, it becomes evident that Docker, gVisor and KVM 
all have smaller jitter than bare metal, which is a surprising result. The best result was 
achieved by Docker with its 0,025ms jitter, which is 26% smaller than bare metal’s 
0,033ms jitter. The worst jitter was on Firecracker, which achieved 0,042ms jitter on 
average, which is 27% bigger than bare metal’s jitter. Overall, these results tell that as an 
answer to the RQ1.3, Docker is the most performant virtualization technology in terms of 
network I/O. 

6.5. Database 

The database benchmarking contained three different kind of tests. The first of them was 
a test containing read-only transactions, the second one contained write-only transactions, 
and the third one contained both read-only and write-only operations within a transaction.  

 

Figure 11. Count of database read transactions per second (higher is better) vs. concurrency. 
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As stated earlier in this report, database benchmarking was not possible to run on 
Firecracker due to technical issues. 

The clear winner of the read-only test is Docker, reaching 39 602 transactions per second 
at concurrency level of 20, beating the bare metal by 20%, while KVM loses roughly 29% 
to the bare metal at the same concurrency level. Based on the read-only results, the 
differences in transactions per second between Docker, bare metal and KVM are biggest 
at the concurrency level of 20. When the concurrency is 10, Docker and bare metal have 
almost even results: 27878 and 26568 transactions per second, respectively. The worst 
performer was gVisor, which was able to process around 7000 transactions per second on 
every concurrency level, which means over 70% less transactions than with the bare 
metal. Figure 11 describes read-only transaction test results. 

The order of platforms does not change when looking at the write-only test results. Again, 
Docker beats the bare metal at every concurrency level, but by smaller margin than in the 
read-only test. At most, Docker beats bare metal by 13% at the concurrency level of 40, 
where it is able to reach 7157 transactions per second. Similarly, KVM is performing 
around 22% worse than the bare metal at concurrency level of 20, although the relative 
difference between the two is dropping when moving towards bigger concurrency levels. 
The worst performer is again gVisor, but contrary to what was seen with read-only tests, 
gVisor is able to increase the number of transactions per second when the concurrency 
grows. It is able to reach up to 3646 transactions per second at the concurrency level of 
70, which is around 55% less than with the bare metal. Figure 12 describes write-only 
transaction test results. 

 

Figure 12. Count of database write transactions per second (higher is better) vs. concurrency. 

When running the read-write test, the results of bare metal, Docker and KVM are closer 
to each other. Docker and KVM perform actually better than the bare metal on every 
concurrency level, which is a surprising result. At concurrency levels of 10, 30, 40 and 
50, KVM is the most performant, while Docker is slightly better at concurrency levels of 
20, 60 and 70. At concurrency level of 20, KVM beats bare metal by 22% while reaching 
up to 2568 transactions per second, whereas Docker gains the lead with higher 
concurrency levels, being 16% faster than bare metal at concurrency level of 70. Similarly 
as with the previous database tests, gVisor is the worst performer, having a difference of 
29% to bare metal at concurrency level of 20, which grows up to 76% when the 
concurrency level increases to 70. Figure 13 describes read-write transaction test results. 



35 

   

 

 

Figure 13. Count of database read-write transactions per second (higher is better) vs. 
concurrency. 

An interesting observation regarding the database benchmarking results is that the read-
only performance of every platform begins to drop when the concurrency level grows 
over 20, while the write-only performance keeps growing throughout all concurrency 
levels tested, up to 70. It should be also noted that the count of transactions is much higher 
in read-only tests than it is in write-only tests; Docker is able to perform 39602 
transactions at concurrency level of 20 in read-only test, while the best write-only result, 
8714 transactions per seconds, was achieved similarly by Docker, but at concurrency 
level of 70. This is most likely happening due to the in-memory cache that the database 
uses heavily for read-only queries. As the database does not need to wait for disk I/O as 
often with read-only queries that is required with write-only queries, it is able to process 
queries faster, and thus reach much higher transaction rates even at lower concurrency 
levels. In this particular case, the benefit of increased concurrency begins to drop as the 
scheduling becomes the bottleneck of the performance after the concurrency level 
increases over 20. 

6.6. HTTP Benchmark 

The results for HTTP benchmarking are described in Figure 14. As the HTTP 
benchmarking test was conducted against a GitLab server instance, it was not possible to 
run that on top Docker with runsc runtime. Hence, no results for gVisor were measured. 

Based on the results, Firecracker and KVM form their own group, and Docker and bare 
metal form their own group. Contrary to what was seen with database benchmarking 
results, none of the virtualization platforms perform better than the bare metal in HTTP 
benchmarking. At the concurrency level of 10, the bare metal is able to respond to a HTTP 
request in 136 milliseconds on average, whereas for Docker, KVM and Firecracker it 
takes 145, 212 and 227 milliseconds, respectively. The mean response time grows linearly 
for each platform, so the relative difference between the results has no big changes over 
different concurrency levels. For Docker, the relative difference to bare metal ranges from 
4% to 9%, for KVM it ranges from 51% to 57%, and for Firecracker it ranges from 58% 
to 67%. 
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Figure 14. Mean response time for HTTP requests (lower is better) vs. concurrency. 

6.7. Pipeline 

The pipeline results are presented in Figure 15. Based on the results, the bare metal was 
the most stable and performant in running the pipeline, taking around 291 seconds on  

 

Figure 15. Mean time (lower is better) and standard deviation for running the GitLab pipeline job. 

average to complete. Docker was just 4% slower than the bare metal, taking around 304 
seconds to complete on average. KVM was 22% slower than the bare metal, and 
Firecracker was the worst performing platform, taking around 372 seconds to complete 
on average, which translates to 28% slower than the bare metal. On the other hand, 
Firecracker has clearly smaller standard deviation (6,98 seconds) when compared to 
Docker (14,71 seconds) and KVM (19,71 seconds), which indicates that it is more stable 
in this test. 
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7. Analysis 

The first purpose of the analysis section is to report the benchmarking analysis, according 

to the description of the DESMET research method by Kitchenham et al. (1997). The 

benchmarking analysis will make use of scoring sheets, where each candidate will be 

assigned a score per benchmarking test, according to defined grading rules. This allows 

determining which candidate best suits the given use-case, albeit it should be noted that 

this is not directly a generalizable result. 

The scoring scheme in benchmarking analysis is done by using relative metrics, where 

the bare metal platform is used as a baseline. The total score (higher is better) is calculated 

from individual scores that are granted based on the results of each platform for each 

feature. Table 6 displays the required result for each feature and score. As no previous 

DESMET benchmarking evaluations were found in existing literature, the grading 

schema is not based on any previous references. Most of the features require at least 60% 

of the result of the baseline in order to grant any points in grading, but sometimes the 

grading rules are reversed. For example, in order to get score one (1) from boot time 

feature, a platform mean boot up time must be less than or equal to 40% of the baseline 

boot up time. This is because the boot time with bare metal is not expected to be good, 

and almost every virtualization platform should be able to boot up faster. This means that 

for some features, higher result means higher score, while for others, lower result means 

Table 6. Grading scheme for the benchmarking evaluation analysis. Requirements for scores 
are relative to the bare metal result. 

Feature Baseline  Score 1 Score 2 Score 3 Score 4 

Boot time 58,46 s ≤ 40% ≤ 30% ≤ 20% ≤ 10% 

CPU events 499,35 e/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

File read 318,82 MiB/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

File write 65,24 MiB/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Network sent 940,407 Mbps ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Network 

received 
943,532 Mbps ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Network jitter 0,033 ms ≤ 140% ≤ 130% ≤ 120% ≤ 110% 

Database read 29325 t/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Database write 5945 t/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Database r/w 3274 t/s ≥ 60% ≥ 70% ≥ 80% ≥ 90% 

Pipeline turn. 291,10 s ≤ 140% ≤ 130% ≤ 120% ≤ 110% 

HTTP res. 1425,18 ms ≤ 140% ≤ 130% ≤ 120% ≤ 110% 
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higher score. As the grading schema is highly subjective and not based on previous work, 

it should not be treated as anything else than a tool that allows comparison of the 

virtualization platforms. 

The following subsections will cover the details of scoring each feature, as well as present 

the final scores of each platform. 

7.1. Boot time 

The boot time is relevant in modern systems where the infrastructure needs to be able to 

scale, sometimes in matter of minutes or seconds, to be able to cope with increased load. 

This is a relevant feature for serverless computing, because the underlying infrastructure 

must be provided as it is needed, “without explicit provisioning” (Jonas et al., 2019). 

Table 7. Benchmarking analysis scores for low-level features. 

Feature KVM Firecracker gVisor Docker 

Boot time 1 4 4 4 

CPU events 4 3 3 3 

File read 0 0 2 2 

File write 2 3 0 3 

Network sent 4 4 4 4 

Network received 4 4 4 4 

Network jitter 4 3 4 4 

Sum of low-level 

features 

19 21 21 24 

 

The scoring for each platforms’ low-level features is presented in Table 7. Based on the 

scoring used in this paper, KVM is the only platform that does not receive full score for 

boot up time. Deeper look into the results reveals that both Docker and gVisor achieved 

sub-second boot up times, while for Firecracker it takes around five seconds to boot up. 

The interesting observation in these results is that Firecracker is still several times faster 

than KVM, even if it uses partially same underlying APIs as KVM does. This is indeed 

one of the very reasons Firecracker was developed in the first place – speed and resource 

efficiency. Nevertheless, in this benchmarking evaluation, Firecracker is still far behind 

the boot up times of containers. The results might have been more in favour of Firecracker 

if the setup for the benchmarking would have been selected differently. Smaller, 

preferably Alpine Linux image would most likely be faster to boot up, and measuring the 

boot up time by writing to disk once the user space has been loaded might prove different 

results than relying on the network interfaces and devices. It is also likely that the modest 

commodity hardware used in this research does not give similar boot up times as 

compared to modern cloud servers. 
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7.2. CPU events 

Interestingly, the only virtualization platform that receives full score for CPU speed is 

KVM, which was 9% slower than the bare metal on average. This was a surprising result 

as the results of the literature review revealed that several previous studies have found 

containers faster in HPC, for example, than hypervisor-based virtualization. All the other 

platforms received the second-best score and were between 16 and 19% slower than the 

bare metal. Nevertheless, none of the platforms was dramatically slower than the others, 

which is a reasonable result as many of the decisions made regarding the architecture of 

these virtualization platforms are related to system calls and I/O. Moreover, all the 

virtualization platforms had more variation in their results than the bare metal, which is 

an interesting result. 

It should be noted, that the used hardware, especially CPU, was relatively old when 

compared to what is available today. Hence, the results of the CPU benchmarking may 

not reflect to what is experienced in reality with modern CPUs today. 

7.3. File I/O 

The file I/O benchmarking gave interesting results. The best performer was Docker, 

which was able to reach five out of eight available points for file I/O scoring. Both 

Firecracker and KVM were unable to get any points from file I/O read benchmark, 

whereas gVisor was unable to get any points from file I/O write benchmark. 

The results reveal that gVisor’s runsc runtime comes with clear overhead when compared 

to the default runc runtime, especially when doing file writing. This is most likely due to 

the implementation costs that come with the Virtual File System (VFS) that the runsc uses 

(Google LLC, 2021b). The runsc runtime got two points from the file reading, and as 

stated before, zero points from the file writing. 

KVM and Firecracker on the other hand perform poorly on filesystem reading, receiving 

zero points from it. Especially the result of Firecracker’s read performance was 

surprising, as it is 66% slower than bare metal, and even 36% slower than KVM. While 

the reason for this is not clear, it is likely that the security model Firecracker uses has an 

impact on this. Considering the results of file reading, it is equally surprising to see that 

Firecracker performs extremely well on file writing when compared to other 

virtualization platforms. Firecracker beats even Docker’s default runc runtime by a 

margin of 4%. Firecracker and Docker received both three points from file writing, 

whereas KVM received two. 

7.4. Network 

The network results reveal that both KVM and Docker are able to reach close to the 

performance of bare metal. In fact, all virtualization platforms receive full score from the 

network bandwidth features, both sent and received. gVisor seems to be the only platform 

that stands out from the rest with its 7% smaller bandwidth than the bare metals. 

Nevertheless, the differences are still relatively small. The overhead of virtualization is 

more visible in the variation of the results, as their standard deviation is clearly bigger 

than with bare metal. 
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Interestingly all virtualization platforms except Firecracker beat the bare metal in UDP 

jitter. Again, the differences between the platforms are small, and the variation in the jitter 

is certainly larger with the virtualized platforms than it is with the bare metal, except when 

using Docker, which has smaller standard deviation than the bare metal. Firecracker 

received three points from the network jitter benchmark, while the others received the full 

four points. 

7.5. Database 

The database benchmarking is one of the tests where the platforms were benchmarked 

using a real application. The scores of high-level features are presented in Table 8. The 

importance of the database in benchmarking is low because of two reasons: 1) the 

resource contention becomes more difficult to control when the complexity of the 

application grows (compare for example to file I/O benchmark), and 2) databases are 

often available as managed services, which often makes it impractical to deploy them 

similar to the application code. 

Table 8. Benchmarking analysis scores for high-level features. 

Feature KVM Firecracker gVisor Docker 

Database read 1 - 0 4 

Database write 2 - 0 4 

Database r/w 4 - 0 4 

Pipeline turnover 2 2 - 4 

HTTP res. 0 0 - 4 

Sum of high-level 

features 

9 2 0 20 

 

Nevertheless, the results of database benchmarking reveal interesting details about the 

virtualization platforms. First of all, the performance of gVisor was surprisingly poor, and 

thus it received no points from the database benchmarking. On average across all 

concurrency levels in read-only benchmarking, it was around three times slower than 

KVM, which was the second slowest. Docker on the other hand received a full score from 

all sub-features of the database benchmarking. KVM received one point from the database 

read feature, two points from the database write feature, and a full four points from the 

database read-write feature. KVM was in fact the fastest database in read-write 

benchmarking on most concurrency levels, which was surprising as it was not very close 

to the bare metal in either of read-only or write-only benchmarks. As stated before, 

unfortunately Firecracker was unable to be benchmarked due to technical problems. 

7.6. HTTP Benchmark 

The HTTP benchmark was another test where the platforms were benchmarked using a 

real application, and it represents a part of the case-application. In this particular case, the 

HTTP server consisted of a GitLab server instance, and the HTTP client used for the 
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benchmarking was ApacheBench. The HTTP benchmark is treated as a low priority 

benchmark here as it is harder to control the resource contention than with the low-level 

benchmarks.  

The results reveal that the only platform comparable to the bare metal is Docker, which 

received a full score, and was 7% slower than the bare metal on average across all 

concurrency levels. KVM and Firecracker were both left far behind, both being over 50% 

slower than the bare metal at all concurrency levels, thus receiving no points at all from 

the HTTP benchmarking. As explained earlier, the GitLab server was unable to be 

installed to gVisor, which is why it was not part of the HTTP benchmark. 

7.7. Pipeline 

The pipeline benchmark was another part of the case-application, where a real application 

usage is demonstrated and used as a benchmark for the virtualization platforms. The 

pipeline benchmark uses GitLab runner as an application to run the pipeline tasks. 

Similarly as with the HTTP benchmark, the pipeline benchmark is considered to be low 

priority as the resource contention is difficult to manage due to the high complexity of 

the application. 

The pipeline turnover time shows that all of the virtualization platforms have some 

overhead to the bare metal. Docker was the fastest virtualization platform, being only 4% 

slower than the bare metal on average, and thus receiving full score. Both KVM and 

Firecracker received two points from the pipeline benchmark, as they were 22% and 28% 

slower than the bare metal. Between all the platforms, the bare metal had clearly the 

smallest standard deviation, 1,52 seconds. Between the virtualization platforms, 

Firecracker had the smallest standard deviation of 6,98 seconds, leaving Docker and 

KVM far behind with their results of 14,71 and 19,71 seconds, respectively. Based on 

these results, the overhead of hypervisor-based virtualization is clearly visible, but 

interestingly Firecracker is still the most stable performer.  
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8. Discussion 

Within the following subsections, suggestions regarding choosing a virtualization 

platform are made, and further implications of this research are presented. 

8.1. Choosing between virtualization technologies 

When looking at the total score, KVM introduced the most overhead to performance from 

low-level feature point of view. It received two points less than gVisor and Firecracker, 

and the only thing where it lost in points, for those two technologies, was the boot up 

time. If the boot time scores are ignored, KVM received a total of 18 from low-level 

benchmarking scores, whereas Firecracker and gVisor got both 17. This tells that the 

overhead of type-1 hypervisor is not far from sandboxed containers, and in some cases 

the KVM performed even better than non-sandboxed Docker container, such as in CPU 

benchmark. 

Based on these results, the KVM is most suitable for long-living deployments, for 

example, where rapid auto-scaling is not critical. Spinning up a new instance of KVM, 

for example, in automated continuous integration pipelines might not be wise, unless they 

can be re-used without the overhead of re-creating a new instance every time. Moreover, 

it was not investigated in this research how much resources the KVM instances consume 

while sitting idle, which is relevant in cases where one of the objectives of isolating 

applications into containers or VMs is cost efficiency by subscribing the host machine 

resources as much as possible. For example, in cases where the guest instance density is 

prioritized over host kernel-level security, it might be better to consider sandboxed or 

regular containers such as gVisor or Docker instead of KVM. 

Firecracker was a stable performer in all of the low-level feature benchmarks, except for 

disk file reading, in which it was clearly the worst performer. The reason for such a result 

may be caused by the current implementation of block device emulation in Firecracker, 

as it does not use asynchronous model, but instead waits for each I/O call to complete 

before issuing the next one (Firecracker Contributors, 2020). Contrary to the disk file 

reading, Firecracker was the most performant virtualization platform in disk file writing. 

In addition to that, Firecracker was almost four times faster in launching a guest machine 

than the KVM. This result was expected as one of the design principles of Firecracker 

was a lightweight device model that both leaves minimal attack surface and introduces 

minimal performance overhead. 

Due to the short boot up time, Firecracker suits short-term deployments almost as well as 

container technologies. Because this research did not contain any multi-instance 

benchmarks, it is not possible to estimate how well it supports, for example, dense 

deployments where the resources of the host system are over-subscribed in order to reach 

maximal resource utilization. The APIs that Firecracker offers for guest machine 

management makes it easy to automate the management of guest VMs, but it does have 

some limitations as well. For example, both Docker and KVM comes with pre-configured 

network devices and configuring either bridged or NAT networking for guests is 

relatively easily, whereas for this research the network configuration for Firecracker guest 

machine had to be self-configured by using IP tables, which is error prone task and 

requires quite extensive knowledge in networking. Another limitation for the utilization 
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of Firecracker is missing support for hardware-accelerated GPUs, which is still a work in 

progress  (Firecracker Contributors, 2019a; Firecracker Contributors, 2019b). 

Sandboxed container runtime gVisor provided varying results. It was both capable of 

launching an instance and performing disk file reading almost as quickly as the default 

Docker runtime runc, but in many tests it was the worst performer. It was the worst in 

disk file writing, network bandwidth and CPU events, which means that the overhead of 

additional security is a concern in terms of performance. Moreover, the fact that gVisor 

was unable to get any points from the database benchmarking was unexpected result when 

considering that it received the same total score from low-level benchmarking than 

Firecracker did. On the other hand, because the database benchmarking was not 

conducted for Firecracker, it is not possible compare the two in that sense. One reason for 

the performance issues of gVisor, especially regarding the database benchmarking, might 

be caused by the default ptrace platform it uses. According to the documentation of gVisor  

(Google LLC, 2021c), “the ptrace platform has high context switch overhead, so system 

call-heavy applications may pay a performance penalty”. This can be mitigated by 

switching to the KVM platform that gVisor also supports, but testing beyond default 

configurations was out of scope in this research. 

The optimal use-cases for gVisor are deployments which do not contain system call-

heavy applications and can leverage the OCI implementation of gVisor. Such 

environments can be, for example, Kubernetes clusters, which are running applications 

that control business logic without need for heavy I/O operations, such as media 

streaming or data storing on local file system. Another good use-case for gVisor could 

be, for example, arbitrary workloads that run untrusted code, such as in continuous 

integration pipelines. Using the runsc runtime instead of Docker’s default runc allows 

using the same container orchestration tools with extended security where it is needed. 

However, gVisor comes with limitations as well. It is not compatible with any arbitrary 

existing Docker image; for example, in this research, the installation of GitLab Server 

failed most likely due to failing system calls. In addition to that, similarly as Firecracker, 

gVisor is lacking support for hardware-accelerated GPUs (gVisor Contributors, 2018). 

The default Docker runtime, runc, received expected results in this research. It was the 

most performant virtualization platform in both low-level feature benchmarks, and 

application benchmarks, and thus it can be concluded that the results of this study are 

aligned with the findings in the literature review. The only test where Docker was clearly 

worse than some other platform was the CPU event benchmark, where KVM was able to 

reach up to 455,36 events per second when Docker got only 419,89 events per second. 

The literature review did not confirm this particular case, so the reason for this result 

remains unknown. On the other hand, this study does not confirm the result provided by 

Felter et al. (2015), where they state that Docker NAT networking introduces significant 

overhead. These results show that Docker had network throughput almost equal to what 

bare metal had, and the network latency was in fact better than what the bare metal had. 

The different result received in this research may be due to differences in the hardware as 

well as it is possible that Docker’s NAT networking has been improved. 

Due to the low performance overhead, non-sandboxed container technology Docker is an 

appealing alternatives for any kind of application that does not need to be isolated on 

kernel level from the rest of the host machine. For example, Docker is suitable for running 

trusted code in systems that do not have extremely high reliability requirements, such as 

hospital or banking systems do. Depending on the environmental constraints of the 

application, it may be possible to increase the level of security with infrastructural 
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choices, such as by using a network proxy in front of the containers. Another use-case for 

both KVM and Docker is utilization of GPUs. This means that Docker is a good 

candidate, for example, for training machine learning models. 

8.2. Implications 

The results received from the empirical research reported in this paper gives high-level 

guidelines for choosing proper virtualization technologies for industry practitioners from 

the performance point of view. The area of concern in this research was focused to 

performance features, whereas other features, such as usability, reliability and security, 

should be considered when making decisions. Information related to those features should 

be sourced from other research papers and industry publications, and there might be room 

for new research in some of those areas as well. 

The following subsubsections covers the implications of this study for modern software 

development, as well as for research. 

8.2.1. Modern software development 

As described in subsection 2.5, serverless computing is a recent emerging trend for cloud-

native applications. The possibility to run applications on top of a fully managed, auto-

scaling infrastructure that is billed based on usage, is clearly an appealing package for the 

industry practitioners. However, the objective of this study is not to help in choosing 

between different serverless services or platform providers, but to help in understanding 

the differences between the virtualization technologies used underneath those serverless 

services, as well as choosing between different virtualization technologies. 

As the results of this study merely address the performance differences between the 

virtualization technologies, the results do not help in choosing the right tool for local 

development purposes, at least in most cases. As described in subsection 2.6, the objective 

of using virtualization in software development is usually to achieve environmental 

consistency, which is not related to performance. Any virtualization method investigated 

in this research could fulfil the need for environmental consistency, so one should focus 

on more practical issues instead. For example, considering the usability, tooling and 

support for the virtualization technology is more relevant in that case. However, those 

things are out of scope of this research. 

The results of this research are applicable to situations where the infrastructure 

management is not provided by a service provider, for example, when using a on-premises 

cloud. The domains where this scenario might be applicable are, for example, health care 

and banking, both of which are highly critical elements in the modern society, and thus 

sensitive for any kind of technical problems. In these circumstances, the application-

specific requirements determine the critical features required from the underlying 

infrastructure, but it is likely that the choice is being made by comparing the requirements 

for performance and scaling to the requirement for security. The boot up time difference 

between hypervisor-based virtualization and containers raises an interesting paradox here 

when considering availability requirements. The containers are able to scale up faster than 

VMs, and thus they may be able to satisfy peak-time load better. On the other hand, VMs 

are better in isolating critical operational failures, such as kernel-level bugs, meaning that 
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an issue in one guest VM does not affect to other guest VMs running on the same host, 

which in turn may improve availability. 

Similar to running applications in on-premises clouds, these results can be applied when 

running applications in hybrid clouds. For example, container orchestration tool 

Kubernetes helps in running container-based workloads reliably without forcing to a 

vendor lock-in. Kubernetes introduced a Container Runtime Interface (CRI) in 2016 (Y.-

J. Hong, 2016), and thus is able to use various kinds of container runtimes that implement 

the OCI standard. This means, that Kubernetes users can choose, for example, between 

the default Docker runc runtime, and the gVisor runsc runtime. Moreover, it is possible 

to switch run Kubernetes pods within both KVM and Firecracker provisioned guest VMs, 

thanks to the OCI-compliant Kata Containers (E. Ernst & G. Whaley, 2019; Kata 

Containers, 2020). However, this research did not consider the performance when using 

nested virtualization, and hence the results of this study may not be directly applicable to 

such deployments. 

8.2.2. Research 

As these technologies are in constant development, and especially as young technologies 

see improvements in rapid pace, it is possible that these results will become obsolete 

within the following five years. This means that in order to have up-to-date information 

regarding performance differences between different virtualization technologies in the 

future, this kind of benchmarking evaluation would need to be done regularly, for 

example, every other year. Furthermore, it can be seen from the results of the literature 

review, that the existing literature contains a lot of studies in the area of evaluating the 

performance of different virtualization technologies, but it was difficult to find 

similarities amongst the papers regarding the methods used for benchmarking. In order to 

provide a systematic and comparable method for conducting this kind of benchmarking, 

it might be good to develop a systematic framework for benchmarking. That would give 

the researchers a clear set of tools for performing the benchmarking, and also rules for 

experimenting or extending the benchmarking into new areas. 

Lastly, the empirical research conducted in this paper revealed a documentation gap in 

the DESMET benchmarking research method. While the other DESMET evaluation 

methods, such as case studies and surveys, are extensively covered by Kitchenham et al. 

(1997), the hybrid evaluation methods, namely benchmarking and collated expert 

opinion, are not. Kitchenham et al. (1997) state, that there can be even more hybrid 

benchmarking evaluation methods than the previously mentioned ones, but they were not 

able to think about any others. This may be also the reason why the instructions do not 

cover hybrid evaluation methods; the amount of possible hybrid methods is so high, that 

it makes it difficult to give guidelines for all of them. 
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9. Conclusions 

The serverless computing in cloud has posed new problems for cloud vendors that 

traditional means of virtual infrastructure provisioning do not solve well. Requirements 

such as resource isolation, instance density, security and scalability are difficult to fulfil 

in multi-tenant cloud while the underlying platform should still maintain performance 

comparable to native. Within this research, a literature review was conducted to see what 

other authors have reported regarding the performance of containers and VMs recently, 

and then a DESMET benchmarking evaluation was performed against four different 

virtualization technologies, namely Firecracker, gVisor, KVM and Docker. The research 

questions were: 

1. Which virtualization technology is the most performant in terms of 

1. CPU events? 

2. Filesystem I/O? 

3. Networking bandwidth and jitter? 

2. Which virtualization technology provides the fastest launch time? 

The results are aligned with findings of the literature review, and they show that Docker 

is still the most performant virtualization technology amongst these selected technologies 

in terms of CPU events (RQ1.1), file reading (RQ1.2), networking I/O (RQ1.3), as well 

as the fastest in boot up time (RQ2). Firecracker was the fastest virtualization technology 

in file writing (RQ1.2), and generally speaking both Firecracker and gVisor were able to 

reach better total score than KVM when considering the before mentioned low-level 

features. 

It should be noted that this research has some limitations, and those limitations should be 

taken into account in order to be able to look at the results objectively. The research 

method description for DESMET provided by Kitchenham et al. (1997) does not describe 

detailed steps of how the hybrid evaluation method benchmarking should be conducted. 

Along the way, there had to be some choices made without any kind of supporting 

information, for example, when mapping the default DESMET feature evaluation into 

benchmarking evaluation, or when coming up with the grading schema for the 

virtualization platforms. Hence, this research should be treated as a starting point for 

further DESMET benchmarking evaluations instead of an absolute reference 

implementation. 

Secondly, as this research was conducted as a master’s thesis work, and was not 

financially supported, the resources were highly limited. More specifically, the hardware 

used for the benchmarking evaluation was not as modern as the author would have hoped, 

and the substance knowledge required for operating with the virtualization technologies 

was higher than expected. Especially the effort required for running the benchmarks 

against Firecracker was surprisingly high due to lack of expertise in operating systems 

and network configuration, and the immaturity of the documentation Firecracker has. 

Moreover, the inability to run all the application benchmarks against all virtualization 

technologies was most likely caused by the lack of expertise in these technologies. 

In the future, it would be good to run similar benchmarks with more modern hardware 

and focus, for example, to the qualities of multi-tenant cloud, such as resource limiting 

and stability when running multiple guests on the host. Another interesting topic for 

further research is the security of Firecracker and gVisor, and the effects in performance 
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when their security configuration profiles are adjusted. Furthermore, when these 

technologies mature and potentially other alternatives emerge, their usability could be 

studied to find out which of the tools would be easiest to adapt in modern cloud setups. 
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Appendix A. Results of the benchmarking 

Test Metal KVM Firecracker gVisor Docker 

 Mean Sd. Mean Sd. Mean Sd. Mean Sd. Mean Sd. 

Boot. (s) 58,46 2,22 19,34 9,03 5,13 0,02 0,83 0,08 0,67 0,03 

CPU 

(event/s) 

499,35 10,45 455,36 52,18 406,18 59,40 404,48 80,02 419,89 59,87 

File r. 

(MiB/s) 

318,82 42,33 170,00 46,70 108,91 41,19 223,79 0,70 227,92 0,71 

File w. 

(MiB/s) 
65,24 3,97 45,88 2,25 57,57 4,39 28,45 0,34 55,46 3,76 

Sent 

(Mbps) 

940,41 1,61 938,24 4,99 921,90 13,19 875,00 25,76 939,81 2,88 

Received. 

(Mbps) 

943,53 1,59 941,39 4,94 925,71 13,02 877,36 25,75 943,03 3,00 

Jitter 

(ms) 

0,033 0,012 0,032 0,029 0,042 0,023 0,032 0,022 0,025 0,007 

Pipe. (s) 291,10 1,52 355,20 19,71 372,40 6,98 - - 303,70 14,71 

 Mean Mean Mean Mean Mean 

Db read 

(trans./s) 

29325,04 21916,47 - 7094,03 35243,14 

Db write 

(trans./s) 

5944,71 4989,96 - 3068,93 6593,74 

Db rw 

(trans./s) 

3274,96 3690,49 - 1184,50 3694,86 

HTTP 

(s/req.) 

1425,18 2183,10 2259,84 - 1521,48 
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