
Information and Software Technology 137 (2021) 106600

A
0

F
F
a

b

c

d

A

K
M
C
S

1

s
e

w
v
i
t
e
t
s
h
t
o
a
a
a
s

d

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

rom monolithic systems to Microservices: An assessment framework
lorian Auer a,∗, Valentina Lenarduzzi b, Michael Felderer a,c, Davide Taibi d

University of Innsbruck, Austria
LUT University, Finland
Blekinge Institute of Technology, Sweden
Tampere University, Finland

R T I C L E I N F O

eywords:
icroservices
loud migration
oftware measurement

A B S T R A C T

Context: Re-architecting monolithic systems with Microservices-based architecture is a common trend. Various
companies are migrating to Microservices for different reasons. However, making such an important decision
like re-architecting an entire system must be based on real facts and not only on gut feelings.
Objective: The goal of this work is to propose an evidence-based decision support framework for companies
that need to migrate to Microservices, based on the analysis of a set of characteristics and metrics they should
collect before re-architecting their monolithic system.
Method: We conducted a survey done in the form of interviews with professionals to derive the assessment
framework based on Grounded Theory.
Results: We identified a set consisting of information and metrics that companies can use to decide whether
to migrate to Microservices or not. The proposed assessment framework, based on the aforementioned metrics,
could be useful for companies if they need to migrate to Microservices and do not want to run the risk of
failing to consider some important information.
. Introduction

Microservices are becoming more and more popular. Big players
uch as Amazon,1 Netflix,2 Spotify,3 as well as small and medium-sized
nterprises are developing Microservices-based systems [1].

Microservices are autonomous services deployed independently,
ith a single and clearly defined purpose [2]. Microservices propose
ertically decomposing applications into a subset of business-driven
ndependent services. Each service can be developed, deployed, and
ested independently by different development teams and using differ-
nt technology stacks. Microservices have a variety of different advan-
ages. They can be developed in different programming languages, can
cale independently from other services, and can be deployed on the
ardware that best suits their needs. Moreover, because of their size,
hey are easier to maintain and more fault-tolerant since the failure of
ne service will not disrupt the whole system, which could happen in
monolithic system. However, the migration to Microservices is not

n easy task [1,3]. Companies commonly start the migration without
ny experience with Microservices, only rarely hiring a consultant to
upport them during the migration [1,3].

∗ Corresponding author.
E-mail addresses: florian.auer@uibk.ac.at (F. Auer), valentina.lenarduzzi@lut.fi (V. Lenarduzzi), michael.felderer@uibk.ac.at (M. Felderer),

avide.taibi@tuni.fi (D. Taibi).
1 https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
2 http://nginx.com/blog/Microservices-at-netflix-architectural-best-practices/
3 www.infoq.com/presentations/linkedin-Microservices-urn

Various companies are adopting Microservices since they believe
that it will facilitate their software maintenance. In addition, compa-
nies hope to improve the delegation of responsibilities among teams.
Furthermore, there are still some companies that refactor their applica-
tions with a Microservices-based architecture just to follow the current
trend [1,3].

The economic impact of such a change is not negligible, and taking
such an important decision to re-architect an existing system should
always be based on solid information, so as to ensure that the migration
will allow achieving the expected benefits.

In this work, we propose an evidence-based decision support frame-
work to allow companies, and especially software architects, to make
their decision on migrating monolithic systems to Microservices based
on the evaluation of a set of objective measures regarding their sys-
tems. The framework supports companies in discussing and analyzing
potential benefits and drawbacks of the migration and re-architecting
process.
vailable online 30 April 2021
950-5849/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2021.106600
eceived 31 January 2020; Received in revised form 1 March 2021; Accepted 14 A
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

pril 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:florian.auer@uibk.ac.at
mailto:valentina.lenarduzzi@lut.fi
mailto:michael.felderer@uibk.ac.at
mailto:davide.taibi@tuni.fi
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
http://nginx.com/blog/Microservices-at-netflix-architectural-best-practices/
http://www.infoq.com/presentations/linkedin-Microservices-urn
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1016/j.infsof.2021.106600
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106600&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 137 (2021) 106600F. Auer et al.

p
t
w
c
G
f

t
s
w
S
d

2

O
r
a
t
s
d
i

a
s
c
t
c
m
t
t
c
s
s
s
t
t
i

3

b
a
M

Fig. 1. Comparison between Microservices and monolithic architectures.
For this purpose we designed and conducted interviews with ex-
erienced practitioners as participants, to understand which charac-
eristics and metrics they had considered before the migration and
hich they should have considered, comparing the usefulness of the

ollection of these characteristics. Finally, based on the application of
rounded Theory on the interviews, we developed our decision support

ramework.
Paper structure. Section 2 presents the background and Section 3

he related work. Section 4 presents the design and the results of the
urvey. In Section 5, we present the defined framework. In Section 6,
e discuss the results we obtained and the defined framework. In
ection 7, we identify threats to the validity of this work. Finally, we
raw conclusions in Section 8 and highlight future work.

. Background

The Microservice architecture pattern emerged from Service-
riented Architecture (SOA). Although services in SOA have dedicated

esponsibilities, too, they are not independent. The services in such an
rchitecture cannot be turned on or off independently. This is because
he individual services are neither full-stack (e.g., the same database is
hared among multiple services) nor fully autonomous (e.g., service A
epends on service B). As a result, services in SOA cannot be deployed
ndependently.

In contrast, Microservices are independent, deployable, and have
lot of advantages in terms of continuous delivery compared to SOA

ervices. They can be developed in different programming languages,
an scale independently from other services, and can be deployed on
he hardware that best suits their needs because of their autonomous
haracteristics. Moreover, their typically small size, compared to large
onolithic systems, facilitates maintainability and improves the fault

olerance of the services. One consequence of this architecture is that
he failure of one service will not disrupt the whole system, which
ould happen in a monolithic system [2]. Nevertheless, the overall
ystem architecture changes dramatically (see Fig. 1). One monolithic
ervice is broken down into several Microservices. Thus, not only the
ervice’s internal architecture changes, but also the requirements on
he environment. Each Microservice can be considered as a full-stack
hat requires a full environment (e.g., its own database, its own service
nterface). Hence, coordination among the services is needed.

. Related work

In this section, we analyze the characteristics and measures adopted
y previous studies, in order to classify the characteristics and metrics
dopted in empirical studies that compared monolithic and
icroservices-based systems.
2

3.1. Microservice migration

Many studies concerning specific characteristics of them have al-
ready been published. However, there are still some challenges in
understanding how to develop such kinds of architectures [4–6]. A few
secondary studies in the field of Microservices (i.e., [3,7–10] and [11])
have synthesized the research in this field and provide an overview of
the state of the art and further research directions.

Di Francesco et al. [7] studied a large corpus of 71 studies in
order to identify the current state of the art on Microservices architec-
ture. They found that the number of publications about Microservices
sharply increased in 2015. In addition, they observed that most publi-
cations are spread across many publication venues and concluded that
the field is rooted in practice. In their follow-up work, Di Francesco
et al. [8], provided an improved version, considering 103 papers.

Pahl et al. [11] covered 21 studies. They discovered, among other
things, that most papers are about technological reviews, test envi-
ronments, and use case architectures. Furthermore, they found no
large-scale empirical evaluation of Microservices. These observations
made them conclude that the field is still immature. Furthermore, they
stated a lack of deployment of Microservice examples beyond large
corporations like Netflix.

Soldani et al. [3] identified and provided a taxonomic classification
comparing the existing gray literature on the pains and gains of Mi-
croservices, from design to development. They considered 51 industrial
studies. Based on the results, they prepared a catalog of migration and
re-architecting patterns in order to facilitate re-architecting non-cloud-
native architectures during migration to a cloud-native Microservices-
based architecture.

All studies agree that it is not clear when companies should mi-
grate to Microservices and which characteristics the companies or
the software should have in order to benefit from the advantages of
Microservices.

Thus, our work is an attempt to close this gap by providing a set of
characteristics and measures together with an assessment framework,
as designed in our previous proposal [12].

3.2. Characteristics and measures investigated in empirical studies on mi-
croservices

Different product and process characteristics and measures have
been investigated in the literature while comparing monolithic systems
with Microservices architectures.

Different studies focused only on product characteristics [13–23],
on process characteristics [13,20,22–24] or on both [13,15,20,22,23,
25–27]. Moreover, other studies [13,16,24] investigated and compared
costs. Furthermore, other studies, investigated several characteristics at
the same time [13].

As for the product characteristics, the most frequently addressed
one is performance (see Table 2). In detail, the papers [13–20,22]
have a focus on performance. This is followed by scalability, which is
discussed by the papers [14–19,21], and [22]. Other characteristics like



Information and Software Technology 137 (2021) 106600F. Auer et al.
Table 1
Product-related measures.

Characteristic Measures

Performance

Response time: The time between sending a request and receiving the corresponding response. This
is a common metric for measuring the performance impact of approaches [13,15–17,19,20,22].
CPU utilization: The percentage of time the CPU is not idle. Used to measure performance. [20]
reports the relationship between the number of VMs and the overall VMs utilization. In addition, [22]
analyzes the impact of the decision between VMs and containers on CPU utilization.
Impact of programming language: Communication between Microservices is network-based. Hence,
network input and output operations require a considerable amount of the total processing time. The
network performance is influenced amongst others by the selection of the programming language.
That is due to the different implementations of the communication protocols. [18] analyzed the
impact of design decisions on the performance and recommend specific programming languages for
specific ranges of network message sizes. However, considering scalability in the system design seems
to mitigate programming language impact. An example therefore is the routing mechanism for
Microservices proposed in [19].
Path length: The number of CPU instructions to process a client request. [14] reports that the length
of the code path of a Microservice application developed using Java with a hardware configuration of
one core, using a bare process, docker host, and docker bridge, is nearly twice as high as in a
monolithic system.
Usage of containers: The usage of containers can influence performance, since they need additional
computational time compared to monolithic applications deployed in a single container. [18] reports
that the impact of containers on performance might not always be negligible.
Waiting time: The time a service request spends in a waiting queue before it gets processed. [17,21]
discuss the relationship between waiting time and number of services. Furthermore, [19] mentions an
architecture design that halves the waiting time compared to other design scenarios.

Scalability Number of requests per minute or second: (also referred to as throughput [14,16,22] or average
latency [15,18]), is a performance metric. [22] found that in their experimental setting, the
container-based scenario could perform more requests per second than the VM-based scenario.
Number of features per Microservice: [21] points out that the number of features per Microservice
affects scalability, influences communication overhead, and impacts performance.

Availability
Downtime: Microservice might suffer of downtime, if the system is not properly designed [15,28,29].
Mean time to recover: The mean time it takes to repair a failure and return back to operations. [20]
uses this measure to quantify availability.
Mean time to failure: The mean time until the first failure. [20] uses this measure together with
mean time to recover as a proxy for availability.

Maintenance Complexity: [13,16] notes that Microservices reduce the complexity of a monolithic application by
breaking it down into a set of services. However, some development activities like testing may
become more complex [16]. Furthermore, [18] state that the usage of different languages for different
Microservices increases the overall complexity.
Testability: [23] concludes that the loose coupling of Microservices at the application’s front-end
level improves testability.
Table 2
Process-related factors.

Characteristic Measures

Process-related
benefits

Development independence between teams: The migration
from a monolithic architecture to a Microservices-oriented
one changes the way in which the development team is
organized. Typically, a development team is reorganized
around the Microservices into small, cross-functional, and
self-managed teams [13,15,20,23,24].
Continuous delivery: [13] notes that the deployment in a
Microservices environment is more complex, given the high
number of deployment targets. Hence, the authors of [13]
suggest automating the deployment as much as possible.
Reusability: Microservices are designed to be independent of
their environment and other services [22]. This facilitates
their reusability.

availability [15,20] or maintenance [13,16,18,23] are considered only
in a few papers.

Overall, related works identified the following characteristics as
reported in Tables 1, 2, and 3:

• Product

– Performance
– Scalability
– Availability
– Maintenance

• Process
3

Table 3
Cost-related measures.

Characteristic Measure

Personnel Cost

Development costs: [16] argues that Microservices reduce
the development costs given that complex monolithic
applications are broken down into a set of services that only
provide a single functionality. Furthermore, most changes
affect only one service instead of the whole system.

Infrastructure
Cost

Cost per hour: Is a measure used to determine the
infrastructure costs [13]. According to the experiment done
in [24], the Microservices architecture had lower
infrastructure costs compared to monolithic designs.
Cost per million requests: In comparison to cost per hour,
this measure is based on the number of requests/usage of
the infrastructure. [24] uses the infrastructure costs of a
million requests to compare different deployment scenarios.

• Cost

– Personnel Cost
– Infrastructure Cost

From the literature, we also identified 18 measures for measuring
product process and cost, as reported in Tables 1, 2, and 3.

Product-related measures. We identified 13 measures (Table 1)
for the four identified sub-characteristics (performance, scalability,
availability, and maintenance).

From the obtained results, we can see that the highest number of
measures is related to performance and scalability, where we identified
a total of nine studies referring to them. Among them, response time,



Information and Software Technology 137 (2021) 106600F. Auer et al.

t
f

3

e
a
M
o

m

f
T
t
o
H
i
d
i

b
r
t
s
m
n
o

t
H
f
b
p
f
t
t
h
r
‘
b

T
i
t
o
t
M
m
p
S
c

b
l
c
m
m

4

p
s
o

4

o
b

(

m
o
e
c
o
o

c
v
a
v

t
t

4

p

number of requests per minute or second, and waiting time are the most
commonly addressed measures. For availability, we derived only three
measures and for maintainability only two.

Process-related measures. Seven studies investigated the migra-
tion process using three factors: development independence between
teams, usage of continuous delivery, and reusability (Table 2). These
three factors can be considered as ’’Boolean measures’’ and can be
used by companies to understand whether their process can be easily
adapted to the development of Microservices-based systems.

Existing independent teams could easily migrate and benefit from
the independence freedom provided by Microservices. Continuous de-
livery is a must in Microservices-based systems. The lack of a continu-
ous delivery pipeline eliminates most of the benefits of Microservices.
Reusability is amplified in Microservices. Therefore, systems that need
to reuse the same business processes can benefit more from Microser-
vices, while monolithic systems in which there is no need to reuse the
same processes will not experience the same benefits.

Besides the analyzed characteristics, the papers also discuss several
process-related benefits of the migration. Technological heterogene-
ity, scalability, continuous delivery support, and simplified mainte-
nance are the most frequently mentioned benefits. Furthermore, the
need for recruiting highly skilled developers and software architects is
considered as a main motivation for migrating to Microservices.

Cost-comparison-related measures. As for this characteristic,
hree studies include it in their analysis and consider three measures
or the comparison (Table 3).

.2.1. Microservices migration effects
The analysis of the characteristics and measures adopted in the

mpirical studies considered by the related works allowed us to classify
set of measures that are sensitive to variations when migrating to
icroservices. The detailed mapping between the benefits and issues

f each measure is reported in Table 1.
Product Characteristics. Regarding product characteristics, perfor-

ance is slightly reduced in Microservices.
When considering the different measures adopted to measure per-

ormance, the usage of containers turned out to decrease performance.
his is also confirmed by the higher number of CPU instructions needed
o process a client request (path length), which is at least double that
f monolithic systems and therefore results in high CPU utilization.
owever, the impact of the usage of different programming languages

n different services is negligible. Even if different protocols have
ifferent interpreters for different languages, the computational time
s comparable.

When considering high scalability requirements, Microservices-
ased systems in general outperform monolithic systems in terms of
esources needed. If a monolith is using all the resources, the way
o handle more connections is to bring up a second instance. If a
ingle microservice uses all the resources, only this service will need
ore instances. Since scaling is easy and precise, this means only the
ecessary amount of resources is used. As a result, for the same amount
f money spent on resources, microservices deliver more throughput.

The availability of Microservices-based system can be affected by
he higher number of moving parts compared to monolithic systems.
owever, differently than in monolithic systems, in the event of the

ailure of one Microservice, the remaining part of the system will still
e available [1,3]. It is important to mention that Microservices do not
rovide high availability by default and maintaining high availability
or microservices is not a simple task [28]. In order to investigate
he practices to maintain high-availability in Microservices-based sys-
ems, Marquez et al. [29] conducted a survey among 40 practitioners,
ighlighting 12 practices. Examples of these practices are ‘‘Prevent
emote procedure calls from waiting indefinitely for a response’’ or
‘Efficiently distributing incoming network traffic among groups of
4

ackend servers’’.
Maintenance is considered more expensive in the selected studies.
he selected studies agree that the maintenance of a single Microservice

s easier than maintaining the same feature in Microservices. However,
esting is much more complex in Microservices [18], and the usage
f different programming languages, the need for orchestration, and
he overall system architecture increase the overall maintenance effort.
oreover, Microservices-based systems, should also take into account
aintenance-related metrics between services, trying to reduce cou-
ling and increase cohesion between services. For this purpose, the
tructural Coupling (SC) [30] might be used to easily identify the
oupling between services.

Cost-related measures The development effort of Microservices-
ased systems is reported to be higher than the development of mono-
ithic systems [16]. However, [13] and [24] report that infrastructure
osts are usually lower for Microservices than for monolithic systems,
ainly because of the possibility to scale only the service that need
ore resources instead of scaling the whole monolith.

. The survey

In this section, we present the survey on migration metrics that we
erformed as well as its results. We describe the research questions, the
tudy design, the execution, and the data analysis, as well as the results
f the survey.

.1. Goal and research questions

We conducted a case study among developers and professionals in
rder to identify in practice which metrics they considered important
efore and after migration.

Based on our goal, we derived the following research questions
RQs):

RQ1. Why did companies migrate to Microservices?
RQ2. Which information/metrics was/were collected before and after

the migration?
RQ3. Which information/metrics was/were considered useful by the

practitioners?

With RQ1, we aim to understand the main reasons why companies
igrated to Microservices, i.e., to understand whether they considered

nly metrics related to these reasons or other aspects as well. For
xample, we expect that companies that migrate to increase velocity
onsidered velocity as a metric, but we also expect them to consider
ther information not related to velocity, such as maintenance effort
r deployment time.

With RQ2, we want to understand the information/metrics that
ompanies considered as decision factors for migrating to Microser-
ices. However, we are also interested in understanding whether they
lso collected this information/these metrics during and after the de-
elopment of Microservices-based systems.

With RQ3, we want to understand which information/metrics prac-
itioners considered useful to collect the migration process, and which
hey did not collect but now believe they should have collected.

.2. Study design

The information was collected by means of a questionnaire com-
osed of five sections, as described in the following:

• Demographic information: In order to define the respondents’
profile, we collected demographic background information. This
information considered predominant roles and relative experi-
ence. We also collected company information such as application
domain, organization’s size via number of employees, and number

of employees in the respondents’ own team.



Information and Software Technology 137 (2021) 106600F. Auer et al.
• Project information: We collected the following information on
the project migrated to Microservices: creation and migration
dates of the project.

• Migration motivations (RQ1): In this section, we collected infor-
mation on the reasons for migrating to microservices.

• Migration information/metrics (RQ2): This section was com-
posed of two main questions:

– Which information/metrics were considered before the mi-
gration, to decide if migrate or not?

– Which information/metrics were considered after the mi-
gration, to decide if migrate or not?

• Perceived usefulness of the collected information/metrics (RQ3):
In this section, we collected information on the usefulness of an
assessment framework based on the metrics identified and ranked
in the previous section. The goal was to understand whether the
set of metrics could be useful for deciding whether to migrate a
system or not in the future.
This section was based on three questions:

– Here we ask to rank how useful is each metric proposed in
the Literature (Table 1) and mentioned by the interviewee
to decide if migrate to microservices or not. The ranking is
based on a 6-point Likert scale, where 1 means absolutely
not and 6 absolutely.

– How easy are the factors and measures to collect and use?
– Which factor or measure is not easy to collect?
– How useful is a possible discussion of the factors and mea-

sures reported in the previous questions before the migra-
tion? The ranking is based on a 6-point Likert scale, where
1 means absolutely not and 6 absolutely.

– Do you think the factors or measures support a reasoned
choice of migrating or not? (if not, please motivate)

– Would you use this set of factors and measures in the future,
in case of migration of other systems to Microservices? If
not, please motivate.

The questionnaire adopted in the interviews is reported in Ap-
pendix.

4.3. Study execution

The survey was conducted over the course of five days, during
the 19th International Conference on Agile Processes in Software En-
gineering, and Extreme Programming (XP 2018). We interviewed a
total of 52 practitioners. We selected only experienced participants that
successfully developed the microservices-based system and deployed in
production. We did not consider any profiles coming from academia,
such as researchers or students.

4.4. Data analysis

Two authors manually produced a transcript of the answers of each
interview and then provided a hierarchical set of codes from all the
transcribed answers, applying the open coding methodology [31]. The
authors discussed and resolved coding discrepancies and then applied
the axial coding methodology [31].

Nominal data was analyzed by determining the proportion of re-
sponses in each category. Ordinal data, such as 5-point Likert scales,
was not converted into numerical equivalents since using a conversion
from ordinal to numerical data entails the risk that any subsequent
analysis will yield misleading results if the equidistance between the
values cannot be guaranteed. Moreover, analyzing each value of the
scale allowed us to better identify the potential distribution of the
answers. Open questions were analyzed via open and selective cod-
ing [31]. The answers were interpreted by extracting concrete sets of
5

similar answers and grouping them based on their perceived similarity.
Table 4
Role.

Role #Answers

Developer 31
Project Manager 11
Agile Coach 2
Architect 2
Upper Manager 2
Other 5

Table 5
Experience (in years).

Experience in years # Answers

Years ≤ 2 2
2 < years ≤ 5 23
5 < years ≤ 8 12
8 < years ≤ 10 11
10 < years ≤ 15 3
(no answer) 1

Table 6
Organization domain.

Organiz. Domain # Answers

IT consultant 10
Banking 6
Software house 6
E-commerce 8
Other 9
(no answer) 13

Table 7
Team size.

# Team members # Answers

# ≤ 10 14
10 < # ≤ 20 12
20 < # ≤ 50 7
# > 50 1
(no answer) 18

4.5. Replication

In order to allow replication and extension of our work, we pre-
pared a replication package with the results obtained.4 The complete
questionnaire is reported in Appendix.

4.6. Results

In this section, we will report the obtained results, including the
demographic information regarding the respondents, information about
the projects migrated to Microservices, and the answers to our research
questions.

Demographic information. The respondents were mainly working
as developers (31 out of 52) and project managers (11 out of 52), as
shown in Table 4. The majority (23 out of 52) of them had between 2
and 5 years of experience in this role (Table 5). Regarding company
information, out of the 52 respondents, 10 worked in IT consultant
companies, 6 in software houses, 8 in e-commerce, and 6 in banks.
The remaining 9 respondents who provided an answer worked in
different domains (Table 6). The majority of the companies (15 out
of 52 respondents) were small and medium-sized enterprises (SMEs)
with a number of employees between 100 and 200, while 9 companies
had less than 50 employees. We also interviewed people from 3 large
companies with more than 300 employees (see Table 8). Regarding the
team size, the vast majority of the teams had less than 50 members (33

4 Raw data available at https://figshare.com/s/cb8314fb66163d9fcdc9.

https://figshare.com/s/cb8314fb66163d9fcdc9


Information and Software Technology 137 (2021) 106600F. Auer et al.
Table 8
Organization size.

# Employees in organization # Answers

# organization employees ≤ 50 9
50 < # organization employees ≤ 100 0
100 < # organization employees ≤ 200 15
200 < # organization employees ≤ 300 3
# organization employees > 300 8
(no answer) 19

Table 9
Application age.

Application age # Answers

years < 5 18
5 < years ≤ 10 18
10 < years ≤ 15 9
15 < years ≤ 20 3
years > 20 5

Table 10
Migration time.

Migration time # Answers

year ≤ 2 23
2 < year ≤ 4 20
4 < year 3
(no answer) 6

out of 52 respondents). 14 teams had less than 10 members, 12 teams
had between 10 and 20 members, and 7 teams had between 20 and 50
members. Only one team was composed of more than 50 members (see
Table 7).

Project information As for the project’s age (see Table 9), about
69% of the respondents (36 out of 52) started the development less than
10 years ago, while 9 interviewees created the project between 10 and
15 years ago. Another 8 interviewees referred to projects with an age
between 15 and 20 years, while 5 respondents started the development
more than 20 years ago. As for the migration to Microservices, 23
respondents reported that the process started 2 years ago or less, while
for 20 interviewees the process started between 2 and 4 years ago (see
Table 10).

4.6.1. Migration motivations (RQ1)
In the answers to the question about the interviewees’ motivation

to migrate from their existing architecture to Microservices, a total of
97 reasons were mentioned. The open coding of the answers classified
the 97 reasons into 22 motivations. In Fig. 2, all motivations that
were mentioned three or more times are presented. The three main
motivations are maintainability, deployability, and team organization.

The most commonly mentioned motivation was to improve the
maintainability of the system (19 out of 97). They reported, among
other things, that the maintenance of the existing system had become
too expensive due to increased complexity, legacy technology, or size
of the code base.

Deployability was another important motivation for many intervie-
wees (12 out of 97). They expected improved deployability of their
system after the migration. The improvement they hoped to achieve
with the migration was a reduction of the delivery times of the software
itself as well as of updates. Moreover, some interviewees saw the mi-
gration as an important enabler for automated deployment (continuous
deployment).

The third most frequently mentioned motivation was not related to
expected technical effects of the migration but was organizational in
nature, namely team organization (11 out of 97). With the migration
to Microservices, the interviewees expected to improve the autonomy
of teams, delegate the responsibility placed on teams, and reduce the
need for synchronization between teams.
6

Table 11
Information/metrics considered before the migration
mentioned at least three times.

Information/Metrics # Answers

Number of bugs 16
Complexity 11
Maintenance effort 10
Velocity 6
Response time 6
Lines of code 3
Performance 3
Extensibility 3
Change frequency 3
Scalability 3

Table 12
Information/metrics considered after the migration,
mentioned at least three times.

Information/Metrics # Answers

Number of bugs 12
Complexity 9
Maintenance effort 7
Velocity 5
Scalability 5
Memory consumption 3
Extensibility 3

The remaining motivations like cost, modularity, willingness to
adopt microservices because other companies are also adopting them,
or the reduction of the overall system complexity seem to be moti-
vations that are part of the three main motivations discussed above,
or at least influence one of them. For example, complexity was often
mentioned in combination with maintenance, or scalability together
with team organization. Thus, it appears that these three motivations
are the main overall motivations for the migration from monoliths to
Microservices.

4.6.2. Information/metrics collected before and after the migration (RQ2)
We collected 46 different pieces of information/metrics, which were

considered a total of 107 times by the interviewees before the migra-
tion to Microservices. The three most commonly mentioned ones were
the number of bugs, complexity, and maintenance effort (see Table 11),
followed by the velocity, and response time. Other five motivations
were mentioned less frequently.

Considering the information/metrics that collected after migration
to Microservices, 26 clearly distinguishable types were identified that
were mentioned a total of 66 times by the participants. Again, the
number of bugs, complexity, and maintenance effort were the most
frequently mentioned ones. (see Table 12).

As expected, the vast majority of the considered information/
metrics was aimed at measuring characteristics related to the migration
motivations. As maintainability was the most important reason to
migrate to Microservices, maintainability-related metrics turned out
to be the most important metrics considered before the migration.
It is interesting to note that in some cases, companies collected this
information before the migration but stopped collecting it during and
after the migration (e.g., 4 interviewees out of 16 who had collected
the number of bugs in their monolithic system did not collect the same
information in the Microservices-based system).

The results suggest that the most important information needs
remain the same from the start of the migration until its completion.
Thus, there may be a set of migration information/metrics that is
fundamentally important for the process of migration and that should
be collected and measured throughout the migration.



Information and Software Technology 137 (2021) 106600F. Auer et al.
Fig. 2. Migration motivations mentioned by more than three participants.
Table 13
Information/metrics not easy to collect mentioned by
more than one interviewee.

Metric # Answers

Complexity 6
Testability 2
Response time 2
Benchmark data 2
Availability 2

4.6.3. Information/metrics considered useful (RQ3)
In this section, we will report the results on the perceived usefulness

of the metrics collected.
Asking the interviewees how easy they think it is to collect the

factors and measures proposed, 41 answered that they considered them
as easy, while 10 did not consider them as easy (one interviewee
7

did not provide an answer to this question). While entering into the
details of the metrics not easy to collect, only a limited number of
interviewees mentioned some metrics as complex. 20 different metrics
were reported, but only complexity was mentioned by six interviewees
while four metrics (testability, response time, benchmark data, and
availability) were considered as complex by only two interviewee and
the remaining 15 metrics were mentioned only by one participant (see
Table 13).

Almost all interviewees categorized the usefulness of the metrics as
very useful (24 out of 52) or extremely useful (25 out of 52). Table 14
reports the medians for the usefulness of each metric reported by the
interviewees. Considering the usefulness of a possible discussion of
the factors and measures reported in RQ2 before the migration, the
majority of the interviewees considered it as very useful to understand
the importance of the migration. (see Table 15). Furthermore, all but
three interviewees confirmed that they believe that the metrics support
a rational choice on whether to migrate or not.
Table 14
How useful did the interviewees consider each metric before migration.

Usefulness Median

Response time (the time between sending a request and receiving the corresponding response) 4

Cpu utilization (the percentage of time the cpu is not idle) 4

Path length (the number of cpu instructions to process a client request) 4

Waiting time (the time a service request spends in a waiting queue before it get processed) 4

Impact of programming language (communication between microservices are network based) 4

Usage of containers (the usage of containers can influence the performance, since they need
additional computational time compared to monolithic applications deployed in a single
container)

4

Number of features per microservices 4.5

Number of requests per minute or second (also referred as throughput or average latency) 5

Downtime 5

Mean time to recover (the mean time it takes to repair a failure and return back to operations) 5

Mean time to failure (the mean time till the first failure) 5

Testability 5

Complexity 5

Development independence between teams (the migration from a monolithic architecture to a
microservice oriented changes the way in which the development team is organized)

5

Continuous delivery 5

Reusability 5

Personnel cost (development cost) 4

Infrastructure cost (cost per hour) 4

Infrastructure cost (cost per million of requests) 4

Likert scale: 1—Absolutely not, 2—Little, 3—Just enough, 4—More than enough,
5—Very/a lot, 6—Extremely useful.



Information and Software Technology 137 (2021) 106600F. Auer et al.

w
b

5

w
m
m
b
o
s

a
f
f
r
a
t
T
c

t
c
s
i
n

d

5

t
p
r
d
p
o
p
a
t

i
c
i
w

Table 15
How useful did the interviewees consider discussion of the set of
information/metrics before migration.

Usefulness # Answers

Absolutely not 0
Little 0
Just enough 1
More than enough 2
Very/a lot 24
Absolutely 25

Finally, 65% (34 out of 52) of the interviewees stated that they
ould consider the set of information/metrics proposed in the future,
efore migrating to microservice.

. The assessment framework

In this section, we propose an evidence-based assessment frame-
ork based on the characteristics that should be considered before
igration to identify and measure potential benefits and issues of the
igration. The framework is evidence-based in the sense of evidence-

ased software engineering [32] as it has not been derived based purely
n subjective experience of the authors, but rigorously based on a
ystematic literature study and a survey.

The goal of the framework is to support companies in reasoning
bout the usefulness of migration and make decisions based on real
acts and actual issues regarding their existing monolithic systems. The
ramework is not aimed at prescribing a specific decision, such as
ecommending to migrate based on a specific metric, but it is aimed
t helping companies to not miss important aspects and to reason on
he most complete set of information before deciding to migrate or not.
he framework therefore has to be tailored to the specific contexts of
ompanies that apply it.

Based on the results obtained in our survey (Section 4), we grouped
he different pieces of information and metrics into homogeneous
ategories, based on the classification proposed by the ISO/IEC 25010
tandard [33]. However, we also considered two extra categories not
ncluded in ISO/IEC 25010, which focus on product characteristics,
amely cost and processes.

The framework is applied in four steps:

Step 1 Motivation reasons identification
Step 2 Metrics identification
Step 3 Migration decisions
Step 4 Migration

In the next sub-sections, we will describe each of the four steps in
etail.

.1. Motivations reasons identification

Before migrating to Microservices, companies should clarify why
hey are migrating and discuss their motivation. As highlighted by
revious studies [1,3], companies migrate to Microservice for various
easons and often migrate to solve some issues that need to be solved
ifferently. Moreover, sometimes the migration can have negative im-
acts, for instance when companies do not have enough expertise or
nly have a small team that cannot work on different independent
rojects. The quality characteristics listed in Table 16 could be used
s a checklist to determine whether there is some common problem in
he system that the company intends to solve with the migration.

Based on the motivation, companies should reason – optimally
ncluding the whole team in the process – on whether the migration
ould be the solution to their problems or whether it could create more
ssues than benefits. If, for any reason, it is not possible to include the
hole team in this discussion, we recommend including at least the
8

project manager and a software architect, ideally with knowledge about
Microservices.

In case the team still wants to migrate to Microservices after this
initial discussion, it could start discussing how to collect the metrics
(Step 2).

5.2. Step 2 - metrics identification

In order to finalize the decision on whether or not to migrate
to Microservices, teams should first analyze their existing monolithic
system. The system should be analyzed by considering the metrics
reported in Table 16.

We recommend starting by considering the information and metrics
related to the motivation for the migration. However, for the sake of
completeness, we recommend discussing the whole set of metrics. For
example, if a team needs to migrate to Microservices because of main-
tenance issues, they should not only consider the block "maintenance"
but should also consider the remaining metrics, since other related
information such as the independence between teams (process-related)
could still be very relevant for maintenance purposes.

The list of metrics reported in Table 16 is not meant to be complete
for each characteristic, but is rather to be used as a reference guide for
companies to help them consider all possible aspects that could affect
the migration. For example, a company’s monolithic system might
suffer from performance issues (characteristic ’’Functional Suitability’’).
The analysis of the sub-characteristics will help them to reason about
’’Overall performance’’, but they could also consider whether it is
a problem related to ’’Time behavior’’ by analyzing the metric ’’Re-
sponse time’’ and also considering the other sub-characteristics listed.
However, if the motivation of the performance issue is different, the
company will also be able to reason about it.

5.3. Migration decisions

After a thorough discussion of the collected metrics, the team can
decide whether to migrate or not based on the results of the discussion
performed in the previous step.

For example, there will be cases where a company may decide not
to migrate after all. If the company realizes that the reason for the low
performance is due to the inefficient implementation of an algorithm,
they might decide to implement it better. If the main issue is cost of
maintenance and the company wants to migrate mainly to reduce this
cost, they might think of better team allocation or reason about the
root causes of the high costs, instead of migrating with the hope that
the investment will enable them to save money.

5.4. Migration

The team can then start the migration to Microservices. During this
phase, we recommend that companies automate measurement of the
relevant metrics and set up measurement tools to continuously collect
relevant information as identified in Step 2.

6. Discussion

In this section, we will discuss the implications of this work.
The results of our survey are in line with the characteristics iden-

tified by the related work. The vast majority of the interviewees mi-
grated to Microservices in order to improve maintainability [1,3].
However, deployability, team organization (such as the independence
between teams), and cost are also important characteristics mentioned
frequently in the interviews and not considered as important by pre-
vious work. Modularity, complexity, fault tolerance, scalability, and
reusability were mentioned several times as well.

The proposed framework therefore covers (sub-)characteristics that

take the results of the survey into account and are aligned with the



Information and Software Technology 137 (2021) 106600F. Auer et al.
Table 16
The proposed assessment framework.

Characteristic Sub-characteristic Measure Metric

Functional suitability

Appropriateness System requirements understandability

Performance efficiency

Overall

Time behavior Response time, throughput, . . .

Resource utilization Memory, disk space, nodes, . . .

Compliance Scalability

Other #Requests

Reliability

Overall Mean Time to Failure
Mean Time to Repair
Mean Time Between Failure

Availability %Availability
Mean Time Between Downtimes

Fault tolerance #Bugs
Code coverage

Impact of failures #Feature blocked, . . .

Other Backups

Maintainability

Overall

Modularity Code complexity
Adopted patterns

Reusability

Testability Code coverage

Analyzability #Microservices
Complexity (code, data, . . . )
Interactions between services

Modifiability Code size #Lines of code, . . .
Change frequency
Coupling
Service responsibilities

Changeability Extensibility

Cost

Overall Development, testing, deployment

Infrastructure Cloud/On-Premise infrastructural costs

Effort Overall development
Testing, deployment, maintenance, . . .

Process related

Independence between teams
#User stories done per sprint
Data management
Delivery time
Deployment frequency
Feature priorities
Roadmap
Service responsibilities
Team alignment
Velocity (lead time/time to release)
established ISO/IEC 25010 standard. The top-level characteristics are
functional suitability, reliability, maintainability, cost, and process. The
characteristics cover all the relevant sub-characteristics and metrics
identified in the survey. For instance, modularity is a sub-characteristic
of maintainability and scalability is a metric for performance efficiency.

Finally, the framework suggests concrete metrics for measuring
the characteristics. Given that all discussed characteristics are covered
by metrics identified in the papers, the metrics can be used as an
initial tool set to measure the main influencing factors for migrating a
monolithic system to Microservices. Some characteristics are not easy
to quantify, however. For instance, testability has effectiveness and
efficiency aspects that can only be approximated by different metrics
[34], like the degree of coverage or the number of defects covered.
9

The survey was used to confirm the metrics found and to identify
additional ones. The metrics most commonly mentioned in the survey
are the number of bugs, complexity, and maintenance effort. It turns
out that for the characteristics that are most relevant for migration,
these metrics are also mentioned more often than for other character-
istics. Maintainability is mentioned as the most important reason for
migration, and maintainability-related metrics are also highlighted as
the most important metrics.

In our study, we discovered that practitioners often do not properly
measure their product, process, and cost before migrating to Microser-
vices and realize only later (during or after the migration) that relevant
information is missing. Our proposed assessment framework should
not only help to identify the most relevant characteristics and metrics
for migration, but also make professionals aware of the importance of

measurement before, during, and after migration to Microservices. In



Information and Software Technology 137 (2021) 106600F. Auer et al.

r
d
w
i
u
a

t
i
c
v
p
a
e
b

m
c
i

addition, there has not been a clear understanding what to measure
before migrating to Microservices. Our proposed assessment framework
intends to fill this gap. However, evaluation and refinement of the
framework in industrial case studies is required as part of future work.

7. Threats to validity

We applied the structure suggested by Yin [35] to report threats to
the validity of this study and measures for mitigating them. We report
internal validity, external validity, construct validity, and reliability.
As we performed a mixed-methods approach comprising a Systematic
Mapping Study and a survey, we will identify in this section different
threats to validity regarding both parts of our study.

7.1. Threats to validity regarding the survey

Internal Validity. One limitation that is always a part of survey
esearch is that surveys can only reveal the perceptions of the respon-
ents which might not fully represent reality. However, our analysis
as performed by means of semi-structured interviews, which gave the

nterviewers the possibility to request additional information regarding
nclear or imprecise statements by the respondents. The responses were
nalyzed and quality-checked by a team of four researchers.

External Validity. Overall, a total of 52 practitioners were in-
erviewed at the 19th International Conference on Agile Processes
n Software Engineering, and Extreme Programming (XP 2018). We
onsidered only experienced respondents and did not accept any inter-
iewees with an academic background. XP 2018 covers a broad range of
articipants from different domains who are interested in Microservices
nd the migration to Microservices. We therefore think that threats to
xternal validity are reasonable. However, additional responses should
e collected in the future.

The questions are aligned with standard terminology and cover the
ost relevant characteristics and metrics. In addition, the survey was

onducted in interviews, which allowed both the interviewees and the
nterviewer to ask questions if something was unclear.

Reliability. The survey design, its execution, and the analysis fol-
lowed a strict protocol, which allows replication of the survey. How-
ever, the open questions were analyzed qualitatively, which is always
subjective to some extent, but the resulting codes were documented.

8. Conclusion

In this paper, we proposed an assessment framework to support
companies in reasoning on the usefulness of the migration to Microser-
vices.

We identified a set of characteristics and metrics that companies
should discuss when they consider migrating to Microservices. The
identification of these characteristics was performed by means of an
industrial survey, where we interviewed 52 practitioners with expe-
rience in developing Microservices. The interviews were based on a
questionnaire in which we asked the respondents to identify which
metrics and characteristics had been adopted when they migrated to
Microservices, which of these were useful, and which had not been
adopted but should have been. The metrics were collected by means
of open questions so as to avoid any bias of the results due to a set
of predefined answers. After the open questions, we also asked the
practitioners to check whether they had also collected some of the
metrics proposed in the literature, and whether they believed it would
have been useful to collect them.

The result of this work is an assessment framework that can support
companies in discussing whether it is necessary for them to migrate
or not. The framework will help them avoid migration if it is not
necessary, especially when they might get better results by refactoring
10

their monolithic system or re-structuring their internal organization.
Future work include the validation of the framework in industrial
settings, and the identification of a set of automatically applicable
measure, that could easily provide a set of meaningful information,
reducing the subjectivity of the decisions. Another interesting future
direction is the extension of this framework for different cloud-native
technologies, including serverless [36,37] and Micro-Frontends [38].
It would be interesting to investigate frameworks to enable practition-
ers to understand when it is beneficial to migrate from monolithic
to serverless functions, and in particular, which serverless pattern
to adopt [39] to create microservices based on serverless functions
without decreasing productivity or increase technical debt [40]

CRediT authorship contribution statement

Florian Auer: Conceptualization, Methodology, Writing - original
draft. Valentina Lenarduzzi: Conceptualization, Methodology, Writ-
ing - original draft. Michael Felderer: Supervision, Reviewing and
Editing, Funding acquisition. Davide Taibi: Supervision, Reviewing
and Editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was partially supported by the Austrian Science Fund
(FWF): I 4701-N and by the Federal Ministry for Climate Action,
Environment, Energy, Mobility, Innovation and Technology (BMK),
Austria, the Federal Ministry for Digital and Economic Affairs (BMDW),
Austria, and the Province of Upper Austria in the frame of the COMET
- Competence Centers for Excellent Technologies Programme managed
by Austrian Research Promotion Agency FFG.

Appendix. The survey

In this Section we report the questionnaire adopted in the inter-
views.

Demographic information

• Company name
• Respondent name
• Respondent email address
• Role in the organization

– Upper Manager
– Manager
– Developer
– Other

• How many years have you spent in your role?
• Number of employees of your team
• Number of employees of your organization
• Organization’s domain(s)

Project Information

• Which microservices-based application is your company develop-
ing?

• When was the application first created?
• When did your company decide to migrate to microservices?

Migration Motivations
• Why did your company decide to migrate?



Information and Software Technology 137 (2021) 106600F. Auer et al.

P

Migration Information/Metrics

• Which information/metrics were considered before the migra-
tion?

• Which information/metrics were considered after the migration?

erceived usefulness of the collected Information/Metrics

• We developed a set of factors and measures to support companies
in evaluating the migration to microservices before they start,
based on the assessment of a set of information to support them
in reasoning about the needs of migrating.

• Which of the following information/metrics do you consider use-
ful to collect and discuss before the migration?

Scalability/Performance Ab
so

lu
te

ly
no

t
Li

ttl
e

Ju
st

en
ou

gh
M

or
e

th
an

en
ou

gh
Ve

ry
/a

lo
t

Ab
so

lu
te

ly

- Response time
(The time between sending a request and receiving the
corresponding response)

- CPU utilization
(The percentage of time the CPU is not idle)

- Path length
(The number of CPU instructions to process a client request)

- Waiting time
(The time a service request spends in a waiting queue before it
get processed)

- Impact of programming language
(Communication between microservices are network based)

- Usage of containers
(The usage of containers can influence the performance, since they
need additional computational time compared to monolithic
applications deployed in a single container)

- Number of features per microservices
- Number of requests per minute or second
(Also referred as throughput or average latency)

Availability
- Downtime
- Mean time to recover
(The mean time it takes to repair a failure and return back to
operations)

- Mean time to failure
(The mean time till the first failure)

Maintenance
- Testability
- Complexity
Process related benefits
- Development independence between teams
(The migration from a monolithic architecture to a microservice
oriented changes the way in which the development team is
organized)

- Continuous delivery
- Reusability
Personnel Cost
- Development Cost
Infrastructure Cost
- Cost per hour
- Cost per million of requests
Which other factors or measures should
be considered? (please list and rank them)
11
• How useful would you consider a discussion of the previous
information before migration?

• Do you think the factors or measures support a reasoned choice
of migrating or not? (if not, please motivate)

• How easy is the set of factors and measures to collect and use?
• Is there any measure that is not easy to collect?
• Would you use this set of factors and measures in the future, in

case of migration of other systems to microservices? If not, please
motivate.

References

[1] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues for migrating
to microservices architectures: An empirical investigation, IEEE Cloud Comput.
4 (5) (2017) 22–32.

[2] J. Lewis, M. Fowler, Microservices, 2014, www.martinfowler.com/articles/
microservices.html.

[3] J. Soldani, D.A. Tamburri, W.-J.V.D. Heuvel, The pains and gains of mi-
croservices: A systematic grey literature review, J. Syst. Softw. 146 (2018)
215–232.

[4] A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices architecture enables
DevOps: Migration to a cloud-native architecture, IEEE Softw. 33 (3) (2016)
42–52.

[5] D. Taibi, V. Lenarduzzi, C. Pahl, Microservices anti-patterns: A taxonomy, in:
Microservices - Science and Engineering, Springer, 2019.

[6] D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells, IEEE Softw.
35 (3) (2018) 56–62.

[7] P.D. Francesco, I. Malavolta, P. Lago, Research on architecting microservices:
Trends, focus, and potential for industrial adoption, in: 2017 IEEE International
Conference on Software Architecture, ICSA, 2017, pp. 21–30.

[8] P.D. Francesco, P. Lago, I. Malavolta, Architecting with microservices: A
systematic mapping study, J. Syst. Softw. 150 (2019) 77–97.

[9] D. Taibi, V. Lenarduzzi, C. Pahl, Microservices architectural, code and organi-
zational anti-patterns, in: Cloud Computing and Services Science. CLOSER 2018
Selected papers. Communications in Computer and Information Science, 2019,
pp. 126–151.

[10] D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microservices: A
systematic mapping study, in: 8th International Conference on Cloud Computing
and Services Science, CLOSER2018, 2018.

[11] C. Pahl, P. Jamshidi, Microservices: A systematic mapping study, in: Proceedings
of the 6th International Conference on Cloud Computing and Services Science
- Volume 1 and 2, CLOSER 2016, SCITEPRESS - Science and Technology
Publications, Lda, Portugal, 2016, pp. 137–146.

[12] F. Auer, M. Felderer, V. Lenarduzzi, Towards defining a microservice migration
framework, in: Proceedings of the 19th International Conference on Agile
Software Development: Companion, XP ’18, ACM, New York, NY, USA, 2018,
pp. 27:1–27:2.

[13] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, S. Gil,
Evaluating the monolithic and the microservice architecture pattern to deploy
web applications in the cloud, in: Computing Colombian Conference, 10CCC,
2015, pp. 583–590.

[14] T. Ueda, T. Nakaike, M. Ohara, Workload characterization for microservices, in:
International Symposium on Workload Characterization, IISWC, 2016, pp. 1–10.

[15] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M.K. Reiter, V. Sekar, Gremlin:
Systematic resilience testing of microservices, in: International Conference on
Distributed Computing Systems, ICDCS, 2016, pp. 57–66.

[16] A. de Camargo, I. Salvadori, R.d.S. Mello, F. Siqueira, An architecture to
automate performance tests on microservices, in: International Conference on
Information Integration and Web-Based Applications and Services, 2016, pp.
422–429.

[17] H. Khazaei, C. Barna, N. Beigi-Mohammadi, M. Litoiu, Efficiency analysis of
provisioning microservices, in: International Conference on Cloud Computing
Technology and Science, CloudCom, 2016, pp. 261–268.

[18] N. Kratzke, P.-C. Quint, Investigation of impacts on network performance in the
advance of a microservice design, in: Cloud Computing and Services Science,
2017, pp. 187–208.

[19] N.H. Do, T. Van Do, X. Thi Tran, L. Farkas, C. Rotter, A scalable routing
mechanism for stateful microservices, in: Conference on Innovations in Clouds,
Internet and Networks, ICIN, 2017, pp. 72–78.

[20] M. Gribaudo, M. Iacono, D. Manini, Performance evaluation of replication
policies in microservice based architectures, Electron. Notes Theor. Comput.
Sci. 337 (2018) 45–65, International Workshop on the Practical Application of
Stochastic Modelling (PASM).

[21] S. Klock, J.M.E.M. van der Werf, J.P. Guelen, S. Jansen, Workload-based
clustering of coherent feature sets in microservice architectures, in: International
Conference on Software Architecture, ICSA, 2017, pp. 11–20.

http://refhub.elsevier.com/S0950-5849(21)00079-3/sb1
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb1
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb1
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb1
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb1
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb3
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb3
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb3
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb3
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb3
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb4
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb4
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb4
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb4
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb4
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb5
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb5
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb5
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb6
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb6
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb6
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb8
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb8
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb8
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb11
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb12
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb18
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb18
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb18
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb18
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb18
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb20


Information and Software Technology 137 (2021) 106600F. Auer et al.
[22] T. Salah, M.J. Zemerly, C.Y. Yeun, M. Al-Qutayri, Y. Al-Hammadi, Performance
comparison between container-based and VM-based services, in: Conference on
Innovations in Clouds, Internet and Networks, ICIN, 2017, pp. 185–190.

[23] H. Harms, C. Rogowski, L. Lo Iacono, Guidelines for adopting frontend ar-
chitectures and patterns in microservices-based systems, in: Joint Meeting on
Foundations of Software Engineering, in: ESEC/FSE 2017, 2017, pp. 902–907.

[24] M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casal-
las, S. Gil, C. Valencia, A. Zambrano, M. Lang, Infrastructure cost comparison of
running web applications in the cloud using AWS lambda and monolithic and
microservice architectures, in: International Symposium on Cluster, Cloud and
Grid Computing, CCGrid, 2016, pp. 179–182.

[25] D. Taibi, K. Systä, A decomposition and metric-based evaluation framework for
microservices, in: Cloud Computing and Services Science, 2020, pp. 133–149.

[26] D. Taibi, K. Systä, From monolithic systems to microservices: A decomposition
framework based on process mining, in: CLOSER2019, 2019, pp. 153–164.

[27] V. Lenarduzzi, F. Lomio, N. Saarimäki, D. Taibi, Does migrating a monolithic
system to microservices decrease the technical debt? J. Syst. Softw. 169 (2020)
110710.

[28] V. Saquicela, G. Campoverde, J. Avila, M.E. Fajardo, Building microservices for
scalability and availability: Step by step, from beginning to end, in: J. Mejia, M.
Muñoz, Á. Rocha, Y. Quiñonez (Eds.), New Perspectives in Software Engineering,
Springer International Publishing, Cham, 2021, pp. 169–184.

[29] G. Márquez, J. Soldani, F. Ponce, H. Astudillo, Frameworks and high-availability
in microservices: An industrial survey, in: C.P. Ayala, L. Murta, D.S. Cruzes, E.
Figueiredo, C. Silva, J.L. de la Vara, B. de França, M. Solari, G.H. Travassos, I.
Machado (Eds.), Proceedings of the XXIII Iberoamerican Conference on Software
Engineering, CIbSE 2020, 2020, pp. 57–70.

[30] S. Panichella, M.R. Imranur, D. Taibi, Structural coupling for microservices, in:
11th International Conference on Cloud Computing and Services Science, 2021.
12
[31] B. Wuetherick, Basics of qualitative research: Techniques and procedures for
developing grounded theory, Canad. J. Univ. Contin. Educ. 36 (2010).

[32] B.A. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software engineering,
in: Proceedings. 26th International Conference on Software Engineering, IEEE,
2004, pp. 273–281.

[33] ISO/IEC, ISO/IEC 25010:2011 Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and software
quality models, 2011.

[34] V. Garousi, M. Felderer, F.N. Kılıçaslan, A survey on software testability, Inf.
Softw. Technol. (2018).

[35] R. Yin, Case Study Research: Design and Methods, fourth ed., in: Applied Social
Research Methods, vol. 5, SAGE Publications, Inc, 2009.

[36] J. Nupponen, D. Taibi, Serverless: What it is, what to do and what not to do,
in: 2020 IEEE International Conference on Software Architecture Companion,
ICSA-C, 2020, pp. 49–50.

[37] D. Taibi, J. Spillner, K. Wawruch, Serverless computing-where are we now, and
where are we heading? IEEE Softw. 38 (1) (2021) 25–31.

[38] S. Peltonen, L. Mezzalira, D. Taibi, Motivations, benefits, and issues for adopting
Micro-Frontends: A Multivocal Literature Review, Inf. Softw. Technol. 136 (2021)
106571.

[39] D. Taibi, N. El Ioini, P. Claus, J.R.S. Niederkofler, Patterns for serverless functions
(function-as-a-service): A multivocal literature review, in: Proceedings of the 10th
International Conference on Cloud Computing and Services Science, 2020, pp.
181–192.

[40] V. Lenarduzzi, J. Daly, A. Martini, S. Panichella, D.A. Tamburri, Toward a
technical debt conceptualization for serverless computing, IEEE Softw. 38 (1)
(2021) 40–47.

http://refhub.elsevier.com/S0950-5849(21)00079-3/sb25
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb25
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb25
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb27
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb27
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb27
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb27
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb27
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb28
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb31
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb31
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb31
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb32
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb32
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb32
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb32
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb32
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb33
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb33
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb33
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb33
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb33
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb34
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb34
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb34
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb35
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb35
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb35
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb37
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb37
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb37
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb38
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb38
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb38
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb38
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb38
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb40
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb40
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb40
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb40
http://refhub.elsevier.com/S0950-5849(21)00079-3/sb40

	From monolithic systems to Microservices: An assessment framework
	Introduction
	Background
	Related work
	Microservice migration
	Characteristics and measures investigated in empirical studies on microservices
	Microservices migration effects


	The survey
	Goal and research questions
	Study design
	Study execution
	Data analysis
	Replication
	Results
	Migration motivations (RQ1)
	Information/metrics collected before and after the migration (RQ2)
	Information/metrics considered useful (RQ3)


	The assessment framework
	Motivations reasons identification
	Step 2 - metrics identification
	Migration decisions
	Migration

	Discussion
	Threats to validity
	Threats to validity regarding the survey

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. The Survey
	References


