32 research outputs found

    Simulación de modulación por ancho de pulso usando Tinkercard

    Get PDF
    Este trabajo tiene como finalidad usar la plataforma Tinkercard para comprender los conceptos de la señal PWM (modulación por ancho de pulso). Dicha plataforma nos permite crear una simulación don se pueda observar fácilmente términos como el DutyCycle (ciclo de trabajo), el periodo de la señal, la frecuencia de la señal, el tiempo de encendido de la señal, el tiempo de apagado de la señal, entro otras terminologías que se deben tener en cuenta al hacer uso de esta modulación por ancho de pulso. La ventaja más importante del uso de tinkercard es su facilidad de uso y su accesibilidad ya que es gratuita y muy intuitiva, así cualquier persona puede usarla sin previo conocimiento sobre ella

    Simulation of pulse width modulation using Tinkercard

    Get PDF
    Este trabajo tiene como finalidad usar la plata-forma Tinkercard para comprender los conceptos de la señal PWM (modulación por ancho de pulso). Dicha plataforma nos permite crear una simulación don se pueda observar fácil-mente términos como el DutyCycle (ciclo de trabajo), el periodo de la señal, la frecuencia de la señal, el tiempo de encendido de la señal, el tiempo de apagado de la señal, entro otras ter-minologías que se deben tener en cuenta al hacer uso de esta modulación por ancho de pulso. La ventaja más importante del uso de tinkercard es su facilidad de uso y su accesibilidad ya que es gratuita y muy intuitiva, así cualquier persona puede usarla sin previo conocimiento sobre ella

    Indoor Visible Light Communication:A Tutorial and Survey

    Get PDF
    Abstract With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others

    Semi-hidden markov models for visible light communication channels

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering, Johannesburg 2018Visible Light Communication (VLC) is an emerging field in optical wireless communication that uses light emitting diodes (LEDs) for data transmission. LEDs are being widely adopted both indoors and outdoors due to their low cost, long lifespan and high efficiency. Furthermore, LEDs can be modulated to provide both illumination and wireless communication. There is also potential for VLC to be incorporated into future smart lighting systems. One of the current challenges in VLC is being able to deal with noise and interference; including interference from other dimmed, Pulse-Width Modulated (PWM) LEDs. Other noise includes natural light from the sun and artificial light from other non-modulating light sources. Modelling these types of channels is one of the first steps in understanding the channel and eventually designing techniques for mitigating the effects of noise and interference. This dissertation presents a semi-hidden Markov model, known as the Fritchman model, that discretely models the effects of as well as errors introduced from noise and interference in on-off keying modulated VLC channels. Models have been developed for both the indoor and outdoor environments and can be used for VLC simulations and designing error mitigation techniques. Results show that certain channels are able to be better modelled than others. Experimental error distributions shows insights into the impact that PWM interference has on VLC channels. This can be used for assisting in the development of error control codes and interference avoidance techniques in standalone VLC systems, as well as systems where VLC and smart lighting coexist. The models developed can also be used for simulations of VLC channels under different channel conditionsXL201

    Subcarrier intensity modulated free-space optical communication systems

    Get PDF
    This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs the achievable error rate, the outage probability and the available link margin of a terrestrial FSO communication system. The effect of atmospheric turbulence on the symbol detection of an OOK based terrestrial FSO system is presented analytically and experimentally verified. It was found that atmospheric turbulence induced channel fading will require the OOK threshold detector to have the knowledge of the channel fading strength and noise levels if the detection error is to be reduced to its barest minimum. This poses a serious design difficulty that can be circumvented by employing phase shift keying (PSK) pre-modulated SIM. The results of the analysis and experiments showed that for a binary PSK-SIM based FSO system, the symbol detection threshold level does not require the knowledge of the channel fading strength or noise level. As such, the threshold level is fixed at the zero mark in the presence or absence of atmospheric turbulence. Also for the full and seamless integration of FSO into the access network, a study of SIM-FSO performance becomes compelling because existing networks already contain subcarrier-like signals such as radio over fibre and cable television signals. The use of multiple subcarrier signals as a means of increasing the throughput/capacity is also investigated and the effect of optical source nonlinearity is found to result in intermodulation distortion. The intermodulation distortion can impose a BER floor of up to 10-4 on the system error performance. In addition, spatial diversity and subcarrier delay diversity techniques are studied as means of ameliorating the effect of atmospheric turbulence on the error and outage performance of SIM-FSO systems. The three spatial diversity linear combining techniques analysed are maximum ratio combining, equal gain combining and selection combining. The system performance based on each of these combining techniques is presented and compared under different strengths of atmospheric turbulence. The results predicted that achieving a 4 km SIM-FSO link length with no diversity technique will require about 12 dB of power more than using a 4 × 4 transmitter/receiver array system with the same data rate in a weak turbulent atmospheric channel. On the other hand, retransmitting the delayed copy of the data once on a different subcarrier frequency was found to result in a gain of up to 4.5 dB in weak atmospheric turbulence channel

    Visible Light Optical Camera Communication for Electroencephalography Applications

    Get PDF
    Due to the cable-free deployment and flexibility of wireless communications, the data transmission in the applications of home and healthcare has shown a trend of moving wired communications to wireless communications. One typical example is electroencephalography (EEG). Evolution in the radio frequency (RF) technology has made it is possible to transmit the EEG data without data cable bundles. However, presently, the RF-based wireless technology used in EEG suffers from electromagnetic interference and might also have adverse effects on the health of patient and other medical equipment used in hospitals or homes. This puts some limits in RF-based EEG solutions, which is particularly true in RF restricted zones like Intensive Care Units (ICUs). As a recently developed optical wireless communication (OWC) technology, visible light communication (VLC) using light-emitting diodes (LEDs) for both simultaneous illumination and data communication has shown its advantages of free from electromagnetic interference, potential huge unlicensed bandwidth and enhanced data privacy due to the line transmission of light. The most recent development of VLC is the optical camera communication (OCC), which is an extension of VLC IEEE standard 802.15.7, also referred to as visible light optical camera communication (VL-OCC). Different from the conventional VLC where traditional photodiodes are used to detect and receive the data, VL-OCC uses the imaging camera as the photodetector to receive the data in the form of visible light signals. The data rate requirement of EEG is dependent on the application; hence this thesis investigates a low cost, organic LED (OLED)-driven VL-OCC wireless data transmission system for EEG applications

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Subcarrier intensity modulated free-space optical communication systems

    Get PDF
    This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs the achievable error rate, the outage probability and the available link margin of a terrestrial FSO communication system. The effect of atmospheric turbulence on the symbol detection of an OOK based terrestrial FSO system is presented analytically and experimentally verified. It was found that atmospheric turbulence induced channel fading will require the OOK threshold detector to have the knowledge of the channel fading strength and noise levels if the detection error is to be reduced to its barest minimum. This poses a serious design difficulty that can be circumvented by employing phase shift keying (PSK) pre-modulated SIM. The results of the analysis and experiments showed that for a binary PSK-SIM based FSO system, the symbol detection threshold level does not require the knowledge of the channel fading strength or noise level. As such, the threshold level is fixed at the zero mark in the presence or absence of atmospheric turbulence. Also for the full and seamless integration of FSO into the access network, a study of SIM-FSO performance becomes compelling because existing networks already contain subcarrier-like signals such as radio over fibre and cable television signals. The use of multiple subcarrier signals as a means of increasing the throughput/capacity is also investigated and the effect of optical source nonlinearity is found to result in intermodulation distortion. The intermodulation distortion can impose a BER floor of up to 10-4 on the system error performance. In addition, spatial diversity and subcarrier delay diversity techniques are studied as means of ameliorating the effect of atmospheric turbulence on the error and outage performance of SIM-FSO systems. The three spatial diversity linear combining techniques analysed are maximum ratio combining, equal gain combining and selection combining. The system performance based on each of these combining techniques is presented and compared under different strengths of atmospheric turbulence. The results predicted that achieving a 4 km SIM-FSO link length with no diversity technique will require about 12 dB of power more than using a 4 × 4 transmitter/receiver array system with the same data rate in a weak turbulent atmospheric channel. On the other hand, retransmitting the delayed copy of the data once on a different subcarrier frequency was found to result in a gain of up to 4.5 dB in weak atmospheric turbulence channel.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore