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Abstract  

The data transmission rate, range, and reliability of free-space optical communication 

(FSO) systems are affected by a number of atmospheric phenomena, such as rain, haze, 

fog, snow, and scintillation. Thick fog with over 300 dB/km of attenuation limits the 

link length to around 100 m. Even under clear air conditions with no atmospheric 

scattering, the FSO communication link still suffers from fading due to scintillation. 

Scintillation fade margins are 2 to 5 dB for FSO links of 500 metres or less, which is 

well below margins for the atmospheric attenuation. For the link range beyond 1 km, 

scintillation may severely impact the performance of FSO links, thus resulting in the 

link deterioration, i.e., higher outage probability and ultimately complete link failure. In 

this thesis the performance of terrestrial FSO system based on the polarization shift 

keying modulation (POLSK) scheme under a turbulence channel is being investigated 

and analysed. The results are theoretically compared with on-off keying (OOK) and 

phase shift keying (PSK) modulated FSO systems in an atmospheric turbulence channel 

based on the bit error rate (BER) and the outage probability metrics. Results presented 

show that the binary POLSK (BPOLSK) offers the highest immunity to the phase noise 

in the atmospheric turbulence against OOK (with fixed and adaptive threshold levels) 

modulated FSO systems, primarily because it does not exhibit a BER floor. For 

BPOLSK under a moderate turbulence regime and for a BER of 10
-9

 the signal to noise 

ratio (SNR) requirement is ~ 39.5 dB. For the moderate turbulence regime OOK suffers 

from higher BER floor level. Heterodyne BPSK-FSO systems using an electrical phase 

locked loop (PLL) suffer from the PLL induced phase noise penalty. The power 

penalties due to the atmospheric turbulence must be compensated for to guarantee a 

reliable communication link. To mitigate the energy loss due to the atmospheric 

attenuation, the transmitted optical power could be increased sufficiently but it must 

meet eye safety requirements. Simply increasing the transmission power cannot 

improve the link performance limited by the atmospheric turbulence induced fading. 

Convolutional coding and the spatial diversity scheme have been applied in POLSK-

FSO systems to circumvent scintillation, which is assumed to obey the gamma-gamma 

distribution. A relatively simple equal gain combining (EGC) and the optimal but 

complex maximum ration combining (MRC) techniques are considered. The system 

performance and the error probabilities based on the convolutional coding together with 

EGC and MRC techniques are investigated and compared under different atmospheric 

turbulence regimes. For example, to achieve a symbol error probability (SEP) of 10
-9

 in 

a weak turbulence regime, the SNR requirements are ~ 28.5 dB and ~ 13 dB for 

uncoded and coded coherent heterodyne 8-POLSK schemes   respectively. With four 

detectors and using the MRC technique, the achievable power gains are ~6 dB, ~17.5 

dB and ~15.5 dB in weak, moderate and strong turbulence regimes, respectively. 

Increasing the number of detectors to ten, results in ~24 dB of power gain a strong 

turbulence regime. Results presented also show that the spatial diversity offers an 

increased link margin as the scintillation level rises. The performance of a linear 

BPOLSK scheme using the direct detection has also been experimentally investigated. 

The obtained results are compared with OOK under the same operating conditions at the 

same data rate. Two transmission links of 6 m and 27 m are considered. An external 

interferometer is replaced by two intensity modulated laser sources with orthogonal 

states of polarisation (SOPs). This new scheme is less complex compared to the existing 

techniques. As a result of the underlying assumptions in the derivation, there is a close 

match between the experimental and predicted Q-factors for the weak turbulence 

regimes for BPOLSK-FSO system. 
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{𝑛1 𝑛2}  Refractive index of the waveguide  

𝑛𝐼(𝑡)  In-phase component of the noise 𝑛(𝑡) 
𝑛𝑄(𝑡)  Quadrature component of the noise 𝑛(𝑡) 
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𝑛𝑥𝑏 𝑦𝑏   Additive white Gaussian noise variance after the bandpass 

filter 

𝑛𝑙𝑝(𝑡)  Additive white Gaussian noise after the lowpass filter 

[Δ𝑛]2̅̅ ̅̅ ̅̅ ̅  Mean square change in refractive index due to thermal 
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𝑇(𝐷(𝜃) ℳ)  Transfer function  
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𝑉𝑗(𝑡)  Electric signal at the output of a matched filter 
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Chapter One 

 

 

 

Introduction  

 

1.1     Background 

Free-space optical communication (FSO) has, since the beginning of history, been 

accomplished through the transmission of information loaded optical radiation from a 

transmitter to a receiver separated by the atmosphere. In a military situation as long ago 

as around 800 BC, optical communication in the form of beacons was used to enable 

messages to reach the receiver without a time delay [1, 2]. The disadvantage of this 

method was that only a limited number of predetermined messages could be transferred, 

resulting in low information capacity [3].  
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During the years 1790─1794 an optical telegraph based on a chain of semaphores was 

used by French naval navigators. Alexander Graham Bell constructed and received a 

patent for a ‘photo-phone’ in 1880, which is considered as the re-birth of optical wireless 

communication [4-6]. The transmitted telephone signals were generated by modulating 

the sun’s radiation with voice signals which propagated over an unguided channel of 200 

meters. The restrictions on this work were the crudity of the devices and the intermittent 

nature of the sun’s radiation.  

A number of communication experiments have been carried out using modulated electric 

light sources by the Australian, German and Japanese armies around 1935-40. The 

techniques used in these experiments were obtained from the recording of optical sound 

tracks on the motion picture film. In the early 1930s Mr Sony, who established the Sony 

Corporation in Japan, carried out a research that involved prototyping a modulated light 

communication system. These systems provided the military with the high directivity and 

a high security before the microwave hardware became available [5, 7]. During the 

Second World War, an infrared optical telegraph was developed to ensure a secure data 

transmission link. However, difficulties in inserting the technology in operational 

systems were greater than envisioned by the early pioneers due to: 1) accurate pointing 

and tracking systems were not available; and 2) the optical components were unreliable 

and needed improving [8]. Additionally the laser beam propagating over the atmospheric 

channel is always susceptible to the energy losses due to the atmospheric attenuation and 

turbulence. Such components included laser sources, detectors, high speed 

modulators/demodulators, high accuracy pointing components, high stability mechanical 
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structures, high quality interface and high speed electronics that typically needed to drive 

high voltages due to the bulk nature of the electro-optical elements.  

With the maturity of optoelectronic devices in the market as well as the expanding 

demand for larger bandwidth we have seen a growing research activity in FSO 

technology that was installed in the early 1960s. Some of these FSO technologies are: 

transmission of television signals using a GaAs light emitting diode over a 30 mile 

distance performed in the MIT Lincoln laboratory in 1962 [8]; a He-Ne laser modulated 

by voice signals transmitted over a distance of 118 miles between Panamint Ridge and 

San Gabriel Mountain, USA, in May 1963, the same year in which the first TV-over-

laser was demonstrated in North American Aviation [8]; in 1970 the Nippon Electric 

Company (NEC) in Japan built the first full duplex FSO using a 0.6328  m He-Ne laser 

between Yokohama and Tamagawa, a distance of 14 km [8]. In the same year the 

demonstration of the first semiconductor laser that required no cooling, but could be 

operated at the room temperature, was reported by Hayashi et al. [1]. From here onwards, 

FSO communications we have seen a rapid development in FSO communication in both 

commercial and military operations.  

Additionally, FSO has also found applications in deep space. The National Aeronautics 

and Space Administration (NASA) and the European Space Agency (ESA) have 

successfully applied FSO technology between satellites with a data rate of 10 Gbps [9]. 

The volume of fund to stimulate growth in the field of laser communications increased 

dramatically in the United States and Europe in 1980. The USA Government Agencies 
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had played an important role in the development of laser communications. Europe via 

ESA initiated the project on developing the next generation of communication 

technologies [10].  

In the early 90’s an interesting boost to laser communications came from the commercial 

side of satellite communications. A handful of companies in the USA were engaged in 

laser communications. Meanwhile, Europe started a program on the semiconductor inter-

satellite laser communications [10]. Japan also showed increased interests in the laser 

communication and organised the program of the flight demonstration [10].  

At the present time, as a method of exploiting more bandwidth and utilizing the broad 

array of new services, FSO technology is seen as a cost-effective method to solve the 

high-bandwidth bridge (the “last mile”) [11-13]. FSO applications, in both military and 

civilian fields in particular the access network, have been reported in the last few years in 

various parts of the world [14-21]. For example, the FSO technology was successfully 

used to continually transmit the image between the Waterhouse Centre and the studio 

during the Sydney Olympic Games in 2000 [22]. As a commercially complementary 

technology to the radio frequency (RF) (in the range of about 3 kHz to 30 GHz) and the 

millimeter-wave (30 GHz to 300 GHz) wireless systems, the FSO has now emerged as a 

reliable communication technology with rapid deployment of voice, data, and video 

within the access networks [23-25]. Data rates offered by wireless networks based on RF 

and millimetre wave can be from a few megabits per second up to several hundred 
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megabits per second according to the system configurations of point-to-multipoint and 

point-to-point, respectively [23, 26-28].  

The limitations of RF and millimeter-wave technologies in market penetration include 

interference from unlicensed bands, spectrum congestion, and licensing issues [25, 29]. 

Though the future emerging license-free bands are promising [30], RF and millimeter-

wave still have certain limitations in the offered bandwidth and the range compared with 

the FSO technology [23-25]. Integrated hybrid FSO/fibre systems and wavelength 

division multiplexing (WDM) based FSO systems can be utilised to increase the link 

span as well as the transmission capacity [31-35].  

The previous perception on FSO’s dwindling acceptability, efficiency, and slow market 

penetration are now rapidly fading away. A number of service providers, organizations, 

government, and private establishments are now incorporating the FSO technology into 

their network infrastructure [15, 36, 37]. Today the terrestrial FSO technology is 

regarded as the complementary scheme in handling modern communication challenges, 

typically the requirements from end users for access to a high bandwidth/data rate at an 

affordable cost [25, 38]. The integration of the FSO technology into existing access 

networks is far more rapid since it is transparent to the traffic type and the data protocol. 

In spite of this, the biggest challenges, such as the atmospheric attenuation and the 

turbulence and the attainment of 99.999% link availability, still have to be circumvented 

in order to increase the link range and link availability in terrestrial FSO systems [1, 37, 

39].  
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1.2     Research Motivation and Justification 

In order to deal with the important emerging optical-access market segment, several 

optical access technologies are now being developed. FSO is one of the most promising 

new access technologies as the laser beams emitted from the robust optical transceivers 

propagate directly through the atmosphere to form point-to-point communications [3, 

40].  

For a number of applications, the FSO technology presents many advantages over its 

counterparts, for instance RF spectrum. Such an advantage is the immunity of FSO to the 

electromagnetic interference (EMI), thus making it the preferred option in certain 

applications where there is a requirement for a very low level of interference or no 

interference at all [41-43]. In addition, FSO is not affected or influenced by RF [13, 42, 

44]. Another advantage offered by FSO over RF is the increased security owing to the 

laser’s narrow beam, which makes detection, interception and jamming very difficult. 

Further advantages offered by FSO over RF include the possibility of rapid deployment 

and the flexibility of establishing temporary communication links, much higher data 

rates, low cost, small size, and limited power consumption [42, 44, 45].  

On the other hand, the high bandwidth requirement in the present communication 

systems is the motivating force behind research and development in today’s market. The 

access network bandwidth bottleneck mainly due to the limitations of the copper wire 

technology which connects the end users to the high-speed link limits the data 

rate/download rate [23, 25, 44]. The RF spectrum is becoming more congested every 
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year and the allocation of the RF spectrum is progressively more expensive and difficult 

as the regulations on allocation of the RF spectrum vary from one county to another [24, 

25, 42, 44]. Optical wireless communication offers a potentially abundant bandwidth that 

is currently unregulated worldwide that could be used to overcome the bandwidth 

bottleneck.  

Further methods proposed to tackle this bottleneck consist of the power-line 

communication (PLC) [46, 47], digital subscriber loop (DSL) or cable modems [48-51], 

fibre to the home (FTTH) [52, 53], local multipoint distribution service (LMDS) [54, 55], 

and ultra-wide band (UWB) technologies [1, 56, 57]. PLC systems and DSL are copper-

based, which means potential disruption to the network operation because copper wires 

are susceptible to damage. In addition, it is more expensive, time-consuming and 

complicated to maintain and to reconfigure the wired networks [36, 58].  

FTTH offers a considerably higher data rate ─ 10 Gbps can be easily delivered to the end 

users and up to 10 Tbps is feasible for the implementation of FTTH combined with 

WDM [5, 32, 33]. As from the point of view of deployment and penetration rates of the 

FTTH technology, South Korea and Japan are the pioneers at the global level [52, 53, 

59]. However, its prohibitive cost of implementation is the most prominent obstacle 

inhibiting a wider deployment. LMDS was conceived as a fixed wireless, point-to-

multipoint technology originally designed for the digital television transmission 

operating at microwave frequencies bands of 27.5 – 31.3 GHz and 40.5 – 42.5 GHz in 

the US and Europe, respectively [55, 60]. The fact that its throughput capacity and link 
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reliability depends on a common radio link makes the scheme more susceptible to severe 

signal attenuation and outage during rainfall [54, 60]. Additionally the carrier frequencies 

within the licensed bands constrains its applications [27]. 

The UWB technology uses the unlicensed radio spectrum in the 3.1 – 10.6 GHz band for 

short-range communications [30, 57]. It is also a copper wire based solution and its 

potential data rate is at odds with several Gbps available in the backbone. The 

interference of UWB signals with other systems operating within the same frequency 

spectrum is another drawback [56, 61].  

Wireless FSO technology offers comparable capacity to that of optical fibre with 

significant reduction in cost and time [38, 39, 62, 63]. The integration of FSO into the 

access network can be done relatively cheaply and quickly as it is transparent to the 

traffic type and protocols. Therefore, it is desirable to analyse the performance of an 

optical wireless system [43, 64]. The data transmission rate, range, and reliability of an 

optical wireless communication system are affected by a variety of atmospheric 

phenomena, such as rain, haze, fog, snow, and scintillation [2, 63, 65-71]. Although rain 

and snow affect the link performance of microwave and radio systems at longer 

wavelengths, they generate inconsequential attenuation effects on the traversing infrared 

laser signal. For instance, the attenuation of approximately 6 dB/km due to the heavy rain 

is far less than the maximum attenuation values caused by fog [2, 42, 70, 72].  

Snow and dust present an attenuation value of around 60 dB/km [2, 71, 73, 74], which is 

negligible for short transmission links. From all of these phenomena the most significant 
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atmospheric scatters are fog and haze. Experimental results have recorded atmospheric 

attenuation of over 100 dB/km due to the fog in Prague, Graz, Italy, the United Kingdom, 

America, and other parts of the world [17, 27, 75-78]. The attenuation due to thick fog is 

over 300 dB/km which restricts the link length to 100 m [42].  

To mitigate the energy loss due to the atmospheric attenuation, the additional optical 

power would be needed but not exceeding the safety regulation [27]. Views have been 

expressed that an FSO link in excess of 500 metres in a heavy fog is unachievable unless 

the transmitted optical power is well above the regulatory limits [27, 70, 71, 76]. 

However, the fact that thick fog is localized and only exists for a short time makes FSO 

links of greater than 1 km achievable. Furthermore, an FSO-RF hybrid system is capable 

of offering 99.999% availability in all weather conditions at the expense of reduced data 

rate, loss of data during switch over from FSO to RF or vice versa and/or loss of real 

time operation due to temporary storage of data when switching [23, 24, 27, 29, 44, 76].  

Even under clear air conditions where no atmospheric scattering exists, the propagating 

laser beam still suffers losses. Scintillation, referring to the fluctuation in the refractive 

index of the atmosphere caused by the atmospheric turbulence, depends on the wind 

speed, altitude and temperature [45, 65-67, 79, 80]. Scintillation is the origin of signal 

fading resulting from constructive and destructive interference in the optical beam 

propagating over the atmospheric channel. For short optical links scintillation produces 

insignificant variation in the received optical power. For example, scintillation fade 

margins are 2 to 5 dB for FSO links of 500 metres or less, which is well below the 
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margins for the atmospheric attenuation [81, 82]. In comparison, when the link range is 

beyond 1 km, scintillation may severely impact the performance of FSO communication 

systems resulting in communication link deterioration, i.e., an increase in the error 

probability in the received signal [66, 68, 83-85].  

The bit error rate (BER) characterizes the performance of the communication system, 

which depends on both electronic-circuit induced short-term errors and long-term 

random breaks of up to tens of milliseconds in communication data traffic caused by 

signal fading [13, 41, 43, 85, 86]. As the consequence of deep signal fading represents a 

unique and significantly more challenging problem and consequently conventional data 

coding techniques cannot be used as the solution without compromising on the system 

efficiency, i.e., the data throughput [44, 45, 85, 87].  

Analysis of atmospheric turbulence has been carried out by a number of researchers and 

several theoretical models have been developed to characterize its behaviour. The 

simplest and most widely reported model is the lognormal turbulence, which is 

mathematically convenient and tractable [64, 66, 88-92]. The lognormal model is based 

on the Rytov approximation, which requires the unperturbed phase gradient to be large 

compared to the magnitude of the scattering field wave [88, 89, 92, 93]. However, the 

lognormal model only covers the weak turbulence regime with a single scattering event. 

For turbulence in the saturation regime with multiple scatterings, the lognormal model 

becomes invalid [67, 91, 94, 95]. The strength of turbulence can be described by the log 

intensity variance 𝜎𝑙
2 and the lognormal model is only valid for 𝜎𝑙

2  1.2 [91-93].  
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Another important parameter for describing the turbulence strength is the scintillation 

index (S.I.), which is the log intensity variance normalized by the square of the mean 

irradiance. The experimental results have indicated that the scintillation index does not 

only saturate, but also decreases after it reaches the maximum value while the strength of 

turbulence continues rising [67]. The gamma-gamma model first proposed by Andrews et 

al [96] is valid for all turbulence regimes from weak to strong regimes. It is based on the 

assumption that the fluctuation of the laser beam propagating through the turbulent 

medium consists of refraction and scattering effects. The negative exponential model is 

used to describe the signal fluctuations under atmospheric turbulence conditions within 

the saturation regime [67, 94, 96, 97].   

The performance impairments due to scintillation can be mitigated by adopting several 

approaches such as: aperture averaging and diversity techniques [88, 94, 98], adaptive 

optics [85], saturated optical amplifiers [99], modulation techniques and error control 

coding [88, 94]. The performance of coded FSO links for the lognormal and gamma-

gamma channel models under atmospheric turbulence have been investigated [88, 94, 

100] . This work also presents the upper bounds on the BER using the transfer function 

technique for the coded FSO links with intensity modulation/direct detection (IM/DD).  

The diversity techniques comprising space, time, or frequency (wavelength) have been 

adapted to improve impairments in performance due to the scintillation. With the spatial 

diversity technique, where a single receiver with a large field of view (FOV) is replaced 

by a group of detectors with a narrow FOV, the probability of all the detectors suffering 
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simultaneously from deep fade is much reduced. Moreover, the spatial diversity scheme 

limits the amount of background light from unwanted sources that impinges on the 

specific detector, which otherwise could be received by the single receiver with a wide 

FOV [98]. Applying adaptive optics to mitigate the wave-front deformation resulting 

from atmospheric turbulence has been investigated [101], but this technique is very 

expensive and complex to implement on terrestrial FSO systems.  

The types of modulation schemes in FSO systems are crucial to ensure the maximum 

power efficiency. Amplitude shift keying (ASK), phase shift keying (PSK), differential 

phase shift keying (DPSK) and frequency shift keying (FSK) are the most common 

bandpass modulation formats adopted for optical and non-optical communication 

systems. On-off keying (OOK) format is the simplest and most widely used scheme but it 

is highly sensitive to the channel turbulence [1, 36, 66, 88, 94, 102]. The threshold level 

is fixed midway between the expected levels of data bits one and zero in a standard 

OOK-FSO system [101].  

Operating the OOK-FSO system with a fixed threshold level without considering the 

signal fluctuation will increase detection error [103]. In this case, the optimum decision 

point must be determined by tracking this fluctuation [1]. Since the threshold detector 

needs to continually track the channel noise and fading, detection of the optimum 

threshold creates great design challenges. The PSK based subcarrier intensity modulation 

(SIM) requires no adaptive thresholding scheme, thereby offering superior performance 

compared to the OOK in the presence of the atmospheric turbulence induced fading 
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channels [42, 104, 105]. However, there is a power penalty in PSK systems due to the 

phase noise of the semiconductor laser sources [106, 107]. The phase noise not only 

reduces the power of the desired signal component, but also induces crosstalk 

interference from the in-phase and quadrature components. Hence, the PSK modulation 

technique requires a complex transceiver design due to tight synchronisation [106, 108]. 

The performance analysis of PSK schemes will be further discussed in Chapter Five. The 

SIM also requires no adaptive thresholding scheme but suffers from a high peak to 

average power ratio (PAPR), which translates into poor power efficiency [1, 109].  

Choosing a modulation scheme for a particular application therefore entails trade-offs 

among these listed factors. The frequency offset in DPSK leads to the additional power 

penalty owing to delayed and undelayed bits not being in phase [110]. FSK scheme is 

bandwidth inefficient and offers inferior BER performance compared to PSK and DPSK 

in the additive white Gaussian noise (AWGN) channel [110]. 

Polarisation shift keying (POLSK) is proposed as an alternative modulation technique to 

both envelop- and phase- based modulation schemes. The digital information is encoded 

in the state of polarisation (SOP) of the laser source [111, 112]. Stokes parameters are 

used to represent the SOP so the symbol constellation is scattered over a three-

dimensional (3-D) space [112]. The POLSK scheme was considerably insensitive to the 

laser phase noise at the receiver, provided that the intermediate frequency (IF) filter 

bandwidth was large enough to avoid the phase-to-amplitude noise conversion [110, 

112]; and the SOPs can be maintained over a long propagation link [113, 114]. In 
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comparison to DPSK and FSK modulation techniques, POLSK signal does not suffer 

from the excess frequency chirp generated by the all-optical processing devices [110]. 

Additionally, POLSK is a constant envelope modulation which is especially attractive for 

the peak power limited systems [113, 115].  

A variant of POLSK schemes using external modulations have been adopted in [116-

118], where the SOPs of a fully polarised propagating optical beam were considered to 

exploit the two orthogonal channels in an FSO system. [119]. A polarisation modulated 

direct detection system to extract the Stokes parameters of the transmitted light for the 

binary and multilevel transmissions was proposed in [117]. A binary POLSK scheme 

with direct detection offers 3 dB lower peak optical power compared to the OOK 

modulated IM/DD system [118]. A 4-level polarisation modulated direct detection 

system (with phase modulation) was reported in [116], whereas a digital coherent optical 

polarisation modulation scheme was outlined in [120]. The experimental results showed 

that the SOPs for a optical beam propagating over a long turbulence channel were 

maintained, which proved that the SOPs were the most stable properties compared with 

the amplitude and phase [112, 113]. The POLSK scheme improves performance in terms 

of the peak optical power by 3 dB but at the cost of increased system complexity 

compared to the OOK scheme [121]. Circular polarisation shift keying (CPOLSK) also 

has been adopted in FSO systems because it does not require phase tracking, therefore it 

is not applicable to mobile systems and it is more complex compared with the linear 

polarisation schemes [113]. 
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This research investigates the POLSK pre-modulated optical coherent heterodyne system 

in weak, moderate, strong and saturation turbulence regimes. In order to address the 

symbol detection challenges associated with OOK-FSO in the atmospheric turbulence 

induced channel and the phase tracking error generated penalty of BPSK-FSO, the 

system performance will be compared with OOK-FSO and coherent BPSK-FSO in terms 

of the average BER. The error control coding and the spatial diversity technique will be 

also considered to improve the fading effect of atmospheric turbulence channels on 

POLSK-FSO systems.The noise, comprising of both the background radiation and the 

thermal noise, is modelled as the AWGN. We also assume that the transmitter and the 

receiver have a perfect link alignment. The FSO link under consideration is line-of-sight 

(LOS), thus no inter-symbol interference (ISI) will be considered. The power penalty 

caused by the non-ideal polarisation beam splitter (PBS) will also be discussed. For the 

purpose of achieving these goals the succeeding research objectives have been 

formulated. 

 

1.3     Research Objectives 

This research work is aimed at investigating the performance of a coherent POLSK pre-

modulated FSO system in an atmospheric turbulence channel with the view to 

understanding its benefits and limitations. Additionally, it is also aimed at comparing the 

system performance of POLSK-FSO with that of OOK-FSO and BPSK-FSO. Detailed 

analysis has been carried out to determine the transmitted power required to achieve a 
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desired performance and accordingly, the possible link margin and the achievable link 

range. A list of research objectives has been outlined in order to accomplish these aims: 

 Review the fundamental theory of a terrestrial FSO system and the challenges 

imposed on the system performance. 

 Review the characteristic properties of the atmospheric channel, and understand 

the limits and range of validity of each model for describing the channel fading 

induced by turbulence. 

 Review the performance of OOK, BPSK and DPSK pre-modulated terrestrial 

FSO in an atmospheric turbulence channel. 

 Review the state of art for POLSK systems.  

 Review the theory of the Poincare sphere, the Stokes polarisation parameters and 

the methods of using optical components to do the measurements.  

 Investigate the performance of coherent POLSK-FSO communication systems in 

terms of the BER probability across all turbulence regimes using the following 

atmospheric turbulence models: (i) lognormal, (ii) gamma-gamma, and (iii) 

negative exponential.  

 Investigate the coherent heterodyne receiver combined with the spatial diversity 

technique for mitigating the fading effect due to atmospheric turbulence on the 

terrestrial POLSK-FSO systems. 
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 Investigate the convolutional coded POLSK for improving the performance of the 

optical systems operating over the atmospheric turbulence channel. 

 Develop an experimental test-bed to validate the atmospheric turbulence fading 

effect on a POLSK-FSO system. Verify experimentally the turbulence induced 

fading effect on OOK-FSO and compare with POLSK-FSO. Compare 

experimental data with the predicted and simulated data.  

 

1.4     Original Contributions 

As a result of the study, the following original contributions have been made: 

 The analytical and simulation results for the error performance and fading penalty 

of various coherent optical binary polarisation shift keying (BPOLSK) systems 

operating over the turbulent atmosphere across the whole turbulence regimes 

have been detailed in Chapter Five. The conditional and unconditional BER 

expressions of the BPOLSK-FSO system in a turbulence channel have been 

derived. The analysis of power penalty caused by the non-ideal PBS is also 

carried out. The error performance of BPOLSK has been compared with other 

modulation schemes in the presence of turbulence and the phase noise under the 

same channel conditions. 

 Coherent differential circular polarisation shift keying (DCPOLSK) scheme for 

FSO communication system in a turbulence induced fading channel is proposed 
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and analysed in Chapter Five. The closed form expression for unconditional 

BER of DCPOLSK has been derived, and its performance is compared with the 

OOK-FSO and coherent BPSK-FSO based SIM. 

 The error performances of an OOK-FSO and BPSK-FSO systems is analysed in a 

turbulence channel and the difficulty of estimating the optimum threshold level is 

highlighted in Chapter Five. 

 The error probabilities of POLSK combined with the spatial diversity technique 

to ameliorate the effect of atmospheric turbulence are reported in Chapters Six 

and Seven. 

 The performance of a coherent multilevel POLSK (MPOLSK) based FSO 

communication system operating over the turbulence channel is analysed in 

Chapter Seven. To mitigate the turbulence induced fading, convolutional coding 

and spatial diversity techniques are employed. The symbol error probability 

(SEP) is derived using the transfer function technique.  

 The performance of a BPOLSK with direct detection (DD-BPOLSK) operating 

over the atmospheric turbulence channel is experimentally investigated. The 

values of Q-factors obtained for the DD-BPOLSK system are verified in 

conjunction with the theoretical results to confirm the validity of the proposed 

scheme. The analytical error probabilities for DD-BPOLSK and non-return-to-

zero OOK (NRZ-OOK) modulated FSO systems have been presented and 

compared in Chapter Nine.  
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Fig. 1.1: Outlines the research road map and the original contributions. 
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1.5     Thesis Organization 

This thesis contains ten chapters in total, which are outlined below:  

Chapter One ─ Introduction: The fundamental theory of optical wireless 

communication technology is presented. Additionally, the advantages and challenges of 

optical wireless transmission are examined and compared with RF systems. It also 

consists of aims and objectives of the research as well as the original contributions.  

Chapter Two ─ Fundamentals of FSO: The overview of the FSO technology is 

presented together with its distinctive features and applications. The general block 

diagram for an FSO communication system is introduced, and the functions of individual 

parts are highlighted. The atmospheric channel and the noise sources that limit the data 

transmission are described. Eye safety issues are discussed in the remainder of the 

chapter.  

Chapter Three ─ Atmospheric Turbulence Models: Three different atmospheric 

turbulence channels are investigated. The discussion of these models is vital because they 

will be used to describe the statistical distributions of the received irradiance fluctuation 

which are detailed from Chapters Five to Nine.  

Chapter Four ─ Coherent Polarisation Shift Keying Systems: The digital modulation 

schemes are assessed followed by the general coherent optical system structure. The 

POLSK scheme is introduced. The polarisation fluctuations in a turbulence channel are 
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examined. The outage probabilities in a lognormal channel and a negative exponential 

channel are analysed.   

Chapter Five ─ BPOLSK-FSO Systems in an Atmospheric Turbulence Channel: 

This chapter discusses several coherent BPOLSK modulated FSO schemes in an 

atmospheric turbulence channel. Some of the main constraints affecting the coherent 

BPOLSK-FSO systems are also considered. The designs of BPOLSK-FSO systems are 

analysed and performances are evaluated across all turbulence regimes to provide a 

comparison with other modulation schemes. 

Chapter Six ─ BPOLSK-FSO with Receiver Diversity Techniques: Regarding 

propagation over the turbulence channel, the spatial diversity techniques are applied to 

improve the performance of BPOLSK-FSO systems. The spatial diversity techniques are 

described, and the error probabilities of BPOLSK-FSO systems employing spatial 

diversity are evaluated.  

Chapter Seven ─ Multilevel POLSK FSO in the Gamma-Gamma Turbulence 

Channel: This chapter studies the performance of the MPOLSK scheme in the presence 

of atmospheric turbulence for different modulation levels. The analytical SEP of the 

coherent heterodyne MPOLSK is carried out for a direct LOS FSO system. To mitigate 

the turbulence induced fading, convolutional coding and spatial diversity techniques will 

be also employed for the improvement in overall system performance. The upper SEP 

bounds are derived using the transfer function technique. The spatial diversity gain for a 

number of detectors is also determined for different turbulence levels. 



22 
 

Chapter Eight ─ The Link Budget Analysis: This chapter deals with different aspects 

of loss mechanisms faced in the design of a BPOLSK modulated FSO system, including 

the channel absorption and scattering. The link budget expression has been derived as 

well as the estimation of an achievable link ranges and margins. 

Chapter Nine ─ Experimental Investigation of BPOLSK-FSO in a Turbulence 

Channel: This chapter presents the experimental details of BPOLSK-FSO system using 

DD in the presence of atmospheric turbulence. For comparison purpose the performance 

of OOK-FSO system is investigated under the same channel conditions and the 

corresponding results are explained. The experiment to assess the BPOLSK-FSO system 

performance is performed using the indoor atmospheric chamber (5.5 m in length). After 

that, the transmission distance is increased to 27 metres by using multiple reflections of 

the laser beams between mirrors. 

Chapter Ten ─ Conclusions and Future Work: Finally, the summary of keys findings 

is presented in this chapter. The conclusion as well as the future work is outlined.  
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Chapter Two 

 

 

 

Fundamentals of FSO  

 

This chapter provides a brief overview of the FSO technology, which will be helpful in 

understanding work carried out. The fundamentals of FSO technology, such as its 

applications, features, and terminology have been reviewed. The optical detection 

methods are described and the noise sources at the receiver are examined for their 

influence on the performance of the systems. With regard to the atmospheric channel, 

both atmospheric attenuation and turbulence are introduced. This chapter concludes with 

a discussion of the eye/skin safety of optical radiation.  
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2.1     Overview of FSO Technology 

Research in the field of FSO communication has grown exponentially since 1970 and a 

large number of commercial products based on FSO technology are now readily 

available. FSO is proposed as a complementary technology to the RF technology [13, 25, 

122, 123]. It offers an unregulated bandwidth in excess of terahertz technology (THz) 

and very high speeds, which makes this an extremely attractive means of meeting the 

ever-increasing demand for broadband traffic, mostly driven by the last-mile access 

network and high definition television (HDTV) broadcasting services [42]. FSO systems 

based on the WDM technology can reach up to 1 Terabit/s capacity or even beyond [5, 

37, 39]. Further advantages include smaller and more compact transceivers, reduced 

installation and development costs and immunity to electromagnetic interference [13, 42, 

124]. Long term evolution (LTE) is introduced as a new order mobile communication 

standard and is specified by the 3
rd

 generation partnership project (3GPP) within the 

Release 8 version, following widely used standards such as UMTS/HSxPA and 

GSM/EDGE. LTE supports a bandwidth ranges from 1.4 MHz to 20 MHz. The 

technologies used in the downlink and uplink are the orthogonal frequency – division 

multiple access (OFDMA) and the single-carrier frequency – division multiple access 

(SC-FDMA), respectively. Favourable features are offered by LTE, for example, are a 

high speed and a high spectral efficiency under a frequency selective channel condition. 

The LTE technology mainly sustains voice over the IP and packet switched traffic (IP 

traffic). It permits both time division duplex (TDD) and full duplex and half duplex 

(FDD) communication configurations. Additionally, LTE also supports the multiple-

input-multiple-output (MIMO) communications system [125, 126].  

In addition, the FSO link, with its inherent low probability of intercept and anti-jamming 

characteristics, is among the most secure of all wide-area connectivity solutions. Unlike 

many RF systems that radiate signals in all directions, thus making the signal available to 
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all within the receiving range, the FSO transceivers use a highly-directional and cone-

shaped laser beam normally installed high above street level with a LOS propagation 

path [37, 64, 124].  

The interception of a laser beam is extraordinarily difficult and anyone tapping into the 

systems can easily be detected as the intercept equipment must be placed within the very 

narrow optical footprint. Even if a portion of the beam is intercepted, an anomalous 

power loss at the receiver could cause an alarm via the management software. To protect 

the overshoot energy against being intercepted at the receiver, a window or a wall can be 

set up directly behind the receiver [42]. Based on these features, FSO communication 

systems developed for voice, video and broadband data communications are used by 

security organizations such as governments and the military [1, 5]. 

In terrestrial FSO links, the data/information is transferred between two points through 

optical radiation propagating over unguided channels. The transported data could be 

embedded into the intensity, phase, frequency or SOP of the optical carrier. In general, to 

ensure a successful exchange of information, the configuration of the FSO link is based 

on LOS where the transmitter and the receiver can directly ‘see’ one another without any 

obstructions in between [39, 124, 127]. Currently, many diverse applications of FSO are 

tailored to offer low- and very-high-speed wireless links effectively. FSO technology has 

numerous applications, spanning from very short-range (mm range) optical interconnects 

within integrated circuits for clock distribution, to outdoor intra-building links of a few 

kilometres to inter-satellite links [39, 122, 123, 128, 129]. 
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Wireless communications using optical pipes together with lenses had been examined in 

detail by Bell Laboratories before fibre optics were developed as the most successful 

optical waveguide [128]. The growth and development of cheap fibre optic components 

had allowed accelerated development of FSO technology with the use of fibre-optic 

links. Outdoor terrestrial FSO systems with a link length of a few kilometers have been 

applied at multi-Gbps data rates [13, 64, 124]. The terrestrial channel is subject to severe 

weather fluctuations due to haze, fog, and snow via light scattering, attenuation, and 

absorption which significantly affect the power budget [70, 123, 127, 129, 130]. The 

FSO links are also influenced by the sun, which is within the receivers’ field of view. To 

attain 99.999% link availability during thick fog is still a challenge in FSO technology. 

One solution is to use the hybrid FSO/RF system where an RF link as the back-up at a 

reduced data rate [25, 70, 129]. 

The optimisation of links can be achieved by using fixed locations. Fresnel lenses or 

other high-gain and directly ‘optical antennas’ are applied to obtain high receiver 

sensitivity [64, 122, 123, 131]. The techniques to enlarge the FSO link include placing 

fibre-optic amplifiers at transmitters and receivers, in conjunction with an external 

optical Mach-Zehnder interferometer (MZI), the forward-error correction, advanced 

power-efficient encoding techniques, and coherent receivers [64, 122, 127, 128]. The 

following sections outline the basic features, the field of applications and the functions of 

each block in the FSO system.  
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2.2     Features of FSO 

Several typical features of FSO technology are:  

i. Huge modulation bandwidth － The frequency range of an optical carrier spans from 

1012  101     to 2000 THz data bandwidth. Since the amount of data transmitted is 

directly related to the bandwidth of the carrier, optical communication allows a far 

greater information capacity compared to the RF technology with a usable frequency 

bandwidth comparatively lower by a factor of 10
5
 [13, 64, 124]. 

ii. Narrow beam size － A typical laser beam has a diffraction limited divergence in 

between 0.01   0.1 mrad [4], which concentrates the optical power within an 

extremely narrow area that provides the FSO system adequate spatial isolation from 

potential interference. Therefore, independent FSO communication systems exist 

with virtually unlimited degrees of frequency reuse and data interception by 

unintended users becomes extremely difficult. However, a precise alignment for FSO 

links is required at the expense of tight beam size [1, 122, 127, 129].  

iii. Unlicensed spectrum －  It is becoming increasingly expensive and difficult to 

allocate additional RF frequencies because of the congested spectrum and the 

variations in the regulatory authorities in different countries, such as the Office of 

Communications (Ofcom) in the UK and the Federal Communications Commission 

(FCC) in the USA. In contrast, FSO technology offers license-free spectrum, low-

cost initial set-up, and shorter deployment time [70, 123, 130]. 
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iv. Cost-effective － The development of FSO links is cheaper than that of an RF system 

with a similar data rate. No additional cost of trenching and right of way is required 

for FSO to deliver a comparable bandwidth to optical fibre [1, 25, 37, 39].  

v. Quick to deploy and redeploy －  FSO technology offers portability and quick 

deployment. It also only takes a short time to redeploy the FSO link easily to another 

location [39, 64, 85, 123].  

vi. Weather dependent － The performance of a terrestrial FSO communication link can 

be degraded due to the atmospheric absorption and scattering of the propagating laser 

beam. Another challenge limiting FSO communication is the requirement for a direct 

LOS link between the optical transmitter and the receiver, as laser beams cannot 

penetrate buildings, hills, trees and other opaque obstacles [39, 70, 123, 127, 130]. 

 

2.3     Applications 

Below are a number of typical applications where the FSO technology could successfully 

be applied [42, 132, 133]: 

i. Last mile access － The bandwidth gap (last mile bottleneck) that exists between the 

end users and the fibre optics backbone can be bridged by using the FSO technology. 

In today’s market, products are readily available with links spanning from 50 m up to 

a few km and data rates covering from 1 Mbps to 10 Gbps [13, 36, 64, 124]. 
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ii. Back up to optical fibre link － In circumstances where the communication link is 

down or unavailable [36, 123, 127, 129, 130].  

iii. Cellular communication back-haul －  To carry traffic between base station and 

switching centres in 3G/4G networks. It can also transport the IS-95 code division 

multiple access (CDMA) signals from micro- and macro- cell sites to the base 

stations [36]. 

iv. Disaster recovery/temporary links [85, 122, 127, 129]. 

v. Multi-campus communication network －  Providing back-up links at Gigabit- or 

Fast- Ethernet speeds [39, 70, 85, 123, 130]. 

vi. Difficult terrains － Where the right of way is unavailable or too expensive such as 

across rivers, in the inner city and across rail tracks, etc [25, 37]. 

vii. HDTV － For broadcasting live high definition signals in remote locations to the 

central office [1, 13, 64, 124].  

 

2.4     System Configuration 

A physical model of a laser communication system is depicted in Fig. 2-1. The 

data/information is coded to the modulation format, such as pulse-position modulation, 

pulse-code modulation, etc., which is then fed into the modulator driver. The types of 

modulator are classified as internal and external. Generally speaking, the internal 
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modulator offers the advantages of compactness, cost effectiveness, and simplicity, while 

the external modulator can generate optical pulses of higher bit rates and higher quality. 

For polarisation modulation schemes, which are the subject of this thesis, external 

modulators will only be used. For more discussions on internal modulation the readers 

are referred to [42, 69, 134]. 

 

 

Fig. 2-1: Block diagram of a terrestrial FSO link using an external modulator. 

 

The optical carrier could be modulated in its intensity, frequency, phase, or the SOP, and 

then collimated by the transmitter optical lens. The FSO system is essentially based on 

LOS without any obstructions in the propagation path. The unguided channel could be 

any or a combination of space, sea-water, or the atmosphere [13, 124]. In this thesis only 

the atmospheric channel will be considered. After traversing through the atmospheric 
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channel, the optical energy is gathered by a receiver optical concentrator and transferred 

into an electrical signal by the photodetector. The electrical current passes through the 

post detection processor for the final demodulation. Optical communication systems can 

be divided into two main classes: IM/DD and coherent systems. The operating principles 

are briefly described in the following sections. 

 

2.5     Optical Detection Methods 

Optical demodulation operations include transformations that detect amplitude, intensity, 

frequency, phase, or polarisation states of the carrier and reconstruct the information 

signal which has modulated the carrier. The two basic types of optical demodulation 

methods are: direct detection and coherent detection. Coherent detection can be classified 

into two subgroups: heterodyne detection and homodyne detection, which will be 

discussed in Chapter 4.  

The direct or coherent homodyne detection optical receivers are used in the baseband 

demodulation systems. The modulation spectrum is shifted from the carrier frequency to 

the baseband. The frequency conversion is achieved in an optical heterodyne receiver 

where the information signal spectrum is translated from the optical carrier frequency to 

a lower radio frequency. Since this research is mainly focused on the optical coherent 

POLSK systems, the details of the coherent system and its performance in the presence 

of noise and atmospheric turbulence will be investigated in Chapters 4 to 9. 
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 Comparison will also be made with FSO systems based on the direct detection receiver. 

The direct detection receiver is analysed with its block diagram depicted in Fig. 2-2. The 

photodetector may be regarded as a linear intensity-to-current converter or a quadratic 

(square-law) converter of optical electric field-to-detector current, which generates an 

output current proportional to the instantaneous intensity of the carrier.  

The baseband electrical current is filtered by an electrical lowpass filter (LPF) with a 

bandwidth of the symbol rate which is sufficient to pass the information signal without 

any distortion and limits the amount of photodetector noise [42, 69, 135]. The direct 

detection receiver is only useful for amplitude modulation or IM because the 

photodetector response is insensitive to the frequency, phase, or polarisation states of the 

carrier over its operating regime [69, 135].  

 

 

Fig. 2-2: A direct detection receiver. 

 

For an intensity modulated transmitting laser beam, the received electric field (as shown 

in Fig. 2-2) is expressed as [69, 135]: 

�⃗⃗�𝑟(𝑡) = √𝑃𝑟√𝑚(𝑡)𝑒
𝑖( 𝑡   )�⃗�                                                                                               (2.1) 
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where 𝑃𝑟, 𝜔 and 𝜑𝑟 are the optical power, angular frequency and the phase noise of the 

received optical carrier, respectively; �⃗� represents the unit vector denoting the direction 

along which the field is polarised.  

The modulation function 𝑚(𝑡) is given by [135]: 

𝑚(𝑡) = ∑ 𝑏𝑘rect𝑇(𝑡  𝑘𝑇)

 

𝑘=− 

                                                                                            (2.2) 

where 𝑏𝑘 = [0 1]  is the transmitted bit, 𝑇  is the bit duration, and rect𝑇(𝑡)  is the 

rectangular pulse of width 𝑇, which is equal to one for 𝑇  (0 𝑇] and zero elsewhere.  

The electric current 𝑐(𝑡) at the output of the photodetector is proportional to the time 

average of the instantaneous optical carrier power 𝑃𝑟  over the carrier period and is 

expressed as [69, 135]: 

𝑐(𝑡) = ℜ |√𝑃𝑟𝑚(𝑡)|
2
                                                                                                              (2.3) 

where ℜ is the responsivity of the photodetector which is dependent upon the type of 

photodetector employed.  

 

2.6     Atmospheric Channel 

An optical radiation propagating through the atmospheric channel is subject to 

atmospheric attenuation due to the photons’ absorption by the molecular constituents 

(ozone, fog, carbon dioxide (CO2), and water vapour, etc.) [70, 123, 127, 129, 130]. For 
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this reason part of the optical energy is converted into heat. The optical radiation also 

experiences scattering, which changes the initial propagating direction, shape, and 

electromagnetic properties of the laser. Furthermore, the beam also spreads out while 

propagating over the channel, thus enlarging the received power footprint which becomes 

larger than the detector aperture area [136]. A complete parametric description of the 

intertwining effects of the atmosphere on the laser signal propagation for all weather 

conditions is not within the scope of this section. The aim here is to provide a theoretical 

basis for the laser propagation in atmosphere, pertinent examples, and references for 

further analysis. 

 

2.6.1     Atmospheric Attenuation  

The optical radiation propagating through the atmosphere is subject to the atmospheric 

attenuation due to the absorption of radiation and to the scattering by atmospheric 

constituents. The atmospheric absorption is caused due to the interaction between the 

photon and the atmospheric molecules along the transmission path such as ozone, water 

vapour, and CO2. When some of the photons are extinguished, their energies turn into 

heat [1, 69]. The atmospheric molecular concentration depends on the pressure and 

temperature that vary with weather, altitude, and geographical locations. Absorption 

varies as the function of wavelength. The four absorption windows along the spectral 

regions corresponding to the visible and the near-infrared radiations are approximately 

900 to 980 nm, 1.1 to 1.6  m, 1.3 to 1.5  m, and 1.8 to 2  m . The wavelengths used in 
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outdoor wireless systems are selected to coincide with the absorption windows, such as 

780 to 800 nm, 1.2 to 1.3  m, and 1.5 to 1.7  m [42, 86, 137].  

Atmospheric scattering causes the angular fluctuations. The optical radiation is scattered 

due to the molecular size particles and this process is called Rayleigh scattering. When 

particle (fog and smoke) size is large compared with the transmission wavelength, the 

process is called Mie scattering. Mie scattering is much less wavelength dependent while 

Rayleigh scattering is predominant at the shorter wavelengths [34, 138, 139]. More 

details will be discussed in the link budget analysis in Chapter 8.     

 

2.6.2     Atmospheric Turbulence  

Apart from the atmospheric attenuation, the laser beam traversing the atmospheric 

channel also experiences the atmospheric turbulence [123, 127, 131]. Some of the sun 

radiation strikes the earth’s surface is absorbed, which heats the surface air layer. Heated 

air rises over the land and mix turbulently with the cooler air, thus causing a random 

variation in the atmospheric temperature along the propagation path. The temperature 

fluctuations depend on the wind speed and the altitude [4]. 

The temperature inhomogeneities of the atmosphere result in fluctuations in the refractive 

index, which causes the variations in the sizes of air packets from ~0.1 cm to ~10 m. The 

optical radiation traversing these air packets is partially or totally deviated, depending 

upon the relative sizes of the beam and the temperature inhomogeneity. This is because 
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the air packets act like prisms of varying refractive indices. Consequently, this interaction 

of the laser beam with the turbulent medium leads to random variation/fading in the 

irradiance (scintillation) and the phase of the laser carrier [4, 123, 127, 131]. The 

atmospheric turbulence depends on the wind speed, the atmospheric altitude/pressure, 

and the variation of refractive index.  

The influences of atmospheric turbulence on the laser communications include [69]:  

i. Beam steering - Angular deviation of the beam from its initial LOS target leading to 

the beam being out of the receiver aperture range.  

ii. Image dancing - The focus of the received beam moves randomly in the image plane 

caused by the variations of the arrival-angle of the laser. 

iii. Beam spreading - The beam divergence is increased due to scattering, which causes a 

reduction in the received power density.  

iv. Beam scintillation - The spatial power density fluctuates at the receiver plane which 

is the result of small scale destructive interference within the optical beam cross-

section.  

v. Spatial coherence degradation - The phase coherence across the beam phase fronts 

suffers losses due to the turbulence [95].  

vi. Polarisation fluctuation - This is negligible for the horizontally travelling optical 

radiation [67]. 
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The statistical behavior of the received irradiance traversing a turbulent atmosphere will 

be detailed in Chapter Three.  

2.7     Noise in Optical Detection 

To accurately characterize the system performance, a good understanding of origins of 

noise is required. It is also useful to consider the electrical signal-to-noise ratio (SNR) as 

the limit to the system performance. A number of noise sources are associated with the 

optical communication systems, mainly arising from the background radiation and from 

the internally generated noise [69, 135]. A summary of the dominant sources of noise is 

presented next.   

2.7.1    Thermal Noise 

This is also known as the Johnson noise, which is the spontaneous fluctuation especially 

prevalent in resistors operating at room temperature. It is caused by thermal interaction 

between the free electrons and the vibrating ions in a conducting medium [42, 69, 135]. 

The thermal noise can be regarded as ‘white’ noise since the power spectral density 

(PSD) is independent of frequency. The Gaussian distribution is used to characterize the 

statistical behaviour of the thermal noise with zero mean and variance of [140]:  

𝜎𝑇ℎ
2 =

 𝜅𝑇𝑒𝐵

𝑅𝐿
                                                                                                                             (2. ) 
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where 𝜅  is the Boltzmann’s constant (1.3806503×10
-23

 m
2
 kg s

-2
 K

-1
), 𝑇𝑒  is the 

temperature in Kelvin, 𝐵 is the bandwidth in Hz and 𝑅𝐿 is the equivalent load resistance 

in Ohm (Ω) is normalised to 1 Ω.  

2.7.2     Dark Current Shot Noise  

In a photoemissive or photovoltaic detector, the dark current flowing in the absence of 

any photons impinging on the photodetector causes shot noise. The dark current, arising 

from the transition of electrons from the valence to the conduction band, includes tunnel, 

leakage, diffusion currents and generation-recombination taking place in the space-

charge region and is proportional to the volume of the depletion region [135]. The 

amount of dark current is significantly dependent upon the energy band-gap of the 

photodetector materials. The short noise variance is given as [1]: 

𝜎𝐷𝑘
2 = 2𝑞〈𝑖〉𝐵                                                                                                                              (2.5) 

where 𝑞 represents the electronic charge, and 〈𝑖〉 is the mean generated electric current 

over a given period of time 

2.7.3     Photon Fluctuation Noise 

The significant noise affecting all types of photodetectors is interrelated with the 

quantum nature of light itself, which is due to the varying number of photons emitted by 

a coherent optical source whereas the mean radiation intensity is constant. The photon 

fluctuation noise is also known as generation-recombination noise for a solid-state 
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detector or as the shot noise for a photoemissive detector [69, 135]. The variance of 

quantum noise can be expressed as [1, 42]: 

𝜎𝑄𝑡𝑚
2 = 2𝑞〈𝑖〉𝐵.                                                                                                                          (2.6) 

2.7.4     Background Radiation 

It is the result of the photons generated by the environment. The background radiation is 

dominated by two major sources: extended sources (e.g. the sky) and localised point 

sources (e.g. the sun). The radiation from other sources (stars and reflected background 

radiation) is presumed to be too weak to affect the terrestrial FSO systems, whereas its 

effects are significant on the performance of the deep space FSO.  

However, the impact of background noise can be mostly decreased by using an optical 

bandpass filter (OBPF) and a receiver with a very narrow FOV. The OBPFs coated onto 

the receiver with bandwidth less than 1 nm are available in the market. The background 

radiation considered as the shot noise has a variance [69]: 

𝜎𝐵𝑔
2 = 2𝑞𝐵ℜ(𝐼𝑠𝑘𝑦  𝐼𝑠𝑢𝑛)                                                                                                      (2.7) 

where 𝐼𝑠𝑘𝑦  and 𝐼𝑠𝑢𝑛  represent the radiation from the sky and the sun. In general, the 

background radiation is greater than other noise processes [1, 69] so that it dominates the 

total shot noise which is the summation of all type of noises.  
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2.8     Eye Safety and Standards 

Some of the data transmission limitations faced by the FSO technology can be alleviated 

by increasing the optical power. For instance, the optical signal propagating through the 

atmospheric channel is subject to a high attenuation, which can be compensated by using 

a high emitted optical power to improve the link range and SNR. A smaller and faster 

low-capacitance photodetector can also be used for a high power level transmission 

system.  

Meanwhile, the safety of the optical radiation has to be ensured. The optical power at 

their respective wavelengths (infrared, visible, and ultraviolet) must not exceed the 

specific safety levels and cause any damage to both the eye and skin that might come into 

contact with it [42, 141-143]. Injury to the eye can be far more serious due to the eye’s 

ability to focus and concentrate the optical energy.  

The optical power covering the wavelengths from 400－1400 nm can be focused on the 

retina, whereas other wavelengths are more likely to be absorbed by the cornea before the 

energy is focused. A high-energy spot can be created by this focused energy. As the area 

of the spot reduces, the temperature of the retina rises, and the damage becomes worse 

[144]. In fact, the use of a 1550 nm wavelength optical carrier has been proposed because 

the cornea is opaque to infrared radiation beyond 1400 nm [1].  

The infrared radiation at 1550 nm wavelength can be almost completely absorbed by the 

cornea and aqueous humour [145]. Additionally, in spite of the sensitivity of germanium 

(Ge) and indium gallium arsenide (InGaAs) photodetectors to electromagnetic energy at 
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around 1550 nm, these detectors are more expensive and present higher capacitances 

[146]. Apart from the transmission optical power, other issues that have to be considered 

are the flux density (the power per unit area), the wavelength of operation, and the length 

of time that the eye is exposed to the optical radiation [143]. 

Several international organizations provide standards on the safety issue of laser beams, 

among which the leading ones are [68]: American National Standards Institute (ANSI), 

International Electrotechnical Commission (IEC), European Committee for 

Electrotechnical Standardization (CENELEC), Laser Institute of America (LIA), and 

Center for Devices and Radiological Health (CDRH).  

As specified by the revised IEC 60825-1 standard, the classification of systems according 

to their significant characteristics and requirements is presented in Table 2.1 [145].  

 

Table 2.1: Classification of laser beams on eye safety issue.  

Class  Comments  

Class 1 Radiation from a low power device at a wavelength range 302.5   4000 nm. 

Lasers belonging to Class 1 are intrinsically safe due to their technical 

design under all reasonably conceivable usage conditions, when viewing 

through optical instruments (monocular, binoculars, microscope); 

Class 1M Similar to Class 1 and providing beams that are divergent, or large-diameter 

beams. The danger can be considerably heightened when using it with 

optical instruments, including binoculars, telescope, etc. 

Class 2 A Class 2 laser is safe as it is limited to a 1 mW continuous wave, or the 

light with high optical power is not spatially coherent, or the emission time 

is less than 0.25 seconds. It covers the visible-light range 400   700 nm. 

Defensive reflexes ensure eyes are protected, for example, the palpebral 
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reflex (closing of the eyelid) provides effective protection under all 

reasonably foreseeable usage conditions, when using optical instruments 

(binoculars, microscope, monocular). 

Class 2M Visible radiation from a low power device covering the band 400 - 700 nm. 

Class 2M provides beams that are divergent or large-diameter beams. The 

danger can be considerably heightened when using it with optical 

instruments, including binoculars, telescope, etc. The radiation of light 

emitted from the pupil must not exceed the limits of Class2. 

Class 3R Potentially dangerous for direct vision. The amount of radiation from a 

Class 3R laser is limited to 5 mW and it is in the band 302.5 - 4000 nm. 

Class 3B It is hazardous for direct vision whereas the diffuse reflection is not harmful. 

The average power is limited to 30 mW. The Class 3B laser operates in the 

band 302.5   4000 nm. Protective eyewear and specific training are typically 

required before the maintenance or installation is carried out. 

Class 4 Class 4 lasers are high power devices, which can burn the skin and cause 

potentially permanent eye damage for both direct and diffuse beam viewing. 

They have to be filled with a key switch and a safety interlock. Protective 

eyewear and specific training are required before carrying out the 

maintenance or installation. 

 

The transmission optical power emitted from a Class 1 laser operating at 1550 nm could 

be approximately 50 times more than that emitted from a laser working in the shorter 

infrared wavelength (850 nm), provided the sizes of the aperture lens are same. It is also 

important to note that the determinant of the laser classification is the output power 

which is in front of the transmit aperture instead of the absolute power created by a laser 

diode inside the equipment. Therefore, it is theoretically possible to design an eye-safe 

FSO system operating at any wavelength. In fact, the FSO system can be considered as 

Class 1 or 1M even if the inner laser diode is actually Class 3B. In such a case, the light 
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is spread out to pass through the large-diameter lens aperture before it enters the space or 

multiple large transmission apertures are used to maintain the Class 1 or 1M safety 

classifications [68].  

2.9     Summary 

This chapter outlined the introductory discussion to optical wireless communication 

systems. The features and usage which make FSO technology suitable for the access 

network were highlighted. The challenges faced by the optical beam propagating over the 

atmospheric channel also were discussed with the aim of having a complete overview of 

the technology and the possibility to compare it to radio as a medium for wireless 

communication. It has to be note that optical wireless will not replace radio as the only 

technology to transmit information wirelessly but operates in a complementary way. One 

technology is preferred over the other depending on a particular system as request. 

Various areas of FSO applications were mentioned as well as the issue of eye safety and 

laser classifications. Descriptions of the operating principles of IM/DD were given to 

provide a background for the subsequent chapters. Furthermore, the various noise 

sources were analysed.  
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Chapter Three 

 

 

 

Atmospheric Turbulence Models  

 

Understanding of the statistical distribution of the received irradiance in the atmospheric 

turbulence is necessary to predict the reliability of an optical system operating in such an 

environment. Several mathematical models for the random fading irradiance signals have 

been developed; however, a valid probability density function (PDF) for all the 

turbulence regimes does not currently exist [1, 95]. The three most reported models for 

irradiance fluctuation will be discussed in this chapter, which are the lognormal, the 

gamma-gamma, and the negative exponential models corresponding to weak, weak-to-

strong and saturation regimes, respectively [13, 67, 95-97, 131, 147]. Since the gamma-
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gamma model covers all atmospheric turbulence regimes, it will be applied to evaluate 

the performance of FSO link in the subsequent chapters.       

 

3.1     Optical Turbulence 

The turbulent air can be regarded as a set of eddies with various temperatures, acting like 

refractive prisms with different sizes and refractive indices. The ‘Taylor hypothesis’ will 

be discussed here as it is widely used for a turbulent atmospheric channel [67, 86]. In the 

‘Taylor hypothesis’, the turbulent eddies are assumed to be frozen or fixed and only 

move with the transverse component of the wind. The statistical properties or the 

temporal variations in the beam pattern result from the direction from which the wind 

blows perpendicular to the direction the light is travelling. Additionally, the temporal 

coherence time 𝜏0 is approximately milliseconds, which is greater than the duration of a 

typical data symbol [95]. Therefore, an atmospheric turbulence channel is called a ‘slow 

fading channel’ as it is static during the symbol period.    

 

Fig. 3-1: Kolmogorov cascade theory of turbulence eddies between scale size 𝐿0 and 𝑙0 

form the inertial subrange. (𝐿0: the outer scale; 𝑙0: the inner scale).  
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The turbulent eddies have various scale sizes extending from the inner scale size 𝑙0 to the 

outer scale size 𝐿0 of turbulent air as shown in Fig. 3-1. More specifically, the outer scale 

𝐿0 grows linearly with the height of the observation point above ground in the surface 

layer of approximately 100 m, whereas the inner scale 𝑙0 near the ground is typically 

around 3 to 10 mm and extends to several centimetres with higher altitude 𝒽 [66, 96]. 

Due to the influence of inertial forces, the large eddy splits into smaller pieces to form an 

incessant cascade of scale sizes between 𝑙0 and 𝐿0, which is known as the inertial range 

as illustrated in Fig. 3-1. Those scale sizes that are smaller than the inner scale are part of 

the dissipation range [96].           

The turbulent air is due to the index-of-refraction (𝑛) inhomogeneities caused almost 

exclusively by the atmospheric temperature fluctuation along the link range of the optical 

radiation propagating over the atmosphere [69]. The variation of temperature is a 

function of the wind speed, atmospheric pressure, and altitude [1].  

The relationship between the temperature and refractive index of the atmosphere 𝑛 is 

given as [148]: 

𝑛 = 1  77.6(1  7.52  10−3𝜆−2)
𝑃

𝑇𝑒
 10−                                                                   (3.1) 

where 𝑃 is the atmospheric pressure (millibars) and 𝜆 is the wavelength (microns).  

And the rate of change in the refractive index with respect to the atmospheric 

temperature is given as [67]: 

 𝑑𝑛 𝑑𝑇𝑒⁄ = 77.6(1 7.52  10−3𝜆−2)
𝑃

𝑇𝑒2
 10−                                                         (3.2) 
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The effects of humidity on the refractive index fluctuation are assumed negligible at 

optical wavelength [95].  

The Rytov variance 𝜎𝑙
2 for a plane wave is used as a measure of turbulence strength and 

is derived as [1, 44, 149]:  

𝜎𝑙
2 = 1.23𝐶𝑛

2𝐾 / 𝐿11/                                                                                                            (3.3) 

where 𝐶𝑛
2 (m−2/3) denotes the index of refraction structure parameter, 𝐾 = 2 /𝜆 is the 

optical wave number, and 𝐿(m) is the link length between transmitter and receiver. 

The parameter 𝐶𝑛
2 is given as [1, 42, 45, 149]:  

𝐶𝑛
2(ℎ) = 0.005  (𝓋 27⁄ )2(10−5𝒽)10e  ( 𝒽 1000⁄ )  2.7  10−1 e  ( 𝒽 1500⁄ )

 �̂�e  ( 𝒽 100⁄ )                                                                                       (3. ) 

where 𝒽 is the altitude in metres (m), �̂� is a normal value of 𝐶𝑛
2(0) at the ground level in 

m−2 3⁄ , and 𝓋 is the root mean square (RMS) wind speed (pseudowind) in metres per 

second (m/s). The value of 𝐶𝑛
2 varies with the altitude 𝒽, but it is assumed to be constant 

for a horizontally propagating field. The typical average value of 𝐶𝑛
2 is 10−15 m−2/3 and 

a range from 10−1  m−2/3 to 10−12 m−2/3 corresponds to turbulence regimes from weak 

to strong, respectively [147, 149].  

The PSD of refractive index fluctuation is closely related to 𝐶𝑛
2  with the following 

equation [123, 150, 151]: 

Φ𝑛(𝐾) = 0.033𝐶𝑛
2𝐾−11/3                           2 𝐿0⁄  𝐾  2 𝑙0⁄                                      (3.5) 
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However, the modified expression for a wider range of 𝐾 is derived by Tatarski and Von 

Karman [147, 152, 153].   

To mathematically describe the turbulent air is extremely difficult, because the 

observable atmospheric quantities are mixed non-linearly [96]. Therefore, the following 

assumptions have been made to simplify the mathematics [95]:    

i. The terrestrial FSO channel is non-dispersive. Specific to radiation and absorption of 

the optical beam, this assumption is still valid as the heat generated is unimportant in 

comparison with diurnal contributions.  

ii. The optical beam doesn’t suffer from any energy loss due to the atmospheric 

scattering, which leads to a constant mean energy in the absence or presence of 

turbulence. This assumption is made with regard to the spherical and plane waves. 

The laser beam propagating over a long link span is generally considered as a plane 

wave [95, 154]. 

 

3.2     Lognormal Turbulence Model  

The weak turbulence regime is characterized by the single scattering event based on the 

Rytov approach [67, 155, 156]. The Rytov transformation variable Ψ⃗⃗⃗⃗  is defined to 

represent the natural logarithm of the transmission field �⃗⃗�𝑟 , Ψ⃗⃗⃗⃗ =  n[�⃗⃗�𝑟]  [152]. By 

invoking the smooth perturbing method [95], the Gaussian complex variable Ψ⃗⃗⃗⃗ can be 

written as: 
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Ψ⃗⃗⃗⃗ = Ψ⃗⃗⃗⃗0  Ψ⃗⃗⃗⃗1                                                                                                                              (3.6) 

where Ψ⃗⃗⃗⃗0 and Ψ⃗⃗⃗⃗1correspond to the absence-of-turbulence part and turbulence induced 

deviation, respectively. Both variables are Gaussian processes.  

To find out the statistical distribution of irradiance fluctuation in a weak turbulence 

regime, the amplitude fluctuation is obtained as: 

Ψ⃗⃗⃗⃗1 = Ψ⃗⃗⃗⃗  Ψ⃗⃗⃗⃗0 =  n[�⃗⃗�𝑟]   n[�⃗⃗�0] =  n[�⃗⃗�𝑟 �⃗⃗�0⁄ ]                                                                   (3.7) 

where �⃗⃗�𝑟 and �⃗⃗�0 stand for electric fields representing the laser beam traversing through a 

terrestrial channel in the presence and absence of turbulence, respectively. The electric 

field �⃗⃗�0 of the optical beam is defined as [1]: 

�⃗⃗�0 = 𝐴e  {𝑖[𝜑]}                                                                                                                     (3.8) 

where 𝐴 and 𝜑  represent the amplitude and phase of the electric field in a terrestrial 

channel, respectively. Thus, (3.7) can be rewritten as [157]: 

Ψ⃗⃗⃗⃗1 =  n[𝐴𝑟 𝐴0⁄ ]  𝑖[𝜑𝑟  𝜑0] = 𝜒  𝑖𝜍                                                                               (3. ) 

where 𝜒 denotes the Gaussian distributed log-amplitude fluctuation, and 𝜍 is the Gaussian 

distributed phase fluctuation of the field.  

As the POLSK signals can be viewed as orthogonally amplitude modulated signals which 

are highly insensitive to the phase noise, only the irradiance fluctuation will be presented. 

The PDF of the amplitude fluctuation 𝜒 is derived [44, 95, 123, 147, 149]:  
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𝑝(𝜒) =
1

√2 𝜎𝜒2
e  { 

(𝜒  𝐸[𝜒])2

2𝜎𝜒2
}                                                                               (3.10) 

where 𝐸[𝜒]  and 𝜎𝜒
2  correspond to the expectation and variance of variable 𝜒 , 

respectively. The variance 𝜎𝜒
2 is related to the refractive index structure parameter 𝐶𝑛

2 and 

expressed as [67]:  

𝜎𝜒
2 =

{
 
 

 
 0.56𝑘 / ∫ 𝐶𝑛

2
𝐿

0

(𝑥)(𝐿  𝑥)5/ 𝑑𝑥                         r      ne    e 

0.563𝑘 / ∫ 𝐶𝑛
2

𝐿

0

(𝑥)(𝑥 𝐿⁄ )5/ (𝐿  𝑥)5/ 𝑑𝑥             r   s  er c      e 

    (3.11) 

where L is the horizontal distance that the optical field/radiation travelled through.  

The field irradiances (optical powers) operating in the presence and absence of a 

turbulence channel are 𝑃𝑟 = |𝐴𝑟|
2  and 𝑃0 = |𝐴0|

2 , respectively. The log-amplitude is 

given as [123]:  

𝑙 =  n|𝑃𝑟 𝑃0⁄ | =  n|𝐴𝑟 𝐴0⁄ |2 = 2𝜒                                                                                     (3.12) 

where 𝐴𝑟  and 𝐴0 represent the amplitude in the presence and absence of a turbulence 

channel, respectively. And  

𝑃𝑟 = 𝑃0e  (𝑙).                                                                                                                         (3.13) 

The statistics of the irradiance fluctuation of the laser travelling through the weak 

turbulence channel has been experimentally verified to obey the lognormal distribution 

[158].  
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Invoking the variable transformation, 𝑝(𝑃𝑟) = 𝑝(𝜒)|𝑑𝜒 𝑑𝑙⁄ | , the lognormal PDF is 

obtained as [44, 123, 149]:  

𝑝(𝑃𝑟) =
1

√2 𝜎𝑙

1

𝑃𝑟
e  [ 

( n(𝑃𝑟 𝑃0⁄ )  𝐸[𝑙])2

2𝜎𝑙
2 ]       𝑃𝑟  0                                           (3.1 ) 

where the Rytov variance, is 𝜎𝑙
2 =  𝜎𝜒

2 which is only valid for the spherical wave. The 

expression for 𝜎𝑙
2 is given in (3.3). The mean log-amplitude is 𝐸[𝑙] = 2𝐸[𝜒] [123].  

 

As the experimental results reported in [95], the lognormal model can only predict the 

irradiance fluctuation in a weak turbulence channel for 𝜎𝜒
2  0.3. Beyond this range, the 

lognormal turbulence model becomes invalid caused by the multiple scattering due to a 

combination of increased link range and/or 𝐶𝑛
2 [67, 96]. Based on the second assumption 

in Section 3.2, the amount of energy is counted as the same during the scattering process, 

which means 𝐸[e  (𝑙)] = 𝐸[𝑃𝑟 𝑃0⁄ ] = 1 and 𝐸[𝑃𝑟] = 𝑃0. Applying the standard relation 

(3.15) (valid for the Gaussian random variable with real values) [147], the expression for 

𝐸[e  (𝑙)] is given as [123]: 

𝐸[e  (𝑎 )] = e  (𝑎𝐸[ ]  0.5𝑎2𝜎 
2)                                                                             (3.15) 

1 = e  (𝐸[𝑙]  0.5𝜎𝑙
2)                                                                                     (3.16) 

𝐸[𝑙] =  𝜎𝑙
2 2⁄                                                                                                          (3.17) 
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Fig. 3-2: Lognormal PDF with 𝐸[𝑃𝑟] = 1 for various values of turbulence variance 𝜎𝑙
2. 

 

The lognormal PDF expressed by (3.14) is shown in Fig. 3-2 for a range of 𝜎𝑙
2. The 

distribution is skewed right. Increasing the value of turbulence variance 𝜎𝑙
2 will increase 

the skewness. Meanwhile, the tail becomes longer in the positive infinity direction, 

which indicates the extent of the irradiance fluctuation as the channel inhomogeneity 

increases. The normalized variance of the irradiance fluctuations, also known as 

scintillation index S.I., is considered as the most crucial parameter in characterising the 

effects of the atmospheric turbulence, as given by [96]: 

 . 𝐼.= e  (𝜎𝑙
2)  1                                                                                                                 (3.18) 

When the scintillation index increases linearly with 𝜎𝑙
2 (Rytov parameter) until it reaches 

a maximum value greater than unity, the scintillation enters into the strong turbulence 

regime characterized by the random focusing due to the large-scale inhomogeneities [67, 

95]. Continuously raising the inhomogeneity strength or the link range will decrease the 

focusing effect and the peak fluctuations as the result of multiple self interferences. In 
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such case the turbulence enters into the saturation regime at which the scintillation index 

approaches unity from above. Saturation is induced by the increasingly lower (spatial) 

coherence of the propagating optical wave due to the multiple self interferences. 

Saturation can be viewed as extended independent multiple sources, each of which 

radiates with a distinct random phase [95].  

 

3.2.1     Spatial Coherence in Weak Turbulence  

The optical beam suffers a decrease in its spatial coherence while propagating through a 

turbulent atmospheric channel. The degree of the coherence degradation is related to the 

turbulence strength and the transmission link range as the coherence radiation is split due 

to the turbulent air. The reduced spatial coherence distance can be measured using the 

diameter of the fragmental coherence radiation.  

The spatial coherence of a travelling optical field can be derived based on the Rytov 

approach [67]:  

Γ𝑥(𝜌) = 𝐴
2e  [ (𝜌 𝜌0⁄ )5 3⁄ ]                                                                                              (3.1 ) 

where 𝜌0 denotes the transverse coherence length at which the coherence of the optical 

field is Γ𝑥(𝜌) = 𝑒
−1.  

The transverse distance 𝜌0  for plane and spherical waves is defined by following 

equations [67], respectively: 



57 
 

𝜌0 = [1. 5𝑘
2∫ 𝐶𝑛

2(𝑥)𝑑𝑥
𝐿

0

]

−3/5

                                                                                      (3.20 ) 

𝜌0 = [1. 5𝑘
2∫ 𝐶𝑛

2(𝑥)(𝑥 𝐿⁄ )5/3𝑑𝑥
𝐿

0

]

−3/5

.                                                                    (3.20 ) 

The coherence distance is important in the aperture averaging which is the technique to 

determine the size of the receiver aperture in order to collect the propagating optical 

field. In a multi-receiver optical system the minimum separation distance of the detector 

array is determined by the coherence length 𝜌0 in order to receive uncorrelated signals [1, 

123]. 

The transverse coherence length for a plane wave at two wavelengths,  = 850 nm and 

1550 nm, for various values of 𝐶𝑛
2 (m−2 3⁄ ) is depicted in Fig. 3-3. The coherence length 

is higher at longer wavelengths. For example, when the link range is 1 km and 𝐶𝑛
2 =

10−15 m−2 3⁄ , the coherence lengths are ~ 0.07 m and ~ 0.15 m for the plane wave at the 

wavelengths of 850 nm and 1550 nm, respectively. The coherence length reduces as the 

link range or the turbulence level rises. For instance, when 𝐶𝑛
2 increases to 10−12 m−2 3⁄ , 

the corresponding coherence length decrease to ~ 0.001 m and ~ 0.002 m. 
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Fig. 3-3: The transverse coherence distance 𝜌0 (m) against the link range with a range of 

𝐶𝑛
2 (m−2 3⁄ ) for the plane wave at the wavelengths of 𝜆 = 850 nm and 1550 nm. 

 

3.3     Gamma-Gamma Turbulence Model 

The gamma-gamma model is proposed by Andrews et al [96, 131, 149]. The irradiance 

fluctuation of an optical beam propagating over the turbulent air can be viewed as the 

modulation process comprising small scale (scattering) and large scale (refraction) 

effects. The small scale effect is caused by the eddies/cells smaller than the Fresnel zone 

or the coherence radius, while the large scale is due to the turbulent eddies larger than the 

first Fresnel zone or the scattering disk. Assuming the small scale eddies are modulated 

by the large scale eddies, the irradiance can be described by 𝑃𝑟 = 𝑃𝑥𝑃𝑦 , where 𝑃𝑥 and 𝑃𝑦  

arise from large-scale and small-scale atmospheric effects, respectively. In addition, both 



59 
 

are two statistically independent random processes and governed by gamma distributions 

[13, 45, 79, 96, 97]:     

𝑝𝑥(𝑃𝑥) =
𝛼(𝛼𝑃𝑥)

 −1

Γ(𝛼)
e  ( 𝛼𝑃𝑥)    𝑃𝑥  0 𝛼  0                                                       (3.21 ) 

𝑝𝑦(𝑃𝑦) =
𝛽(𝛽𝑃𝑦)

 −1

Γ(𝛽)
e  ( 𝛽𝑃𝑦)   𝑃𝑦  0 𝛽  0.                                                       (3.21 ) 

The effective numbers of large- and small-scale eddies of the scattering process 

respectively are represented by 𝛼  and 𝛽  which characterise the irradiance fluctuation 

PDF. The conditional PDF is obtained by first fixing 𝑃𝑥 and writing 𝑃𝑦 = 𝑃𝑟 𝑃𝑥⁄  [13, 45, 

127, 149],  

𝑝𝑦(𝑃𝑟|𝑃𝑥) =
𝛽(𝛽𝑃𝑟/𝑃𝑥)

 −1

𝑃𝑥Γ(𝛽)
e  ( 𝛽𝑃𝑟/𝑃𝑥)       𝑃𝑟  0                                                   (3.22) 

where 𝑃𝑥 denotes the (conditional) mean value of 𝑃𝑟.  

The unconditional irradiance fluctuation is derived by forming the average of (3.22) over 

the gamma distribution [1, 13, 45, 96, 149]: 

𝑝(𝑃𝑟) = ∫ 𝑝𝑦(𝑃𝑟|𝑃𝑥)𝑝𝑥(𝑃𝑥)𝑑𝑃𝑥

 

0

  

=
2(𝛼𝛽)(   ) 2⁄

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)     𝑃𝑟  0                                            (3.23) 

where 𝐾𝑛(∙) denotes the modified Bessel function of the 2
nd

 kind of order n, and Γ(∙) 

represents the Gamma function.  
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Assuming the optical beam at the receiver is a plane wave, the two parameters 𝛼 and 𝛽 

are related to atmospheric conditions through models for large-scale and small-scale 

scintillations by [1, 149]: 

𝛼 = [e  (
0.  𝜎𝑙

2

(1  1.11𝜎𝑙
12/5)

 / 
)  1]

−1

                                                                     (3.2  ) 

𝛽 = [e  (
0.51𝜎𝑙

2

(1  0.6 𝜎𝑙
12/5)

5/ 
)  1]

−1

.                                                                     (3.2  ) 

Provided (3.23) and (3.24), the gamma-gamma PDF 𝑝(𝑃𝑟)  is plotted against the 

irradiance 𝑃𝑟 for various values of 𝛼 and 𝛽 corresponding to weak, moderate, and strong 

turbulence regimes as shown in Fig. 3-4. As the turbulence level increases from weak to 

strong, the distribution spreads out more and the tail becomes longer, which raises the 

extent of irradiance. The gamma-gamma PDF model is verified by Andrews [96]. The 

gamma-gamma channel is particularly attractive in predicting the statistical distribution 

of the irradiance fluctuation in a turbulent atmospheric channel because it is valid for all 

turbulence scenarios from weak to strong.   
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Fig. 3-4: Gamma-gamma PDF with respect to the turbulence regimes from weak to 

strong.  

 

The S.I. as a function of the lognormal turbulence variance 𝜎𝑙
2  in a gamma-gamma 

turbulence channel is obtained as [1]:  

𝜎𝑁
2 = e  [

0.  𝜎𝑙
2

(1  1.11𝜎𝑙
12/5)

 / 
 

0.51𝜎𝑙
2

(1  0.6 𝜎𝑙
12/5)

5/ 
]  1.                                         (3.25) 

The value of S.I. against the turbulence variance 𝜎𝑙
2 is plotted in Fig. 3-5 using (3.25). As 

𝜎𝑙
2 increases, the S.I. increases to the maximum value and then it tends to be flat as the 

turbulence induced fading approaches the saturation regime.  
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Fig. 3-5: S.I. against the turbulence variance 𝜎𝑙
2  with 𝐶𝑛

2 = 10−15 m−2 3⁄  and 𝜆 =

850 nm. 

 

The range of values for 𝛼 and 𝛽 across the turbulence regimes from weak to strong are 

shown in Fig. 3-6. The weak turbulence regime is characterized by a large effective 

number of large and small scale eddies. As the irradiance fluctuation increases until 

𝜎𝑙
2  0.2, the turbulence enters into the focusing regime, where the values of 𝛼 and 𝛽 

drop noticeably. Continuously increasing 𝜎𝑙
2 results in the saturation regime where 𝛼 and 

𝛽  1. According to [79], the transverse spatial coherence radius of the optical wave 

determines the effective number of small scale eddies. Increasing the turbulence variance 

𝜎𝑙
2 increases the effective number of discrete refractive scatters 𝛼 which ultimately turns 

into unbounded in the saturation regime as illustrated in Fig. 3-6. In such a case the 

distribution of irradiance fluctuation is modelled as the negative exponential distribution.        
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Fig. 3-6: The range of values for 𝛼 and 𝛽 in the whole turbulence regime. 

 

3.4     Negative Exponential Turbulence Model 

The multiple scattering effects must be taken into account as the strength of turbulence 

increases [96]. Beyond the saturation regime, the turbulence approaches the limits, also 

known as the fully developed speckle regime where the link range extends several 

kilometres and the number of independent scatterings becomes large [10, 159]. The 

irradiance fluctuation of the optical field propagating over a turbulence channel in the 

saturation regime is governed by the Rayleigh distribution implying negative exponential 

statistics which is expressed as [95, 160, 161]: 

𝑝(𝑃𝑟) =
1

𝑃0
e  ( 

𝑃𝑟
𝑃0
)    𝑃0  0                                                                                         (3.26) 

where 𝑃0 denotes the mean received irradiance.  

The value of the scintillation index is approaching unity,  . 𝐼. 1 , in the saturation 

regime. The negative exponential turbulence model is depicted in Fig. 3-7. In addition, 
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other turbulence models proposed are also valid from weak to strong turbulence regime. 

Both the lognormal-Rician [162] and the I–K [163] turbulence models cover the entire 

turbulence regimes from weak to strong. The K-model [157, 164, 165] is only applied for 

the strong turbulence regime.  

 

 

Fig. 3-7: Negative exponential PDF against the normalised irradiance for various values 

of 𝑃0. 

 

3.5     Summary 

This chapter gives a complete parametric description of the optical beam propagation 

over a turbulence channel. A theoretical basis of the atmospheric propagation 

characteristics, pertinent examples, and references for further data are provided. A 

number of definitions introduced in this chapter are important for a better comprehension 

of the atmospheric phenomena and the effects on a propagating laser beam. Additionally, 

different atmospheric turbulence models have been outlined. The lognormal is 
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mathematically tractable but only valid in the weak regime. Beyond the weak regime, 

where multiple scattering needs to be taken into account, the gamma-gamma model is 

more suitable but lacks the mathematical convenience. The negative exponential model is 

used in the saturation regime. The gamma-gamma turbulence model will be applied in 

the subsequent chapters to characterise the statistical behaviour of the received optical 

signal and derive error rate expressions of FSO links. 
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Chapter Four 

 

 

 

Coherent Polarisation Shift Keying 

Systems  

 

To design an optical wireless system, selecting the right modulation scheme is of 

paramount importance. The bandwidth, the power efficiency and the design complexity 

of the transmitter and receiver, which affect the overall performance of the system, are 

defined by the modulation technique adopted [45, 66]. The coherent POLSK 

modulation scheme will be introduced in this chapter, and will be used in the following 

chapters to compare the error probabilities with other modulation schemes in the 

presence of channel impairments, such as noise and turbulence. The chapter is organised 

as follows. Discussions on digital modulation schemes will be outlined in Section 4.1; 
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followed by the general coherent optical system structure in Section 4.2; the POLSK 

scheme will be introduced in Section 4.3; the polarisation fluctuations in a turbulence 

channel will be discussed in Section 4.4; the outage probabilities in a lognormal channel 

and a negative exponential channel are analysed in Sections 4.5 and 4.6, respectively; 

finally, the will be presented in Section 4.7.   

 

4.1     Digital Modulation Schemes 

Digital modulation schemes are favoured in optical transmission for a number of 

reasons including the performance, the compatibility with the digital world, the ability 

to introduce coding, encryption, compression, and the hard and soft signal processing 

[45, 80, 157, 166-168]. The modulation tree is illustrated in Fig. 4-1 in which the 

highlighted modulation techniques will be introduced in the following chapters. In order 

to present the advantages of polarisation modulation schemes with regard to the error 

performance in the atmospheric turbulence channel, comparisons of the POLSK, NRZ-

OOK and PSK schemes operating over an atmospheric turbulence channel will be 

carried out. 
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Fig. 4-1: Modulation tree. (OOK: on-off keying; NRZ-OOK: non-return-to-zero OOK; RZ-OOK: return-to-zero OOK; SIM: subcarrier intensity modulation; 

PSK-SIM: phase shift keying SIM; FM-SIM: frequency modulation SIM; AM-SIM: amplitude modulation SIM; PPM: pulse position modulation; PAM: pulse 

amplitude modulation; PWM: pulse width modulation; DPIM: digital pulse interval modulation; PFM: pulse frequency modulation; POLSK: polarisation shift 

keying; ASK: amplitude shift keying; PSK: phase shift keying). 
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In a single SIM scheme, the electric current to drive the transmitter is a radio frequency 

subcarrier of a higher frequency modulated by the original information, where the 

instantaneous power of the optical transmitter is proportional to the modulated signal 

[169]. The spectrum of a baseband signal is shifted to facilitate the transmission of the 

information signal. A DC bias is generally added to ensure that the signal amplitude is 

always positive. In single SIM, the PSK can be applied to modulate the carrier [166, 169-

171].  

Multiple subcarrier modulation (MSM) contains several digital or analogue signals on 

different electrical subcarriers, which are then used to intensity modulate the optical 

carrier signal [166, 171-173]. If the subcarriers are orthogonal, it is called orthogonal 

frequency division multiplexing (OFDM) [174]. MSM and OFDM schemes are attractive 

as the asynchronous multiplexing of different information streams is possible where only 

the desired information stream can be demodulated at the receiver. However, these 

modulation schemes suffer from the poor optical average power efficiency, which is 

caused by the high PAPR in the MSM electrical signal [87, 171, 174, 175]. The power 

reduction techniques for MSM have been investigated in [175, 176].  

 

4.2     Optical Coherent Receiver 

The block diagrams of a coherent system for the heterodyne and homodyne optical 

receivers are depicted in Fig. 4-2 and Fig. 4-3, respectively. In a heterodyne optical 
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receiver the local oscillator and the received carrier possess different optical frequencies 

[21, 177, 178]. However, the homodyne optical receiver is a type of degenerate 

heterodyne receiver in which two optical frequencies are the same [135, 177, 179-181]. 

In a coherent receiver, the received optical field is superimposed onto the optical local 

oscillator field by a PBS. The photodetector detects the sum of these two fields and 

provides an electric current proportional to the received optical power [135, 181].  

 

4.2.1     Optical Heterodyne Detection Receiver  

The optical heterodyne receiver is shown in Fig. 4-2. Both optical fields of the input 

signal �⃗⃗�𝑟(𝑡)  and local oscillator signal �⃗⃗�𝑙𝑜(𝑡)  are linearly polarised along the �⃗� 

polarisation. The optical field at the receiver input �⃗⃗�𝑟(𝑡) is superimposed onto the optical 

field �⃗⃗�𝑙𝑜(𝑡) generated by an optical local oscillator by using a PBS. The frequency of 

signal �⃗⃗�𝑟(𝑡) differs from that of �⃗⃗�𝑙𝑜(𝑡) by the desired IF. The current at the output of the 

photo-detector is proportional to the sum of the irradiance of �⃗⃗�𝑟(𝑡) and �⃗⃗�𝑙𝑜(𝑡) and the 

information buried IF component [12, 21, 182].  

 

 

Fig. 4-2: A heterodyne detection receiver.  
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The electrical fields �⃗⃗�𝑟(𝑡) and �⃗⃗�𝑙𝑜(𝑡) can be written as [69, 135]:  

�⃗⃗�𝑟(𝑡) = √𝑃𝑟𝑒
𝑖( 𝑡   ) ∙ �⃗�                                                                                                         ( .1) 

�⃗⃗�𝑙𝑜(𝑡) = √𝑃𝑙𝑜𝑒
𝑖( 𝑙 𝑡  𝑙 ) ∙ �⃗�                                                                                                   ( .2) 

where 𝑃𝑙𝑜 𝜔𝑙𝑜 and 𝜑𝑙𝑜(𝑡) are the power, angular frequency and the phase noise of the 

local oscillator, respectively.  

The receiver selects only the polarisation components of the received field that match the 

polarisation of the local oscillator, rejecting the others. It follows that the local oscillator 

will be assumed to be linearly polarised along the �⃗� axis, and the information will be 

assumed to be encoded only in the �⃗� polarisation of the received field.  

The output current after the photo-detector is [69, 135]:  

𝑐(𝑡) = ℜ{𝑃𝑟  𝑃𝑙𝑜  2Re[√𝑃𝑟𝑃𝑙𝑜𝑒
𝑖(   𝑡    )]}                                                                ( .3) 

where 𝜔𝐼𝐹 = 𝜔  𝜔𝑙𝑜 and 𝜑𝐼𝐹(𝑡) = 𝜑𝑟(𝑡)  𝜑𝑙𝑜(𝑡) are the frequency and phase noise of 

the intermediate signal, respectively. In (4.3) the first two terms are the baseband terms 

due to the received signal and local oscillator. The third term is the IF signal that can be 

separated by using a bandpass filter.  

The bandwidth and the centre frequency of the bandpass electric filter are twice the 

symbol rate and 𝜔𝐼𝐹 , respectively. Thus, the electric current 𝑐𝐼𝐹(𝑡) is given as [69, 135]:   

𝑐𝐼𝐹(𝑡) = 2ℜ√𝑃𝑟𝑃𝑙𝑜 c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹).                                                                                 ( . ) 
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Therefore, the IF current depends on the received optical power, the angular frequency, 

and phase of the carrier signal. Each of these carrier parameters may be demodulated by 

the following electric processing circuit.  

 

4.2.2     Optical Homodyne Detection Receiver  

The homodyne receiver is illustrated in Fig. 4-3. The optical carrier and a local oscillator 

are set at the same frequency as the carrier and phase-locked to it. The optical mixing is 

performed by a PBS. The photodetector current 𝑐(𝑡) is given [35, 69, 135, 179]: 

𝑐(𝑡) = ℜ[𝑃𝑟  𝑃𝑙𝑜  2√𝑃𝑟𝑃𝑙𝑜 c s(𝜑𝑟  𝜑𝑙𝑜)].                                                                  ( .5) 

The lowpass filter passes the signal and rejects the direct current components. The output 

current is given as [69, 135]: 

𝑐𝑙𝑝(𝑡) = 2ℜ√𝑃𝑟𝑃𝑙𝑜 c s(𝜑𝑟  𝜑𝑙𝑜).                                                                                     ( .6) 

The carrier and local oscillator phase angles are set equal, which maximizes the signal 

current for intensity modulation of the carrier. Setting the local oscillator phase 𝜑𝑙𝑜 =

 2⁄  radians, the output signal from the local oscillator is proportional to 𝜑𝑟 (𝜑𝑟   2⁄ ) 

for the phase modulation. 
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Fig. 4-3: A homodyne detection receiver. 

 

4.2.3     Comparisons between Optical Coherent and Direct Detection 

Receivers 

In general, the coherent receiver offers the following features compared with the direct 

detection receiver [135, 178, 183-185]:  

i. A local oscillator (LO) with a sufficient power achieves the shot-noise limited 

receiver sensitivity. This is due to the signal gain offered by the LO induced shot 

noise being the dominant source. 

ii. An intrinsic frequency selectivity characteristic is based on the IF or the baseband 

stage. It is used to detect WDM signals at the electrical stage by an electrical filter.  

iii. A coherent receiver only selects the polarisation components of the received optical 

signal that match the polarisation of the local oscillator and rejects the others [69, 

135].   



74 
 

iv. Compared with the IM/DD system, the receiver sensitivity can be improved by using 

the phase detection, as the distance between symbols, expressed as phasors on the 

complex plane, is extended by the use of the phase information. 

v. Use of both bandwidth and power-efficient multilevel modulations that can be 

adopted for coherent optical communications by using phase modulation, such as the 

quadrature phase-shift keying (QPSK). 

vi. Coherent detection requires stringent synchronization and channel estimation. 

vii. Coherent receiver is more complex than IM/DD receiver. 

In the OOK modulation scheme, the amplitude of the carrier varies in proportion to the 

amplitude of the modulation signal [157, 186]. On the other hand, the PSK scheme 

transmits the information by shifting the phase of the sinusoidal carrier [166]. The OOK 

scheme is one of the preferred modulation techniques used for FSO because of its good 

bandwidth efficiency and the simplicity of implementation [1, 36, 68, 157]. However the 

performance of the OOK with a fixed thresholding scheme is not optimal in a turbulence 

channel. The threshold level is required to vary in proportion to the irradiance fluctuation 

and noise, which is to apply an adaptive thresholding scheme at the receiver, thus 

increasing the system complexity.  

The PSK technique requires no adaptive thresholding scheme and offers improved 

performance in the presence of turbulence [1, 9, 171]. The results reported by Gfeller et 

al showed that the PSK presented synchronization problems in a diffuse environment 
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where different paths for the transmitted energy existed. The angular modulation scheme 

is highly sensitive to the phase noise, thus requiring a complex synchronization at the 

receiver [42, 135, 187]. Compared to the OOK scheme, the binary PSK scheme requires 

twice the bandwidth and 1.5 dB more optical power [135]. Examples of FSO systems 

based on OOK and PSK can be found in [1, 135, 166, 171, 186].  

Rather than using the traditional approach of modulating the amplitude, phase and 

frequency of the carrier signal, it is also possible to implement the modulation externally 

on the optical beam. By doing so another dimension such as polarisation states could be 

modulated in proportion to the amplitude of the modulating signal, thus it is named 

POLSK [111, 113, 116, 124, 168, 188]. The POLSK scheme has been proposed as an 

alternative modulation technique to both amplitude- and phase- based modulation 

schemes. The digital information is encoded in the SOP of the laser source [111-113, 

168]. Stokes parameters are used to represent the SOP so the symbol constellation is 

scattered over a 3-D space [112]. The POLSK scheme offers high immunity to the laser 

phase noise [110, 112]; and maintains SOPs over a long propagation link [113, 114].  

 

4.3     Polarisation Modulation 

For a laser beam propagating over the atmospheric channel, the polarisation state is the 

most stable characteristic of all the parameters [111, 124, 189]. Both theoretical [190] 

and experimental [191] results have shown that the wave depolarisation is negligible in a 
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turbulence channel. Since the POLSK modulated systems show some advantages 

compared with other modulation formats, as discussed in the introduction, the 

investigation of polarisation modulated FSO communication systems through the 

atmospheric channel is of paramount importance [111, 124].      

 

4.3.1     Polarised Waves 

The field amplitudes as projected along the horizontal axis �⃗� and vertical axis �⃗� can be 

described using the parametric equations [111, 192]:  

�⃗⃗�𝑥 = 𝐴𝑥𝑒
𝑗( 𝑡−𝑘 ̂) ∙ �⃗�                                                                                                              ( .7 ) 

�⃗⃗�𝑦 = 𝐴𝑦𝑒
𝑗( 𝑡−𝑘 ̂  ) ∙ �⃗�                                                                                                         ( .7 ) 

where the variables 𝐴𝑥 and 𝐴𝑦 correspond to the amplitudes of the electric field projected 

onto the �⃗� and �⃗� axis, respectively, and 𝜙 denotes the phase difference between �⃗⃗�𝑥 and 

�⃗⃗�𝑦 , which govern the shape of the electric field. To describe the polarisation of an 

electric field using a single equation, (4.7) yields [192, 193]: 

�⃗⃗�𝑥
2

𝐴𝑥2
 
�⃗⃗�𝑦
2

𝐴𝑦2
 
2�⃗⃗�𝑥 �⃗⃗�𝑦
𝐴𝑥𝐴𝑦

c s𝜙 = s n2𝜙.                                                                                         ( .8) 
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Fig. 4-4: Snapshots at a fixed time t of the electrical field vector of (a) linear polarised 

light, (b) right-hand circular polarised light, (c) left hand circular polarised light and (d) 

elliptical polarised light. 𝑎, major axis; 𝑏, minor axis; 𝜖, ellipticity; 𝜂, azimuth. 

 

Three general categories of polarisation states are: linear, circular and elliptical. The 

linearly polarised light is shown in Fig. 4-4. The light is linearly polarised along �⃗� or �⃗� 

axis if the component 𝐴𝑥 or 𝐴𝑦 is zero. When the phase difference 𝜙 equals zero or  , 

which means 𝐴𝑦 =  𝐴𝑥, the wave is linearly polarised at an offset angle of 𝜂 =   5  

from the �⃗� axis [111, 192]. If 𝜙 =   2⁄  and 𝐴𝑥 = 𝐴𝑦, (4.8) is the equation of a circle 

and the wave is said to be circular polarised (see Fig. 4-4(b) and (c)). In the case of 

𝜙 =   2⁄ , the electric field vector at a fixed position  ⃗ rotates in a clockwise direction 

when viewed toward its propagation direction, which is also known as right-hand circular 

(RHC) polarised light (see Fig. 4-4(b)) [111, 192]. While the case of 𝜙 =   2⁄  
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corresponds to a counterclockwise rotation of the electric field vector and left-hand 

circular (LHC) polarised light (see Fig. 4-4(c)).   

 

When the phase difference 𝜙  0,   or  2⁄  and 𝐴𝑥  𝐴𝑦 , though 𝜙 and the ratio 𝐴𝑥 𝐴𝑦⁄  

are constant, the wave is called elliptical polarised. Elliptical polarised light is shown in 

Fig. 4-4(d). A coordinate system (𝑢 𝑣)  is used to define major and minor axes of 

elliptical polarised light with the elliptical equation expressed as:  

𝑢2

𝑎2
 
𝑣2

𝑏2
= 1                                                                                                                                ( . ) 

where the major and minor axes of the ellipse, (a, b), are on the (𝑢 𝑣) axes [111, 192].  

The ellipticity 𝜖 defines the ratio of the minor to the major axis of the ellipsis and the 

rotation 𝜂 is called the azimuth [111, 192]: 

t n𝜖 =
𝑏

𝑎
                                                                                                                                 ( .10) 

(
𝑢
𝑣
) = (

c s𝜂 s n𝜂
 s n𝜂 c s𝜂

) (
𝑥
𝑦).                                                                                              ( .11) 

The Stokes vector ( 0  1  2  3) is another conventional description of the polarisation 

state and defined as [111], 

 0 = (𝐴𝑥
2  𝐴𝑦

2) 2⁄                                                                                                               ( .12 ) 

 1 = (𝐴𝑥
2  𝐴𝑦

2) 2⁄                                                                                                               ( .12 ) 

 2 = 𝐴𝑥𝐴𝑦 c s𝜙                                                                                                                  ( .12c) 

 3 = 𝐴𝑥𝐴𝑦 s n 𝜙.                                                                                                                  ( .12 ) 
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The physical interpretations of the Stokes parameters are listed as follows [111]:   

  0 represents the optical intensity.     

  1  denotes the intensity difference between horizontal and vertical polarised 

components. For  1  0, the electric field is horizontally polarised (i.e., for linear 

polarisation in the �⃗� -direction); while for  1  0 , the electric field is vertically 

polarised (in the �⃗�-direction). For a linearly polarised wave, a positive or negative  1 

corresponds to the polarisation in the �⃗�-direction or �⃗�-direction, respectively.   

 A positive  2 indicates   5  linear polarisation, while a negative  2 indicates - 5  

linear polarisation.   

 A positive  3 indicates a RHC polarisation, while a negative  3  indicates a LHC 

polarisation.   

For a constant field power, the Stokes parameters can be considered as Cartesian 

coordinates of a point 𝑃( 1  2  3) lying on a sphere of radius  0  which is called a 

Poincare sphere [111]. A point P on the sphere is completely identified by two angular 

coordinates {𝜂 𝜖} with a fixed radius as shown in Fig. 4-5. The Stokes parameters are 

related to the angular coordinates {𝜂 𝜖} [111, 135]:        

 1 =  0c s2𝜂c s2𝜖                                                                                                   ( .13 ) 

 2 =  0s n2𝜂c s2𝜖                                                                                                                ( .13 ) 

 3 =  0s n2𝜖.                                                                                                                          ( .13c) 
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Fig. 4-5: Poincare sphere.  

 

4.3.2     Polarisation Shift Keying Signals  

The phase angles along the orthogonal axes are set equal for linear polarisation 

modulation, such that 𝜙 = 0. Assuming the square of the amplitude directly provides the 

power and 𝐴𝑥 = 𝐴𝑦 , the optical power is constant and expressed as 𝐴𝑥
2 = 𝐴𝑦

2 = 𝑃𝑡 2⁄ , 

where 𝑃𝑡 is the emitted optical power of the light. The field amplitude is set proportional 

to the modulating signal 𝑚(𝑡) [135, 193]: 

�⃗⃗�𝑥(𝑡) = √𝑃𝑡 2⁄ c s[𝐾𝑃𝐿𝑚(𝑡)]𝑒
𝑗( 𝑡)                                                                                ( .1  ) 

�⃗⃗�𝑦(𝑡) = √𝑃𝑡 2⁄ s n[𝐾𝑃𝐿𝑚(𝑡)]𝑒
𝑗( 𝑡)                                                                                ( .1  ) 

where 𝐾𝑃𝐿  is a constant of proportionality dependent upon the physical modulation 

mechanism, and 𝜔 is the angular frequency of the optical signal, respectively.  

For sine wave modulation with angular frequency of 𝜔𝑚, the electric field equations are: 

�⃗⃗�𝑥(𝑡) = √𝑃𝑡 2⁄ c s[𝐾𝑃𝐿c s(𝜔𝑚𝑡)]𝑒
𝑗( 𝑡)                                                                       ( .15 ) 
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�⃗⃗�𝑦(𝑡) = √𝑃𝑡 2⁄ s n[𝐾𝑃𝐿c s(𝜔𝑚𝑡)]𝑒
𝑗( 𝑡).                                                                      ( .15 ) 

The linearly polarised system has a difficulty in detection when the transmitter or 

receiver rotates unpredictably, or the propagation medium induces random polarisation 

rotations. This problem can be solved by using the circular polarisation scheme [113, 

124].  

For an analog circular polarisation modulated system, the optical power of right and left 

circular polarisation is related to the amplitude of the information signal 𝑚(𝑡) [135, 193]: 

𝐶𝑅(𝑡) =
𝑃𝑡
2
[1  𝑚(𝑡)]                                                                                                         ( .16 ) 

𝐶𝐿(𝑡) =
𝑃𝑡
2
[1  𝑚(𝑡)].                                                                                                       ( .16 ) 

The carrier is completely right circularly polarised for 𝑚(𝑡) = 1. The carrier is 25% right 

circularly polarised and 75% left circularly polarised for 𝑚(𝑡) =  0.5. Because the 

carrier components 𝐶𝑅(𝑡) and 𝐶𝐿(𝑡) can be regarded as individual intensity modulated 

carriers, the frequency spectrum of a circularly polarised system is the same as that of an 

intensity modulated system. The carrier power is always transmitted in either the right or 

left polarisation state, while in an intensity modulation system only one-half the carrier 

power is transmitted on average. Therefore, when the same peak power is used, the 

circular polarisation modulation is inherently more efficient than intensity modulation.  
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4.3.3     Polarisation Modulator  

The external binary polarisation modulator is made using the Lithium Niobate (LiNbO3) 

MZI technique as shown in Fig. 4-6 [194, 195]. This MZI consists of two sections: a 

splitter which splits the input signals, followed by the waveguide to introduce a 

wavelength-dependent phase shift between the two arms. For simplicity, the following 

derivation does not take into account waveguide material losses or bend losses [196].  

 

Fig. 4-6: Schematic of POLSK modulator. 

 

The splitter of length 𝑑𝑠 has the propagation matrix 𝐌coupler expressed as:  

𝐌coupler = [
c s𝛼𝑐𝑑𝑠  s n𝛼𝑐𝑑𝑠
s n𝛼𝑐𝑑𝑠 c s𝛼𝑐𝑑𝑠

]                                                                                    ( .17) 

where 𝛼𝑐 is the coefficient. The signal �⃗⃗�i (𝑡) enters into the waveguide and splits into 

two signals with a phase difference ∆∅𝑐 given by: 

∆∅𝑐 =
2 𝑛1
𝜆

ℓ  
2 𝑛2
𝜆

(ℓ  𝛥ℓ).                                                                                        ( .18) 

where ℓ is the path length in the waveguide. Note that the phase difference ∆∅𝑐 can arise 

either through a refractive index difference 𝑛1  𝑛2 or from a different path length 𝛥ℓ.  
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The propagation matrix 𝐌∆∅𝑐  for the phase shifter with a given phase difference ∆∅𝑐 is 

expressed as: 

𝐌∆∅𝑐 = [
e  (𝑗∆∅𝑐/2) 0

0 e  ( 𝑗∆∅𝑐/2)
].                                                                       ( .1 ) 

The optical fields �⃗⃗�out 1(𝑡) and �⃗⃗�out 2(𝑡) from the two arms can be related to the input 

field �⃗⃗�i  through the following relationship, 

[
�⃗⃗�out 1(𝑡)

�⃗⃗�out 2(𝑡)
] = 𝐌[�⃗⃗�i (𝑡)

0
]                                                                                                       ( .20) 

where 𝐌 is the matrix: 

𝐌 = 𝐌∆∅𝑐 ∙ 𝐌coupler = [
e  (𝑗∆∅𝑐 2⁄ ) 0

0 e  ( 𝑗∆∅𝑐 2⁄ )
] [
c s𝛼𝑐𝑑𝑠  s n𝛼𝑐𝑑𝑠
s n𝛼𝑐𝑑𝑠 c s𝛼𝑐𝑑𝑠

]   

= [
e  (𝑗∆∅𝑐/2)c s𝛼𝑐𝑑𝑠  e  (𝑗∆∅𝑐/2)s n𝛼𝑐𝑑𝑠
e  ( 𝑗∆∅𝑐/2)s n𝛼𝑐𝑑𝑠 e  ( 𝑗∆∅𝑐/2)c s𝛼𝑐𝑑𝑠

].                                          ( .21) 

Expressions (4.20) and (4.21) can be recombined yielding: 

[
�⃗⃗�out 1(𝑡)

�⃗⃗�out 2(𝑡)
] = 𝐌[�⃗⃗�i (𝑡)

0
] = [

e  (𝑗∆∅𝑐/2)c s𝛼𝑐𝑑𝑠
e  ( 𝑗∆∅𝑐/2)s n𝛼𝑐𝑑𝑠

] �⃗⃗�i (𝑡).                                     ( .22) 

The splitter considered here only splits the power equally for 2𝛼𝑐𝑑𝑠 =  2⁄ , so that 

(4.22) becomes: 

[
�⃗⃗�out 1(𝑡)

�⃗⃗�out 2(𝑡)
] = 𝐌�⃗⃗�i (𝑡) =

1

√2
[
e  (𝑗∆∅𝑐/2)

e  ( 𝑗∆∅𝑐/2)
] �⃗⃗�i (𝑡).                                                   ( .23) 

As illustrated in Fig. 4-6 the driving voltages 𝑉1 and 𝑉2 are used to control the values of 

the length 𝑑𝑠 and phase shift ∆∅𝑐, respectively [194]. Therefore, the linear polarisation 
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signal is generated by setting ∆∅𝑐 = 0  , while the circular polarisation signal is 

produced when ∆∅𝑐 =   /2. The voltage 𝑉2 is expressed in the form of: 

𝑉2 = 𝑉0  𝐾𝑃𝐿c s(𝜔𝑚𝑡)                                                                                                        ( .2 ) 

where 𝑉0 is DC bias current. 

 

4.4     Polarisation Fluctuations in a Turbulence Channel 

The electric field traveling in the turbulence regime can be split into two components 

�⃗⃗�𝑥1(𝑡) and �⃗⃗�𝑦1(𝑡)  with horizontal and vertical polarisation axes, respectively, in the 

plane of incidence. The polarisation angle is related to �⃗⃗�𝑥1(𝑡)  and �⃗⃗�𝑦1(𝑡)  with the 

following relationship [69, 189]:  

Ξ = t n−1 [
�⃗⃗�𝑥1(𝑡)

�⃗⃗�𝑦1(𝑡)
].                                                                                                              ( .25) 

At the output of the turbulence region, the electric field components become �⃗⃗�𝑥2(𝑡) and 

�⃗⃗�𝑦2(𝑡) due to the fluctuation of the refractive index of the propagation medium. The 

polarisation angle is changed as: 

Ξ  ΔΞ = t n−1 [
�⃗⃗�𝑥2(𝑡)

�⃗⃗�𝑦2(𝑡)
].                                                                                                     ( .26) 

An expression describing the change in the mean of the polarisation angle has been 

developed [69]. The RMS polarisation change in an atmospheric medium is: 
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√[ΔΞ]2̅̅ ̅̅ ̅̅ ̅ = 2 [Δ𝑛]2̅̅ ̅̅ ̅̅ ̅ [
𝐿

𝐿𝑡
]                                                                                                        ( .27) 

where [Δ𝑛]2̅̅ ̅̅ ̅̅ ̅ is the mean square change in refractive index due to thermal variations, and 

𝐿𝑡 characterises the largest inhomogeneities of the turbulent medium.  

The refractive index change is related to the altitude of observation, 𝒽, in metres by the 

relation [69]: 

[Δ𝑛]2̅̅ ̅̅ ̅̅ ̅ = 10−12e  { 
𝒽

1600
}.                                                                                             ( .28) 

For example, when the laser transmits over a low-altitude (𝒽  0) and a horizontal path 

of 10  m with a turbulence dimension of 𝐿𝑡 = 1 m , the RMS change in polarisation 

angle, √[ΔΞ]2̅̅ ̅̅ ̅̅ ̅, is in the order of 10−  r  . Experimental results verified that polarisation 

fluctuations do not appear to be a problem for laser propagation over a turbulent 

atmosphere [69].  

 

4.5     Outage Probability in a Lognormal Turbulence Channel 

The performance of a communication system in a fading channel can be quantified by the 

average BER and the outage probability [1, 84]. The outage probability is defined as 

𝑃𝑒  𝑃𝑒
∗ , where 𝑃𝑒

∗  is a predetermined threshold BER. Alternatively, this probability 

corresponds to the SNR, 𝛾(𝑃𝑟)  𝛾
∗, where 𝛾(𝑃𝑟) and 𝛾∗ are the SNRs related to 𝑃𝑒  and 

𝑃𝑒
∗, respectively. That is: 
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𝑃𝑜𝑢𝑡 = 𝑃(𝑃𝑒  𝑃𝑒
∗)  𝑃(𝛾(𝑃𝑟)  𝛾

∗)                                                                                  ( .2 ) 

where 𝛾∗ is the average SNR in the absence of atmospheric turbulence for a given noise 

level.  

The power margin, represented by the parameter 𝓂, is introduced to describe the extra 

power requirements which can also be viewed as the penalty introduced by the 

atmospheric turbulence. Invoking parameter 𝓂, the outage probability is expressed as: 

𝑃𝑜𝑢𝑡 = 𝑃(𝓂𝛾(𝑃𝑟)  𝛾
∗) = ∫

1

𝑃𝑟√2 𝜎𝑙
e  [ 

( n(𝑃𝑟 𝑃0⁄ )  𝜎𝑙
2 2⁄ )2

2𝜎𝑙
2 ]

𝑃 𝓂⁄

0

𝑑𝑃𝑟   

=  (
1

𝜎𝑙
 n𝓂  

𝜎𝑙
2
).                                                                                                       ( .30) 

An upper bound value for the outage probability is given by applying the Chernoff upper 

bound,  (𝑥)  0.5e  ( 𝑥2 2⁄ ) into (4.30). The approximate power margin, 𝓂, is given 

as: 

𝓂  e  (√ 2𝜎𝑙
2 n(2𝑃𝑜𝑢𝑡)  𝜎𝑙

2 2⁄ ).                                                                           ( .31) 

The outage probability is plotted against the power margin at various levels of irradiance 

fluctuation in Fig. 4-7. The extra power of ~ 37 dBm is required to achieve an outage 

probability of 10−  at 𝜎𝑙
2 = 0.1. The value will increase to ~ 43 dBm and ~ 47 dBm 

corresponding to 𝜎𝑙
2 = 0.3  and 𝜎𝑙

2 = 0.5 , respectively. To reduce the power margin, 

diversity techniques will be introduced in Chapter Six. 
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Fig. 4-7: Outage probability against the power margin for a lognormal turbulent 

atmospheric channel for 𝜎𝑙
2 = [0.1 0.3 0.5 1]. 

 

4.6     Outage Probability in a Negative Exponential Turbulence 

Channel 

The outage probability in the fully developed speckle is obtained by following the 

approach discussed in Section 4.5:  

𝑃𝑜𝑢𝑡 = 𝑃(𝓂𝛾(𝑃𝑟)  𝛾
∗) = ∫ 𝑃0

−1 e  [ 𝑃𝑟𝑃0
−1]

𝑃 𝓂⁄

0

𝑑𝑃𝑟 .                                            ( .32) 

The required power margin, 𝓂, to achieve a given 𝑃𝑜𝑢𝑡  in the saturation regime is given 

by (4.33): 

𝓂 =  
1

 n(1  𝑃𝑜𝑢𝑡)
.                                                                                                             ( .33) 

The outage probabilities 𝑃𝑜𝑢𝑡 in the weak (𝜎𝑙
2 = 0.5) and saturation turbulence regimes 

are plotted against the power margin, 𝓂, in Fig. 4-8. To achieve a 𝑃𝑜𝑢𝑡  of 10− , an 
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additional power margin of ~ 43 dB is required in a saturation regime in comparison to 

that needed in the weak turbulence regime with 𝜎𝑙
2 = 0.5.  

For the outage probability below 10− , a further power margin will be required. The 

power margin required in the fully developed speckle regime suggests that a stable 

communication link in the saturation regime is extremely difficult due to the turbulence 

induced fading effect, which must be mitigated or compensated for by employing other 

techniques, such as channel coding and spatial diversity.  

 

 

Fig. 4-8: The outage probability, 𝑃𝑜𝑢𝑡, against the power margin, 𝓂, in the saturation and 

weak turbulence regimes for 𝜎𝑙
2 = 0.5. 

 

4.7     Summary 

In this chapter, the POLSK technique modulated an FSO communication link has been 

discussed, together with the analysis of the outage probabilities in the weak and 
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saturation turbulence regimes. The comparisons of the digital modulation techniques 

adopted for FSO in a turbulence channel suggest that there is always a trade-off between 

bandwidth efficiency, simplicity and power efficiency in the selection of modulation 

schemes. In the next chapter, the performance of POLSK-FSO in all turbulence regimes 

will be analysed.   
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Chapter Five 
 

 

 

BPOLSK-FSO Systems in an 

Atmospheric Turbulence Channel  

 

A number of modulation schemes in particular based on the IM/DD for FSO systems 

have been widely reported. However, the performance of intensity modulated schemes 

are highly sensitive to the turbulence fluctuation, thus an adaptive detection technique is 

required at the receiver to improve the link performance, such as OOK receiver using the 

adaptive threshold in an FSO turbulence channel [1, 197, 198]. Alternatively, a variant of 

POLSK schemes using external modulation have been adopted in [35, 116, 188, 189, 

198, 199], where the state of polarisation (SOP) of a fully polarised propagating optical 

beam is considered in order to exploit the two orthogonal channels in FSO systems. 

However, in [200] it is shown that the coherent light beam may experience a degree of 

change in the polarisation while propagating through the channel. For optical beams, 

polarisation states are the most stable properties compared with the amplitude and phase 
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when propagating through a turbulent channel [113]. The experimental results show that 

the polarisation states can be maintained over a long propagation link [112]. In [121] it is 

shown that POLSK offers improved link performance in terms of the peak optical power 

by 3 dB but at the cost of increased system complexity compared with the OOK scheme. 

Additionally POLSK schemes are considerably insensitive to the laser source phase noise 

at the receiver, provided that the intermediate frequency (IF) filter bandwidth is large 

enough to avoid phase-to-amplitude noise conversion [119]. In [117] a polarisation 

modulated DD system to extract the Stokes parameters of the transmitted light for binary 

and multilevel transmissions has been proposed. A 4-level polarisation modulated DD 

system (with phase modulator) is reported in [116], whereas a coherent optical 

polarisation modulation scheme is outlined in [198].  

 

In this chapter the performance of BPOLSK with the coherent heterodyne detection 

technique in the FSO turbulence channel will be investigated. The conditional and 

unconditional BER expressions will be derived. The frequency and phase noise of the IF 

component can be eliminated at the receiver, resulting in no error floor and no power 

penalty in the BER performance. Additionally, the higher transmission data rate can be 

achieved by employing the external modulation. The performance analysis will be based 

on the gamma-gamma channel which covers the turbulence regimes from weak to strong. 

Since the FSO link under consideration is LOS, the ISI due to the multipath propagation 

is not considered here. The noise (the background radiation, thermal noise and shot 
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noise) is modeled as an AWGN process. The error probabilities of heterodyne BPOLSK 

will be compared with OOK to show the advantages of polarisation modulated FSO link.  

 

5.1     BPOLSK-FSO using the Square-Law Demodulation  

5.1.1     System Configuration 

The block diagram of the proposed BPOLSK system is illustrated in Fig. 5-1. The 

transmitter is composed of a single laser, a PBS, a polarisation beam combiner (PBC) and 

two external modulators. The external amplitude modulators are based on the LiNbO3 

MZIs. The emitted electric field of the optical carrier �⃗⃗�0(𝑡), linearly polarised along   ⁄  

with respect to the reference axis of the PBS, is split equally and is fed into two identical 

MZIs. At the output of each MZI, the optical signal will experience both constructive and 

destructive behavior depending on the phase differences of 0 and  , respectively. The 

outputs of MZIs are recombined using a PBC to form the BPOLSK signal. The electrical 

fields on the horizontal axis �⃗� and the vertical axis �⃗� represent the digital symbols ‘0’ and 

‘1’, respectively.  

 

The emitted optical field �⃗⃗�0(𝑡) and the modulated optical field �⃗⃗�𝑠(𝑡) are given as [189]: 

�⃗⃗�0(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)){�⃗�  �⃗�}                                                                                          (5.1 ) 

�⃗⃗�𝑠(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)){[1  𝑚(𝑡)] ∙ �⃗�  𝑚(𝑡) ∙ �⃗�}                                                     (5.1 ) 
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where 𝑃𝑡, 𝜔, and 𝜑(𝑡) are the power, the angular frequency and the phase noise of the 

optical carrier, respectively.  

 
(a) 

 

(b) 

Fig. 5-1: Block diagram of the BPOLSK-FSO system using square-law demodulation: (a) 

the transmitter, and (b) the receiver. TL (transmitting laser), AM (amplitude modulation), 

AFC (automatic frequency control circuit), PD (photodiode), BPF (electric bandpass 

filter), MF (matched filter).  

 

At the receiver a heterodyne scheme using the square-law demodulation is adopted, see 

Fig. 5-1(b). The highly sensitive PDs are located in the focal point of the large-aperture 

lens. An OBPF is placed after the optical lens at the entrance to the receiver. When the 

Sun is within the receiver’s FOV, direct sunlight may cause link outages for periods of 

several minutes. To reduce the potential impact of the background light interference on 

the FSO link performance, the FOV and the bandwidth of the OBPF must be chosen 

carefully. For example, the OBPF with a bandwidth typically 1 nm is applicable. This is 
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because the OBPF’s bandwidth depends on the linewidth of the infrared laser which has a 

narrow linewidth operation less than 1 nm.  

The received signal �⃗⃗�𝑟(𝑡) can be viewed in both cases as two orthogonal amplitude 

modulated signals, related to the orthogonal components of the transmitted optical field. 

The local oscillator laser source, linearly polarised at   ⁄ , is identical to the transmitter 

laser. The received optical signal �⃗⃗�𝑟(𝑡)  and the local oscillator signal �⃗⃗�𝑙𝑜(𝑡)  are 

expressed as [135, 189]:    

�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)){[1  𝑚(𝑡)] ∙ �⃗�  𝑚(𝑡) ∙ �⃗�}                                                      (5.2) 

�⃗⃗�𝑙𝑜(𝑡) =
√𝑃𝑙𝑜
2
𝑒𝑖( 𝑙 𝑡  𝑙 (𝑡)){�⃗�  �⃗�}.                                                                                     (5.3) 

Both variables 𝑃𝑟  and 𝜑𝑟(𝑡)  are time-variant statistics resulting from the turbulence 

fluctuation. The parameters 𝑃𝑙𝑜 , 𝜔𝑙𝑜  and 𝜑𝑙𝑜(𝑡) are the power, angular frequency and 

phase noise of the optical field from the local oscillator, respectively. 

The optical signal �⃗⃗�𝑟(𝑡) is split by the PBS and is mixed with the optical field of �⃗⃗�𝑙𝑜(𝑡) 

thus resulting in: 

�⃗⃗�𝑥(𝑡) = {√
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡))[1  𝑚(𝑡)]  

√𝑃𝑙𝑜
2
𝑒𝑖( 𝑙 𝑡  𝑙 (𝑡))} ∙ �⃗�                              (5.  ) 

�⃗⃗�𝑦(𝑡) = {√
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡))𝑚(𝑡)  

√𝑃𝑙𝑜
2
𝑒𝑖( 𝑙 𝑡  𝑙 (𝑡))} ∙ �⃗�.                                        (5.  ) 

The optical fields are detected by two identical photodiodes with unit area. The output 

electric currents 𝑐𝑥(𝑡) and 𝑐𝑦(𝑡) are given as: 

𝑐𝑥(𝑡) = ℜ{
(√𝑃𝑟 2⁄ )

2
 (√𝑃𝑙𝑜 2⁄ )

2
 

2Re [(√𝑃𝑟 2⁄ ) (√𝑃𝑙𝑜 2⁄ )𝑒
𝑖(   𝑡    (𝑡))(1  𝑚(𝑡))]

}  𝑛𝑥(𝑡)           (5.5 ) 



95 
 

𝑐𝑦(𝑡) = ℜ{
(√𝑃𝑟 2⁄ )

2
 (√𝑃𝑙𝑜 2⁄ )

2
 

2Re [(√𝑃𝑟 2⁄ ) (√𝑃𝑙𝑜 2⁄ )𝑒
𝑖(   𝑡    (𝑡))𝑚(𝑡)]

}  𝑛𝑦(𝑡)                       (5.5 ) 

where ℜ  is the photodiode responsivity, 𝜔𝐼𝐹 = 𝜔  𝜔𝑙𝑜  and 𝜑𝐼𝐹(𝑡) = 𝜑𝑟(𝑡)  𝜑𝑙𝑜(𝑡) 

are the frequency and phase noise of the intermediate signal, respectively. Re[ ] denotes 

the real part of a complex number.  

 

The noise terms 𝑛𝑥(𝑡)  and 𝑛𝑦(𝑡)  are assumed to be statistically independent, and 

stationary Gaussian processes with a zero-mean and variance of 𝜎𝑛
2. Both noise terms are 

uncorrelated such that 𝑛𝑥(𝑡) ∙ 𝑛𝑦(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0. The outputs of two identical optical detectors 

are applied to the AFC module which is a closed-loop circuit acting on the bias current. 

The control signal of AFC is derived from the IF signal. The working principle of AFC 

circuit is same as an PLL circuit for system synchronisation [135]. This is to compensate 

for slow-frequency fluctuations taking place in the local oscillator [184].  

 

Detector outputs are also passed through ideal electric BPFs with a bandwidth and a 

center frequency of 𝐵𝑏𝑝 = 2(𝑅𝑠  𝑘𝐹𝐵𝐿)  and 𝜔𝐼𝐹 , respectively. 𝑅𝑠  and 𝐵𝐿  are the 

symbol rate and linewidth of the laser sources, respectively. The parameter 𝑘𝐹 is chosen 

to pass the signal through the filter with a minimum distortion. The signals at the output 

of BPFs are given as: 

𝑐𝑥𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))[1  𝑚(𝑡)]  𝑛𝑥(𝑡)                                     (5.6 ) 

𝑐𝑦𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))𝑚(𝑡)  𝑛𝑦(𝑡).                                              (5.6 ) 
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An ideal square-law demodulator consists of an electrical mixer, which is followed by a 

sampler and a threshold detector, is used to recover the information signal.  

Since the optical field is linearly polarised and its power is unchanged, the Stokes 

parameters are expressed as [135]:    

 0 = |𝑐𝑥𝑏(𝑡)|
2  |𝑐𝑦𝑏(𝑡)|

2
=
ℜ2𝑃𝑟𝑃𝑙𝑜
2

 𝑛0(𝑡)                                                              (5.7 ) 

 1 = |𝑐𝑥𝑏(𝑡)|
2  |𝑐𝑦𝑏(𝑡)|

2
=
ℜ2𝑃𝑟𝑃𝑙𝑜
2

[1  2𝑚(𝑡)]  𝑛1(𝑡)                                      (5.7 ) 

 2 = 2|𝑐𝑥𝑏(𝑡)|  |𝑐𝑦𝑏(𝑡)|c s(0) = 𝑛2(𝑡)                                                                        (5.7c) 

 3 = 2|𝑐𝑥𝑏(𝑡)|  |𝑐𝑦𝑏(𝑡)|s n(0) = 𝑛3(𝑡)                                                                        (5.7 ) 

where {𝑛𝑖(𝑡)}𝑖=0 1 2 3  represent noise contributions, which are independent of the 

received SOP and have the same variance. Note that the proposed BPOLSK refers only 

to the parameter  1. A digital symbol ‘0’ is assumed to have been received if  1 is above 

the threshold level of zero and ‘1’ otherwise. Two orthogonal SOPs map onto opposite 

points at  1 on the equator with respect to the origin in the Poincare sphere as depicted in 

Fig. 5-2. 

The following hypotheses must be presumed in such a way that the quantum limit of the 

proposed receiver can thus be determined [69, 135, 201]:  

 The power of the local oscillator is assumed to be sufficiently high; 

 The responsivity of the photodiode is assumed to be equal to unity; 

 Filters don’t cause any signal distortion and only limit the noise power and eliminate 

the undesired signal components; 

 The photodiode and filters on different electronic branches at the receiver are 

assumed to be identical. 
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Fig. 5-2: SOPs at the output of the BPOLSK receiver. 

 

5.1.2     Error Probabilities Analysis 

Assuming independent and identically distributed (i.i.d.) data transmission, the total error 

probability 𝑃𝑒𝑐  is given by:  

𝑃𝑒𝑐 =
1

2
𝑝(𝑒|0)  

1

2
𝑝(𝑒|1) = 𝑝(𝑒|0)                                                                                    (5.8) 

where 𝑝(𝑒|0) and 𝑝(𝑒|1) denotes the error rates of the transmission of a ‘0’ and a ‘1’, 

respectively.  

 

The noise signals 𝑛𝑥(𝑡) and 𝑛𝑦(𝑡) in (5.6) can be expressed as [202, 203]:  

𝑛(𝑡) = 𝑛𝐼(𝑡)c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛
𝑄(𝑡)s n(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))                                      (5. ) 

where 𝑛𝐼(𝑡)  and 𝑛𝑄(𝑡)  are the in-phase and quadrature components of the noise 

𝑛(𝑡)~(0 𝜎𝑛
2), respectively.  

 

Since i.i.d. transmission is assumed, for 𝑚(𝑡) = 0, (5.6) is expressed as: 

𝑐𝑥𝑏(𝑡) = [ℜ√
𝑃𝑟𝑃𝑙𝑜
2

 𝑛𝑥
𝐼 (𝑡)] c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛𝑥

𝑄(𝑡)s n(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))    (5.10 ) 

𝑐𝑦𝑏(𝑡) = 𝑛𝑦
𝐼 (𝑡)c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛𝑦

𝑄(𝑡)s n(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)).                             (5.10 ) 
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The electric currents at the output of the square-law demodulation become: 

𝑐𝑥𝑚(𝑡) = 𝑐𝑥𝑏
2 (𝑡) 

=
1

2

{
 
 

 
 [ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥

𝐼 (𝑡)]
2
[1  c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))]

 [𝑛𝑥
𝑄(𝑡)]

2
[1  c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))]

 2ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑛𝑥
𝑄(𝑡)s n(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡)) }

 
 

 
 

                    (5.11 ) 

𝑐𝑦𝑚(𝑡) = 𝑐𝑦𝑏
2 (𝑡) 

=
1

2
{
[𝑛𝑦
𝐼 (𝑡)]

2
[1  c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))]  [𝑛𝑦

𝑄(𝑡)]
2

 [[𝑛𝑦
𝐼 (𝑡)]

2
 [𝑛𝑦

𝑄(𝑡)]
2
] c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))

}.                          (5.11 ) 

 

The transfer function of the MF is defined as: 

ℎMF(𝑡) = {
1 √𝑇⁄                    (0  𝑡  𝑇)

0                           ( t er  se)
                                                                         (5.12) 

where ℎMF(𝑡) denotes the impulse response of the MF with a bandwidth of 𝑅𝑠 . The 

currents 𝑐𝑥𝑚(𝑡) and 𝑐𝑦𝑚(𝑡) are fed into a subtractor followed by a MF. The electric 

signal 𝑉𝑗(𝑡) is expressed as [202]: 

𝑉𝑗(𝑡) =
1

√𝑇
∫ [𝑐𝑥𝑚(𝑡)  𝑐𝑦𝑚(𝑡)]
𝑇

0

𝑑𝑡  

=
1

√𝑇
∫
1

2
{[ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥

𝐼 (𝑡)]
2
 [𝑛𝑥

𝑄(𝑡)]
2
 [𝑛𝑦

𝐼 (𝑡)]
2
 [𝑛𝑦

𝑄(𝑡)]
2
}

𝑇

0

𝑑𝑡 (5.13) 

where ∗  represents the convolution operation. The noise terms are (𝑛𝑥(𝑡) 𝑛𝑦(𝑡)) 

~𝑁(0 𝜎𝑛
2 2⁄ ) because the bandwidth of the MF is reduced to half of the BPF. 

Note that the intermediate phase noise disappears because of the square-law 

demodulation, thus illustrating BPOLSK insensitivity to the phase noise [199, 202]. It 

follows that the signal 𝑉𝑗(𝑡) is sampled at the symbol period t = T to obtain the decision 

variable 𝑉𝑗. 𝑉𝑗 is then compared with the zero threshold level yielding the signal �̂�𝑗, thus 
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leading to detection of the transition between two adjacent symbols, by which 

information is encoded.  

An error occurs when 𝑉𝑗  0 for the transmission of a ‘0’,  

𝑉𝑗 =
1

2
{[ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥

𝐼 ]
2
 [𝑛𝑥

𝑄]
2
 [𝑛𝑦

𝐼 ]
2
 [𝑛𝑦

𝑄]
2
}  0.                                       (5.1 ) 

It follows that (5.14) can be rewritten as √[ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥𝐼 ]
2
 [𝑛𝑥

𝑄]
2

   

√[𝑛𝑦𝐼 ]
2
 [𝑛𝑦

𝑄]
2
. 

Defining 𝑉𝑥 = √[ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥𝐼 ]
2
 [𝑛𝑥

𝑄]
2

 and 𝑉𝑦 = √[𝑛𝑦𝐼 ]
2
 [𝑛𝑦

𝑄]
2

, the mean 

values are ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄  and 0, respectively. Both variables have the same variance of 

𝜎𝑛
2 2⁄ . With 𝜔  𝜔𝑟 , PDFs of 𝑉𝑥  and 𝑉𝑦  can be described by the Rice and the Rayleigh 

probability functions, respectively [203]: 

𝑝(𝑉𝑥) = {
2𝑉𝑥
𝜎𝑛2
𝐼0 (

ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑉𝑥
𝜎𝑛2 2⁄

) e  [ 
𝑉𝑥
2  ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄

𝜎𝑛2
]}                                     (5.15 ) 

𝑝(𝑉𝑦) =
𝑉𝑦
𝜎𝑛2 2⁄

e  ( 
𝑉𝑦
2

𝜎𝑛2
)                                                                                                 (5.15 ) 

where 𝐼0 is the zero order modified Bessel function of the first kind [203]. 

The conditional BER for 𝑚(𝑡) = 0 can be derived as: 

𝑃𝑒𝑐 = ∫ 𝑝(𝑉𝑥) [ ∫ 𝑝(𝑉𝑦)𝑑𝑉𝑦

 

𝑉𝑦=𝑉𝑥

] 𝑑𝑉𝑥

 

0

  

= ∫ {
2𝑉𝑥
𝜎𝑛2
𝐼0 (

√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑉𝑥
𝜎𝑛2 2⁄

) e  [ 
(2𝑉𝑥

2  ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ )

𝜎𝑛2
]}

 

0

𝑑𝑉𝑥 .                        (5.16) 

By invoking changes of variables 𝐷 = 2𝑉𝑥/𝜎𝑛  and 𝑊 = √ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ /𝜎𝑛  and 

substituting into (5.16), 𝑃𝑒𝑐  now becomes: 

𝑃𝑒𝑐 =
1

2
𝑒−𝑊

2/2∫ 𝐷𝐼0(𝐷𝑊)𝑒
−(𝐷2 𝑊2)/2

 

0

𝑑𝐷.                                                                   (5.17) 
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Defining the Q-function as [203]: 

𝑄(𝑊 0) = ∫ 𝐷𝐼0(𝐷𝑊)𝑒
−(𝐷2 𝑊2)/2

 

0

𝑑𝐷 = 1.                                                                  (5.18) 

The conditional error probability 𝑃𝑒𝑐  can be expressed in terms of the SNR as: 

𝑃𝑒𝑐 =
1

2
e  ( 

𝑊2

2
) =

1

2
e  ( 

ℜ2𝑃𝑟𝑃𝑙𝑜
 𝜎𝑛2

) =
1

2
e  ( 

𝛾

2
)                                        (5.1 ) 

where the electrical SNR at the input of the coherent demodulator is defined as 𝛾 =

ℜ2𝑃𝑟𝑃𝑙𝑜/2𝜎𝑛
2. This result is same as the BER expression for the binary frequency shift 

keying (BFSK) modulation technique [204]. With regard system sensitivity, both 

BPOLSK and BFSK techniques are almost the same.   

Adopting the approach given in [1], the unconditional probability 𝑃𝑒  is obtained by 

averaging (5.19) over the gamma-gamma distribution (3.23) given as: 

𝑃𝑒(𝑃𝑟) = ∫ 𝑃𝑒𝑐(𝑃𝑟) ∙ 𝑝𝑔𝑎𝑚(𝑃𝑟)𝑑𝑃r

 

0

   

= ∫
1

2
e  ( 

𝛾(𝑃𝑟)

2
)
2(𝛼𝛽)(   ) 2⁄

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟

 

0

.                (5.20) 

 

5.1.3     Power Penalty Caused by Non-Ideal PBS 

The PBS can be viewed as two ideal linear polarisers oriented orthogonally to each other. 

The non-ideal PBS results in an offset angle 𝜃 from the transmission axes of the linear 

polarised light as shown in Fig. 5-3. The electrical fields in �⃗� and �⃗� axes represent bits ‘0’ 

and ‘1’, respectively, which contributes to the power penalty incurred. Fig. 5-3 depicts 

the offset angle 𝜃 from �⃗� axis of the linearly polarised light. 
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Fig. 5-3: An offset angle 𝜃  relatives to one of the transmission axes �⃗�  of the linear 

polarised light. 

 

In this case, the bit ‘1’ is detected without errors while bit ‘0’ is not. The outputs from the 

PBS are given as: 

�⃗⃗�𝑥(𝑡) = �⃗⃗�𝑥(𝑡)c s𝜃                                                                                                              (5.21 ) 

�⃗⃗�𝑦(𝑡) = �⃗⃗�𝑦(𝑡)  �⃗⃗�𝑥(𝑡)s n𝜃.                                                                                              (5.21 ) 

Thus, the photo-currents generated by the photodiodes are: 

𝑐𝑥𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))[c s𝜃  𝑚(𝑡)c s𝜃]                                  (5.22 ) 

𝑐𝑦𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))[𝑚(𝑡)  𝑚(𝑡)s n𝜃  s n𝜃].                   (5.22 ) 

The demodulated signal 𝑉𝑗 at the output of the receiver is expressed as: 

𝑉𝑗 =
ℜ2𝑃𝑟𝑃𝑙𝑜
2

[c s2𝜃  2𝑚(𝑡)c s2𝜃].                                                                                (5.23) 

For 𝑚(𝑡) = 0, 𝑉𝑗 = ℜ
2𝑃𝑟𝑃𝑙𝑜c s2𝜃 2⁄ , while for 𝑚(𝑡) = 1, 𝑉𝑗 =  ℜ

2𝑃𝑟𝑃𝑙𝑜 2⁄ . Since the 

offset angular error only reduces the signal power by a factor of c s2𝜃  when ‘0’ is 

transmitted, the conditional BER is given as:  

𝑃𝑒𝑐1 =
1

2
𝑝(𝑒|0)  

1

2
𝑝(𝑒|1) =

1

 
e  ( 

𝛾c s2𝜃

2
)  

1

 
e  ( 

𝛾

2
).                              (5.2 ) 

In Fig. 5-4(a), the total offset angle of the transmission axes of both polarisers from SOP 

of the incoming light is equivalent to 𝜃. The BER is calculated as: 
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�⃗⃗�𝑥(𝑡) = �⃗⃗�𝑥(𝑡)c s
𝜃

2
 �⃗⃗�𝑦(𝑡)s n

𝜃

2
                                                                                  (5.25 ) 

�⃗⃗�𝑦(𝑡) = �⃗⃗�𝑦(𝑡)c s
𝜃

2
 �⃗⃗�𝑥(𝑡)s n

𝜃

2
.                                                                                 (5.25 ) 

Thus, the photo-currents generated by the photodiodes are: 

𝑐𝑥𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)) {c s
𝜃

2
 𝑚(𝑡)c s

𝜃

2
 𝑚(𝑡)s n

𝜃

2
}      (5.26 ) 

𝑐𝑦𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)) {𝑚(𝑡)c s
𝜃

2
 s n

𝜃

2
 𝑚(𝑡)s n

𝜃

2
}.     (5.26 ) 

The demodulated signal 𝑉𝑗 at the output of the receiver is expressed as: 

𝑉𝑗 =
ℜ2𝑃𝑟𝑃𝑙𝑜
2

[1  2𝑚(𝑡)]c s𝜃.                                                                                         (5.27) 

Since the offset angular error reduces the signal power by a factor of c s𝜃 for both ‘0’ 

and ‘1’, the conditional BER is expressed as: 

𝑃𝑒𝑐2 =
1

2
𝑝(𝑒|0)  

1

2
𝑝(𝑒|1) =

1

2
e  ( 

𝛾c s𝜃

2
).                                                           (5.28) 

In Fig. 5-4(b), the total offset angle is the same as 𝜃. However, the orthogonality of the 

polarisers is preserved.  

The BER can be derived as: 

�⃗⃗�𝑥(𝑡) = �⃗⃗�𝑥(𝑡)c s
𝜃

2
 �⃗⃗�𝑦(𝑡)s n

𝜃

2
                                                                                   (5.2  ) 

�⃗⃗�𝑦(𝑡) = �⃗⃗�𝑦(𝑡)c s
𝜃

2
 �⃗⃗�𝑥(𝑡)s n

𝜃

2
.                                                                                  (5.2  ) 

The photo-currents generated by the photodiodes are: 

𝑐𝑥𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)) {c s
𝜃

2
 𝑚(𝑡)c s

𝜃

2
 𝑚(𝑡)s n

𝜃

2
}     (5.30 ) 

𝑐𝑦𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)) {𝑚(𝑡)c s
𝜃

2
 s n

𝜃

2
 𝑚(𝑡)s n

𝜃

2
}.    (5.30 ) 

The demodulated signal at the output of the receiver is expressed as: 

𝑉𝑗 =
ℜ2𝑃𝑟𝑃𝑙𝑜
2

[1  2𝑚(𝑡)]c s𝜃.                                                                                         (5.31) 

Therefore, the conditional error probability becomes: 

𝑃𝑒𝑐3 =
1

2
𝑝(𝑒|0)  

1

2
𝑝(𝑒|1) =

1

2
e  ( 

𝛾c s𝜃

2
).                                                          (5.32) 
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According to (5.28) and (5.32), the system performances are the same for a non-

orthogonal deviation of the transmission axes and for an orthogonality-preserving 

deviation of the transmission axes. This is because of the equal amount of the offset angle 

for both cases.  

 

 

(a)                                        (b) 

Fig. 5-4: An offset angle relative to one of the transmission axes of the linear polarised 

light: (a) A non-orthogonal deviation of the transmission axes, and (b) An orthogonality-

preserving deviation of the transmission axes from the SOPs of the incoming light.  

 

Using equations (5.24), (5.28) and (5.32), Fig. 5-5 illustrates the optical power penalty at 

the receiver to achieve a BER of 10
-9

 against a range of the offset angles relative to one 

or both transmission axes of the incident light. For the same offset angle 𝜃, the power 

penalty is higher in the case of single deviation compared with equal deviation. For 

example, to achieve a BER of 10
-9

 at 𝜃 =   , the power penalties are ~ 1.4 dB and ~ 0.5 

dB for the single and equal deviation, respectively. When 𝜃 = 15 , the single deviation 

suffers a power penalty of ~ 3.6 dB compared with the equal deviation. The power 

penalty required to achieve a BER of 10
-9

 increases with 𝜃.  
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Fig. 5-5: Receiver sensitivity power penalty against the offset angle  𝜃 at a BER of 10
-9

 

using (5.24), (5.28) and (5.32). (Single deviation: an offset angle relative to one of the 

transmission axes of the linearly polarised light; Equal deviation: an offset angle relative 

to both transmission axes of the linearly polarised light.) 

 

5.2     BPOLSK-FSO with a Reference Carrier 

In this section, a BPOLSK system using a reference carrier is proposed. Since the optical 

reference signal is transmitted at the orthogonal SOP through the turbulence channel, this 

scheme offers a number of advantages, including: no need for synchronization at the 

receiver; the frequency and phase noise of the IF component can be eliminated, which 

results no error floor and no power penalty. 

 

5.2.1     System Configuration 

Fig. 5-6 illustrates the block diagram of the proposed BPOLSK-FSO with a reference 

carrier. The transmitting laser beam is fed into the PBS. The laser beam is linearly 

polarised and has a   ⁄  polarisation with respect to the principle axes of the phase 

modulator [135, 189]. The   ⁄  polarisation of the input carrier is decomposed by the 

PBS into two equal components ─ �⃗� and �⃗� polarisations, while only the �⃗�-component is 
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phase-modulated between 0 and   depending on the input data stream. The PM process is 

achieved by utilizing the effective refractive index of the waveguide that varies with the 

applied external voltage via a coated electrode. The phase modulator is a function of 

effective refractive index, the wavelength and the length of the electrode [135].  

 

 

(a) 

 
(b) 

Fig. 5-6: Coherent BPOLSK-FSO transceiver: (a) the transmitter, and (b) the receiver. 

PM (phase modulation). 

 

For a binary input data of ‘0’, no voltage is applied to the phase modulator. Therefore, no 

phase shift is induced on the optical carrier; whereas for the input data of ‘1’, a voltage of 

1.5𝑉𝜋 (for the electro-optic coefficient ratio of 1/3) is applied to the phase modulator. The 

applied voltage induces a   phase shift in the �⃗�-component and zero phase shifts in the 

�⃗�-component. This leads to a  2⁄  rotation in the polarisation state of the optical carrier. 

Under these conditions, the binary data stream is encoded into two linear orthogonal 

SOPs with a constant envelope.  
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At the PBC output, the transmitted optical signal �⃗⃗�𝑠(𝑡) is expressed as: 

�⃗⃗�𝑠(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)){𝑒𝑖 𝑥(𝑡) ∙ �⃗�   �⃗�}                                                                          (5.33) 

where 𝛽𝑥(𝑡) = [0  ] is the phase difference between the two field components �⃗� and �⃗�. 

The detection process is similar to that in Fig. 5-1, with the optical field for the local 

oscillator �⃗⃗�𝑙𝑜(𝑡) defined in (5.3).  

The received optical field �⃗⃗�𝑟(𝑡) is expressed as: 

�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)){𝑒𝑖 𝑥(𝑡) ∙ �⃗�  �⃗�} .                                                                      (5.3 ) 

Assuming an electron is generated for every detected photon; outputs from two identical 

photodiodes with a unit detector area are filtered via ideal BPFs of which the bandwidth 

and center frequency are 𝐵𝑏𝑝 = 2(𝑅𝑠  𝑘𝐹𝐵𝐿) and 𝜔𝐼𝐹 , respectively.  

The electric currents 𝑐𝑥𝑏(𝑡) and 𝑐𝑦𝑏(𝑡) are expressed by: 

𝑐𝑥𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝛽𝑥(𝑡)  𝜑𝐼𝐹(𝑡))  𝑛𝑥(𝑡)                                      (5.35 ) 

𝑐𝑦𝑏(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛𝑦(𝑡).                                                     (5.35 ) 

 

The noise terms {𝑛𝑥(𝑡) 𝑛𝑦(𝑡)}~𝑁(0 𝜎𝑛
2) (given in (5.9)) are assumed to be statistically 

independent such that 𝑛𝑥(𝑡) ∙ 𝑛𝑦(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 . This is because they are allocated within 

orthogonal SOPs. Applying (5.9), the electric currents 𝑐𝑥𝑏(𝑡) and 𝑐𝑦𝑏(𝑡) are processed by 

the square-law device to generate the output signal 𝑐(𝑡) expressed as: 

𝑐(𝑡) = 𝑐𝑥𝑏(𝑡) ∙ 𝑐𝑦𝑏(𝑡)                                                                                                           (5.36) 

=
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ {

√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ [c s(𝛽𝑥(𝑡))  c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡)  𝛽𝑥(𝑡))]

 [𝑛𝑥
𝐼 (𝑡)  𝑛𝑦

𝐼 (𝑡)][c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))  1]

 [𝑛𝑥
𝑄(𝑡)  𝑛𝑦

𝑄(𝑡)]s n(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))

}. 
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The electric signal fed into the threshold detector is given by:  

𝑉𝑗(𝑡) =
1

√𝑇
∫ 𝑐(𝑡)
𝑇

0

𝑑𝑡  

=
1

√𝑇
∫
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ {√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ c s(𝛽𝑥(𝑡))  𝑛𝑥

𝐼 (𝑡)  𝑛𝑦
𝐼 (𝑡)}

𝑇

0

𝑑𝑡.        (5.37) 

where the noise {𝑛𝑥
𝐼 (𝑡) 𝑛𝑦

𝐼 (𝑡)}~𝑁(0 𝜎𝑛
2 2⁄ ) due to the bandwidth of the MF reduced to 

half of the BPF. A binary ‘0’ is assumed to have been received if 𝑉𝑗 is above the threshold 

level of zero and ‘1’ otherwise. It is noteworthy that, under consideration of the 

multiplication demodulation process, the influence of the phase noise in the intermediate 

frequency component can be eliminated.  

 

5.2.2     Error Probabilities Analysis 

Given 𝑚(𝑡) = 0 and 𝛽𝑥(𝑡) = 0, the electric signal 𝑉𝑗 is expressed as:  

𝑉𝑗 =
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ {√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥

𝐼  𝑛𝑦
𝐼 }.                                                               (5.38) 

Given  = √ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥
𝐼 (𝑡)  𝑛𝑦

𝐼 (𝑡)  and  ~𝑁(ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝜎𝑛
2) , the PDF of   is 

𝑓( ), thus 𝑃𝑒𝑐  can be derived as:    

𝑃𝑒𝑐 = ∫𝑓( )𝑑 

0

− 

=
1

√2 𝜎𝑛
∫𝑒−( −

√ℜ2𝑃 𝑃𝑙 2⁄ )
2
/2𝜎𝑛

2

𝑑 

0

− 

=
1

2
er c (√

𝛾

2
)                  (5.3 ) 

where the electrical SNR at the input of the coherent demodulator is defined as 𝛾 =

ℜ2𝑃𝑟𝑃𝑙𝑜/2𝜎𝑛
2. 

Using the approach adopted in [1, 158], the link performance is evaluated under weak to 

strong turbulence regimes. The unconditional probability 𝑃𝑒  (without the knowledge of 
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the channel state information) is obtained by averaging (5.39) over the gamma-gamma 

irradiance fluctuation statistics 𝑝(𝑃𝑟) (3.23) [172] to obtain the following: 

𝑃𝑒(𝑃𝑟) = ∫ 𝑃𝑒𝑐(𝑃𝑟) ∙ 𝑝𝑔𝑎𝑚(𝑃𝑟)𝑑𝑃r

 

0

   

= ∫
1

2
er c (√

𝛾(𝑃𝑟)

2
)
2(𝛼𝛽)(   ) 2⁄

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟

 

0

.            (5. 0) 

 

5.3     Differential Circular Polarisation Shift Keying 

5.3.1     System Configuration 

The schematic of the DCPOLSK optical coherent transmitter is depicted in Fig. 5-7. The 

emitted optical field of the carrier is linearly polarised along   ⁄  with respect to the 

reference axis of the modulator, see Fig. 5-7(a). The differentially encoded information 

bits 𝑚(𝑡) are used to modulate the field phase of the laser in such a way that the field 

phase is equal to zero and   for transmission of a space and a mark, respectively.  

Invoking 2𝛼𝑐𝑑 =  2⁄  in (4.23), the electric field of the optical signal is given as: 

�⃗⃗�𝒔(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)){𝑒𝑖𝜗 2⁄ ∙ �⃗�  𝑒𝑖−𝜗 2⁄ ∙ �⃗�}.                                                             (5. 1) 

The left and right circular polarisations are produced by changing the field phase of 

𝜗 =   /2 and  /2 with respect to the transmission of the differentially encoded space 

and mark, respectively. 
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(a) 

 

(b) 

Fig. 5-7: Coherent DCPOLSK-FSO transceiver: (a) the transmitter, and (b) the receiver. 

QW (quarter wave retarder).  

 

The block diagram of the heterodyne DCPOLSK receiver is illustrated in Fig. 5-7(b). The 

QW is fabricated using the birefringent materials and is used to alter the incoming light 

by one quarter of a wave out of phase from the other polarisation component. Therefore, 

a circularly polarised light passing through a QW becomes a linearly polarised light with 

polarisation axis along   /  and  /  depending on which the polarisation component 

(�⃗� �⃗�) is retarded [192]. The LO laser source, linearly polarised at  / , is identical to the 

transmitter laser.  

The received optical signal �⃗⃗�𝑟(𝑡) is written as: 

�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)){𝑒𝑖(𝜗 2⁄ ) ∙ �⃗�   𝑒𝑖(−𝜗 2⁄ ) ∙ �⃗�}.                                                     (5. 2) 

After passing through the QW plate, the optical signal �⃗⃗�𝑟(𝑡) is split by the PBS and is 

mixed with the �⃗�  and �⃗� components of �⃗⃗�𝑙𝑜(𝑡) resulting in:  
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�⃗⃗�𝑥(𝑡) = {√
𝑃𝑟
2
𝑒𝑖[ 𝑡 𝜗 2⁄  𝜋  ⁄    (𝑡)]  

√𝑃𝑙𝑜
2
𝑒𝑖[ 𝑙 𝑡  𝑙 (𝑡)]} ∙ �⃗�                                  (5. 3 ) 

�⃗⃗�𝑦(𝑡) = {√
𝑃𝑟
2
𝑒𝑖[ 𝑡−𝜗 2⁄ −𝜋  ⁄    (𝑡)]  

√𝑃𝑙𝑜
2
𝑒𝑖[ 𝑙 𝑡  𝑙 (𝑡)]} ∙ �⃗�.                                (5. 3 ) 

The optical fields are then detected by two identical photodiode and the outputs are 

passed through the electrical BPFs. The bandwidth and the center frequency of the BPFs 

are 𝐵𝑏𝑝 = 2(𝑅𝑠  𝑘𝐹𝐵𝐿) and 𝜔𝐼𝐹 , respectively.   

The expressions of the electrical currents 𝑐𝑥𝑏(𝑡) and 𝑐𝑦𝑏(𝑡) after passing through the 

BPFs on the �⃗� and �⃗� channels are given as: 

𝑐𝑥𝑏(𝑡) = √
ℜ2𝑃𝑟𝑃𝑙𝑜
2

c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)  𝜗 2⁄    ⁄ )  𝑛𝑥(𝑡)                              (5.   ) 

𝑐𝑦𝑏(𝑡) = √
ℜ2𝑃𝑟𝑃𝑙𝑜
2

c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)  𝜗 2⁄    ⁄ )  𝑛𝑦(𝑡)                              (5.   ) 

where the noise terms {𝑛𝑥(𝑡) 𝑛𝑦(𝑡)}~𝑁(0 𝜎𝑛
2).  

The electric currents 𝑐𝑥𝑏(𝑡) and 𝑐𝑦𝑏(𝑡)  are multiplied to generate the output electric 

current 𝑐(𝑡): 

𝑐(𝑡) = 𝑐𝑥𝑏(𝑡) ∙ 𝑐𝑦𝑏(𝑡)  

=
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄

{
 
 

 
 √ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ [c s (𝜗  

 

2
)  c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))]

 [𝑛𝑥
𝐼 (𝑡)  𝑛𝑦

𝐼 (𝑡)][c s(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡))  1]

 [𝑛𝑥
𝑄(𝑡)  𝑛𝑦

𝑄(𝑡)]s n(2𝜔𝐼𝐹𝑡  2𝜑𝐼𝐹(𝑡)) }
 
 

 
 

.  (5. 5) 

It follows that the signal 𝑐(𝑡) is fed into the MF to be integrated over the symbol period T 

and sampled at time t = T to obtain the decision variable  𝑉𝑗.  𝑉𝑗   is then compared with 

the zero threshold level yielding the signal �̂�𝑗𝑖 , thus leading to the detection of the 
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transition between two adjacent symbols, by which information is encoded. The output 

signal is given as:  

𝑉𝑗(𝑡) = ∫ 𝑐(𝑡)
𝑇

0

𝑑𝑡  

=
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ {√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ c s (𝜗  

 

2
)  𝑛𝑥

𝐼 (𝑡)  𝑛𝑦
𝐼 (𝑡)}.                     (5. 6) 

The noise components are {𝑛𝑥
𝐼 (𝑡) 𝑛𝑦

𝐼 (𝑡)}~𝑁(0 𝜎𝑛
2 2⁄ ). Note that the intermediate phase 

noise disappears due to the multiplication and filtering, thus illustrating DCPOLSK 

insensitivity to the phase noise. 

 

5.3.2     Error Probabilities Analysis  

Following the same procedure as in 5.2.2, an error occurs when 𝑉𝑗  0 for transmission 

of a space with 𝜗 =   2⁄ : 

𝑉𝑗 =
1

2
√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄ (√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥

𝐼  𝑛𝑦
𝐼 ).                                                            (5. 7) 

Defining the variable  = √ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝑛𝑥
𝐼  𝑛𝑦

𝐼  and  ~𝑁(√ℜ2𝑃𝑟𝑃𝑙𝑜 2⁄  𝜎𝑛
2), the error 

rate before the code converter is thus expressed as: 

𝑃𝑒𝑐 =
1

√2 𝜎𝑛
∫ 𝑒

−
( −√ℜ2𝑃 𝑃𝑙 2⁄ )

2

2𝜎𝑛
2

𝑑 
0

− 

=
1

2
er c (√

𝛾

2
) .                                               (5. 8) 

where 𝛾 = ℜ2𝑃𝑟𝑃𝑙𝑜 2𝜎𝑛
2⁄  is the SNR ratio at the demodulator output.  

The decoder determines the changes between adjacent symbols. An error occurs if only 

one of two adjacent symbols is erroneous. Thus the error probability becomes: 

𝑃𝑒𝑐
′ = 2𝑃𝑒𝑐(1  𝑃𝑒𝑐) = er c (√

𝛾

2
) [1  

1

2
er c (√

𝛾

2
)].                                                  (5.  ) 

Thus, considering the channel influence, the unconditional error rate is given as:  
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𝑃𝑒(𝑃𝑟) = ∫ {er c (√
𝛾(𝑃𝑟)

2
) [1  

1

2
er c (√

𝛾(𝑃𝑟)

2
)]

 

0

∙
2(𝛼𝛽)

   
2

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟}𝑑𝑃𝑟 .                                  (5.50) 

 

5.4     Comparison of BPOLSK, OOK and BPSK based FSO Links 

In order to evaluate the BPOLSK modulated FSO systems operating over the turbulence 

channel, the error probabilities are compared with that of the OOK and coherent BPSK 

schemes under the same channel conditions. In the OOK modulated system, the PDF of 

the decision variable depends on the transmitted bit only through its average value and 

the error probability in the absence of turbulence is given as [1]: 

𝑃OOK = 𝑝(0)∫
1

√2 𝜎𝑛
2

e  ( 
𝑖2

2𝜎𝑛
2
)

∞

𝑖𝑡ℎ

𝑑𝑖  𝑝(1)∫
1

√2 𝜎𝑛
2

e  [ 
(𝑖  ℜ𝑃𝑟)2

2𝜎𝑛
2

]
𝑖𝑡ℎ

0
𝑑𝑖.  (5.51) 

where 𝑖𝑡ℎ denotes the threshold signal level, 𝑖 represents the detected current with the 

receiver aperture size normalised to unity.  

 

The OOK system conditioned on the received irradiance in the atmospheric turbulence 

modeled as gamma-gamma statistics is given as [1]: 

𝑃OOK
′ (𝑃𝑟) = 𝑝(0)∫

1

√2 𝜎𝑛
2

e  ( 
𝑖2

2𝜎𝑛
2
)

∞

𝑖𝑡ℎ

𝑑𝑖                                                                     (5.52) 

 𝑝(1)∫ ∫ {
1

√2 𝜎𝑛2
e  [

 (  ℜ𝑃𝑟)
2

2𝜎𝑛2
]
2(𝛼𝛽)

   
2

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)}

𝑖𝑡ℎ

0

 

0

𝑑𝑖𝑑𝑃𝑟  . 

In an atmospheric turbulence environment, the threshold level will vary with the 

irradiance fluctuation and the noise level. Therefore the threshold is no longer fixed at 
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half of the received irradiance. Since the transmission of zero pulses (for data ‘0’) is not 

subject to scintillation, the likelihood function Λ is derived by invoking the maximum 

posteriori symbol-by-symbol detection [205]: 

Λ = ∫ e  [
 (𝑖  ℜ√𝑃𝑟𝑃𝑙𝑜)

2
 𝑖2

2𝜎𝑛2
]

 

0

2(𝛼𝛽)(   ) 2⁄

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟 . (5.53) 

Based on the antipodal nature of a coherent BPSK modulation technique, the threshold is 

fixed at a zero level, which is not affected by the irradiance fluctuation. In the coherent 

BPSK system, the PLL circuit is assumed to adequately track the phase changes due to 

the atmospheric turbulence and any phase error generated is solely due to the PLL. The 

phase tracking error not only introduces a power penalty at the receiver but also 

contributes to the minimum error probability, which is independent of the received 

optical power [135]. An exact analysis based on the nonlinear PLL is mathematically 

tractable.  

Assuming a constant PLL tracking error within the symbol period T, the error probability 

can thus be deduced as [135, 203]:   

𝑃BPSK = ∫
1

2
er c[√𝛾c s(∆𝜑(𝑡))]

𝑒𝑟𝑙cos(∆ )

2 𝐼0(𝑟𝑙)
𝑑∆𝜑

2π

0

.                                                     (5.5 ) 

where 𝛾 = ℜ𝑃𝑟𝑃𝑙𝑜 2𝜎𝑛
2⁄  denotes the electric SNR per bit at the input of the coherent 

demodulator and ∆𝜑(𝑡)  is the phase tracking error due to the PLL. The parameter 

𝛾𝑙 = 1 𝜎∆
2⁄  is the SNR of the PLL, and 𝜎∆

2 is the phase noise variance.  

Adopting the approach given in [158], the unconditional error probability 𝑃BPSK
′ (𝑃𝑟) is 

given as: 
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𝑃BPSK
′ (𝑃𝑟) = ∫ ∫ {𝑃BPSK ∙

2(𝛼𝛽)(   ) 2⁄

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)}

2π

0

 

0

𝑑∆𝜑𝑑𝑃𝑟 .   (5.55) 

Using (5.20), (5.40), (5.50), (5.52) and (5.55), the error probabilities of BPOLSK, OOK 

and BPSK schemes in the absence and presence of turbulence are depicted in Figs. 5-8 to 

5-10, respectively. The values for 𝛼 and 𝛽 at any given regimes can be calculated with 

the corresponding values of 𝜎𝑙
2 using (3.24) and are illustrated in Table 5.1. 

 

Table 5.1: Turbulence parameters with respect to weak, moderate and strong regimes 

[149]. 

Parameter 

Turbulence regime 

Weak Moderate Strong 

𝜎𝑙
2 0.2 1.6 3.5 

𝛼 11.6 4.0 4.2 

𝛽 10.1 1.9 1.4 

 

Fig. 5-8 depicts the error probability against the normalized electric SNR for BPOLSK, 

BPSK and OOK schemes in an ideal channel. With no turbulence, to achieve a BER of 

10
-9

 the SNR requirements are ~12.5 dB and ~18.5 dB for BPSK (with an ideal PLL) and 

OOK (with a fixed threshold of 0.5), respectively.  

 

 

Fig. 5-8: Comparisons of BER performances of various schemes against the normalized 

electric SNR 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1 in the absence of turbulence. (sq: BPOLSK-FSO using the 

square-law modulation; ref: BPOLSK-FSO with a reference carrier) 
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The SNR requirements for BPOLSK using different configurations have no evident 

differences, such that the SNRs of ~ 15.7 dB, ~15.5 dB and ~ 16 dB are needed for 

DCPOLSK and BPOLSK using a reference carrier and the square-law demodulation, 

respectively. The BPOLSK outperforms and under-performs OOK and BPSK by ~ 3 dB. 

Among all the BPOLSK systems discussed above, the receiver using the reference carrier 

offers the best performance. The error probability of BPOLSK in the following 

discussions will be only referred to that of the BPOLSK system using the reference 

carrier. 

The BPOLSK scheme requires no carrier recovery circuit at the receiver and both the 

carrier and information signals suffer from the same phase noise. However, BPSK incurs 

penalties due to the phase tracking errors as depicted in Fig. 5-9.  

 

 

Fig. 5-9: BER against the SNR for coherent BPSK for a range of phase error variance 

𝜎𝛥 = [0 0.1 0.2 0.3 0.5]. 

 

The PLL circuit based BPSK incurs penalties due to the phase tracking errors as shown 

in Fig. 5-9. When the phase error variance is small (𝜎∆ = 0.1), the power penalty can be 
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neglected since the degradation is not high. The performance degradation increases with 

the error variance. For higher values of variance (𝜎∆  0.3) the power penalty causes a 

significant shift in the BER floor. For example, in the case of 𝜎∆ = 0.3 and 0.5, the BER 

floor are equal to 5.  10−  and 7.7  10−3, respectively. 

 

To compare the error probability with BPOLSK and OOK, the performances of BPSK 

without a phase tracking error in the atmospheric turbulence are depicted in Fig. 5-10. 

Irrespective of the modulation schemes, to achieve a fixed BER, the SNR requirement 

increases with the turbulence level and it is higher for lower values of BER at the same 

turbulence level as depicted in Fig. 5-10. For example, to achieve a BER of 10
-6

 in a 

weak turbulence regime, SNR requirements are ~ 15 dB, ~ 18 dB and ~ 33.8 dB for 

BPSK, BPOLSK and OOK schemes, respectively. To achieve a BER of 10
-9

 under the 

same channel condition, corresponding SNR values rise to ~ 19.5 dB, ~ 22.5 dB and ~ 44 

dB, respectively. In a moderate regime to achieve a BER of 10
-9

, SNR values further 

increase to ~36.5 dB and ~ 39.5 dB for BPSK and BPOLSK schemes, respectively. To 

reduce the BER of BPOLSK (using ref. and sq.) from 10
-3

 to 10
-6

 in the moderate 

turbulence regime, the additional required SNR is ~ 15 dB. Less SNR (~ 4.5 dB) is 

required for further reducing the BER to 10
-9

. This is because the characters of 𝑒𝑟𝑓𝑐(∙) 

and exponential functions.    

OOK suffers higher BER floor levels in the moderate turbulence regime. For instance, 

using a SNR of 49 dB in the moderate turbulence regime, the BERs are 0.05 and 

  10−  for fixed and adaptive threshold detections, respectively. For the ideal PLL 
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circuit without phase tracking errors, the BPSK system offers the best performance in 

terms of error probability followed by the BPOLSK scheme in the absence of turbulence.  

The results shown in Fig. 5-10 are valid because of the following reasons. Firstly, the 

BER curves for OOK-FSO and BPSK-FSO have the same trend as results reported in [1, 

105, 166, 171, 206]. The coherent BPOLSK systems using different transceiver 

configurations applied in optical fibre have been theoretically and experimentally 

verified in [207-209]. The conditional BER expressions (without considering the channel 

effect) are the same as that reported in the common literature.  

 

 

(a) 

 

(b) 
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(c) 

Fig. 5-10: Comparisons of BER performances of various modulation schemes against the 

normalized electric SNR 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1  in (a) weak, (b) moderate and (c) strong 

turbulence regimes.  

 

In the BPOLSK modulation format, the transmitted information is encoded into the 

SOPs. Because information is not carried by the signal instantaneous phase, the 

BPOLSK-FSO systems are the least sensitive to phase noise. The phase noise causes a 

sensitivity penalty mainly due to the broadening of the signal spectrum. A wide 

intermediate-frequency filter and a narrow-baseband filter can be applied at the receiver 

to limit this noise effect. For higher values of turbulence the BER performance 

deteriorates very rapidly for OOK with a fixed threshold level. The information encoded 

in the intensity of the carrier signal is much more prone to turbulence induced 

fluctuation. Information embedded into the phase or polarisation states are more robust to 

the atmospheric turbulence. However, using an adaptive threshold detection scheme we 

observe a considerable improvement in the BER performance even at higher values of 

turbulence.  
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5.5     Summary 

In this chapter, the BER of BPOLSK modulated FSO have been presented and compared 

with the OOK and BPSK techniques across all turbulence regimes. Based on the results 

presented, the BPOLSK offers the highest immunity to the phase noise and is 

recommended in the atmospheric turbulence against the OOK (with fixed and adaptive 

threshold detection) modulated FSO systems, primarily because it does not exhibit a 

BER floor. For example, to achieve a BER of 10
-9

 in a moderate turbulence regime, the 

SNR requirement is ~ 39.5 dB for the BPOLSK scheme. For moderate turbulence 

regimes OOK suffers from high BER floors. For instance, for an SNR of 49 dB in a 

moderate regime, BERs are   10−  and 0.05 for OOK with the fixed and adaptive 

threshold detections, respectively. The heterodyne BPSK modulated FSO systems are 

based on coherent optical detection and synchronous demodulation by an electrical PLL. 

However, the phase noise sensitivity of such coherent systems is considerable due to the 

presence of a PLL circuit. The power penalties caused by the atmospheric turbulence 

must be compensated for to guarantee a reliable communication link. One option would 

be to increase the transmitted optical power. However, this is only useful in the very 

weak turbulence regime and must meet the eye safety level. In the following chapter, the 

spatial diversity techniques combined with the BPOLSK system will be examined in the 

turbulent atmospheric channel. 
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Chapter Six 

 

 

 

BPOLSK-FSO with Receiver 

Diversity Techniques  

 

The performance impairments due to the temperature induced scintillation can be 

mitigated by adopting several approaches including aperture averaging, adaptive optics 

[80, 85, 166, 170, 181], diversity techniques [38, 98, 210, 211] and error control coding 

[43, 80, 212, 213]. To receive uncorrelated signals with the aperture averaging 

technique, the aperture size of the receiver must be much larger than the spatial 

coherence distance of the atmospheric turbulence (order of centimetres), which makes 

the aperture averaging not always achievable in FSO systems [105].  
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The adaptive optics approach based on the phase conjugation principle is used to 

reverse the wavefront deformation effect of the atmospheric turbulence [1, 3, 85, 101]. 

This scheme is mainly applied in deep space FSO systems as it significantly increases 

the system complexity and the implementation cost [85]. A superposition MIMO coding 

scheme for the transmission of unequally important sources in a point-to-multipoint 

system is proposed [214]. In this paper, for lower data rates, an Alamouti code is 

applied in order to maximize the performance for the receivers with poor channel 

qualities; while for higher data rates, the spatial multiplexing is applied at the receivers 

having with good channel conditions.  

To circumvent the turbulence effects, the diversity techniques and error control coding 

schemes will be applied to the BPOLSK-FSO system. The performance analysis will be 

outlined in this and the following chapters. Linear combining techniques, including the 

maximum ratio combining (MRC) and the equal gain combining (EGC) will be 

considered. The atmospheric turbulence channel is modelled as the gamma-gamma 

distribution to predict the performance of short to very long FSO links. The results 

obtained for BPOLSK-FSO with the diversity technique and error control coding will 

be compared with BPOLSK-FSO using the reference carrier with a single detector and 

no channel coding as discussed in Chapter 5. The reason for this is that the BPOLSK 

system offers the best performance in comparison with other proposed BPOLSK-FSO 

systems in the turbulence channel. The results however can be easily extended to other 

BPOLSK systems. 
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6.1     Receiver Diversity Techniques 

Receiver diversity techniques with their inherent redundancy provide an attractive 

approach to compensate for turbulence induced fading [38, 93, 98, 127, 211, 215]. By 

employing multiple receivers, the potential for temporary blockage of the laser beam 

due to obstructions (e.g., birds) mainly in urban areas can be significantly reduced. 

Apart from this, the receiver diversity combined with the wide divergence optical 

sources can be used to combat misalignment between transmitters and receivers and 

thus the requirement of an active tracking system can be avoided [45, 98, 131, 215].  

In the aperture averaging technique, the single aperture size must be much larger than 

the irradiance spatial coherence distance [45, 87, 215, 216]. It offers significant 

performance improvement in the moderate and strong turbulence regimes [14, 45, 98, 

215, 216]. For example, for the received power of -25 dBm in the weak turbulence 

regime, the BER decreases from 2  10−5 for a point receiver (with a diameter D = 0) 

to 10−  for D = 10 cm. For the same received power in the moderate turbulence regime, 

the BER decreases from 10−  for a 15 cm-diameter aperture to 10−  for a 25 cm-

diameter aperture. By increasing D from 15 cm to 30 cm in the strong turbulence 

regime, the BER decreases from 10−3 to 10−  for a received power of -23 dBm [216]. 

It was also shown in [105] that the aperture averaging technique has a limitation to 

mitigate the scintillation effects. The limited SNR improvement can be obtained when 

the aperture size beyond a certain value. Additionally, increasing the aperture size also 

increases the capacity, which in turn reduces the data rate. 
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With the receiver diversity, a single receiver with a large FOV is replaced by a group of 

small surface area detectors with a narrow FOV that are positioned well within the 

received optical beam footprint [14, 98, 133]. The possibility of all the detectors 

suffering from deep fade simultaneously is much reduced. Moreover, the receiver 

diversity scheme allows higher data rate transmission due to the low capacitance of 

small area photodetectors [14, 98]. Additionally the diversity scheme limits the amount 

of background light from unwanted sources that impinges on the specific detector, 

which otherwise could be received by the single receiver with a wide FOV [98, 127, 

133, 210, 211]. 

Employing multiple photodetectors can mitigate the turbulence induced fading in the 

received signal, thus leading to further improvement in the link error performance. To 

avoid any correlation in the received irradiance the detectors must be sufficiently spaced 

as shown in Fig. 6-1. Since the transverse correlation size 𝜌0  of the laser radiation 

operating over the atmospheric turbulence channel is nearly a few centimetres, the 

parameter 𝜌0 can be assumed to be greater than the spacing between the detectors [1, 

14, 98, 103, 215]. The difference in the propagation delay across the receiver array 

would be negligible as the spacing between the photodiodes is much shorter than 

wireless link ranges [1, 210, 215]. The received optical power is assumed to be constant 

and time invariant during one symbol duration 𝑇  𝜏0, where the coherence time 𝜏0 of 

the atmospheric fluctuation is in the order of milliseconds [1, 127, 210]. 
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The received signal from each branch is scaled by a gain factor {𝐺𝑖}𝑖=1
𝒩  as illustrated in 

Fig. 6-1. The output of the combiner is the sum of the weighted and co-phased signals. 

Each receiver aperture size of 𝒩-photodetector is (1 𝒩⁄ )th of the aperture area of the 

single receiver. Accordingly, the background noise variance on each branch is 

proportional to the receiver aperture area, which is reduced by a factor of 𝒩, whereas 

the thermal noise on each branch is not affected. For this reason, the AWGN noise 

variance on each branch will be 𝜎𝑛
2 𝒩⁄ .  

 

 

Fig. 6-1: Receiver diversity with 𝒩- PDs. 

 

For a background noise limited FSO link, the variance of the overall Gaussian noise 

with a zero mean becomes [1]: 

𝜎𝑇
2 =

1

𝒩
∑𝐺𝑖

2𝜎𝑛
2

𝒩

𝑖=1

                                                                                                                    (6.1) 
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where 𝑖 = 1 2 3   𝒩.  

Since the receiver diversity is applied in the BPOLSK-FSO system using the reference 

carrier signal, the individual received optical signal is given as: 

�⃗⃗⃗�𝑟𝑖(𝑡) = √
𝑃𝑟𝑖
2
𝑒𝑖(𝜔𝑡 𝜑𝑟(𝑡)){𝑒𝑖𝛽(𝑡) ∙ �⃗⃗⃗�  �⃗⃗⃗�}.                                                                              (6.2) 

The electric currents are scaled by a gain factor, {𝐺𝑖}𝑖=1
𝒩 , before being co-phased and 

coherently combined. The electric currents {𝑐𝑥𝑏(𝑡) 𝑐𝑦𝑏(𝑡)} from the combiner are given 

as: 

𝑐𝑥𝑏(𝑡) =
ℜ

𝒩
∑𝐺𝑖

𝒩

𝑖=1

√
𝑃𝑟𝑖𝑃𝑙 
2

c s (𝜔𝐼 𝑡  𝛽(𝑡)  𝜑𝐼 (𝑡)) ∑𝐺𝑖𝑛𝑥𝑖(𝑡)

𝒩

𝑖=1

                        (6.3 ) 

𝑐𝑦𝑏(𝑡) =
ℜ

𝒩
∑𝐺𝑖

𝒩

𝑖=1

√
𝑃𝑟𝑖𝑃𝑙 
2

c s (𝜔𝐼 𝑡  𝜑𝐼 (𝑡)) ∑𝐺𝑖𝑛𝑦𝑖(𝑡)

𝒩

𝑖=1

.                                    (6.3 ) 

 

The optimum post detection electrical SNR 𝛾T  at the BPOLSK demodulator input 

becomes: 

𝛾𝑇(�⃗⃗�𝑟) =
ℜ2𝑃𝑙𝑜(∑ 𝐺𝑖√𝑃𝑟𝑖

𝒩
𝑖=1 )

2

2𝒩∑ 𝐺𝑖
2𝜎𝑛2

𝒩
𝑖=1

                                                                                          (6. ) 

where �⃗⃗�𝑟 = ∑ 𝑃𝑟𝑖
𝒩
𝑖=1 . All the received optical power is assumed to be independent and 

obey the gamma-gamma distribution. The intermodulation distortion due to the inherent 

nonlinearity of the optical source has not been considered in (6.4). 
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Hypothesises are taken that all the received optical power is independent and all obey 

the gamma-gamma distribution. Therefore 𝑝(�⃗⃗�𝑟)  represents the joint PDF for 𝒩 -

photodetector receiving uncorrelated signals, and is expressed as: 

𝑝(�⃗⃗�𝑟) =∏∫𝑝(𝑃𝑟𝑖)

𝒩

𝑖=1

 𝑃𝑟𝑖 .                                                                                                    (6.5) 

The system performance of the BPOLSK-FSO system employing the receiver diversity 

technique operating over the gamma-gamma turbulence channel can thus be evaluated 

from (6.4) and (6.5) using numerical integration since the resulting expression has no 

closed form solution. The receiver diversity generally consists of the following linear 

combining techniques: MRC, EGC and selection combining (SelC). The results 

obtained in [1] showed that the use of SelC in a single transmitter-multiple 

photodetector system results in no diversity gain in a very weak turbulence (𝜎𝑙
2  0.22) 

and it is therefore not recommended for use on a short link FSO system experiencing a 

weak irradiance fluctuation. In this work, only MRC and EGC receiver diversity 

techniques will be considered.  

 

6.1.1     Maximum Ratio Combining (MRC) 

In the MRC linear combiner scheme, the gain factor {𝐺𝑖}𝑖=1
𝒩  is proportional to the 

received optical power. As the MRC linear combiner results in a maximum-likelihood 

receiver structure [1], it is optimal regardless of the fading statistics. However, the 
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received optical power level and phase on each branch has to be estimated prior to 

coherent combining, which makes it unsuitable for non-coherent demodulation 

schemes. Applying the Cauchy inequality [1, 217], (∑ 𝐺𝑖√𝑃𝑟𝑖
𝒩
𝑖=1 )

2
   

(∑ 𝐺𝑖
2𝒩

𝑖=1 )(∑ 𝑃𝑟𝑖
𝒩
𝑖=1 ), the 𝑟MRC(�⃗⃗�𝑟) is derived as:  

𝛾MRC(�⃗⃗�𝑟) =
ℜ2𝑃𝑙𝑜(∑ 𝐺𝑖√𝑃𝑟𝑖

𝒩
𝑖=1 )

2

2𝒩∑ 𝐺𝑖
2𝜎𝑛2

𝒩
𝑖=1

 
ℜ2𝑃𝑙𝑜(∑ 𝐺𝑖

2𝒩
𝑖=1 )(∑ 𝑃𝑟𝑖

𝒩
𝑖=1 )

2𝒩𝜎𝑛2∑ 𝐺𝑖
2𝒩

𝑖=1

  

=
1

𝒩
(∑

ℜ2𝑃𝑙𝑜𝑃𝑟𝑖
2𝜎𝑛

2

𝒩

𝑖=1

) =
1

𝒩
(∑𝛾i(𝑃𝑟)

𝒩

𝑖=1

).                                                        (6.6) 

Therefore, the average SNR, 𝛾MRC, is derived by averaging (6.6) over the turbulence 

statistics (6.5) which is given as: 

𝛾MRC = ∫𝛾MRC(�⃗⃗�𝑟)𝑝(�⃗⃗�𝑟)𝑑�⃗⃗�𝑟 .                                                                                             (6.7) 

The unconditional BER for the FSO system employing BPOLSK using the reference 

carrier signal with the receiver diversity is obtained by averaging the conditional error 

rate over the statistics of the gamma-gamma distribution (3.23):  

𝑃𝑒 R = ∫ 𝑃𝑒𝑐 (�⃗⃗⃗�𝑟)
 

0

𝑝 (�⃗⃗⃗�𝑟)𝑑�⃗⃗⃗�𝑟.                                                                                          (6.8) 

 

6.1.2     Equal Gain Combining (EGC) 

In an EGC combiner, the knowledge of the phase on each branch is still required. Here, 

all received signals of x- and y- channels are combined coherently with equal weights of 

{𝐺𝑐𝑖}𝑖=1
𝑁 = 1 [1]. The 𝛾𝑇 for 𝛾EGCis given by: 
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𝛾EGC =
ℜ2𝑃𝑙𝑜
2𝒩2𝜎𝑛2

(∑√𝑃𝑟𝑖

𝒩

𝑖=1

)

2

=
1

𝒩2
(∑√𝛾i(𝑃𝑟)

𝒩

𝑖=1

)

2

.                                                     (6. ) 

Following on from the previous section, the average SNR on each diversity branch and 

unconditional BER of a BPOLSK-FSO system with an array of photodetectors are 

given as (6.10) and (6.11), respectively: 

𝛾EGC = ∫𝛾EGC(�⃗⃗�𝑟) 𝑝(�⃗⃗�𝑟) 𝑑�⃗⃗�𝑟                                                                                            (6.10) 

𝑃𝑒   = ∫ 𝑃𝑒𝑐 (�⃗⃗⃗�𝑟)
 

0

𝑝 (�⃗⃗⃗�𝑟)𝑑�⃗⃗⃗�𝑟.                                                                                        (6.11) 

 

6.1.3     Results and Discussions  

Using (6.8) and (6.11), the performance of the BPOLSK-FSO system employing the 

reference carrier signal with the receiver diversity in weak, moderate and strong 

turbulence regimes will be discussed in this section. The parameters representing each 

turbulence regime presented in Table 5.1 are used in this section. For the purpose of 

like-to-like comparison, the average optical signal power 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] is normalized to 

the unity and the electric SNRs are made equal for the BPOLSK with EGC and MRC 

techniques.  

In Figs. 6-2(a) and (b), the BER of BPOLSK-FSO employing the EGC and MRC 

techniques for a range of 𝒩  is plotted against the normalised SNR in the gamma-

gamma channel covering all turbulence regimes. Compared with the results obtained 

with the single receiver given by (5.40), the advantage of using detector arrays for 
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mitigating the turbulence induced irradiance fluctuation is made evident. Fig. 6-2 shows 

that the optimum MRC outperforms the EGC diversity technique to achieve a fixed 

BER. For instance, to achieve a BER of 10
-9

 at various turbulence levels, the MRC 

offers a higher power gain (between ~ 1 dB and ~ 3 dB) than EGC for 𝒩 = 2 3. The 

MRC results in a maximum-likelihood receiver which makes it the optimal regardless 

of the fading statistics [98, 218].  

 

 

(a) 
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(b) 

Fig. 6-2: Error probability of BPOLSK-FSO diversity with the EGC and MRC against 

the normalised SNR 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1 in the gamma-gamma channel for: (a) 𝒩 = 1 2, 

and (b) 𝒩 = 1 3. 

 

By defining the SNR to achieve a BER of 10
-9

 with 𝒩-detector at the turbulence level 

𝜎𝑙 as, 𝛾𝒩 𝜎𝑙 , the spatial diversity gain can be represented as, 𝑚𝒩 𝜎𝑙 = 𝛾1 𝜎𝑙  𝛾𝒩 𝜎𝑙 . Fig. 

6-2 also depicts that 𝑚2 𝜎𝑙  for the MRC combining scheme are ~ 4, ~ 8.5 and ~ 4.5 dB 

in weak, moderate and strong turbulence regimes, respectively. When 𝒩 increases to 3, 

the corresponding values of 𝑚3 𝜎𝑙  increase to ~ 6, ~ 15.5 and ~ 13 dB, respectively.  
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Fig. 6-3: Spatial diversity gain 𝑚𝒩 𝜎𝑙  for the BPOLSK scheme employing MRC 

technique to achieve a BER of 10
-9

 against the number of photodetectors 𝒩 with the 

normalised electric SNR 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1 under all turbulence scenarios from weak to 

strong regimes.  

 

The performance of spatial diversity gain is plotted against the number of 

photodetectors as shown in Fig. 6-3.For BPOLSK using MRC combining technique to 

achieve a BER of 10
-9

, the spatial diversity gain 𝑚𝒩 𝜎𝑙 = 𝛾1 𝜎𝑙  𝛾𝒩 𝜎𝑙  is plotted against 

the number of photodetectors 𝒩 as illustrated in Fig. 6-3. The power gain in the strong 

turbulence regime is less than that in the moderate regime due to the fact that the deep 

fade results in a loss of spatial coherence of the laser radiation. However, when 𝒩 

increases to 10, the spatial diversity gain reaches up to ~ 26.5 dB in a strong turbulence 

regime. This is because adding more detectors will efficiently reduce the chance of a 

catastrophic fading from happening, but at the cost of increased system complexity.  

Another observation from Fig. 6-3 is that when two detectors  are used, the power gain 

is more than 3 dB for all turbulence regimes. Since the turbulence channel is modelled 
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as the gamma-gamma distribution, a diversity gain of 3 dB (𝒩 = 2) is achievable in the 

Gaussian channel. 

 

6.2     Performance of Received Signal Correlation and Outage 

 Probability  

In the receiver diversity approach, the chance that multiple photodetectors suffer 

irradiance fading at the same time has been much reduced. However, the correlated 

irradiance fluctuations still cause observable power penalties. The performance analysis 

thus will be carried out using optimum EGC linear scheme operating over the lognormal 

turbulence channel; whereas other linear combining techniques and channel models can 

be easily adopted by extending the results in a similar manner. The conditional BER for 

the BPOLSK with the EGC combining scheme is given as:      

𝑃𝑒   =
1

2
er c(√

𝛾   (�⃗⃗⃗�𝑟)

2
) =

1

 
∫ e  ( 

ℜ2𝑃𝑙 

 𝒩2𝜎𝑛
2s n2 

(∑√𝑃𝑟𝑖

𝒩

𝑖=1

)

2

)

 
2

0

𝑑        (6.12) 

where 
1

2
er c(𝑥) =

1

 
∫ e  ( 

𝑥2

2s n2 
)

 
2
0

𝑑 . 

The correlation coefficient 𝜌(𝔰)  of an optical wave propagating over a turbulence 

channel can be expressed using Tatarski’s infinite power series [95] and is given as: 

𝜌(𝔰) = 1  2.36(2 𝔰 𝜆𝐿⁄ )5  ⁄  1.71(2 𝔰 𝜆𝐿⁄ )  0.02 (2 𝔰 𝜆𝐿⁄ )2

 0.000 3(2 𝔰 𝜆𝐿⁄ )   .                                                                     (6.13) 
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where 𝐿 is the link distance between the transmitter and receiver. Based on the results 

from [95], the correlation coefficient 𝜌(𝔰) against the spatial separation 𝔰, is plotted in 

Fig. 6-4. It is shown that 𝜌(𝔰) is inversely proportional to 𝔰  for 𝔰 √𝜆𝐿⁄  1 , where 

𝜌0  √𝜆𝐿. The covariance matrix 𝒞𝒳 is derived as [1, 95]:   

𝒞𝒳 =

[
 
 
 
 𝜎𝒳

2  𝜌
𝔰12
𝔰1𝒩

𝜎𝒳
2

   

𝜌
𝔰12
𝔰𝒩1

𝜎𝒳
2  𝜎𝒳

2

]
 
 
 
 

                                                                                      (6.1 ) 

where 𝜌  is the correlation coefficient between two photodetectors with a spatial 

separation 𝔰12, 𝔰𝑖𝑗 represents the spatial separation between photodetectors 𝑖 and 𝑗, and 

𝜎𝜒
2 = 0.25𝜎𝑙

2.  

 

 

Fig. 6-4: Correlation coefficient 𝜌(𝔰) as a function of the transverse separation 𝔰 in a 

weak turbulent field [95]. 

 

The joint PDF of the received irradiance is obtained as [1, 95]: 

𝑝(𝑃𝑟1 𝑃𝑟2 𝑃𝑟𝒩) =
e  ( 𝕏𝒞𝒳

−1𝕏𝑇 8⁄ )

2𝒩∏ 𝐼𝑖(2 )𝒩 2⁄ |𝒞𝒳|1 2
⁄𝒩

𝑖=1

                                                          (6.15) 
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where 𝕏 = [ n𝑃𝑟1 𝑃𝑟0⁄    n 𝑃𝑟2 𝑃𝑟0⁄       n 𝑃𝑟𝒩 𝑃𝑟0⁄ ] is a row matrix.  

The unconditional error probability is then given as [1, 95]: 

𝑃𝑒 = ∫𝑃𝑒𝑐 (�⃗⃗⃗�𝑟)𝑝(𝑃𝑟1 𝑃𝑟2 𝑃𝑟𝒩)𝑑�⃗⃗⃗�𝑟.                                                                           (6.16) 

The effect of signal correlation on the error performance is shown in Fig. 6-5 using 

(6.14), (6.15) and (6.16) for 𝒩 = 2, 𝜌 = [0 0.1 0.5 0.8] and 𝜎𝑙
2 = 0.3. For example, 

using two photodetectors to achieve a BER of 10
-9

, the additional SNR caused due to 

increasing 𝜌 from 0 to 0.5 is ~ 4 dB. Further increasing 𝜌 to 0.8, ~ 4.5 dB additional 

SNR is required. Fig. 6-5 indicates that the increases signal correlation induces the 

power penalty. Therefore, in order to get the most of the spatial diversity technique, the 

photodetector separation must be greater than the spatial coherence length 𝜌0. 

 

 

Fig. 6-5: Error probability of the BPOLSK-FSO with EGC at a range of correlation 

coefficients for 𝒩 = 2 and 𝜎𝑙
2 = 0.3. 

With the spatial diversity receiver in a lognormal turbulence channel, the sum of 𝒩 

independent optical power is a lognormal variable and expressed as  = ∑ 𝑃𝑟𝑖
𝒩
𝑖=1 =
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e  (𝒰), where 𝒰 is normally distributed with mean 𝜇𝒰 and variance 𝜎𝒰
2 [1, 103, 219]. 

In [1] the PDF of   has been derived and is expressed as (6.17): 

𝑃( ) =
1

√2 𝜎𝒰
2

1

 
e  ( ( n  𝜇𝒰)

22−1𝜎𝒰
−2)                                                               (6.17) 

𝜇𝒰 =  n(𝒩)  
1

2
 n(1  (e  (𝜎𝑙

2)  1)𝒩−1)                                                         (6.18 ) 

𝜎𝒰
2 =  n(1  (e  (𝜎𝑙

2)  1)𝒩−1).                                                                             (6.18 ) 

The outage probability with EGC spatial technique is expressed as 

      reeout PPPPPP


EGCEGC . If the extra power margin to achieve a given 

𝑃𝑜𝑢𝑡  is represented by 𝑚EGC  and the average SNR in the absence of atmospheric 

turbulence is 𝛾∗, therefore the outage probability can be expressed as: 

𝑃𝑜𝑢𝑡 = 𝑄(( n(𝑚EGC 𝒩⁄ )  𝜇𝒰)𝜎𝒰
−1).                                                                             (6.1 ) 

To achieve a given 𝑃𝑜𝑢𝑡 , 𝑚EGC  can be approximately derived by applying the Chernoff 

bound,  (𝑥)  0.5e  ( 𝑥2 2⁄ ), into (6.19), as: 

𝑚EGC  𝒩e  (√ 2𝜎𝒰
2 n(2𝑃𝑜𝑢𝑡)  𝜇𝒰).                                                                    (6.20) 

The upper bound of the outage probability (6.20) and the exact solution given by (6.19) 

are illustrated in Fig. 6-6. The power margins based on the upper bound are ~ 0.2 and ~ 

0.3 dBm more than that using the exact solution for 𝜎𝑙 = 0.1 0.3, respectively. As the 

number of independent photodetector increases, the upper bound appears to become 

tighter. The diversity gain based on EGC combining for a given outage probability 𝑃𝑜𝑢𝑡  
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is given as (6.21), which is the ratio of the link margin without spatial diversity to that 

with the spatial diversity. 

𝐺𝑎𝑖𝑛 =
1

𝒩
e  (𝜎𝑙

2 2⁄  𝜇𝒰  √ 2𝜎𝑙
2 n(2𝑃𝑜𝑢𝑡)  √ 2𝜎𝒰

2 n(2𝑃𝑜𝑢𝑡)).                 (6.21) 

 

Fig. 6-6: The upper bound of the outage probability (6.20) and the exact solution (6.19) 

against the power margin with EGC spatial diversity in a weak turbulent atmospheric c 

hannel for 𝜎𝑙 = [0.1 0.3] and 𝒩 = [1 2].  

 

 

Fig. 6-7: EGC diversity gain against the number of photodetectors at 𝑃𝑜𝑢𝑡  of 10
-9

 in a 

lognormal atmospheric channel with 𝜎𝑙
2 = [0.12 0.32 0.52 0.72]. 
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The diversity gain given by (6.21) to achieve a BER of 10
-9

 is plotted against the 

number of photodetectors for a range of the turbulence variance in Fig. 6-7. This figure 

indicates that a gain of ~ 4 dB is achievable using two photodetectors at 𝜎𝑙
2 = 0.52. And 

the gain increases to ~ 6.5 dB with 𝒩 =  . The plot starts to plateau for 𝒩   , which 

indicates a reduction in the amount of gain for each additional photodetector.  

 

6.3     Summary 

The error performance and the outage probability for a BPOLSK-FSO employing the 

diversity receiver have been analysed in this chapter. The diversity receiver is used to 

combat the scintillation induced channel fading. The gamma-gamma and lognormal 

channel models have been considered. The details of error probability and achievable 

link margin using the EGC linear combining techniques have been outlined. 

Additionally, the power penalty caused by the received optical signal correlation on the 

error probability has been shown. For instance, to achieve a BER of 10
-9

 with 𝒩 = 2, 

the additional ~ 4 dB of SNR is required due to the increment of 𝜌 from 0 to 0.5. The 

SNR value increases to ~ 4.5 dB when 𝜌 further increases to 0.8. For the EGC linear 

combining to mitigate scintillation without overwhelming the complexity and cost, the 

reasonable number of independent photodetectors is between 2 and 4.   
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Chapter Seven 

 

 

 

Multilevel POLSK FSO in the Gamma-

Gamma Turbulence Channel  

 

Various multilevel modulation formats have been proposed for optical transmission 

systems. Multilevel modulation schemes offer higher data rates than binary modulation 

formats using the state-of-the-art electronic and optoelectronic equipments [220-222]. 

Multilevel digital modulations like the PSK and the quadrature amplitude modulation 

(QAM) are commonly deployed in optical communications to encode multiple bits per 

symbol [221]. POLSK modulation can be combined with ASK and PSK and 

demodulated without the need for the dynamic polarisation control at the receiver by 

employing electrical multilevel detection schemes [189, 198, 199]. Though MPOLSK 
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has been studied for optical fibre communication systems where the fibre dispersion and 

noise are the impairment factors, no systematic study of such system in FSO links in the 

presence of the atmospheric turbulence has been carried out.  

The performance impairments due to scintillation can be mitigated by adopting error 

control coding schemes [80, 212, 213]. The performances of coded IM/DD FSO links for 

the lognormal and gamma-gamma channel models under atmospheric turbulence have 

been investigated in [88, 94, 157]. Turbo and low density parity codes (LDPC) are more 

efficient and powerful coding schemes, which can be used to detect and correct burst 

errors caused by the scintillation [223, 224]. The LDPC coded subcarrier offers a coding 

gain of more than 20 dB compared with similarly coded OOK schemes in the 

atmospheric turbulence [225]. However, adding more redundant bits increases the 

processing delay and reduces the data throughput/user bandwidth as the overall block 

size of the outgoing data is increased [225].  

This chapter studies the performance of the MPOLSK scheme in the presence of 

atmospheric turbulence for different modulation levels. The analytical SEP of the 

coherent heterodyne MPOLSK is carried out for a direct LOS FSO system. To mitigate 

the turbulence induced fading, convolutional coding and spatial diversity techniques will 

be also employed for the improvement in overall system performance. The upper SEP 

bounds are derived using the transfer function technique. The spatial diversity gain for a 

number of detectors is also determined for different turbulence levels. 
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The rest of the chapter is organized as follows: the performance analysis for the coherent 

8-POLSK system combined with convolutional coding and spatial diversity technique 

will be given in Section 7.1; while the unconditional symbol error probability (SEP) for 

the MPOLSK-FSO system considering the penalty caused by the phase tracking error 

and turbulence effects will be derived in Section 7.2. Finally, the summary is made in 

Section 7.3. 

 

7.1     Coherent Heterodyne 8-Polsk System  

7.1.1     System Configuration 

Fig. 7-1(a) illustrates the block diagram of the 8-POLSK transmitter. The TL beam is 

linearly polarised and has a π/4 polarisation with respect to the principle axe of the 

external PM. The output from TL (�⃗⃗�0(𝑡))  is decomposed by the PBS into two 

orthogonally polarised components, �⃗� and �⃗� with equal amplitudes. The amplitude and 

phase of the optical component polarised along the �⃗� axis are modulated externally by 

the data stream {𝑚0(𝑡) 𝑚1(𝑡) 𝑚2(𝑡)} while the �⃗�-component is used as the reference 

carrier which is transmitted with the modulated �⃗� component. The applied voltage to the 

LiNbO3 based external phase modulator is equal to either zero or 𝑉𝜋 . The applied voltage 

𝑉𝜋  induces a   phase shift in the �⃗�-component and a zero phase shift in the �⃗�-component, 

thus leading to a  /2 rotation of the polarisation of the optical carrier.  

The AM combined with the PM for the �⃗� -component is described as an eight-level 

modulation scheme where the time axis is divided into symbol intervals. Each symbol is 
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associated with a value of the transmitted optical field which remains constant during a 

symbol interval.  

 

 
(a) 

 
(b) 

Fig 7-1: Coherent 8-POLSK-FSO transceiver: (a) the transmitter, and (b) the receiver.  

 

Under these conditions, the transmitted optical field �⃗⃗�s(𝑡) at the output of the PBC is 

expressed as: 

�⃗⃗�s(𝑡) = √
𝑃𝑡
2
𝑒𝑖[ 𝑡  (𝑡)]{휀𝑒𝑖 𝑥(𝑡) ∙ �⃗�  �⃗�}                                                                              (7.1) 

where the PM function 𝛽𝑥(𝑡)  [0  ] is for 𝑚0  [1 0], and AM function 휀  [1 3 5 7] 

is for {𝑚1𝑚2}  [10 11 01 00], respectively.  

Fig. 7-1(b) illustrates the block diagram of the proposed optical coherent heterodyne 

receiver. The optical field of the local oscillator �⃗⃗�𝑙𝑜(𝑡) is linearly polarised at π/4 with 

respect to the receiver reference axes.  
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The received optical field �⃗⃗�𝑟(𝑡) following the optical lens is uncorrelated and can be 

expressed as: 

�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)){휀𝑒𝑖 𝑥(𝑡) ∙ �⃗�  �⃗�}.                                                                          (7.2) 

The received optical signal �⃗⃗�𝑟(𝑡) is split by the PBS into �⃗�- and �⃗�-components, which 

are then mixed with �⃗�- and �⃗�-components generated by the local oscillator, respectively. 

Therefore, the decomposed orthogonally polarised components �⃗⃗�𝑥(𝑡)  and �⃗⃗�𝑦(𝑡)  with 

equal amplitudes are given as:  

�⃗⃗�𝑥(𝑡) = {√
𝑃𝑟
2
휀𝑒𝑖[ 𝑡  𝑥(𝑡)   (𝑡)]  

√𝑃𝑙𝑜
2
𝑒𝑖[ 𝑙 𝑡  𝑙 (𝑡)]}

∙ �⃗�                                          (7.3 ) 

�⃗⃗�𝑦(𝑡) = {√
𝑃𝑟
2
𝑒𝑖[ 𝑡   (𝑡)]  

√𝑃𝑙𝑜
2
𝑒𝑖[ 𝑙 𝑡  𝑙 (𝑡)]} ∙ �⃗�.                                                     (7.3 ) 

Following optical-to-electrical conversion process, the signals 𝑐𝑥(𝑡)  and 𝑐𝑦(𝑡)  at the 

output of two identical PDs are expressed as [135]: 

𝑐𝑥(𝑡) = ℜ{|√
𝑃𝑟
2
휀|

2

 |
√𝑃𝑙𝑜
2
|

2

 √
𝑃𝑟𝑃𝑙𝑜
2

휀c s[𝜔𝐼𝐹𝑡  𝛽𝑥(𝑡)  𝜑𝐼𝐹(𝑡)]}

 𝑛𝑥(𝑡)                                                                                                           (7.  ) 

𝑐𝑦(𝑡) = ℜ{|√
𝑃𝑟
2
|

2

 |
√𝑃𝑙𝑜
2
|

2

 √
𝑃𝑟𝑃𝑙𝑜
2

c s[𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)]}  𝑛𝑦(𝑡)                     (7.  ) 

where 𝑛𝑥 𝑦(𝑡)~𝑁(0 𝜎𝑛
2).  

 

The electrical signals 𝑐𝑥(𝑡) and 𝑐𝑦(𝑡)  are passed through the ideal BPF to reject the 

constant term and to limit the additive noise. The bandwidth of the BPF is expressed as 
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𝐵𝑏𝑝 = 2(𝑅𝑠  𝑘𝐹𝐵𝐿) with the center frequency at 𝜔 F. The BPF in the lower branch has 

a very narrow bandwidth in order to only pass the carrier signal with negligible 

distortion. Therefore, the electrical currents at the output of BPFs are expressed as: 

𝑐𝑥𝑏(𝑡) = √
ℜ2𝑃𝑟𝑃𝑙𝑜
2

휀 c s[𝜔𝐼𝐹𝑡  𝛽𝑥(𝑡)  𝜑𝐼𝐹(𝑡)]  𝑛𝑥𝑏(𝑡)                                         (7.5 ) 

𝑐𝑦𝑏(𝑡) = √
ℜ2𝑃𝑟𝑃𝑙𝑜
2

c s[𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡)]  𝑛𝑦𝑏(𝑡)                                                           (7.5 ) 

where {𝑛𝑥𝑏(𝑡) 𝑛𝑦𝑏(𝑡)}~(0 𝜎𝑛
2) is the additive white Gaussian noise at the output of the 

BPF. The electric signal 𝑐(𝑡) is integrated over the symbol period T, and sampled at time 

t = T. Hence, the output of the correlation-type demodulator [203] is given by: 

𝑉𝑗(𝑡) =
1

√𝑇
∫ 𝑐𝑚(𝑡)
𝑇

0

𝑑𝑡                                                                                        (7.6) 

=
1

√𝑇
∫
1

2
√
ℜ2𝑃𝑟𝑃𝑙𝑜
2

[√
ℜ2𝑃𝑟𝑃𝑙𝑜
2

휀 c s(𝛽𝑥(𝑡))  𝑛𝑥𝑏
𝐼 (𝑡)  𝑛𝑦𝑏

𝐼 (𝑡)]
𝑇

0

𝑑𝑡  

=
1

2
√
ℜ2𝑃𝑟𝑃𝑙𝑜
2𝑇2

[√
ℜ2𝑃𝑟𝑃𝑙𝑜
2

1

√𝑇
∫ 휀c s(𝛽𝑥(𝑡))
𝑇

0

𝑑𝑡  
1

√𝑇
∫ 𝑛𝑥𝑏

𝐼 (𝑡)  𝑛𝑦𝑏
𝐼 (𝑡)

𝑇

0

𝑑𝑡]   

𝑉𝑗 = √
ℜ2𝑃𝑟𝑃𝑙𝑜
8

[√
ℜ2𝑃𝑟𝑃𝑙𝑜
2

휀c s(𝛽)  𝑛𝑥𝑏
𝐼  𝑛𝑦𝑏

𝐼 ].                                                    (7.7) 

The noise variance is suppressed to half of its value at the output of the MF 

{𝑛𝑥𝑏
𝐼  𝑛𝑦𝑏

𝐼 } ~ 𝑁(0 𝜎𝑛
2 2⁄ ). The decision rule which maximizes the correlation metrics is 

applied to determine the average probability of error. It follows that the detector 

compares the demodulator output 𝑉𝑗  with seven threshold levels: 0,  ℜ2𝑃𝑃𝑙𝑜 2⁄ , 
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 ℜ2𝑃𝑃𝑙𝑜,  3ℜ2𝑃𝑃𝑙𝑜 2⁄ . Therefore, a decision is made in favour of the amplitude level 

closest to 𝑉𝑗.  

 

7.1.2     Error Probability Analysis  

For equally probable signals, the decision rule which maximizes the correlation metrics 

is applied to determine the average probability of error. In other words the decision must 

be made by comparing 𝑉𝑗  with different threshold levels and selecting the amplitude 

level. The average power for equiprobable coded 8-POLSK symbol is increased by a 

factor of 11 3⁄  compared with the uncoded BPOLSK [226]. The average power per bit 

𝑃𝑎𝑣 in the coded 8-POLSK system must be reduced by a factor of 11 3⁄ :  

𝑃𝑎𝑣 =
ℜ2𝑃𝑟𝑃𝑙𝑜
   g2 8

[
(1  12)

2
 
(1  32)

2
 
(1  52)

2
 
(1  72)

2
] =

11

3
ℜ2𝑃𝑟𝑃𝑙𝑜.           (7.8) 

The assumption is that all amplitude levels are equally likely a priori. Thus, an error is 

detected when (𝑛𝑥𝑏
𝐼  𝑛𝑦𝑏

𝐼 ) exceeds one-half of the distance between adjacent amplitude 

levels. Therefore, the SEP is expressed as:  

𝑃𝑠𝑒𝑐 =
7

8
𝑃(|𝑛𝑥𝑏

𝐼  𝑛𝑦𝑏
𝐼 |  √

ℜ2𝑃𝑟𝑃𝑙𝑜
2

) =
7

8

2

√2 𝜎𝑛2
∫ 𝑒−𝑥

2 2𝜎𝑛
2⁄

 

√ℜ2𝑃 𝑃𝑙 2⁄

𝑑𝑥  

=
7

8

2

√2 
∫ 𝑒−𝑥

2 2⁄
 

√ℜ2𝑃 𝑃𝑙 2𝜎𝑛
2⁄

𝑑𝑥 =
7

 
𝑄 (√

ℜ2𝑃𝑟𝑃𝑙𝑜
2𝜎𝑛2

).                                            (7. ) 

The SEP expressed in (7.9) can also be expressed in terms of the average power per bit, 

which is: 

𝑃𝑠𝑒𝑐 =
7

 
𝑄 (√

3𝑃𝑎𝑣
22𝜎𝑛2

) =
7

 
𝑄 (√

3

11
𝛾).                                                                            (7.10) 
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where the electrical SNR at the input of the coherent demodulator is defined as 𝛾 =

𝑃𝑎𝑣 2𝜎𝑛
2⁄ . The alternative function form for the Gaussian-Q function is [157, 227]: 

𝑄(𝑥) =
1

 
∫ e  ( 

𝑥2

2s n2𝜃
)𝑑𝜃

𝜋 2⁄

0

.                                                                                   (7.11) 

Substituting (7.10) into (7.11) and considering that the received signal is subjected to 

channel fading, the unconditional SEP for 8-POLSK in a gamma-gamma turbulence 

channel is given as: 

𝑃𝑒(𝑃𝑟) =
7

  
∫ [∫ e  (

 3𝛾(𝑃𝑟)

22s n2𝜃
)
2(𝛼𝛽)

   
2

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟

 

0

] 𝑑𝜃

𝜋 2⁄

0

.   (7.12) 

The unconditional SEP (7.12) is derived for the uncoded 8-POLSK modulated FSO 

communication systems operating over the gamma-gamma turbulence channel. The 

unconditional SEP expression is the tool for the derivation of upper bounds on the error 

probability of the coded 8-POLSK communication system. 

 

7.1.3     Maximum Likelihood Sequence Detection 

In this section the performance of the 8-POLSK modulated FSO system with coherent 

detection operating over the gamma-gamma atmospheric turbulence channel is evaluated. 

For this purpose, the performance improvement by the error control coding and the 

spatial diversity will be also considered. However, the code should be short and simple in 

order to keep the complexity of this approach reasonably low.  

The union upper bound on the average SEP with uniform error probability codes can be 

found as [157, 227]: 
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𝑃𝑏  
1

 
∫ [

1

𝑘

 

 ℳ
𝑇(𝐷(𝜃) ℳ)|ℳ=1] 𝑑𝜃

𝜋 2⁄

0

.                                                                      (7.13) 

where ℳ is an indicator taking into account the number of bits in error, 𝑘 = 1 is the 

number of information bits per transmission, the transfer function 𝑇(𝐷(𝜃) ℳ)  is in 

conjunction with the particular state diagram of a coded modulation, and 𝐷(𝜃) depends 

on the derived SEP. Here we have applied a convolutional code with the rate of 1/3 

(𝑘 = 1) and the constraint length of 3, as illustrated in Fig. 7-2 [203]. The function 

generators of the convolutional encoder are given as g1 = [100] , g2 = [101]  and 

g3 = [111].  

 

 

Fig. 7-2: Convolutional encoder. 

 

Fig. 7-3: State diagram for rate 1/3 (𝑘 = 1) convolutional encoder. 
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The state diagram is shown in Fig. 7-3. It is important to demonstrate the method for 

obtaining the distance prosperities of a convolutional code. In Fig. 7-3, the branches of 

the state diagram are labelled as either {𝐷0 𝐷1 𝐷2 𝐷3}, where the exponent of 𝐷 denotes 

the Hamming distance between the sequence of output bits corresponding to each branch 

and the sequence of output bits corresponding to the all-zero branch.  

The four state equations derived from Fig. 7-3 are: 

 𝑐 =ℳ𝐷3(𝜃) 𝑎  ℳ𝐷(𝜃) 𝑏                                                                                          (7.1  ) 

 𝑏 = 𝐷(𝜃) 𝑐  𝐷(𝜃)                                                                                                        (7.1  ) 

  =ℳ𝐷2(𝜃) 𝑐  ℳ𝐷2(𝜃)                                                                                          (7.1 c) 

 𝑒 = 𝐷
2(𝜃) 𝑏                                                                                                                        (7.1  ) 

where 𝐷(𝜃) is defined based on the underlying SEP expression (7.12).  

 

The transfer function is obtained by solving these equations for the ratio  𝑒  𝑎⁄ : 

𝑇(𝐷(𝜃) ℳ) =
𝐷 (𝜃)ℳ

1 2ℳ𝐷2(𝜃)
.                                                                                            (7.15) 

Using (7.13) and (7.15), the SEP is thus obtained as: 

𝑃𝑏  
7

  
∫

𝐷 (𝜃)

(1  2𝐷2(𝜃))
2 𝑑𝜃

𝜋 2⁄

0

.                                                                                      (7.16) 

 

In this work, using the integrand of SEP expression given by (7.16), the approximation 

𝐷(𝜃) formula for the channels under consideration is:  

𝐷(𝜃) = ∫ e  (
 3𝛾𝑎𝑣(𝑃𝑟)

22s n2𝜃
)
2(𝛼𝛽)

   
2

Γ(𝛼)Γ(𝛽)
𝑃𝑟
   
2
−1𝐾 − (2√𝛼𝛽𝑃𝑟)𝑑𝑃𝑟

 

0

.                    (7.17) 
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7.1.4     Receiver Diversity Technique 

Only MRC spatial diversity techniques are considered in this paper as the MRC linear 

combiner results in a maximum-likelihood receiver structure [227], which is optimal 

regardless of the fading statistics. The results for other linear combining techniques can 

also be obtained in a similar manner. Given Fig. 6-1, for a background noise limited FSO 

link, the variance of the overall Gaussian noise with a zero mean becomes: 

𝜎𝑇
2 =

1

𝒩
∑𝐺𝑖

2𝜎𝑛
2

𝒩

𝑖=1

.                                                                                                                  (7.18) 

 

The individual received optical signal is given as: 

�⃗⃗�𝑟𝑖(𝑡) = √
𝑃𝑟𝑖
2
𝑒𝑖( 𝑡   (𝑡)){휀𝑒𝑗 ∙ �⃗�  �⃗�}.                                                                          (7.1 ) 

The outputs electric currents {𝑐𝑥𝑏𝑖(𝑡) 𝑐𝑦𝑏𝑖(𝑡)} from the combiner are given as: 

𝑐𝑥𝑏𝑖(𝑡) =
ℜ

𝒩
∑𝐺𝑖

𝒩

𝑖=1

휀√
𝑃𝑟𝑖𝑃𝑙𝑜
2

c s(𝜔𝐼𝐹𝑡  𝛽  𝜑𝐼𝐹(𝑡))  ∑𝐺𝑖𝑛𝑥𝑖(𝑡)

𝒩

𝑖=1

                     (7.20 ) 

𝑐𝑦𝑏𝑖(𝑡) =
ℜ

𝒩
∑𝐺𝑖

𝒩

𝑖=1

√
𝑃𝑟𝑖𝑃𝑙𝑜
2

c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  ∑𝐺𝑖𝑛𝑦𝑖(𝑡)

𝒩

𝑖=1

.                              (7.20 ) 

The optimum post detection electrical SNR 𝑟MRC(�⃗⃗�𝑟) at the 8-POLSK demodulator input 

becomes: 

𝑟MRC(�⃗⃗�𝑟) =
ℜ2𝑃𝑙𝑜(∑ 𝐺𝑖√𝑃𝑎𝑣𝑖

𝒩
𝑖=1 )

2

2𝒩∑ 𝐺𝑖
2𝜎𝑛2

𝒩
𝑖=1

                                                                                    (7.21) 

where �⃗⃗�𝑟 = ∑ 𝑃𝑟𝑖
𝒩
𝑖=1 . All the received optical power is assumed to be independent and 

obey the gamma-gamma distribution. The received power level on every branch has to be 

estimated prior to the coherent summation. 
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The gain factor {𝐺𝑖}𝑖=1
𝒩  is proportional to the received optical power. The overall noise is 

AWGN with a zero mean and variance 𝜎𝑇
2. Applying the Cauchy inequality [1, 217], 

(∑ 𝐺𝑖√𝑃𝑎𝑣𝑖
𝒩
𝑖=1 )

2
 (∑ 𝐺𝑖

2𝒩
𝑖=1 )(∑ 𝑃𝑎𝑣𝑖

𝒩
𝑖=1 ), the 𝑟MRC(�⃗⃗�𝑟) is derived as:  

𝛾MRC(�⃗⃗�𝑟)  
ℜ2𝑃𝑙𝑜(∑ 𝐺𝑖

2𝒩
𝑖=1 )(∑ 𝑃𝑎𝑣𝑖

𝒩
𝑖=1 )

2𝒩𝜎𝑛2∑ 𝐺𝑖
2𝒩

𝑖=1

  

=
ℜ2𝑃𝑙𝑜
𝒩

(∑
𝑃𝑎𝑣𝑖
2𝜎𝑛2

𝒩

𝑖=1

) =
1

𝒩
(∑𝛾𝑎𝑣𝑖(𝑃𝑟)

𝒩

𝑖=1

).                                                      (7.22) 

Assuming that all the received optical power is independent and all obey the gamma-

gamma distribution, therefore 𝑝(�⃗⃗�𝑟)  represents the joint PDF for 𝒩 -photodetector 

receiving uncorrelated signals, and is expressed as: 

𝑝(�⃗⃗�𝑟) =∏∫𝑝(𝑃𝑟𝑖)

𝒩

𝑖=1

 𝑃𝑟𝑖 .                                                                                                   (7.23) 

The system performance of the coded 8-POLSK FSO communication system operating 

over the gamma-gamma turbulence channel can thus be evaluated from (7.22) and (7.23) 

using the numerical integration since the resulting expression has no closed form. 

Therefore, the unconditional SEP is derived as: 

𝑃𝑒MRC(�⃗⃗�𝑟)

=
 

7 
∫ [∫ e  (

 3𝛾MRC(�⃗⃗�𝑟)

22s n2𝜃
)
2(𝛼𝛽)

   
2

Γ(𝛼)Γ(𝛽)
�⃗⃗�𝑟

   
2
−1
𝐾 − (2√𝛼𝛽�⃗⃗�𝑟)𝑑�⃗⃗�𝑟

 

0

] 𝑑𝜃

𝜋 2⁄

0

. (7.2 ) 

 

7.1.5     Results and Discussion 

For the purpose of like-to-like comparison, the average optical signal power 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] is 

normalized to unity. The values of 𝛼 and 𝛽 at any given regimes are previously presented 
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in Table 5.1. The SEP results in Fig. 7-4 are computed based on (5.40), (7.12) and (7.16) 

to allow comparisons of the performances of the uncoded and coded 8-POLSK as well as 

the BPOLSK scheme in the turbulence channel. The coded 8-POLSK and uncoded 

BPOLSK schemes have the same spectral efficiency of 1bit/symbol, for the uncoded and 

coded 8-POLSK, respectively. The performance of the convolutional coded 8-POLSK is 

made evident from Fig. 7-4. Compared with the BPOLSK scheme, the SEP performances 

deteriorate rapidly for the uncoded 8-POLSK scheme for all FSO scenarios under 

investigation. However, as revealed by the results under all turbulence assumptions, 

increasing SNR results in a relatively smaller change in the slope of SEP curves for the 

uncoded 8-POLSK scheme.  

 

 

Fig. 7-4: Comparisons of SEP performances of coded 8-POLSK and uncoded BPOLSK 

(5.40), (7.13), (7.17) and (7.18) against the normalized electric SNR 𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1 in 

various turbulence levels. 
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The reduction in SNR for the coded 8-POLSK is achieved by the use of convolutional 

code in mitigating the effect of turbulence induced irradiance fluctuation. For example, to 

achieve a SEP of 10
-9

, the SNR requirements are ~ 28.5 dB and ~ 13 dB for uncoded and 

coded 8-POLSK schemes  respectively in a weak turbulence regime. To achieve the same 

SEP performance in a moderate turbulence regime, the SNR increases to ~ 45.5 dB and ~ 

17 dB, respectively. The coded 8-POLSK yields a very good SEP performance, which is 

achieved without the requirement of bandwidth expansion. It is not practical and even not 

feasible for many applications to increase the power margin in the link budget in order to 

eliminate the deep fades observed under turbulence. This motivates the employment of 

powerful scintillation-mitigation techniques, such as coding and/or diversity techniques. 

 

 

Fig. 7-5: Power gain for the 8-POLSK scheme employing MRC technique to achieve a 

SEP of 10
-9

 against the number of detectors with the normalized electric SNR 

𝐸[ℜ𝑃𝑟𝑃𝑙𝑜] = 1 under all turbulence scenarios from weak to strong regimes. 

 

Using (7.24) the spatial diversity gain 𝑚𝒩 𝜎𝑙 = 𝛾1 𝜎𝑙  𝛾𝒩 𝜎𝑙  to achieve a SEP of 10
-9

 for 

the MRC technique is depicted in Fig. 7-5. The MRC technique (𝒩 =  ) outperforms the 
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single receiver by ~6 dB, ~17.5 dB and ~15.5 dB, respectively in weak, moderate and 

strong turbulence regimes, respectively. The spatial diversity gain is more in the 

moderate turbulence regime than in the strong regime. This is because of the deep fades 

resulting from a loss of spatial coherence of the laser radiation. The gain reaches up to ~ 

24 dB when ten detectors are used in a strong turbulence regime. The gain is higher in 

moderate and strong fading conditions since adding more detectors will efficiently 

reduce the chance of a catastrophic fading.  

 

Another observation from Fig. 7-5 is that as the number of detectors (𝒩) increases, the 

spatial diversity gain starts to flatten out. For example, increasing the number of 

detectors from four to five only achieves ~1 dB, ~ 2 dB and ~ 2.5 dB more in 𝛾𝒩 𝜎𝑙  from 

weak to strong turbulence regimes, respectively. Thus, the optimum number of the 

detectors is 2  𝒩   . As a consequence, the power gain is achieved with a rise in the 

system complexity and cost, thus the trade off between performance and cost. For 

applications where 100% link availability is a must, then employing larger number of 

photodetectors would be advantageous.  

 

7.2     Coherent Heterodyne MPOLSK System  

7.2.1     System Configuration 

The schematic diagram of the MPOLSK optical coherent heterodyne transmitter is 

illustrated in Fig. 7-6(a). The laser beam is linearly polarised at an angle of  /  with 
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respect to the transmitter reference axis. The linearly polarised beam is then launched 

into a PBS, which yields horizontal (�⃗�-polarisation) and vertical (�⃗�-polarisation) SOPs 

with equal amplitude and zero phase differences. Both orthogonally polarised 

components are amplitude and phase modulated synchronously before being fed into the 

PBC.  

 

 

(a) 

 

(b) 

Fig. 7-6: Block diagram of the MPOLSK coherent heterodyne optical communication 

system: (a) the transmitter, and (b) the receiver. COD (encoder), P/S (parallel to serial 

converter). 

 

The emitted optical field �⃗⃗�𝑠(𝑡) is thus given as: 

�⃗⃗�𝒔(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)){𝑎𝑥(𝑡)𝑒

𝑖 𝑥(𝑡) ∙ �⃗�  𝑖𝑎𝑦(𝑡)𝑒
−𝑖 𝑦(𝑡) ∙ �⃗�}.                                   (7.25) 
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The modulation functions 𝑎𝑥(𝑡), 𝑎𝑦(𝑡), 𝛽𝑥(𝑡)and 𝛽𝑦(𝑡) are given by: 

𝑎𝑥(𝑡) c s(𝛽𝑥(𝑡)) = (2  2
  1)𝑑                                                                            (7.26 ) 

𝑎𝑦(𝑡) c s (𝛽𝑦(𝑡)) = (2  2
  1)𝑑                                                                             (7.26 ) 

where   is a positive integer and   [1 𝑀 2⁄ ]. The parameter 𝑑  is half the distance 

between the adjacent symbols in one polarisation axis and 𝑀 is the number of signal-

points in the constellation. The PM functions 𝛽𝑥(𝑡) 𝛽𝑦(𝑡) = [0  ] correspond to the 

transmission of a space and mark, respectively.  

 

The proposed MPOLSK modulation format can be described as a two-dimensional 

multilevel AM in the orthogonal polarisation axes, such as 𝑀 = 2  1. The transmitted 

field is constant over the symbol interval and each symbol is associated with a value of 

the optical field. The instantaneous transitions between the subsequent symbol intervals 

are assumed. The block diagram of the MPOLSK coherent heterodyne receiver is shown 

in Fig. 7-6(b). The background noise is limited by an ideal OBPF with a narrow 

bandwidth typically 1 nm. The received optical signal �⃗⃗�𝑟(𝑡) is expressed in the following 

form: 

�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)){𝑎𝑥(𝑡)𝑒

𝑖 𝑥(𝑡) ∙ �⃗�  𝑖𝑎𝑦(𝑡)𝑒
−𝑖 𝑦(𝑡) ∙ �⃗�}                                  (7.27) 

where 𝑃𝑟 and 𝜑𝑟(𝑡) are the received optical power and phase noise of the laser carrier 

propagating through the atmospheric turbulence medium, respectively. Both parameters 

are time-variant statistical quantities due to the turbulence.  

 



155 
 

The electrical field of �⃗⃗�𝑟(𝑡) is split into �⃗� and �⃗� axes, which is then combined with the 

electrical field in �⃗� and �⃗� axes of LO. Thus, the optical fields �⃗⃗�𝑥(𝑡) and �⃗⃗�𝑦(𝑡) are given 

as:  

�⃗⃗�𝑥(𝑡) = {√
𝑃𝑟
2
𝑎𝑥(𝑡)𝑒

𝑖( 𝑡  𝑥(𝑡)   (𝑡))  
√𝑃𝑙𝑜
2
𝑒𝑖( 𝑙 𝑡  𝑙 (𝑡))} ∙ �⃗�                            (7.28 ) 

�⃗⃗�𝑦(𝑡) = {√
𝑃𝑟
2
𝑎𝑦(𝑡)𝑒

𝑖( 𝑡  𝑦(𝑡)−
 
2
   (𝑡))  

√𝑃𝑙𝑜
2
𝑒𝑖( 𝑙 𝑡  𝑙 (𝑡))} ∙ �⃗�.                      (7.28 ) 

After passing through two identical photo-detectors and electrical BPFs, the constant 

terms are filtered out and the additive noise is limited. BPFs are assumed to be ideal only 

passing IF signals without any distortions. The bandwidth and center frequency of BPFs 

are 𝐵𝑏𝑝 = 2(𝑅𝑠  𝑘𝐹𝐵𝐿) and 𝜔𝐼𝐹 , respectively.  

 

Electrical currents on �⃗� and �⃗� channels after BPFs are expressed as: 

𝑐𝑥(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑥c s(𝛽𝑥(𝑡))c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛𝑥(𝑡)                               (7.2  ) 

𝑐𝑦(𝑡) = ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑦c s (𝛽𝑦(𝑡)) s n(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))  𝑛𝑦(𝑡).                            (7.2  ) 

where 𝜔𝐼𝐹 = 𝜔  𝜔𝑙𝑜  and 𝜑𝐼𝐹(𝑡) = 𝜑𝑟(𝑡)  𝜑𝑙𝑜(𝑡)  are the IF and phase noise, 

respectively. Note that s n (𝛽𝑥(𝑡) 𝛽𝑦(𝑡)) = 0  as {𝛽𝑥(𝑡) 𝛽𝑦(𝑡)} = {0  } . The noise 

terms 𝑛𝑥(𝑡) and 𝑛𝑦(𝑡) are assumed to be statistically independent and stationary AWGN 

with zero-mean and equal variance 𝜎𝑛
2. Assuming that the BPF filter bandwidth is larger 

than the IF linewidth to avoid the phase noise to the amplitude noise conversion, and also 

the square-law elements/multipliers being ideal the phase noise due to the laser LO 

source can be considered negligible. 
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The electric signals 𝑐𝑥(𝑡) and 𝑐𝑦(𝑡) are then multiplied with the local carrier signal 𝑐𝑐(𝑡) 

and 𝑐𝑠(𝑡) generated by the Costas-loop based PLL circuit: 

𝑐𝑐(𝑡) = c s(𝜔𝐼𝐹𝑡  𝜑𝑃𝐿𝐿(𝑡))                                                                                            (7.30 ) 

𝑐𝑠(𝑡) = s n(𝜔𝐼𝐹𝑡  𝜑𝑃𝐿𝐿(𝑡))                                                                                             (7.30 ) 

where 𝜑𝑃𝐿𝐿(𝑡) represents the estimation of 𝜑𝐼𝐹(𝑡). 

 

The outputs of the mixers are passed through the identical MF to reject higher frequency 

components, with 𝑉𝑥𝑗(𝑡) and 𝑉𝑦𝑗(𝑡) expressed as: 

𝑉𝑥𝑗(𝑡) = ∫ [𝑐𝑥(𝑡) ∙ 𝑐𝑐(𝑡)]
𝑇

0

𝑑𝑡  

= ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑥c s(𝛽𝑥(𝑡))c s[∆𝜑(𝑡)]  𝑛𝑥
′ (𝑡)                                              (7.31 ) 

𝑉𝑦𝑗(𝑡) = ∫ [𝑐𝑦(𝑡) ∙ 𝑐𝑠(𝑡)]
𝑇

0

𝑑𝑡  

= ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑦c s (𝛽𝑦(𝑡)) c s[∆𝜑(𝑡)]  𝑛𝑦
′ (𝑡)                                           (7.31 ) 

where ∆𝜑(𝑡) = 𝜑𝐼𝐹(𝑡)  𝜑𝑃𝐿𝐿(𝑡) is the phase tracking error.  

 

Subsequently 𝑉𝑥𝑗(𝑡) and 𝑉𝑦𝑗(𝑡) are passed though a sampler at a sampling time t = T, 

where T is the symbol period. The outputs are given by: 

𝑉𝑥𝑗 =  ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑥c s(∆𝜑)  𝑛𝑥
′                                                                                 (7.32 ) 

𝑉𝑦𝑗 =  ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑦c s(∆𝜑)  𝑛𝑦
′                                                                                (7.32 ) 

where (𝑛𝑥
′  𝑛𝑦

′ )~𝑁(0 𝜎𝑛
2). The plus sign in   denotes the transmission of a space, and 

the minus sign represents a mark.  
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7.2.2     Symbol Error Probability with Ideal PLL 

Since the structure of the MPOLSK receiver consists of two identical branches, the same 

expression for the SEP for a single-branch (�⃗�-axis) also holds for the other branch. To 

determine the error probability for multilevel AM signals for a single-branch, the 

decision rule has to maximise the correlation metrics. In other words the decision must 

be made by comparing �̂�𝑥𝑗  with different threshold levels and selecting the amplitude 

level. Firstly, by assuming the phase tracking error ∆𝜑 = 0, the demodulation output is 

given as: 

𝑉𝑥𝑗 =  ℜ√𝑃𝑟𝑃𝑙𝑜 2⁄ 𝑎𝑥  𝑛𝑥
′                                                                                                   (7.33) 

where the noise variable 𝑛𝑥
′~(0 𝜎𝑛

2).  

 

The average power per bit can be expresses as: 

𝑃𝑎𝑣 =
𝑑2ℜ2𝑃𝑟𝑃𝑙𝑜
2 ∙ 2 

∑ (2  2  1)
2

𝑀 2⁄

 =1
=
𝑑2ℜ2𝑃𝑟𝑃𝑙𝑜

6 
(22  1).                           (7.3 ) 

The assumption is that all amplitude levels are equally likely a priori. Thus, an error is 

detected when 𝑛𝑥
′  exceeds one-half of the distance between adjacent amplitude levels.  

Therefore, the SEP is expressed as:  

𝑃𝑒𝑐 = (
2  1

2 
)𝑃(|𝑛𝑥

′ |  √
𝑑2ℜ2𝑃𝑟𝑃𝑙𝑜

2
) =

2  1

2 −1
1

√2 𝜎𝑛2
∫ 𝑒−𝑥

2 2𝜎𝑛
2⁄

 

√ 2ℜ2𝑃 𝑃𝑙 2⁄

𝑑𝑥  

=
2  1

2 −1
1

√2 
∫ 𝑒−𝑥

2 2⁄
 

√ 2ℜ2𝑃 𝑃𝑙 2𝜎𝑛
2⁄

𝑑𝑥 =
2  1

2 −2
er c (√

𝑑2ℜ2𝑃𝑟𝑃𝑙𝑜
 𝜎𝑛2

) . (7.35) 
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The SEP expressed in (7.35) can also be expressed in terms of the average power per bit, 

which is: 

𝑃𝑒𝑐 =
2  1

2 −2
er c (√

3 𝑃𝑎𝑣
2𝜎𝑛2(22  1)

) =
2  1

2 −2
er c (√

3 𝛾

22  1
).                          (7.36) 

The average electrical SNR per bit at the output of the demodulator is defined as 

𝛾 = 𝑃𝑎𝑣/2𝜎𝑛
2. Thus, the SEP after the P/S converter can be approximately expressed as: 

𝑃𝑃/ = 1  (1  𝑃𝑒𝑐)
2  

2  1

2 −3
er c (√

3 𝛾

22  1
).                                                      (7.37) 

 

7.2.3     Performance Degradation due to Phase Tracking Error and 

Atmosphere Turbulence 

In this section we show further analysis on the impact of the phase tracking error ∆𝜑 on 

the receiver performance. We have assumed that PLL can adequately track the phase 

changes due to the atmospheric turbulence and any phase error generated is solely due to 

the PLL. The phase tracking error not only introduces a power penalty at the receiver but 

also contributes to the minimum error probability, which is independent of the received 

optical power. Following the same procedures in section 7.2.2, ∆𝜑 reduces the power 

level by a factor of c s(∆𝜑) [203]. An exact analysis based on the nonlinear PLL is 

mathematically tractable [203].  

Under the hypothesis of a constant PLL tracking error within T, the error probability can 

thus be evaluated as [203]: 
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𝑃𝑃𝐿𝐿 = ∫
2  1

2 −3
er c (√

3 𝛾

22  1
c s2(∆𝜑))

𝑒𝑟𝑙cos(∆ )

2 𝐼0(𝑟𝑙)

2𝜋

0

𝑑∆𝜑                                  (7.38) 

where 𝐼0(. ) is the zeroth-order modified Bessel function. 𝛾𝑙 = 1/𝜎∆
2 is the SNR of the 

PLL, and 𝜎∆
2 is the phase noise variance. The integral in (7.38) provides the performance 

in the presence of ∆𝜑 and must be evaluated numerically. To show the impairments of 

scintillation effects we have adopted the approach given in [1, 197, 226]. The 

unconditional SEP in the presence of turbulence is given by averaging the conditional 

SEP over the channel statistics as given by (7.39):  

𝑃𝑒(𝑃𝑟) = ∫ ∫
2  1

2 −3
er c (√

3 𝛾

22  1
c s2(∆𝜑))

𝑒𝑟𝑙cos(∆ )

2 𝐼0(𝑟𝑙)

 

0

𝑝(𝑃𝑟)
2𝜋

0

𝑑𝑃𝑟𝑑∆𝜑      (7.3 ) 

where 𝑝(𝑃𝑟) is the PDF of the gamma-gamma turbulence model (3.23).  

 

7.2.4     Receiver Diversity Techniques 

Given Fig. 6-1, for a background noise limited FSO link, the variance of the overall 

Gaussian noise with a zero mean becomes: 

𝜎𝑇
2 =

1

𝒩
∑ 𝐺𝑖

2𝜎𝑛
2

𝒩

𝑖=1
                                                                                                               (7. 0) 

where 𝑖 = 1 2 3   𝒩.  

The weighted electric currents after the BPFs are given as: 

𝑐𝑥𝑏(𝑡) = ℜ𝒩
−1∑ 𝐺𝑖

𝒩

𝑖=1
√𝑃𝑟𝑖𝑃𝑙𝑜 2⁄ 𝑎𝑥(𝑡)c s(𝛽𝑥(𝑡))c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))

 ∑ 𝐺𝑖
𝒩

𝑖=1
𝑛𝑥𝑖(𝑡)                                                                                      (7. 1 ) 
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𝑐𝑦𝑏(𝑡) = ℜ𝒩
−1∑ 𝐺𝑖

𝒩

𝑖=1
√𝑃𝑟𝑖𝑃𝑙𝑜 2⁄ 𝑎𝑦(𝑡)c s(𝛽𝑦(𝑡)) c s(𝜔𝐼𝐹𝑡  𝜑𝐼𝐹(𝑡))

 ∑ 𝐺𝑖
𝒩

𝑖=1
𝑛𝑦𝑖(𝑡).                                                                                      (7. 1 ) 

The optimum post detection electrical SNR 𝛾T at the MPOLSK demodulator output is:  

𝛾𝑇(�⃗⃗�𝑟) =
𝑑2ℜ2𝑃𝑙𝑜(2

2  1)

6 𝒩

(∑ 𝐺𝑖√𝑃𝑟𝑖
𝒩
𝑖=1 )

2

∑ 𝐺𝑖
2𝜎𝑛2

𝒩
𝑖=1

.                                                                 (7. 2) 

 

The weight {𝐺𝑖}𝑖=1
𝒩  is proportional to the received optical power on each branch using the 

MRC technique so that the power level has to be estimated before being coherently 

combined. By applying the Cauchy inequality [217] (7.42) becomes: 

𝛾MRC(�⃗⃗�𝑟)  
𝑑2ℜ2𝑃𝑙𝑜(2

2  1)

6 𝒩

(∑ 𝐺𝑖𝜎𝑛
2𝒩

𝑖=1 )(∑ 𝑃𝑟𝑖 𝜎𝑛
2⁄𝒩

𝑖=1 )

∑ 𝐺𝑖𝜎𝑛
2𝒩

𝑖=1

  

=
1

𝒩
(∑𝛾𝑖(𝑃𝑟)

𝒩

𝑖=1

).                                                                                              (7. 3) 

It is assumed that the independently received optical power obeys the gamma-gamma 

distribution. The joint PDF 𝑝(�̅�𝑟) for 𝒩 -detector receiving uncorrelated signals is given 

by: 

𝑝(�̅�𝑟) =∏∫𝑝(𝑃𝑟𝑖)

𝒩

𝑖=1

𝑑𝑃𝑟𝑖 .                                                                                                   (7.  ) 

 

7.2.5     Results and Discussion 

In order to show the effect of turbulence and the PPL phase tracking error on the receiver 

sensitivity, we will investigate the SEP metric for different channel conditions. The 

values of 𝛼 and 𝛽 at any given regimes are previously presented in Table 5.1. Fig. 7-7 
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shows the predicted SEP performances against the electrical SNR for 8, 16 and 32 

MPOLSK. Also shown is the SEP of 8MPOLSK against SNR for different phase 

tracking error variances 𝜎 . As expected, the modulation with higher number of 

constellation requires a larger SNR to achieve the same SEP. For example, the SNR 

requirements to achieve a SEP of 10
-9

 for 8POLSK, 16POLSK and 32POLSK are ~16.7 

dB, ~21 dB and ~26 dB, respectively.  

 

 

Fig. 7-7: SEP performances of 8POLSK (with the phase noise variance 𝜎∆ =
[0.1 0.3 0.5]), 16POLSK and 32POLSK schemes against the electrical SNR using a 

single detector in a non-turbulent channel. 

 

The figure illustrates that MPOLSK is sensitive to phase tracking error and as phase 

tracking error increases, a high error floor is observed. The power penalty caused by the 

small phase tracking error variance 𝜎  0.1 is ~3 dB. However, the error-floors of 

1.3  10−5  and 3.  10−3  are observed for 𝜎 = 0.3  and 0.5, respectively, which 

shows the high sensitivity of system to the phase tracking error. The SEP performance 

against the SNR for the 8POLSK, 16POLSK and 32POLSK modulation schemes using a 

single detector with an ideal PLL for all turbulence regimes are illustrated in Fig. 7-8. 
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The SNR requirement to achieve a fixed SEP increases as the turbulence level rises. It is 

observed that the power penalty due to the turbulence is almost identical for all levels. 

Electrical power penalties of ~ 7.5 dB, ~24.5 dB and ~25 dB are observed at SEP of 10
-9

 

in weak, moderate and strong turbulence, respectively.   

 

Fig. 7-8: The SEP performance of 8POLSK, 16POLSK and 32POLSK modulation 

schemes against the electrical SNR using a single detector and an ideal PLL in an 

atmospheric turbulence channel. 

 

 

Fig. 7-9: The spatial diversity gain against the number of detector (𝒩) for 16POLSK 

employing MRC in a turbulence channel to achieve a SEP of 10
-9

.   
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Fig. 7-9 illustrates the spatial diversity gain 𝛾𝒩 𝜎𝑙  against the number of photodetectors 

𝒩 for 16POLSK using the MRC combining technique to achieve a SEP of 10
-9

. For the 

same number of 𝒩, the value of 𝛾𝒩 𝜎𝑙  is the highest for the moderate turbulence regime 

followed by strong and weak turbulence regimes, respectively. The diversity gain in the 

strong turbulence regime is less than that in the moderate regime due to the fact that the 

deep fade results in a loss of spatial coherence of the laser radiation. There is a steep 

increment in 𝛾𝒩 𝜎𝑙  for 2  𝒩   , which indicates optimum detectors number between 

two and four. For 𝒩 > 4, the diversity gain curves start to flatten out, reducing the gain 

per additional detector. When the receiver uses MRC technique with 𝒩 =   in weak, 

moderate and strong turbulence regimes, 𝛾  𝜎𝑙  are ~ 5.8 dB, ~15.8 dB and ~13.7 dB, 

respectively. Further increment in the diversity gain is observed for higher number of 

detectors with the maximum gain reaching ~ 21 dB at the moderate turbulence regime for 

𝒩 = 10. This is because adding more detectors will efficiently reduce the chance of a 

catastrophic fading from happening, however at the cost of increased system complexity.  

 

7.3     Summary 

This chapter has outlined the theoretical analysis of two different coherent heterodyne 

MPOLSK-FSO communication systems operating over the gamma-gamma turbulence 

channel. To mitigate the turbulence induced fading the convolutional coding and the 

spatial diversity with the MRC technique have been applied. The upper SEP bound has 

been obtained using the transfer function. The SEP yields a very good performance, 

which is achieved without the need for increasing the SNR. For example, using the first 
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proposed coherent heterodyne 8-POLSK system to achieve a SEP of 10
-9

 in a weak 

turbulence regime, the SNR requirements are ~ 28.5 dB and ~ 13 dB for uncoded and 

coded 8-POLSK schemes  respectively. When the same system employs ten detectors, 

around 24 dB power gain is achievable in a strong turbulence regime. The spatial 

diversity with MRC technique (𝒩 =  ) outperforms the uncoded 8-POLSK employing 

the single receiver by ~6 dB, ~17.5 dB and ~15.5 dB, respectively in weak, moderate and 

strong turbulence regimes. We also have shown that the spatial diversity offers increased 

link margin as the scintillation level rises.  

 

For the second proposed MPOLSK-FSO system using PLL, the numerical analysis of 

SEP of 8, 16 and 32 POLSK was carried with the PLL phase tracking error showing the 

sensitivity of MPOLSK to the phase error. The comparative studies showed the power 

penalties of ~ 7.5 dB, ~24.5 dB and ~25 dB at SEP of 10
-9

 in weak, moderate and strong 

turbulence regimes, respectively. The MPOLSK receiver combined with the MRC 

technique offered improved error probability performance in turbulence conditions with 

the optimum number of detectors in the range of two to four. For the spatial diversity 

scheme with four detectors, diversity gains achieved were ~5.8 dB, ~15.8 dB and ~13.7 

dB for 16POLSK in weak, moderate and strong turbulence regimes, respectively.  
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Chapter Eight 
 

 

 

The Link Budget Analysis   

 

In establishing a communication link an important issue is the link power budget, 

including the transmitter's power and all power losses experienced by the propagating 

optical beam. Losses encountered in an FSO link include the atmospheric channel loss, 

the geometric loss, the pointing loss and the optical loss caused by the imperfect optical 

elements (such as the lenses and mirrors). Other losses due to the component replacement 

or component ageing are also considered in the inclusion of link margin. The remaining 

power at the receiver largely determines the possible data transmission rate, which is 

influenced by the data format, the acceptable BER and various noise sources. The noise 

sources include the laser noise, the amplifier noise, excess noise in the receiver (e.g. 

Avalanche photo diode) and the background light.  

 

http://www.rp-photonics.com/laser_noise.html
http://www.rp-photonics.com/amplifier_noise.html
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The latter can readily suppressed with additional narrow-band optical filters, since the 

optical bandwidth of the laser is limited, whereas the background light frequency 

spectrum is usually very broad. To estimate the theoretical power limited link range of a 

terrestrial FSO system, receiver sensitivity will be determined based on the BER metric. 

The losses encountered while the laser beam propagating through the terrestrial channel 

will be examined in Section 8.1. Other losses due to the beam diverging, optical 

components, windows and pointing will be discussed in Section 8.2 and 8.3, respectively. 

The link budget equation will be derived in Section 8.4. And finally, the content in this 

chapter will be summarised in Section 8.5. 

 

8.1     Atmospheric Transmission 

The atmospheric transmittance at wavelength 𝜆 is described by the Beer-Lambert’s law 

as [70, 130, 154]: 

𝜏(𝜆 𝐿) =
𝑃𝑟
𝑃𝑡
= e  [ 𝛽𝑇(𝜆)𝐿]                                                                                                (8.1) 

where 𝐿 is the transmission link (m), and 𝛽𝑇(𝜆) is the attenuation coefficient, also called 

the extinction coefficient. 𝛽𝑇(𝜆) is the sum of the absorption and scattering coefficients 

and is expressed as [36, 70, 129]:   

𝛽𝑇(𝜆) = 𝛼𝑎(𝜆) 𝛽𝑠(𝜆)                                                                                                              (8.2) 

where 𝛼𝑎(𝜆) and 𝛽𝑠(𝜆) are the absorption and the scattering coefficients, respectively. 

Since absorption is wavelength dependent and wavelengths used are based on the 

atmospheric transmission windows, the dominated factor in 𝛽𝑇(𝜆) is the scattering and 

𝛽𝑇(𝜆) ≅ 𝛽𝑠(𝜆).  

http://www.rp-photonics.com/optical_filters.html
http://www.rp-photonics.com/bandwidth.html
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Atmospheric scattering depends on the radius 𝓇  of the particles present within the 

transmission channel. Considering the size parameter 𝒳0 = 2 𝓇 𝜆⁄ , the atmospheric 

scattering, when 𝒳0  1, is known as the Rayleigh scattering [70, 228]; when 𝒳0  1, it 

is referred to as the Mie scattering; and when 𝒳0 ≫ 1 , it is best explained using 

diffraction theory (geometric optics). Various types of scatters encountered in the 

atmospheric channel are summarized in Table 8.1. 

 

Table 8.1: Atmospheric scatters with their radius and the scattering process at 𝜆 =

850 nm [1].  

Type  Radius (𝝁𝒎) Size parameter 𝓧𝟎 Scattering process 

Air molecules 0.0001 0.00074 Rayleigh  

Haze particle  0.01－1 0.074－7.4 Rayleigh－Mie 

Fog droplet 1－20 7.4－147.8 Mie－Geometrical 

Rain  100－10000 740－74000 Geometrical  

Snow  1000－5000 7400－37000 Geometrical  

Hail  5000－50000 37000－370000 Geometrical  

 

8.1.1 Rayleigh Scattering 

Rayleigh scattering is the domain factor at lower wavelengths, which is caused by 

molecular size particles [70, 71, 136]. The attenuation coefficient 𝛽R y e g (𝜆) caused by 

the Rayleigh scattering is given by [34, 69, 139]: 

𝛽𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜆) = 0.827𝑁𝑝𝐴𝑝
3𝜆                                                                                                    (8.3) 

where 𝑁𝑝 represents the number of particles per unit volume in the transmission link, 𝐴𝑝 

denotes the cross-sectional area of a scattering particle and 𝜆 is the carrier wavelength 

[34, 139]. As the wavelength band of interest in FSO systems is between 0.5 𝜇𝑚 to 2 𝜇𝑚 

and 𝛽𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ(𝜆) is inversely proportional to 𝜆  from (8.3), the Mie scattering is much 

stronger than the Rayleigh scattering in most practical cases [34, 138, 139].    



168 
 

8.1.2 Mie Scattering 

Since the fog particles size is comparable to the propagating optical wavelength of 

interest in FSO systems (0.5  m－2  m), this makes fog the major photo scattering 

particle and therefore Mie scattering becomes the dominant scattering process. The 

optical power loss due to the Mie scattering is high compared with to rain and snow 

induced losses. For a rainfall of 2.5 cm/hour a typical attenuation recorded is ~ 6 dB/km 

[1, 130, 229]. A light snow to blizzard will results in an attenuation of 3 dB/km to 30 

dB/km, which is high compared to the rain [1, 71]. However, the link attenuation as high 

as 480 dB/km in the case of dense maritime fog conditions [230] and 130 dB/km in 

moderate fog conditions have been reported [231]. This level of attenuation certainly 

results in complete link failure or reduced link range to a few meters [232]. 

 

Mie scattering can be described as [138, 233]:  

𝛽𝑠(𝜆) =
3. 1
𝑉

[
𝜆

550
]

 𝛿

                                                                                                               (8. ) 

where 𝑉 (km) represents the visibility range. It is defined as the distance that the parallel 

luminous beam propagates through the atmosphere channel until the optical intensity 

drops to 2% of its peak value. V can be therefore expressed in terms of 𝛽𝑇(𝜆)  and 

transmittance threshold 𝒯𝑡ℎ as:          

𝑉 =
10  g(𝒯𝑡ℎ)

𝛽𝑇(𝜆)
.                                                                                                                        (8.5) 

The value of the 𝒯𝑡ℎ of the atmospheric propagation path varies from 0.0077 to 0.06. 

Widely used values of 𝒯𝑡ℎ is 2% [234]. 
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The parameter 𝛿 can be described by the well known Kim and/or Kruse models for a 

range of visibility given by (8.6) and (8.7), respectively [233, 235]: 

𝛿𝐾𝑖𝑚 =

{
 
 

 
 

1.6 𝑉  50 
1.3 6  𝑉  50 

0.16𝑉  0.3 
𝑉  0.5
0

1  𝑉  6 
0.5  𝑉  1 
𝑉  0.5 

                                                                         (8.6) 

𝛿𝐾𝑟𝑢𝑠𝑒 = {
1.6 𝑉  50 
1.3 6  𝑉  50 

0.585𝑉1 3⁄ 𝑉  6 

                                                                                    (8.7) 

In the Kim model the fog attenuation is independent of the wavelength for V < 500 m. 

The Kruse model was developed to take into account the wavelength effect. 

The atmospheric transmission loss 𝐿𝐴𝑡𝑚 𝑠𝑝 is given as: 

𝐿𝐴𝑡𝑚 𝑠𝑝 =  10  g[e
 𝛽𝑠(𝜆)𝐿] =  .3 3𝛽𝑠(𝜆)𝐿.                                                                        (8.8) 

 

8.2     Beam Diverging Loss 

One of the key advantageous of FSO links compared to the RF technology is its inherent 

security due to a very narrow propagating optical beam, which makes intrusion and 

detection more difficult. However, there is a down side with this and that is the beam will 

spread out as it propagates along the channel and only a fraction of the transmitted 

optical power can be collected at the receiver, thus the term beam divergence loss. A 

typical FSO communication link is shown in Fig. 8-1. Of course, high directionality is 

the best option, but it requires high precision in the alignment of the transmitter and 

receiver. The FSO links with an automatic tracking system are now commonly used for 

outdoor applications to ensure perfect alignment.  
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Fig. 8-1: AN FSO link showing beam divergence. 

 

For a laser source, which is non-diffuse and small, the size of the received optical power 

is related to the diffraction at the transmitter aperture. As shown in Fig. 8-1, the ratio of 

the received power to the transmitted power is expressed as [1, 69]: 

𝑃𝑟
𝑃𝑡
=
𝐴𝐷
𝐴𝑖𝑚

=
𝑑𝑅
2

(𝑑𝑇  𝜃𝑠𝐿)2
                                                                                                          (8. ) 

where 𝑑𝑇 and 𝑑𝑅 are the diameters of the transmitter and receiver, respectively. 𝐴𝑖𝑚 is the 

size of the diffraction pattern, L is the link range, 𝜃𝑠 is the optical source divergence 

angle. 𝐴𝑇 , 𝐴𝐷  and 𝐴𝑠  represent the aperture areas of the transmitter, receiver and the 

source, respectively. 

The geometric loss 𝐿𝐺𝑒 𝑚 in dB is therefore obtained as: 

𝐿𝐺𝑒 𝑚 =  20  g [
𝑑𝑅

𝑑𝑇  𝜃𝑠𝐿
].                                                                                              (8.10) 

In a typical terrestrial FSO system with 1 km link length, the optical beam divergence, 

without tracking, is in the range of 2–10 mrad, which is equivalent to a beam spread of 

2–10 m. With tracking the range is 0.05–1.0 mrad, which is equivalent to a beam spread 

of 5 cm to 1 m. Therefore for long range FSO systems using an optical source (preferably 

a laser) with a narrow beam size is the best option to minimum bean divergence, thus link 

availability. For short link FSO systems, optical sources with a wide divergence angle are 

employed with relatively straight forward alignment and no need for active tracking.  
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8.3     Losses due to Optical Components, Windows and Pointing 

This part of power loss is caused due to the imperfect optical elements in the transmitter 

and receiver, including the absorption, scattering and reflection due to the lenses and 

mirrors in the system [36]. The optical loss 𝐿 𝑝 , depends on the characteristics and 

quality of the optical components. There is also additional power loss due to the windows 

installed in building. The pointing loss 𝐿𝑝 occurs when the FSO link has non-perfect 

alignment due to building sway or strong wind effect. For long range FSO link the 

pointing loss can be relatively high [1, 69]. For example, for larger amount of 

misalignment (𝜎𝑠 𝑅𝑎⁄ = 3 and 𝜔𝑏 𝑅𝑎⁄ = 10 where 𝜎𝑠 is the pointing error displacement 

standard deviation at the receiver, 𝜔𝑏  is the beamwaist and 𝑅𝑎 is the receiver aperture), ~ 

55 dB electric SNR is required to achieve an average BER of 10−  in strong turbulence 

regime [41]. However, in many applications with short links (< 1 km) pointing power 

loss can be neglected. 

 

8.4     Link Budget Analysis 

The received optical power 𝑃𝑟(𝜆 𝐿) (dBm) can be derived from the link budget analysis 

discussed above, which is expressed as:  

𝑃𝑟(𝜆 𝐿) = 𝑃𝑡(𝜆 0)  .3 3𝐿𝛽𝑠(𝜆) 𝐿𝐺𝑒 𝑚  𝐿 𝑝  𝐿𝑝  𝐿𝑀                                        (8.11) 

where the link margin 𝐿𝑀 is the link margin to take into accounts any other losses due to 

rain and snow, the replacement of a faulty component, ageing of optical component etc. 

The minimum acceptable value of received power required to achieve a specific level of 
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performance (i.e. BER, SNR) is referred to as the receiver sensitivity. It takes into 

account power penalties caused by use of a transmitter with worst-case values of 

extinction ratio, jitter, pulse rise times and fall times, optical losses, optical component 

aging, and measurement tolerances. It also depends on the noise level, the data rate, the 

modulation scheme and the scintillation level. The noise source could be one or a 

combination of the quantum shot noise, the thermal noise and the background radiation. 

Sensitivity usually takes into account worst-case operating and end-of-life conditions. 

 

The specifications for the FSO link budget are shown in Table 8.2. These values adopted 

are based on the Kim model of atmospheric attenuation given in (8.6). The receiver 

sensitivities for the OOK and BPOLSK schemes are obtained from Figs. 5-8 and 5-10 

and have been summarized in Table 8.3. Substituting values in Table 8.3 into (8.11), the 

link budget for the OOK-FSO and BPOLSK-FSO systems operating over the non-

turbulent channel under a range of visibility values is shown in Fig. 8-2. 

From Fig. 8-2, for the OOK-FSO operating at 155 Mbps in a channel with a visibility of 

50 km, a link length of around 2 km is achievable at a 5 dB link margin. If the link 

margin increases to 10 dB, the link length reduces to about 1.1 km. For BPOLSK-FSO 

operating under the same conditions, the link lengths are ~ 2.3 km and ~ 1.3 km at 5 dB 

and 10 dB link margins, respectively.  

  

http://www.fiber-optics.info/fiber_optic_glossary/transmitter
http://www.fiber-optics.info/fiber_optic_glossary/extinction_ratio
http://www.fiber-optics.info/fiber_optic_glossary/jitter
http://www.fiber-optics.info/fiber_optic_glossary/rise_times
http://www.fiber-optics.info/fiber_optic_glossary/fall_times
http://www.fiber-optics.info/fiber_optic_glossary/optical_return_loss
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Table 8.2: Specifications for the FSO link budget. 

Parameter  Typical value 

Modulation technique On-Off keying/ BPOLSK 

Transmitted power 14 dBm 

Wavelength, 𝜆 850 nm 

Bit rate, 𝑅𝑏 155 Mbps 

Transmitter aperture diameter, 𝑑𝑇 2.5 cm 

Receiver aperture diameter, 𝑑𝑅 8 cm 

Beam divergence, 𝜃𝑠 2 mrad 

Optical loss, 𝐿 𝑝 1 dB 

Pointing loss, 𝐿𝑝 1 dB 

Load resistance, 𝑅𝐿 50 Ω 

PIN photodetector responsivity, ℜ 1 

Operating temperature, 𝑇𝑒 300 K 

Boltzmann constant, 𝜅 1.38  10−23 

 

Table 8.3: Receiver sensitivity to achieve a BER of 10
-9

 based on OOK and BPOLSK. 

Modulation 

scheme 
Turbulence 

SNR (required to achieve 

a BER of 10
-9

) 
Receiver sensitivity 

OOK No turbulence 18.5 dB  - 27.2 dBm 

BPOLSK No turbulence 15.5 dB  -28.7 dBm 

 

 

Fig. 8-2: Link range against the link margin for OOK and BPOLSK to achieve a BER of 

10
-9

 in a non-turbulent FSO channel with visibility values V = 2, 20 and 50 km. 
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8.5     Summary 

The link budget equation to obtain the achievable link length under a specified link 

margin at a certain data rate has been derived in this chapter. The power loss caused by 

various sources has been discussed. Additionally, the link length as a function of the link 

margin and receiver sensitivity for OOK and BPOLSK has been shown. For the OOK-

FSO operating at 155 Mbps in a non-turbulent channel with a visibility of 50 km, the link 

lengths of around 2 km and 1.1 km are achievable at 5 dB and 10 dB link margins, 

respectively. For BPOLSK-FSO operating under the same conditions, the link lengths are 

~ 2.3 km and ~ 1.3 km at 5 dB and 10 dB link margins, respectively.  
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Chapter Nine 

 

 

 

Experimental Investigation of 

BPOLSK-FSO in a Turbulence 

Channel   

 

In previous chapters the complete theoretically analysis of the proposed coherent 

POLSK-FSO systems in an atmospheric turbulence channel has been given. In a 

turbulence channel coherent detection schemes offer improved performance compared 

with IM-DD [135, 184]. The aim of this chapter is to experimentally investigate the 

performance of a linear BPOLSK scheme using DD scheme mainly because of its 

simple implementation. To demonstrate the advantages of BPOLSK-FSO using DD, the 

obtained results will be compared with the OOK scheme under same operating 
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conditions. To demonstrate fair comparison between BPOLSK and OOK signalling 

schemes, the parameters including the data rate and the intensity are kept the same. 

Firstly, the experiment to assess the BPOLSK-FSO system performance is performed 

using the indoor atmospheric chamber (5.5 m in length) located in the ORCG Research 

Laboratory. Secondly, the long distance point-to-point communication is achieved by 

using multiple reflections of the laser beams between mirrors. An external 

interferometer is replaced by two intensity modulated laser sources with orthogonal 

SOPs. This new scheme is less complex compared to the existing techniques. Most of 

the polarisation modulators proposed so far are based on the LiNbO3-based Mach 

Zehnder modulators [188]. However, those devices suffer from a 7.5 dB loss and their 

fabrications are more costly and complex. The remainder of this chapter is organized as 

follows: the descriptions of the experimental set-up for the BPOLSK-FSO with two 

communication distances (5.5 m and 27 m), including the discussions of results, are 

presented in Sections 9.1 and 9.2, respectively. The summary is given in Section 9.3. 

 

9.1     BPOLSK-FSO Link using an Indoor Simulated Chamber 

The experimental set-up for characterising the performance of the proposed BPOLSK-

FSO system employing direct detection scheme using the indoor atmospheric chamber 

is shown in Fig. 9-1 and Fig. 9-2. Here direction detection is used instead of the 

coherent system to demonstrate the polarisation shift keying concept. The length of 

chamber is 5.5 m and the link span between the transmitter and receiver is 6 m. To 
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demonstrate the impact of turbulence on the link performance two received optical 

power levels (-16.8 dBm and -12.5 dBm) amplifier (TIA) were monitored and 

compared. All experimental parameters adopted are given in Table 9.1. The process was 

repeated by increasing the turbulence strength level within the chamber at the location 

T1 and keeping the ambient temperature at ~20  at the location T3. The same 

procedure described above was applied to the OOK-FSO link with the same data rate 

and the turbulence strength for comparison. For like-to-like comparison with the OOK 

based FSO system, the average emitted optical power per laser source for BPOLSK was 

made equal to half the total transmitted power.   

 

 

Fig. 9-1: BPOLSK-FSO experimental system block diagram to measure the atmospheric 

turbulence effect.  

 

 

(a) 
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                                  (b)                                                             (c) 

Fig. 9-2: BPOLSK-FSO link set-up (a) channel, (b) transmitter, and (c) receiver. 

 

Table 9.1: Parameters of BPOLSK-FSO communication system.  

Parameters Values Units 

Laser  

- Wavelength 𝜆 670 nm 

- Bandwidth (-3 dB points) 50 MHz 

- Power output 1 mW 

- Divergence (full angle) 0.5  mrad 

- Beam size at transmitter  .5  2.5 mm 

- Output aperture 6.0 mm 

Photodiode  

- Wavelength range 430 – 900 nm 

- Responsivity 0.42 (𝜆 = 670 nm)  

- Active area 15 mm2 

- Dark current 1 nA 

AD8015 Trans-impedance Amplifier (TIA)  

- Bandwidth 240 MHz 

- Optical sensitivity -36 @155.52 Mbps dBm 

- Power supply 5 V 

AD8042 Rail-To-Rail Amplifier  

- Bandwidth 160 MHz 

Others  

- Bit rate 500 kbps 

- Data length 2
10

  

- Average optical received power -16.8 dBm/-12.5 dBm  

- Modulation index 0.057  

- Losses 

Polariser 2 dB  

PBC 2 dB  

PBS 2 dB  



179 
 

Turbulence Chamber  

- Dimensions 5.5  0.3  0.3 m3 

- Wind speed 6.5 km/hr 

- Temperature at T1 20 30  0 50 60   

- Temperature at T3 ~20   

 

9.1.1     Transmitter 

The schematic diagram of the transmitter is shown in Fig. 9-3. Two red lasers at 

𝜆 = 670 nm were directly intensity modulated with the pseudo random binary sequence 

(PRBS) m(t) with a length of 2
10

 at a data rate of 500 kbps. In fact any wavelengths 

within the 600-1550 nm range covering the entire optical wireless transmission band 

could be adopted as shown in Fig. 9-1. The polarisation states of the lasers were 

adjusted by two identical polarisers with the horizontal �⃗� and vertical �⃗� reference axes, 

respectively. The input light coinciding with the transmission axis of the polariser was 

linearly passed while the orthogonal component was completely removed. The 

orthogonally polarised optical beams were combined using a PBC to form the 

transmitted BPOLSK signal. The emitted optical signal is given as: 

�⃗⃗�𝑠(𝑡) = √
𝑃𝑡
2
𝑒𝑖( 𝑡  (𝑡)) {√1  𝑚(𝑡) ∙ �⃗�  √𝑚(𝑡) ∙ �⃗�}.                                                ( .1) 
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Fig. 9-3: The schematic diagram of the BPOLSK transmitter. 

 

9.1.2     Turbulence Channel 

A dedicated indoor atmospheric chamber of dimensions 5.5  0.3  0.3 m3  width, 

length and height, respectively, was used to experimentally evaluate the performance of 

the BPOLSK-FSO link under a controlled atmospheric turbulence condition. The 

temperature gradient (a minimum of 6
o
C) and the wind speed were maintained to ensure 

the turbulence (i.e. scintillation) effects on the propagating laser beams within the 

chamber. The process was performed by blowing hot and cooler air at the speed of 6.5 

km/hour into the chamber at transmitter and receiver ends, respectively, with the 

parameters given in Table 9.1. The cooler air temperature was maintained at ~20  at 

the receiver end, whereas at the transmitter end the temperature could be maintained 

within the range of 20 – 60
o
C. A number of air vents were used to maintain a constant 

temperature gradient between the optical source and the photodetector.  

The instantaneous temperature at different positions along the chamber was measured 

by three temperature sensors at T1, T2 and T3 as shown in Fig. 9-1. The wind velocity 
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within the chamber was maintained in the transversal direction of the propagating laser 

beams. The background ambient light was reduced to the barest minimum level by 

operating the whole experimental work in a dark room environment.  

 

9.1.3     Receiver 

The receiver structure for the proposed BPOLSK-FSO system is shown in Fig. 9-4. The 

optical fields were detected by two detector circuits. Each detector circuit consisted of a 

Series OSD15-5T PIN photodiode followed by an AD8015 TIA with parameters given 

in Table 9.1. The schematic diagram of the detector circuit is illustrated in Fig. 9-5. 

 

 

Fig. 9-4: The schematic of the optical receiver module. LPF (lowpass filter).  
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Fig. 9-5: AD8015 TIA based detector circuit schematic diagram. 

 

The output signals from the detector circuits were fed into the AD8042 rail-to-rail 

amplifier based subtractor. The schematic diagram for the subtractor is shown in Fig. 9-

6. 

 

Fig. 9-6: AD8042 rail-to-rail amplifier based subtractor schematic diagram. 

 

The received optical signal after passing through the turbulence chamber is given as: 
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�⃗⃗�𝑟(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡)) {√1  𝑚(𝑡) ∙ �⃗�  √𝑚(𝑡) ∙ �⃗�}.                                              ( .2) 

After passing through the PBS the optical signals with orthogonal SOPs are expressed 

as: 

�⃗⃗�𝑥(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡))√1 𝑚(𝑡) ∙ �⃗�                                                                           ( .3 ) 

�⃗⃗�𝑦(𝑡) = √
𝑃𝑟
2
𝑒𝑖( 𝑡   (𝑡))√𝑚(𝑡) ∙ �⃗� .                                                                                 ( .3 ) 

The outputs of the photodetectors are given by [113]:   

𝑐𝑥(𝑡) =
ℜ𝑃𝑟
2
[1  𝑚(𝑡)]  𝑛𝑥(𝑡)                                                                                        ( .  ) 

𝑐𝑦(𝑡) =
ℜ𝑃𝑟
2
𝑚(𝑡)  𝑛𝑦(𝑡)                                                                                                   ( .  ) 

where the system noise terms 𝑛𝑥 𝑦(𝑡)~𝑁(0 𝜎𝑛
2).  

The instantaneous electric current at the output of the subtractor is defined as: 

𝑐(𝑡) = 𝑐𝑥(𝑡)  𝑐𝑦(𝑡) = ℜ𝑃𝑟 2⁄ [1  2𝑚(𝑡)]  𝑛(𝑡)                                                       ( .5) 

where the system noise terms 𝑛(𝑡)~𝑁(0 𝜎𝑛
2).  

The electric signal 𝑐(𝑡) is then applied to a LPF with the bandwidth equal to the bit rate, 

with the output signal defined as:  

𝑉𝑖(𝑡) =  
1

√𝑇
∫ 𝑐(𝑡)
𝑇

0

= {
ℜ𝑃𝑟 2⁄  𝑛𝑙𝑝           r    𝑚(𝑡) = 0 

 ℜ𝑃𝑟 2⁄  𝑛𝑙𝑝       r    𝑚(𝑡) = 1 
                                          ( .6) 
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where ℎ𝑙𝑝(𝑡)  denotes the impulse response of the LPF and 𝑛𝑙𝑝(𝑡)~𝑁{0 𝜎𝑛
2}  is the 

AWGN process. With the signal 𝑉𝑖 being within the range of ℜ𝑃𝑟 2⁄  and  ℜ𝑃𝑟 2⁄  for 

the transmission of ‘1’ and ‘0’, respectively, so the threshold level is fixed at the zero 

level in this case.  

Assuming independent and identically distributed transmission, the error probability is 

derived as: 

𝑃𝑒𝑐 =
1

√2 𝜎𝑛2
∫ 𝑒

−
(𝑥−ℜ𝑃 2⁄ )2

2𝜎𝑛
2

0

− 

𝑑𝑥 =
1

2
er c (

ℜ𝑃𝑟

2√2𝜎𝑛
).                                                   ( .7) 

The experimental BER is estimated by evaluating the statistical fluctuation in the 

received signal. The error rate can now be written as:   

𝑃𝑒𝑐 =
1

2
er c (

𝑄

√2
)                                                                                                                   ( .8) 

where 𝑄 =
|  −  |

𝜎  𝜎 
      |𝜇1  𝜇0| presents the separation between the intensity levels of’1’ 

and ‘0’, corresponding to |𝜇1  𝜇0| = ℜ𝑃𝑟, and 𝜎1  𝜎0 denotes the sum of the standard 

deviations of both intensities with 𝜎1 = 𝜎0  𝜎𝑛.  

The theoretical Q-factor (〈𝑄〉) in the presence of turbulence is expressed as [236]: 

〈𝑄〉 =
𝑄0

√𝜇𝑛𝑜 𝜇⁄  𝜎𝑛2𝑄0
2
                                                                                                          ( . ) 

where 𝑄0 is the Q-factor in the absence of turbulence, 𝜇 and 𝜇𝑛𝑜  are the means received 

signal with and without turbulence, respectively. 
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In this chapter the BER is estimated by evaluating the statistical fluctuation of the 

received signal. Following the method in [1], the BER conditioned on the received 

irradiance for BPOLSK-FSO system transmitting through the turbulence channel is 

given as: 

𝑃BP  SK(𝑃𝑟) =
1

2
∫ er c (

𝑄(𝑃𝑟)

√2
) 𝑝(𝑃𝑟)𝑑𝑃𝑟

 

0

.                                                                ( .10) 

Its SNR expressed in terms of Q-factor is derived as 𝑄 = ℜ𝑃𝑟 √2𝜎𝑛⁄  [237]. Note that 

the average optical power is half the value of the peak power for the OOK scheme, 

whereas for DD-BPOLSK the average and peak powers are the same. 

 

9.1.4     Results 

Experimentally obtained values for the Q-factors for BPOLSK and OOK schemes with 

two optical power levels (-16.8 dBm and -12.5 dBm) against the turbulence variances 

𝜎𝑙
2 are illustrated in Fig. 9-7, also shown are the predicted Q-factors using (9.9). The 

predictions are based on the measured Q-factor in the absence of turbulence. For all 

cases, the experimental and predicted plots show a very good agreement. The optical 

signal fluctuation caused by the turbulence leads to reduced Q-factor values for both 

modulation schemes. However, under the same turbulence strength, the effect on 

BPOLSK is less severe to compared with OOK with the same transmit optical power 

level. For example, for a turbulence variance 𝜎𝑙
2 of 0.003 and the transmitted optical 
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power of -16.8 dBm, the values for Q-factor are ~ 11 and ~ 8.5 for BPOLSK and OOK, 

respectively.  

For the same modulation schemes a higher transmission optical power level offers 

larger Q-factor values. For instance, for 𝜎𝑙
2 = 0.003, Q-factors are ~11 and ~17 for the 

BPOLSK scheme with -16.8 dBm and -12.5 dBm of optical powers, respectively. As 

shown in Fig. 9-7 increasing the optical power has very little effect on the Q-factor 

when turbulence strength level is high. 

 

 

Fig. 9-7: Measured (Ex.) and theoretical (Th.) Q-factors for the BPOLSK and OOK 

(using peak power) modulation schemes with two transmit optical power levels (-16.8 

dBm/-12.5 dBm) against the turbulence variances (𝜎𝑙
2).   

 

9.2     BPOLSK-FSO using Direct Detection with Reflecting Mirrors 

Using the chamber the maximum link span achieved without any reflection is ~6 m. To 

increase the link span there are two options: (i) multiple reflection within the chamber 

and (ii) multiple reflection between two reflecting mirrors. The former is quite 
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challenging to set up because of alignment of the laser beams, therefore the later is 

adopted for further investigation of the BPOLSK FSO link. Using two mirrors the link 

span is increased to 27 m. The comparative study of the BPOLSK has been carried out 

with respect to the OOK in a similar channel condition. The emitted optical power was -

12.5 dBm and the received signal amplitude after TIA was 80 mV peak-to-peak for all 

modulation schemes for fair comparison. The data rate for both modulation schemes 

was kept at 2 Mbps.  

 

9.2.1     Experimental Set-Up  

The picture and diagram for BPOLSK-FSO system using two reflecting mirrors are 

shown in Fig. 9-8 and Fig. 9-9, respectively. The whole BPOLSK system was set up on 

the dedicated optical bench with the dimension of 1.5  1.8 m2  width and length, 

respectively. Two long mirrors of dimensions 0.00  0.2  1.  m3 thickness, width 

and length were positioned facing each other on the optical bench. Two red lasers at the 

wavelength of 670 nm were directly modulated with the PRBS data and their SOPs 

were adjusted by polarisers with horizontal and vertical polarisation axes, respectively.  

The laser beams were collimated by convex and concave mirrors followed by the 

adjustable reflecting mirrors which were used to change the number of reflections 

between the fixed mirrors. The numbers of reflections achieved were 7 and 8 on the 

right hand side and left hand side reflecting mirrors, respectively. The spacing between 

adjacent reflection spots became larger due to the flat mirrors. The last reflection from 
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the left hand side mirror is collected by an adjustable concave mirror with a focal 

distance of 1.34 m and a diameter of 0.155 m. The reflected beam from the concave 

mirror with orthogonal SOPs is then passed through the PBS before being collected by 

two small area photodetectors.  

 

 

Fig. 9-8: BPOLSK-FSO with the link length of 27 m set-up picture. 
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Fig. 9-9: BPOLSK-FSO with the link length of 27 m schematic diagram. 
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i Convex and concave mirrors 

The convex and concave mirrors were used to reduce the beam divergence loss and to 

increase the received signal power at the receiver. The combination of the convex and 

concave mirrors configuration is illustrated in Fig. 9-10. The incident laser beams, which 

were parallel to the principal axis of the convex mirror with the focal length of 23 cm, are 

reflected divergently. Since the focus and the reflect surface are on the opposite side of 

the convex mirror, the laser beams pass through the focus by extending the reflected ray 

behind the convex mirror. The divergent laser beams from the convex mirror then 

incident on the concave mirror. The focal points of the convex and concave mirrors must 

be overlapped, so the reflected laser beams from the concave mirror are almost parallel.  

The optical beam footprints of the first five reflection spots on the surface of fixed 

reflecting mirror are depicted in Fig. 9-11, thus illustrating the beam broadening with 

every reflection. The spot size has increased from 1 cm
2
 to 3 cm

2
, which is due to the 

beam divergence caused by the laser source and non-ideal mirrors.  

 

 

Fig. 9-10: Principle of the beam reflections between the convex and concave mirrors. 
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Fig. 9-11: Pictures of the first five reflection spots showing the laser beam divergence 

effects. 

 

With turbulence the optical beam foot print fluctuated greatly covering an area of 

6  7 cm2, which is far greater than the PBS surface area of 2  2 cm2, see Fig. 9-12. 

Therefore, it was almost impossible to focused the beam onto the PBS and then on to 

photodetectors for signal processing. Therefore, to overcome this problem and be able to 

focus the widely dispersive optical beams after a number of reflections, a concave mirror 

is used to collimate the incident laser beams and focus it on to the PBS, see Fig. 9-8 and 

Fig. 9-9. The adjustable concave mirror was placed 1.34 m (which is the focal length) in 

front of the PBS. The measured optical beam footprint of the collimated laser beam is 

1 cm2 much smaller than the non collimated beam. 
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Fig. 9-12: Structure of the PBS. 

 

ii Turbulence channel 

The complete experimental parameters are given in Table 9.2. The temperature gradient 

and the wind speed are maintained to ensure the turbulence effect on the propagating 

reflecting laser beams between the two fixed mirrors. The process is repeated by 

increasing the turbulence strength level at the transmitter and receiver, respectively. The 

wind velocity is maintained in the transversal direction of the propagating laser beam. 

The background ambient light is reduced to a minimum level by operating the whole 

experimental in a dark room environment.  

The output signal from the receiver is captured using a digital oscilloscope. The 

propagating optical signal is subjected to the atmospheric turbulence at a very low 

degree. The turbulence is introduced by using a fan blowing hot air across the reflected 

beams. Further signal processing is performed on the captured data from the digital 

oscilloscope using the Matlab software to calculate the Q-factor of the received signal. A 

LPF is used during signal processing to ensure that the overall noise bandwidth at the 

receiver is equal to the symbol rate.  
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Table 9.2: Experimental parameters for BPOLSK-FSO with the link length of 27 m. 

Data type PRBS – OOK-NRZ 

Data rate 2 Mbps 

Amplitude  80 mVpp 

Received optical power level -12.5 dBm 

Sampling rate 500 M samples/s 

Low pass filter 

Type  Butterworth  

Order 4 

Bandwidth  2 MHz 

Room temperature 24   

Turbulence simulation 

Heater position Temperature   

(transmitter/receiver) 

Wind Speed (m/s) 

Transmitter  70/24 2.4 

Transmitter  55/24 2.4 

Transmitter 50/24 2 

Transmitter 35/24 1 

Receiver   24/80 2.7 

Receiver   24/47 2 

Receiver   24/40 1.4 

 

9.2.2     Results 

The experimental and the theoretical Q-factors using (9) against the turbulence variance 

for BPOLSK and OOK signaling schemes are depicted in Fig. 9-13. It shows that the 

experimental Q-factor matches the theoretical values for a range of turbulence variances. 

As the turbulence variance increases, the Q-factor decreases for both schemes due to the 

received signal fluctuation. For example, at 𝜎𝑙
2 = 0.02, the experimental Q-factors are 5 

and 5.5 for OOK and BPOLSK, respectively. When 𝜎𝑙
2  increases to 0.03, the 

corresponding Q-factors become 4.6 and 5. This indicates that BPOLSK offers an 

optimum performance operating in turbulence channel, with a higher receiver complexity 

than the OOK.      
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Fig. 9-13: Experimental (Ex.) and theoretical (Th.) Q-factors for the BPOLSK and OOK 

modulation schemes with the link length of 27 m against the turbulence variances (𝜎𝑙
2).  

 

The measured eye-diagrams for the received signals are illustrated in Fig. 9-14. The 

height of eye-opening is smaller in the presence of turbulence due to the atmospheric 

turbulence induced signal intensity fluctuation. The height of eye-opening is bigger for 

BPOLSK signal compared with the OOK signal in the presence of turbulence, indicating 

that BPOLSK is less sensitive to the intensity fluctuation under the weak turbulence 

condition.  
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(c)                                                        (d) 

Fig. 9-14: Eye diagrams for the BPOLSK (a) without turbulence and (b) 𝜎𝑙
2 = 0.06; and 

OOK (c) without turbulence and (d) 𝜎𝑙
2 = 0.06.  

 

The distributions of received signal level for ‘1’ and ‘0’ for BPOLSK and OOK schemes 

are depicted in Fig. 9-15. There is less signal overlapping in the presence of weak 

turbulence for the BPOLSK. In the case of OOK, the distance between received signal 

level for ‘1’ and ‘0’ is reduced by 50% compared with BPOLSK.   
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(b) 

Fig. 9-15: Received signal distributions with turbulence variance of 𝜎𝑙
2 = 0.06 for (a) 

BPOLSK and (b) OOK. 

 

9.3     Summary 

In this chapter, we have experimentally investigated the performance of the BPOLSK-

FSO system with DD operating over 6 m and 27 m atmospheric turbulence channels. As 

a result of the underlying assumptions in the derivation, there is a close match between 

experimental and predicted Q-factors for the weak turbulence regimes for BPOLSK-FSO 

system. For comparison the predicted and analytical results for OOK (with peak and 

average power levels) have also been presented. We have shown that BPOLSK offers a 

slightly higher Q-factor values compared with OOK for the same transmit optical power 

and the turbulence variance. For example, when the link length is 6 m and the transmitted 

optical power is -16.8 dBm, the Q-factors are ~ 11 and ~ 8.5 for BPOLSK and OOK, 

respectively, with 𝜎𝑙
2 = 0.003. Further experimental work has been performed using 

reflecting mirrors to assess the system performance with long link length. For example, 

when 𝜎𝑙
2 is 0.03, the Q-factors are 4.6 and 5 for OOK and BPOLSK, respectively. This 
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indicates that BPOLSK offers an optimum performance operating in turbulence channel, 

with a higher receiver complexity than the OOK. The eye-diagrams for BPOLSK and 

OOK schemes have been illustrated. Comparing the height of eye-opening for BPOLSK 

and OOK schemes, BPOLSK is less sensitive to the intensity fluctuation under the weak 

turbulence condition. In the case of OOK, the distance between received signal level for 

‘1’ and ‘0’ is reduced by 50% compared with BPOLSK.   
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Chapter Ten 

 

 

 

Conclusions and Future Work  

 

10.1     Conclusions 

FSO technology is one of the most promising new technologies to deal with the 

bandwidth bottleneck that exists in access networks. FSO is a complementary technology 

to the RF offering a number of unique advantages, thus making it attractive for many 

applications both indoor and outdoor. This research work was aimed at investigating the 

performance of the coherent POLSK pre-modulated FSO system in an atmospheric 

turbulence channel with the view to understand its characteristics, limitations and 

performance. The aim was also to carry out comparison - with other systems such as 

OOK-FSO and BPSK-FSO.      
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To give the readers a brief overview about the FSO technology, its fundamentals, 

applications, features, and terminology, were reviewed in the Chapter Two. Optical 

detection methods as well as the noise sources at the receiver and their influences on the 

performances of the systems were also covered in this chapter. Concerning the 

atmospheric channel, both atmospheric attenuation and turbulence were also discussed. 

Chapter Three discussed the three mostly reported models for the irradiance fluctuation 

in the atmospheric turbulence, which is necessary to predict the reliability of an optical 

system operating in such an environment. The lognormal is mathematically tractable but 

only valid in the weak turbulence regime. Beyond the weak turbulence regime, the 

gamma-gamma model is more suitable but lacks the mathematical convenience. The 

negative exponential model is only used in the saturation regime.  

In Chapter Four, the POLSK technique modulated an FSO communication link has been 

discussed, together with the analysis of the outage probabilities in the weak and 

saturation turbulence regimes. The comparisons of the digital modulation techniques 

adopted for FSO in a turbulence channel suggest that there is always a trade-off between 

bandwidth efficiency, simplicity and power efficiency in the selection of modulation 

schemes. In the next chapter, the performance of POLSK-FSO in all turbulence regimes 

will be analysed.   

This research has focused on employing the POLSK scheme in the FSO turbulence 

channel to optimize the system performance. The coherent BPOLSK modulation scheme 

was selected and its error probabilities were analysed and compared with OOK and 
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BPSK schemes in the presence of the turbulence and noise in Chapter Five. The 

BPOLSK scheme is considerably insensitive to the laser phase noise at the receiver, 

which is based on the condition that the IF filter bandwidth was large enough to avoid the 

phase-to-amplitude noise conversion. Based on the results, POLSK was proposed for 

FSO links in the atmospheric turbulence channel.  

The FSO link power penalties caused by the atmospheric turbulence must be 

compensated to guarantee a reliable communication link. One option was to increase the 

transmitted optical power. However, this is only useful in the very weak turbulence 

regime and must meet the eye safety requirement. Modulation schemes adopted must 

meet the emitted power requirement to ensure the power budget limitation and the eye 

safety regulations. The OOK-FSO system with a fixed threshold level in the presence of 

turbulence induced fading channel displayed increased BER performance. Therefore, it 

would be advantageous to adopt the optimum decision making scheme but at the cost of 

increased complexity. For instance, for an SNR of 49 dB in a moderate turbulence 

regime, the BERs are 0.05 and   10−  for fixed and adaptive threshold detection 

schemes, respectively. 

The heterodyne BPSK modulated FSO system is based on the coherent optical detection 

and the synchronous demodulation using an electrical PLL. However, the phase noise 

sensitivity of such coherent systems is considerably high due to the PLL circuit. For low 

values of phase error variance (e.g. 𝜎∆ = 0.1), the power penalty can be neglected since 

the degradation is not high. However, for higher values of variance (𝜎∆  0.3) the power 
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penalty causes a significant shift in the BER floor. For example, in the case of 𝜎∆ = 0.3 

and 0.5, the BER floor are equal to 5.  10−  and 7.7  10−3, respectively. 

The error performance and the outage probability for a BPOLSK-FSO employing the 

diversity receiver were analysed in Chapter Six. The diversity receiver was used to 

combat the scintillation induced channel fading. The gamma-gamma and lognormal 

channel models were considered. The details of error probability and achievable link 

margin using the EGC techniques were outlined. Additionally, the power penalty caused 

by the received optical signal correlation on the error probability has been shown. For 

instance, to achieve a BER of 10
-9

 with 𝒩 = 2, additional 4 dB of SNR is required due 

to the increment of 𝜌 from 0 to 0.5. The SNR value increases to ~ 4.5 dB when 𝜌 further 

increases to 0.8. For the EGC linear combining scheme adopted to mitigate the 

scintillation without overwhelming the complexity and cost, the reasonable number of 

independent photodetectors is between 2 and 4.   

Chapter Seven outlined the theoretical analysis of two different coherent heterodyne 

MPOLSK-FSO communication systems operating over the gamma-gamma turbulence 

channel. To mitigate the turbulence induced fading the convolutional coding and the 

spatial diversity with the MRC technique were considered. The upper SEP bound was 

obtained using the transfer function. For example, using the first proposed coherent 

heterodyne 8-POLSK system to achieve a SEP of 10
-9

 in a weak turbulence regime, the 

SNR requirements are ~ 28.5 dB and ~ 13 dB for uncoded and coded 8-POLSK schemes  

respectively.  
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The spatial diversity with the MRC technique (𝒩 =  ) outperforms the uncoded 8-

POLSK employing a single receiver by ~6 dB, ~17.5 dB and ~15.5 dB, respectively in 

weak, moderate and strong turbulence regimes. It was also shown that the spatial 

diversity offers increased link margin as the scintillation level rises. For the second 

proposed MPOLSK-FSO system in Chapter Seven, the numerical analysis of SEP of 8, 

16 and 32 POLSK was carried with the PLL phase tracking error showing the sensitivity 

of MPOLSK to the phase error. The comparative studies showed the power penalties of ~ 

7.5 dB, ~24.5 dB and ~25 dB at SEP of 10
-9

 in weak, moderate and strong turbulence 

regimes, respectively. The MPOLSK receiver combined with the MRC technique offered 

improved error probability performance in turbulence conditions with the optimum 

number of detectors in the range of two to four. For the receiver with four detectors, 

diversity gains achieved were ~5.8 dB, ~15.8 dB and ~13.7 dB for 16POLSK in weak, 

moderate and strong turbulence regimes, respectively.  

The link budget equation to obtain the achievable link length under a specified link 

margin at a certain data rate was derived in Chapter Eight. The power loss caused by 

various sources has been discussed. Additionally, the link length as a function of the link 

margin and the receiver sensitivity for OOK and BPOLSK have been shown. In Chapter 

Eight, for the OOK-FSO operating at a date rate of 155 Mbps in a non-turbulent channel 

with a visibility of 50 km, the link lengths of around 2 km and 1.1 km were achievable at 

5 dB and 10 dB link margins, respectively. For BPOLSK-FSO operating under the same 

conditions, the link lengths are ~ 2.3 km and ~ 1.3 km at 5 dB and 10 dB link margins, 
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respectively. For BPOLSK-FSO operating under the same conditions, the link lengths 

increased to ~ 2.3 km and ~ 1.3 km at 5 dB and 10 dB link margins, respectively.  

In Chapter Nine, the implementation and full system measurements of the proposed 

BPOLSK-FSO system with DD operating over a link span of 6 m and 27 m were 

investigated. As a result of the underlying assumptions in the derivation, it was shown 

that there is a close match between the experimental and predicted Q-factors for the weak 

turbulence regimes for the BPOLSK-FSO system. For comparison the predicted and 

analytical results for OOK (with peak and average power levels) were also presented. 

BPOLSK offers a slightly higher Q-factor values compared with OOK for the same 

transmit optical power and the turbulence variance. For example, when the link length is 

6 m and the transmitted optical power is -16.8 dBm, the Q-factors are ~ 11 and ~ 8.5 for 

BPOLSK and OOK, respectively, with 𝜎𝑙
2 = 0.003. For the BPOLSK-FSO system with 

a link length of 27 metres with 𝜎𝑙
2 = 0.03, the Q-factors are 4.6 and 5 for OOK and 

BPOLSK, respectively.  

 

10.2     Future Work 

This research work has completed the objective and aims listed in Chapter One. 

However, the amount of time and work required to cover the comprehensive optical 

wireless communication area are out of the scope of this work. The following topics are 

suggested to further extend the research work reported in this thesis.  
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Hybrid FSO/RF communication using channel coding: The reliability of FSO 

communication system mainly depends on the atmospheric weather conditions, 

especially when the link is longer than 1 km. One of the biggest challenges is the 

attainment of 99.99 % link availability during all weather conditions. The hybrid FSO/RF 

link combined with the channel coding is one possible option as the RF system could be 

utilised as the back-up link but at a reduced data rate when the fog is moderate to high 

and the channel coding can also improve the system reliability.  

Soft-switching hybrid FSO/RF links using field-programmable gate array (FPGA): 

To switch the hybrid FSO/RF link, the current technique is based on the “hard-

switching” or selection, which is based on the receiver feedback. In this method, only 

one medium can be used at a time, which makes it inefficient. A short-length channel 

code, such as the low-density parity-check (LDPC) or the Raptor code can be used as the 

“soft-switching” scheme for hybrid FSO/RF links. The FPGA could be used to 

implement the encoder and decoder at a high speed. 

Modulation Schemes Combined with LDPC: LDPC is an advanced forward error 

correction (FEC) schemes. It is more efficient rather than RS and convolutional codes in 

the presence of strong turbulence or deep fog [238, 239].   

Multipath Diversity: Wireless networks suffer signal fading due to multipath 

propagation, which can be mitigated by time-, frequency- or spatial diversity techniques. 

In the spatial diversity, multiple antennas can be equipped on the transmitters and/or 
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receivers, which is difficult to be implemented on a sensor node or a mobile terminal due 

to the size limitation and the hardware complexity. 
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