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Abstract

Visible Light Communication (VLC) is an emerging field in optical wireless com-

munication that uses light emitting diodes (LEDs) for data transmission. LEDs

are being widely adopted both indoors and outdoors due to their low cost, long

lifespan and high efficiency. Furthermore, LEDs can be modulated to provide both

illumination and wireless communication. There is also potential for VLC to be

incorporated into future smart lighting systems. One of the current challenges in VLC

is being able to deal with noise and interference; including interference from other

dimmed, Pulse-Width Modulated (PWM) LEDs. Other noise includes natural light

from the sun and artificial light from other non-modulating light sources. Modelling

these types of channels is one of the first steps in understanding the channel and

eventually designing techniques for mitigating the effects of noise and interference.

This dissertation presents a semi-hidden Markov model, known as the Fritchman

model, that discretely models the effects of as well as errors introduced from noise and

interference in on-off keying modulated VLC channels. Models have been developed

for both the indoor and outdoor environments and can be used for VLC simulations

and designing error mitigation techniques. Results show that certain channels are

able to be better modelled than others. Experimental error distributions shows

insights into the impact that PWM interference has on VLC channels. This can be

used for assisting in the development of error control codes and interference avoidance

techniques in standalone VLC systems, as well as systems where VLC and smart

lighting coexist. The models developed can also be used for simulations of VLC

channels under different channel conditions.
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Chapter 1

Introduction

Light emitting diodes (LEDs) are rapidly being adopted as part of the next generation

of lighting systems. This is due to their high efficiency, longer lifespan and low cost.

They are used for both indoor and outdoor lighting, as well as for auto-mobiles.

LEDs also form part of smart lighting devices and networks. Another advantage

of LEDs is that they have the ability to transmit information. Their light can be

modulated in such a way that variations in intensity is imperceptible to the human

eye. Thus, LEDs can provide both illumination and wireless data transmission, which

is known as Visible Light Communication (VLC) [1, 2].

The electromagnetic spectrum that is currently being used for wireless communication

has become crowded and bandwidth is expensive. Another challenge is that the

demand for wireless connectivity is growing at an increasing rate. This is due to

growth in areas such as the Internet of Things (IoT) and 5th generation mobile

networks (5G) [3]. VLC has the potential to help meet or supplement the growing

demand for wireless connectivity, particularly in last mile access. VLC is a relatively

new field and research is taking place to make VLC become part of future wireless

communication systems.

One of the challenges for VLC is providing reliable communication in the presence of

noise and interference within the visible light spectrum. One of the initial steps in

mitigating the noise and interference is modelling these effects and the impact they

have on communication in the visible light spectrum. In general, there has been few

works on VLC channel modelling. This research focuses on discrete channel models

for indoor and outdoor vehicle-to-vehicle (V2V) VLC. Discrete channel models are

favourable because they are computationally more efficient compared to waveform

channel models [4]. With the physical aspects of the signal abstracted, the signal can

be characterised in terms of a small set of parameters. Until now, there have been no
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symbol level discrete channel models for VLC reported in literature. A semi-hidden

Markov model (SHMM) proposed by Fritchman can be used for discrete channel

modelling of a digital channel [5]. The Fritchman model has been used in the past to

provide a statistical distribution of errors in wireless channels, particularly channels

with bursty errors. These models are also able to simulate error sequences with error

patterns comparable to real channels.

The parameters of such models are found by expectation maximisation using the

Baum-Welch algorithm [6]. Error sequences obtained from experiments are used as

input data for the Baum-Welch algorithm to train the models. Once the parameters

for the models are found, the models are used to simulate channel error sequences.

A statistical model for channel errors can help in the design of error control codes,

interference avoidance and mitigation in future smart lighting and V2V communic-

ation systems, and as part of VLC system software simulations. Additionally, the

Fritchman model can provide a better distribution of channel errors than a single bit

error rate (BER) value.

1.1 Problem Statement

Noise and interference which can potentially cause errors in a VLC channel come

from a variety of sources. This includes both natural light and artificial light,

both modulated and unmodulated. In the outdoor environment, artificial light

sources typically include lights from vehicles, buildings, housing, billboards and

street lamps [7]. In the indoor environment, artificial light sources typically include

ceiling lights, which can be incandescent, fluorescent or even LED bulbs [1, 8]. The

complete transition from older indoor lighting to LED technology is still taking place.

Therefore, early VLC systems may be deployed in environments where non-LED

lighting still exists. Furthermore, the potential co-existence of VLC with smart

lighting systems [2] presents a unique challenge where non-transmitting lighting

levels become more dynamic. An example of this would be if an LED is pulse width

modulated (PWM) with varying duty cycles for different dimming levels.

For this dissertation, the research question is:

What is the statistical distribution of error states for smart lighting indoor VLC and

outdoor V2V VLC channels, from differing scenarios of noise and interference, based

on semi-hidden Markov models?
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1.2 Research Motivation and Significance

In order to realise the full potential of VLC, the effects of noise and interference need

to be understood. More especially, these need to be understood in terms of different

scenarios. Practical implementations of VLC systems will be used in a variety

of environments. Thus, models based on experimental data under environmental

conditions are favourable. For the purposes of this research, it includes outdoor and

indoor environments, as well as indoor smart lighting environments.

The potential impact of this research is the following:

1. The results of this research can potentially show opportunities for research

into future VLC smart lighting systems and V2V VLC, such as interference

avoidance and mitigation techniques.

2. The channel models developed may be used to help design VLC error control

codes, or be used for high level simulations of VLC channels under differing

noise and interference scenarios, both indoor and outdoor.

3. To the best of the author’s knowledge, this is the first work that uses SHMM

for modelling of optical communication systems reported in literature.

4. It is also the first work to report the impact of smart lighting on a VLC system

based on experimental data.

5. Potential submission of two papers to academic journals; one paper based on

the indoor research and the other based on the outdoor research.

1.3 Scope and Objectives

Since VLC is a candidate for last mile wireless connectivity, the main practical

application is indoor VLC. This is where VLC is able to broadcast to users in homes

and offices and supplement the wireless downlink demand. Additionally, smart

lighting would be typically employed indoors. As such, the first focus of the research

is in an indoor environment that contains fluorescent lights as well as natural light

from the sun that comes through the windows. As far as experiments for the indoor

environment is concerned, it is limited to a lab environment with a fixed position.

A dynamic VLC receiver is not considered in this research. Furthermore, the lab

environment does not contain a smart lighting system. Thus, a single smart lighting
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LED had to be included as part of a test bed which does limit the scope in terms of

the smart lighting aspect of the research. The first objective is to obtain experimental

data from the indoor VLC environment.

The other promising use case of VLC is in V2V communication in the outdoor

environment. Newer auto-mobiles use LEDs for their front and rear lights. These

LEDs can be used to transmit data. In order to limit the scope, the outdoor VLC

modelling is slightly different to the indoor, even though Fritchman models are still

used. The outdoor modelling includes only a receiver (or sensor) and the noise and

interference is modelled based on sensing the outdoor environment and not on actual

transmissions. This is because it is assumed that noise is additive and can still be

modelled without transmissions. Thus, the second objective is to obtain experimental

data for the outdoor environment. Part of achieving these objectives includes the

design and construction of hardware for collection of experimental data. The impact

of only modelling through sensing is that the channel models are potentially more

general to outdoor VLC, as opposed to the indoor models that consider particular

modulation techniques.

The next objective is to use the data collected to analyse error distributions to

develop the Fritchman models. This is done by using the Baum-Welch algorithm.

The models from the indoor channels are used to generate new models and simulate

the channels. These new models can generate error sequences of their own and are

then compared to the experimental error sequences. The final objective is to analyse

these models mathematically and determine their performance and how well they fit

the experimental data.

1.4 Dissertation Organisation

The dissertation is organised as follows:

Chapter 2 gives a literature review which contextualises the rest of the research

presented. The first section is an overview of VLC. This provides an overview of some

of the technical aspects of VLC systems, including general VLC system requirements,

typical transmitters and receivers, modulation techniques and VLC applications.

This section is necessary in order to appreciate some of the design of the experimental

hardware presented in later chapters. The next sections of the literature review

present aspects of the VLC IEEE standard relative to the V2V part of the VLC

research. Following that is a review of general channel models that are commonly
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used in VLC research. The rest of Chapter 2 is devoted to current literature on indoor

and outdoor VLC channel modelling, smart lighting, the Baum-Welch algorithm and

the Fritchman model.

Chapter 3 provides a description of the related techniques. The chapter gives details

on Markov models, the Fritchman model and the Baum-Welch algorithm. This

includes much of the mathematical aspects of these techniques. Details on the

evaluation criteria and error probabilities of the models are also given.

Chapter 4 presents the research on indoor channel modelling which is based on a

paper currently under review for submission to a journal. Details are given of the

different modelling scenarios or cases that were investigated. The design of the indoor

VLC transmitter, receiver and smart lighting LEDs are given. The experimental

procedure is outlined. A large part of this chapter is then devoted to the results and

the discussion.

Chapter 5 presents the research on the outdoor V2V channel modelling. Firstly, the

difference in approach between indoor and outdoor modelling is given. Similarly, the

sensing system design is presented within the context of the IEEE VLC standard.

The experimental procedure is outlined. A section on results and discussion is also

given.

Chapter 6 is the concluding chapter in which a research summary is given, along

with recommendation for possible future work, followed by a final conclusion.
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Chapter 2

Literature Review

2.1 VLC Overview

2.1.1 Basic Indoor VLC Requirements

One of the benefits of indoor VLC is that the existing light infrastructure can be

used for downlink data transmission in an optical wireless communication (OWC)

system. However, the modulation of the communication signal should be able to

coexist with the constant illumination. This means that there should be no visible

flickering and the dimming of lights, if required, should also be able to take place.

IEEE 802.15.7 is the current standard for VLC. It is currently not finalised, but does

include some specifications for modulation schemes and dimming support [9].

2.1.2 Transmitter

White light for VLC can be produced by using either of the following below. It should

be noted that maximum transmission speeds attained and reported in literature vary

depending on the modulation technique and the transmission distance:

1. Blue LED with Phosphor: This is the most common white LED where the

semiconductor is blue, but the yellow phosphor coating on the outside of the

LED results in a white light being emitted. The phosphor coating does limit

the transmission bandwidth of these types of LEDs [1], however transmission

speeds of up to 340 Mb/s have been achieved, at a distance of up to 43 cm [10].



Chapter 2 — Literature Review 7

2. RGB LED: Not only does the combination of the RGB colours produce the

white light, but it can also be used for colour-shift keying (CSK) [11, 12, 13].

One of the most recent high speeds achieved using RGB LEDs for VLC was a

data rate of 3.22 Gbit/s at a distance of 25 cm [14].

2.1.3 Receiver

VLC signals can be received by either of the following:

1. Photodetector (photodiode): This receiver simply converts the received

light into electrical current. The use of a photodetector was reported in one

of the very first publications on VLC [15] and is now used regularly. These

photodetectors typically have a bandwidth in the order of tens of MHz [1].

2. Camera sensor: This consists of a large number of photodetectors. Most

mobile phones include a CMOS camera which is convenient for use as a VLC

receiver as no additional external hardware needs to be added to the mobile

phone [16]. However, the best current phone cameras are limited by up to

1000 fps [17]. In order to improve these speeds, the rolling shutter effect of

these cameras has been exploited to provide data rates multiple times faster

than the standard camera frame rate [18, 19].

2.1.4 Modulation Techniques

VLC channel connections can be either line-of-sight (LOS) or diffuse. The diffuse

connections are as a result of the reflections of light off walls or other objects [20]. VLC

modulation is referred to as being Intensity Modulated/Direct Detection (IM/DD).

On-Off keying (OOK) is the simplest modulation technique that can be used for

VLC. The bandwidth of this modulation technique is limited by the response time

of the LED, which is only several MHz for regular LEDs. There are several pulse

modulation methods which also exist, which include variations on PWM and pulse

position modulation (PPM).

OFDM has the advantage over other modulation methods in that it can reduce

the amount of inter-symbol interference (ISI) and the effects of multipath fading.

Higher transmission rates can also be achieved with OFDM; however, it does have

more implementation complexity. Because CSK modulation doesn’t use white LEDs,
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modulation is not limited by the yellow phosphor coating. It can also achieve higher

transmission rates in cases where other modulation methods are unable to support

the dimming requirement. In CSK, modulation takes place by varying the intensity

of the red, green and blue colours [1].

2.1.5 Existing Prototyping Hardware

OpenVLC is an open source prototyping platform currently being used in the VLC

community. The board includes a BeagleBone Black which is run by a Linux operating

system, with a software defined implementation. At the PHY layer it implements

OOK modulation, with a photodetector as the receiver. The advantage of OpenVLC

is that it can be used for rapid prototyping. However, it is limited by the fact that it

can provide only OOK modulation [21]. Some other Software Defined Radio (SDR)

implementations make use of Universal Software Radio Peripherals (USRPs). These

have the advantage of flexibility in terms of the modulation techniques that can be

employed for VLC, yet the USRPs are less suitable for rapid prototyping as they

tend to be more expensive [22].

A front end implementation designed to be used with low cost boards was used in

[23]. This gives a 360◦ coverage using 20 LEDs and provides the flexibility of being

able to use either a Raspberry Pi, BeagleBone, or an Arduino as the VLC backend.

An Arduino was also used in [24] for an indoor positioning system that uses VLC

and ultrasound.

2.1.6 Applications

One of the foremost and promising applications is the integration of VLC and Wi-

Fi to form what is known as Li-Fi. This would typically be used in the office or

home environments where there is existing LED lighting infrastructure. The VLC

component would supplement the Wi-Fi downlink. There is also an added security

benefit with such a system as the light signals cannot penetrate through walls, making

it more difficult for interception of communication signals [25]. VLC has also been

used for indoor localisation which exploits the use of existing lighting infrastructure

[26, 27]. VLC has also been used in conjunction with power-line communication [28]

and has been applied to indoor environments such as hospitals [29].

Another VLC application that has received a lot of attention is in the automotive
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space. LED lights already present on the front and back of motor vehicles can be

used for communication between neighbouring motor vehicles or between vehicles

and nearby infrastructure such as traffic lights [30]. VLC has also been used for

underwater communication [31].

2.1.7 Smart Lighting

Another benefit of the adoption of LEDs for lighting is the potential it has for smart

lighting systems. These systems promise even further energy and cost savings. This

is in addition to the energy savings from LEDs. This is because smart lighting

systems can assist in providing optimal usage. The intelligence embedded within

these proposed smart lighting systems can potentially be used in conjunction with

VLC [2] [32].

2.2 IEEE 802.15.7 Standard for VLC

The IEEE is in the process of developing a standard for short range optical com-

munication using visible light (IEEE 802.15.7) [9]. The work on the standard thus

far includes support for three modulation schemes and three PHY layers. The

modulation schemes include OOK, variable pulse position modulation (VPPM) and

CSK. The three PHY layers are:

• PHY I: low data rate applications (hundreds of kbps) using OOK and VPPM

for outdoor usage.

• PHY II: moderate data rate applications (tens of Mbps) using OOK and VPPM

for indoor usage.

• PHY III: moderate data rate applications (tens of Mbps) for CSK applications

with multiple light sources and detectors.

Figure 2.1 shows the spectral regions that each of these layers occupy. PHY I has

clock rate operating modes of 200 kHz and 400 kHz. PHY II and III have an overlap

in their spectral regions between operating clock modes of 3.75 MHz up to 120 MHz.

The different PHY layers are able to coexist by using frequency division multiplexing

(FDM), except for PHY II and III which have a significant overlap. The standard has
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PHY I PHY II and PHY III

200 - 400 kHz 3.75 - 120 MHz

Ambient light interference
Modulation frequency

Amplitude

Figure 2.1: PHY layer frequencies for modulation as per IEEE 802.15.7 - 2011 1

the PHY I layer higher on the frequency spectrum than most ambient light spectrum.

This is in an effort to reduce the ambient light noise and interference.

2.3 General Channel Models

There are two approaches modelling a channel behaviour. The first is applying a

signal level approach where the channel is modelled in terms of signal parameters.

These would typically include models for the Signal-to-Noise Ratio (SNR), Signal-

to-Interference-Plus-Noise Ratio (SINR), multipath and optical power. Another

approach to channel modelling is using a statistical or probabilistic model, such as

the one proposed for this research which gives a statistical distribution of channel

errors.

Modelling the errors on a channel using a single error probability is simple, yet

it cannot describe more complex error distributions and patterns. The Fritchman

model has multiple states and error probabilities. This means that the Fritchman

model can potentially provide a better overall model for channel error distributions

and patterns [4].

Channel modelling for VLC in general has not been studied considerably. The

application of the Fritchman model in modelling a VLC channel is not evident in

literature either. There have been several efforts to determine physical channel models

where a signal approach has been taken. A statistical or probabilistic approach in

determining channel error distributions have been applied in other communication

fields. Below are details on existing work on statistical and signal approaches for

VLC channel modelling.

1Adapted from [9]
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Optical power

x(t) Rh(t) y(t)

n(t)

Signal-independant shot noise

Photocurrent

+

Figure 2.2: Baseband-equivalent optical link model 2

2.3.1 General Transmission Link Model

The IM/DD approach that most VLC systems use is favourable because it reduces

implementation complexity and costs of VLC systems. Let x(t) denote the intensity

of the LED and y(t) denote the photocurrent of the receiving photodiode. As shown

in Figure 2.2, the equivalent of the baseband signal for the optical link is given by

[33]:

y(t) = x(t)⊗Rh(t) + n(t) (2.1)

where R is the responsivity of the photodiode, h(t) is the baseband Channel Impulse

Response (CIR), and n(t) is Additive White Gaussian Noise (AWGN) and ⊗ denotes

the convolution [33]. Receiver noise n(t) is mainly as a result of ambient light. This

includes natural light, such as sunlight, as well as artificial light from sources such as

incandescent and fluorescent lamps. This can potentially degrade the performance of

VLC. During the day, the noise would be dominated by sunlight.

2.3.2 Luminous Flux

A fundamental part of modelling a transmitting LED is understanding the radiometric

and the photometric parameters. These parameters can then be used in either the

spatial or spectral integrals to calculate the Luminous Flux, FT , of the LED. This

depends on which parameters are available.

2Adapted from [33]
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Spectral Integral

This method uses the human eye’s luminosity function, V (λ), and the spectral power

distribution, ST (λ), of an LED [33].

FT = 683(lumens/watt)

∫ 750nm

380nm
ST (λ)V (λ)dλ (2.2)

The luminous efficiency of an LED in this case is the amount of electrical power

required to produce a single lumen at 555 nm. This is the wavelength of light that

the human eye is most sensitive to. It requires 1/683 watts to produce a single lumen

at 555 nm.

Spatial Integral

Unlike the LED’s luminosity function which measures the amount of light emitted,

there is the luminous intensity, gt(θ), which measures the LED’s brightness in a

certain direction in candelas. From the intensity distribution, the axial intensity, I0,

and the half-beam angle, θmax are obtained. I0 is the luminous intensity at 0◦ and

θmax is the angle where the light intensity is half I0. Using the entire beam angle,

θmax, to calculate the θmax [33]:

Ωmax = 2π(1− cos θmax) (2.3)

Substituting this into Equation (2.4) below, and using the distribution of the norm-

alised spatial luminous intensity, gt(θ), the luminous flux can be determined [33].

FT =

∫ Ωmax

0
I0gt(θ)dΩ (2.4)

FT = I0

∫ Ωmax

0
2πgt(θ) sin θdθ (2.5)

2.3.3 Path Loss

The path loss, LL, can be calculated using the luminous flux. It is the ratio of the

luminous flux at the receiver, FR, and the transmitter, FT . The relative positions of
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the transmitter and receiver need to be firstly specified, which are, their distance D,

the incident angle α, the transmitter irradiation angle β, the receiver solid angle Ωr

and the receiver’s area Ar. Then [33]:

Ar cosα = D2Ωr (2.6)

The receiver flux is calculated as

FR = I0gt(β)Ωr (2.7)

Using Equations (2.5), (2.6) and (2.7) yields [33]

LL =
FR
FT

=
gt(β)Ar cosα

D2
∫ θmax

0 2πgt(θ) sin θdθ
(2.8)

As most LEDs follow a Lambertian beam distribution, the spatial luminous intensity

function is [33]

gt(θ) = cosm(θ) (2.9)

The value of m (Lambertial emission order) is dependant on the LED’s semi-angle

at half luminance Φ1/2 [33]

m =
ln(2)

ln(cos Φ1/2)
(2.10)

Finally, doing a substitution of Equation (2.9) and θmax into Equation (A)refeq:pos,

it gives the LED’s Lambertian path loss value [33]

LL =
m+ 1

2πD2
cosα cosm(β) (2.11)
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2.3.4 Received Power

Using the path loss, the received power can be calculated. Receiving photodetectors

typically have an optical filter. The spectral response of the receiver’s optical filter is

denoted as Rfλ. Using this value, the LoS optical link is [33]

PRO
=

∫ λrH

λrL

SR(λ)Rf (λ)dλ (2.12)

where SR(λ) = LLST (λ). The λrH and λrL variables are the respective upper and

lower wavelength cut-off values of the optical filter [1].

2.3.5 Multipath Propagation

It is typical to have more than one LED luminaire at the transmitter. This means

that a receiver could receive multiple intensity modulated signals from the LEDs.

The received optical power would then be calculated by a summation of all of the

LoS links within the Field-of-View (FoV) [33]

PR(total) =
N∑
i=0

PR(i) (2.13)

where the number of LEDs is N and PR(i) is the received optical power from

Equation (2.12).

Most indoor surfaces, such as walls and ceilings, have some reflectivity. These surfaces

have a spectral reflectance, ρ(λ), which is a function of wavelength. Due to these

reflections, there are many different paths which the light travels before reaching the

receiver. A Power Delay Profile (PDP) can be used to characterise this multipath

propagation in which the received power distribution is represented as a function of

the propagation delay. Taking this into consideration, the PDP can be modelled as

multiple bounces from N LEDs at time t as [33]

h(t) =

N∑
n=1

∞∑
k=0

h(k)(t;Sn) (2.14)

where k is the number of bounces and Sn is the spectral power distribution for the

nth LED [34].
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2.3.6 Noise and Interference

The most significant sources of noise and interference in the indoor VLC environment

include (1) light from the sun through windows and doors, also known as ambient

light, (2) photodetector shot noise which is a result of ambient light signals and (3)

photodetector thermal noise. These produce a DC noise floor. Based on these effects,

the Signal-to-Noise Ratio (SNR) is expressed as [33]:

SNR =
PS

σ2
shot + σ2

thermal + PB
(2.15)

Considering the scenario where there is background noise and interference, the SINR

is [33]

SINR =
PS

σ2
shot + σ2

thermal + PB + PI
(2.16)

where PB and PI are the background noise and interference powers respectively.

2.4 Indoor VLC Channel Modelling

This section includes a review of the some of the relevant works on indoor OWC

channel modelling and characterisation.

The work by Komine and Nakagawa [15] was the first of its kind to do a fundamental

analysis of OWC using LED lights. Simulations were done for a model room with

LED lights to give distributions of received power, received power with reflection, and

illuminance. These were based on several models described in the previous section.

An AWGN channel with the shot noise being dominant was assumed. It was found

that ISI degraded the performance significantly, and even more so with reflected ISI.

The impact of data rate on the FoV was also studied. Overall, the work showed that

indoor VLC using LEDs is feasible. Chun et al. [35] modelled a VLC channel that

used OLEDs. The modelling was also for a model room, similar to that of Komine

and Nakagawa.
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Ray tracing is also a method of VLC channel modelling. Miramirkhani and Uysal [36]

studied ray tracing of a simulated VLC environment from non-ideal sources under

various conditions. These conditions included a variety of room dimensions, furniture

placements and surface reflections. From the CIRs, the Root Mean Square (RMS)

spread, DC gains, mean excess delay, coherence bandwidth and channel DC gain

were obtained. These results showed specular components induced fluctuations in

the CIR when compared to cases with diffuse reflections. The results also highlighted

differences between Infra-Red (IR) and VLC channels where the DC gains and RMS

delay spread are lower for IR channels. Similar work was done by Miramirkhani

et al. [37], except in this work, the ray tracing was simulated in a scenario with a

mobile user. The IEEE 802.15.7R1 task group has endorsed reference ray tracing

channel models for VLC by Uysal et al. [38]. These models include four different,

common scenarios which are a workplace, office room with secondary light, living

room, and manufacturing cell. Each help with developing MIMO, OFDM and link

layer techniques.

A comprehensive channel characterisation and modelling study was done by Sarbazi

and Uysal [39]. In this paper, the channel modelling was done using ray tracing

techniques in a simulated room environment. Practical issues such as mixing specular

and diffuse reflections, wavelength dependency and higher order reflections were all

incorporated into a simulation model. The ray tracing was performed in simulated

room environments in cases where there were varying amounts of furniture. CIRs

were shown to vary for different types of reflections. The paper further presents an

investigation into the change on channel parameters with varying distance between

the sender and receiver. Closed form expressions were obtained for the RMS delay

spread and channel DC gain with respect to distance. The effects of sender and

receiver specifications as well as environmental objects were also shown to have an

effect on the CIR.

Similar work was done in [34] where the wavelength dependency and spectral re-

flectance of different reflectors were considered in the calculation of the power delay

profile. Simulations were done in an empty room, multipath environment with plaster

and plastic walls. The RMS delay spread and total received power from reflected

paths were also shown to be smaller than that of IR, which is often assumed to have

very similar characteristics to the visible light spectrum.

Chvojka et al. [40] studied the channel characteristics of indoor VLC in a dynamic

environment. Both analytical and experimental results were obtained for a corridor,

furnished room and an empty hall in cases with and without people present. For the
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analytical aspect, received power and multipath channel models were considered. For

the different environments with and without people present, the highest CDF of the

received power differed up to 7% in the furnished room environment. The highest

RMS delay spread of 6.5% was shown in the empty hall environment. Measurement

results from an actual room produced optical power distributions for scenarios where

up to three 1 m high objects were placed in the room. A standard deviation of up to

1.3 dB was shown when comparing the simulation with the actual measurements.

2.5 Outdoor VLC Channel Modelling

This section similarly reports relevant work in VLC channel modelling and charac-

terisation for the outdoor environment, including V2V VLC.

Luo et al. [41] performed a fundamental analysis of a V2V VLC system that used

LED-based headlamps. Mathematical models were derived for the car headlamp,

road surface reflection and noise. These models were then used for BER analysis.

It was shown that if the receiving photodiode is placed at a height between 0.2 m

and 0.4 m, the distance between the transmitter and receiver can be up to 20 m

and maintain a data rate of 20 Mbps. Improvements in these types of mathematical

models were proposed by Cui et al. [42]. These models took into consideration the

position and posture of the LEDs in V2V and V2I VLC channels.

Viriyasitavat et al. [43] derived a channel model for a real-life setting from empirical

data using a Commercial-off-the-Shelf (COTS) scooter tail light. An SDR backend

and a photodiode receiver were used as part of the experimental hardware. 4-PPM

was chosen as the modulation scheme. Received power at the receiver was measured

with a spectrum analyser around the carrier frequency. Their experimental results

showed that the existing Lambertian optical channel model was unable to estimate

the behaviour of the channel accurately enough. The authors thus proposed a new

channel model that better predicts the behaviour of the channel. However, it is

evident that the model that was developed may be specific to the type of tail light

used. Experiments were conducted in both static and dynamic, real-life settings.

In a work by Cui et al. [44], COTS LED traffic lights were used as transmitters in a

study of interference, artificial lighting and background solar radiation. Measurements

for these were used in an analytical path model for the transmitters in an unobstructed

LoS configuration. The model was validated using experimental results. Electrical

power spectrum measurements were done at night for different artificial light sources.
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These included a street light, neon sign board and large video LED screen. The

measurements showed that the lower frequencies of the electrical power spectrum

(up to 1 MHz) may produce a significant amount of interference in the channel.

Another model was developed by Wu and Tsai [45] using empirical data to model the

link duration of V2V VLC scenarios. This was done using a video recorder that was

mounted on a car and driven around urban and non-urban areas. Post-processing

was done on the video recordings in order to identify the tail-lights of other vehicles

on the road. Link durations for non-urban areas proved to be longer than in urban

areas, and that single lane roads have longer link durations compared to two or

three lane roads. Results showed that the link duration was in the order of seconds.

It was found that the link duration could be modelled using a generalised Pareto

distribution which can be used for VLC link duration analysis.

2.6 Baum-Welch Algorithm

The Baum-Welch algorithm was first described by Baum et al. [6]. It is an iterative

technique used for finding the parameters of a Hidden Markov Model (HMM). This

is done by using measured or simulated error sequences and initial values of the

model parameters as the algorithm inputs. The Baum-Welch algorithm converges to

a maximum likelihood estimator that maximises the model parameters based on the

error sequences.

Some of the foremost applications of the Baum-Welch algorithm is in speech recogni-

tion [46, 47, 48] and cryptanalysis [49]. Erkurt and Proakis [50] used the Baum-Welch

algorithm for joint data detection and channel estimation for channels that have

rapid fading. Sivaprakasam and Shanmugan [51] used a modified Baum-Welch al-

gorithm to estimate the parameters of Markov model from an observation sequence

of a digital channel. Choi and Hwang [52] also used the Baum-Welch algorithm for

audio-to-visual conversion based on an HMM inversion technique.

There have been some modifications of the Baum-Welch algorithm. Baggenstoss

[53] made modifications for HMMs parameter estimation with multiple observation

spaces. Turin and Sondhi [54] modified the Baum-Welch algorithm applied to digital

channels to reduce computational requirements in cases where the observed error

sequences have long stretches of observations which are identical.
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2.7 HMM and Fritchman Model

In a recent work by Lui et al. [55], an HMM was used to characterise the non-linear

effects in transmission of weakly illuminated LEDs. From the HMM, a Monte-Carlo

method was used to determine what the achievable transmission rate is. The Viterbi

algorithm was used in order to detect these weak signals under the HMM.

Fritchman [5] proposed the characterisation of channels using finite-state Markov

chains in discrete-time. The Fritchman model has been used in the past as it is

suitable for modelling burst error distributions [5]. It is also possible to estimate

the model parameters conversely by measured or simulated burst error distributions.

Fritchman derived both the error run and error-free run distributions. It is these

distributions that can be applied to code evaluations.

Familua and Cheng [56] used the Fritchman model and Baum-Welch algorithm to

model noise in a power line communication (PLC) band. The authors proposed a

three state Fritchman model, with two good states and one bad state. Models were

developed in both residential and laboratory environments for three different sources

of noise in the channel; background noise, narrow band interference and impulse

noise. These noise observations were gathered by experimental measurement. In

order to obtain the error sequence, a noise threshold was set and any measured signal

above the threshold was considered an error. It was found that the Baum-Welch

algorithm needed to be executed at least 20 times before the model parameters were

obtained within a sufficient level of accuracy. Familua et al. [57] also modelled

a low complexity FSK-OOK integrated in-house PLC and VLC system using the

Fritchman model. Another work by Ndjiongue et al. [58] also shows modelling of a

hybrid PLC-VLC channel. Similar work in the field of PLC was done by Tina et al.

[59] and Familua et al. [60].

Costamagna et al. [61] developed an indoor wireless channel model also using the

Fritchman model and Baum-Welch algorithm in order to characterise the Digital

Enhanced Cordless Telecommunications (DECT) technology at different interference

levels and receiver speeds in an office environment. The authors reported that, in

general, channels that are more bursty require a larger number of states in the model,

which makes for a more simple model. Another finding was that if the analysis of

the short-term behaviour of the channel is of interest, the model can remain simple.

Van Heerden and Ferreira [62] applied the Fritchman model using the Baum-Welch

algorithm to model the error sequences of frequency hopped Very High Frequency
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(VHF) digital channels, for both mobile and stationary scenarios. The mobile

readings took place on an urban freeway. These error sequences were obtained from

measurements on each of those two channels. Four-state Fritchman models were

developed from the urban environment using FSK, DPSK, QPSK and 8-ary PSK

modulation schemes. From curve fitting, it was found that five-state Fritchman

models showed little difference in accuracy compared to the four-state model. The

results were used to develop error correction techniques and it was found that, for

the channels investigated, Reed-Solomon codes were the optimum types of codes. A

similar work employing the same techniques was done by Swarts and Ferreira [63] in

which they showed that certain observations were modelled better by the Fritchman

model due to differences in receiver moving speed and the signalling interval. This

was attributed to differences in Doppler rate.

Dobre et al. [64] provide another case where the VHF channel is modelled using

the Fritchman model. However, in this case, models were derived for both urban

and rural areas with the receiver travelling at different speeds using FSK and 8-PSK

modulation for different tests. Modelling results showed that differences in model

transition probabilities were dependant on the signalling method as well as the vehicle

speed, which was attributed to the Doppler shift.

Garćıa-Fŕıas and Crespo [65] used HMMs to characterise the burst errors in indoor

Code-Division Multiple-Access (CDMA) radio links. The authors proposed a Hidden

Markov Generative Model (HMGM) which is suitable for characterisation of the

channels that have long error bursts. These models were also parametrised by the

Baum-Welch algorithm. In addition to the HGM, a Fritchman model was also

developed. Both of these models were based on the experimental error sequences

from the radio links. The error-free run distribution, error cluster distribution and

absolute value of the normalised covariance of the indoor readings for the HGM and

the Fritchman model were compared. Results showed that the HGM were statistically

close to the measured error sequences and showed a significant improvement over the

Fritchman model. This improvement was mainly due to the high number of states

the HGM consisted of, which means the model had higher complexity.

Another example of where the Fritchman model was applied to wireless links was in

the work by Chouinard et al. [66]. The model was developed using error sequences

from experiments involving a fixed transmitter and mobile receiver using a PSK

modulation scheme in a medium-density urban environment. This model also

consisted of a four-state Fritchman model. In this case, the model parameters were

estimated using the gradient method. Error-free runs were also used in this case
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to compare error sequences simulations with actual error sequences. The work also

showed that for some of the experimental data, the Gilbert model proved sufficient

to describe the channel.

Van Rooyen et al. [67] did a comparison of the Fritchman model and a Binary

Symmetrical Channel (BSC) model that had the same error rates in a Direct-

Sequence Spread-Spectrum Multiple-Access (DS/SSMA) system. This was done in

scenarios with a varied number of users and processing gain. The comparisons using

Error-Free Run Distribution (EFRD) plots showed that the Fritchman models were

substantially different from the BSC and even displayed characteristics of a channel

with memory. In this case, the Fritchman model was able to show how the errors

on the channel occurred, unlike using a single BER value for a BSC to describe the

errors. Another work by Van Rooyen and Ferreira [68] parametrised a Fritchman

model for direct sequence spread spectrum under multi-user and multipath conditions.

The parameters of each model also included SNR and processing gain. Models were

derived for tests with a specific SNR value, within a certain SNR range.

Other works using the Fritchman model for modelling Rician fading channels [69],

Rayleigh fading Global System for Mobile (GSM) communication channel [70], a

simulated Longer Term Evolution (LTE) system [71] and digital magnetic tape

recordings [72] are also worth noting.

2.8 VLC Channel Interference

Interference in the VLC channels presents a significant challenge to full realisation of

the technology [1, 8]. This applies to both indoor and outdoor environments [7].

In an early work by Moreira et al. [73], artificial light interference from fluorescent and

incandescent lights were characterised and modelled using experimental measurements

in optical wireless channels. Measurements showed that the artificial light has the

potential to produce a significant amount of interference in bands where transmission

speeds are in the order of Mbps. It was found that fluorescent lights with their

wider band have higher potential to degrade the optical channel. This highlighted

the importance of considering the effects of artificial lights in an OWC system. A

more recent work by Rahaim and Little [74] analysed the optical interference in VLC

networks.

A highly relevant work by Kizilirmak and Kho [75] presents an interference mitigation
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technique for OFDM based VLC. The authors highlight a probable use case of VLC

where one luminary is transmitting data using OFDM, and the other is dimmed

with PWM. This has potential in smart lighting applications where one LED is

transmitting data and the other is not. This presents a unique challenge for the

transmitting LED because now the channel has an interfering PWM signal. The

authors suggest that the source of errors can be attributed to the periods where

interfering PWM transitions take place. The PWM signal simply adds a DC offset

to the received signal when the PWM transitions are not taking place.

2.9 Conclusion

The chapter began with an overview of VLC in which typical hardware, modulation

techniques and applications were detailed. The IEEE standard for VLC was also

presented which highlighted the frequency band used for outdoor VLC. A detailed

review of current signal-level channel models used in VLC was also given. Literature

on these signal-level models were presented. A large portion of the chapter showed

how statistical channel models, namely HMM and Fritchman models, have been

used in the past to provide high level, statistical models for wireless communication

channels. Many of these works used the Baum-Welch algorithm for estimating the

channel parameters. Finally, a review was given of literature on optical channel

interference.
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Chapter 3

Related Techniques

3.1 Introduction

This chapter presents details on the mathematical techniques used for the research

to derive the channel models. This includes details on a generalised Markov model,

leading to the Fritchman model. Details of each step of the Baum-Welch algorithm is

also given. Finally, the evaluation criteria used for the channel models is presented.

3.2 Markov Models for Discrete Channels with Memory

Discrete channel models are different from waveform models in that they abstract

out the waveform signal. A waveform signal consists of a sampled combination of the

transmitted signal as well as disturbances such as noise and interference, whereas

a discrete channel model is in terms of symbols only. Discrete channel models

are favourable because they are computationally more efficient when compared to

waveform channel models. With the physical aspects of the signal being abstracted

out, the signal can then be characterised in terms of a smaller set of parameters.

An important part of the modelling process is determining these parameters. This

can be accomplished by physical measurements on the actual channel or by single

waveform-level simulations.

For a channel that has memory, the discrete-time, finite-state Markov Model (MM) is

most commonly used. The MM is favourable because it has been applied successfully

to a number of different, significant communications problems. MMs can be used in
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evaluating the channel capacity of a discrete channel, and for the designing of source

encoders, interleavers and error control coding techniques [4].

For a discrete communication channel MM, at a given point in time, the channel can

be in N number of states S = S1, S2, S3, ..., SN . As time progresses, the channel can

transition between these states. This can be represented by the state transition matrix

A. The elements aij are defined as the probability of transitioning from state i at

time t to a different state j at time t+1. It is represented by aij = Pr[St+1 = j|St = i]

where i, j = 1, 2, 3, ..., N . Thus [4],

A =


a11 a12 · · · a1i · · · a1N

a21 a22 · · · a2i · · · a2N

...
...

. . .
...

. . .
...

aN1 aN2 · · · aNi · · · aNN

 (3.1)

Within each state, there is probability that a transmission error will occur in the

channel. For a binary symbol alphabet, the error symbols are denoted as E = {0, 1}
where a 0 denotes no error and a 1 denotes an error. Given that the model is in

state i, there is a probability that the error symbol ek will occur, which is denoted

as bi(ek) = Pr[ek|St = i]. This is represented in the error generation matrix [4]:

B =

[
b11 b12 · · · b1i · · · b1N

b21 b22 · · · b2i · · · b2N

]
(3.2)

The final parameter is the initial state probability. This describes the probability of

being in any of the N states at t = 1, or at the beginning of the observation. It is

denoted as Π = Pr[S1 = i] where i = 1, 2, 3, ..., N , or [4]

Π =
[
π1 π2 π3 · · · πN

]
(3.3)

3.3 Fritchman Model

For the case of binary channels, the Fritchman model framework partitions the channel

state space into good and bad states. Fritchamn defined k good states representing
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1 2 3

Bad State (error)Good States (error-free)

a13

a11
a23

a22

a31

a32
a33

Figure 3.1: Fritchman model with two good states and one bad state.

error-free transmissions and N − k bad states representing a transmission where an

error always occurs.

Three-state Fritchman models were chosen in order to limit the complexity of using a

higher number of states. Figure 3.1 shows a three state Fritchman model. Transitions

only occur between good and bad states, and never from a good state to another

good state. This is because the transitions between good states are indistinguishable

as the output is always error-free. In other words, the transition is not observable.

The resultant A matrix would thus be [4]

A =


a11 0 a13

0 a22 a23

a31 a32 a33

 (3.4)

Due to the fact that errors are produced only when the channel is in a bad state,

the B matrix simply consists of 1’s and 0’s. The first two columns of the matrix

represent error-free states and the last column represents the error state [4]

B =

[
1 1 0

0 0 1

]
(3.5)

The final parameter for a three-state model is the initial state probability [4]

Π =
[
π1 π2 π3

]
(3.6)

In this particular case, the model can be said to be an SHMM. This is because when

an error is observed, it is due to the channel being in only a single bad state. If

no error has occurred, it is difficult to know which one of the many good states

the channel is in. It is for this reason that knowledge of the channel states is not

completely hidden.
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The Gilbert-Elliot (GE) model is a two-state MM with only one good state and one

bad state [76]. Even though this model is simple, it is not flexible enough to be

useful in modelling vast array of channels. It is possible that the model would not

be able to account for more complex error distributions [5].

3.4 Baum-Welch Algorithm

The Baum-Welch algorithm is a robust method for fitting an MM. Using this

algorithm, the parameters for the channel model [4],

Γ = (A,B,Π) (3.7)

can be estimated. This is an iterative algorithm that uses either a measured or

simulated error sequence [4],

O = {O1, O2, ..., Ot, ..., OT } (3.8)

to converge to the maximum likelihood estimator for the model parameters that

maximises Pr(O|Γ). The number of iterations depends on the desired level of accuracy

for the model [6]. Included below is an overview of the steps of the Baum-Welch

algorithm [4].

Step 1: Assume an initial model with some values for Γ = (A,B,Π).

Step 2: Using the model Γ = (A,B,Π), compute the forward variables [4]

αt = Pr[O1, O2, ..., Ot, st = i|Γ] (3.9)

and the backward variables [4]

βt = Pr[Ot+1, Ot+2, ..., OT |st = i,Γ] (3.10)
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Forward variables Calculation of the forward variables involves the following steps

[4]:

Initialisation:

α1(i) = πibi(O1), i = 1, 2, ..., N (3.11)

Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+i), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (3.12)

Termination:

Pr[O|Γ] =
N∑
i=1

αT (i)βT (i) (3.13)

Backward variables Calculation of the backward variables involves the following

steps [4]:

Initialisation:

βT (i) = 1, i = 1, 2, ..., N (3.14)

Induction:

βt(i) =

N∑
i=1

βt+1(j)bj(Ot+1)aij , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (3.15)

Step 3: Using the forward variables and backward variables, the next step is to

compute the expected frequencies, ζt(i, j) and γt(i). ζt(i, j) represents the expected

number of transitions from state i to j. It is computed according to [4]

ζt(i, j) = Pr[st = i, st+1 = j|O,Γ] =
αt(i)aijbj(Ot+1)βt+1(j)

Pr[O|Γ]
(3.16)

γt(i) represents the expected number of transitions from i. It is computed according

to [4]

γt(i) = Pr[st = i|O,Γ] =
αt(i)βt(i)

Pr[O|Γ]
(3.17)
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Step 4: Using the expected frequencies, the new state transition probabilities âij

are calculated by [4]

âij =
expected number of transitions from i to j

expected number of transitions from i
=

∑T−1
t=1 ζt(i, j)∑T−1
t=1 γt(i)

(3.18)

Then, b̂j(ek) is computed [4]

b̂j(ek) =
expected number of times ek is emitted from state j

expected number of visits to state j
=

∑T
t=1|Ot=ek

γt(j)∑T
t=1 γt(j)

(3.19)

Step 5: Repeat steps 2 - 4 using the newly computed model parameters Γ̂ = (Â, B̂, Π̂)

until the desired level of convergence has been reached.

3.5 Evaluation Criteria of Modelling

3.5.1 Log-likelihood

One way to determine the convergence of the Baum-Welch algorithm is to run

the algorithm iteratively until successive values Pr[O|Γ] differ by very little. This

is because the Baum-Welch algorithm is guaranteed to converge to a maximum

likelihood. The log-likelihood can be used for not only determining convergence, but

also for evaluating how well the model represents the channel. It is evaluated by the

following in terms of a scaling constant Ct [4]

Pr[O|Γ] =

T∏
t=1

Ct (3.20)

log10Pr[O|Γ] =

T∑
t=1

log10Ct (3.21)
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3.5.2 Error-free Run Distribution Plot

Another way to evaluate the model is by using the EFRDs, Pr(0m|1), which is the

probability of transitioning to m or more consecutive error-free states following the

occurrence of an error. The distributions of Pr(0m|1) for both the original measured

data and the data generated from the channel model approximated by the Baum-

Welch algorithm can be plotted and compared [4]. Furthermore, the deviations

in these two plots can be evaluated by determining the mean squared error. The

chi-squared test can also be used to determine if there are significant differences

between the approximated model frequencies and the original data frequencies.

3.6 Conclusion

This chapter presented the techniques that were used to derive and analyse the

channel models. The Fritchman model was presented in detail, showing how it can

be used for modelling a channel from a discrete error sequence. The Baum-Welch

algorithm used to iteratively estimate the model parameters was also presented in

detail. Log-likelihood plots are used to determine the convergence of the model

parameters. Models can be analysed by using the EFRD in order to see the error

patterns and distributions.
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Chapter 4

Indoor Modelling

4.1 Introduction

The first part of the research is focused on the indoor environment where interference

from nearby light and LEDs are present. This chapter explains each of the interference

and noise scenarios, the hardware that was designed and used for conducting the

experiments, the experimental procedure and and, finally, a discussion of the results.

4.2 Model Scenarios

Models were developed for three different indoor channels with different noise and

interference present. The interference in these cases would be from a nearby smart

lighting LED. The three different cases are:

I Background noise from sunlight passing through windows and from fluorescent

indoor lighting.

II The same background noise as case I as well as an interfering PWM modulated

LED. This case includes three sub-cases for different PWM dimming levels,

namely 25%, 50% and 75% duty cycles.

III The same background noise as case I as well as an interfering OOK modulated

LED transmitting pseudo-random binary data.

Experiments for each of these cases took place in a lab environment that includes a

number of windows and fluorescent lights.
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4.3 System Description

4.3.1 Hardware

Figures 4.1 and 4.2 shows a photograph of the experimental setup with the transmitter

and receiver boxes. Figure 4.3 shows a detailed block diagram of the system, which

includes transmitter, interferer and receiver modules.

The transmitter’s Arduino Nano outputs an OOK signal to the MOSFET circuit

which then drives the white LED. The OOK signal is received at the photodiode and

then converted from a current signal to a voltage signal by means of a Transimpedance

Amplifier (TIA). The Analog-to-Digital Converter (ADC) at the receiver’s Nano

samples the signal and determines whether the received bit is a 1 or a 0 based

on a decision threshold. Communication between the transmitter and receiver is

synchronised by a clock line. In a practical VLC communication system, a clock line

would not be practical. However, seeing as this work is on channel characterisation,

a clock line is acceptable. This clock line is necessary to reduce the likelihood of

having any synchronisation errors. Thus, almost all of the errors should come as a

result of the channel. The interferer transmits a signal in the same manner as the

transmitter. The transmitter module controls when the interferer should be activated

as part of the experimental procedure.

Figure 4.1: VLC indoor transmitter and receiver with stand.



Chapter 4 — Indoor Modelling 32

(a) Photo of transmitter hardware. (b) Photo of receiver hardware.

Figure 4.2: VLC system hardware.

NANO
MOSFET 

driver

NANO
MOSFET 

driver

LED

Clock

Threshold change control

Interference control TIA NANO

Transmitter

Interferer

Receiver

Optical
channel PD

LED

Figure 4.3: Block diagram of VLC system used to obtain error sequences.

4.3.2 Decision Threshold

At the receiver, the ADC threshold value is different for each experimental case. For

case I, there is a single threshold value. Figure 4.4 shows an example of the two

thresholds used for case II at the receiver. Vth1 is used when the interfering PWM

signal is on and Vth2 for when it is off. This is because when the PWM signal is on,

it simply adds a DC offset to the received signal. Note that the PWM signal has

an additional DC offset as a result of background noise. The interferer informs the

receiver when it needs to change its threshold value while a transmission is taking
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Vth1

Vth2

Figure 4.4: Voltage waveform with bit sequence, PWM interference, and background

noise DC offset measured at the receiver, showing two decision thresholds.

place. The justification for this approach is that a PWM signal is deterministic and

it is possible to change threshold without a connection between the interferer and

receiver. However, the implementation of this is beyond the scope of this research.

These approaches result in an optimal threshold detection for cases I and II.

Threshold values are determined at the beginning of each transmission by sending

pilot bit sequences. The pilot bits are sent once for case I. For case II, the pilot bits

are sent twice; once for when the PWM signal is on, and again for when the PWM

signal is off. The same pilot bits are also sent at the end of a transmission.

The random binary signal transmitted by the interferer in case III is non-deterministic.

In practise, this makes it more difficult to determine when to change the decision

threshold. As such, a decision threshold is taken by getting the average ADC values

of the sampled random signal, and using this as the decision threshold. This results

in a sub-optimal decision threshold.

4.4 Experimental Procedure

For each case, 100,000 pseudo-random bits were transmitted at a rate of 6.25 kbps in

10,000 bit chunks. The interfering PWM signal has a frequency of 600 Hz with duty

cycle values as per the case II description (see Section 4.2). Transmissions were run

for all three of these case II duty cycles. Transmission distance was fixed at 1m. In

order to get a variety of modelling results, a number of transmissions took place for

each case within a range of SNR in case I, or SINR in cases II and III. This was done

by varying the optical power of the transmitter. Presently, there is no standard set

for the maximum amount of optical power allowed to prevent interference on a nearby

transmitting LED. The SNR and SINR range was chosen based on the number of

errors in the error sequence, which was between approximately 1% and 10%. The
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received binary sequence was compared with the known transmitted sequence to

obtain an error sequence. A 1 in the error sequence denotes an error and a 0 denotes

no error. This was then used as the input to the Baum-Welch algorithm. A detailed

description of how SNR was calculated is included in Appendix A.

Along with the error sequences collected for each case, initial values for the model

parameters were used as the input for the Baum-Welch algorithm, which include:

A =


0.9 0 0.1

0 0.8 0.2

0.1 0.7 0.2

 (4.1)

B =

[
1 1 0

0 0 1

]
(4.2)

Π =
[
0.4 0.4 0.2

]
(4.3)

4.5 Results and Discussion

4.5.1 Model Derivation and Comparison

The Baum-Welch algorithm was used to generate three-state Fritchman models.

Increasing the number of states of the model yielded similar results for a model with

only three states. This means that a three-state model is the minimum number

of states needed to describe the channel in these particular scenarios in terms of a

Fritchman model.

The resultant state transition probabilities of the models were used to generate

new error sequences of 100,000 bits for the different channels at each SNR/SINR.

In order to determine how well the models describe the channel, a comparison is

made between a single BER value and the Fritchman model with its multiple states.

Independent and Identically Distributed (IID) error sequences were generated using

each sequence error probability, Pe, obtained from the experimental error sequence.

The measured, modelled and IID error sequences were then compared using EFRD

plots, or Pr(0m|1). The EFRD from the measured sequence is compared to the
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modelled and IID EFRD using the chi-squared (χ2) test and Mean Squared Error

(MSE) to determine goodness of fit.

Only models for cases I and II are presented. Models for case III are not presented

because of the high number of errors (24.97%) in the error sequences. This was

still the case even at a higher transmitter SINR. Channels with such high error

probabilities would not be practical even when employing existing error control

techniques. As such, a more robust method is required for threshold change and

detection for case III in order to reduce the number of decision errors and develop

practical channel models.

4.5.2 Case I

Table 4.1 shows the modelling results for case I along with comparisons of the models

and IID χ2 and MSE values. Each of the models for this case have lower MSE and

χ2 values. This indicates that the Fritchman model provides a more accurate way to

model errors in a VLC channel with background noise, compared to a single BER

value. Figure 4.5 shows one of the EFRD comparisons where the model follows the

distribution of the measured sequence.
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Figure 4.5: Channel with background noise from indoor lighting and windows at 4.73

dB SNR case I.
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4.5.3 Case II

Tables 4.2, 4.3 and 4.4 show the case II modelling results for the 25%, 50% and

75% duty cycles respectively. The first half of the tables show that the models

generated for case II have a33 = 0. This represents the probability of having two or

more consecutive errors in the error sequence, forming error clusters. This means

there are no error clusters. The χ2 and MSE values show that the models do not

always provide a better fit compared to the IID sequences in tests for case II. Figures

4.6, 4.7, and 4.8 show an EFRD from case II tests with similar SINR. The error

sequence produced by the model is unable to follow the measured error sequence

with significant improvement compared to the IID error sequence. It is evident that

Fritchman models are better suited to channels that have error clusters. It is possible

that a two-state GE model which formed the basis for the Fritchman model may

have been sufficient to model these channels.

At higher SINR tests, the majority of errors appear to be caused by the interfering

PWM signal. Between about 5 dB and -10 dB, the tests show Pe values that are

consistently around 0.05. This is also around the region where a33 = 0. Thus, errors

caused within this region are almost exclusively as a results of the interfering PWM

signal. As the SINR decreases, errors are introduced from background noise as well,
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Figure 4.6: Channel with background noise and 25% duty cycle modulated LED

interference at -9.55 dB SINR.
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which increases the Pe and gives a33 > 0.
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Figure 4.7: Channel with background noise and 50% duty cycle modulated LED

interference at -8.55 dB SINR.
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Figure 4.8: Channel with background noise and 75% duty cycle modulated LED

interference at -10.68 dB SINR.
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The SINR values that were calculated and included as part of the results for case II

are lower than expected. This is as a result of limitations in the SINR measurements.

SINR and SNR values were calculated using variance from ADC readings. Inaccuracies

in the ADC readings led to variance values for the noise term being much higher than

anticipated. Figure 4.9 shows some of the ADC samples from case II. These specific

samples were supposed to be grouped into readings of the background noise only.

However, because the grouping had to take place in the presence of the interfering

PWM signal, some samples that were supposed to be put into the interference group

were put into the noise group. These are evidenced by the spikes in ADC samples

in Figure 4.9. This invariably led to a higher denominator term, thus, reducing the

SINR values. See Appendix A for more details on the SINR calculation.

4.5.4 Log-likelihood

For the generation of the models, the Baum-Welch algorithm was run 20 times. In

order to test for the algorithm convergence, the log-likelihood ratios were plotted for

cases I and II. The log-likelihood plots for four models are shown in Figure 4.10 for 10

iterations. Each of algorithms converged by the third iteration. The log-likelihoods

for case II are similar, with the case I having a greater log-likelihood.
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Figure 4.9: Samples of ADC readings used for SINR calculations.
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Figure 4.10: Log-likelihoods for 10 iterations of the Baum-Welch algorithm, cases I

and II.

4.5.5 Discussion

The SINR values are significantly different for case II compared to tests with similar

Pe values from case I. This is due to the dominance of the interfering PWM signal

which adds a Pe increase of about 0.05. The errors from interference are also periodic

in nature. This is due to the periodic interfering PWM signal. However, the periodic

errors are not the same for different interference duty cycles. Figure 4.11 shows the

EFRD for the measured sequences for tests from each of the three duty cycles. The

25% and 75% duty cycle interference EFRD show very similar distributions. This is

because the signals are 180◦ out of phase. Upon closer observation, Figure 4.11 also

shows evidence that the PWM transitions are also the source of errors, even with

the optimal threshold detection. The gaps between these errors are dependant upon

the gaps of the duty cycles. The PWM frequency is an order of magnitude higher

than the transmission frequency. Thus, for a 50% duty cycle interference, there is a

higher probability of errors every 10 bits. On the other hand, for 25% and 75% there

is a similar error probability, except it is every 8 bits.
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4.5.6 Conclusion

Models for case I which included background nosie only were all able to provide good

approximations of the channels. However, models for case II did not consistently

provide good approximations of the channels. This was because of the dominant

PWM interference which resulted in periodic errors, which led to few error clusters.

The EFRD plots did provide some insight into the error patterns of interfering PWM

signals. The 25% and 75% shows similarities in error distributions. These results can

possibly help in the design of error control codes for indoor VLC and future smart

lighting systems. SINR values were found to be too low. This was due to incorrect

grouping of noise and signal ADC readings. Models were not derived for case III due

to the high number of errors in the channel.
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Chapter 5

Outdoor Modelling

5.1 Introduction

This part of the VLC channel modelling research focuses on outdoor VLC. More

specifically, this work models an outdoor channel which could potentially be used

for V2V and V2I VLC at night, and for a specific wavelength band. This band

includes colours of typical car rear lights which could be used for VLC. The channel

models developed are also based on experimental results in different environments or

scenarios.

Firstly, the design of the system used for collecting experimental readings is presented.

Then, the experimental procedure is outlined and each testing scenario is presented.

Results and analysis are then given followed by a conclusion. The techniques used to

determine the outdoor channel models are similar to those used to determine the

outdoor channel models.

5.2 System Description

The design of the outdoor sensing equipment relies on the IEEE 802.15.7 short-range

wireless optical communication using visible light (refer to Chapter 2, Section 2.2).

The focus is on the 200 kHz frequency that is used for outdoor VLC. Figure 5.1

shows an overview of the major modules in the outdoor sensing system. Optical

signals are sensed, filtered optically, amplified and then filtered again electronically.

Sampling takes place on an Arduino microcontroller, following which, the samples
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Optical Filter Transimpedance Electrical Arduino
Ampli�er Bandpass Filter

�ensing �ampling

Figure 5.1: Flow diagram of outdoor sensor system.

are uploaded to MATLAB on a PC for further processing. This process is discussed

in more detail in the following subsections.

5.2.1 Optical Sensing and Filtering

A lens with 12 cm diameter and focal length of 25 cm is used for the optical sensing.

This particular lens was used as it was inexpensive and readily available. The lens

and the sensing equipment casing is shown in Figure 5.2(a). The reason for using a

large lens is because in an outdoor V2V communication application, the incoming

light signals would not be precisely in the LoS. Thus, a larger lens is required in

order to capture more light from the environment.

The rear lights of cars include red brake lights and orange indicator lights. These

are the LED lights that could potentially be used for V2V VLC. As such, all colours

except for red and orange need to be filtered. This was done using a slit of readily

available transparent polymethyl methacrylate (commonly known as Perspex) which

was placed in front of the photodiode in the sensing equipment. There are several

Perspex colours within the red and orange spectrum available for use. Each of these

have different absorption characteristics. The names of these filter colours were

obtained from the manufacturer. Figure 5.3 gives a comparison of these filters along

with the spectral band of a red rear car light. The spectrum for this red light was

(a) Photo of outdoor optical sensor (b) Electrical hardware with filter.

Figure 5.2: Outdoor sensor hardware.
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Figure 5.4: Optical sensor diagram

obtained from [77]. The characteristics of each of the filters were measured. Figure

5.3 shows that the Lava Orange colour provides the best amount of absorption for

red and orange, as well as for the spectrum of the car LED light. Figure 5.4 shows a

cross section of the optical sensor. The photodiode and optical filter are attached

to the end of a movable shaft. The shaft can slide to adjust the position of the

photodiode along the focal length, if required.
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5.2.2 Electrical Amplification and Filtering

Figure 5.5 shows the circuit diagram for the electrical component of the sensing

system. Following the optical filter, the optical signals are sensed by an SFH 206 K

silicon PIN photodiode. The current signals are then converted to voltage signals

using an OPA380 TIA. The gain of this TIA is lower than is required so that the TIA

does not reduce the input bandwidth. As such, it is cascaded with a post-amplifier

which brings the gain to a desired value. This in turn is followed by an active second

order Butterworth bandpass filter with center frequency at approximately 200 kHz,

which is the frequency of interest as per the IEEE standard.

5.2.3 Data Processing

Sampling takes place using the Arduino Nano’s ADC. The ADC values are uploaded

to MATLAB where the threshold values and error sequences are calculated. Each of

the samples are used as discrete points for the generation of the models. In order to

determine whether a given discrete point is an error or error-free state, a threshold

had to be chosen. This was based on the three-sigma rule commonly used for anomaly

detection. Any discrete point with an ADC reading above the three-sigma value is

considered as an error state. Any reading below the three-sigma value is considered

an error-free state. Using this rule and the sampled ADC sequence gives the error

sequence needed as one of the inputs to the Baum-Welch algorithm and ultimately

the generation of the Fritchman models.

−

+
−

+

100k

10k

1k

2k

1nF

3.92k

1nF

174

−

+

Figure 5.5: Amplifier and filter circuit of the outdoor VLC sensor.
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5.3 Experimental Procedure

The sensing equipment was mounted on the dashboard of a car. Sensing was carried

out multiple times along four different routes at night-time between 19:30 and 21:30.

Each of these routes were on different road environments with varied types of lighting

from both infrastructure and vehicles. Each of these environments had a different

vehicle speed associated with them. A variation in routes and environments were

chosen in an attempt to provide different types of channels that V2V and V2I VLC

would be exposed to.

Below are the four routes with descriptions of the types of static and dynamic

ambient light. Figures 5.6 - 5.9 include photographs of the routes as well as a GPS

mapping of the route that was travelled. GPS routes and speeds were recorded from

a smartphone in real-time.

(a) Photo. (b) Route. ( c©1992-2018 TomTom)

Figure 5.6: Freeway testing route

(a) Photo. (b) Route. ( c©1992-2018 TomTom)

Figure 5.7: Commercial testing route
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(a) Photo. (b) Route. ( c©1992-2018 TomTom)

Figure 5.8: CBD testing route.

(a) Photo. (b) Route. ( c©1992-2018 TomTom)

Figure 5.9: Residential testing route

1. Freeway: large, bright freeway lights and lit-up billboards with moderate

amount of traffic - see Figure 5.6(a).

2. Commercial: smaller street lights with some small billboards and low amount

of traffic - see Figure 5.7(a).

3. Central Business District (CBD) or city: small street lights, many bright

billboards and some large LED screens; building lights and moderate traffic -

see Figure 5.8(a).

4. Residential: small street lights, no traffic, small lights from houses - see

Figure 5.9(a).

Experiments were carried out on two evenings, each of which were a weekday. On

these evenings, each of the routes were travelled three times while the sensor collected

data. The total time for these tests were two minutes which equated to 100,000
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discrete samples. The distance and average speed that the vehicle travelled along

each route were made to be as close as possible to each other for each individual

test. In an attempt to quantify the amount of light the sensor was exposed to, a lux

meter was used to record the illuminance within the car where the sensor was placed.

As the illuminance would change along the testing route, an illuminance range was

recorded.

5.4 Results and Analysis

This section presents and discusses results of the two aspects of channel modelling.

Firstly, the EFRD plots are presented with a discussion on some of the differences

and correlations between these plots. Secondly, the Fritchman models developed

from the EFRD sequences are presented.

5.4.1 Error-free Run Distributions

Figures 5.10, 5.11, 5.12 and 5.13 show the EFRD of the error sequences for the

freeway, commercial, CBD and residential routes respectively. The graphs are plotted

in such a way to highlight the tests taken on each of the two days. The blue hue

EFRD plots are for the first test, and the orange hue EFRD plots are for the second

test. The plots show differences between the test sets on each of these days.

The freeway EFRD plots (Figure 5.10) show some grouping in the lower error-free

intervals, but deviate as the interval length increases. The test set from each of

the days group together at these higher intervals. The commercial EFRD plots

(Figure 5.11) similarly group together based on the test day. However, there are some

significant deviation in the lower intervals. The first test (blue) showed vastly different

distributions, yet the second tests (orange) followed a similar pattern throughout the

distribution. The CBD EFRD plots (Figure 5.12) also have grouping in at higher

intervals and little correlations between the tests at lower interval lengths, except for

Test 1-2 and 2-3 which show some similarity. Finally, the residential EFRD plots

(Figure 5.13) show the greatest correlation between the first set of tests (blue). At

the lower error-free intervals, all three of the tests that took place showed a similar

pattern in error-free runs, even though there is some offset between the patterns.

The second group of tests do not show much correlation.

Tests that took place at higher speeds, such as the freeway, had a greater probability
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Figure 5.10: Freeway error-free run distributions.

of longer intervals. The slowest travelled route, which was the residential route, has

the opposite of this. Probabilities of error-free runs decrease significantly at intervals

as low as 2. This can be attributed to the Doppler shift from the ambient light.

5.4.2 Channel Models

Tables 5.1, 5.2, 5.3 and 5.4 show the resultant, three-state Fritchman channel models

for the freeway, commercial, CBD and residential environments. The same initial

model parameters used in the indoor modelling were also used for this outdoor

modelling. These tables also include the MSE and χ2 value comparisons of the

model and IID EFRDs. Almost all of these models (except the first one in Table

5.1 and two in Table 5.3) have the a33 = 0, similar to some of the results for the

indoor channel models for case II. Again, this shows that the error-sequences do not

contain any consecutive errors. The tables also show that the models did not perform

significantly better than the simple IID model. This is evident by the number of

MSE and χ2 values that are lower for the Fritchman models than for the IID models.

Figure 5.14 show comparisons between the illuminance that the sensor was exposed

to in different tests. The figure shows the peak illuminance values (lux) that were
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Figure 5.11: Commercial error-free run distributions.
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Figure 5.12: CBD error-free run distributions.
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Figure 5.13: Residential error-free run distributions.

measured. Between the groups of three tests, the illuminance values do not vary

much. However, it is evident that on the different testing days, the illuminance

varied significantly. This is a possible explanation for why there are different results

on different days.
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Table 5.1: Modelling results for the freeway environment.

Illuminance (lux)

Transition probabilities MSE χ2

a11 a13 a22 a23 a31 a32 a33 IID Model IID Model

0.07-unknown 1 0.9724 0.0276 0.9723 0.0277 0.6493 0.3375 0.0132 3.44E-03 3.54E-03 4.4557 3.8504

0.07-3.78 0.9731 0.0269 0.9709 0.0291 0.6458 0.3542 0.0000 8.08E-04 8.97E-04 1.7338 1.6365

0.07-8.89 0.9753 0.0247 0.9628 0.0372 0.6369 0.3631 0.0000 2.51E-04 2.27E-04 0.1754 0.1761

0.20-2.00 0.9805 0.0195 0.9681 0.0319 0.7891 0.2109 0.0000 9.78E-04 1.05E-03 2.0859 1.5331

0.20-2.96 0.9833 0.0167 0.9807 0.0193 0.8265 0.1735 0.0000 5.31E-04 6.03E-04 1.5384 1.3133

0.90-1.97 0.9832 0.0168 0.9784 0.0216 0.7616 0.2384 0.0000 1.02E-03 1.07E-03 1.2923 1.8955

Table 5.2: Modelling results for the commercial environment.

Illuminance (lux)

Transition probabilities MSE χ2

a11 a13 a22 a23 a31 a32 a33 IID Model IID Model

0.07-9.12 0.9720 0.0280 0.9716 0.0284 0.6420 0.3580 0.0000 1.73E-03 1.60E-03 3.7054 2.3640

0.04-9.67 0.9801 0.0199 0.8345 0.1655 0.6930 0.3070 0.0000 1.46E-03 8.94E-04 1.6358 1.7907

0.06-8.35 0.9723 0.0277 0.9716 0.0284 0.6876 0.3124 0.0000 1.84E-03 2.04E-03 3.7555 3.1797

0.21-2.97 0.9832 0.0168 0.9695 0.0305 0.7308 0.2692 0.0000 3.78E-04 3.11E-04 0.8575 0.4361

0.22-3.50 0.9830 0.0170 0.9683 0.0317 0.7707 0.2293 0.0000 2.34E-04 3.26E-04 0.1851 0.3126

0.30-3.45 0.9809 0.0191 0.9748 0.0252 0.7201 0.2799 0.0000 7.20E-04 8.09E-04 0.9423 1.0793

1unintentionally omitted during measurements
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Table 5.3: Modelling results for the CBD environment.

Illuminance (lux)

Transition probabilities MSE χ2

a11 a13 a22 a23 a31 a32 a33 IID Model IID Model

0.04-0.12 0.9721 0.0279 0.9721 0.0279 0.6823 0.3177 0.0000 4.61E-03 5.20E-03 15.4169 14.5457

0.06-0.13 0.9722 0.0278 0.9709 0.0291 0.6447 0.3550 0.0004 1.17E-03 1.25E-03 2.8312 2.4393

0.06-0.13 0.9730 0.0270 0.9708 0.0292 0.6349 0.3647 0.0004 1.23E-03 1.06E-03 1.2789 0.8057

0.27-2.38 0.9820 0.0180 0.9819 0.0181 0.8726 0.1274 0.0000 5.72E-03 5.97E-03 21.5855 19.1822

0.31-2.67 0.9874 0.0126 0.9326 0.0674 0.5332 0.4668 0.0000 2.32E-03 1.00E-03 5.2550 1.6962

0.33-2.04 0.9810 0.0190 0.9766 0.0234 0.7617 0.2383 0.0000 4.08E-04 3.62E-04 0.9460 0.5047

Table 5.4: Modelling results for the residential environment.

Illuminance (lux)

Transition probabilities MSE χ2

a11 a13 a22 a23 a31 a32 a33 IID Model IID Model

0.03-0.06 0.9790 0.0210 0.5005 0.4995 0.7635 0.2365 0.0000 8.83E-04 1.04E-03 0.6488 2.6986

0.06-0.27 0.9757 0.0243 0.8932 0.1068 0.8340 0.1660 0.0000 1.37E-03 1.96E-03 2.1383 4.5131

0.06-0.09 0.9787 0.0213 0.9602 0.0398 0.6591 0.3409 0.0000 4.74E-04 4.59E-04 0.6458 0.9382

0.04-1.16 0.9832 0.0168 0.9705 0.0295 0.8816 0.1184 0.0000 9.31E-04 1.05E-03 1.9354 2.4720

0.02-1.09 0.9807 0.0193 0.9806 0.0194 0.8291 0.1709 0.0000 2.60E-03 2.80E-03 11.0231 10.4231

0.04-2.27 0.9775 0.0225 0.9754 0.0246 0.7035 0.2965 0.0000 7.63E-04 8.34E-04 1.3953 2.3335



Chapter 5 — Outdoor Modelling 57

Figure 5.14: Comparison of maximum lux for each test.

5.4.3 Discussion

The results showed that there is little correlation in error-state distributions for each

environment. The exception to this were the first residential route tests and the

second commercial route tests, which did show similar patterns. These variations

can be attributed to the differences in environmental conditions and testing routes,

despite the same route with the same average speeds being travelled. In general,

the artificial light along these routes are inconsistent. A great contributor to these

inconsistencies were the lights from other vehicles, which changed based on traffic

flows. This leads to inconsistencies in error state distributions and models. This is

further reinforced by the variations in the illumination values. However, illumination

does not take into account the 200 kHz frequency that the sensor was designed to

sense. For example, the CBD route may have had a lower illuminance, but the route

was the most diverse in terms of artificial light sources, such as large advertising

screens and building lights; which could possibly include more in-band interference.

5.4.4 Conclusion

Models for the outdoor environment similarly did not provide good approximations

of the channel. This was also due to a lack of error clusters. This is mainly due

to the vast inconsistencies in each environment, even along the same testing route.

These are most likely a result of the differences in traffic flow between each test.

Illuminance readings highlighted some of these differences in what the sensor was
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exposed to. The EFRD did show some insight into how the speed of the car during

tests can be attributed to the Doppler shift.
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Chapter 6

Conclusion

6.1 Research Summary

The research presented herein aims to answer the following research question:

What is the statistical distribution of error states for smart lighting indoor VLC and

outdoor V2V VLC channels, from differing scenarios of noise and interference, based

on semi-hidden Markov models?

To begin addressing this question, in Chapter 2 the literature review firstly gave an

overview of the field of VLC and a high level view of the state of the art. Aspects of

the IEEE VLC standard that related to some of the hardware used in the research

were given. General channel models currently employed in the field of VLC were

presented. The literature review then presented research that has been done on indoor

and outdoor VLC channels, as well as an in depth treatment of research done using

the Baum-Welch algorithm, HMMs and the Fritchman model. Chapter 3 presented

details on the techniques employed in determining the statistical distribution of

VLC channel error states. This includes an in-depth treatment of the Baum-Welch

algorithm and the Fritchman model.

Chapters 4 and 5 present the indoor and outdoor components of the VLC channel

modelling respectively. Each of these sections included descriptions of the hardware

that was designed for collection of experimental results, as well as the experimental

methodologies, modelling results and analysis. Three-state SHMM models (also

known as Fritchman models) were derived from experimental measurements by using

the Baum-Welch algorithm. Analysis of the models was done using EFRD and

log-likelihood plots. Comparisons of the models to IID sequences were made using
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χ2 tests and MSE.

The outputs of the research include a journal paper based on the indoor channel

modelling that is currently under review; and a paper based on the outdoor channel

modelling that is currently still under development.

6.2 Recommendations for Possible Future Work

Below are recommendations for possible future work and research, building upon the

research and conclusions presented herein:

• Optimal OOK threshold detection in the presence of pseudo-random interfering

signal with the same modulation scheme.

• Interference mitigation techniques for co-existing VLC and smart lighting

systems.

• SINR measurement in the presence of interfering PWM signals.

• Outdoor channel modelling in a more deterministic environment.

• Impact of vehicle speed in V2V VLC.

• Alternative discrete channel modelling techniques for channels without error-

clusters.

• Comparison of other models for VLC channels, particularly GE and Fritchman

models.

• Investigation into considering the maximum transmit power allowed between

neighbouring transmitting LEDs.

6.3 Conclusion

The research presented herein showed that the Fritchman model is able to model

VLC channels in both indoor and outdoor environments. However, the models do not

provide a significantly better fit compared to simpler IID models. An exception to

this is the indoor VLC environment that only had background noise and interference,

where the models performed better. These particular models could be used for
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software simulations of VLC channels. The outdoor environments proved difficult

to model due to variations in outdoor lighting conditions, specifically due to other

car lights. It is recommend that more stable outdoor channels are investigated

as a starting point. The research highlighted the impact that interfering PWM

signals have in a smart lighting system use case. The error patterns observed showed

correlations between the PWM duty cycles and error-free runs. These can potentially

be used for designing error control codes and interference avoidance and mitigation

techniques.
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Appendix A

SNR and SINR Calculations

For the indoor channel modelling, the calculation of the Signal-to-Noise Ratio (SNR)

and Signal-to-Interference-Plus-Noise Ratio (SINR) formed a significant part of the

experimental procedure and modelling. This was for two reasons. Firstly, the SNR

readings gave a metric for measuring the change in transmit power. Reading the

actual power of the LED was not practical. Secondly, the SNR values are used as a

point of reference for each model, with each model having a corresponding SNR.

With these factors in mind, it was essential to have reasonable SNR readings. As

such, the SNR values from the error sequences of indoor experiments were used

to plot a BER curve. Figure A.1 shows a comparison of the actual BER with the

theoretical BER for OOK VLC. The experimental BER varies from the actual BER

by up to 2 dB and shows a worse performance which is expected.

The theoretical BER for an OOK VLC [15] was calculated using:

BER = Q(
√

SNR) (A.1)

For case I, SNR was calculated using:

SNR =
σ2
S

σ2
B

(A.2)

The σ2
B term includes the background, thermal and shot noises as well (σ2

shot +

σ2
thermal). This measurement was taken in single readings for each test. For case II,

the SINR was calculated using three measurements. A description of each is followed

by the relevant equation below. The first and second measurements are used to
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Figure A.1: Bit-error rate comparison

get the signal component while the third measurement is used to get the noise and

interference components.

1. PWM signal is active:

σ2
1 = σ2

B + σ2
PWM (A.3)

2. PWM signal is active and the source is transmitting a random signal:

σ2
2 = σ2

B + σ2
PWM + σ2

S (A.4)

3. PWM signal is active with measurements Xi grouped based on whether the

PWM signal is high or low.

σ2
3 ⇒ {Xi} : Tlow (A.5)

σ2
4 ⇒ {Xi} : Thigh (A.6)
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σ2
3 + σ2

4

2
= σ2

PWM + σ2
B (A.7)

Using the above measurements, the final SINR is then calculated by:

SINR =
2(σ2

2 − σ2
1)

σ2
3 + σ2

4

(A.8)
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Appendix B

Comparison of Statistical Results

As part of the evaluation of the goodness-of-fit of the channel models, the MSE and

chi-squared test were used. Below are plots of comparisons of these values for each of

the models at different SNR/SINR values. This gives an indication of the accuracy

of the models as a function of SNR/SINR.

The figures include plots of Pe vs χ2 (Figures B.1, B.5, B.9), Pe vs MSE (Figures

B.2, B.6, B.10), SINR vs χ2 (Figures B.3, B.7, B.11), and SINR vs MSE (Figures

B.4, B.8, B.12) for the 25 %, 50 % and 75 % duty cycles interference. The two sets of

data for these plots are the IID and model χ2 and MSE values. Variations between

these two values were larger for lower error probabilities and higher SINR values,

where (in most cases) the models provided a better goodness-of-fit compared to the

IID sequence.



Appendix B — Comparison of Statistical Results 74

Figure B.1: Pe vs χ2 for case II with 25% duty cycle interference.

Figure B.2: Pe vs MSE for case II with 25% duty cycle interference.
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Figure B.3: SINR vs χ2 for case II with 25% duty cycle interference.

Figure B.4: SINR vs MSE for case II with 25% duty cycle interference.
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Figure B.5: Pe vs χ2 for case II with 50% duty cycle interference.

Figure B.6: Pe vs MSE for case II with 50% duty cycle interference.
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Figure B.7: SINR vs χ2 for case II with 50% duty cycle interference.

Figure B.8: SINR vs MSE for case II with 50% duty cycle interference.
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Figure B.9: Pe vs χ2 for case II with 75% duty cycle interference.

Figure B.10: Pe vs MSE for case II with 75% duty cycle interference.
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Figure B.11: SINR vs χ2 for case II with 75% duty cycle interference.

Figure B.12: SINR vs MSE for case II with 75% duty cycle interference.
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