262 research outputs found

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    High-performance WLAN architectures using MIMO technology in Line-of-Sight

    Get PDF

    Error Rates of the Maximum-Likelihood Detector for Arbitrary Constellations: Convex/Concave Behavior and Applications

    Get PDF
    Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fading is never good in low dimensions") and optimization of a unitary-precoded OFDM system. For example, the error rate bounds of a unitary-precoded OFDM system with QPSK modulation, which reveal the best and worst precoding, are extended to arbitrary constellations, which may also include coding. The reported results also apply to the interference channel under Gaussian approximation, to the bit error rate when it can be expressed or approximated as a non-negative linear combination of individual symbol error rates, and to coded systems.Comment: accepted by IEEE IT Transaction

    Performance Analysis and Optimal Power Allocation for Linear Receivers Based on Superimposed Training

    Get PDF
    In this paper, we derive a performance comparison between two training-based schemes for Multiple-Input Multiple-Output (MIMO) systems. The two schemes are thetime-division multiplexing scheme and the recently proposed data-dependent superimposed pilot scheme. For both schemes, a closed-form expressions for the Bit Error Rate (BER) is provided. We also determine, for both schemes, the optimal allocation of power between pilot and data that minimizes the BER

    Performance of SC-FDMA with diversity techniques over land mobile satellite channel

    Get PDF
    La demanda de la alta velocidad de datos resulta en una importante interferencia entre símbolos para los sistemas monoportadora en canales de ancho de banda y potencia limitada. Superar la selectividad en el tiempo y la frecuencia del canal de propagación requiere el uso de potentes técnicas de procesamiento de señales. Ejemplos recientes incluyen el uso de múltiples antenas en el transmisor / receptor, en la técnica conocida como Multiple-Input Multiple-Output (MIMO). En ciertos entornos (tales como el enlace ascendente de un enlace móvil) por lo general sólo una antena está disponible en la transmisión. Por lo tanto, sólo esquemas con entrada individual y salida única (Single Input Single Output, SISO) o transmisiones con entrada única y múltiples salidas (Single Input Multiple Output, SIMO) son factibles. La multiplexación por división ortogonal en frecuencia (Orthogonal Frequency-Division Multiplexing, OFDM) es una técnica de modulación ampliamente utilizada por su robustez frente a la selectividad en frecuencia de los canales, su escalabilidad y su compatibilidad con MIMO. Sin embargo, sufre de una alta relación de potencia de pico a promedio (Peak-to-Average Power Ratio, PAPR) que necesita amplificadores de alta potencia muy lineales, lo que resulta costoso energéticamente para la transmisión. La técnica monoportadora con acceso múltiple por división de frecuencia (Single Carrier Frequency-Division Multiple Access , SC-FDMA) se ha convertido en una alternativa a la técnica de OFDM que se utiliza específicamente en el enlace ascendente de LTE. SC-FDMA es capaz de reducir la PAPR en la transmisión, dando lugar a una relajación de las limitaciones en cuanto a la eficiencia de potencia necesaria en los terminales de usuario y las unidades satélite. SC-FDMA puede ser descrito como una versión de OFDMA en el que se incluyen una etapa de pre-codificación y de pre-codificación inversa en el transmisor y el receptor respectivamente. Así, los símbolos se transmiten en tiempo, pero después de ser procesados en la frecuencia. Incluso con el uso de OFDMA o SC-FDMA, la ISI tiene que ser compensada por la igualación, que normalmente se realiza en el dominio de frecuencia. El objetivo de esta tesis es proporcionar un análisis matemático del comportamiento de SC-FDMA en un canal móvil terrestre por satélite (Land Mobile Satellite, LMS). Para este propósito, el canal se modela como un canal Rice sombreado tal que la línea de visión (Line of Sight, LOS) sigue la distribución de Nakagami. En primer lugar, se describen las técnicas de modulación multiportadora OFDMA y SC-FDMA. A continuación, se lleva a cabo un análisis de OFDMA y SC-FDMA basado en el ruido complejo recibido a la entrada del detector. Se evalúa la probabilidad de error de bit (Bit Error Rate, BER) de SC-FDMA para diferentes profundidades del desvanecimiento y de la diversidad de antena en el receptor. También se evalúa la eficiencia espectral de SC-FDMA para el canal LMS. Por último, se abordan las técnicas de diversidad y se evalúan las técnicas conocidas como Maximal Ratio Combining (MRC) y Equal Gain Combining (EGC)

    Self-Learning Detector for the Cell-Free Massive MIMO Uplink: The Line-of-Sight Case

    Full text link
    The precoding in cell-free massive multiple-input multiple-output (MIMO) technology relies on accurate knowledge of channel responses between users (UEs) and access points (APs). Obtaining high-quality channel estimates in turn requires the path losses between pairs of UEs and APs to be known. These path losses may change rapidly especially in line-of-sight environments with moving blocking objects. A difficulty in the estimation of path losses is pilot contamination, that is, simultaneously transmitted pilots from different UEs that may add up destructively or constructively by chance, seriously affecting the estimation quality (and hence the eventual performance). A method for estimation of path losses, along with an accompanying pilot transmission scheme, is proposed that works for both Rayleigh fading and line-of-sight channels and that significantly improves performance over baseline state-of-the-art. The salient feature of the pilot transmission scheme is that pilots are structurally phase-rotated over different coherence blocks (according to a pre-determined function known to all parties), in order to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the proposed estimation algorithm.Comment: Paper accepted for presentation in IEEE SPAWC 2020 - 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications. {\copyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    COMPARISON OF TWO NOVEL LIST SPHERE DETECTOR ALGORITHMS FOR MIMO-OFDM SYSTEMS

    Get PDF
    In this paper, the complexity and performance of two novel list sphere detector (LSD) algorithms are studied and evaluated in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system. The LSDs are based on the K-best and the Schnorr-Euchner enumeration (SEE) algorithms. The required list sizes for LSD algorithms are determined for a 2×2 system with 4- quadrature amplitude modulation (QAM), 16-QAM, and 64-QAM. The complexity of the algorithms is compared by studying the number of visited nodes per received symbol vector by the algorithm in computer simulations. The SEE based LSD algorithm is found to be a less complex and a feasible choice for implementation compared to the K-best based LSD algorithm.ElekrobitNokiaTexas InstrumentsFinnish Funding Agency for Technology and InnovationTeke
    corecore