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ABSTRACT

In this paper, the complexity and performance of two novel list
sphere detector (LSD) algorithms are studied and evaluated in
multiple-input multiple-output orthogonal frequency division
multiplexing (MIMO-OFDM) system. The LSDs are based on
the K-best and the Schnorr-Euchner enumeration (SEE) algo-
rithms. The required list sizes for LSD algorithms are deter-
mined for a 2 X 2 system with 4- quadrature amplitude modula-
tion (QAM), 16-QAM, and 64-QAM. The complexity of the al-
gorithms is compared by studying the number of visited nodes
per received symbol vector by the algorithm in computer sim-
ulations. The SEE based LSD algorithm is found to be a less
complex and a feasible choice for implementation compared to
the K-best based LSD algorithm.

I. INTRODUCTION

The increasing data rates in wireless communication systems
require large bandwidths. Orthogonal frequency division mul-
tiplexing (OFDM) [1] has become a widely used technique to
significantly reduce receiver complexity in broadband wireless
systems. Multiple-input multiple-output (MIMO) channels of-
fer improved capacity and significant potential for improved re-
liability compared to single antenna channels [2]. MIMO tech-
niques in combination with OFDM (MIMO-OFDM) have been
identified as a promising approach for high spectral efficiency
wideband systems [3].

The OFDM technique drastically simplifies receiver design
by decoupling the intersymbol interference, i.e., a frequency
selective, MIMO channel into a set of parallel flat fading
MIMO channels [3]. However, the reception of the MIMO-
OFDM signal has to be performed separately for each subcar-
rier. The optimal detection for coded system would require the
use of a maximum a posteriori (MAP) detection. However,
the computational complexity of optimal MAP detection is be-
yond the limit of most systems, and, thus, such an approach is
not feasible. A suboptimal approach is to use suboptimal zero
forcing (ZF) or minimum mean square error (MMSE) criterion
based linear detectors [4]. However, their performance can be
rather poor in bad channel conditions, i.e., when the eigenvalue
spread of the channel matrix is large [5].

Sphere detector (SD) calculates the maximum likelihood
(ML) solution with reduced complexity compared to full-
complexity ML detectors [6, 7, 8]. A list sphere detector (LSD)
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Figure 1: Model of a MIMO system with N transmit and Ng
receive antennas.

[9] is a variant of the sphere detector that can be used to ap-
proximate MAP detection. In this paper, two novel LSD algo-
rithms are introduced: a modification of the Schnorr-Euchner
enumeration (SEE) [10] to the LSD algorithm, namely a SEE-
LSD algorithm, and a modification of the K-best algorithm [11]
to LSD algorithm, namely a K-best-LSD algorithm. The com-
plexity and the performance of the algorithms are evaluated and
compared.

The paper is organized as follows. The system model is
presented in Section II. The LSD algorithms are introduced in
Section III. Performance examples are presented in Section IV.
Conclusions are drawn in Section V.

II. SYSTEM MODEL

An OFDM based multiple antenna system with N7 transmit
antennas and N g receive antennas is considered with assump-
tion Np > Nr. A vertical Bell Labs’ layered space-time
(VBLAST) architecture [12] with quadrature amplitude mod-
ulation (QAM) is applied to the system. A block diagram of
the system is shown in Figure 1. The received signal can be
expressed in terms of code symbol interval as

r, =Hyx,+n, p=12...P )
where P is the number of subcarriers, the received signal vec-
tor r, € CVrX1 the transmit symbol vector x, € CN7*!
and the noise vector g, € CV#*! are defined in the fre-
quency domain. The elements of 7,, are independent and com-
plex Gaussian with equal power real and imaginary parts, i.e.,
1, ~ CN(0, NoIy,,) and represent the frequency domain ther-
mal noise at the receiver. The channel matrix H,, € CVNr*N7
contains complex Gaussian fading coefficients with unit vari-
ance. The entries of x, are chosen independently from a
complex QAM constellation {2 with @ bits per symbol, i.e.,
|2] = 29. The set of all possible transmitted vector symbols
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is denoted by Q7. The corresponding uncoded transmission
rate is R = M@ bits per channel use (bpcu).

ML detection method solves optimally so called closest lat-
tice point problem by calculating the Euclidean distances (EDs)
between received signal y and lattice points Hx and decides
which lattice point minimizes the Euclidean distance to receive
vectory, i.e.,

XML = arg min — Hx||2. 2
ML gerNT lly 12 2

For simplicity, the subindices are omitted in (2) and in the se-
quel. The ML detection problem can be solved with an exhaus-
tive search, i.e., checking all of the possible symbol vectors and
selecting the closest point. However, this is computationally
very heavy and not feasible as the set of possible points QN7
increases.

The SD algorithms solve the ML solution by reducing the
number of candidate vector symbols to be considered in the
search that solves (2). Usually SD algorithms are assumed with
a real equivalent system model which makes the search process
easier to implement. The complex MIMO system model in (1)
can be reduced into equivalent real model as follows

)] = [t et ][]+ [i] -

Let us define the new real dimensions Mt = 2Nt, Mr =
2NR. The real symbol alphabet is now Q2 = Z, e.g., Qg €
{-3,—-1,1, 3} in the case of 16-QAM. The SD algorithm re-
duces the number of considered candidate symbol vectors by
limiting the search to points that lie inside a Mg-dimensional
hyper-sphere S(y,/Cp) centered at y. The condition can be
written as [7]

lly - x|} < Co, )

where Cj is the squared radius of the the sphere. The channel
matrix H can be decomposed by QR decomposition (QRD) and
then (4) can be written as

lly — QRx]|3 < Co Q)
IQ"y — Rx||3 < Co (6)
Iy — Rx][3 < Co, (7)

where R € RM7 XM jg an upper triangular matrix with posi-
tive diagonal elements, Q € RMrxMr jg orthogonal matrix,

andy = Q'y.

Let x)"" = (i, Tiy1,- .., o) " denote the last My — i 4 1
components of the vector x. The sphere search can be illus-
trated with a tree structure, where the root layer corresponds
to X%; A sphere search tree structure is illustrated in Figure
2. Due to the upper triangular form of R the values of x can
be solved from (7) level by level using the back-substitution al-
gorithm. First, the last elements of the possible symbol vectors
are calculated, i.e, x s, and then x5z, and so on. The squared
partial ED (PED) of szT can be calculated as

M M~
d(x}™) =315 = Y rjaml* < Co, ®)
j=i I=j

Root layer

Layer i=4
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Figure 2: A tree structure of a sphere detector with 2 transmit,
2 receive antennas and 4-QAM modulation

where r; ; is the (7, 1)th term of R and ¢ = Mr, ..., 1. Ateach
level the next admissible nodes are checked by calculating the
PEDs or with real presentation with equations presented, e.g.,
in [7]. The search for the particular path is stopped if the PED
of anode xf”T is outside the sphere, i.e., d(szT) > Cj. The SD
searches the lattice points inside the sphere Hx € S(y, v/Cp),
and selects the point x = xin, also called as a leaf node, for
which the ED d(x2'") is minimum. It should be noted that with
too small a sphere radius 1/Cj there might be no solutions [7].

The Pohst enumeration method [6] is often considered to be
the original sphere detection algorithm. However, the main
problem with the algorithm is the selection of the sphere ra-
dius. The Viterbo-Boutros (VB) implementation [13] intro-
duced a modification to the original Pohst algorithm with adap-
tive updating of the sphere radius as a new solution XiVIT is
found. Thus, with VB implementation applied, the algorithm
can be started with Cy = oo. The Schnorr Euchner enumera-
tion (SEE) [10] can be seen as a modification of the Pohst enu-
meration and VB implementation, where the admissible nodes
of each layer are spanned in a zig-zag order starting with the
closest middle point, whereas the Pohst enumeration searches
the admissible nodes without any ordering. The SEE has been
shown to be more efficient than the VB implementation [8].

The SD algorithms give the ML solution as an output. How-
ever, the performance of a channel coded system may suffer
significantly with ML detection prior soft input decoding and
iterative processing at the receiver compared to the optimal
MAP detection. The list sphere detector (LSD) [9] can be used
for obtaining a list of the most probable candidate symbol vec-
tors £ € ZNewaX N1 a5 an output, where Neanq is the size of the
candidate list so that 1 < Ny < 297, The list can then be
used to approximate the MAP solution. Depending on the list
size Ncand, it provides a tradeoff between the performance and
the computational complexity.

III. LIST SPHERE DETECTOR

A basic block diagram of the list sphere detector structure is
shown in Figure 3. The LSD gives log-likelihood ratios (LLR)
of the transmitted bits as an output. The LSD structure consists
of four parts: the QRD block, the LSD algorithm block, the
demodulator block and the LLR calculation block.

A standard preprocessing needed for sphere detection is the
QRD of the channel matrix H [7, 14]. The preprocessing
should be repeated for each subcarrier p every time when the
channel realization changes, i.e., it depends on the channel co-
herence time. The complexity of the QRD block is mainly de-
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Figure 3: A block diagram of a list sphere detector structure.

pendent on the matrix dimensions of the channel matrix H and
the number of subcarriers P. The QRD implementation is dis-
cussed, e.g., in [15, 16, and referencens therein].

The LSD gives a list of the most probable transmitted sym-
bols £ and the corresponding Euclidean distances d(£) as an
output. The LSD algorithm operates at symbol rate and it
should calculate the outputs separately for each subcarrier. The
complexity of the LSD depends on the applied algorithm, the
list size Ncang, the number of subcarriers P, the number of
transmit antennas Ny and the constellation size |{2|. These
variables affect to the expected number of visited nodes per
received symbol vector. In the algorithm itself, the main com-
plexity comes from the calculation of PEDs [14]. It should be
noted that different lattice reduction preprocessing [7, 14] ap-
proaches may yield a lower expected number of visited nodes
per symbol and, thus, lower complexity.

Two novel LSD algorithms are considered in this paper. The
SEE-LSD algorithm presented as Algorithm 1 is a modification
of the SEE [10] to LSD algorithm and the K-best-LSD algo-
rithm presented as Algorithm 2 is a modification of the K-best
algorithm [11, 17] to LSD algorithm.

Algorithm 1 (SEE-LSD algorithm)

Preprocessing:

Input: Q,R.,y, Neana, P (modulation used, P-QAM)

Calculate: y, Set: Co =00, k=1

Algorithm:

1. Start with empty candidate set from the root layer.

2. Denote the partial candidate set by xﬁTl If all admissible
nodes at layer i are searched go to step 2.1. Otherwise,
generate the next best admissible node x; using SEE,

calculate d(x'™) and go to step 3.

2.1 If i + 1 is the root layer, stop the algorithm and give
the final list and the EDs as an output. Otherwise,
continue to step 2 at layer i + 2 with xﬁg

3. If the generated candidate is a leaf node xiMT continue
to step 3.1. Otherwise, go to step 4.

3.1 Ifd(x}'T) < Cy, the newly generated candidate
leaf node xiMT is stored to the final list with index k.
Otherwise, discard the node, continue to step 2 with x?f_g

3.2 If k = Ncana, find the candidate with maximum
ED and set Co = dmaq and k = kq,,,,. Otherwise,
increase the final list index k = k + 1.

3.3 Continue to step 2 with xﬁTl

4. 1f d(xZMT) < Co go to step 2 and continue with the
generated candidate child node xin. Otherwise,

discard the node and continue to step 2.1 with xf\i:g

The SEE-LSD algorithm has only one major difference com-
pared to the normal SEE-SD algorithm: the sphere radius Cy
is not updated until the final list is full. After that the search
is continued in similar fashion until the admissible nodes have
been searched.

Algorithm 2 (K-best-LSD algorithm)

Preprocessing:

Input: Q, Ry, Co, K, P (modulation used, P-QAM)
Calculate: 'y

Algorithm:

1. Start with empty candidate set from the root layer.

2. Denote the partial candidate set by xﬁ’{

2.1 Determine all admissible candidate child nodes x; with
given Cy and calculate the corresponding PEDs d(xﬁu ).

2.2 Store the partial candidates and their PEDs to a temporary
stack memory.

3. Sort the partial candidates according to their PEDs and store
the K candidates with lowest PEDs and the PED:s to the final
list stack memory.

4. If the K stored candidates are leaf nodes, stop the algorithm
and give the candidates and their EDs as outputs. Otherwise,
continue to step 2 with the stored candidates.

The only major change in the LSD version of the algorithm
compared to the SD algorithm with SEE [17] is that with K-
best-LSD algorithm in the end all K candidates are given as
outputs as with K-best algorithm only the candidate with lowest
ED is given as an output.

The output candidate symbol vector list from the LSD algo-
rithm is demodulated to bit level representation in the demod-
ulator block. Then, the LLRs of the transmitted bits can be
calculated from the candidate bit vector list in the LLR calcu-
lation block. The LLR of transmitted bit xj, is is denoted as
L(xy) and is defined to be the ratio of the probabilities of the
bit taking its two possible values, i.e.,

Pr(zr = +1|r)

L(fEk) = hlm

©)
The probability of a transmitted bit x; = +1 is equal to the
sum of the probabilities of all of the combinations containing
a z = +1 for that given bit. Then, for a system containing
additive white Gaussian noise (AWGN), the probability can be
determined directly from the cost information known about the
candidates and Bayes rule as

2 —aey' )
= 1 = — E o2 1
plrfen ) |Qr|MT /27102 © (19)
xeQp T xp=—+1

If the size N ung of the list £ is large enough, the the effect of
the unknown results is likely to be relatively small, and approx-
imation of the L(zy) can then be determined as
Pr(zr = +1r)

Pr(zy = —1|r)

— In(p(rlax = +1) - In(p(rlzy, = 1))

L(zx) =In (1

Equation (11) can then be computed using the well-known Ja-
cobian logarithm and a small look-up table [18].
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Figure 4: Throughput vs SNR: Performance of the SEE-LSD
algorithm with different list sizes in 2 X 2 antenna system.

Table 1: The determined list sizes.

2 x 2 with 4-QAM | Negna = 16
2 x 2 with 16-QAM | Ngng = 64
2 x 2 with 64-QAM | Negng = 128

IV. PERFORMANCE EXAMPLES

The effect of the list size to the performance of SEE-LSD and
K-best-LSD was studied via computer simulations. A 2 X 2
MIMO-OFDM system was assumed with 512 subcarriers (300
used). A turbo coded VBLAST architecture with 1/2 code rate
was applied in a typical urban (TU) 6 tap channel with a user
velocity of 120 kmph. The system was operating with 5 MHz
bandwidth at a carrier frequency of 2.4 GHz. The considered
LSD algorithms were studied with different list sizes and com-
pared to a ML detector, which corresponds to a SEE-LSD with
list size of one, and to a linear MMSE (LMMSE) detector at
the receiver side. Soft outputs of the detectors were decoded
in an iterative turbo decoder with 8 iterations. The parameters
used in the computer simulations correspond to the parameters
proposed in [19] for initial performance evaluation in 3G LTE.
The K-best-LSD algorithm was applied with Cy = oc.

The throughput of the SEE-LSD and K-best-LSD algorithms
with different list sizes and with different modulations is pre-
sented in Figures 4 and 5, respectively. The results illustrate the
effect of the list size to the quality of the MAP approximation in
(11). The maximum list sizes N74* for 4-, 16- and 64-QAM
modulations, that correspond to optimal MAP detection out-
puts, are 16, 256, and 4096, respectively. It can be seen from
the results that the performance of the LSD algorithms is al-
most the same in each case and the minimum required list size
without significant performance loss can be determined. The
4-QAM requires a full list of 16 candidates, and with 16-QAM
a list size of 64 candidates is needed. The 64-QAM requires a
list size of 128 candidates. It is noted that list sizes of 32 and
64 candidates can also be considered with slight performance
loss for 16-QAM and 64-QAM, respectively. The determined
list sizes Ncang are shown in Table 1.

2x2 MIMO, VBLAST, K-best-LSD, Turbo coding, TU channel, 120km/h
30 T T T T T T T

T T T
MAP (LSD with full list)

—O— List=8(4QAM), 128(16QAM) 512(64QAM)
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Figure 5: Throughput vs SNR: Performance of the K-best-LSD
with different list sizes in 2 X 2 antenna system.
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Figure 6: Histogram of the number of visited nodes per symbol

vector with the SEE-LSD and the K-best-LSD algorithms in
TU channel with 2 x 2 16-QAM system.
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Figure 7: Histogram of the number of visited nodes per symbol
vector with the SEE-LSD and the K-best-LSD algorithms in
TU channel with 2 x 2 64-QAM system.
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The complexity of the LSD algorithms is relative to the num-
ber of visited nodes per symbol vector [14]. The number of
nodes visited by the considered LSD algorithms was studied
with determined list sizes via computer simulations. The 4-
QAM requires a full list size of 16 candidates, and, thus, it
visits every possible node. A histogram of the simulated num-
ber of visited nodes per symbol vector with the SEE-LSD and
the K-best-LSD algorithms with list size of 64 candidates with
16-QAM modulation is shown in Figure 6. The number of vis-
ited nodes with the SEE-LSD algorithm varies slightly with
SNR and with the K-best-LSD algorithm it is fixed. This is due
to different search strategies of the algorithms. It can be seen
from Figure 6 that the SEE-LSD algorithm is likely to visit less
nodes compared to K-best-LSD algorithm. However, it should
be noted that the implementation is usually designed according
the worst case scenario. A histogram of the simulated number
of visited nodes per symbol vector with the SEE-LSD and the
K-best-LSD algorithms with list size of 128 candidates with
64-QAM modulation is shown in Figure 7. It can be seen that
the number of visited nodes is smaller even in the worst case
with the SEE-LSD algorithm. Thus, the SEE-LSD algorithm
seems to be a more attractive choice for implementation.

V. CONCLUSIONS

The complexity and performance of two novel LSD algorithms,
namely the SEE-LSD and the K-best-LSD, have been evaluated
and compared in MIMO-OFDM system. The needed list sizes
are determined for 2 X 2 antenna system with 4-,16,and 64-
QAM modulations. Also the average number of nodes visited
by the algorithms was studied with the determined list sizes.
The SEE-LSD algorithm was found to be less complex and fea-
sible choice for implementation compared to the K-best based
LSD algorithm.
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