8,539 research outputs found

    Performance analyses of optical burst-switching networks

    Full text link

    Exact performance analysis of a single-wavelength optical buffer with correlated inter-arrival times

    Get PDF
    Providing a photonic alternative to the current electronic switching in the backbone, optical packet switching (OPS) and optical bursts witching (OBS) require optical buffering. Optical buffering exploits delays in long optical fibers; an optical buffer is implemented by routing packets through a set of fiber delay lines (FDLs). Previous studies pointed out that, in comparison with electronic buffers, optical buffering suffers from an additional performance degradation. This contribution builds on this observation by studying optical buffer performance under more general traffic assumptions. Features of the optical buffer model under consideration include a Markovian arrival process, general burst sizes and a finite set of fiber delay lines of arbitrary length. Our algorithmic approach yields instant analytic results for important performance measures such as the burst loss ratio and the mean delay

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    A resilience-based comparative study between optical burst switching and optical circuit switching technologies

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. A. Hernández, J. Aracil, V. López, J. F. Palacios, and O. G. de Dios, "A resilience-based comparative study between optical burst switching and optical circuit switching technologies", in International Conference on Transparent Optical Networks, 2006, p. 231-234Internet operators and ISP providers have traditionally designed network resources following an over-planning policy, on attempts to maintain a desired grade of service and network availability, regardless of network failures. This work presents a comparative study of two resilience mechanisms in the design of optical networks either based on optical burst switching (OBS) or optical circuit switching (OCS): the M:N protection scheme with dedicated backup channels. It is further analysed and discussed the benefits and disadvantages of such mechanism based on an analytical mode

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    A batch-service queueing model with a discrete batch Markovian arrival process

    Get PDF
    Queueing systems with batch service have been investigated extensively during the past decades. However, nearly all the studied models share the common feature that an uncorrelated arrival process is considered, which is unrealistic in several real-life situations. In this paper, we study a discrete-time queueing model, with a server that only initiates service when the amount of customers in system (system content) reaches or exceeds a threshold. Correlation is taken into account by assuming a discrete batch Markovian arrival process (D-BMAP), i.e. the distribution of the number of customer arrivals per slot depends on a background state which is determined by a first-order Markov chain. We deduce the probability generating function of the system content at random slot marks and we examine the influence of correlation in the arrival process on the behavior of the system. We show that correlation merely has a small impact on the threshold that minimizes the mean system content. In addition, we demonstrate that correlation might have a significant influence on the system content and therefore has to be included in the model

    MANAGING CONTENTION AVOIDANCE AND MAXIMIZING THROUGHPUT IN OBS NETWORK

    Get PDF
    Optical Burst Switching (OBS) is a promising technology for future optical networks. Due to its less complicated implementation using current optical and electrical components, OBS is seen as the first step towards the future Optical Packet Switching (OPS). In OBS, a key problem is to schedule bursts on wavelength channels whose bandwidth may become fragmented with the so-called void (or idle) intervals with both fast and bandwidth efficient algorithms so as to reduce burst loss. In this paper, a new scheme has been proposed to improve the throughput and to avoid the contention in the OBS network. The proposed scheme offers the same node complexity as that in general OBS networks with optical buffers. Also, it avoids burst blockings in transit nodes, turning it into an efficient and simple burst contention avoidance mechanism. Simulation results show that the proposed scheme has improvement of 15% in terms of burst loss probability as compared to OBS existing schemes and also maximizes the throughput of the network without deteriorating excessively other parameters such as end to end delay or ingress queues

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Application of advanced on-board processing concepts to future satellite communications systems

    Get PDF
    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development
    corecore