927 research outputs found

    Reparallelization and Migration of OpenMP Programs

    Full text link
    Typical computational grid users target only a single cluster and have to estimate the runtime of their jobs. Job schedulers prefer short-running jobs to maintain a high system utilization. If the user underestimates the runtime, premature termination causes computation loss; overesti-mation is penalized by long queue times. As a solution, we present an automatic reparallelization and migration of OpenMP applications. A reparallelization is dynamically computed for an OpenMP work distribution when the num-ber of CPUs changes. The application can be migrated between clusters when an allocated time slice is exceeded. Migration is based on a coordinated, heterogeneous check-pointing algorithm. Both reparallelization and migration enable the user to freely use computing time at more than a single point of the grid. Our demo applications successfully adapt to the changed CPU setting and smoothly migrate between, for example, clusters in Erlangen, Germany, and Amsterdam, the Netherlands, that use different processors. Benchmarks show that reparallelization and migration im-pose average overheads of about 4 % and 2%. 1

    Compiler and runtime support for shared memory parallelization of data mining algorithms

    Get PDF
    Abstract. Data mining techniques focus on finding novel and useful patterns or models from large datasets. Because of the volume of the data to be analyzed, the amount of computation involved, and the need for rapid or even interactive analysis, data mining applications require the use of parallel machines. We have been developing compiler and runtime support for developing scalable implementations of data mining algorithms. Our work encompasses shared memory parallelization, distributed memory parallelization, and optimizations for processing disk-resident datasets. In this paper, we focus on compiler and runtime support for shared memory parallelization of data mining algorithms. We have developed a set of parallelization techniques that apply across algorithms for a variety of mining tasks. We describe the interface of the middleware where these techniques are implemented. Then, we present compiler techniques for translating data parallel code to the middleware specification. Finally, we present a brief evaluation of our compiler using apriori association mining and k-means clustering.

    Prototyping Parallel Simulations on Manycore Architectures Using Scala: A Case Study

    Get PDF
    International audienceAt the manycore era, every simulation practitioner can take advantage of the com-puting horsepower delivered by the available high performance computing devices. From multicoreCPUs (Central Processing Unit) to thousand-thread GPUs (Graphics Processing Unit), severalarchitectures are now able to offer great speed-ups to simulations. However, it is often tricky toharness them properly, and even more complicated to implement a few declinations of the samemodel to compare the parallelizations. Thus, simulation practitioners would mostly benefit of asimple way to evaluate the potential benefits of choosing one platform or another to parallelizetheir simulations. In this work, we study the ability of the Scala programming language to fulfillthis need. We compare the features of two frameworks in this study: Scala Parallel Collections andScalaCL. Both of them provide facilities to set up a data-parallelism approach on Scala collections.The capabilities of the two frameworks are benchmarked with three simulation models as well asa large set of parallel architectures. According to our results, these two Scala frameworks shouldbe considered by the simulation community to quickly prototype parallel simulations, and choosethe target platform on which investing in an optimized development will be rewarding

    Collective Asynchronous Remote Invocation (CARI): A High-Level and Effcient Communication API for Irregular Applications

    Get PDF
    The Message Passing Interface (MPI) standard continues to dominate the landscape of parallel computing as the de facto API for writing large-scale scientific applications. But the critics argue that it is a low-level API and harder to practice than shared memory approaches. This paper addresses the issue of programming productivity by proposing a high-level, easy-to-use, and effcient programming API that hides and segregates complex low-level message passing code from the application specific code. Our proposed API is inspired by communication patterns found in Gadget-2, which is an MPI-based parallel production code for cosmological N-body and hydrodynamic simulations. In this paper—we analyze Gadget-2 with a view to understanding what high-level Single Program Multiple Data (SPMD) communication abstractions might be developed to replace the intricate use of MPI in such an irregular application—and do so without compromising the effciency. Our analysis revealed that the use of low-level MPI primitives—bundled with the computation code—makes Gadget-2 diffcult to understand and probably hard to maintain. In addition, we found out that the original Gadget-2 code contains a small handful of—complex and recurring—patterns of message passing. We also noted that these complex patterns can be reorganized into a higherlevel communication library with some modifications to the Gadget-2 code. We present the implementation and evaluation of one such message passing pattern (or schedule) that we term Collective Asynchronous Remote Invocation (CARI). As the name suggests, CARI is a collective variant of Remote Method Invocation (RMI), which is an attractive, high-level, and established paradigm in distributed systems programming. The CARI API might be implemented in several ways—we develop and evaluate two versions of this API on a compute cluster. The performance evaluation reveals that CARI versions of the Gadget-2 code perform as well as the original Gadget-2 code but the level of abstraction is raised considerably

    Parallelizing irregular and pointer-based computations automatically: perspectives from logic and constraint programming

    Get PDF
    Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic pro­gramming (and more recently, constraint programming) resulting in quite capable paralle­lizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc

    A Survey on Thread-Level Speculation Techniques

    Get PDF
    Producción CientíficaThread-Level Speculation (TLS) is a promising technique that allows the parallel execution of sequential code without relying on a prior, compile-time-dependence analysis. In this work, we introduce the technique, present a taxonomy of TLS solutions, and summarize and put into perspective the most relevant advances in this field.MICINN (Spain) and ERDF program of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5 network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for Sustainable Ultrascale Computing (NESUS)

    Efficient openMP over sequentially consistent distributed shared memory systems

    Get PDF
    Nowadays clusters are one of the most used platforms in High Performance Computing and most programmers use the Message Passing Interface (MPI) library to program their applications in these distributed platforms getting their maximum performance, although it is a complex task. On the other side, OpenMP has been established as the de facto standard to program applications on shared memory platforms because it is easy to use and obtains good performance without too much effort. So, could it be possible to join both worlds? Could programmers use the easiness of OpenMP in distributed platforms? A lot of researchers think so. And one of the developed ideas is the distributed shared memory (DSM), a software layer on top of a distributed platform giving an abstract shared memory view to the applications. Even though it seems a good solution it also has some inconveniences. The memory coherence between the nodes in the platform is difficult to maintain (complex management, scalability issues, high overhead and others) and the latency of the remote-memory accesses which can be orders of magnitude greater than on a shared bus due to the interconnection network. Therefore this research improves the performance of OpenMP applications being executed on distributed memory platforms using a DSM with sequential consistency evaluating thoroughly the results from the NAS parallel benchmarks. The vast majority of designed DSMs use a relaxed consistency model because it avoids some major problems in the area. In contrast, we use a sequential consistency model because we think that showing these potential problems that otherwise are hidden may allow the finding of some solutions and, therefore, apply them to both models. The main idea behind this work is that both runtimes, the OpenMP and the DSM layer, should cooperate to achieve good performance, otherwise they interfere one each other trashing the final performance of applications. We develop three different contributions to improve the performance of these applications: (a) a technique to avoid false sharing at runtime, (b) a technique to mimic the MPI behaviour, where produced data is forwarded to their consumers and, finally, (c) a mechanism to avoid the network congestion due to the DSM coherence messages. The NAS Parallel Benchmarks are used to test the contributions. The results of this work shows that the false-sharing problem is a relative problem depending on each application. Another result is the importance to move the data flow outside of the critical path and to use techniques that forwards data as early as possible, similar to MPI, benefits the final application performance. Additionally, this data movement is usually concentrated at single points and affects the application performance due to the limited bandwidth of the network. Therefore it is necessary to provide mechanisms that allows the distribution of this data through the computation time using an otherwise idle network. Finally, results shows that the proposed contributions improve the performance of OpenMP applications on this kind of environments
    corecore