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Abstract 

Irregular computations pose some of the most interesting and challenging problems in 
automatic parallelization. Irregularity appears in certain kinds of numerical problems and is 
pervasive in symbolic applications. Such computations often use dynamic data structures, 
which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, 
from independence detection to task partitioning and placement. Starting in the mid 80s there 
has been significant progress in the development of parallelizing compilers for logic pro­
gramming (and more recently, constraint programming) resulting in quite capable paralle­
lizes. The typical applications of these paradigms frequently involve irregular computations, 
and make heavy use of dynamic data structures with pointers, since logical variables represent 
in practice a well-behaved form of pointers. This arguably makes the techniques used in these 
compilers potentially interesting. In this paper, we introduce in a tutorial way, some of the 
problems faced by parallelizing compilers for logic and constraint programs and provide 
pointers to some of the significant progress made in the area. In particular, this work has 
resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for 
independence detection, cost models and cost analysis, cactus-stack memory management, 
techniques for managing speculative and irregular computations through task granularity 
control and dynamic task allocation (such as work-stealing schedulers), etc. 



1. Introduction 

Multiprocessing hardware is already available, which offers significant advantages 
in either performance or cost/performance over uniprocessors. For example, de­
partmental servers using fast, inexpensive off-the-shelf processors are currently of­
fered at a fraction of the cost of the mainframes they replace, and even 
multiprocessor workstations are now not uncommon. Faster and more ubiquitous 
high-speed networks increase the potential of exploiting distributed execution. 

One of the recurring facts that hamper the progress of widespread use of par­
allelism is that in practice, beyond some manually parallelized high volume appli­
cations and scientific codes, still comparatively few programs are written or 
transformed to exploit parallelism. The traditional argument that parallelization is a 
difficult and error-prone task (see, e.g., [52]) seems to remain valid [3], and still 
points to the necessity of improving the tools used in the process. This includes 
developing languages that offer better support for parallel programming, improved 
libraries for supporting parallel programming on conventional languages, and sig­
nificant progress in support tools, from parallelizing compilers to performance 
analyzers. 

Herein, we concentrate on the issue of automatic parallelization. While manual 
parallelization may of course always have a place, parallelizing compilers are in­
teresting in that they have the potential to dramatically lessen the parallelization 
burden and there is hope that one day they may eliminate it altogether. However, 
despite much progress, it appears that significant challenges still remain in the area of 
automatic parallelization, including dealing well with both regular and irregular 
computations, performing efficient partitioning for both types of computations, 
dealing with data structures with pointers, handling speculative computations, au­
tomatically changing data structures for more efficient exploitation of parallelism, 
and developing parallelization techniques for new, higher level programming para­
digms. 

The goal of developing effective parallelizing compilers is being sought after 
concurrently and, unfortunately, somewhat independently in the context of different 
programming paradigms or even individual languages. As a result of the charac­
teristics of the typical applications of such paradigms or languages, the amount of 
progress made on the different topics involved made differs. 

For example, some very significant progress has been made in parallelizing 
compilers for regular, numerical computations, generally based on the FORTRAN 
language (see, e.g., [7,79]). This research has resulted in well-known concepts and 
techniques including a well-understood notion of independence (based on the 
Bernstein conditions or, for example, more recent notions of "semantic indepen­
dence" [9]), sophisticated syntactic loop transformations, transformations based on 
polytope models, extensive work on partitioning and placement, etc. On the other 



hand, the applicability of these techniques has remained comparatively limited for 
irregular or symbolic computations, and still few practical systems deal well with 
parallelization across procedure calls or with irregular computations. Also, the 
techniques used often rely on the relative cleanliness of FORTRAN as a program­
ming language and additional work is needed in order to extend them to other 
mainstream languages like C or C++. These languages include features such as 
dynamic, recursive data structures and pointer manipulation which complicate the 
detection of independence among statements or procedure calls and much current 
work is aimed at developing the related independence analyzes. An important ex­
ample is pointer aliasing analysis (see, e.g., [4,68], and their references). 

We argue that, despite the apparent differences among imperative, functional, 
logic, constraint, and object-oriented languages, the fundamental issues being 
tackled are quite similar. Thus, we believe that progress towards more effective 
parallelizing compilers for all programming paradigms can be sped-up by cross 
fertilization of the results obtained in different paradigms. It is with this thought in 
mind (and without aspiring to being exhaustive, which is impossible given the space 
available and unnecessary to make the point) that we present in the following a brief 
overview of some of the problems, which appear in the area of automatic parallel­
ization of logic and constraint programs and provide pointers to the some of the 
solutions and significant achievements of the area. 

2. Logic and constraint programming 

Due to space limitations, we will present only a brief overview of logic and 
constraint programming, specifically tailored to the objective of our presentation 
(the reader is referred for example to [6,50,56,72] for details). We warn the reader 
that this cannot in any way be considered a fair introduction to the topic, since we 
completely overlook aspects of logic and constraint programming, which are widely 
perceived as important. These include the declarative nature and the logical se­
mantics: programs in these languages are often not only the coding of an algorithm, 
but also a logical statement of a problem, which is very close to a specification. In the 
following, we take a fully operational view - the same one that the parallelizing 
compiler takes. 

The basic "statements" of a constraint logic program are constraints. Constraints 
relate (logical) variables (variable identifiers start with upper case while constants 
and data structure descriptors - functors, see later - start with lower case). Such 
variables can be free, or they can be constrained to a certain value or set of values. 
For example, the statement X = Y+Z establishes that the given constraint must hold 
among those variables (we assume for example that the variables range over floating 
point numbers). Such constraints are kept in the store. Assume Y and Z have a 
"known" value at the time of executing this constraint (for example, the store 
contains Y = 2 and Z = 3). Then, the operational semantics of such a constraint is 
very similar to that in any other language: the statement implies an addition (2 + 3) 
and an "assignment" of the result (5) to X. This can also be seen as telling (posting) 



the constraint X = 5. Assume instead that such values are not known. Then, exe­
cuting the statement involves placing the constraint in the store for later solution if/ 
when another constraint is executed. Sequences of constraints are separated by 
commas. Assume again an empty initial store and the sequence of constraints 
"Y = 2, X = Y+Z". After executing this sequence the store would contain "Y = 2, 
X = 2 + T1, Z = T1". Here, we are making the assumption that sequences of con­
straints execute sequentially in the order in which they appear and that the store is 
always kept as "fully solved" as possible and in a normalized form (see [50] for 
details. 

Constraint logic programming also provides a method for procedure abstraction. 
For example, code segment (a) below: 

foo(Z,X) : - Y=2, 
X=Y+Z. 

(a) 
main : - foo(K,W), 

K = 3 , 
write(W). 

(b) 

defines a two-argument procedure f oo. A procedure defines a local dynamic invo­
cation context in the usual way, i.e., upon entering the procedure Y is a new local 
variable, while X and Z are formal parameters. The calling regime is not unlike "call 
by reference" (see the discussion later about logical variables being essentially 
pointers). For example, the effect of calling f oo ( 3 , W) is that upon return W= 5 is 
added to the calling context. Note that the procedure is syntactically not very dif­
ferent from what one would write in a functional or imperative language, and its 
behavior is essentially the same for calls such as f oo ( 3 , W). However, the complete 
operational behavior of the constraint programming procedure is richer because it 
allows other "calling modes". For example, a call to f oo (K, 5) succeeds and upon 
return K = 3 is added to the calling context. Furthermore, a call to f oo (K, W) also 
succeeds and upon return the constraint W = 2+K is added to the calling context. In 
some ways, the statements and procedures in constraint programs can be seen as 
"reversible" versions of their syntactic counterparts in conventional languages. Note 
that also the declarative meaning of such programs is richer because it defines a 
complete logical relation (rather than a function) among its arguments. Procedure 
calls can appear in the bodies of procedures interspersed with constraints. For ex­
ample, code segment (b) above would produce " 5 " on the standard output. 

Procedures can have multiple definitions, which represent different alternatives. 
Establishing a somewhat inaccurate parallel with conventional languages, a set of 
procedure definitions can be seen as an "undoable" form of case statement or 
conditional. When such a procedure is entered it is said to create a choice. Such 
alternatives are tried in the textual order in which they appear in the program, i.e., 
the first definition of a procedure is tried first and, if that results in a failure, then the 
next one is tried (again, we follow the default execution strategy used in most 
practical constraint programming languages). A failure occurs when a constraint is 
executed, which makes the store unsolvable (i.e., it is incompatible with the current 
state of the store). This is not unlike the case of a test evaluating to false in a 



conditional. When a failure occurs, the system backtracks to the last choice left 
behind and tries the next alternative in that choice. Since procedure calls can be 
nested, a stack of choices is kept by the system. A choice is pushed on the stack every 
time a procedure with several alternatives is invoked. When a failure occurs, exe­
cution continues at the next alternative of the choice on top of the choice stack. 
When the last alternative of a choice is entered, the choice itself is popped from the 
stack. 

For example, the following program: 

bar(K,W), 
K > 2, 
write(W). 

bar(X,Y) 
bar(X,Y) 

X < 0, Y = 
X >= 0, Y = 

-10. 
10. 

prints "10". The first alternative of b a r is tried first, resulting in W = -10 and K < 0, 
but executing K > 2 produces a failure since the store now has no solution. After 
trying the second alternative of ba r , K > 2 succeeds (the store is then K > 2, W = 
10) and the program terminates after printing the value of W. l 

The following, slightly more interesting example defining the Fibonacci relation 
illustrates the use of recursion: 

f i b ( 0 , 0 ) . 
f i b ( l , 1 ) . 

f ib(N, F1+F2) : - N>1, F1>=0, F2>=0, 
f i b ( N - l , F l ) , 
f ib (N-2 , F2). 

(in this example we have used a more convenient syntax where input parameter 
normalization is done automatically by the system - i.e., " f i b ( 0 , 0 ) . " is a short­
hand for " f i b (X, Y) : - X = 0, Y = 0. " and "f i b (N, F1 + F2) : - . . . " a short­
hand for " f i b (N, X) : -X = ¥l + ¥2, . . . " ) . Calling f i b (8 , Y) establishes Y = 21, 
and calling f i b (X, 21) establishes X = 8. Calling f ib (X, Y) produces as alterna­
tives the constraints (X = 0, Y = 0 ) , (X = l , Y = l ) , (X = 2, Y = l ) , e t c . 

In the previous examples, we have been using a certain constraint system: essen­
tially, equalities and inequalities involving linear arithmetic expressions over the 
(pseudo-) real-numbers. In many cases, the operations of constraint programs can be 
compiled directly into standard machine operations. However, in others (when ac­
tual constraint solving is involved) a constraint solving algorithm needs to be applied. 
Thus, the definition of each constraint system must include a decidable and (hope­
fully) efficient "solver". Practical languages typically include several constraint sys­
tems. 

1 Of course, an optimizing compiler would compile away much of the behavior described in this very 
simple case. 



A particularly interesting constraint system present in almost all constraint lan­
guages is that of "equality relations over data structures" (i.e., finite trees). This is 
generally referred to as the Herbrand domain (and is the "working domain" of the 
Prolog language). This domain is crucial because it allows building and processing 
data structures with (single assignment) pointers in a very simple and declarative 
way. For example, the following program: 

m a i n :- X = f ( Y , Z ) , 
Y = a , 
W = Z, 
W = g ( K ) , 
X = f ( a , g ( b ) ) . 

first builds (dynamically) a new two-argument structure whose constructor symbol is 
f (in other words, a tree whose root node is f and which has two open branches) 

X = f(Y,Z), 
aa 

The variables Y and Z are pointers to the two arguments of the structure. The 
statement 

a 
Y = a , • • z 

"binds" the first argument of the structure to the constant a (i.e., at this time X 
points to f (a , Z)). The following statement: 

W = Z , *--\J# • z 

aliases the pointers W and Z (e.g., W points to Z). Therefore, the result of the state­
ment 

W = g ( K ) , 
X "~X^ [mimii^r v^/W 

• ,9/' 
i»i * i 

is to "bind" the second argument of the structure to g(K) (and as a result X now 
points to f (a , g(K) )). The last statement 



X = f ( a , g ( b ) ) . • • "i 
z^ 

finally binds K to the constant "b. This last statement illustrates how open arguments 
inside a structure can also be accessed by traversing the structure using a process not 
unlike the "pattern matching" available in modern functional programming lan­
guages (except that it is again a "reversible" version of it). The algorithm capable of 
solving all such equality constraints over data structures is unification [57,61,66]. One 
of the nice characteristics of this constraint system is that there exist very efficient 
algorithms for performing unification. 2 As mentioned before, Prolog, one of the 
most popular logic programming languages, is essentially a constraint logic pro­
gramming language, which uses exclusively the Herbrand domain. It is no surprise 
that Prolog is considered very well-suited for the easy manipulation of data struc­
tures with pointers. 3 

3. Parallelization of constraint logic programs 

One of the main thesis of this paper is that logic programming and constraint 
programming languages offer a particularly interesting case study for the area of 
automatic parallelization. On one hand, these programming paradigms pose sig­
nificant challenges to the parallelization task, which relate closely to the more dif­
ficult challenges faced in imperative language parallelization. Such challenges include 
highly irregular computations and dynamic control flow (due to the symbolic nature 
of many of their applications), non-trivial notions of (semantic) independence, the 
presence of dynamically allocated, complex data structures containing pointers, and 
having to deal with speculation. 

On the other hand, due to their high-level nature these languages also facilitate the 
study of parallelization issues. As we have seen, logical variables are actually a quite 
"well-behaved" version of pointers, in the sense that no castings or pointer arith­
metic (other than array indexing through the a r g / 3 builtin) is allowed. Thus, 
pointers in these languages are not unlike those allowed, for example, in "clean" 
versions of C (or, to a lesser extent, in Java). In addition, similarly to functional 

2 Furthermore, there are also very successful compilation techniques, which (specially if global analysis 
of the program is performed) can translate sequences of operations such as those in the program above 
into a number of machine instructions that is essentially the same as if a lower-level language had been 
used to express the same data structure and pointer creation and binding operations. The reader is referred 
to [74] for an overview of progress in such compilation techniques. 

3 Modern logic and constraint programming languages have many other features, such as support for 
higher order and meta programming, module and object systems, aggregation procedures, different sets of 
libraries, etc. with interesting implications on the automatic parallelization process. However, space 
limitations prevent us from considering these additional issues. 



languages, logic and constraint languages allow coding in a way, which expresses the 
desired algorithm in a way that reflects more directly the structure of the problem 
(i.e., staying closer to the specifications). This makes the parallelism available in the 
problem more accessible to the compiler. The relatively clean semantics of these 
languages also makes it comparatively easy to use formal methods and prove the 
transformations performed by the parallelizing compiler both correct (in terms of 
computed outputs) and efficient (in terms of computational cost). 4 Quite significant 
progress has been made in the past decade in the area of automatic program par-
allelization for logic programs and some of the challenges have been tackled quite 
effectively. In the following we touch upon a few of them (see, for example, [19] for 
an overview of the area). 

3.1. Where the parallelism can be found 

There are several types of parallelism, which are traditionally exploited in logic 
and constraint programs. For example, in applications involving extensive search 
(which is a frequent case in general search problems or in the enumeration part of 
constraint problems) the choices represented by alternative procedure definitions are 
often "deep" i.e., a number of steps are typically executed before a failure implies 
exploring an alternative definition. In this case different processors can execute si­
multaneously the different procedure definitions (i.e., the different branches of this 
search space). The resulting parallelism is called or-parallelism. This type of paral­
lelism is present for example in the following program: 

money(S,E,N,D,M,0,R,Y) : -
d i g i t ( S ) , 
d i g i t ( E ) , 
• • • » 
c a r r y ( I ) , 

N i s E+0-10*I, 

d i g i t ( 0 ) . 
d i g i t ( 1 ) . 

d i g i t ( 9 ) . 

carry(0) . 
carry(1) . 

The calls to d i g i t and c a r r y in the body of money are choices. Each alter­
native of these choices creates a branch that includes all the continuation (the rest of 
the body of money as well as the rest of the environment in which money was 
called). These branches can be executed in parallel. 

4 Functional programming is another paradigm, which also facilitates exploitation of parallelism. 
However, it can be argued that the lack of certain features, such as pointers and backtracking, while 
making the parallelization problem easier, also precludes studying some interesting problems. 



An alternative strategy is to parallelize the statements and/or procedure calls in 
procedure bodies, in the same way as in more traditional languages. 5 This kind of 
parallelism is referred to as and-parallelism. A typical example of and-parallelism is 
the parallel execution of the two recursive calls in the definition of the Fibonacci 
relation given before. Another example is the following definition of the quick-sort 
program (where the functor ": " is used as list constructor) for example the two 
recursive calls to q s o r t can be executed in parallel: 

qsort(nil,nil). 
qsort(X:L,R) : - partition(L,X,LI,L2), 

qsort(L2, R2), 
qsort(LI, Rl), 
append(Rl,X:R2,R). 

As and-parallelism corresponds to the traditional parallelism exploited in loop 
parallelization, divide and conquer algorithms, etc., we will concentrate our dis­
cussion on it. Also, and-parallelism is the only kind of parallelism that can be ex­
ploited in applications where choices are "shallow" (i.e., they correspond more 
closely to standard conditionals). It turns out that there are strong relationships 
between these forms of parallelism and the traditional notion of "data-parallelism" 
(see [10,11,41]). 

3.2. Correctness and efficiency of the parallelization 

As in any other programming paradigm, the objective of the parallelizing com­
piler is to uncover as much as possible of the available parallelism, while guaran­
teeing that the correct results are computed (correctness) and that other observable 
characteristics of the program, such as execution time, are improved (speedup) or, at 
the minimum, preserved (no-slowdown) - efficiency. A central issue is, then, under 
which conditions statements in a constraint logic program can be correctly and ef­
ficiently parallelized. 

For comparison, consider the following segments of programs in (a) a traditional 
imperative language, (b) a (strict) functional language, and (c) a constraint logic 
programming language (we assume that the values of W and Z are initialized to some 
value before execution of these statements): 

5 In fact, at a finer level of granularity, also parts of body statements can be executed in parallel. 
However, for simplicity, and without loss of generality, we assume parallelization at the goal level, 
meaning that the units scheduled will be body statements and procedure calls. Note also that the 
concurrency expressed by concurrent logic programming languages is between "and-parallel tasks". See [42] 
for an extended discussion on this topic. Interesting models for exploiting and-parallelism at a finer level of 
granularity are, for example, [16,40,51,69,77]. 



Si 

s2 

Y := W+2; 

X := Y+Z; 

(a) 

(+ (+ W 2) 

Z) 
(b) 

Y = W+2, 

X = Y+Z, 

(c) 

For simplicity, we will reason about the correctness and efficiency of parallelism 
using the instrumental technique of considering reorderings (interleavings). State­
ments s\ and s2 in (a) are generally considered to be dependent because reversing their 
order would yield an incorrect result, i.e., it violates the correctness condition above 
(this is an example of & flow-dependency). 6 A slightly different, but closely related 
situation occurs in (b): reversing the order of function application would result in a 
run-time error (one of the arguments to a function would be missing). Interestingly, 
reversing the order of statements s\ and s2 in (c) does yield the correct result. In fact, 
this is an instance of a more general rule: if no side effects are involved, reordering 
statements does not affect correctness in a constraint logic program. As another 
example, consider the following program (which uses only the Herbrand domain, 
i.e., it is a Prolog program, and which we will call program (d)): 

main:-

Sl 

52 

p(X), 

q(X), 

write(X). 

p(X) 

q(X) 
q(X) 

:- X=a. 

:- X=b, large computation. 
:- X=a. 

Note that, again, reversing statements s\ and s2 produces the same result (X = a). 
The fact that (at least in pure segments of programs) the order of statements in 

constraint logic programming does not affect the result 7 led in early models to the 
proposal of execution strategies where parallelism was exploited "fully" (i.e., all 
statements were eligible for parallelization). However, the problem is that such 
parallelization often violates the principle of efficiency: for a finite number of pro­
cessors, the parallelized program can be arbitrarily slower than the sequential pro­
gram, even under ideal assumptions regarding run-time overheads. For instance, in 
the last example, reversing the order of the calls to p and q in the body of main 
implies that the call q (X) (X at this point is free, i.e., a pointer to an empty cell) will 
first enter its first alternative, performing the large computation. Upon return of q 

6 To complete the discussion above, note that output-dependencies do not appear in functional or logic 
and constraint programs because single assignment is generally used - we consider this a minor point of 
difference since one of the standard techniques for parallelizing imperative programs is to perform a 
transformation to a single assignment program before performing the parallelization. 

7 Note that in practical languages, however, termination characteristics may change, but termination can 
actually also be seen as an extreme effect of the other problem to be discussed: efficiency. 



(with X pointing to the constant b) the call to p will fail and the system will backtrack 
to the second alternative of q, after which p will succeed with X = a. On the other 
hand, the sequential execution would terminate in two or three steps, without per­
forming the large computation. The fundamental observation is that, in the se­
quential execution, p affects q, in the sense that it prunes (limits) its choices. 
Executing q before executing p results in performing speculative choices with respect 
to the sequential execution. Note that this is in fact very related to executing con­
ditionals in parallel (or ahead of time) in traditional languages (note that q above 
could also be (loosely) written as "q(X) : - i f X = b t h e n largecomputationelse 
i f X = a t h e n t r u e e l s e f a i l . "). 

Something very similar occurs in case (c) above: while execution of the two 
constraints in the original order involves two additions and two assignments (the 
same of operations as those of the imperative or functional programs), executing 
them in reversed order involves first adding an equation to the system, corresponding 
to statement s2, and then solving it against su which is more expensive. The obvious 
conclusion is that, in general, arbitrary parallelization does not guarantee that the 
two conditions above are met. 8 

3.3. Notions of independence 

Contrary to early the beliefs held in the field, most work in the last decade has 
considered that violating the efficiency condition is as much a "sign of dependence" 
among statements as violating the correctness condition. As a result, novel notions 
of independence have been developed, which capture these two issues of correctness 
and efficiency at the same time: independent statements as those whose run-time 
behavior, if parallelized, produces the same results as their sequential execution and 
an increase (or, at least, no decrease) in performance. As seen before, dealing with 
correctness is a matter of correctly sequencing side-effects (plus low-level issues, of 
course, such as locking). The techniques developed to this end are interesting, but, 
due to space limitations, we will concentrate on the arguably more interesting issue 
of guaranteeing efficiency. To separate issues better, we will discuss the issue under 
the assumption of ideal run-time conditions, i.e., no task creation and scheduling 
overheads (we will deal with overheads later). Note that, even under these ideal 
conditions, the statements in (c) and (d) are clearly dependent. 

A fundamental question then is how to guarantee independence (without having 
to actually run the statements, as suggested by the definition given above). A fun­
damental result in this context is the fact that, if only the Herbrand constraint system 
is used (as in the Prolog language), a statement or procedure call, q, cannot be 

In fact, a similar phenomenon occurs in or-parallelism where arbitrarily parallelizing branches of the 
search does not produce incorrect results, but, if looking for only one solution to a problem (or, more 
generally, in the presence oi pruning operators - operators which control de search, which are pervasive in 
practical programs) results in speculative computations which can have a negative effect of efficiency. 
However, due to space limitations we concentrate our discussion on and-parallelism, because of its more 
direct relation to the parallelism that is usually exploited in conventional programs. 



affected by another, p, unless there are free pointers (pointers to empty structure 
fields) from the run-time data structures passed to q from the data structures passed 
to p. This condition is called strict independence [30,45,47]. 9 For example, in the 
following program: 

main : - X=f(K,g(K)), 
Y=a, 
Z=g(D, 
W=h(b,L), 
p(X,Y), 
q(Y,Z), 
r(W). 

Y~"\ 

V)x^~ 
^•1*1 " 
4 S q 
J#l ' ^ 

1 
J # I # I • 

^ , . . . . . ^ ™ " ^ ^ \ 

i # r i 

p and q are strictly independent, because, at the point in execution just before 
calling p (the situation depicted in the right part of the figure), X and Z point to data 
structures, which do not point to each other, and, even though Y is a pointer, which 
is shared between p and q, Y points to a fixed value, which p cannot change (note 
again that we are dealing with single assignment languages). As a result, the exe­
cution of p cannot affect q in any way and q can be safely run ahead of time in 
parallel with p (and, again assuming no run-time overheads, no-slowdown is guar­
anteed). Furthermore, no locking or copying of the intervening data structures is 
required (which helps bring the implementation closer to the ideal situation). Simi­
larly, q and r are not strictly independent, because there is a pointer in common (L) 
among the data structures they have access to and thus the execution of q could 
affect that of r . 

Unfortunately, the compiler cannot always determine independence by simply 
looking at one procedure, as above. For example, in the program (a) below 

main : - t (X,Y) , 
P « ) , 
q(Y). 

(a) 
main :• - t (X,Y) , 

( indep(X,Y) 
-> p(X) & q(Y) 
; p(X), q(Y) ) . ' 

(b) 

it can determine that p and q are not (strictly) independent of t , since, upon entering 
the body of the procedure, X, Y, and Z are free pointers which are shared with t . On 
the other hand, after execution of t the situation is unknown since perhaps the 
structures created by t (and pointed to by X and Y) have no free pointers to each 

9 To be completely precise, in order to avoid creating speculative parallelism, some non-failure 
conditions are also required of the goals executed in parallel, but we knowingly overlook this issue at this 
point to simplify the discussion. 



other. Unfortunately, in order to determine this for sure a global (inter-procedural) 
analysis of the program must be performed. An alternative is to compile in a run-time 
test just after the execution of t . This has the undesirable side-effect that then the no-
slowdown property does not automatically hold, because of the overhead involved in 
the test, but it is still potentially useful. The compilation of such a test can be seen as 
a source to source transformation of the program as shown in program (b) above 
(where, following the &-Prolog [43] notation, "&" represents parallel execution, and 
(a —»"b; c) is Prolog's syntax for "(if a then b else c)"). 

Furthermore, it is also sometimes possible to determine directly that in fact the 
operations that t performs on X and Y do not affect the execution of p and q. This 
kind of independence is called non-strict independence [46]. It cannot be determined 
in general a priori (i.e., by inspecting the state of the computation prior to executing 
t , p, and q) and thus necessarily requires a global analysis of the program. However, 
it very interesting because it appears often in programs which manipulate "open" 
data structures (difference lists, dictionaries, etc.). An example of this is the following 
f l a t t e n example, which eliminates nestings in lists ( [X|Xs] represents the list 
whose head is X and whose tail is Xs and [ ] represents the empty list): 

flatten(Xs,Ys) :-
flatten(Xs,Ys, 

f l a t t e n ( [ ] , Xs, Xs) . 
flatten([X|Xs] ,Ys,Zs) :-

a). 

f lat ten(X,Ys,Ysl) , 
flatten(Xs,Ysl 

f lat ten(X, [X|Xs], Xs) :-
atomic(X), X = 

nu-cM-HB-n 
Q V D i B 

,Zs) 

[ ] • 

X 
Y 

EL E Q B10 

This program unnests a list without copying by creating open-ended lists and 
passing a pointer to the end of the list (Ysl) to the recursive call. Since this pointer is 
not bound by the first call to f l a t t e n / 3 in the body of the recursive clause, the 
calls to f l a t t e n ( X , Ys, Ys l ) and f l a t t e n ( X s , Y s l , Zs) are (non-strictly) in­
dependent and all the recursions can be run in parallel. 

An even more interesting case occurs if other constraint systems are used in ad­
dition to or in place of the Herbrand domain. Consider for example the parallel-
ization of two procedure calls p ( X ) , q ( Z ) in the following two situations: 

(a) main : - X > Y , Z > Y , p(X) & q ( Z ) , . . . 
(b) main : - X > Y, Y > Z, p(X) & q ( Z ) , . . . 
In case (a) the store contains (X >Y, Z > Y) before calling q and q, whereas in 

case (b) the store contains (X >Y, Y > Z). The simple pointer aliasing reasoning 
implied by the definition of strict independence does not apply directly. However, p 



cannot in any way affect q in case (a), while this could be possible in case (b), i.e., the 
two calls are clearly independent in case (a) while they are (potentially) dependent in 
case (b). 

Notions of independence, which apply to general constraint programming (and 
can thus deal with the situation above) have been proposed recently [22,35]. For 
example, two goals p and q are independent if all constraints posed during the ex­
ecution of q are consistent with the output constraints of p. 10 The following is a 
sufficient condition for the previous definition but which only needs to look at the 
state of the store prior to the execution of the calls to be parallelized (for example, 
using run-time tests which explore the store c), in the same spirit as the strict-inde­
pendence condition for the Herbrand case. Assuming the calls &rep(x) and q{y) then 
the condition is 

(x n y C def(c)) and (3_xc A 3_?c - • 3_^c) , 

where x is the set of arguments of p, def(c) the set of variables constrained to a 
unique value in c, and 3_^ represents the projection of the store on the variables x 
(the notion of projection is predefined for each constraint system). The first condi­
tion states that the variables, which are shared between the goals in the program text 
must be bound at run-time to unique values. The second condition is perhaps best 
illustrated through an example. In the two cases above, for (a) c = {X > Y, Z > Y} 
we have 3_{X}c = 3_{Zjc = EL{X,z}C = true and therefore p and q are independent. 
For (b) c = {X > Y, Y > Z} we have 3_{X}c = 3_{Zjc = true while 3{XjZ}c = X > Z 
and therefore p and q are not independent. While checking these conditions accu­
rately and directly can be inefficient in practice, the process can be approximated at 
compile-time via analysis or at run-time via simplified checks on the store. 

Other interesting notions of independence which have been proposed are based on 
"determinacy" (i.e., lack of choices) [67]: two computations that have no choices 
(i.e., "do not backtrack") are independent (provided, as before, that they can be 
guaranteed not to fail). Note that this is in general also captured by the notion of 
constraint independence given above. 

3.4. The parallelization process 

Experiments have shown that parallelization using only local analysis and gen­
erating run-time tests results in an excessive amount of overhead that severely limits 
speedups (see [15] for a recent comparison of actual speedups obtained by several 
parallelization methods). On the other hand, it has also been observed that there 
exist programs that obtain better speedups if a limited amount of run-time checking 
of independence is used than if only static decisions are made. Thus, a parallelization 

This actually implies a better result even for Prolog programs since its projection on the Herbrand 
domain is a strict generalization of previous notions of non-strict independence, e.g., the sequence p (X), 
q (X) can be parallelized if p is defined for example as p (a) and q is defined as q ( a ) . 



methodology is generally used which can accommodate both static analysis and run­
time checking. 

One of the more widely used approaches is illustrated in Fig. 1, representing the 
parallelization of "g\(.. -)-,g2{- • •)?̂ "3(• • •)"• The bodies of procedures are explored 
looking for statements and procedure calls, which are candidates for parallelization. 
As in many other parallelizers, a dependency graph is first built, which in principle 
reflects the total ordering of statements and calls given by the sequential semantics. 
To control the complexity of the process these graphs are limited to one body of one 
procedure (if the body is too long, the body can be partitioned in segments, but this 
does not happen often in constraint logic programs). Each edge in the graph is then 
labeled with the independence condition (the run-time check) that would guarantee 
independence of the statements or calls joined by the edge. A global analysis of the 
program then tries to prove these conditions statically true or false. If a condition is 
proved to be true, then the corresponding edge in the dependency graph is elimi­
nated. If proved false, then an unconditional edge (i.e., a static dependency) is left. 
Still, in other edges conditions may remain (possibly simplified). The annotation 
process then encodes the resulting graph in the target parallel language (a variant of 
the source language). The techniques proposed for performing this process depend 
on many factors including whether the target language allows arbitrary parallelism 
or just fork-join structures and whether run-time independence tests are allowed or 
not. As an example, Fig. 1 presents two possible encodings in &-Prolog of the 
(schematic) dependency graph obtained after analysis. The parallel expressions 
generated in this case use only fork-join structures, one with run-time checks and the 
other one without them. Interesting techniques have been developed for compilation 
of conditional non-planar dependency graphs into fork-join structures, in addition to 
other, non-graph-based techniques [14,31,59]. 

The global analysis required to simplify the conditional graphs has to perform, 
among other tasks, inter-procedural pointer analyses, not unlike those recently 

f o o ( . . . ) : -

g i ( . - . ) , 
g2 C . ) , 
g 3 C . ) . 

icond(l-3) 

icond(l-2) ^—^ ' icond('2-3) 

Cfi) 

"Annotation" 

Local/Global analysis 
and sin^pIiEcatiM"""" 

(test(l-3)->(gl,g2)&g3 
; gl,(g2&g3)) 

Alternative: gl, (g2 & g3 ) 

Fig. 1. Parallelizing "gx{.. .),g2(.. .),g3(. • •)" 



proposed for clean versions of C or C++. Early proposals based on traditional data 
flow analysis techniques pointed in the right direction but proved imprecise [18]. The 
presence of recursion and dynamic data structures has fueled the development of 
quite sophisticated, incremental inter-procedural analyzers based on abstract inter­
pretation [21]. This has required the development of efficient analysis algorithms as 
well as abstract domains for accurately and efficiently keeping track of sharing 
patterns and pointer aliasing in recursive data structures [15,49,58,60]. These ana­
lyses have been applied to the detection of both strict and non-strict independence 
[15,17] (for example, the f l a t t e n program of Section 3.3 is parallelized automat­
ically by the system described in [17]). Analyses have been developed also to derive 
other important properties beyond variable instantiation states such as determinism 
[29], non-failure [26], and number of answers [13]. These parallelization techniques 
have also recently been extended to support "dependent" and-parallelism [63] 
(which, as mentioned before, really refers to exploiting independence at a finer level 
of granularity than goals [42]). 

3.5. Dealing with overheads and irregularity - scheduling and memory management 

The preceding discussion has on purpose avoided the issue of run-time overheads. 
The obvious practical implication of the existence of overheads (task creation, 
scheduling, data movement, etc.) is that even if a task is known to be independent, its 
parallel execution may still render a slow-down. This can happen if the task does not 
represent a sufficient amount of computation with respect to the overheads incurred 
in its parallelization. In the case of constraint logic programming the problem is 
compounded by the fact that, because of the symbolic nature of the applications 
typically coded, the number of tasks generated at run-time (as well as the compu­
tational cost and dynamic memory demands of each such task) depends on run-time 
parameters, i.e., the computations are typically highly irregular. 

Two main approaches have been explored in order to overcome these problems. 
The first one is to combine dynamic task allocation policies with compilation tech­
niques (abstract machines), which reduce as much as possible the overhead involved 
in the parallel execution of tasks. The best results have been obtained by performing 
low level "micro-task" scheduling, independently of the operating system threads 
[38,43,55], and generally based on non-centralized, "task stealing" approaches. 
Micro tasks are often represented simply by two pointers, one pointing to the pro­
cedure call or statement and another to the relevant invocation record. The tasks are 
executed by a number of instances of (a parallel version of) the conceptual abstract 
machines, which have been shown to provide the best performance for sequential 
implementation [1,37,55,75]. Interesting techniques have also been proposed for 
parallel dynamic memory management (using "cactus stacks" [2,12,37,44,55]). These 
techniques support, for example, efficient memory recovery during parallel back­
tracking search. Some interesting examples of these dynamic scheduling and memory 
management techniques are presented in [37,43,62,64,71] for and-parallelism and in 
[2,20,32,55,76] for or-parallelism. 



3.6. Dealing with overheads and irregularity - granularity control 

The techniques mentioned above have proven sufficient for keeping the over­
heads of communication, scheduling, and memory management low and obtain­
ing significant speedups in a wide variety of applications on shared memory 
multiprocessors (starting from the early paradigmatic examples: the sequent bal­
ance and symmetry series). However, current trends point towards larger multi­
processors but with less uniform shared memory access times. Controlling in 
some way the granularity (execution time and space) of the tasks to be executed 
in parallel can be a useful optimization in such machines, and is in any case a 
necessity when parallelizing for machines with slower interconnections. The latter 
include, for example, networks of workstations or distribution of work over the 
Internet. 

This area of granularity control (task partitioning) has also received a significant 
amount of attention in the context of logic program parallelization. The idea of 
granularity control is to replace parallel execution with sequential execution or vice-
versa based on knowledge (actual data, bounds, or estimations) of task size and 
overheads. The problem is challenging because, while the basic communication 
overhead parameters of a system can be determined experimentally, the computa­
tional cost of the tasks (e.g., procedure calls) being parallelized, as well as the 
amount of data that needs to be transferred before and after a parallel call, usually 
depend on dynamic characteristics of the input data. In the following example, we 
consider for parallel execution q (which assuming it is called with X bound to a list of 
numbers, adds one to each element of the list): 

. . . , r 

q ( [ ] 
q ( [ i 

(X) & q ( X , 

[ ] ) • 
I s ] , [ 1 + 1 

Y) 

| 0 s 

• • • 

] ) : - q ( i s O s ) . 

The computational cost of a call to q (and also the communication overheads) are 
obviously proportional to the number of elements in the list. The characterization of 
input data required has made the problem difficult to solve (well) completely at 
compile-time. 

One of the solutions which has been explored is to derive at compile time com­
plexity cost functions, which give upper and lower bounds on task execution time as a 
function of certain measures of input data [24,25,27,28,53,54] (alternative solutions 
are given in, e.g., [70,73]; see also [48] in the context of functional languages). In­
terestingly, some of the analyses used in the derivation of such functions (e.g., [28]) 
make use of some techniques developed in the context of imperative program par­
allelization, such as the Omega test [65]. Programs are then transformed at compile-
time into semantically equivalent counterparts but which automatically control 
granularity at run-time based on such functions. In the example above, these tools 
derive cost functions such as, for example, 2 * length(X) + 1 for q (i.e., the unit of 



cost is in this case a procedure call, where the addition is counted for simplicity as 
one procedure call). If we assume that we should parallelize when the total com­
putation cost is larger than "100", then we can transform the parallel call to p and q 
above into 

.. . , Cost = 2*~length(X) + l , ( Cost > 100 ->• r (X) & 
q(X,Y) 
5 r (X) , 
q(X,Y) ) , 

(again, using an if-then-else). Clearly, many issues arise. For example, the cost of 
performing granularity control can be factored into the decisions. The cost functions 
can be simplified and related back to data structure sizes - list length in the case 
above, i.e., the call will only be parallelized if the length of the list is larger than a 
statically pre-computed value 

.. . , ( l e n g t h _ g r e a t e r _ t h a n (X, 50) ->• r (X) & q(X, Y) 
; r ( X ) , q(X,Y) ) , 

This in turn has inspired the development of algorithms for keeping track of data 
sizes at run-time. Also, the same techniques used for cost bounding allow deriving 
upper- and lower-bounds on the sizes of the structures being passed as arguments. 
This information can be factored into parallelization decisions (it affects the 
threshold). For example, in the example above, the argument size analysis (assuming 
that C is the cost of sending one element of a list, and a distributed setting where data 
is sent and returned eagerly) will infer that the communication cost is 
2 * length{X) * C. Interestingly, the Computation > Overhead condition 
(2 * length{X) + 1 > 2 * length{X) * C) can be determined statically to be al­
ways true (and parallelize unconditionally) or false (and never parallelize) depending 
only on the value of C, which in turn can perhaps be determined experimentally in a 
simple way. Performance improvements have been shown to result from the incor­
poration of this type of grain size control, specially for systems with medium to large 
parallel execution overheads [54]. Clearly, there are many interesting issues involved: 
techniques for derivation of data measures, data size functions, and task cost 
functions, program transformations, program optimizations, etc. Typically, the 
techniques are proved correct, again typically using the notions of approximation 
and bounding, formalized as abstract interpretations. 

3.7. Dealing with speculation 

Finally, also quite interesting techniques have been developed for controlling 
speculation, for both and- and or-parallelism. Explaining these issues in detail is 



beyond the scope of this paper, but we will illustrate briefly with an example how 
speculation appears in and-parallelism 

foo(X) : - X=b, . . . , p(X) & q(X), . . . 
foo(X) : - X=a, . . . 

p(X) : - . . . , X=a, . . . 

q (X) : - large compu tat ion. 

P(X) 

x=a 

x=b 

q(X) 

In the situation above, the first clause of f oo, after binding X to "b, executes p and 
q in parallel. However, the execution of p eventually fails when it poses the con­
straint X = a and execution must continue with the second clause of f o o. Since p and 
q are in conjunction, the execution of q must now be discarded (i.e., starting q ahead 
of time was speculative). A combination of "left-biased scheduling" (ensuring that a 
processor has taken p before another can take q) and "instantaneous killing of 
siblings" (e.g., of q above) at least ensures no-slowdown [37,45,47]. No-slowdown 
(and even theoretical speedup) can also be guaranteed by determining statically that 
the tasks involved in a parallel conjunction (except the leftmost one) will not fail 
(techniques for this have been proposed in [26]). Many other interesting techniques 
for dealing with speculation have been developed (specially in the context or or-
parallelism), including sophisticated schedulers, dynamic throttling of speculative 
tasks, etc. [8,26,36,38]. 

4. Conclusions: Towards cross-fertilization 

As a result of the work outlined in previous sections, quite robust, publicly 
available compilers and run-time systems have been available for some time now, 
generally for Prolog, which automatically exploit parallelism in complex applica­
tions. Such systems have been shown to provide speedups over the state of the art 
sequential implementations available at the time of their development. The speed 
and robustness of these compilers has also been instrumental in demonstrating that 
abstract interpretation provides a very adequate framework for developing provably 
correct, powerful, and efficient global analyzers and, consequently, parallelizers 
[15,63,78]. More recently, techniques and practical tools have also been developed 
for the analysis of general constraint logic programs [34] as well as for their par-
allelization [33]. Prototypes incorporating the granularity control techniques men­
tioned above are also starting to be available. However, much work still remains to 
be done in these areas, and we believe there may be good opportunity at this time for 
increased transference of techniques across programming paradigms. 

It can be argued that particularly strong progress has been made in the context of 
(constraint) logic programming in inter-procedural analysis of programs with 



dynamic data structures and pointers, in parallelization using conditional depen­
dency graphs (and possibly generating run-time independence tests), in the definition 
of the advanced notions of independence that are needed in the presence of specu­
lative computations or languages, which include constraints, in the development of 
efficient task representation techniques and dynamic scheduling algorithms to deal 
with irregularity and speculation, and in the static inference of task cost functions for 
controlling granularity. 

On the other hand, the techniques developed in the area of constraint logic 
program parallelization are certainly weaker than those developed in the context of 
numerical computing for regular problems. For example, logic programming par­
allelizes can discover the parallelism in complex recursive traversals of data struc­
tures, but do not handle well traversals that are based on integer (i.e., array 
subscript) arithmetic, for which much work exists in the area of imperative lan­
guages. Also, while current parallel constraint logic programming systems are rea­
sonably good at dealing with tasks with dynamic costs, the techniques currently used 
are again comparatively weaker for the static case than the partitioning and place­
ment algorithms used in imperative program parallelization [10,11,23,41]. Ideally, a 
parallelizing compiler should perform good partitioning and placement for any kind 
of architecture, using static techniques when possible and dynamic techniques when 
unavoidable. It thus appears that it would be quite interesting to merge the com­
plementary work done in these areas by the different communities. Some progress 
has been made in one direction in the context of "data parallelism" [10,23,41], but it 
still seems like a very promising avenue for future research. 

Constraint logic programming extends the high-level programming paradigm that 
logic programming offers in symbolic applications to numerical domains. We believe 
it offers a natural platform in which to study the combination of the parallelization 
techniques used in the numerical and symbolic programming fields. Independently of 
the convenience of using constraint programming languages directly (as is being 
done with significant commercial success in difficult problem areas such as sched­
uling or resource allocation), we also believe that many features of these languages, 
such as the use of constraints ("reversible statements") or the embedded search 
capabilities, will slowly make their way into the designs of mainstream languages. In 
the same way, other features of symbolic languages (such as dynamic data structure 
creation and garbage collection, or bytecode compilation) have already made it into 
widely used languages such as Java. Current proposals in this direction include 
ILOG (a commercially successful library which which extends C++ and Java with 
constraint handling capabilities) and [5], an imperative language with search capa­
bilities. n 

1 ' Of course, there are no scientific reasons not to use constraint logic languages directly, and this is 
indeed currently being done routinely with great commercial success by several companies working in 
difficult problem areas such as scheduling or resource allocation. However, it is entirely possible that the 
pure constraint logic programming languages, as so many other products of computer science, may remain 
powerful tools used by literate users, certainly making their impact on the mainstream, but in an indirect 
way. 
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