
Parallelizing irregular and pointer-based
computations automatically: Perspectives from

logic and constraint programming
Manuel Hermenegildo

School of Computer Science, Technical University of Madrid (UPM), 28660 Boadilla del Monte,
Madrid. Snain

Abstract

Irregular computations pose some of the most interesting and challenging problems in
automatic parallelization. Irregularity appears in certain kinds of numerical problems and is
pervasive in symbolic applications. Such computations often use dynamic data structures,
which make heavy use of pointers. This complicates all the steps of a parallelizing compiler,
from independence detection to task partitioning and placement. Starting in the mid 80s there
has been significant progress in the development of parallelizing compilers for logic pro­
gramming (and more recently, constraint programming) resulting in quite capable paralle­
lizes. The typical applications of these paradigms frequently involve irregular computations,
and make heavy use of dynamic data structures with pointers, since logical variables represent
in practice a well-behaved form of pointers. This arguably makes the techniques used in these
compilers potentially interesting. In this paper, we introduce in a tutorial way, some of the
problems faced by parallelizing compilers for logic and constraint programs and provide
pointers to some of the significant progress made in the area. In particular, this work has
resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for
independence detection, cost models and cost analysis, cactus-stack memory management,
techniques for managing speculative and irregular computations through task granularity
control and dynamic task allocation (such as work-stealing schedulers), etc.

1. Introduction

Multiprocessing hardware is already available, which offers significant advantages
in either performance or cost/performance over uniprocessors. For example, de­
partmental servers using fast, inexpensive off-the-shelf processors are currently of­
fered at a fraction of the cost of the mainframes they replace, and even
multiprocessor workstations are now not uncommon. Faster and more ubiquitous
high-speed networks increase the potential of exploiting distributed execution.

One of the recurring facts that hamper the progress of widespread use of par­
allelism is that in practice, beyond some manually parallelized high volume appli­
cations and scientific codes, still comparatively few programs are written or
transformed to exploit parallelism. The traditional argument that parallelization is a
difficult and error-prone task (see, e.g., [52]) seems to remain valid [3], and still
points to the necessity of improving the tools used in the process. This includes
developing languages that offer better support for parallel programming, improved
libraries for supporting parallel programming on conventional languages, and sig­
nificant progress in support tools, from parallelizing compilers to performance
analyzers.

Herein, we concentrate on the issue of automatic parallelization. While manual
parallelization may of course always have a place, parallelizing compilers are in­
teresting in that they have the potential to dramatically lessen the parallelization
burden and there is hope that one day they may eliminate it altogether. However,
despite much progress, it appears that significant challenges still remain in the area of
automatic parallelization, including dealing well with both regular and irregular
computations, performing efficient partitioning for both types of computations,
dealing with data structures with pointers, handling speculative computations, au­
tomatically changing data structures for more efficient exploitation of parallelism,
and developing parallelization techniques for new, higher level programming para­
digms.

The goal of developing effective parallelizing compilers is being sought after
concurrently and, unfortunately, somewhat independently in the context of different
programming paradigms or even individual languages. As a result of the charac­
teristics of the typical applications of such paradigms or languages, the amount of
progress made on the different topics involved made differs.

For example, some very significant progress has been made in parallelizing
compilers for regular, numerical computations, generally based on the FORTRAN
language (see, e.g., [7,79]). This research has resulted in well-known concepts and
techniques including a well-understood notion of independence (based on the
Bernstein conditions or, for example, more recent notions of "semantic indepen­
dence" [9]), sophisticated syntactic loop transformations, transformations based on
polytope models, extensive work on partitioning and placement, etc. On the other

hand, the applicability of these techniques has remained comparatively limited for
irregular or symbolic computations, and still few practical systems deal well with
parallelization across procedure calls or with irregular computations. Also, the
techniques used often rely on the relative cleanliness of FORTRAN as a program­
ming language and additional work is needed in order to extend them to other
mainstream languages like C or C++. These languages include features such as
dynamic, recursive data structures and pointer manipulation which complicate the
detection of independence among statements or procedure calls and much current
work is aimed at developing the related independence analyzes. An important ex­
ample is pointer aliasing analysis (see, e.g., [4,68], and their references).

We argue that, despite the apparent differences among imperative, functional,
logic, constraint, and object-oriented languages, the fundamental issues being
tackled are quite similar. Thus, we believe that progress towards more effective
parallelizing compilers for all programming paradigms can be sped-up by cross
fertilization of the results obtained in different paradigms. It is with this thought in
mind (and without aspiring to being exhaustive, which is impossible given the space
available and unnecessary to make the point) that we present in the following a brief
overview of some of the problems, which appear in the area of automatic parallel­
ization of logic and constraint programs and provide pointers to the some of the
solutions and significant achievements of the area.

2. Logic and constraint programming

Due to space limitations, we will present only a brief overview of logic and
constraint programming, specifically tailored to the objective of our presentation
(the reader is referred for example to [6,50,56,72] for details). We warn the reader
that this cannot in any way be considered a fair introduction to the topic, since we
completely overlook aspects of logic and constraint programming, which are widely
perceived as important. These include the declarative nature and the logical se­
mantics: programs in these languages are often not only the coding of an algorithm,
but also a logical statement of a problem, which is very close to a specification. In the
following, we take a fully operational view - the same one that the parallelizing
compiler takes.

The basic "statements" of a constraint logic program are constraints. Constraints
relate (logical) variables (variable identifiers start with upper case while constants
and data structure descriptors - functors, see later - start with lower case). Such
variables can be free, or they can be constrained to a certain value or set of values.
For example, the statement X = Y+Z establishes that the given constraint must hold
among those variables (we assume for example that the variables range over floating
point numbers). Such constraints are kept in the store. Assume Y and Z have a
"known" value at the time of executing this constraint (for example, the store
contains Y = 2 and Z = 3). Then, the operational semantics of such a constraint is
very similar to that in any other language: the statement implies an addition (2 + 3)
and an "assignment" of the result (5) to X. This can also be seen as telling (posting)

the constraint X = 5. Assume instead that such values are not known. Then, exe­
cuting the statement involves placing the constraint in the store for later solution if/
when another constraint is executed. Sequences of constraints are separated by
commas. Assume again an empty initial store and the sequence of constraints
"Y = 2, X = Y+Z". After executing this sequence the store would contain "Y = 2,
X = 2 + T1, Z = T1". Here, we are making the assumption that sequences of con­
straints execute sequentially in the order in which they appear and that the store is
always kept as "fully solved" as possible and in a normalized form (see [50] for
details.

Constraint logic programming also provides a method for procedure abstraction.
For example, code segment (a) below:

foo(Z,X) : - Y=2,
X=Y+Z.

(a)
main : - foo(K,W),

K = 3 ,
write(W).

(b)

defines a two-argument procedure f oo. A procedure defines a local dynamic invo­
cation context in the usual way, i.e., upon entering the procedure Y is a new local
variable, while X and Z are formal parameters. The calling regime is not unlike "call
by reference" (see the discussion later about logical variables being essentially
pointers). For example, the effect of calling f oo (3 , W) is that upon return W= 5 is
added to the calling context. Note that the procedure is syntactically not very dif­
ferent from what one would write in a functional or imperative language, and its
behavior is essentially the same for calls such as f oo (3 , W). However, the complete
operational behavior of the constraint programming procedure is richer because it
allows other "calling modes". For example, a call to f oo (K, 5) succeeds and upon
return K = 3 is added to the calling context. Furthermore, a call to f oo (K, W) also
succeeds and upon return the constraint W = 2+K is added to the calling context. In
some ways, the statements and procedures in constraint programs can be seen as
"reversible" versions of their syntactic counterparts in conventional languages. Note
that also the declarative meaning of such programs is richer because it defines a
complete logical relation (rather than a function) among its arguments. Procedure
calls can appear in the bodies of procedures interspersed with constraints. For ex­
ample, code segment (b) above would produce " 5 " on the standard output.

Procedures can have multiple definitions, which represent different alternatives.
Establishing a somewhat inaccurate parallel with conventional languages, a set of
procedure definitions can be seen as an "undoable" form of case statement or
conditional. When such a procedure is entered it is said to create a choice. Such
alternatives are tried in the textual order in which they appear in the program, i.e.,
the first definition of a procedure is tried first and, if that results in a failure, then the
next one is tried (again, we follow the default execution strategy used in most
practical constraint programming languages). A failure occurs when a constraint is
executed, which makes the store unsolvable (i.e., it is incompatible with the current
state of the store). This is not unlike the case of a test evaluating to false in a

conditional. When a failure occurs, the system backtracks to the last choice left
behind and tries the next alternative in that choice. Since procedure calls can be
nested, a stack of choices is kept by the system. A choice is pushed on the stack every
time a procedure with several alternatives is invoked. When a failure occurs, exe­
cution continues at the next alternative of the choice on top of the choice stack.
When the last alternative of a choice is entered, the choice itself is popped from the
stack.

For example, the following program:

bar(K,W),
K > 2,
write(W).

bar(X,Y)
bar(X,Y)

X < 0, Y =
X >= 0, Y =

-10.
10.

prints "10". The first alternative of b a r is tried first, resulting in W = -10 and K < 0,
but executing K > 2 produces a failure since the store now has no solution. After
trying the second alternative of ba r , K > 2 succeeds (the store is then K > 2, W =
10) and the program terminates after printing the value of W. l

The following, slightly more interesting example defining the Fibonacci relation
illustrates the use of recursion:

f i b (0 , 0) .
f i b (l , 1) .

f ib(N, F1+F2) : - N>1, F1>=0, F2>=0,
f i b (N - l , F l) ,
f ib (N-2 , F2).

(in this example we have used a more convenient syntax where input parameter
normalization is done automatically by the system - i.e., " f i b (0 , 0) . " is a short­
hand for " f i b (X, Y) : - X = 0, Y = 0. " and "f i b (N, F1 + F2) : - . . . " a short­
hand for " f i b (N, X) : -X = ¥l + ¥2, . . . ") . Calling f i b (8 , Y) establishes Y = 21,
and calling f i b (X, 21) establishes X = 8. Calling f ib (X, Y) produces as alterna­
tives the constraints (X = 0, Y = 0) , (X = l , Y = l) , (X = 2, Y = l) , e t c .

In the previous examples, we have been using a certain constraint system: essen­
tially, equalities and inequalities involving linear arithmetic expressions over the
(pseudo-) real-numbers. In many cases, the operations of constraint programs can be
compiled directly into standard machine operations. However, in others (when ac­
tual constraint solving is involved) a constraint solving algorithm needs to be applied.
Thus, the definition of each constraint system must include a decidable and (hope­
fully) efficient "solver". Practical languages typically include several constraint sys­
tems.

1 Of course, an optimizing compiler would compile away much of the behavior described in this very
simple case.

A particularly interesting constraint system present in almost all constraint lan­
guages is that of "equality relations over data structures" (i.e., finite trees). This is
generally referred to as the Herbrand domain (and is the "working domain" of the
Prolog language). This domain is crucial because it allows building and processing
data structures with (single assignment) pointers in a very simple and declarative
way. For example, the following program:

m a i n :- X = f (Y , Z) ,
Y = a ,
W = Z,
W = g (K) ,
X = f (a , g (b)) .

first builds (dynamically) a new two-argument structure whose constructor symbol is
f (in other words, a tree whose root node is f and which has two open branches)

X = f(Y,Z),
aa

The variables Y and Z are pointers to the two arguments of the structure. The
statement

a
Y = a , • • z

"binds" the first argument of the structure to the constant a (i.e., at this time X
points to f (a , Z)). The following statement:

W = Z , *--\J# • z

aliases the pointers W and Z (e.g., W points to Z). Therefore, the result of the state­
ment

W = g (K) ,
X "~X^ [mimii^r v^/W

• ,9/'
i»i * i

is to "bind" the second argument of the structure to g(K) (and as a result X now
points to f (a , g(K))). The last statement

X = f (a , g (b)) . • • "i
z^

finally binds K to the constant "b. This last statement illustrates how open arguments
inside a structure can also be accessed by traversing the structure using a process not
unlike the "pattern matching" available in modern functional programming lan­
guages (except that it is again a "reversible" version of it). The algorithm capable of
solving all such equality constraints over data structures is unification [57,61,66]. One
of the nice characteristics of this constraint system is that there exist very efficient
algorithms for performing unification. 2 As mentioned before, Prolog, one of the
most popular logic programming languages, is essentially a constraint logic pro­
gramming language, which uses exclusively the Herbrand domain. It is no surprise
that Prolog is considered very well-suited for the easy manipulation of data struc­
tures with pointers. 3

3. Parallelization of constraint logic programs

One of the main thesis of this paper is that logic programming and constraint
programming languages offer a particularly interesting case study for the area of
automatic parallelization. On one hand, these programming paradigms pose sig­
nificant challenges to the parallelization task, which relate closely to the more dif­
ficult challenges faced in imperative language parallelization. Such challenges include
highly irregular computations and dynamic control flow (due to the symbolic nature
of many of their applications), non-trivial notions of (semantic) independence, the
presence of dynamically allocated, complex data structures containing pointers, and
having to deal with speculation.

On the other hand, due to their high-level nature these languages also facilitate the
study of parallelization issues. As we have seen, logical variables are actually a quite
"well-behaved" version of pointers, in the sense that no castings or pointer arith­
metic (other than array indexing through the a r g / 3 builtin) is allowed. Thus,
pointers in these languages are not unlike those allowed, for example, in "clean"
versions of C (or, to a lesser extent, in Java). In addition, similarly to functional

2 Furthermore, there are also very successful compilation techniques, which (specially if global analysis
of the program is performed) can translate sequences of operations such as those in the program above
into a number of machine instructions that is essentially the same as if a lower-level language had been
used to express the same data structure and pointer creation and binding operations. The reader is referred
to [74] for an overview of progress in such compilation techniques.

3 Modern logic and constraint programming languages have many other features, such as support for
higher order and meta programming, module and object systems, aggregation procedures, different sets of
libraries, etc. with interesting implications on the automatic parallelization process. However, space
limitations prevent us from considering these additional issues.

languages, logic and constraint languages allow coding in a way, which expresses the
desired algorithm in a way that reflects more directly the structure of the problem
(i.e., staying closer to the specifications). This makes the parallelism available in the
problem more accessible to the compiler. The relatively clean semantics of these
languages also makes it comparatively easy to use formal methods and prove the
transformations performed by the parallelizing compiler both correct (in terms of
computed outputs) and efficient (in terms of computational cost). 4 Quite significant
progress has been made in the past decade in the area of automatic program par-
allelization for logic programs and some of the challenges have been tackled quite
effectively. In the following we touch upon a few of them (see, for example, [19] for
an overview of the area).

3.1. Where the parallelism can be found

There are several types of parallelism, which are traditionally exploited in logic
and constraint programs. For example, in applications involving extensive search
(which is a frequent case in general search problems or in the enumeration part of
constraint problems) the choices represented by alternative procedure definitions are
often "deep" i.e., a number of steps are typically executed before a failure implies
exploring an alternative definition. In this case different processors can execute si­
multaneously the different procedure definitions (i.e., the different branches of this
search space). The resulting parallelism is called or-parallelism. This type of paral­
lelism is present for example in the following program:

money(S,E,N,D,M,0,R,Y) : -
d i g i t (S) ,
d i g i t (E) ,
• • • »
c a r r y (I) ,

N i s E+0-10*I,

d i g i t (0) .
d i g i t (1) .

d i g i t (9) .

carry(0) .
carry(1) .

The calls to d i g i t and c a r r y in the body of money are choices. Each alter­
native of these choices creates a branch that includes all the continuation (the rest of
the body of money as well as the rest of the environment in which money was
called). These branches can be executed in parallel.

4 Functional programming is another paradigm, which also facilitates exploitation of parallelism.
However, it can be argued that the lack of certain features, such as pointers and backtracking, while
making the parallelization problem easier, also precludes studying some interesting problems.

An alternative strategy is to parallelize the statements and/or procedure calls in
procedure bodies, in the same way as in more traditional languages. 5 This kind of
parallelism is referred to as and-parallelism. A typical example of and-parallelism is
the parallel execution of the two recursive calls in the definition of the Fibonacci
relation given before. Another example is the following definition of the quick-sort
program (where the functor ": " is used as list constructor) for example the two
recursive calls to q s o r t can be executed in parallel:

qsort(nil,nil).
qsort(X:L,R) : - partition(L,X,LI,L2),

qsort(L2, R2),
qsort(LI, Rl),
append(Rl,X:R2,R).

As and-parallelism corresponds to the traditional parallelism exploited in loop
parallelization, divide and conquer algorithms, etc., we will concentrate our dis­
cussion on it. Also, and-parallelism is the only kind of parallelism that can be ex­
ploited in applications where choices are "shallow" (i.e., they correspond more
closely to standard conditionals). It turns out that there are strong relationships
between these forms of parallelism and the traditional notion of "data-parallelism"
(see [10,11,41]).

3.2. Correctness and efficiency of the parallelization

As in any other programming paradigm, the objective of the parallelizing com­
piler is to uncover as much as possible of the available parallelism, while guaran­
teeing that the correct results are computed (correctness) and that other observable
characteristics of the program, such as execution time, are improved (speedup) or, at
the minimum, preserved (no-slowdown) - efficiency. A central issue is, then, under
which conditions statements in a constraint logic program can be correctly and ef­
ficiently parallelized.

For comparison, consider the following segments of programs in (a) a traditional
imperative language, (b) a (strict) functional language, and (c) a constraint logic
programming language (we assume that the values of W and Z are initialized to some
value before execution of these statements):

5 In fact, at a finer level of granularity, also parts of body statements can be executed in parallel.
However, for simplicity, and without loss of generality, we assume parallelization at the goal level,
meaning that the units scheduled will be body statements and procedure calls. Note also that the
concurrency expressed by concurrent logic programming languages is between "and-parallel tasks". See [42]
for an extended discussion on this topic. Interesting models for exploiting and-parallelism at a finer level of
granularity are, for example, [16,40,51,69,77].

Si

s2

Y := W+2;

X := Y+Z;

(a)

(+ (+ W 2)

Z)
(b)

Y = W+2,

X = Y+Z,

(c)

For simplicity, we will reason about the correctness and efficiency of parallelism
using the instrumental technique of considering reorderings (interleavings). State­
ments s\ and s2 in (a) are generally considered to be dependent because reversing their
order would yield an incorrect result, i.e., it violates the correctness condition above
(this is an example of & flow-dependency). 6 A slightly different, but closely related
situation occurs in (b): reversing the order of function application would result in a
run-time error (one of the arguments to a function would be missing). Interestingly,
reversing the order of statements s\ and s2 in (c) does yield the correct result. In fact,
this is an instance of a more general rule: if no side effects are involved, reordering
statements does not affect correctness in a constraint logic program. As another
example, consider the following program (which uses only the Herbrand domain,
i.e., it is a Prolog program, and which we will call program (d)):

main:-

Sl

52

p(X),

q(X),

write(X).

p(X)

q(X)
q(X)

:- X=a.

:- X=b, large computation.
:- X=a.

Note that, again, reversing statements s\ and s2 produces the same result (X = a).
The fact that (at least in pure segments of programs) the order of statements in

constraint logic programming does not affect the result 7 led in early models to the
proposal of execution strategies where parallelism was exploited "fully" (i.e., all
statements were eligible for parallelization). However, the problem is that such
parallelization often violates the principle of efficiency: for a finite number of pro­
cessors, the parallelized program can be arbitrarily slower than the sequential pro­
gram, even under ideal assumptions regarding run-time overheads. For instance, in
the last example, reversing the order of the calls to p and q in the body of main
implies that the call q (X) (X at this point is free, i.e., a pointer to an empty cell) will
first enter its first alternative, performing the large computation. Upon return of q

6 To complete the discussion above, note that output-dependencies do not appear in functional or logic
and constraint programs because single assignment is generally used - we consider this a minor point of
difference since one of the standard techniques for parallelizing imperative programs is to perform a
transformation to a single assignment program before performing the parallelization.

7 Note that in practical languages, however, termination characteristics may change, but termination can
actually also be seen as an extreme effect of the other problem to be discussed: efficiency.

(with X pointing to the constant b) the call to p will fail and the system will backtrack
to the second alternative of q, after which p will succeed with X = a. On the other
hand, the sequential execution would terminate in two or three steps, without per­
forming the large computation. The fundamental observation is that, in the se­
quential execution, p affects q, in the sense that it prunes (limits) its choices.
Executing q before executing p results in performing speculative choices with respect
to the sequential execution. Note that this is in fact very related to executing con­
ditionals in parallel (or ahead of time) in traditional languages (note that q above
could also be (loosely) written as "q(X) : - i f X = b t h e n largecomputationelse
i f X = a t h e n t r u e e l s e f a i l . ").

Something very similar occurs in case (c) above: while execution of the two
constraints in the original order involves two additions and two assignments (the
same of operations as those of the imperative or functional programs), executing
them in reversed order involves first adding an equation to the system, corresponding
to statement s2, and then solving it against su which is more expensive. The obvious
conclusion is that, in general, arbitrary parallelization does not guarantee that the
two conditions above are met. 8

3.3. Notions of independence

Contrary to early the beliefs held in the field, most work in the last decade has
considered that violating the efficiency condition is as much a "sign of dependence"
among statements as violating the correctness condition. As a result, novel notions
of independence have been developed, which capture these two issues of correctness
and efficiency at the same time: independent statements as those whose run-time
behavior, if parallelized, produces the same results as their sequential execution and
an increase (or, at least, no decrease) in performance. As seen before, dealing with
correctness is a matter of correctly sequencing side-effects (plus low-level issues, of
course, such as locking). The techniques developed to this end are interesting, but,
due to space limitations, we will concentrate on the arguably more interesting issue
of guaranteeing efficiency. To separate issues better, we will discuss the issue under
the assumption of ideal run-time conditions, i.e., no task creation and scheduling
overheads (we will deal with overheads later). Note that, even under these ideal
conditions, the statements in (c) and (d) are clearly dependent.

A fundamental question then is how to guarantee independence (without having
to actually run the statements, as suggested by the definition given above). A fun­
damental result in this context is the fact that, if only the Herbrand constraint system
is used (as in the Prolog language), a statement or procedure call, q, cannot be

In fact, a similar phenomenon occurs in or-parallelism where arbitrarily parallelizing branches of the
search does not produce incorrect results, but, if looking for only one solution to a problem (or, more
generally, in the presence oi pruning operators - operators which control de search, which are pervasive in
practical programs) results in speculative computations which can have a negative effect of efficiency.
However, due to space limitations we concentrate our discussion on and-parallelism, because of its more
direct relation to the parallelism that is usually exploited in conventional programs.

affected by another, p, unless there are free pointers (pointers to empty structure
fields) from the run-time data structures passed to q from the data structures passed
to p. This condition is called strict independence [30,45,47]. 9 For example, in the
following program:

main : - X=f(K,g(K)),
Y=a,
Z=g(D,
W=h(b,L),
p(X,Y),
q(Y,Z),
r(W).

Y~"\

V)x^~
^•1*1 "
4 S q
J#l ' ^

1
J # I # I •

^ , ^ ™ " ^ ^ \

i # r i

p and q are strictly independent, because, at the point in execution just before
calling p (the situation depicted in the right part of the figure), X and Z point to data
structures, which do not point to each other, and, even though Y is a pointer, which
is shared between p and q, Y points to a fixed value, which p cannot change (note
again that we are dealing with single assignment languages). As a result, the exe­
cution of p cannot affect q in any way and q can be safely run ahead of time in
parallel with p (and, again assuming no run-time overheads, no-slowdown is guar­
anteed). Furthermore, no locking or copying of the intervening data structures is
required (which helps bring the implementation closer to the ideal situation). Simi­
larly, q and r are not strictly independent, because there is a pointer in common (L)
among the data structures they have access to and thus the execution of q could
affect that of r .

Unfortunately, the compiler cannot always determine independence by simply
looking at one procedure, as above. For example, in the program (a) below

main : - t (X,Y) ,
P «) ,
q(Y).

(a)
main :• - t (X,Y) ,

(indep(X,Y)
-> p(X) & q(Y)
; p(X), q(Y)) . '

(b)

it can determine that p and q are not (strictly) independent of t , since, upon entering
the body of the procedure, X, Y, and Z are free pointers which are shared with t . On
the other hand, after execution of t the situation is unknown since perhaps the
structures created by t (and pointed to by X and Y) have no free pointers to each

9 To be completely precise, in order to avoid creating speculative parallelism, some non-failure
conditions are also required of the goals executed in parallel, but we knowingly overlook this issue at this
point to simplify the discussion.

other. Unfortunately, in order to determine this for sure a global (inter-procedural)
analysis of the program must be performed. An alternative is to compile in a run-time
test just after the execution of t . This has the undesirable side-effect that then the no-
slowdown property does not automatically hold, because of the overhead involved in
the test, but it is still potentially useful. The compilation of such a test can be seen as
a source to source transformation of the program as shown in program (b) above
(where, following the &-Prolog [43] notation, "&" represents parallel execution, and
(a —»"b; c) is Prolog's syntax for "(if a then b else c)").

Furthermore, it is also sometimes possible to determine directly that in fact the
operations that t performs on X and Y do not affect the execution of p and q. This
kind of independence is called non-strict independence [46]. It cannot be determined
in general a priori (i.e., by inspecting the state of the computation prior to executing
t , p, and q) and thus necessarily requires a global analysis of the program. However,
it very interesting because it appears often in programs which manipulate "open"
data structures (difference lists, dictionaries, etc.). An example of this is the following
f l a t t e n example, which eliminates nestings in lists ([X|Xs] represents the list
whose head is X and whose tail is Xs and [] represents the empty list):

flatten(Xs,Ys) :-
flatten(Xs,Ys,

f l a t t e n ([] , Xs, Xs) .
flatten([X|Xs] ,Ys,Zs) :-

a).

f lat ten(X,Ys,Ysl) ,
flatten(Xs,Ysl

f lat ten(X, [X|Xs], Xs) :-
atomic(X), X =

nu-cM-HB-n
Q V D i B

,Zs)

[] •

X
Y

EL E Q B10

This program unnests a list without copying by creating open-ended lists and
passing a pointer to the end of the list (Ysl) to the recursive call. Since this pointer is
not bound by the first call to f l a t t e n / 3 in the body of the recursive clause, the
calls to f l a t t e n (X , Ys, Ys l) and f l a t t e n (X s , Y s l , Zs) are (non-strictly) in­
dependent and all the recursions can be run in parallel.

An even more interesting case occurs if other constraint systems are used in ad­
dition to or in place of the Herbrand domain. Consider for example the parallel-
ization of two procedure calls p (X) , q (Z) in the following two situations:

(a) main : - X > Y , Z > Y , p(X) & q (Z) , . . .
(b) main : - X > Y, Y > Z, p(X) & q (Z) , . . .
In case (a) the store contains (X >Y, Z > Y) before calling q and q, whereas in

case (b) the store contains (X >Y, Y > Z). The simple pointer aliasing reasoning
implied by the definition of strict independence does not apply directly. However, p

cannot in any way affect q in case (a), while this could be possible in case (b), i.e., the
two calls are clearly independent in case (a) while they are (potentially) dependent in
case (b).

Notions of independence, which apply to general constraint programming (and
can thus deal with the situation above) have been proposed recently [22,35]. For
example, two goals p and q are independent if all constraints posed during the ex­
ecution of q are consistent with the output constraints of p. 10 The following is a
sufficient condition for the previous definition but which only needs to look at the
state of the store prior to the execution of the calls to be parallelized (for example,
using run-time tests which explore the store c), in the same spirit as the strict-inde­
pendence condition for the Herbrand case. Assuming the calls &rep(x) and q{y) then
the condition is

(x n y C def(c)) and (3_xc A 3_?c - • 3_^c) ,

where x is the set of arguments of p, def(c) the set of variables constrained to a
unique value in c, and 3_^ represents the projection of the store on the variables x
(the notion of projection is predefined for each constraint system). The first condi­
tion states that the variables, which are shared between the goals in the program text
must be bound at run-time to unique values. The second condition is perhaps best
illustrated through an example. In the two cases above, for (a) c = {X > Y, Z > Y}
we have 3_{X}c = 3_{Zjc = EL{X,z}C = true and therefore p and q are independent.
For (b) c = {X > Y, Y > Z} we have 3_{X}c = 3_{Zjc = true while 3{XjZ}c = X > Z
and therefore p and q are not independent. While checking these conditions accu­
rately and directly can be inefficient in practice, the process can be approximated at
compile-time via analysis or at run-time via simplified checks on the store.

Other interesting notions of independence which have been proposed are based on
"determinacy" (i.e., lack of choices) [67]: two computations that have no choices
(i.e., "do not backtrack") are independent (provided, as before, that they can be
guaranteed not to fail). Note that this is in general also captured by the notion of
constraint independence given above.

3.4. The parallelization process

Experiments have shown that parallelization using only local analysis and gen­
erating run-time tests results in an excessive amount of overhead that severely limits
speedups (see [15] for a recent comparison of actual speedups obtained by several
parallelization methods). On the other hand, it has also been observed that there
exist programs that obtain better speedups if a limited amount of run-time checking
of independence is used than if only static decisions are made. Thus, a parallelization

This actually implies a better result even for Prolog programs since its projection on the Herbrand
domain is a strict generalization of previous notions of non-strict independence, e.g., the sequence p (X),
q (X) can be parallelized if p is defined for example as p (a) and q is defined as q (a) .

methodology is generally used which can accommodate both static analysis and run­
time checking.

One of the more widely used approaches is illustrated in Fig. 1, representing the
parallelization of "g\(.. -)-,g2{- • •)?̂ "3(• • •)"• The bodies of procedures are explored
looking for statements and procedure calls, which are candidates for parallelization.
As in many other parallelizers, a dependency graph is first built, which in principle
reflects the total ordering of statements and calls given by the sequential semantics.
To control the complexity of the process these graphs are limited to one body of one
procedure (if the body is too long, the body can be partitioned in segments, but this
does not happen often in constraint logic programs). Each edge in the graph is then
labeled with the independence condition (the run-time check) that would guarantee
independence of the statements or calls joined by the edge. A global analysis of the
program then tries to prove these conditions statically true or false. If a condition is
proved to be true, then the corresponding edge in the dependency graph is elimi­
nated. If proved false, then an unconditional edge (i.e., a static dependency) is left.
Still, in other edges conditions may remain (possibly simplified). The annotation
process then encodes the resulting graph in the target parallel language (a variant of
the source language). The techniques proposed for performing this process depend
on many factors including whether the target language allows arbitrary parallelism
or just fork-join structures and whether run-time independence tests are allowed or
not. As an example, Fig. 1 presents two possible encodings in &-Prolog of the
(schematic) dependency graph obtained after analysis. The parallel expressions
generated in this case use only fork-join structures, one with run-time checks and the
other one without them. Interesting techniques have been developed for compilation
of conditional non-planar dependency graphs into fork-join structures, in addition to
other, non-graph-based techniques [14,31,59].

The global analysis required to simplify the conditional graphs has to perform,
among other tasks, inter-procedural pointer analyses, not unlike those recently

f o o (. . .) : -

g i (. - .) ,
g2 C .) ,
g 3 C .) .

icond(l-3)

icond(l-2) ^—^ ' icond('2-3)

Cfi)

"Annotation"

Local/Global analysis
and sin^pIiEcatiM""""

(test(l-3)->(gl,g2)&g3
; gl,(g2&g3))

Alternative: gl, (g2 & g3)

Fig. 1. Parallelizing "gx{.. .),g2(.. .),g3(. • •)"

proposed for clean versions of C or C++. Early proposals based on traditional data
flow analysis techniques pointed in the right direction but proved imprecise [18]. The
presence of recursion and dynamic data structures has fueled the development of
quite sophisticated, incremental inter-procedural analyzers based on abstract inter­
pretation [21]. This has required the development of efficient analysis algorithms as
well as abstract domains for accurately and efficiently keeping track of sharing
patterns and pointer aliasing in recursive data structures [15,49,58,60]. These ana­
lyses have been applied to the detection of both strict and non-strict independence
[15,17] (for example, the f l a t t e n program of Section 3.3 is parallelized automat­
ically by the system described in [17]). Analyses have been developed also to derive
other important properties beyond variable instantiation states such as determinism
[29], non-failure [26], and number of answers [13]. These parallelization techniques
have also recently been extended to support "dependent" and-parallelism [63]
(which, as mentioned before, really refers to exploiting independence at a finer level
of granularity than goals [42]).

3.5. Dealing with overheads and irregularity - scheduling and memory management

The preceding discussion has on purpose avoided the issue of run-time overheads.
The obvious practical implication of the existence of overheads (task creation,
scheduling, data movement, etc.) is that even if a task is known to be independent, its
parallel execution may still render a slow-down. This can happen if the task does not
represent a sufficient amount of computation with respect to the overheads incurred
in its parallelization. In the case of constraint logic programming the problem is
compounded by the fact that, because of the symbolic nature of the applications
typically coded, the number of tasks generated at run-time (as well as the compu­
tational cost and dynamic memory demands of each such task) depends on run-time
parameters, i.e., the computations are typically highly irregular.

Two main approaches have been explored in order to overcome these problems.
The first one is to combine dynamic task allocation policies with compilation tech­
niques (abstract machines), which reduce as much as possible the overhead involved
in the parallel execution of tasks. The best results have been obtained by performing
low level "micro-task" scheduling, independently of the operating system threads
[38,43,55], and generally based on non-centralized, "task stealing" approaches.
Micro tasks are often represented simply by two pointers, one pointing to the pro­
cedure call or statement and another to the relevant invocation record. The tasks are
executed by a number of instances of (a parallel version of) the conceptual abstract
machines, which have been shown to provide the best performance for sequential
implementation [1,37,55,75]. Interesting techniques have also been proposed for
parallel dynamic memory management (using "cactus stacks" [2,12,37,44,55]). These
techniques support, for example, efficient memory recovery during parallel back­
tracking search. Some interesting examples of these dynamic scheduling and memory
management techniques are presented in [37,43,62,64,71] for and-parallelism and in
[2,20,32,55,76] for or-parallelism.

3.6. Dealing with overheads and irregularity - granularity control

The techniques mentioned above have proven sufficient for keeping the over­
heads of communication, scheduling, and memory management low and obtain­
ing significant speedups in a wide variety of applications on shared memory
multiprocessors (starting from the early paradigmatic examples: the sequent bal­
ance and symmetry series). However, current trends point towards larger multi­
processors but with less uniform shared memory access times. Controlling in
some way the granularity (execution time and space) of the tasks to be executed
in parallel can be a useful optimization in such machines, and is in any case a
necessity when parallelizing for machines with slower interconnections. The latter
include, for example, networks of workstations or distribution of work over the
Internet.

This area of granularity control (task partitioning) has also received a significant
amount of attention in the context of logic program parallelization. The idea of
granularity control is to replace parallel execution with sequential execution or vice-
versa based on knowledge (actual data, bounds, or estimations) of task size and
overheads. The problem is challenging because, while the basic communication
overhead parameters of a system can be determined experimentally, the computa­
tional cost of the tasks (e.g., procedure calls) being parallelized, as well as the
amount of data that needs to be transferred before and after a parallel call, usually
depend on dynamic characteristics of the input data. In the following example, we
consider for parallel execution q (which assuming it is called with X bound to a list of
numbers, adds one to each element of the list):

. . . , r

q ([]
q ([i

(X) & q (X ,

[]) •
I s] , [1 + 1

Y)

| 0 s

• • •

]) : - q (i s O s) .

The computational cost of a call to q (and also the communication overheads) are
obviously proportional to the number of elements in the list. The characterization of
input data required has made the problem difficult to solve (well) completely at
compile-time.

One of the solutions which has been explored is to derive at compile time com­
plexity cost functions, which give upper and lower bounds on task execution time as a
function of certain measures of input data [24,25,27,28,53,54] (alternative solutions
are given in, e.g., [70,73]; see also [48] in the context of functional languages). In­
terestingly, some of the analyses used in the derivation of such functions (e.g., [28])
make use of some techniques developed in the context of imperative program par­
allelization, such as the Omega test [65]. Programs are then transformed at compile-
time into semantically equivalent counterparts but which automatically control
granularity at run-time based on such functions. In the example above, these tools
derive cost functions such as, for example, 2 * length(X) + 1 for q (i.e., the unit of

cost is in this case a procedure call, where the addition is counted for simplicity as
one procedure call). If we assume that we should parallelize when the total com­
putation cost is larger than "100", then we can transform the parallel call to p and q
above into

.. . , Cost = 2*~length(X) + l , (Cost > 100 ->• r (X) &
q(X,Y)
5 r (X) ,
q(X,Y)) ,

(again, using an if-then-else). Clearly, many issues arise. For example, the cost of
performing granularity control can be factored into the decisions. The cost functions
can be simplified and related back to data structure sizes - list length in the case
above, i.e., the call will only be parallelized if the length of the list is larger than a
statically pre-computed value

.. . , (l e n g t h _ g r e a t e r _ t h a n (X, 50) ->• r (X) & q(X, Y)
; r (X) , q(X,Y)) ,

This in turn has inspired the development of algorithms for keeping track of data
sizes at run-time. Also, the same techniques used for cost bounding allow deriving
upper- and lower-bounds on the sizes of the structures being passed as arguments.
This information can be factored into parallelization decisions (it affects the
threshold). For example, in the example above, the argument size analysis (assuming
that C is the cost of sending one element of a list, and a distributed setting where data
is sent and returned eagerly) will infer that the communication cost is
2 * length{X) * C. Interestingly, the Computation > Overhead condition
(2 * length{X) + 1 > 2 * length{X) * C) can be determined statically to be al­
ways true (and parallelize unconditionally) or false (and never parallelize) depending
only on the value of C, which in turn can perhaps be determined experimentally in a
simple way. Performance improvements have been shown to result from the incor­
poration of this type of grain size control, specially for systems with medium to large
parallel execution overheads [54]. Clearly, there are many interesting issues involved:
techniques for derivation of data measures, data size functions, and task cost
functions, program transformations, program optimizations, etc. Typically, the
techniques are proved correct, again typically using the notions of approximation
and bounding, formalized as abstract interpretations.

3.7. Dealing with speculation

Finally, also quite interesting techniques have been developed for controlling
speculation, for both and- and or-parallelism. Explaining these issues in detail is

beyond the scope of this paper, but we will illustrate briefly with an example how
speculation appears in and-parallelism

foo(X) : - X=b, . . . , p(X) & q(X), . . .
foo(X) : - X=a, . . .

p(X) : - . . . , X=a, . . .

q (X) : - large compu tat ion.

P(X)

x=a

x=b

q(X)

In the situation above, the first clause of f oo, after binding X to "b, executes p and
q in parallel. However, the execution of p eventually fails when it poses the con­
straint X = a and execution must continue with the second clause of f o o. Since p and
q are in conjunction, the execution of q must now be discarded (i.e., starting q ahead
of time was speculative). A combination of "left-biased scheduling" (ensuring that a
processor has taken p before another can take q) and "instantaneous killing of
siblings" (e.g., of q above) at least ensures no-slowdown [37,45,47]. No-slowdown
(and even theoretical speedup) can also be guaranteed by determining statically that
the tasks involved in a parallel conjunction (except the leftmost one) will not fail
(techniques for this have been proposed in [26]). Many other interesting techniques
for dealing with speculation have been developed (specially in the context or or-
parallelism), including sophisticated schedulers, dynamic throttling of speculative
tasks, etc. [8,26,36,38].

4. Conclusions: Towards cross-fertilization

As a result of the work outlined in previous sections, quite robust, publicly
available compilers and run-time systems have been available for some time now,
generally for Prolog, which automatically exploit parallelism in complex applica­
tions. Such systems have been shown to provide speedups over the state of the art
sequential implementations available at the time of their development. The speed
and robustness of these compilers has also been instrumental in demonstrating that
abstract interpretation provides a very adequate framework for developing provably
correct, powerful, and efficient global analyzers and, consequently, parallelizers
[15,63,78]. More recently, techniques and practical tools have also been developed
for the analysis of general constraint logic programs [34] as well as for their par-
allelization [33]. Prototypes incorporating the granularity control techniques men­
tioned above are also starting to be available. However, much work still remains to
be done in these areas, and we believe there may be good opportunity at this time for
increased transference of techniques across programming paradigms.

It can be argued that particularly strong progress has been made in the context of
(constraint) logic programming in inter-procedural analysis of programs with

dynamic data structures and pointers, in parallelization using conditional depen­
dency graphs (and possibly generating run-time independence tests), in the definition
of the advanced notions of independence that are needed in the presence of specu­
lative computations or languages, which include constraints, in the development of
efficient task representation techniques and dynamic scheduling algorithms to deal
with irregularity and speculation, and in the static inference of task cost functions for
controlling granularity.

On the other hand, the techniques developed in the area of constraint logic
program parallelization are certainly weaker than those developed in the context of
numerical computing for regular problems. For example, logic programming par­
allelizes can discover the parallelism in complex recursive traversals of data struc­
tures, but do not handle well traversals that are based on integer (i.e., array
subscript) arithmetic, for which much work exists in the area of imperative lan­
guages. Also, while current parallel constraint logic programming systems are rea­
sonably good at dealing with tasks with dynamic costs, the techniques currently used
are again comparatively weaker for the static case than the partitioning and place­
ment algorithms used in imperative program parallelization [10,11,23,41]. Ideally, a
parallelizing compiler should perform good partitioning and placement for any kind
of architecture, using static techniques when possible and dynamic techniques when
unavoidable. It thus appears that it would be quite interesting to merge the com­
plementary work done in these areas by the different communities. Some progress
has been made in one direction in the context of "data parallelism" [10,23,41], but it
still seems like a very promising avenue for future research.

Constraint logic programming extends the high-level programming paradigm that
logic programming offers in symbolic applications to numerical domains. We believe
it offers a natural platform in which to study the combination of the parallelization
techniques used in the numerical and symbolic programming fields. Independently of
the convenience of using constraint programming languages directly (as is being
done with significant commercial success in difficult problem areas such as sched­
uling or resource allocation), we also believe that many features of these languages,
such as the use of constraints ("reversible statements") or the embedded search
capabilities, will slowly make their way into the designs of mainstream languages. In
the same way, other features of symbolic languages (such as dynamic data structure
creation and garbage collection, or bytecode compilation) have already made it into
widely used languages such as Java. Current proposals in this direction include
ILOG (a commercially successful library which which extends C++ and Java with
constraint handling capabilities) and [5], an imperative language with search capa­
bilities. n

1 ' Of course, there are no scientific reasons not to use constraint logic languages directly, and this is
indeed currently being done routinely with great commercial success by several companies working in
difficult problem areas such as scheduling or resource allocation. However, it is entirely possible that the
pure constraint logic programming languages, as so many other products of computer science, may remain
powerful tools used by literate users, certainly making their impact on the mainstream, but in an indirect
way.

References

[1] H. Ait-Kaci, Warren's Abstract Machine, A Tutorial Reconstruction, MIT Press, Cambridge, MA,
1991.

[2] K.A.M. Ali, R. Karlsson, The muse or-parallel prolog model and its performance, in: The 1990 North
American Conference on Logic Programming, MIT Press, October 1990, pp. 757-776.

[3] G. Almasi, A. Gottlieb (Eds.), Highly Parallel Computing, Benjamin Cummins, Menlo Park, CA,
1994.

[4] L.O. Andersen, Binding-time analysis and the taming of C pointers, in: Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation, ACM Press,
Copenhagen, Denmark, 1993, pp. 47-58.

[5] K. Apt, A. Shaerf, Search and Imperative Programming, in: POPL'97: 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press, Paris, France, January
1997, pp. 67-79.

[6] K.R. Apt, Introduction to logic programming, in: J. van Leeuwen (Ed.), Handbook of Theoretical
Computer Science, volume B: Formal Model and Semantics, Elsevier, Amsterdam and The MIT
Press, Cambridge, MA, 1990, pp. 495-574.

[7] D. Bacon, S. Graham, O. Sharp, Compiler transformations for high-performance computing,
Computing Surveys 26 (4) (1994) 345^120.

[8] T. Beaumont, D.H.D. Warren, Scheduling speculative work in or-parallel prolog systems, in:
Proceedings of the 10th International Conference on Logic Programming, MIT Press, CA, June 1993,
pp. 135-149.

[9] E. Best, C. Lengauer, Semantic independence, Science of Computer Programming 13 (1990) 23-50.
[10] J. Bevemyr, T. Lindgren, H. Millroth, Exploiting recursion-parallelism in prolog, in: Proceedings of

the PARLE'93, Springer, Berlin, 1993.
[11] J. Bevemyr, T. Lindgren, H. Millroth, Reform prolog: the language and its implementation, in:

Proceedings of the 10th International Conference on Logic Programming, MIT Press, Cambridge,
MA, 1993.

[12] P. Borgwardt, D. Rea, Distributed semi-intelligent backtracking for a stack-based and-parallel
prolog, in: International Symposium on Logic Programming, IEEE Computer Society, Silver Spring,
MD, 1986, pp. 211-222.

[13] C. Braem, B. Le Charlier, S. Modart, P. Van Hentenryck, Cardinality analysis of prolog, in:
Proceedings of the International Symposium on Logic Programming, MIT Press, Ithaca, NY,
November 1994, pp. 457-471.

[14] F. Bueno, M. Garcia de la Banda, M. Hermenegildo, A comparative study of methods for automatic
compile-time parallelization of logic programs, in: Then First International Symposium on Parallel
Symbolic Computation, World Scientific Publishing Company, Singapore, September 1994, pp. 63-73.

[15] F. Bueno, M. Garcia de la Banda, M. Hermenegildo, Effectiveness of abstract interpretation in
automatic parallelization: a case study in logic programming, ACM Trans. Program. Languages Syst.
21 (2) (1999) 189-238.

[16] F. Bueno, M. Hermenegildo, U. Montanari, F. Rossi, Partial order and contextual net semantics for
atomic and locally atomic CC programs, Sci. Comput. Program. 30 (1998) 51-82 Special CCP95
Workshop issue.

[17] D. Cabeza, M. Hermenegildo, Extracting non-strict independent and-parallelism using sharing and
freeness information, in: The 1994 International Static Analysis Symposium, number 864 in LNCS,
Namur, Springer, Belgium, September 1994, pp. 297-313.

[18] J.-H. Chang, A.M. Despain, D. Degroot, And-Parallelism of logic programs based on static data
dependency analysis, in: Compcon Spring '85, February 1985, pp. 218-225.

[19] J. Chassin, P. Codognet, Parallel logic programming systems, Comput. Surveys 26 (3) (1994) 295-336.
[20] J. Chassin, J. Syre, H. Westphal, Implementation of a parallel prolog system on a commercial

multiprocessor, in: Proceedings of the Ecai, August 1988, pp. 278-283.
[21] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints, in: The Fourth ACM Symposium on Principles of
Programming Languages (1977) 238-252.

[22] M. Garcia de la Banda, F. Bueno, M. Hermenegildo, Towards independent and-parallelism in CLP,
in: Programming Languages: Implementation, Logics, and Programs, number 1140 in LNCS,
Springer, Aachen, Germany, September 1996, pp. 77-91.

[23] S. Debray, M. Jain, A simple program transformation for parallelism, in: The 1994 International
Symposium on Logic Programming, MIT Press, Cambridge, MA, November 1994, pp. 305-319.

[24] S.K. Debray, N.-W. Lin, M. Hermenegildo, Task granularity analysis in logic programs, in:
Proceedings of the 1990 ACM Conference on Programming Language Design and Implementation,
ACM Press, New York, June 1990, pp. 174-188.

[25] S.K. Debray, N.W. Lin, Cost analysis of logic programs, ACM Trans. Program. Lang. Syst. 15 (5)
(1993) 826-875.

[26] S.K. Debray, P. Lopez-Garcia, M. Hermenegildo, Non-failure analysis for logic programs, in: The
1997 International Conference on Logic Programming, MIT Press, Cambridge, MA, June 1997, pp.
48-62.

[27] S.K. Debray, P. Lopez-Garcia, M. Hermenegildo, N.-W. Lin, Estimating the computational cost of
logic programs, in: Static Analysis Symposium, SAS'94, number 864 in LNCS, Springer, Namur,
Belgium, September 1994, pp. 255-265.

[28] S.K. Debray, P. Lopez-Garcia, M. Hermenegildo, N.-W. Lin, Lower bound cost estimation for logic
programs, in: The 1997 International Logic Programming Symposium, MIT Press, Cambridge, MA,
October 1997, pp. 291-305.

[29] S.K. Debray, D.S. Warren, Functional computations in logic programs, ACM Trans. Program.
Languages Syst. 11 (3) (1989) 451-481.

[30] D. DeGroot, Restricted AND-parallelism, in: The International Conference on Fifth Generation
Computer Systems, Tokyo, November 1984, pp. 471-478.

[31] D. DeGroot, A technique for compiling execution graph expressions for restricted AND-parallelism
in logic programs, in: The International Supercomputing Conference, Springer, Athens, 1987, pp. 80-
89.

[32] European Computer Research Center, Eclipse User's Guide, 1993.
[33] M. Garcia de la Banda, F. Bueno, M. Hermenegildo, Towards independent And-parallelism in CLP,

in: Programming Languages: Implementation, Logics, and Programs, number 1140 in LNCS,
Springer, Aachen, Germany, September 1996, pp. 77-91.

[34] M. Garcia de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, W. Simoens,
Global analysis of constraint logic programs, ACM Trans. Program. Languages Syst. 18 (5) (1996)
564-615.

[35] M. Garcia de la Banda, M. Hermenegildo, K. Marriott, Independence in CLP Languages, ACM
Trans. Program. Languages Syst. 22 (2) (2000) 269-339.

[36] B. Hausman, Handling speculative work in or-parallel prolog: evaluation results, in: North American
Conference on Logic Programming, Austin, TX, October 1990, pp. 721-736.

[37] M. Hermenegildo, An Abstract Machine for Restricted AND-parallel execution of Logic Programs,
in: The Third International Conference on Logic Programming, number 225 in Lecture Notes in
Computer Science, Imperial College, Springer, Berlin, July 1986, pp. 25-40.

[38] M. Hermenegildo, Relating goal scheduling, precedence, and memory management in AND-parallel
execution of logic programs, in: The Fourth International Conference on Logic Programming,
University of Melbourne, MIT Press, Cambridge, MA, May 1987, pp. 556-575.

[39] M. Hermenegildo, Automatic parallelization of irregular and pointer based computations: perspec­
tives from logic and constraint Programming, in: Proceedings of EUROPAR'97, vol. 1300 of LNCS,
Springer, Berlin, August 1997, pp. 31^46 (invited).

[40] M. Hermenegildo, D. Cabeza, M. Carro, Using attributed variables in the implementation of
concurrent and parallel logic programming systems, in: Proceedings of the 12th International
Conference on Logic Programming, MIT Press, Cambridge, MA, June 1995, pp. 631-645.

[41] M. Hermenegildo, M. Carro, Relating data-parallelism and (And)- parallelism in logic programs,
Comput. Languages J. 22 (2/3) (1996) 143-163.

[42] M. Hermenegildo and The CLIP Group, Some methodological issues in the design of CIAO - A
generic, parallel, concurrent constraint system, in: The Principles and Practice of Constraint
Programming, number 874 in LNCS, Springer, Berlin, May 1994, pp. 123-133.

[43] M. Hermenegildo, K. Greene, The &-prolog system: exploiting independent And-parallelism, New
Generation Computing 9 (3,4) (1991) 233-257.

[44] M. Hermenegildo, R.I. Nasr, Efficient management of backtracking in AND-parallelism, in: The
Third International Conference on Logic Programming, number 225 in LNCS, Imperial College,
Springer, Berlin, July 1986, pp. 40-55.

[45] M. Hermenegildo, F. Rossi, On the correctness and efficiency of independent And-parallelism in logic
programs, in: 1989 North American Conference on Logic Programming, MIT Press, Cambridge, MA,
October 1989, pp. 369-390.

[46] M. Hermenegildo, F. Rossi, Non-Strict Independent And-parallelism, in: 1990 International
Conference on Logic Programming, MIT Press, Cambridge, MA, June 1990, pp. 237-252.

[47] M. Hermenegildo, F. Rossi, Strict and non-strict independent And-parallelism in logic programs:
correctness, efficiency, and compile-time conditions, J. Logic program. 22 (1) (1995) 1-45.

[48] L. Huelsbergen, J.R. Larus, A. Aiken, Using run-time list sizes to guide parallel thread creation, in:
Proceedings of the ACM Conference on Lisp and Functional Programming, June 1994.

[49] D. Jacobs, A. Langen, Accurate and efficient approximation of variable aliasing in logic programs, in:
1989 North American Conference on Logic Programming, MIT Press, Cambridge, MA, October
1989.

[50] J. Jaffar, M.J. Maher, Constraint logic programming: a survey, J. Logic Program. 19/20 (1994)
503-581.

[51] S. Janson S. Haridi, Programming Paradigms of the Andorra Kernel Language, in: 1991 International
Logic Programming Symposium, MIT Press, Cambridge, MA, 1991, pp. 167-183.

[52] A.H. Karp, R.C. Babb, A Comparison of 12 Parallel Fortran Dialects, IEEE Software, September
1988.

[53] A. King, K. Shen, F. Benoy, Lower-bound time-complexity analysis of logic programs, in: 1997
International Logic Programming Symposium, MIT Press, Cambridge, MA, October 1997,
pp. 261-275.

[54] P. Lopez-Garcia, M. Hermenegildo, S.K. Debray, A methodology for granularity based control of
parallelism in logic programs, Journal of Symbolic Computation, Special Issue on Parallel Symbolic
Computation 22 (1996) 715-734.

[55] E. Lusk, et al., The aurora Or-parallel prolog system, New Generation Computing 7 (2,3) (1990).
[56] K. Marriot, P. Stuckey, Programming with Constraints: An Introduction, MIT Press, Cambridge,

MA, 1998.
[57] A. Martelli, U. Montanari, An efficient unification algorithm, ACM Transactions on Programming

Languages and Systems 4 (3) (1982) 258-282.
[58] K. Muthukumar, M. Hermenegildo, Determination of variable dependence information at compile-

time through abstract interpretation, in: 1989 North American Conference on Logic Programming,
MIT Press, Cambridge, MA, October 1989, pp. 166-189.

[59] K. Muthukumar, M. Hermenegildo, The CDG, UDG, and MEL methods for automatic compile-
time parallelization of logic programs for independent And-parallelism, in: The International
Conference on Logic Programming, MIT Press, June 1990, pp. 221-237.

[60] K. Muthukumar, M. Hermenegildo, Combined determination of sharing and freeness of program
variables through abstract interpretation, in: 1991 International Conference on Logic Programming,
MIT Press, Cambridge, MA, June 1991, pp. 49-63.

[61] M.S. Paterson, M. Wegman, Linear unification, Journal of Computer and System Sciences 16 (2)
(1978) 158-167.

[62] E. Pontelli, G. Gupta, M. Hermenegildo, &ACE: A high-performance parallel prolog system, in:
International Parallel Processing Symposium, IEEE Computer Society Technical Committee on
Parallel Processing, IEEE Computer Society, Silver Spring, MD, April 1995, pp. 564-572.

[63] E. Pontelli, G. Gupta, F. Pulvirenti, A. Ferro, Automatic compile-time parallelization of prolog
programs for dependent And-parallelism, in: Proceedings of the 14th International Conference on
Logic Programming, MIT Press, Cambridge, MA, July 1997, pp. 108-122.

[64] E. Pontelli, G. Gupta, D. Tang, M. Carro, M. Hermenegildo, Improving the efficiency of
nondeterministic And-parallel systems, The Computer Languages Journal 22 (2/3) (1996) 115-142.

[65] W. Pugh, A practical algorithm for exact array dependence analysis, Communications of the ACM 35
(8) (1992) 102-114.

[66] J.A. Robinson, A machine oriented logic based on the resolution principle, Journal of the ACM 12
(23) (1965) 23-41.

[67] V. Santos-Costa, D.H.D. Warren, R. Yang, Andorra-I: a parallel prolog system that transparently
exploits both And- and Or-parallelism, in: Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ACM, April 1991, SIGPLAN Notices vol 26(7), July
1991, pp. 83-93.

[68] M. Shapiro, S. Horwitz, Fast and accurate flow-insensitive points-to analysis, in: POPL'97: 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, Paris,
France, January 1997, pages 1-14.

[69] K. Shen, Overview of DASWAM: exploitation of dependent And-parallelism, Journal of Logic
Programming 29 (1-3) (1996) 245-293.

[70] K. Shen, V.S. Costa, A. King, Distance: a new metric for controlling granularity for parallel
execution, in: Joxan Jaffar (Ed.), Joint International Conference and Symposium on Logic
Programming, MIT Press, Cambridge, MA, 1998, pp. 85-99.

[71] K. Shen, M. Hermenegildo, Flexible scheduling for non-deterministic, And-parallel execution of logic
programs, in: Proceedings of EuroPar'96, number 1124 in LNCS, Springer, Berlin, August 1996, pp.
635-640.

[72] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.
[73] E. Tick, Compile-Time Granularity Analysis of Parallel Logic Programming Languages, in:

International Conference on Fifth Generation Computer Systems. Tokyo, November 1988.
[74] P. Van Roy, 1983-1993: the wonder years of sequential prolog implementation, Journal of Logic

Programming 19/20 (1994) 385-441.
[75] D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Report 309, Artificial Intelligence

Center, SRI International, 333 Ravenswood Ave, Menlo Park CA 94025, 1983.
[76] D.H.D. Warren, OR-Parallel Execution Models of Prolog, in: Proceedings of TAPSOFT '87, Lecture

Notes in Computer Science, Springer, Berlin, March 1987.
[77] D.H.D. Warren, The Extended Andorra Model with Implicit Control, Presented at ICLP'90

Workshop on Parallel Logic Programming, Eilat, Israel, June 1990 (unpublished).
[78] R. Warren, M. Hermenegildo, S.K. Debray, On the practicality of global flow analysis of logic

programs, in: The Fifth International Conference and Symposium on Logic Programming, MIT
Press, Cambridge, MA, August 1988, pp. 684-699.

[79] M. Wolfe, High Performance Compilers for Parallel Computing, Addison, Reading, MA, 1996.

