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Abstract

The Message Passing Interface (MPI) standard continues to dominate the landscape of parallel computing as the

de facto API for writing large-scale scientific applications. But the critics argue that it is a low-level API and harder

to practice than shared memory approaches. This paper addresses the issue of programming productivity by propos-

ing a high-level, easy-to-use, and efficient programming API that hides and segregates complex low-level message

passing code from the application specific code. Our proposed API is inspired by communication patterns found

in Gadget-2, which is an MPI-based parallel production code for cosmological N-body and hydrodynamic simula-

tions. In this paper—we analyze Gadget-2 with a view to understanding what high-level Single Program Multiple

Data (SPMD) communication abstractions might be developed to replace the intricate use of MPI in such an irreg-
ular application—and do so without compromising the efficiency. Our analysis revealed that the use of low-level

MPI primitives—bundled with the computation code—makes Gadget-2 difficult to understand and probably hard

to maintain. In addition, we found out that the original Gadget-2 code contains a small handful of—complex and

recurring—patterns of message passing. We also noted that these complex patterns can be reorganized into a higher-

level communication library with some modifications to the Gadget-2 code. We present the implementation and

evaluation of one such message passing pattern (or schedule) that we term Collective Asynchronous Remote Invoca-

tion (CARI). As the name suggests, CARI is a collective variant of Remote Method Invocation (RMI), which is an

attractive, high-level, and established paradigm in distributed systems programming. The CARI API might be imple-

mented in several ways—we develop and evaluate two versions of this API on a compute cluster. The performance

evaluation reveals that CARI versions of the Gadget-2 code perform as well as the original Gadget-2 code but the

level of abstraction is raised considerably.
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1. Introduction

The current generation of multicore processors are typically shared memory devices. But achieving a speedup

in line with Moore’s law by concurrency alone would require a doubling of cores every 18 months. The number of

cores in a chip would rapidly exceed widely assumed scalability limits for shared memory multiprocessors. There

are already some working examples of multicore processors built using distributed NoC systems—an example is the

TeraScale chip with 80 cores [1]. In the light of this, the Single Program Multiple Data (SPMD) model seems to

be an obvious candidate for programming parallel applications on the future multi/many-core processors. Also, it is

relatively straight forward to port SPMD applications on shared memory multicore processors.

The Message Passing Interface (MPI) standard [2]—that implements the SPMD model—continues to dominate

the landscape of parallel computing as the de facto standard for writing parallel applications. But the critics argue that

it is a low-level API and harder to practice than shared memory programming approaches. We argue that if SPMD is to

become a mainstream model to address the multicore challenge, the level of abstraction provided by SPMD libraries

and languages must be “raised”.

In this paper, we address the issue of programming productivity by proposing a high-level, easy-to-use, and

efficient programming API for multi/many-core processors. We use this API to replace the use of MPI in a production

parallel N-body code called Gadget-2 [3]. Versions of Gadget-2 have been used in various astrophysics research

papers, and in the Millennium Simulation, which simulated the evolution of the structure of the universe using 512

nodes of an IBM p690. It uses a distributed Barnes-Hut (BH) tree to compute gravitational and computational forces,

with an approach to load balancing based on the Peano-Hilbert curve.

For the purpose of increasing programming productivity, we begin by analyzing Gadget-2 with a view to under-

standing what high-level SPMD communication abstractions might be developed to replace the intricate use of MPI

in such an irregular application—and do so without compromising the efficiency. Our analysis of Gadget-2 revealed

that the use of low-level MPI primitives—bundled with the computation code—makes the source code difficult to un-

derstand and probably hard to maintain. In addition, the original Gadget-2 code contains a small handful of—complex

and recurring—patterns of message passing, which essentially means that too much of the code is boilerplate message

passing than physics. But the most interesting observation is that by transforming some loops in a meaning-preserving

way, and defining some “callback” functions containing user-defined “physics” code, and absorbing the boilerplate

message passing code into a library class, this complex pattern of explicit message passing can be reorganized into a

high-level communication library with some modifications to the Gadget-2 code. The actual pattern of data movement

and message passing is not changed by this reorganization—it remains at least as efficient as the original code. But

the level of abstraction is raised considerably.

This paper presents the design, implementation, and evaluation of one such message passing schedule that we term

Collective Asynchronous Remote Invocation (CARI). We use the term schedule for the object implementing message

passing pattern—the term was popularized by CHAOS/PARTI libraries. As the name CARI suggests, this schedule is a

collective variant of Remote Method Invocation (RMI), which is an attractive, high-level, and established paradigm in

distributed systems programming. The surprise is to find a collective variant of RMI hiding in a production, massively

parallel, message passing code. The CARI API might be implemented in several ways—we develop two versions

of this API as part of this paper. We later modify the Gadget-2 code to use the CARI library instead of MPI. We

found out that the original code can be dramatically simplified. Also the performance—in terms of execution time

and memory footprint—can also be improved. We observe that versions of Gadget-2 using CARI perform, at least, as

well as the original Gadget-2 version.

Rest of the paper is organized as follows. Section 2 discusses relevant literature. This is followed by an introduc-

tion of the CARI API using a simple toy application in Section 3. We introduce the Gadget-2 code in Section 4. This

section also presents details on using CARI library in the Gadget-2 code. We evaluate and compare performance of

the original Gadget-2 with CARI versions in Section 5. We conclude and present future work in Section 6.

2. Related Work

The two most popular parallel computing platforms include the shared memory and distributed memory hardware.

For the shared memory hardware, programming options include using threads/locks or task parallel approaches like

OpenMP [4], Intel Cilk++ Software Development Kit (SDK) [5][6] and Threading Building Blocks [7]. For the
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distributed memory hardware, the preferred programming approach may be the SPMD programming model by using

message passing libraries like MPI. More recently, the SPMD programming model is also emerging as a viable option

for the future multi/many-core processors.

In earlier work we have defined a programming model for distributed memory machines that we called the HPspmd

model [8]. In this approach a base language is extended with syntax for defining distributed (partitioned) data, but

the extended language is agnostic about communication that is subsumed into high-level collective library calls. For

a wide class of regular problems the HPspmd model and the original Adlib [9] library provides elegant programming

solutions. Of course many computational problems have more irregular structure, and it was always clear that the

original Adlib library would not provide convenient or efficient solutions for all of those. In this paper we extend this

approach by providing communication schedules for irregular applications.

Our approach has similarities to libraries that provide higher-level abstractions including the Global Arrays Toolkit

[10]. This toolkit provides an abstract representation of distributed arrays, coupled with a family of get and put

operations for accessing the elements of these arrays. Our approach is distinguished by the clear factorization into

a common framework for representing distributed arrays on the one hand, and an extensible family of high-level

communication libraries on the other. One library might specialize in regular data remapping; another may provide

some flavor of collective get/put functionality; yet others provide computational functions over distributed data sets.

There is a superficial analogy of CARI to Active Messages (though Active Messages is not normally considered

a high-level API). The distinctive characteristic of the CARI schedule is the way it combines asynchronous result

processing through callbacks with collective completions, and the specific MPI implementations with bounded com-

munication buffers. We are not aware of existing high-level APIs that exactly provide these features.

Some other library-based approaches are based explicitly on the BSP model [11] of Valiant. These usually provide

less structured primitives for message exchange and remote memory access, integrated with barrier synchronization.

Other authors have elected to extend the programming language to include threads, and affinity of data to those threads.

The PGAS family of languages that includes Co-Array Fortran [12] and Unified Parallel C (UPC) [13] is represen-

tative. These languages typically add syntax for defining arrays that are partitioned over threads, together with some

primitives for accessing elements owned by other threads. A criticism of this approach is that it typically “hard wires”

both the available partitioning strategies and the communication primitives, into the definition of the programming

language. These selected communication primitives often have semantics similar to ordinary assignment statements.

A runtime system then implements something like a distributed shared memory model.

Another language that attempts to increase programming productivity without compromising performance is the

Charm++ [14] system—a set of extensions to the C++ language. It is a comprehensive system for parallel Object

Oriented (OO) programming. Charm++ has some features in common with the CARI API—notably the asynchronous

communication calls. But the CHARM++ system does not support the concept of collective completions, which is an

important requirement in our pipelined system of invocations. Moreover, it is a much more complicated system that

includes advanced features (like object marshalling), which are not part of our simpler and less ambitious API.

3. Collective Asynchronous Remote Invocation

We begin this section by presenting a simple example to motivate the need for programmer friendly API like

CARI. The presentation of this example is followed by an introduction to the CARI API.

3.1. A Toy Example

Imagine a graph G(V, E) where V is the set of all vertices, and E is the set of all edges between these vertices.

The problem is to find the sum of weights of neighbours for all vertices. The sum of neighbours for each vertex is
n∑

i=1

weight(i), where n is the total number of neighbours for a particular vertex. A sequential algorithm to solve this

simple problem is:

foreach vertex in vertices {
foreach neighbour in vertex.neighbours {

vertex.neighbours_sum += vertices[neighbour].weight ;
}

}
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for( . . . each vertex in local vertices . . . ) {
for( . . . each neighbour in vertex.neighbours . . . ) {

if( . . . neighbour.owner process == me. . . ) {
vertex.neighbours sum +=

vertices[neighbour.index].weight;
} else {

... Add vertex index to send buffer ...
}

}
}
...Sort send buffer by destination...
for( . . . each peer in peers . . . ) {

...Send indexes to peer; and
recv indexes for local computation...

}
. . . Compute local contribution to received indexes . . .
for( . . . each peer in peers . . . ) {

...Recv weights from peer...
vertex.neighbours sum += received weight;

}

(a) MPI version

CARISchedule <int, float>sched;
for( . . . each vertex in vertices . . . ) {

for( . . . each neighbour in vertex.neighbours . . . ) {
if( neighbour.owner process == me ) {

vertex.neighbours sum +=
vertices[neighbour.index].weight;

} else {
sched.invoke(vertex.index,

neighbour.owner process, neighbour.index);
}

}
}
sched.complete() ;

void handleRequest(int *index, float *request){
*result = vertices[*index].weight;

}
void handleResponse(float *result, int index){

vertices[index].neighbours sum += *result ;
}

(b) CARI version

Figure 1: Two Parallel Pseudocodes for the Toy Example

In this pseudocode, the vertices array stores all vertices in the graph. Each vertex element has a neighbours

array that stores indices of the neighbouring vertex.

Now we turn our attention towards a parallel implementation. Assuming a simple domain decomposition strategy,

vertices of the graph can be equally divided amongst all parallel processes. Each process can now compute the sum

of weights of locally owned neighbours in parallel. But it is possible that neighbour(s) of a vertex i, on a particular

process, might be owned by a remote process. In such a scenario this process must engage in communication of

weights of remotely owned vertices and then perform the sum computation. This kind of irregular communication

frequently occurs in the Gadget-2 that is discussed in Section 4. The main purpose of the CARI library is to abstract

out the low-level message passing logic from the application code. As an evidence of this argument, we now discuss

and compare parallel versions—presented in Figure 1—implemented using MPI and CARI APIs.

We first discuss the MPI version shown in the Figure 1(a). In this pseudocode, each process first iterates over

its local vertices to compute the sum of weights of locally held neighbours. If a neighbour is remotely owned,

the neighbours vertex index is stored in the send buffer. In the first communication loop, each process sends

accumulated indexes of foreign neighbours to remote processes. In return, each process receives indexes of its vertices

that are connected to remote vertices. This is followed by application specific code where each process computes

weights for incoming indexes. After this computation, another communication phase follows in which each process

receives weights from peers and also sends locally computed weights. The received remote weights are added back to

the partially calculated sums—this is again application specific code. Note that the three lines (in non-italicized bold

font) highlighted in red represent the application specific code.

The parallel version can be reorganized—as given in the Figure 1(b)—using the CAPI API. The code first creates

an instance of the CARISchedule called sched. This object implements the recurring messaging pattern discovered

in the MPI parallel code. Each process iterates over its local vertices and computes sum of the locally held

neighbours. If a neighbour is owned by a remote processor, the CARI version calls the invoke() method on the

CARI schedule object. The communication loop is followed by a call to the complete() method on the sched

object.

In addition this version also defines two callbacks. The handleRequest handler implements the application spe-

cific code, which is executed when a “server” receives a request from a “client”. On the other hand, the handleRespon-

se callback is invoked when the “client” receives response back from the “server”. Unlike the MPI parallelized

version, here the application code is neatly abstracted out of the message passing code.

There are multiple implementation choices for invoke() and complete() methods. We outline one possible

implementation here. If the implementation of CARI corresponded to Figure 1(a), the invoke method would simply

add vertex index to the send buffer assuming that the buffer has sufficient space to store all indexes. The complete
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template <class S, class T>
class CARISchedule {
public:

CARISchedule(MPI_Comm comm, CARIHandler<S, T> *hndlr, int buffSize, void *buffer);
~CARISchedule();
void invoke(int tag, int dest, S *request);
void complete(void);

private:
...

};

template <class S, class T>
class CARIHandler{
public:

virtual void handleRequest(S *request, T *response)=0;
virtual void handleResponse(T *response, int tag)=0;

};

Figure 2: A realistic C++ API for CARI

method would execute the code in Figure 1(a) following the “main loop”, calling the user-defined callbacks at appro-

priate points. We will discuss other possible implementations of CARI in the Section 4.4.

The pattern in Figure 1(b) may be recognized as a basic kind of remote method invocation. The user-defined

callback handleRequest is the implementation code for the remote invocation (on the peer that is acting as “server”).

The invoked method takes exactly one struct-type parameter of type S, and produces exactly one struct-type result of

type T.

The invocation is asynchronous in the sense that the invoke method does not in general wait for the invocation to

complete and results to come back before returning—instead it may return immediately, and a user-defined callback

function handleResponse processes the result locally when it does eventually return to the “client”. The pattern is

“collective” in a couple of senses. All peers potentially act symmetrically as clients and as servers. Creation of the

CARI schedule is a collective operation. The logical synchronization that marks completion of all invocations occurs

in the strictly collective complete method. The invoke methods themselves may make use of collective methods for

their implementation. But this is strictly an implementation issue. From a logical point of view the invoke method

is not collective. Different peers make different numbers of invoke calls. Some may make none. We refer to this

pattern as Collective Asynchronous Remote Invocation (CARI).

3.2. The CARI API
Figure 1(b) is somewhat stylized. Without comment, we have assumed an object-oriented C++ style of program-

ming. In an object-oriented language it is most natural for the “handler” functions to be methods on objects. The

classes of these objects can extend library-defined interfaces that specify the methods’ signatures. Moreover the user-

defined subclasses that implement them can conveniently be instantiated to hold references to relevant application

state, like the vertices array.

A more realistic API for CARI is given in Figure 2. The constructor for CARISchedule is passed an MPI

communicator, and an application-specific object whose class extends CARIHandler. The constructor may also be

passed workspace in the form of buffer space allocated in the application code. Internally, CARISchedule will carve

this workspace according to its requirements—if, for example, the implementation follows that of Figure 3(b), this

workspace will be carved into a send buffer and a receive buffer, and perhaps extra workspace used in sorting the send

buffer.

The invoke method takes a pointer to an instance of S. This type S will typically be a primitive type, an array

type of constant size, or a simple “struct-like” class containing only fields of like types. In C++ parlance, S must be a

Plain Old Data (POD) type. No provision is made for arguments that are more general data structures. If the type S

includes pointers, CARI will simply copy the address values of these pointers, and in general the copied values cannot

be dereferenced in the context of a remote processor. This applies equally to char* pointers—strings that are to be

processed remotely must be passed as char arrays of constant size.

The second argument of invoke is a tag that is simply passed to the local handleResponse method when the

result of the invocation returns. This tag can be used in any manner that is convenient to the application. Note this tag
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is deliberately not passed to the handleResponse method that handles the remote invocation on the “server” side.

This is so that the API admits implementations that do not pass the tag in request or response messages. The result

of the remote invocation is of type T, which again should be a POD type, and the same comments apply as for the

argument type S.

To simplify the task of the programmer, the CARI API comes with certain guarantees of atomicity. Execution

is serial in the sense that a handleRequest or handleResponse method is never called concurrently with execu-

tion of other user code on the local processor (and no two handlers are called concurrently on the local processor).

Specifically, handlers are called sequentially (though in general in undefined order) during execution of CARI library

code—either during an invoke or complete call.
So, while the application writer needs to be aware that in general there is no uniquely defined order in which

handlers are invoked, there is no need to synchronize access to variables used, for example, as accumulators. If, say,
a handler performs an accumulation like:

x += a

on a programme variable x—which is also modified in the main body of the client code or in another handler—

there is no need for explicit mutual exclusion protecting this operation.

4. Gadget-2

Gadget-2 is a free production code for cosmological N-body and hydrodynamic simulations. The code is written

in the C language and parallelized using MPI. It simulates the evolution of very large (for example cosmological-

scale) systems under the influence of gravitational and hydrodynamic forces. The system is modeled by a sufficiently

large number of test particles, which may represent ordinary matter or dark matter. The main simulation loop in-

crements time steps and drifts particles to the next time step. We are particularly interested in the parallelization

strategy of Gadget-2, which is based on an irregular and dynamically adjusted domain decomposition, with copious

communication between processors.

4.1. Computing Gravitational Forces
One of the main tasks of a structure formation code is to calculate gravitational forces exerted on a particle. Since

gravity is a long-range force, every particle in the system exerts gravitational force on every other particle. A naı̈ve

summation approach costs O(N2), which is not feasible for the scale of problems that Gadget-2 aims to solve. To

deal with this, Gadget-2 can use either of two efficient algorithms. The first is the well-known Barnes-Hut (BH)

oct-tree-based algorithm [15]; the second is a hybrid of BH and a Particle Mesh (PM) method called TreePM.

As a massively parallel code, Gadget-2 needs to divide space or the particle set into “domains”, where each domain

is assigned to a single processor. Generally speaking, dividing space evenly would result in poor load balancing,

because some regions have more particles than others. Conversely, it is not desirable to divide particles evenly in a
fixed way, because one wishes to keep physically close particles on the same processor, and the proximity relation

changes as the system evolves.

Gadget-2 uses a decomposition based on the space-filling Peano-Hilbert curve. Particles are sorted according to

their position on Peano-Hilbert curve, then divided evenly into P domains.

4.2. Communications Analysis
The Gadget-2 code is parallelized using MPI, and it makes extensive use of MPI point-to-point and collective

communication functions. Some parts of the code are parallelized straightforwardly using essentially regular patterns

of communication that can easily be captured in MPI collectives. In such code sections we consider there is a clean

factorization between the application code and the (MPI) library code that abstracts the non-trivial aspects of inter-

process communication.

But we have identified several code patterns in Gadget-2 that we consider “non-trivial”—where communication

is not “cleanly abstracted”. In these sections there is a relatively ad hoc interleaving of application-specific code and

MPI point-to-point and collective calls. The patterns we identified were:

1. A partial distributed sort of particles according to Peano-Hilbert
key: this implements domain decomposition.
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for( . . . all local particles . . . ) {
. . . Compute local contribution to potential, and flag exports . . .
. . . Add exports to send buffer . . .

}
. . . Sort export buffer by destination . . .
for( . . . all peers . . . ) {

. . . Send exports to peer; recv particles for local computation . . .
}
. . . Compute local contribution to received particles . . .
for( . . . all peers . . . ) {

. . . Recv our results back from peer; send locally computed . . .

. . . Add the results to the particles in the P array . . .
}

(a) Simplified sketch of compute potential

while( . . . some particles not yet processed . . .) {
for( . . . remaining local particles, while send buffer not full . . .) {

. . . Compute local contribution to potential, and flag exports . . .

. . . Add exports to send buffer . . .
}
. . . Sort export buffer by destination . . .
while( . . . some peers not yet processed . . .) {

for( . . . all remaining peers, while no recv buffer exhausted . . .) {
. . . Send exports to peer; recv particles for local computation . . .

}
. . . Compute local contribution for received particles . . .
for( . . . all peers communicated with above . . .) {

. . . Recv our results back from peer; send locally computed . . .

. . . Add the results to the P array . . .
}

}
}

(b) More realistic structure of compute potential

Figure 3: Two different views of compute potential code

2. Projection of particle density to regular grid for calculation of φlong; scatter results back to irregularly dis-

tributed particles.

3. Export of particles to other nodes, for calculation of remote contribution to force, density, etc, and retrieval of

results.

In this paper we focus on the third pattern—“particle export”. This pattern occurs repeatedly in Gadget-2.

Specifically—in the freely available source code—it recurs in the functions compute potential, gravity tree,

gravity forcetest, density, and hydro force. Some of these functions are responsible for calculation of gravi-

tational forces and potentials, and others are responsible for computation of hydrodynamic forces. The next subsection

explores this pattern in more detail.

4.3. Particle Export
Figure 3(a) is a simplified schematic of the compute potential function—one of several functions in Gadget-2

that follow the “particle export” pattern. The three lines (in bold non-italicized font) highlighted in red in Figure 3(a)

contain all code that is specific to the physics problem being solved. As the local particles are processed in the first

for loop, those whose potentials require a contribution from particles held remotely are flagged. All peer processors

that contribute to the local particle’s potential are recorded. If the local particle needs remote contributions, it is added

to a send buffer. In fact it is added once for each contributing peer processor.

The send buffer is then sorted according to peer processor id. Sections of the send buffer are sent to each peer

in the list. This is done in using MPI Sendrecv operations, which concurrently receive particles exported to this

processor by peers into a receive buffer.

The local contribution to the received particles is computed. The results are sent back to the peer needing them,

again the same MPI Sendrecv operations that receive back results for particles we exported. The returning results are

accumulated into the main particle array (the P array) held locally.

The actual code of compute potential is complicated by the fact that Gadget-2 allocates fixed size buffers for

communication. Figure 3(b) is more representative of the real structure. The more complex looping structure here

is shaped largely by the need to manage communication buffers. The first for loop now terminates when all local

particles have been processed or the send buffer is full, and a new outer loop is needed in case the send buffer was

exhausted. Additional complications are needed to manage receive buffers.

It is necessary to ensure that the export operations converging on any particular processor do not exhaust the

receive buffer on that processor. The Gadget-2 code broadcasts a matrix containing size of all sends from all proces-

sors before entering the communication loops. So every process can determine how much data converges on every

processor, and collectively group sends and receives so that no receive buffer is ever exhausted.

The real implementation of compute potential is about 300 lines of C, with most of the application specific

code relegated to separate functions. Figures 3(a) and 3(b) only reproduce its general structure. The point to observe is
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CARISchedule <S, T>sched;
for( . . . all local particles . . . ){

. . . Compute local contribution to potential, and flag exports . . .
for( . . . all peers particle should be exported to . . .){

sched.invoke(pindex, processid, particle);
}

}
sched.complete() ;

void handleRequest(S* request, T* response){
. . . Compute local contribution to received particle . . .

}
void handleResponse(T* response, int tag){

. . . Add the result to the P array . . .
}

Figure 4: Refactored compute potential code

that application specific code is scattered through the main ”skeleton” of communications-related code. The question

that concerns us how the code can be refactored in such a way that it does not compromise the efficiency of the existing

production code, but such that there is clean separation on of application specific code and communication code.

4.4. Implementing Gadget-2 using the CARI Library

A reorganization of the code that achieves our objective is given in Figure 4. Here CARI is a library class that

abstracts all communication. sched is short for “schedule”—we regard the instantiated object as a kind of communi-

cation schedule. The main loop essentially follows the same structure as the first loop in 3(a), but instead of manually

adding exports to the send buffer, the invoke method is called on the sched object. This loop contains the first

section of application-specific code from Figures 3(a) and 3(b). The other two sections of application code are in the

callbacks handleRequest and handleResponse.

If the implementation of CARI corresponded to Figure 3(a), the invoke method would simply add the particle (of

struct type S) to the send buffer. The complete method would execute the code in Figure 3(a) following the “main

loop”, calling the user-defined callbacks at appropriate points.

If the implementation of CARI corresponds to Figure 3(b), the invoke method adds the particle to the send buffer

and checks if the buffer is full. If it is, invoke sorts the buffer and runs the “peer processing” loop, wherein MPI

communications and user callbacks are called. In this implementation, complete will likewise sort the send buffer,

then run the “peer processing” loop as many times as necessary until all exports by all processors have been dealt

with, globally (detecting termination involves a reduction operation).

Because of the stylized way in which we have presented the original Gadget-2 implementation, the advantage of

Figure 4 over Figure 3(b) may not be immediately apparent. But in reality the communication code in Figure 3(b) that

is abstracted away in the CARI class is one to two hundred lines of rather dense MPI; in Figure 4 this is replaced by a

few method calls and definitions. But it is important to re-state the fact that we can go from Figure 3(b) to Figure 4

with essentially no changes in the underlying communication pattern, or efficiency of the programme.

5. Performance Evaluation

As part of the work presented in this paper, we have developed two implementations of the CARI API. The

first implementation—called Synchronous CARI (SCARI)—is developed with the aim to exactly preserve the per-

formance of the original application code. Mostly this implementation reorganizes the original source code, and

attempts not to incur any performance overhead. SCARI makes extensive use of MPI collective communications

and blocking point-to-point calls. The second implementation, called Asynchronous CARI (ACARI), is a proof-of-

concept implementation to demonstrate that—beyond simply refactoring the code to simplify it and improve its the

maintainability—our higher-level libraries can potentially enhance performance, by admitting alternate implementa-

tions. In ACARI this is achieved by reducing wait time using non-blocking MPI primitives. We plan to present details

of these two implementations in the future work.
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Figure 5: Execution Time Comparison for the Original, SCARI, ACARI versions of Gadget-2 code

We begin by describing our test environment, which consisted of a 32 processing core Linux cluster at NUST. The

cluster consists of eight compute nodes. Each node contains a quad-core Intel Xeon processor and has 2 Gigabytes

of main memory. The nodes are connected via Myrinet and Gigabit Ethernet. We used MPICH2 version 1.2.1p1—as

the MPI library—that was compiled with GNU C Compiler (GCC) version 4.1.0. We used the Cluster Formation

Simulation for executing the original and CARI versions of the Gadget-2 code.

As part of the evaluation effort, we present the execution time in Figure 5 for three variants of the Gadget-2 code.

These include the original Gadget-2, Gadget-2 using SCARI, and Gadget-2 using ACARI. The Gadget-2 code in the

second and third case is exactly the same; the only difference is the implementation of the CARI library.

Our performance evaluation reveals that both CARI versions of the Gadget-2 code perform, at least, as well as

the original Gadget-2 code. This meets one of our main objectives that the performance of CARI-based application

must be comparable to the original application code that uses MPI. The performance of the SCARI implementation

is exactly similar to the original code as we expected. But the ACARI implementation of the CARI API slightly

outperforms the SCARI-based and the original application code for all processor counts. In fact the performance of

ACARI version gets even better as the number of cores are added to the parallel computation. Although the gain

observed by ACARI is modest, but it proves an important point that higher-level communication libraries can also

provide better performance than MPI alone. The main reason for the better performance of ACARI is the asynchronous

nature of the communication algorithm.

We quantify productivity benefits of the CARI API by presenting Source Lines of Code (SLOC) comparison in

Table 1 between Gadget-2 versions using MPI and CARI. There is a notable reduction in SLOC in the case of the

gravity calculation physics code. It must be noted that our proposed API (CARI) is applicable to less than 10%

of the total code and thus the SLOC reduction is less visible at the application level. But for the relevant com-

putation/communication sections of the code (like gravity calculations), the CARI API significantly reduces SLOC

(mostly dense and complicated MPI code) and improves maintainability of the code.

6. Conclusions and Future Work

In this paper we analyzed Gadget-2 with a view to understanding what high-level SPMD communication abstrac-

tions might be developed to replace the intricate use of MPI in Gadget-2. These communication abstractions must

enhance programming productivity without compromising performance. Our analysis of the code identified several
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Table 1: Comparison of Source Lines of Code (SLOC)

Gadget-2 Application
Code

Gravity
Code

Potential
Code

Density
Code

Hydra Code Force Test
Code

Using MPI 16981 551 350 618 572 354

Using CARI 16102 352 218 448 412 215

complex and recurring patterns of message passing cluttered inside the application specific physics code. We reorga-

nized Gadget-2 to absorb one such message passing schedule into a high-level communication library called CARI—a

collective variant of RMI.

The paper also introduced and evaluated implementations of the CARI schedule. The first implementation,

known as SCARI, retains the original message passing code with the goal of obtaining similar application level

performance—this implementation simply reorganizes the code. The second implementation, known as ACARI, is

developed to show that it is possible to improve performance and programming productivity at the same time. The

performance evaluation revealed that SCARI-based implementation of the Gadget-2 code achieves comparable per-

formance to the original code. However, the CARI-based Gadget-2 modestly outperforms other implementations.

This clearly demonstrates that higher performance and higher productivity and not mutually exclusive.

There are couple of other message passing patterns in Gadget-2 that can also be absorbed into a high-level com-

munication library. The two notable patterns include a) the distributed sort based on the Peano-Hilbert key, and b)

parts of the TreePM algorithm. We plan to address these in the future. We also plan to demonstrate usefulness of the

CARI library in other irregular applications—the most likely candidate is a Finite Element Method (FEM) code. The

CARI library will be released as an open-source software in the mid of 2011.
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