557 research outputs found

    Robotic Exoskeletons for Upper Extremity Rehabilitation

    Get PDF

    Separating haptic guidance from task dynamics: A practical solution via cutaneous devices

    Get PDF
    There is much interest in using haptic feedback for training new skills or guiding human movement. However, the results of studies that have incorporated haptic guidance to train new skills are mixed, depending on task complexity and the method by which the haptic guidance is implemented. Subjects show dependency on the guidance forces and difficulty in discerning which aspects of the haptic feedback are related to the task dynamics and which are meant to convey task completion strategies. For these reasons, new methods to separate haptic cues for guidance from haptic feedback of task dynamics are needed. In this experiment, 30 subjects completed a trajectory following task using a wrist exoskeleton which also rendered task forces. To assist subjects, guidance cues were provided in one of three forms: (1) cutaneous forces from a wearable skin-stretch device on the ipsilateral forearm and (2) contralateral forearm, and (3) kinesthetic forces from a kinematically similar wrist exoskeleton operated by the contralateral arm. The efficacies of each guidance condition are compared by examining subject performance and learning rates. The results indicate that cutaneous guidance is nearly as effective as kinesthetic guidance, making it a practical and cost-effective alternative for spatially separated assistance

    A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Get PDF
    This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR). The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

    Study and development of sensorimotor interfaces for robotic human augmentation

    Get PDF
    This thesis presents my research contribution to robotics and haptics in the context of human augmentation. In particular, in this document, we are interested in bodily or sensorimotor augmentation, thus the augmentation of humans by supernumerary robotic limbs (SRL). The field of sensorimotor augmentation is new in robotics and thanks to the combination with neuroscience, great leaps forward have already been made in the past 10 years. All of the research work I produced during my Ph.D. focused on the development and study of fundamental technology for human augmentation by robotics: the sensorimotor interface. This new concept is born to indicate a wearable device which has two main purposes, the first is to extract the input generated by the movement of the user's body, and the second to provide the somatosensory system of the user with an haptic feedback. This thesis starts with an exploratory study of integration between robotic and haptic devices, intending to combine state-of-the-art devices. This allowed us to realize that we still need to understand how to improve the interface that will allow us to feel the agency when using an augmentative robot. At this point, the path of this thesis forks into two alternative ways that have been adopted to improve the interaction between the human and the robot. In this regard, the first path we presented tackles two aspects conerning the haptic feedback of sensorimotor interfaces, which are the choice of the positioning and the effectiveness of the discrete haptic feedback. In the second way we attempted to lighten a supernumerary finger, focusing on the agility of use and the lightness of the device. One of the main findings of this thesis is that haptic feedback is considered to be helpful by stroke patients, but this does not mitigate the fact that the cumbersomeness of the devices is a deterrent to their use. Preliminary results here presented show that both the path we chose to improve sensorimotor augmentation worked: the presence of the haptic feedback improves the performance of sensorimotor interfaces, the co-positioning of haptic feedback and the input taken from the human body can improve the effectiveness of these interfaces, and creating a lightweight version of a SRL is a viable solution for recovering the grasping function

    Design and acceptability assessment of a new reversible orthosis

    Get PDF
    International audience— We present a new device aimed at being used for upper limb rehabilitation. Our main focus was to design a robot capable of working in both the passive mode (i.e. the robot shall be strong enough to generate human-like movements while guiding the weak arm of a patient) and the active mode (i.e. the robot shall be able of following the arm without disturbing human natural motion). This greatly challenges the design, since the system shall be reversible and lightweight while providing human compatible strength, workspace and speed. The solution takes the form of an orthotic structure, which allows control of human arm redundancy contrarily to clinically available upper limb rehabilitation robots. It is equipped with an innovative transmission technology, which provides both high gear ratio and fine reversibility. In order to evaluate the device and its therapeutic efficacy, we compared several series of pointing movements in healthy subjects wearing and not wearing the orthotic device. In this way, we could assess any disturbing effect on normal movements. Results show that the main movement characteristics (direction, duration, bell shape profile) are preserved

    Design and Control of the Rehab-Exos, a Joint Torque-Controlled Upper Limb Exoskeleton †

    Get PDF
    This work presents the design of the Rehab-Exos, a novel upper limb exoskeleton designed for rehabilitation purposes. It is equipped with high-reduction-ratio actuators and compact elastic joints to obtain torque sensors based on strain gauges. In this study, we address the torque sensor performances and the design aspects that could cause unwanted non-axial moment load crosstalk. Moreover, a new full-state feedback torque controller is designed by modeling the multi-DOF, non-linear system dynamics and providing compensation for non-linear effects such as friction and gravity. To assess the proposed upper limb exoskeleton in terms of both control system performances and mechanical structure validation, the full-state feedback controller was compared with two other benchmark-state feedback controllers in both a transparency test—ten subjects, two reference speeds—and a haptic rendering evaluation. Both of the experiments were representative of the intended purpose of the device, i.e., physical interaction with patients affected by limited motion skills. In all experimental conditions, our proposed joint torque controller achieved higher performances, providing transparency to the joints and asserting the feasibility of the exoskeleton for assistive applications

    Exoskeletons with virtual reality, augmented reality and gamification for stroke patients' rehabilitation : systematic review

    Get PDF
    Background: Robot-assisted therapy has become a promising technology in the field of rehabilitation of post-stroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for a majority of stroke survivors. With the advancement in technology, there has been the introduction of Virtual Reality, Augmented Reality, customizable games or a combination thereof that aid robotic therapy in retaining or increasing the interests of patients to keep performing the exercises. However, there are gaps in evidence regarding the transition from clinical rehabilitation to home-based therapy and it calls for an updated synthesis of literature showcasing this trend. The present review proposes a categorization of these studies according to technologies used by them and also details research in upper limb and lower limb applications. Objective: The goal of this work was to review the practices and technologies implemented for the rehabilitation of post-stroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies, Virtual Reality, Augmented Reality or Gamification for improving activity and participation in post-stroke survivors. Methods: A systematic search of the literature on exoskeleton robotics applied with any of the three technologies, Virtual Reality, Augmented Reality or Gamification, was performed in the databases namely; MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS Online), EMBASE (Excerpta Medica database), Science Direct & The Cochrane Library. Exoskeleton based studies that did not include any VR, AR or gamification elements were excluded and publications from the year 2010 to 2017 were included. Results in the form of improvements in patients were also recorded and taken into consideration in finding the effectiveness of therapy on patients. Results: Thirty studies were identified based on the inclusion criteria that included randomised controlled trials as well as explorative research pieces. There was a total of around 385 participants across the studies. Use of technologies such as Virtual Reality/Augmented Reality/Gamification based Exoskeletons are capable of filling the transition from clinical to home-based settings. Our analysis showed that there were in general improvements in the motor deficiency for patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps in understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation. Conclusions: Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the therapy individually

    Integration of advanced teleoperation technologies for control of space robots

    Get PDF
    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful

    Robot-assisted upper limb training for patients with multiple sclerosis: an evidence-based review of clinical applications and effectiveness

    Get PDF
    Upper extremities limitation is a common functional impairment in patients with Multiple Sclerosis (PwMS). Novel technological devices are increasingly used in neurorehabilitation to support motor function improvement and the quantitative assessment of motor performance during training in patients with neurological diseases. In this review, we systematically report the evidence on clinical applications and robotic-assisted arm training (RAT) in functional recovery in PwMS. PubMed/MEDLINE, the Cochrane Library, and the Physiotherapy Evidence Database (PEDro) databases were systematically searched from inception to March 2021. The 10-item PEDro scale assessed the study quality for the RCT, and the AMSTAR-2 was used to assess the quality of the systematic review. The 5-item Oxford CEBM scale was used to rate the level of evidence. A total of 10 studies (161 subjects) were included. The selected studies included one systematic review, four RCTs, one randomized crossover, and four case series. The RCTs were scored as high-quality studies, while the systematic review was determined to be of low quality. Shoulder range of motion, handgrip strength, and proximal arm impairment improved after RAT. Manual dexterity, arm function, and use in daily life also ameliorated arm function. The high clinical heterogeneity of treatment programs and the variety of robot devices affects the generalizability of the study results; therefore, we emphasize the need to standardize the intervention type in future studies that evaluate the role of robotic-assisted training in PwMS. Robot-assisted treatment seems safe and useful to increase manual dexterity and the quality of movement execution in PwMS with moderate to severe disability. Additional studies with an adequate sample size and methodological rigour are warranted to drive definite conclusion

    ARCTiC LawE: armed robotic control for training in civilian law enforcement

    Get PDF
    Much of this thesis looked at performing a cogent literature review of exoskeletons to determine the state-of-the-art and to determine the remaining needs in exoskeletal design. The literature review of over 80 journals, allowed the researcher to determine the lack of research in upper body exoskeletons for training in civilian, military, and law enforcement personnel. Thus the genesis of the Armed Robotic Control for Training in Civilian Law Enforcement, or ARCTiC LawE, an upper body exoskeleton designed to assist civilian, military, and law enforcement personnel in accurate, precise, and reliable handgun techniques. This exoskeleton training utilizes a laser based handgun with similar dimensions, trigger pull, and break action to a Glock ® 19 pistol, common to both public and private security sectors. The project aims to train and test subjects with no handgun training/experience with the ARCTiC LawE, and without, and compare the results of accuracy, precision, and speed. Ultimately, the exoskeleton greatly impacts sensory motor learning and the biomechanical implications are confirmed via both performance and physiological measurements. The researchers believe the ARCTiC LawE to be a viable substitute for training with live fire hand guns to reduce the cost of training time and munitions and will increase accuracy and precisions for typical law enforcement and military live fire drills. Additionally, this project increases the breadth of knowledge for exoskeletons as a tool for training
    • …
    corecore