7,424 research outputs found

    Performance comparisons of AODV, secure AODV and adaptive secure AODV routing protocols in free attack simulation environment.

    Get PDF
    There have been various secure routing protocols proposed for mobile ad hoc networks. Most of these protocols are analyzed by three standard techniques: simulation, security analysis and real network testbed. In this paper, Ad Hoc On-Demand Distance Vector (AODV) routing protocols was selected as the basis of the entire simulations. Due to the needs of securing the routing in the wireless ad hoc networks, Secure AODV (SAODV) was developed to add security to original AODV which includes cryptographic operations that can have a significant impact on the routing performance. To get better performance while maintaining the secure routing, Adaptive SAODV (A-SAODV) was developed based on the SAODV implementation, which was claimed to introduce some improvement on the routing compared to the SAODV. Based on this justification, some analysis and studies are made on the performance and impacts using AODV, Secure AODV (SAODV) and Adaptive Secure AODV (A-SAODV) in a free-attack simulation environment to analyze these routing protocols and make some comparisons on the performance. The collection of simulation results will show the performance impact of security implementation into the original AODV after the implementations of SAODV and A-SAODV into the networks

    Performance Evaluation of MANET Based Routing Protocols for VANETs in Urban Scenarios

    Get PDF
    Abstract. Vehicular Ad hoc NETworks (VANETs) are self-organizing ad hoc networks that are specifically designed for communication among vehicles where vehicles are themselves the nodes. Although routing protocols have already been analyzed and compared in the past for Mobile Ad hoc Networks (MANETs), simulations and comparisons of routing protocols for VANETs have almost always been done considering random motions with non-urban specific parameters. This paper studies the performance of Ad hoc On-Demand Distance Vector (AODV) and Destination Sequenced Distance Vector (DSDV) which are popular routing protocols in MANETS for routing among vehicular nodes in VANETs. The effects of urban motions on the simulation parameters, their consequences on routing performance are compared between the two protocols in this study. The VANET simulations showed that on-demand based protocol AODV performs better than the table-driven based DSDV protocol for two performance metrics for vehicular nodes moving in urban scenarios

    Performance Comparisons of Routing Protocols in Mobile Ad Hoc Networks

    Full text link
    Mobile Ad hoc Network (MANET) is a collection of wireless mobile nodes that dynamically form a network temporarily without any support of central administration. Moreover, Every node in MANET moves arbitrarily making the multi-hop network topology to change randomly at unpredictable times. There are several familiar routing protocols like DSDV, AODV, DSR, etc...which have been proposed for providing communication among all the nodes in the network. This paper presents a performance comparison of proactive and reactive protocols DSDV, AODV and DSR based on metrics such as throughput, packet delivery ratio and average end-to-end delay by using the NS-2 simulator.Comment: 9 Pages,10 Figures, 3 Table

    Augmented Tree-based Routing Protocol for Scalable Ad Hoc Networks

    Full text link
    In ad hoc networks scalability is a critical requirement if these technologies have to reach their full potential. Most of the proposed routing protocols do not operate efficiently with networks of more than a few hundred nodes. In this paper, we propose an augmented tree-based address space structure and a hierarchical multi-path routing protocol, referred to as Augmented Tree-based Routing (ATR), which utilizes such a structure in order to solve the scalability problem and to gain good resilience against node failure/mobility and link congestion/instability. Simulation results and performance comparisons with existing protocols substantiate the effectiveness of the ATR.Comment: Routing, mobile ad hoc network, MANET, dynamic addressing, multi-path, distributed hash table, DH

    A survey on probabilistic broadcast schemes for wireless ad hoc networks

    Get PDF
    Broadcast or flooding is a dissemination technique of paramount importance in wireless ad hoc networks. The broadcast scheme is widely used within routing protocols by a wide range of wireless ad hoc networks such as mobile ad hoc networks, vehicular ad hoc networks, and wireless sensor networks, and used to spread emergency messages in critical scenarios after a disaster scenario and/or an accidents. As the type broadcast scheme used plays an important role in the performance of the network, it has to be selected carefully. Though several types of broadcast schemes have been proposed, probabilistic broadcast schemes have been demonstrated to be suitable schemes for wireless ad hoc networks due to a range of benefits offered by them such as low overhead, balanced energy consumption, and robustness against failures and mobility of nodes. In the last decade, many probabilistic broadcast schemes have been proposed by researchers. In addition to reviewing the main features of the probabilistic schemes found in the literature, we also present a classification of the probabilistic schemes, an exhaustive review of the evaluation methodology including their performance metrics, types of network simulators, their comparisons, and present some examples of real implementations, in this paper

    Improving the Performance of Routing Protocol Using Neighbor Coverage Based Probabilistic Rebroadcast in Mobile Ad Hoc Network

    Get PDF
    Mobile Ad Hoc Networks provides important control and route establishment functionality for a number of unicast an d multicast protocols. To discover an effective and an efficient routing protocol for transmit information from source to destination across whole network topology. This is a main issue in networking research. Broadcasting is important in MANET for routing infor mation discovery, protocols such as ad hoc on demand distance vector (AODV), dynamic source routing (DSR), and location aided routing use broadcasting to establish routes. Broadcasting in MANETs poses more challenging problems because of the variable and unpredictable characteristics of its medium as well as the fluctuation of the signal strength and propagation with respect to time and environment such as bandwidth congestion, channel contention problem, and packet collision problem. To overcome the se and reducing routing overhead we did study about neighbor coverage based probabilistic rebroadcast protocol in MANETs. In order to effectively exploit the neighbor coverage knowledge, we also discuss a connectivity factor to provide the node density ada ptation. Our approach combines the advantages of the neighbor coverage knowledge and the probabilistic mechanism, which can significantly, optimizes the routing mechanism in comparison to the AODV protocol. We just complete our dissertation work by compari ng AODV protocol with the new concept of rebroadcasting is NCPR in point of many performance metrics. The performance results and comparisons are done by using NS - 2 simulator

    Geographic Centroid Routing for Vehicular Networks

    Get PDF
    A number of geolocation-based Delay Tolerant Networking (DTN) routing protocols have been shown to perform well in selected simulation and mobility scenarios. However, the suitability of these mechanisms for vehicular networks utilizing widely-available inexpensive Global Positioning System (GPS) hardware has not been evaluated. We propose a novel geolocation-based routing primitive (Centroid Routing) that is resilient to the measurement errors commonly present in low-cost GPS devices. Using this notion of Centroids, we construct two novel routing protocols and evaluate their performance with respect to positional errors as well as traditional DTN routing metrics. We show that they outperform existing approaches by a significant margin.Comment: 6 page
    corecore