1,191 research outputs found

    Modified Level Restorers Using Current Sink and Current Source Inverter Structures for BBL-PT Full Adder

    Get PDF
    Full adder is an essential component for the design and development of all types of processors like digital signal processors (DSP), microprocessors etc. In most of these systems adder lies in the critical path that affects the overall speed of the system. So enhancing the performance of the 1-bit full adder cell is a significant goal. In this paper, we proposed two modified level restorers using current sink and current source inverter structures for branch-based logic and pass-transistor (BBL-PT) full adder [1]. In BBL-PT full adder, there lies a drawback i.e. voltage step existence that could be eliminated in the proposed logics by using the current sink inverter and current source inverter structures. The proposed full adders are compared with the two standard and well-known logic styles, i.e. conventional static CMOS logic and Complementary Pass transistor Logic (CPL), demonstrated the good delay performance. The implementation of 8-bit ripple carry adder based on proposed full adders are finally demonstrated. The CPL 8-bit RCA and as well as the proposed ones is having better delay performance than the static CMOS and BBL-PT 8-bit RCA. The performance of the proposed BBL-PT cell with current sink & current source inverter structures are examined using PSPICE and the model parameters of a 0.13 µm CMOS process

    Design of Hybrid Full Adder using 6T-XOR-Cell for High Speed Processor Designs Applications

    Get PDF
    Hybrid-logic implementation is highly suitable in the design of a full adder circuit to attain high-speed low-power consumption, which helps to design n any high speed ALUs that can be used in varies processors and applicable for high speed IoT- Application. XOR/XNOR-cell, Hybrid Full Adder (HFA) are the fundamental building block to perform any arithmetic operation. In this paper, different types of high-speed, low-power 6T-XOR/XNOR-cell designs are being proposed and simulated results are presented. The proposed HFA is simulated using a cadence virtuoso environment in a 45nm technology with supply voltage as 0.8V at 1GHz. The proposed HFA consumes a power of 1.555uw, and the delay is 36.692ns.  Layout designs are drawn for both 6T-XOR/XNOR-cell, and 1- bit HFA designs. XOR/XNOR-cells are designed based on the combination of normal CMOS-inverter and Pass Transistor Logic (PTL). Which is used in the design of high end device processors such as ALU that can be implemented for the IoT- design applications

    DESIGN AND PERFORMANCE ANALYSIS OF FULL ADDER USING 6-T XOR–XNOR CELL

    Get PDF
    In this paper, the design and simulation of a high-speed, low power 6-T XOR-XNOR circuit is carried out. Also, the design and simulation of 1-bit hybrid full adder (consisting of 16 transistors) using XOR-XNOR circuit, sum, and carry, is performed to improve the area and speed performance. Its performance is being compared with full adder designs with 20 and 18 transistors, respectively. The performance of the proposed circuits is measured by simulating them in Microwind tool using 180 and 90nm CMOS technology. The performance of the proposed circuit is measured in terms of power, delay, and PDP (Power Delay Product)

    Low-Power High-Speed Double Gate 1-bit Full Adder Cell

    Get PDF
    In this paper, we proposed an efficient full adder circuit using 16 transistors. The proposed high-speed adder circuit able to operate at very low voltage and maintain the proper output voltage swing and also balanced the power consumption and speed. Proposed design is based on CMOS mixed threshold voltage logic (MTVL) and implemented in 180nm CMOS technology). In the proposed technique the most time-consuming and power consuming XOR gates and multiplexor are designed using MTVL scheme. The maximum average power consumed by the proposed circuit is 6.94µW at 1.8V supply voltage and frequency of 500 MHz, which is less than other conventional methods. Power, delay, and area are optimized by using pass transistor logic and verified using SPICE simulation tool at desired broad frequency range. It is also observed that the proposed designs successfully utilized in many cases, especially whenever the lowest power consumption and delay are aimed

    Design and Analysis of High Speed Low Power Hybrid Adder Using Transmission Gates

    Get PDF
    Addition is the vital arithmetic operation and it acts as a base for many arithmetic operations such as multipliers, dividers, etc. A full adder acts as a basic component in complex circuits. Full adder is the essential segment in many applications such as DSP, Microcontroller, Microprocessor, etc. There exists an inevitable swap between speed and power indulgence in VLSI design systems. A new modified hybrid 1-bit full adder using TG is presented. Here, the circuit is replaced with a simple XNOR gate, which increases the speed. Due to this, transistor count gets reduced results in better optimization of area. The analysis has been carried out also for 2, 4, 8 and 16 bit and it is compared with the various techniques. The result shows a significant improvement in speed, area, power dissipation and transistor counts

    Design and Analysis of Low Run-time Leakage in a 13 Transistors Full adder in 45nm Technology

    Get PDF
    In this paper a new full adder is proposed The number of Transistors used in the proposed full adder is 13 Average leakage is 62 of conventional 28 transistor CMOS full adder The leakage power reduction results in overall power reduction The proposed full adder is evaluated by virtuoso simulation software using 45 nm technology of cadence tool

    A 2x2 Bit Multiplier Using Hybrid 13T Full Adder with Vedic Mathematics Method

    Get PDF
    Various arithmetic circuits such as multipliers require full adder (FA) as the main block for the circuit to operate. Speed and energy consumption become very vital in design consideration for a low power adder. In this paper, a 2x2 bit Vedic multiplier using hybrid full adder (HFA) with 13 transistors (13T) had been designed successfully. The design was simulated using Synopsys Custom Tools in General Purpose Design Kit (GPDK) 90 nm CMOS technology process. In this design, four AND gates and two hybrid FA (HFAs) are cascaded together and each HFA is constructed from three modules. The cascaded module is arranged in the Vedic mathematics algorithm. This algorithm satisfied the requirement of a fast multiplication operation because of the vertical and crosswise architecture from the Urdhva Triyakbyam Sutra which reduced the number of partial products compared to the conventional multiplication algorithm. With the combination of hybrid full adder and Vedic mathematics, a new combination of multiplier method with low power and low delay is produced. Performance parameters such as power consumption and delay were compared to some of the existing designs. With a 1V voltage supply, the average power consumption of the proposed multiplier was found to be 22.96 µW and a delay of 161 ps
    corecore