37 research outputs found

    Analysis of a queuing model for slotted ring networks

    Get PDF
    We study a multi-server multi-queue system which is intended to model a local area network with slotted ring protocol. Two special cases of the model are analysed and the results are used to motivate an approach to approximate mean queue lengths in the general model

    Effect of Switchover Time in Cyclically Switched Systems

    Get PDF

    Analysis of a batch-service queue with variable service capacity, correlated customer types and generally distributed class-dependent service times

    Get PDF
    Queueing models with batch service have been studied frequently, for instance in the domain of telecommunications or manufacturing. Although the batch server's capacity may be variable in practice, only a few authors have included variable capacity in their models. We analyse a batch server with multiple customer classes and a variable service capacity that depends on both the number of waiting customers and their classes. The service times are generally distributed and class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by examining the system state at embedded points, and studying the resulting Markov Chain. We first establish the joint probability generating function (pgf) of the service capacity and the number of customers left behind in the queue immediately after service initiation epochs. From this joint pgf, we extract the pgf for the number of customers in the queue and in the system respectively at service initiation epochs and departure epochs, and the pgf of the actual server capacity. Combined with additional techniques, we also obtain the pgf of the queue and system content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random customer. In the numerical experiments, we focus on the impact of correlation between the classes of consecutive customers, and on the influence of different service time distributions on the system performance. (C) 2019 Elsevier B.V. All rights reserved

    Performance modeling of virtual switching systems

    Get PDF
    International audienceVirtual switches are a key elements within the new paradigms of Software Defined Networking (SDN) and Network Function Virtualization (NFV). Unlike proprietary networking appliances, virtual switches come with a high level of flexibility in the management of their physical resources such as the number of CPU cores, their allocation to the switching function, and the capacities of the RX queues, which gives the opportunity for an efficient sizing of the system resources. We propose a model for the performance evaluation of a virtual switch. Our model resorts to servers with vacation to capture the involved interactions between queues resulting from the implemented polling strategies. The solution to the model is found using a simple fixed-point iteration and it provides estimates for customary performance metrics such as the attained throughput, the packet latency, the buffer occupancy and the packet loss rate. In the tens of explored examples, the predictions of the model were found to be accurate, thereby allowing their use for the purpose of sizing problems

    NetMod: A Design Tool for Large-Scale Heterogeneous Campus Networks

    Full text link
    The Network Modeling Tool (NetMod) uses simple analytical models to provide the designers of large interconnected local area networks with an in-depth analysis of the potential performance of these systems. This tool can be used in either a university, industrial, or governmental campus networking environment consisting of thousands of computer sites. NetMod is implemented with a combination of the easy-to-use Macintosh software packages HyperCard and Excel. The objectives of NetMod, the analytical models, and the user interface are described in detail along with its application to an actual campus-wide network.http://deepblue.lib.umich.edu/bitstream/2027.42/107971/1/citi-tr-90-1.pd
    corecore