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Abstract 

We consider a polling model with multiple servers, each of which 
visits the queues according to its own service order table. In gen- 
eral, such a model is not tractable by means of analytical tech- 
niques. In this paper, we show how the model can be analyzed 
by the power-series algorithm (PSA), a tool for the numerical 
evaluation and optimization of the performance of a broad class 
of multi-queue models. Various numerical experiments with the 
PSA are performed, providing new insights into the behavior of 
multiple-server polling systems. 
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1 INTRODUCTION 

A multiple-server polling system is a multiple-queue system attended by a 

number of servers. Like the single-server versions, multiple-server polling S ~ S -  

tems find many applications in computer systems, communication networks, 

and manufacturing environments. There are hardly any exact results known 

for these systems, apart from some mean-value results for global performance 

measures like cycle times and intervisit times. In the model considered in this 

paper, each of the servers visits the queues according to  its own service order 

table (polling table). At each of the queues, the servers follow the so-called 

Bernoulli service strategy. We show how the power-series algorithm (PSA) 
may be used to determine the joint distribution of the queue lengths and 

the positions of the servers in the system. From this joint distribution, all 

relevant performance measures, like the mean waiting times of customers 

and utilization factors of the individual servers, may be readily obtained. In 

the remainder of the introduction, we successively discuss some applications, 

present an overview of related literature, discuss the applicability of the PSA, 

summarize the contribution of the paper, and describe the organization of the 

paper. 

Applications 

An example of a multiple-server polling system is a distributed system, con- 

sisting of a number of computers, interconnected by a communication medium, 

that cooperate as follows in sharing the load offered to the system, cf. [28]. 

The jobs entering the 'front-end' systems (corresponding to the queues) are 

picked up in batches by the 'back-end' systems (corresponding to the servers) 

according to some cyclic schedule. As soon as a batch is served, the back-end 

system picks up the jobs from the next front-end system. 

Examples of multiple-server polling systems also arise in communication 

networks, like the underlying communication medium in the above-mentioned 

distributed system. Consider e.g. a local area network (LAN), consisting 

of a number of stations, interconnected by a transmission ring. There are 

various protocols known for the medium access control in a LAN with a 

ring architecture. One variant is the slotted ring, i.e., the ring is subdivided 

into time slots of the size of a single packet, circulating at constant speed. 
Occupying a slot corresponds to utilizing a server. Another medium access 

variant that may lead to multiple-server polling, is the multiple-token ring, 
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i.e., there are multiple rings, each with a token circulating on it, representing 

the right of transmission on that particular ring. Holding a token corresponds 

to utilizing a server. 

Other examples arise in manufacturing environments. In flexible manu- 

facturing systems, e.g., one finds a group of machines that periodically change 

over from one type of operations to another. In some factories, internal 

ttransport is provided by vehicles that follow a track along loading/unloading 

points, which conceptually comes very close to a slotted ring with destination 

release. A multiple-elevator facility is yet another example, although some 

features, like the acceleration effect when a floor is skipped, are not incorpo- 

rated in the classical description of a polling model, cf. [19]. 

Related literature 

Multiple-server polling systems have received remarkably little attention in 

the vast literature on polling systems. One of the first studies is Morris & 

Wang [28] in which the servers are assumed to be independent. i.e.. to visit 

the queues independently of each other, each server according to some cyclic 

schedule. They obtain the mean cycle time of each server and the mean in- 

tervisit time to a queue, and derive approximate expressions for the mean 

sojourn time for both a gated-type and a limited-type service discipline. A 
very interesting phenomenon observed in [28] is the tendency for the servers 

to cluster if they follow identical routes, especially in heavy traffic. Numeri- 

cal experiments indicate that the bunching of servers is likely to  deteriorate 

the system performance. Because the bunching of the servers seems to be 

alleviated if the servers follow different routes, Morris & Wang advocate the 

use of 'dispersive' schedules to improve the system performance. Levy, Ma- 

halal & Sidi [23] propose 'bang-bang' policies to  avoid the bunching of the 

servers. If there are two servers, for example, it is suggested to let them move 

in opposite direction along the queues, and reverse their direction when they 

collide. 

Levy & Yechiali [25] and Kao & Narayanan [21] study the joint distri- 

bution of the queue length and the number of busy servers for a Markovian 

multiple-server queue, where the servers individually go on vacation when 
there are no waiting customers left. Mitrany & Avi-Itzhak [27] and Neuts 

& Lucantoni [30] analyze the joint distribution of the queue length and the 

number of busy servers for a Markovian multiple-server queue, where servers 

break down at exponential intervals and then get repaired. 
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In references [7], [20], [22], [31], mean response time approximations are 

developed to analyze the performance of LAN's with multiple-token rings. 

Mean response time approximations oriented to LAN's with a slotted ring 

are contained in references [5], [7], [26]. 1331. Ajmone Marsan et al. [2], [3], [4] 

derive the mean cycle time and bounds for the mean waiting times in symmet- 

ric systems for the exhaustive, gated, and l-limited service discipline. In [I] 

they illustrate how PETRI-net techniques may be used to study Markovian 

multiple-server polling systems. 

Browne & Weiss [17] is one of the few studies in which the servers are 

assumed to be coupled, i.e., to visit the queues together. They obtain index- 

type rules for the visit order that minimizes the mean cycle length for both 

the exhaustive and the gated service discipline. Browne et al. [15] derive the 

mean waiting time for a completely symmetric two-queue system with an 

infinite number of coupled servers and deterministic service times. Browne 

& Kella [16] obtain the busy-period distribution for a two-queue system with 

an infinite number of coupled servers, exhaustive service, and deterministic 

service times at  one queue and general service times at  the other. Borst [12] 

explores the class of models that allow an exact queue length analysis in the 

case of coupled servers. The class in question includes most single-queue sys- 

tems, two-queue two-server systems with exhaustive service and exponential 

service times, as well as infinite-server systems with an arbitrary number of 

queues, exhaustive or gated service, and deterministic service times. 

The above-mentioned studies unanimously point out that multiple-server 

polling systems, combining the complexity of single-server polling systems 

and multiple-server systems, are extraordinarily hard to analyze. Only the 

studies [21], [25], [27], [30], considering single-queue systems, and [12], [15], 

[16], focusing on a limited class of models with coupled servers, present any 

exact distributional results. To the best of the authors' knowledge, there are 

no exact results known for models with independent servers, apart from some 

mean-value results for global performance measures like cycle times and in- 

tervisit times. 

The  power-series algorithm 

In this paper, we show how a broad class of multiple-server polling systems 

can be numerically analyzed by means of the PSA. The PSA is a numerical 

tool for the performance evaluation of a broad class of multi-queue models. 

We refer to Blanc [ll] for an extensive discussion of the applicability of the 
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PSA and various aspects of the practical implementation. The time and 
memory requirements of the PSA grow rather fast in the number of queues, 

restricting the applicability to small and moderately-sized systems. How- 
ever, the analysis of systems with a limited number of queues often reveals 

important performance aspects which also hold for large systems. Therefore, 

gaining insight into the performance of systems with a limited number of 

queues is very useful for understanding the behavior of large systems. 

As an alternative to the use of the PSA, simulation techniques might 

be applied. However, numerical experiments have shown that in many cases 

the results based on simulation are relatively inaccurate compared with nu- 

merical algorithms such as the PSA (for given bounds on the computation 

time). Blanc [9] makes a comparison of the performance of the PSA and 

Monte Carlo simulation. For a broad class of polling models, exact expres- 

sions are known for a specific weighted sum of the mean waiting times at  the 

queues, cf. [14]. Blanc compares the computed values of this quantity via the 

PSA and via simulation with the exact value. The results indicate that for 

small and moderately-sized systems, the PSA performs significantly better 

than simulation. This observation, together with the fact that  the analysis 

of systems with a limited number of queues is very useful for understanding 

the behavior of large systems, motivates the use of the PSA. 

Contribution of the paper 

The contribution of the paper is two-fold. First, it provides a method for de- 

termining detailed performance measures for the extremely complicated class 

of multiple-server polling models with independent servers. The presence of 

multiple servers requires several substantial extensions to the implementa- 

tion for single-server models as presented in [lo]. In a strict sense, the model 

considered is a special case of a model with a quasi birth-and-death (QBD) 

structure, for which the use of the PSA has been discussed in [lo]. However, 

the implementation of the present model shows how the specific structure 

can be exploited to use the PSA much more efficiently than for the general 

QBD model (see Remarks 4.2-4.3). This, in turn, indicates how the PSA can 

be efficiently used to investigate other complicated Markov models for which 

no exact closed-form results are available. 

Second, we have performed various numerical experiments with the PSA 

to gain further insight into the behavior of multiple-server polling models. 

We study the tendency for the servers to cluster and the influence of the 
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visit orders on the system performance, quantifying and expanding on the 

observations in [28]. Also, we investigate the option of partitioning the sys- 

tem into a number of separate subsystems, each attended by a single server. 

Furthermore, some comparisons are made with single-server systems carrying 

a comparable load. 

Organization of the  paper 

In Section 2, we present a detailed model description. In Section 3, we 

describe how the evolution of the system may be modeled as a continuous- 

time Markov process, and give the global balance equations for the model. In 

Section 4, the state probabilities are expressed as power series in the load of 

the system in light traffic. Then, we derive a complete computation scheme 

to determine the coefficients of these power series. The complexity of the 

PSA for the present model is discussed in Section 5. Next, in Section 6, we 

give an extensive overview of the numerical results that we gathered. Finally, 

in Section 7, we make some concluding remarks and discuss some topics for 

further research. 

2 MODEL DESCRIPTION 

Consider a model consisting of n queues Q1,. . . , Q,. each of infinite buffer 

capacity, attended by m servers S1, .  . . , S,. Customers arrive at Q, according 

to  a Poisson process with rate Xi ,  and are referred to as type-i customers, 

i = 1, .  . . , n. The service times of type-i customers are exponentially dis- 

tributed with mean Pi = l /p i ,  i = 1, .  . . , n. Each server S, visits the queues 

periodically according to  a fixed service order table rrj = ( ~ ~ ( 1 ) .  . . . , r j (Lj) ) ,  

where Lj is the (finite) length of the service order table (also referred to  as a 

polling table); that is, the I-th queue visited by Sj is ~ ~ ( ( ( 1 -  1) mod Lj) + I), 
1 = 1 , 2 , .  . ., j = 1,. . . , m .  Define IIj := { r j ( l ) ,  . . . , r j (Lj) )  to be the index 

set of the queues visited by S j ,  j = 1, . . . , m. Note that the queues are not 

necessarily visited by each of the servers. The switch-over times needed by 

the servers to move from Qi to Qk are exponentially distributed with mean 

l/vi,k, i, k = 1,. . . , n. 
The servers are assumed to  visit the queues independently of each other, 

under the restriction that at most mi servers may visit Qi simultaneously. 

Such restrictions may represent certain physical or technical constraints, for 

example, the presence of a single output port per station in communication 
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rings, cf. [I]-[4], [7], [20], [22]. An arrival of a server S:, ( j  = 1, . . . , m) at  Qi 

will be called effective if Sj finds less than mi other servers working a t  Qi 

and there are customers waiting a t  Qi (so that Sj may start serving at  Qi). 

The number of customers that is served during a visit of a server Sj ( j  = 

1, . . . , m) a t  Qi is determined by the so-called Bernoulli service discipline, 

which works as follows. If an arrival of Sj at  Qi is effective, then Sj serves 

at least one customer a t  Qi; otherwise, S:, immediately starts moving to the 

next queue. Moreover, if after a service completion of Sj at  Qi there are still 

customers waiting at  Qi, then with probability qi (0 _< qi 5 I), Sj serves 

another customer a t  Qi, i = 1,. . . , n; otherwise, Sj proceeds to the next 

queue according to its service order table. It should be noted that  in the case 

q, = 1, a server only departs from Qi (after an effective arrival at  Qi) when 

there are no waiting customers left at  Qi (exhaustive service), and that in the 

case qi = 0, a server serves a t  most one customer at  Qi during a visit to Qi 

(1-limited service), i = 1 , .  . . , n. Denote q = (ql , .  . . , 9,). 

At each queue, the queueing disciplines may be general, but may not 

depend on the actual service times. All service times, switch-over times, and 

interarrival times are assumed to be mutually independent and independent 

of the state of the system. 

We define the traffic intensity a t  Qi by 

and the total traffic intensity by 
n 

p := C pi. 
i=l 

In the PSA p will be used as a variable. Therefore, we define 

Finally some words on the stability conditions. Denote by sj the mean total 

switch-over time incurred by Sj in a cycle. Denote by kij the total number 
of visits paid to Qi by Sj  in a cycle. For m = 1, the single-server case, 

necessary and sufficient conditions are p + Xisl (1 - qt)/kil < 1, i = 1, . . . , n, 
cf. Fricker & Jai'bi [18] for a rigorous proof. For m > 1, the multiple-server 

case, the stability conditions are not generally known. Evidently, necessary 

conditions are that pi < m,, i = 1,. . . , n, and that for each set I (1,. . . , n) 
the indices i E I occur in the polling table of at  least (LC pi] + 1) servers 

i E I  

(in particular for I = (1,. . . , n) implying p < m). We conjecture that these 
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conditions are also sufficient for q, = 1, z = 1,. . . , n ,  i.e., for the exhaustive 

service discipline (as well as for other service disciplines that do not impose 

any (probabilistic) restriction on the maximum number of customers served 

during a visit). For q, < 1, when the mean maximum number of customers 

served during a visit to Q, is 1/(1 - q,), it is considerably harder to find 

the stability conditions. When m, = m, s, = s ,  k,, = 1, z = 1 , .  . . , n ,  1 = 

1 , .  . . , m, simple balancing arguments suggest that necessary and sufficient 

conditions are p+ X,s(l- q,) < m, z = 1. .  . . , n, but in other cases with q, < 1 

and m, < m, s, # s, or k,, # 1, the problem of establishing the stability 

conditions appears to be completely open. Although they are not generally 

known, throughout the paper the stability conditions are assumed to hold. 

3 THE BALANCE EQUATIONS 

In this section, we describe how the evolution of the system undei considela- 

tion may be modeled as a continuous-time Maikov process. Subsequently, we 

derive the balance equations for the Markov process in cluestion. I11 the next 

section, we show how the PSA may be used to solve these balance equations. 

We first introduce some notation. Let N,(t) be the number of customeis 

at  Q, (including customers in service) at  time t, z = 1 , .  . . , n. Denote N ( t )  = 

(Nl(t) ,  . . . , Nn(t)) .  Evidently, the joint queue length piocess {N(t ) ,  t 2 0) 

itself is not a Markov process, since the transitions also depend on the status 

of the servers. So, to extend the joint queue length process to a Malkov 
process. we need to introduce some supplementary variables describing the 

status of the servers. Let HJ(t)  be the entry in the polling table of SJ at  

time t, j = 1, . . . , m. Let Z,(t) indicate whether S, is switching (ZJ(t) = 0) 

or serving (Z,(t) = 1) at  time t ,  3 = 1, .  . . , m. So. if (H,(t), Z,(t)) = ( 1 , O ) .  

then S, is switching to queue .n; (1) at  time t: if (H,(t), 2, ( t))  = ( I ,  I ) ,  then 

S, is serving at  queue .ij (1) at  time t .  Denote H( t )  = (Hl (t), . . . , H,,, ( t ) ) ,  
Z(t) = (21 (t) ,  . . . , Z,(t)). Define the supplementary space by 0 = 01 x 0 2 ,  

where 

01 = {h = (h l . .  . . , h,) : h, E (1,. . . , L J } , j  = 1,. . . , m},  

0, = {Z = (z l , .  . . , zm) : zj E (0, I), j = 1 , .  . . , m). 

Then it is easily verified that the stochastic process {(N(t ) ,  H( t ) ,  Z( t ) ) ,  t > 0) 

is a continuous-time Markov process with state space Nn x 0, with ni := 

{0 ,1 ,2 , .  . .} denoting the natural numbers. 
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We now derive the balance equations for the process {(N(t), H( t ) ,  Z(t)),  t 2 
0). Denote by ( N , H ,  Z) stochastic variables with as joint distribution the 

joint stationary distribution of (N(t ) ,  H(t) ,  Z(t)).  For n E Nn, denote n = 

( n l , .  . . , n n )  For each state (n ,  h ,  z)  E Nn x O, denote the number of servers 

working at  Qi by 

where card(A) stands for the cardinality of the set A. The state probabilities 

are defined as follows: for (n ,  h, z)  E Nn x O, 

Because the number of servers that may be working a t  Qi simultaneously is 

bounded by m, and by ni, we have: for (n ,  h ,  z)  E Nn x O ,  

p(n,  h ,  z)  = O if there is an i such that xi(h, Z )  > min{ni, mi). (1) 

The global balance equations for the present model read as follows: for 

(n ,  h .  z)  E JV x @, with xi(h,  z)  5 min{ni, mi), i = 1 , .  . . , n, 

where IIE) stands for the indicator function of the event E, and where e j  

is the j-th unit vector, j = 1, . . . , max{n, m). The first term on the right- 

hand side of (2) indicates an arrival at  Qi; the second term indicates that Sj 

starts serving another customer at  queue .irj(hj) after a service completion 

a t  that  queue; the third term corresponds to  an effective arrival of S, a t  

queue .n;,(hj) and a subsequent service initiation at  that queue; the fourth 
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term indicates that S, proceeds to the next queue after having completed 

a service at queue 7rj(hj - 1); the fifth term indicates an arrival of Sj at 

queue 7rj(h,, - 1) which is not effective, either because there are no customers 

waiting at that queue, or because the maximum allowable number of servers 

is already working at that queue. 

In addition, the law of total probability implies 

For n > 1, the balance equations cannot be solved analytically, not even in 

the single-server case (m = 1). 

Remark 3.1 
For m = 1, the standard analysis is oriented to the stationary distribution of 

the joint queue length process embedded at polling epochs rather than the 

continuous-time Markov process. For a wide class of service disciplines, the 

joint queue length distribution a t  a polling epoch a t  Qi may then be related 

to the joint queue length distribution a t  the previous polling epoch a t  Qi. 

Subsequently, an iterative procedure yields the stationary joint queue length 

distribution at polling epochs. The marginal queue length distribution a t  Qi 

at an arbitrary epoch may then be recovered from the queue length distri- 

bution a t  Qi at a polling epoch by using results for vacation systems. As a 

major benefit, the approach allows generally distributed service and switch- 

over times. In the multiple-server case (m > I), however, the approach is not 

likely to succeed, since even a t  polling epochs, there are always m - 1 other 

ongoing service or switch-over times. Moreover, it is not clear how the joint 

queue length distribution at one embedded epoch could be related to the joint 

queue length distribution a t  another embedded epoch. Neither is it clear how 

the marginal queue length distribution at Qi a t  an arbitrary epoch could be 

recovered from the queue length distribution a t  Qi a t  a polling epoch. So, 
for m > 1, the analysis is restricted to the continuous-time Markov process. 

0 

In the next section, we show how for any number of queues and any number 

of servers the PSA may, in principle, be used to solve the set of global balance 

equations (2),  (3) numerically. 

4 COMPUTATION SCHEME 

The basic idea of the PSA is to express the state probabilities as power series 
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in the load in light traffic, and to  derive a computation scheme to calculate 

the coefficients of these power series. For the single-server case (m = I), a 

complete computation scheme to calculate the coefficients has been derived 

in [lo]. In this section, we extend this computation scheme to the substan- 

tially more intricate multiple-server case. It should perhaps be repeated that 

in the single-server case, a wide class of service disciplines allow for a com- 

plete solution by analytical techniques, whereas in the multiple-server case 

there are no viable alternatives to  the PSA available at all. 

The approach relies on the following property: for (n.  h ,  z)  E Nn x 0, 

This property can be shown to be valid under the condition that for each 

reachable n ,  n # 0 ,  there is a t  least one positive departure rate, and that 

for each reachable state (n ,  h ,  z) E Nn x O, n # 0, the probability that a 

departure occurs before any arrival takes place, after the process has entered 

this state, is positive, cf. [lo] for a more detailed discussion about this condi- 

tion. It is readily verified that this condition is satisfied in the present model. 

Based on this property, we introduce the following power-series expansions 

of the state probabilities: for (n,  h ,  z)  E W' x 0, xi(h, z) 5 min{ni, mi), 

i =  l , . . . , n ,  
03 

p(n, h ,  2) = P 
nl+ ...+ n, C p%(k;n, h , ~ ) .  

k=O 
(4) 

We now show how a computation scheme may be derived to calculate the 

coefficients b(k; n ,  h, z) of the power series. Substituting the power-series 

expansions (4) into the balance equations (2). using ai = &/p, and equating 

corresponding powers of p yields the following linear relations between the 

coefficients of the power series: for (k; n ,  h ,  z) E N1+" x O with xi(h,  z )  5 
min{ni, m,), i = 1, . . . , n, 
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By rearranging the terms on the right-hand side, the set of equations (5) 

can be rewritten as follows: for (k;  n, h, z) E n/l+n x 0, with xi(h, Z )  5 
min{ni, mi), i = l?  . . . , n ,  

where 

[l - ~ ~ ~ ( h ~ - ~ ~ ~ ~ ~ ~ , ( h , - ~ ) ( h ~ ~ ~ ~ ~ r r , ( h , - i ) ~ ]  ' { Z I = O } ' { ~ > O J '  

We will now show how the relations (6), (7) can be used to compute the coeffi- 

cients b(k: n, h, z) mainly recursively. To this end, we first define the following 

partial ordering of the vectors (k;  n, h, z), cf. [lo]: for (k: n, h, z), (k; A, h, 2) E 

Nl fn  X 0, 

(k; n, h, z) 4 (&; ii, h, 2) (8) 

Next, we extend the partial ordering < to the vectors of supplementary vari- 

ables (h, 2): for (k;  n, h, z), (k; n, h, 2) E n/'+, x 0, 
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(k; n ,  h ,  z)  + (k; n ,  h ,  i) if V j  = I , .  . . , nz : zj < 2, and 3j' : zj* < 2,. (9) 

It is readily verified that all coefficients in the right-hand side of (7) are of 

lower order w.r.t. + than (k; n ,  h , z ) ,  and hence may be considered to be 

known in (6). So, for given k, n and z, it remains to define an ordering of 

the vectors (k; n ,  h ,  z) ,  h E For given z E e2, we partition the index set 

{I, .  . . , m) into the following two subsets (corresponding to the collections of 

switching and serving servers, respectively): 

Now, in order to derive an ordering for the vectors (k;  n, h ,  z ) ,  h E el, for 

given values of k, n ,  and z, it should be noted that the right-hand side of (6) 

suggests to partition the index set c(')(z) (for fixed n ,  h ,  and z) into the 

following two subsets: 

~ f ) ( n ,  h ,  z) := {j E d O ) ( z )  : xi(h, z)  = rnin{ni, 772,) for all i: E II,). 

i.e., the set of switching servers that cannot start serving a t  a queue as long 

as neither arrivals nor service completions occur; and 

i.e., the set of switching servers that can start serving at a queue (namely 

Q,:), even before either an arrival, or a service completion, or a switch-over 

completion of another server occurs. 

We now distinguish, for given k ,  n ,  z,  and hj (j E d l ) ( z ) ) ,  between two 
(0) cases: (i) CA ( n ,  h, z)  = 0, and (ii) ~ f )  (n,  h ,  Z) # 0. 

Case (t). ~ f ) ( n ,  h ,  z) = 0 (for given k, n ,  Z,  and h, ( J  E d l ) ( z ) ) ) .  

We show how a recursive computation scheme for the coefficients b(k; n ,  h .  z). 

h E 01, with i, = h,  (j  E d l ) ( z ) ) ,  can be obtained in this case. Florn 

~ f ' ( n ,  h, z) = 0 it follows that there exists an h* E 01, with h; = h, (j E 

C(')(z)), such that for any J E C(O)(Z) there exists an z* E I I ,  (namely z* = 

T, (h,* - 1)) for which x,* (h*, z) = x,. (h ,  z) < min{n,*, m,.). Then the first 

term at the right-hand side of (6) vanishes, so that b(k; n ,  h*, z) is expressed 

in terms of lower order w.r.t. 4 only, cf. (8)-(9). The coefficient b(k; n ,  h*, z)  

will be used as starting point for a recursive computation of the coefficients 

b(k; n ,  h, z) ,  h E 8 1 ,  with 4 = h, = hi ( j  E d l ) ( z ) ) .  To this end, we define 
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the following ordering of the vectors (k; n ,  h ,  z): for (k; n ,  h', z) ,  (k; n, h", Z) E 

Nlfn x O (with hi = hy = hJ = hj, j E C(')(Z)), 

(k; n ,  ht ,  Z) < (k; n ,  h", z) (10) 

if V j  3 @)(n, h ,  z) : (hi - h;) mod Lj  < (hy - h;) mod Lj, 

and 3j*  E @)(n, h ,  z)  : (hi. - h;.) mod Lj* < (h: - h;.) mod Lp .  

To interpret this ordering, note that (10) holds if and only if for all j E 

~ t ) ( n ,  h ,  z) ,  the number of entries the server has to  pass to reach entry h;, 
starting at entry hj, is smaller than or equal to the number of entries the 

server has to pass to reach entry h(: (with strict inequality for at least one 

j* E ~ t ) ( n ,  h ,  z). 

As an illustration of the ordering defined in ( lo) ,  consider the following 

parameters: m = 4, L1 = 3, L2 = 2, L3 = 3, L4 = 2 and z = (1,0,0,1).  

Then we have c(')(z) = {2,3), d l )  (z) = {1,4). If hl = 2, h4 = 1, and 

h* = (2,2,2,  I) ,  then the vectors h E 01, with given hl = h;, h4 = hi, are 

ranked in increasing order as first (2,2,2,  I ) ,  then (2,2,3,  I ) ,  (2,1,2,  I), then 

(2,2, 1, 1). (2, 1,3. I ) ,  and finally (2, 1, 1 , l ) .  

Case (ii). @)(n,  h ,  z)  # 0 (for given k, n, z,  and hj  ( j  E c(')(z))). 

In this case, the first term at the right-hand side of (6) does not vanish, 

so that the coefficients b(k; n ,  h ,  z), h E 01, with Lj = hj ( j  E d l ) ( z ) ) ,  

cannot be calculated recursively from (6) and (7). By definition, for each j E 

~ t ) ( n ,  h ,  z) there exist an i* E nj and an h; E { I , .  . . , Lj} with i* = ~ ( h *  3 - 

I), for which xi* (h ,  z)  < min{ni*, mi*). Hence, the coefficients b(k; n ,  h ,  z), 

h 3 01, with hj  = hi ( j  E c(')(z)) and % = h; ( j  E C!)(n, h , z ) ) ,  can 

be computed by solving the set of JJ Lj linear equations induced 
j € ~ T ' ( n , h , z )  

by (6). Then, the n Lj coefficients b(k; n ,  h ,  z), h E el, with Lj  = 
j€@)(n,h,z) 

h,j ( j  3 d l ) ( z ) ) ,  can be computed by solving the set of equations (6) for 

the coefficients b(k; n ,  h ,  z), h E 01, with hj  = hj ( j  E d l ) ( z ) ) ,  h j  = L j  
(0) ( j  E CB (n ,  h ,  z))  in increasing order of the values of the combinations Lj  

( j  t c g ) ( n ,  h ,  z))  w.r.t. the partial ordering defined in ( lo),  starting with 
hj  = h* ( j  E c(') 

3 (n ,  h ,  z)). We refer to Remark 4.2 for a more intuitive 
characterization of whether or not (6) is recursively solvable. 

The same conditions that guarantee that (4) holds, also guarantee that 
these sets possess a unique solution, cf. [lo], except for the case n = 0. So the 
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only states that need further attention are the states with n = 0 (and hence, 

z = 0 ,  cf. (1)). I11 this case, the set of equations (6) reads: for (k; h )  E N x  01, 

One may verify by summing the equations (11) over h ,  h E 0 1 ,  that these sets 

of equations are dependent sets of equations for the coefficients b(k; 0, h ,  0),  

h E el, for each k = 0 , 1 , .  . .. (To this end, it should be noted that a neces- 

sary balance between the empty states (i.e. with n = 0) and the states with 

exactly one customer in the system (i.e. n = ej ,  j = 1, . . . , n)  implies that 

C y(k; 0 ,  h ,  0) = 0, for k = 0, 1,. . .. See also [lo], equation (2.8).) How- 
he01 
ever, the law of total probability (3) (together with (4)) yields the following 

additional equation: for k = 0 , 1 , .  . ., 

C b(k; 0, h ,  0) = Y (k), 
h€Ol 

where Y(0) := 1 and for k = 1 , 2 , .  . ., 

Note that the right-hand side of (13) contains only coefficients of lower order 

w.r.t. -: than (k; 0, h ,  z), cf. (8). Now, all but one of the equations in (11) to- 

gether with either (12) or (13) uniquely determine the coefficients b(k; 0,  h ,  o), 
h E el, for k = 0 , 1 , .  . ., provided the Markov process {(N(t), H(t ) ,  Z(t)), t > 
0), conditioned on N(t) = 0 and Z(t) = 0, is irreducible. This condition is 

satisfied when in the case A, = 0 (i = 1 , .  . . , n)  each state (0, h ,  0), h E el, 
can be reached from any other state (0, h ,  O),  h E el, i.e., the (conditioned) 

Markov process is irreducible. For the present model, this condition is satis- 

fied, because (conditioned on N( t )  = 0) the servers keep on switching along 

the queues according to their respective service order tables in a periodic way, 

independently of each other. 
In practice, the number of coefficients that can be calculated is restricted 

by the available amount of storage capacity and computation time. Here, we 

assume that the coefficients are computed up to a given power M,, of p. 

Summarizing, the coefficients for (k; n ,  h ,  z) E N1+" x O (with x,(h, Z) 5 
min{n,, m,), i = 1,. . . , n)  can be calculated according t o  the following com- 

putation scheme: 
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step 1: determine b(0; 0, h ,  0) ,  h E 01, by solving the set of equations (11) 

together with (12); 

step 2: M := 1; 

step 3: for all (k ;  n )  E n/l+, with n # 0 and with k + nl + . . . + n, = M do 

for all z E e2 (in increasing order of z w.r.t. < (cf. (8), (9))) do 

for all possible combinations of h, ( j  E d l ) ( z ) )  do 

if ~!) (n .  h ,  z) = 0 then 

determine h* as follows: 

for j E C(O)(z), 

determine i* E ll, for which x,. (h, z) < min{np, mi*). 

and determine hj such that i* = .irj(h,* - 1): 

for j E c(')(z), 

let hj = hj ;  

determine the coefficients b(k; n ,  h ,  z) ,  h E el, with A, = hj  

( j  E d l ) ( z ) ) ,  recursively in increasing order of < (cf. (10)); 

if C!)(n, h ,  z)  # 0 then 

determine h,* ( j  E G'!)(n, h, z))  as follows: 

determine i* E IIj for which xi.(h, z) < min{n,*, m,.), 
and determine h,* such that i* = .rr,(h,* - 1); 

compute the coefficients b(k; n .  h, z) ,  h E 01, 

with hj = hj ( j  E d l ) ( z ) ) ,  by successively solving the set 

of linear equations (6) for hj = L j  ( j  E ~ t ) ( n ,  h, z))  
in increasing order of the combinations k j  ( j  E ~ t ) ( n ,  h, z))  

w.r.t. (10) (starting with hj = h; ( j  E C!)(n, h ,  z))) :  

step 4: determine b(M; 0, h ,  0 ) ,  h E el, by solving the set of equations (11) 

together with (12) and (13); 

step 5: M := M + 1; 

step 6: if M < Mm, then return to step 3; otherwise STOP. 

This computation scheme allows the calculation of the state probabilities up 

to, in principle, any level of accuracy. Once the coefficients of the power series 

have been obtained (up to some power of p) ,  the expectation of an arbitrary 

function g (N,  H, Z) of the state probabilities can be expressed in terms of 

these coefficients as 

Remark 4.1 

The assunlption of exponentially distributed service and switch-over times 
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mainly served the ease of the presentation. The approach presented in this 

section can be easily generalized to systems with Coxian distributed service 

times and switch-over times, cf. [lo]. A Coxian distributed random vari- 

able consists of a stochastic number of not necessarily identical exponential 

phases. The class of Coxian distributions lies dense in the class of distribu- 

tion functions of non-negative random variables, cf. [6]. In the case of Coxian 

distributions for the service times and switch-over times, the supplementary 

space should be extended with variables describing the actual phases of the 

service times or the switch-over times. Similarly, Markov Arrival Processes 

(MAP'S) could be incorporated into the model, cf. [29]. It should be noted 

that Coxian distributions are preferred to more general phase-type distri- 

butions, because Coxian distributions allow for more efficient computations, 

cf. [lo], [ll]. The approach presented in this section can also be readily 

extended to multiple-server systems in which some of the switch-over times 

are negligible (i.e. vi,k = 00). In that case, some slight modifications to the 

balance equations and the computation scheme would have to be made. In 

the case that all switch-over times are negligible, the presence of a unique 

zero state simplifies the computation scheme, cf. [8] for single-server polling 

systems with zero switch-over times. 
0 

Remark 4.2 

In order to characterize whether or not the set of equations (6) is recursively 

solvable, let us reconsider these equations for given values of k ,  n ,  z,  and hj 
( j  E c(')(z)). That is, we consider the following information on the current 

state of the system to be known: (i) the joint queue length, (ii) whether each 

of the servers is serving or switching, and (iii) the queues (entries) at  which 
(0) the serving servers are working. Then, given this configuration, CA (n ,  h ,  Z) 

is the set of indices corresponding to those switching servers j that have 

to skip each queue that they visit, either because the maximum allowable 

number of servers is already working at  that queue (i.e. xi(h,  z)  = mi), or 

because there are no waiting customers at  that queue (i.e. xi(h;  z)  = ni). 

So, as long as neither arrivals nor service completions occur, the servers Sj 

( j  E CYi(n, h ,  z))  will keep on moving along the queues without serving any 

customers. Thus, for given k, n ,  z, and hj  ( j  E d l ) ( z ) ) ,  the set of equa- 

tions (6) is not recursively solvable if and only if one or more servers will keep 

on moving along the queues (according to their respective polling tables) as 

long as no arrivals nor service completions occur. 
0 
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Remark 4.3 

If all polling tables are surjective mappings, i.e., each queue is visited by 

each of the servers, then (for given values of k, n ,  z,  and hj  ( j  E C( ')(z)))  

either c f ) ( n ,  h , z )  = 0 (and c f ) ( n ,  h ,  z) = c(O)(z)), or c f i ( n ,  h ,  z) = 0 
(0) (and Cf)(n ,  h ,  z)  = c(')(z)). To see this, suppose CA (n, h ,  Z) = 0. Then 

there exists an i E (1,. . . , n) for which x,(h, z)  < min{ni, mi). Because each 

server visits each of the queues, for each j E d O ) ( z )  there exists an Lj  for 
(0) which r j ( h j  - 1) = i ,  so that j E CB (n ,  h ,  z). As a result, as long as neither 

arrivals nor service completions occur, either all switching servers or none of 

them will keep on moving along the queues without serving any customers. 
0 

Remark 4.4 

To determine a recursive computation scheme for calculating the coefficients 

b(k; n ,  h ,  z) ,  the corresponding vectors (k; n ,  h ,  z)  are lexicographically or- 

dered. First, the quadruples (k; n ,  h, z)  are ranked in increasing order with 

respect to the value of M := k + nl + . . . + n, according to (8). Second, for 

given k + nl + . . . + n, = M ,  the vectors (k; n ,  h ,  z)  are ordered with respect 

to (k; n )  in increasing order of the k, cf. (8); thus, the vector (k; n ,  h ,  z)  is of 

higher order than any vector of the form (k - 1; n + ej, h', z'). (The ordering 

of the vectors (k; n ,  h ,  z)  with respect to (k; n )  for given k (and M) is only 

partial. For instance, vectors of the form (k; n ,  h ,  z) and ( k ;  n + ei - ej ,  h', z') 

may be arbitrarily ordered according to (8 ) . )  Third, for given (k; n ) ,  the 

vectors (k; n ,  h ,  z), ( h ,  z) E 0, are partially ordered with respect to the sup- 

plementary variables (h ,  z)  according to (9) and (10). 

For example, consider a model with n = 2, m = 2, rrl = (1,2). rr2 = 

(1,2,2),  and ml = m2 = 2. Then 01 = { ( L l ) ,  (1,2),  (1,3), (TI) .  (2,2),  (2,3)) 
and Q2 = ((0, O) ,  (0,1), (1, O) ,  (1 , l ) ) .  The vectors (k; n ,  h ,  z)  may be com- 

puted in the following order with respect to (k; n ) :  (0,(0,0)), (0, (0,1)), (0,(1,0)), 

( l , ( O , O ) ) ,  (01(0,2)), ( O 1 ( l l l ) ) ,  (o,(2,0))l ( l , ( O , l ) ) l  ( L ( 1 , O ) ) l  (21(0.0)), (0?(0>3)), 
and so on. To illustrate the computation order for given (k; n ) ,  we consider 

the case (k; n )  = (3, ( 1 , l ) ) .  The vectors (k; n ,  h, z) ,  h ,  z E 0, may be ranked 

in increasing order with respect to z E 0 2  as (0,0), (0,1), (1,0), (1,l).  Finally, 

we obtain an ordering of the vectors (k; n ,  h ,  z) ,  h E el, for given (k; n ,  2). As 

an example, we consider the case z = ( l , O ) ,  which implies C(O)(z) = (2) and 
(0) d 1 ) ( z )  = (1). For hl = 1, we have CA (n ,  h ,  z)  = 0, i* = 2 and h* = ( 1 , l )  

or (1,3) as the basis for the recursive computation of the vectors (k; n ,  h ?  z) ,  
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Table 5.1. The maximum number of terms for given amounts of memory 

space. 

h E 01. If we take h* = (1, l), then h E (with hl = 1) may be ranked 

in increasing order as (1,1), (1,2), (1,3). Alternatively, for h* = (1,3) the 

computation order may be (1,3), (1,1), (1,2). For hl = 2, ~ r ) ( n ,  h, z) = 0, 
i* = 1, h* = (2,2), and the computation order of the pairs h E (with 

hl = 2) may be (2,2), (2,3), (2, l) .  
0 

5 COMPLEXITY 

m = 1 

m = 2 

m = 3 

m = 5  

The time and memory requirements of the PSA are known to increase ex- 

ponentially with the number of queues. In this section, we will see that the 

required amount of computation time and storage capacity also increases ex- 

ponentially with the number of servers. More precisely, one may verify that 

the total number of terms that have to be evaluated in order to compute the 

coefficients of the power series up to the M-th power of p is given by 

The first factor indicates the number of vectors (k; n) for which Ic + nl + 
. . . + n, 5 M ;  the second and third factor together indicate the size of 

the supplementary space. In practice, however, only a limited number of 

performance measures have to be evaluated (e.g. mean waiting times) rather 

than all individual state probabilities. Then, the coefficients of the power- 

series expansions of the relevant performance measures can be aggregated 

during the execution of the PSA (cf. e.g. [lo] (Section 2)), and stored in 

(relatively small) arrays, while the coefficients of the state probabilities can 

be removed as soon as they are not needed anymore in further computations. 

This approach reduces the storage requirement for the calculation of M terms 

of the power-series expansion to (cf. [8] (Section 5)): 

memory = lo6 coeff. 
n = 2  

705 

352 

175 

42 

memory = 10' coeff. 
n = 3  

98 

53 

28 

7 

n = 4  

71 

41 

23 

6 

n = 2  

2234 

1116 

557 

138 

n = 4  

39 

22 

12 

2 

n = 3  

213 

116 

63 

17 



358 VAN DER ME1 AND BORST 

As an illustration, consider a model in which all servers move along the queues 

in a strictly cyclic manner (i.e. Lj  = n, j = 1, .  . . , m).  Table 5.1 gives the 

maximum number of coefficients of the power series that can be computed 

according to (14) for given amounts of storage capacity and for various values 

of the number of servers and the number of queues. 

Table 5.1 illustrates that the number of terms of the power series that can be 

computed for a given amount of storage capacity may decrease considerably 

when the numbers of servers and queues increase. As a result, the accuracy 

of the PSA may degrade when both the number of queues and t,he number 

of servers get large. 

In general, it is not easy to give rules of thumb for the number of terms of 

the power-series expansions that are needed to achieve an 'acceptable' degree 

of accuracy. The reader is referred to [lo],  [ll] for a detailed discussion on the 

implementation of the PSA and on the accuracy of the computations with 

the PSA. The ideas given there (on improving the rate of convergence of 

the power series and on efficient storage management) usually lead to strong 

improvements in the performance of the PSA. 

The convergence generally depends on various factors such as the occu- 

pancy (load) of the system and on the 'degree of symmetry' of the system. 

If the system is fairly symmetrical, then 10 terms may suffice to give rather 

accurate results for lightly loaded systems (say plm < 0.5); if the system 

is heavily loaded (say p lm = 0.9), then 10 to 15 terms may still do well 

(applying extrapolation techniques, cf. [lo]). If the system is rather asym- 

metrical, the algorithm may converge rather slowly. If the system is lightly 

loaded, then 10 or 15 terms may still do. well, but if the system is more heav- 

ily loaded, then typically 30 or 40 (or even more) terms may be needed to 

achieve accurate results. 

6 NUMERICAL RESULTS 

In this section, we give an overview of the numerical results that we gath- 

ered. We investigate the tendency for the servers to bunch together and 

the influence of the visit orders on the system performance, quantifying and 

expanding on the observations in [28]. Then, we study the option of parti- 
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Table 6.1. The coalescing effect. 

tioning the system into a number of separate subsystems, each attended by a 

single server. Finally, some comparisons are made with single-server systems 

carrying a comparable load. 

Coalesczng of the servers: znfluence of the vzszt orders 

An interesting property of multi-server polling systems is the fact that the 

servers tend to coalesce, especially in heavily-loaded systems in which the 

servers follow the same route. This phenomenon may be visualized as follows. 

A trailing server will tend to  move fast, as it only encounters recently served 

queues. whereas a leading server will tend to be slowed down by queues that 

have not been served for a while, so that  the servers tend to form bunches 

while constantly leapfrogging over one another. This explains why the visit 

orders and the system load play a role in this coalescing effect. To illustrate 

this. consider a model with the following parameters: n = 4; m = 2; a, = 

X , l p  = 0.25. p, = 1, mZ = 2. q, = 1 (i.e. exhaustive service), z = 1.. . . , n :  

v,,k = l/a for i. k = 1.. . . , n ,  with a to be specified later on; T I  = 7r2 = 

(1 ,2 ,3 ,4) .  We define the joint probability distribution of the server positions 

as follows: 

P (k l , .  . . , k,) := Pr{S, is working at  or switching to Q 4 ) ,  (15) 

for k j  = 1 , .  . . , n, j = 1, .  . . , m. Table 6.1 gives the mean waiting times at 

the queues EW1-4 (which are equal for each queue) and the server-position 

distribution P ( k l , .  . . . k,) (cf. (15)) for cr = 0.05 and for varying values of 

the offered load to the system p. 

Table 6.1 illustrates that the tendency for the servers to cluster grows as the 

traffic intensity grows. Indeed, if the system is lightly loaded. the switch- 

over times tend to predominate the lengths of the visit periods, and will thus 
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Table 6.2. Influence of the visit order. 

constantly disperse the servers over the system. In heavily-loaded systems, 

on the other hand, the visit periods will dominate the switch-over times and 

drive the servers together. 

In order to investigate the impact of the visit orders on the system perfor- 

mance, we have computed the mean waiting times at the various queues, E W ,  

(which are no longer equal for each queue when the visit orders of the servers 

are different), and the mean total amount of unfinished work in the system. 

EV, for a model with the same parameters as before, but with different visit 
orders; as before, ?rl = (1 ,2 ,3 ,4) ,  but ?r:! is varied over all possible permuta- 

tions of the index set {1,2,3,4). Note that, because of the symmetry of the 

model. there are only three non-equivalent cyclic service order combinations. 

Table 6.2 shows the results for various values of a and p; the case a = 0 

corresponds to a system with zero switch-over times, cf. also Remark 4.1. 

Using Little's law, it is easily verified that E W i  and E V  satisfy the relation- 
1 "  

ship EV = 5 piEW, + - ,li,f3i2), irrespective of the interarrival, service, 
i=1 2 i=1 

1 " 
and switch-over times. Here - C x$,(~) = p, since the service times are ex- 

2 i=1 
ponentially distributed with mean 1. 

Table 6.2 shows that the service orders may have a considerable impact on 

the individual mean waiting times. For single-server systems, similar ob- 

servations have been made by Blanc [9]. However, for single-server systems 

with exhaustive service, it is well-known that EV,  and hence also 5 piEWi, 
2 = 1  
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is completely insensitive to the service order (as long as it is strictly cyclic). 

cf. Boxma & Groenendijk [14]. Table 6.2 suggests that  in multiple-server 

systems, EV is perhaps not extremely sensitive to the service orders, but 

definitely not completely insensitive. In fact, also the individual mean wait- 

ing times appear to be more sensitive to the service orders in multiple-server 

systems. Table 6.2 shows e.g. that in a multiple-server system, even in case 

of a completely symmetric configuration, the individual mean waiting times 

depend on the service order, unlike in a single-server system. The difference 

in sensitivity may be intuitively explained as follows. In case of exhaus- 
tive service, the individual mean waiting times strongly depend on the mean 

residual intervisit time. In a single-server system, t,he intervisit time is the 

time needed for the server itself to reach the queue again. i.e., the time 

involved in passing through the complete system once, which usually only 

marginally depends on the service order. In a niult,iple-server system, t'he 

intervisit time is typically the time needed for one of the other servers to 

reach the queue again, which strongly varies with the degree of clustering a,s 

implied by the service order. Table 6.2 points out e.g. that x2 = (1.4.3.2) 

yields the best global performance (i.e. minimal EV) in all considered cases. 

Indeed, x2 = ( 1 , 4 , 3 , 2 )  is likely to minimize the degree of clustering. The 

latter observation is in line with the observation of Morris & Wang [28] t'hat 

the systenl performance can be improved when the coalescing effect is allevi- 

ated by using dispersive schedules. Note that in the case a = 0, because of 

the symmetry of the model, EV does not depend on the service orders. and 

has the same distribution as in a standard M / M / m  systenl with the same 

parameters. 

Partitioning versus non-partitioning 

When studying multiple-server polling systems, it is interesting to consider 

the option of partioning the system into a number of subsysten~s, each of 

which is served by one or more specific servers. Such a partitioning (or seg- 

mentation) seems to  be particularly beneficial if the queues are clustered, 

and the switch-over times to  move between the clusters are relatively large. 

On the other hand, when the system is partitioned into subsystems, the 

servers operating in mutually isolated clusters are not able to 'help' each 

other. Hence, it will happen from time to time that one server is idle while 

another server is still busy, so that the processing power is only partially 

used. As a result, in systems with negligible switch-over times, the anlouilt 
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Table 6.3. Effect of partitioning: mean amount of waiting work. 

0.05 

0.25 

0.50 

partitioning 

of work in the system will always be smaller in the non-partitioned system. 

To illustrate the effect of partitioning, consider the following model: n = 4; 

m = 2; a, = X , / p =  0.25, p, = 1, m, = 2, i =  1 , . . . ,  n; i f i , k  E {1 ,2 )or  

2 ,  k E {3,4) then u,,k = 1/0.05, otherwise v,,k = l/a, i,  k = 1 , .  . . ,n .  We 

compare the system performance between (i) the non-partitioned model, in 

which both servers visit each of the queues, with ?rl = .7r2 = (1,2,3,4),  and 

(ii) the partitioned model, in which S1 serves Q1 and Q:, and S2 serves Qg and 

Q4, with TI = (1.2) and x 2  = (3,4). Table 6.3 gives the mean total amount 

of waiting work in the system (which is proportional to  the mean waiting 

time of an arbitrary customer here) for various values of a and offered load p. 

for the cases q = (0,0,0,O) (i.e. 1-limited service) and q = (1,1,1,1) (i.e. ex- 

haustive service). 

Table 6.3 confirms the conjecture that when the switch-over times are rela- 

tively small, partitioning will typically be disadvantageous. Moreover, it is 

illustrated that when the switch-over times become large, the loss of service 

capacity due to the switch-over times may tend to predominate the benefits 

from a non-partitioned system. Table 6.3 also suggests that whether or not 

partitioning is beneficial, generally depends on the offered load to the system. 

In fact. when the offered load increases, it may well occur (for limited-type 

service disciplines) that some queues become instable in the non-partitioned 

system, whereas in the partitioned system all queues remain stable. 

Comparisons with single-server systems carrying a comparable load 

When investigating the performance of multiple-server polling systems, it is 

interesting to make comparisons with single-server systems with a comparable 
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Table 6.4. Two servers versus a single server with two fold processing rate: 

mean waiting time and mean sojourn time of an arbitrary customer. 

load. To this end, we first compare the performance of a multiple-server 

polling system (with m servers) with a single-server polling system in which 

the server operates at  m-fold processing rate. Then, we will compare the 

multiple-server system with a single-server system with llm-fold arrival rates. 

Consider a multiple-server system versus a single-server system in which 

the server operates at m-fold processing rate. In the single-server case, all pro- 

cessing power is concentrated, so that the single-server system might roughly 

be viewed as a multiple-server system with extreme coalescence of the servers. 

Hence, one would expect the waiting times at  the queues to be smaller in 

the multiple-server case, because the processing power would be more ho- 

mogeneously distributed over the queues, cf. the above discussion. On the 

other hand, although the waiting times at  the queues are expected to be 

smaller in the multiple-server case, the sojourn time (i.e. waiting time plus 

service time) of a customer in the system might be smaller in the single-server 

case (especially in light traffic), because the service times are (stochastically) 

smaller. In fact, for zero switch-over times the amount of work and hence, 

in a symmetrical system, the sojourn time, is smaller in the single-server m- 

speed case than in the multiple-server case. As an illustration, we compare 

the system performance in both situations for the following model: n = 4; 

a, = A,/p = 0.25, p, = p,  m, = 2, q, = 1, i = 1,.  . . , n (i.e. exhaustive service); 

v,,k = lla, i, k = 1,. . . , n; ?rl = ?r2  = (1 ,2 ,3 ,4) .  Table 6.4 shows the mean 

waiting time, E W ,  and the mean sojourn time, E R  (= E W  + l / p ) ,  of an 

arbitrary customer for the system with two servers both processing a t  normal 

speed ( p  = I ) ,  and the system with a single server processing at  double speed 

(P = 2). 

cu 

0.01 

0.10 

0.25 

0.50 

1.00 

2 normal-speed servers 1 double-speed server 
p = 0.4 

E W  

0.06 

0.23 

0.50 

0.95 

1.84 

p = 0.4 
E R  

1.06 

1.23 

1.50 

1.95 

2.84 

p = 1.6 

E W  

0.15 

0.41 

0.84 

1.56 

3.00 

p = 1.8 

E W  

1.84 

2.37 
3.29 

4.96 

8.73 

E R  

0.65 

0.91 

1.34 

2.06 

3.50 

p = 1.6 

EW 
4.38 

5.45 

7.37 

10.95 

18.72 

E R  

2.84 

3.37 

4.29 

5.96 

9.73 

E W  

2.09 

2.85 

4.13 

6.23 

10.50 

p =  1.8 
E R  

5.38 

6.45 

8.37 

11.95 

19.72 

E R  

2.59 

3.35 

4.63 

6.75 

11.00 

EW 
4.66 

6.10 

8.30 

12.50 

20.50 

E R  

5.16 

6.60 

9.00 

13.00 

21.00 



364 VAN DER ME1 AND BORST 

Table 6.5. Single server versus two servers with doubled load: mean waiting 

time of an arbitrary customer. 

Table 6.4 shows that the mean waiting times are typically smaller in the 

multiple-server case, but that this is generally not true for the mean sojourn 

times. So in order to answer the question if the multiple-server system out- 

performs a single-server system operating a t  proportional speed, we have 

to deal with a trade-off between (i) the increase of the mean waiting time, 

and (ii) the decrease of the mean service time. The results show that  for 

small switch-over times, the decrease of the mean service times dominates 

the increase of the mean waiting times, whereas the reverse is true when the 

switch-over times are relatively large. 

We finally make a comparison of the performance of a single-server system 

with a multiple-server system (with m servers) with m-fold arrival rates. 

In general, multiple-server systems tend to outperform single-server systems 

with a proportional arrival stream, since the servers in a sense have the oppor- 

tunity to cooperate. Stoyan [32] shows e.g. that in an ordinary M/G/m sys- 

tem the mean waiting time is indeed always smaller than in an M/G/1 with 

proportional arrival rate. Although hard to prove, it is likely that in polling 

systems the situation is similar. As an illustration, consider the model with 

the following system parameters: n = 4; a, = X , l p  = 0.25, p, = 1, m, = 2. 

q, = 1 (i.e. exhaustive service), i = 1 , .  . . , n ;  v,.k = l/a, i, k = 1. .  . . . n :  

T I  = (1.2,3,4).  We have computed the mean waiting time for the single- 

server case and the two-server case (with T Z  = (1,2.3.4))  in which the arrival 

rate at  each of the queues is doubled. Note that  in the latter case, the symme- 

try of the model implies that both servers carry the same load p/2. Table 6.5 

shows the results for various values of a and offered load p. 

cu 

0.00 

0.05 

Table 6.5 confirms the conjecture that multiple-server systems lead to a better 

performance than single-server systems with proportional arrival rates. 

two servers single server 
p=1 .8  

4.26 

4.87 

p=O.4 

0.04 

0.14 

p=O.9 

9.00 

9.80 

p=0.8  

0.19 

0.31 

p=O.8 

4.00 

4.43 

p=O.2 

0.25 

0.39 

p=1.6  

1.78 

2.08 

p=O.4 

0.67 

0.84 
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7 CONCLUDING REMARKS 

We have considered a polling model with multiple servers, each of which 

visits the queues according to its own service order table. In general, such 

a model is not tractable by analytical techniques. In this paper, we have 

shown how the model can be analyzed by means of the PSA, a method for 

the numerical evaluation (and optimization) of the performance of a broad 

class of multi-queue models. Various numerical experiments with the PSA 

have been performed. We have studied the tendency of the servers to bunch 

together (cf. also [28]), and have illustrated that this negatively affects the 

system performance. We have also observed that the service orders may have 

a considerable impact on the degree of clustering, and hence on the system 

performance, as opposed to single-server systems. Furthermore, we have in- 

vestigated the option of partitioning the system into a number of subsystems. 

The latter has been shown to  be particularly beneficial when the queues are 

somewhat clustered. Also, we have made comparisons of the performance of 

a multiple-server system with m servers with the situation that (i) the system 

is attended by a single server with m-fold processing rate, and (ii) the system 

is attended by a single server, while the arrival rates at the queues are divided 

by m. These comparisons suggested that in general the mean waiting times 

tend to be smaller in the multiple-server case. 

Finally, we discuss some topics for further research. Assume that each of the 

servers visits each of the queues exactly once per cycle (but not necessarily in 

the same order), and also incurs the same switch-over time per cycle. Then 

the question arises whether or not the servers will also carry the same load. In 

the literature, it has usually been assumed that the servers indeed carry the 

same load. Based on simulation results, Morris & Wang [28] did not find any 

significant differences between the loads carried by each of the servers. We did 

not find significant differences with the aid of the PSA either. This interesting 

phenomenon is supported by the following intuitive argument. Consider a 

system with two servers. Assume that the mean switch-over time incurred 

per cycle is s for both servers. Then, from simple balancing arguments, it 

follows that the respective mean cycle times are given by ECi = s/( l  - r,), 

where ri is the load carried by Si, i = 1,2. Suppose EC1 < EC2. Then, 

because of the fact that S1 is moving around faster, S1 will visit the queues 

more frequently and hence, will find more customers to be served. The latter 
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would imply TI > r 2 ,  contradicting the initial assumption. We emphasize 

that this argument is only intuitive. It would be interesting to investigate 

this intriguing question further. 

Another interesting issue is the following. For the single-server case, Levy, 

Sidi & Boxma [24] proved that  the amount of work in the system is minimal 

in a sample-path sense when the queues are always served exhaustively. It 

is easy to construct examples showing that the latter does not hold true 

in a sample-path sense for the multiple-server case. This of course does not, 

exclude that it might still be the case in a stochastic sense. However. it miglit 

also be the case that in general it does not even hold true in a stochastic sense, 

since the clustering of servers is alleviated when the queues are served non- 

exhaustively. It would be interesting to investigate t8his monotonicity further. 

Recall that the maximum number of servers working a t  Q, simult,aneously 

is restricted by mi. Numerical experiments have suggested t,hat decreasing m, 

in general tends to deteriorate the system performance. However. the clus- 

tering of servers could probably be alleviated by restricting the maxiinurn 

number of servers working at  Qi simultaneously, so that in certain cases de- 

creasing mi could perhaps actually improve the sytem performance. This 

seems an interesting topic for further research. 
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