
Performance modeling of virtual switching systems

Guillaume Gallardo, Bruno Baynat, Thomas Begin

To cite this version:

Guillaume Gallardo, Bruno Baynat, Thomas Begin. Performance modeling of virtual switching
systems. IEEE 24th International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, MASCOTS 2016, Sep 2016, London, United Kingdom.
<hal-01387726>

HAL Id: hal-01387726

https://hal.archives-ouvertes.fr/hal-01387726

Submitted on 26 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52293433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01387726


Performance modeling of virtual switching systems
Guillaume Artero Gallardo

ENS Lyon, Université Lyon 1,
Inria, CNRS, UMR 5668 -

Lyon, France
guillaume.artero@gmail.com

Bruno Baynat
Sorbonne Université

UPMC Univ Paris 06
CNRS, LIP6 UMR 7606

Paris - France
bruno.baynat@lip6.fr

Thomas Begin
Université Lyon 1, ENS Lyon,

Inria, CNRS, UMR 5668 -
Lyon, France

DIVA Lab, University of Ottawa
Ottawa, Canada

thomas.begin@univ-lyon1.fr

Abstract—Virtual switches are a key elements within the new
paradigms of Software Defined Networking (SDN) and Network
Function Virtualization (NFV). Unlike proprietary networking
appliances, virtual switches come with a high level of flexibility
in the management of their physical resources such as the number
of CPU cores, their allocation to the switching function, and the
capacities of the RX queues, which gives the opportunity for an
efficient sizing of the system resources. We propose a model for
the performance evaluation of a virtual switch. Our model resorts
to servers with vacation to capture the involved interactions
between queues resulting from the implemented polling strategies.
The solution to the model is found using a simple fixed-point
iteration and it provides estimates for customary performance
metrics such as the attained throughput, the packet latency, the
buffer occupancy and the packet loss rate. In the tens of explored
examples, the predictions of the model were found to be accurate,
thereby allowing their use for the purpose of sizing problems.

I. INTRODUCTION

Computer networks are expected to undergo major changes
with the development of Software Defined Networking (SDN)
and Network Function Virtualization (NFV). SDN introduces a
new architecture in which a single or a small set of centralized
controller(s) replaces the control plane, formerly distributed
on each router in traditional IP networks. As for NFV, it
enables common network functions (e.g., packet forwarding,
firewall, caching) to be done via software on industry-standard
hardware (e.g., x86 architecture). The expectations generated
by combining SDN and NFV together are very high. Operators
expect considerable gain in resource management flexibility
(e.g., by dynamically re-programming their network), while
reducing their cost of operations by replacing dedicated and
proprietary appliances by standard off the shelf hardware.

Within SDN and NFV-based networks, nodes interconnecting
the links are standard physical servers, with multiple CPU
cores, running a virtual switch or virtual switch implementation.
Analogously to routers in traditional IP networks, virtual
switches are in charge of receiving, processing, switching,
and transmitting packets flowing in the network. They handle
incoming packets using a specialized library that largely
defines their internal architecture. The DPDK library [1], which
enables the processing of a packet in less than 80 CPU cycles,
is becoming a prominent framework. Despite considerable
progress, virtual switches are unlikely to be as fast their full
hardware-based counterparts, and may be viewed as a critical
spot when studying the performance of SDN/NFV networks.

However, unlike proprietary networking appliances, virtual
switches come with a high level of flexibility in the management
of their physical resources. Typically, the hypervisor running
on the physical server oversees the sharing of the available
resources among the different software hosted on this machine.
For example, if a virtual switch faces an excessive workload,
the hypervisor can allocate additional CPU cores to mitigate
the effects of contention. Conversely, in case a virtual switch
has low utilization of its allocated resource, the hypervisor
can decide to de-allocate a fraction of its CPU cores. The
de-allocated CPU cores may be turned off, thereby reducing
the server power consumption, or provisioned to another
task executed on the same physical server. Although these
strategies appear appealing, their implementations require a
method to determine on the fly the amount of resources to
(de-)allocate. From the practical standpoint, such methods
have to be computationally efficient, and ideally, with little
or virtually no effect on the virtual switch performance. A
fast analytical approach appears as a natural candidate to meet
these constraints.

In this paper, we propose an accurate analytical queueing
model to evaluate the performance of a virtual switch with
several network interface cards (NIC) and several CPU cores.
To circumvent the combinatorial growth of the state space
and avoid dealing with multi-dimensional Markov chains, the
proposed approach decouples the polling system associated
with each CPU into several queues, and resorts to servers
with vacation to capture the interactions between queues.
The vacation of the server for a given queue represents the
processing time devoted by the CPU to other queues. The
model is solved using a simple fixed-point iteration, and
provides estimates for customary performance metrics such as
the attained throughput, the packet latency, the buffer occupancy
and the packet loss rate.

The remainder of the paper is organized as follows. Section II
discusses the context of virtual switching systems and the
related state of the art. In Section III, we describe the internal
architecture of a virtual switch. Section IV develops the
proposed corresponding model and its analytical solution.
In Section V, we explore numerical results to illustrate the
accuracy and potential applications of the proposed model.
Finally, Section VI concludes this paper.



II. CONTEXT AND RELATED WORK

a) Virtual switching: Virtual switches, implemented at
the hypervisor stages, are mostly in charge of relaying data
packets between NICs, or more specifically, between ports that
may be either physical or virtual ports. There exist multiple
strategies for mapping virtual ports to input ports: bridging,
port aggregation, etc [2]. Their common objective is to provide
the virtual switch with the capability of interconnecting a
large number of virtual machines (VM) deployed on the same
physical entity. For instance, in cloud computing, data packets
may cross multiple VM located on the same machine before
being routed outside the platform. The related forwarding rules
can be programmed via standardized API such as OpenFlow
[3]. One of the most popular open source implementation of a
virtual multilayer switch supporting the OpenFlow protocol is
Open vSwitch (OvS) [4]. It can be run on top of commodity
hardware and used either in virtual or physical environments.
This led several software switching solutions to compete on the
market by proposing architectural schemes that improve the
OvS switching performance [5]. Most of them use an optimized
data-path library, such as the Intel’s DPDK [1] and Netmap
[6], that accelerates packet processing in the userspace. In
particular, these schemes use a polling scheme to minimize
scheduling and interrupt latency (see the Poll Mode Driver for
DPDK). Note that, overall, the achievable performance highly
depends on the way memory is handled within the switch [7].
OvS developpers proposed optimized caching techniques [4].
As a result, recent solutions such as CuckooSwitch, based on
DPDK, followed the trend and proposed novel hashing and
batching techniques to improve the packet throughput [8].

Several works have attempted to characterize the Open
vSwitch performance from a network perspective. Most of
them conducted measurements on an experimental testbed
to demonstrate the enhancement provided by DPDK [7].
They also measured the impact of the number of NIC, the
offered load and the packet size [8]. Other works investigated
the impact of active flow monitoring [9], that might simply
consists in sampling packets being forwarded across the virtual
switch. However, increasing the sampling rate to gain accuracy
consumes CPU resources, and in turn degrades the overall
performance.

By nature, modeling approaches are non intrusive, and
represent a nice alternative to evaluate the performance of
virtual switches. In particular, a model for estimating the packet
loss probability and the average sojourn time of OpenFlow
architectures is provided in [10]. This model assumes that all
the packets arrive at the same queue before being forwarded
accross the switch. As stated by the authors, it cannot capture
the effect of more sophisticated processing strategies such
as polling. As polling highly contributes to packet switching
acceleration, it requires a particular attention for accurately
modeling the virtual switch performance.

b) Polling models: Strategies of polling have been ex-
tensively used in computer networks and telecommunication
systems. For instance, the IEEE 802.5 Token Ring introduced in

the early 1980’s, used this scheme in its medium access method.
Nonetheless, the analysis of polling systems started even before
in the late 1950’s with the patrolling repairman model for the
British cotton industry. Reference surveys on polling models
were published in the early 1990’s by Takagi to provide a
classification of polling systems and related research advances
[11], [12]. These studies underscore that the performance of a
polling system depend, in general, on many factors including
the number and the capacity of queues, the arrival and service
rates, as well as the switch-over time (the time spent by the
server to switch from one queue to the following one).

Polling systems can be classified according to service
policies, that might be exhaustive or gated, and unlimited or
M -limited. Exhaustive: Once the server polls a given queue,
it serves the queue until its complete exhaustion, and then
it switches to the next queue. This implies that any request
arriving in a queue while the server is currently processing
another request of the same queue, will be served before the
server moves to the next queue. Gated: Unlike the exhaustive
policy, the server does not process (in the current round)
requests that may enter the queue while the server is already
serving this same queue. Additionally, for both aforementioned
policies, one can set an upper limit on the number of requests
that the server can process for a same queue before switching to
the next one. M -Limited: On each turn, the server can serve
at most M requests for each queue. As discussed hereafter in
Section III, the polling scheme implemented in a virtual switch
corresponds to a gated M -limited.

Unfortunately, the general solution to polling systems is
not known. However their analysis is no less important, and
therefore, several approximations have been developed. Tran-
Gia proposed an analytical framework for computing the
performance of a gated 1-limited polling system with non-
zero switch-over time [13]. The modeling approach consists of
solving a fixed-point problem to evaluate the state probabilities
of an embedded Markov chain. In particular, the analysis of
each involved queue is carried out at polling instants, i.e., ends
of vacation. It requires the computation of Laplace-Stieltjes
transforms as well as the use of Laplace inversion procedures
or two-moment approximation techniques. As stated by the
authors, such model is accurate only for large switch-over times
and small values of the queue capacities (less than 10 requests).
The fixed-point approach developed by Tran-Gia has then been
extended to the case of exhaustive M -limited systems in [14].
In this work, the authors leverage the techniques provided by
Lee to study M/G/1/K queues with server vacation [15], [16].
It consists in decomposing the polling system in individual
M/G/1/K queues with server vacation. Each queue is then
studied at polling instants. To reduce the amount of modeling
assumptions introduced in the previous works, a more general
framework is presented in [17]. When conducting the analysis
of each queue, it eliminates the hypothesis that the busy period,
i.e., the time the server is not in vacation, and that the vacation
time are independent. This approach relies on solving a system
of several numerical equations. However, as stated by the
author, the complexity of the involved expressions may require



to use a symbolic computation software. Broadly speaking,
most of these approaches address a different policy than that
implemented in virtual switches, and/or they involve complex
arithmetic operations such as Laplace-Stieltjes transforms that
may not scale with the number of queues or with their
capacity. In this context, a different modeling strategy based
on continuous time Markov chains has been proposed in [18].
The analysis of each queue is not conducted at particular time
instants anymore, and relies on a detailed decomposition of the
server vacation. However, solving each Markov chain cannot be
done straightforwardly and requires using numerical methods
such as successive over-relaxation (SOR) or Gauss-Seidel.

III. SYSTEM DESCRIPTION

c) Switch architecture: A virtual switch comprises several
NICs (network interface cards) that altogether provide a total
of N I/O ports. It also contains a set of C CPU cores (physical
or logical) that are in charge of processing the packets coming
from the different I/O ports. Figure 1 illustrates this internal
architecture. The use of modern NIC enables each port to
perform load balancing by spreading its incoming trafic load
among all the CPU cores. Incoming packets from a single port
are dispatched to C logical queues, one per core, also referred
to as RX queues. Each core is thus assigned to N independant
RX queues, one per port, that are processed in a polling fashion.
The way the packets are routed results from a specific hashing
function, such as the Receive Side Scaling (RSS) used in
DPDK. This technique aims at accelerating packet processing
by directing packets belonging to the same flow to the same
RX queue. In addition, to avoid synchronization issues, a given
RX queue cannot be processed by multiple CPU cores. When
a CPU core polls a specific RX queue, it only processes the
first-in-line packet before polling the following queues. Packets
are thus served in a round robin fashion. Optionally, the virtual
switch can be set in a mode in which it processes a batch of
packets from a RX queue before moving to the next RX queue.
By doing so, the number of some time-consuming system
calls is expected to be reduced. When the batch size is set
to M , the core can prefetch a maximum of M packets in
one RX queue before processing them in a run-to-completion
manner and polling the next RX queue. Note that the core
must know in advance the number of packets to poll before
starting its fetching. Hence, as detailed in Section II, such
a polling strategy corresponds to a gated M -limited policy.
Because the RX queues are logical entities, assigning the core
to a new RX queue is a straightforward operation. This simply
requires to update the memory address of a pointer, and thus
the switch-over times are negligible.

Processing a packet at least consists of reading its headers
and extracting the destination address before transferring
it to the adequate output port. The processing thread can
additionally apply some flow-specific operations such as deep
packet inspection (DPI), encryption, or QoS monitoring, taken
as examples. While all the cores may have the same clock
frequency, packets directed to different RX queues can thus
present peculiar flow characteristics that impact their processing

RX queues TX queuesCPU cores

1

2

port 1

port 2

port N

port 1

port 2

port N

Fig. 1. Internal architecture of a virtual switch with N I/O ports and C CPU
cores.

time. Once a packet is processed by a CPU core, it is
(logically) forwarded from its RX queue to a logical TX
queue associated with the appropriate destination output port.
At this stage, the packet is pending for transmission on the
next hop and does not hold any core processing resource
anymore. The remainder in processing a packet is performed by
another independant process. To achieve zero loss performance,
transmission resources and TX queue sizes are usually over-
sized. Thus, the bottleneck of a virtual switch is likely to
occur during the processing of packets in RX queues due to
the limited CPU resources1. If the system is overloaded, there
is a chance of achieving 100% CPU core utilization. As a
consequence the CPU cores cannot process the packets as
fast as required, eventually leading to buffer overflows and
packet rejections at the input ports. Predicting such behavior
can be of great interest for calibrating the parameters of the
switch, e.g., the total number C of CPU cores allocated to
the switch. We thus concentrate our efforts on evaluating the
switch performance at RX queue level.

d) System decomposition: As illustrated in Figure 1,
the general switch architecture can be decomposed in C
independant subsystems, each of them composed of one CPU
core polling N independant RX queues. Every subsystem is
identified with a distinct color in Figure 1. As a consequence
these subsystems can be studied independantly from each others.
For the sake of clarity, we now refer to such a subsytem simply
as a polling system. A given polling system j, associated with
CPU core j, j = 1, ..., C, is characterized by the capacity
of each of its assigned RX queues, denoted by K, the mean
arrival rate of packets at RX queue i, denoted by λji , as well
as the average processing time of packets stored in RX queue
i, denoted by 1/µj

i . The input parameters λji and µj
i can

be statistically estimated by measurements. In particular, the

1Given the current transfer rates of SDRAM, the accesses to the memory
are much faster than the operating speeds of NICs and CPU cores.



packet being processed

Fig. 2. Polling system associated with a given CPU core.

former can be obtained by using the aggregate packet arrival
rate at port i, referred to as Λi, plus the statistics of the hashing
functions. It follows that: Λi =

∑C
j=1 λ

j
i .

In Section IV, we describe an accurate and scalable modeling
framework to derive all performance parameters of such a
polling system: the j-th CPU core utilization rate U j , the loss
rate bji , the average sojourn time of a packet r̄ji and the buffer
occupancy q̄ji , relative to the i-th RX queue (i = 1, ..., N)
attached to the j-th CPU core (j = 1, ..., C).

e) Global system performance: Finally, characterizing
the global performance of the virtual switch consists in
aggregating the individual performance of every sub-system
(each representing the polling of a CPU core accross N queues).
For instance, the global CPU core utilization rate, denoted by
U , is simply the arithmetic mean of all core utilizations:

U =

∑C
j=1 U

j

C
(1)

Similarly, system metrics relative to a given port can be
computed by averaging the performance results of its attached
RX queues. The packet rejection probability at port i, referred
to as Bi, can be computed as:

Bi =

∑C
j=1 b

j
iλ

j
i∑C

j=1 λ
j
i

(2)

Note that the global CPU utilization and blocking probability
are performance parameters that capture and summarize the
overall level of congestion in a virtual switch, and therefore
represent metrics of direct interest for network operators.

IV. MODELING FRAMEWORK

As discussed above, throughout this section we only consider
the model associated with a given CPU core j and its N
associated RX queues. Therefore, for the sake of clarity, we
drop superscript j in all subsequent notations and equations.
Figure 2 represents the polling system associated with the
considered CPU core.

A. 1-Limited scenario

We first consider the case of a 1-Limited polling system.
Under such configuration, the considered CPU core processes,

packet ready to be processed

vacation

packet being processed

Fig. 3. Decomposition of a sub-system into N queues.

in a round-robin fashion, a single packet from each of its non
empty input RX queue.

1) Principle of the decomposition: The idea of the model
is to decompose the original polling system into a set of
independent queueing models with server vacations. This
decomposition is illustrated in Figure 3. The buffer of queue i in
the decomposed model represents the i-th RX queue associated
with the j-th considered CPU core (whose superscript j has
been dropped). The server of queue i in the decomposed
model aims at reproducing the way packets of RX queue
i are processed by the CPU core. Because the core performs a
polling on each of its input RX queue, between the processing
of two successive packets of a given queue i of the model,
there is an in-between time that corresponds to the processing
of one packet of all other non empty queues. In the model, this
time will be referred to as a vacation time. As an illustration,
in Figure 3, the server of queue N is in process, meaning that
the CPU core is currently processing a packet in RX queue N ,
and all other queues are in vacation. In this particular example,
when queue N ends its processing, it goes in vacation, the first
in line packet of queue N is put on a hold, and at the same
time queue 1 ends its vacation and start the processing of its
first in line packet. In the general case, when a given queue
i ends its processing, and when at that precise time all other
queues are empty, it skips vacation and immediately start the
processing of the next-in-line packet (if one). In our model,
we represent the likelihood of this event by a probability fi.
With a probability 1− fi, when queue i ends its processing,
it thus goes in vacation and stays unavailable for an average
time 1/αi (see Figure 3).

2) Markov chain model associated with each RX queue:
In order to derive a simple decomposed model, we make the
following Markovian assumptions. First, we assume that the
arrival of packets at the entrance of queue i follows a Poisson
process of rate λi. Then, we assume that the processing time



of one packet from queue i is exponentially distributed with
rate µi. Finally, we assume that the vacation time of queue i is
exponentially distributed with rate αi. The robustness of these
Markovian assumptions are evaluated in the next section.

Under these assumptions we can associate with each queue
i of the decomposed model, the continuous-time Markov chain
depicted in Figure 4. A state (k, P ) of this chain, k = 1...,K,
corresponds to queue i with currently k packets and the first-in-
line packet being processed (P), i.e., the CPU core is assigned
to RX queue i. A state (k,R) of this chain, k = 1...,K, also
corresponds to queue i with k packets, but with the first-in-
line packet that is not currently in process and that is ready
(R) to be processed, i.e., the CPU core is assigned to another
RX queue. State (0, E) corresponds to an empty (E) queue i
but not a full empty system, i.e., the CPU core is currently
assigned to another non empty RX queue. Finally state (0, F )
corresponds to a full (F) empty system, meaning a system
where all queues are empty and the CPU core is idle. With
this description, lower green and red states of the chain ((0, E)
and (k,R)) correspond to a queue with a server in vacation,
blue states (k, P ) to a queue with a processing service, and
the black state (0, F ) to an empty system.

From any state of this chain (except (K,P ) and (K,R)) we
can reach the state immediately on the right with some rate λi
corresponding to the arrival of a new packet in queue i. We
can exit a state (k, P ), k = 1...,K, after a processing time
of rate µi. At this instant, with some probability fi, all other
queues j 6= i are empty and the CPU core is instantaneously
reassigned to queue i, i.e., queue i does not go on vacation. In
this case the Markovian process switches to state (k − 1, P )
((0, F ) if k = 1). With a probability 1− fi, at least one of the
other queues is not empty and the server of queue i goes in
vacation. In this case the Markovian process switches to state
(k−1, R) ((0, E) if k = 1). From any state (k,R), k = 1...,K,
we can reach state (k, P ) with some rate αi corresponding to
the end of vacation of queue i. From state (0, E), we can reach
state (0, F ) with a rate γi that has to be carefully characterized.
Indeed, this transition corresponds to a system becoming fully
empty, starting from a state where queue i is empty (with no
more information about other queues except that they are not
all empty). Finally, starting from state (0, F ) corresponding
to a full empty system, we can reach state (1, P ) if the first
arriving customer enters queue i, i.e., with a rate λi, or we
can can reach state (0, E) if the first arriving customer enters
another queue j 6= i, i.e., with a rate

∑
j 6=i λj .

As a conclusion of this subsection, three parameters are
left to be estimated in order to fully characterize the Markov
chain associated with queue i, namely probability fi and rates
αi and γi. Subsection IV-A4 will provide estimates of this
missing parameters. Assuming these parameters are known, we
explain in Appendix 1 how to directly and efficiently derive
the stationary probabilities of the Markov chain.

3) Performance parameters: Conditioned by the fact that all
Markov chains (associated with all queues i = 1, ..., N ) have
been solved in stationary regime, we can derive the steady-state
performance parameters of the system as follows. First, we

can easily obtain the average number of packets in queue i
from the stationary probabilities of the chain:

q̄i =

K∑
k=1

k × (πi(k, P ) + πi(k,R)), (3)

as well as the loss rate at the entrance of queue i:

bi = πi(K,P ) + πi(K,R). (4)

The average sojourn time of an accepted packet in queue i is
obtained using Little’s law:

r̄i =
q̄i

λi(1− bi)
. (5)

In order to calculate the CPU core utilization, we first define
the global input rate and the global output rate:

λin =

N∑
i=1

λi, (6)

λout =

N∑
i=1

λi(1− bi). (7)

We can derive from these two quantities the proportion of
packets of queue i that are processed by unit of time:

pi =
λi(1− bi)
λout

, (8)

and then calculate the CPU core utilization:

U =

(
N∑
i=1

pi
µi

)
λout =

N∑
i=1

λi(1− bi)
µi

. (9)

4) Estimating the Markov chain parameters: Conditioned
by the fact that all performance parameters are known, we
can estimate the missing probabilities and transition rates of
Markov chains associated with all queues. In the following
we give the expressions of probability fi and rates αi and γi,
associated with a given queue i.

First, we can estimate fi as the probability that all other
queues (j 6= i) are empty, knowing that a packet of queue i is
being processed:

fi =
∏
j 6=i

Ej , (10)

where Ej is the probability to be in state (0, E) of Markov
chain j, knowing that it can neither be in state (0, F ) (because
the system is not totally empty) nor in any state (k, P ) (because
the CPU core is currently processing a packet of queue i):

Ej =
πj(0, E)

πj(0, E) +
∑K

k=1 πj(k,R)
. (11)

Instead of considering αi, we estimate 1/αi, the mean
vacation time conditioned by the fact that queue i goes on
vacation (i.e., that vacation of queue i is not null). Because
the mean vacation time of queue i corresponds to the mean
processing time of one packet of each non empty queue j 6= i,
we have:

1

αi
=
∑
j 6=i

1

µj
× 1− Ej

1− fi
=

1

1− fi

∑
j 6=i

1

µj
(1− Ej). (12)



1,P

1,R

2,P

2,R

K-1,P

K-1,R

K,P

K,R0,E

0,F

Fig. 4. Continuous-Time Markov Chain associated with queue i.

Finally, in order to estimate γi, namely the transition rate
between state (0, E) and state (0, F ) of Markov chain i, we
introduce in the resolution a set of new equations which state
that the stationary probability of state (0, F ) of any Markov
chain must correspond to the probability that the CPU core is
idle. We thus add the following equations: πi(0, F ) = 1− U
for all i = 1, ..., N , and by doing that, we impose that the
stationary probabilities of states (0, F ) of all Markov chains
are equal. If we use these equations together with the stationary
equation associated with state (0, F ) of Markov chain i, we
obtain:

γi =
λin(1− U)− µifiπi(1, P )

πi(0, E)
. (13)

5) Fixed-point solution: The parameters of a Markov chain
associated with a given queue i (fi, γi and αi) depend at the
same time on the stationary solution of the other Markov chains
(through relations 10 and 12) and on the CPU core utilization
U (relation 13). In turn, the CPU core utilization (as well as
all performance parameters) depends on the stationary solution
of all Markov chains (relation 9). As a result, the resolution
of the model relies on a fixed-point iterative technique that is
summarized by Algorithm 1. The main loop of the algorithm is
repeated until a given convergence criterion is reached, e.g., the
maximum relative difference of varying parameters between
two successive iterations is very small (e.g., less that 10−4).

Algorithm 1: Fixed-point iterative technique
Input : System parameters K, µi, λi for each queue i
Output : Stationary probabilities πi and performance metrics for

each queue i
Initialize πi, fi, αi and γi for each queue i;
Initialize U ;
while convergence criterion not satisfied do

foreach queue i ∈ [[1, N ]] do
Compute probability fi using Eq. 10;
Compute transition rate αi using Eq. 12;
Compute transition rate γi using Eq. 13;
Solve the Markov chain associated with queue i and
compute the stationary probabilities πi;

end
Compute server utilization rate U using Eq. 9;

end
Compute all performance metrics of interest from Eq. 3 to 9;

B. Extension to the M-Limited scenario
A simple way of providing an extension of the previous

model to the case of a M-Limited system with M > 1, consists

in keeping the same Markov chain model associated with a
single RX queue (as depicted in Figure 4), and modifying
its parameters. Indeed, from any state (k, P ), k = 1...,K,
after a processing time of rate µi, we can still either reach
state (k − 1, P ) ((0, F ) if k = 1), or reach state (k − 1, R)
((0, E) if k = 1). The first case happens either if the current
packet in process is not the last packet of a batch, or if it
is the last one but all other queues j 6= i are empty and the
CPU core is then instantaneously re-assigned to queue i (like
before). We then need to redefine the probability fi and the
vacation rate αi to take into account these two possibilities.
All remaining parameters of the Markov chain model keep the
same expression as in the case of a 1-Limited system.

V. PERFORMANCE EVALUATION

In this section, we explore a number of cases to study the
accuracy of our proposed approach for different performance
parameters. We also investigate the robustness of the Poisson
assumption for the arrival process as well as the use of an
exponential distribution for modeling the packet processing
time. Then we give an example demonstrating how, analo-
gously to the famous Erlang formulas, our model can deliver
dimensioning curves that can be used to manage the resources
of a virtual switch.

In the vast majority of explored cases, the convergence
of the fixed-point iteration involved in the solution of our
model is rapidly found, say less than several tens of iterations,
making its execution time small. We use a home-made discrete-
event simulator as comparison basis to assess the accuracy of
our approach. The simulator reproduces the behavior of a
real polling system implementing the Gated 1-Limited policy.
Each simulation is run for 5 seconds of simulated time, which
typically corresponds to several millions of packet completions,
resulting in very small confidence intervals that will not be
shown on figures.

For the sake of clarity, we consider in our examples that the
capacities of the RX queues are equally set to K = 128, and
that the dispatching function, which determines the mapping
between the packets arriving on a given port and the CPU
cores, is evenly-balanced.

A. Homogeneous CPU cores

We start with an example in which we study the performance
from the perspective of a CPU core. Let us consider a virtual
switch comprising 4 input ports served by a set of CPU cores



0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

λin (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e
(p

kt
)

q1 (Simulation)

q1 (Model)

q2 (Simulation)

q2 (Model)

q3 (Simulation)

q3 (Model)

q4 (Simulation)

q4 (Model)

(a) Average queue size.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

λin (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
lo

ck
in

g
P

ro
b

ab
ili

ty

b1 (Simulation)

b1 (Model)

b2 (Simulation)

b2 (Model)

b3 (Simulation)

b3 (Model)

b4 (Simulation)

b4 (Model)

(b) Blocking probability.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

λin (Mpps)

0

100

200

300

400

500

600

A
ve

ra
ge

S
o

jo
u

rn
T

im
e

(µ
s)

r1 (Simulation)

r1 (Model)

r2 (Simulation)

r2 (Model)

r3 (Simulation)

r3 (Model)

r4 (Simulation)

r4 (Model)

(c) Average sojourn time.

Fig. 5. Homogeneous CPU cores with N = 4 ports receiving respectively
15%, 20%, 25% and 40% of the total traffic.

whose service rates are set to 1 Mpps (million packets per
second) each. We consider that the CPU cores are homogeneous
and statistically identical. Since we assume that the dispatching
function is well-behaved, it follows that every CPU core
undergoes the same performance. Hence, we can restrict our
analysis to only one of them. The global input rate of packets
bounded to the selected CPU core, λin, is supposed to be
unevenly spread among the 4 ports as follows: 15% on port 1,
20% on port 2, 25% on port 3 and 40% on port 4. We let λin
vary from 0.5 Mpps to 2 Mpps in order to explore the whole
spectrum of possible loads.

For each level of input rate λin, we evaluate the average
queue size q̄i, the mean sojourn time (of an accepted packet) r̄i,
and the blocking probability bi, associated with each individual
port (i = 1, . . . , 4) as given by our model, and we compare
them to those delivered by simulation. The corresponding
results are shown in Figure 5. The magenta curves pertain to
the performance of port 4, which is expected to be the first
to saturate since it captures the largest fraction of incoming
packets. On the other hand, the red curves are associated to
port 1 (the last to saturate), and thus, for a same value of λin,
correspond to a lower level of load.

Figure 5(a) shows the evolution of the average queue size q̄i
as a function of the global input rate λin. While all these curves
are monotonically increasing from 0 to 128 (the capacity of
queues), they exhibit highly nonlinear behavior. As expected,
port 4 is the first to experience resource contentions as λin
nears 0.9. Conversely, the average queue size for the other
ports remains small for larger values of λin, before rapidly
increasing to a value of 128. Looking at the accuracy of the
model, we observe that the curves predicted by the model
are generally close to those delivered by the simulation. More
precisely, it appears that the largest errors occur on the most
congested port (port 4) near the tipping points. However, the
model accurately captures the saturation threshold of all ports
(including port 4), as well as the average queue size for a wide
range of loads.

We now discuss Figure 5(b) and the accuracy on the blocking
probability bi. We expect the blocking probability to increase
from 0 to 1 as the global input rate λin increases. Again,
because it receives the largest fraction of incoming packets,
port 4 (magenta curves) is the first to experience packet losses.
Overall, we observe that the model and the simulation coincide
over the whole range of considered loads.

In Figure 5(c), we consider the average sojourn time r̄i spent
by packets in each queue. Similarly to the average queue size
and the blocking probability, we observe that the mean sojourn
time of each port starts to rise at different levels of load λin.
The figure also shows that for any port, the model is able to
accurately forecast the value of the average sojourn time over
the whole spectrum of loads.

As mentioned in Section IV, the derivation of the model
relies on two Markovian assumptions. First, the arrival of
packets at a given queue is assumed to follow a Poisson process.
Then, the processing time of one packet is supposed to be
exponentially distributed. Figures 6 and 7 report the evolution of



0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

λin (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e
(p

kt
)

(erlang 4, exponential)

(exponential, erlang 4)

(exponential, exponential)

(cox., exponential)

(exponential, cox.)

Fig. 6. Homogeneous CPU cores with N = 4 ports: Evolution of the average
queue size q4 when using different distributions of the packet inter-arrival
time and packet processing time. Each data sample is associated with a couple
of distributions (inter-arrival time distrib., packet processing time distrib.).

0.8 1.0 1.2 1.4 1.6 1.8 2.0

λin (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
lo

ck
in

g
P

ro
b

ab
ili

ty

(erlang 4, exponential)

(exponential, erlang 4)

(exponential, exponential)

(cox., exponential)

(exponential, cox.)

Fig. 7. Homogeneous CPU cores with N = 4 ports: Evolution of the blocking
probability b4 when using different distributions of the packet inter-arrival
time and packet processing time. Each data sample is associated with a couple
of distributions (inter-arrival time distrib., packet processing time distrib.).

the average queue size and the blocking probability at the most
congested port, namely port 4, as a function of the global input
rate λin when we release these assumptions. In particular, we
run several simulations where we only change the distribution
of the packet inter-arrival time (the same set for every queue) as
well as the distribution of the one packet processing time. The
followed distributions are either the Erlang-4 whose squared
coefficient of variation is 1/4, the exponential or a Coxian-
2 with a squared coefficient of variation equal to 5. Figure
6 shows that such distributions affect differently the average
queue size near the tipping points. When either the packet
inter-arrival time or the packet processing time exhhibit a low
variability, the behavior of the average queue size tends to be
more steep. On the other hand, when these distributions are
replaced by more variable ones, the rise of the average queue
size usually occurs at lower levels of loads. Figure 7 then shows

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

λin (Mpps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
lo

ck
in

g
P

ro
b

ab
ili

ty

port
4

port
3

port
2

port
1

K = 8

K = 16

K = 32

K = 64

K = 128

Fig. 8. Homogeneous CPU cores with N = 4 ports: Evolution of the blocking
probabilities, b1, b2, b3 and b4, for different values of K.

that the blocking probability is almost insensitive to the selected
distribution for the service or inter-arrival times. Indeed, only
slight differences appear for loads at around 1 Mpps. Overall,
it appears that Markovian assumptions are justified for a wide
range of distributions when the size of batches is limited to 1.

Finally, we investigate the influence of the capacity K of
RX queues. Figure 8 shows the blocking probability on each
port, namely b1, b2, b3 and b4, as obtained by the model, for
queue capacities ranging from K = 8 to 128. As can be seen
on the figure, from K = 32 the capacity of RX queues has
very low impact on the blocking probability. The result is also
true for other performance parameters, highlighting that this
system parameter does not need to be carefully dimensioned
as long as it exceeds a few dozens.

B. Heterogeneous CPU cores

In our second example, we release the assumption that all the
CPU cores are identical. Instead, we consider a virtual switch
with N = 4 ports and C = 8 CPU cores, each processing at a
different speed. The service rate of the j-th core (j = 1, . . . , 8)
is set to 1+(j−1)/8 Mpps. We assume that the packet arrival
rates are identical on each port, i.e., Λ1 = Λ2 = Λ3 = Λ4

= Λin/4, where Λin is the total submitted traffic.
In this example, the performance of each CPU core are

different since they all differ. Instead of showing detailed
per port performance parameters, we chose to give in this
subsection global system performance metrics, namely the
global CPU utilization rate of the switch U (given by relation 1),
and the blocking probability obtained at each input port Bi

(relation 2). The global CPU utilization takes values between 0
and 1, and reflects the proportion of used resources among the 8
cores. The blocking probability at port i represents the fraction
of packets being dropped due to a lack of buffer space in any
of the 8 subsequent RX queues. Note that in our example,
since all Λi are equal, so do the Bi.

Figure 9 reports the evolution of the global CPU utilization
U and the blocking probability at port i, Bi, as a function of the



0 5 10 15 20

Λin (Mpps)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
lo

b
al

S
ys

te
m

P
er

fo
rm

an
ce

Bi (Simulation)

Bi (Model)

U (Simulation)

U (Model)

Fig. 9. Heterogeneous CPU cores with C = 8 cores and N = 4 ports:
Evolution of the global CPU utilization U and the blocking probability at
port i, Bi.

total submitted traffic Λin. First, we observe that U gradually
increases with increasing values of Λin until it reaches its
maximum value of 1. As for Bi, packet losses are virtually
null for levels of load Λin less than 8 Mpps. Then, losses
become more frequent, and near 20% when Λin comes close
to 15 Mpps. As shown in the Figure, the performance predicted
by our model fully coincide with those delivered by simulation.

C. Sizing the number of CPU cores

To explore the field of possible application of our model,
we study the problem of determining the right amount of
CPU cores in a virtual switch so as to meet a given QoS
criterion. We illustrate it by choosing for the QoS criterion, a
maximum tolerable delay for packet switching. For the sake
of saving space, we reconsider the virtual switch described in
Section V-A, but we let the number of CPU cores C unspecified.
For values of C ranging from 1 to 16, we run our model under
various level of loads Λin, and we calculate the mean sojourn
time spent by packets in the queue of the most congested port,
namely port 4.

Figure 10 illustrates the corresponding results. Assuming a
load of 5 Mpps, and a QoS objective set to 200 µs, it suffices
to provision 5 CPU cores to satisfy this QoS level. On the
other hand, if the maximum tolerable delay is 20 µs, then a
total of 6 CPU cores are needed to maintain the QoS level.

A similar study can be carried out for the mean queueing
size of the most congested RX queue. We see from Figure 11
that if ones assumes a load of 5 Mpps but with a QoS objective
set to 50% of buffer occupancy, 3 CPU cores are enough to
satisfy this QoS level.

Overall, these dimensioning curves, easily and quickly
obtained through our model, indicate the right amount of CPU
cores to provision to a virtual switch according to a certain
level of load, and therefore may ensure a QoS level or save
computing resources for other purposes.

5 10 15 20 25

Λin (Mpps)

0

100

200

300

400

500

600

A
ve

ra
ge

S
o

jo
u

rn
T

im
e

(µ
s)

200µs

20µs

C
=

1

C
=

2

C
=

3

C
=

4

C
=

5

C
=

6

C
=

7

C
=

8

C
=

9

C
=

10

C
=

11

C
=

12

C
=

13

C
=

14

C
=

15

C
=

16

Fig. 10. Sizing the number of CPU cores in a virtual switch according the
predicted average sojourn time.

5 10 15 20 25 30

Λin (Mpps)

0

20

40

60

80

100

120

140

A
ve

ra
ge

Q
u

eu
e

S
iz

e
(p

kt
)

100%

50%

C
=

1

C
=

2

C
=

3

C
=

4

C
=

5

C
=

6

C
=

7

C
=

8

C
=

9

C
=

10

C
=

11

C
=

12

C
=

13

C
=

14

C
=

15

C
=

16

Fig. 11. Sizing the number of CPU cores in a virtual switch according the
predicted mean queue size.

VI. CONCLUSION

This paper presents an analytical queueing model to evaluate
the performance of a virtual switch with several network
interface cards and several CPU cores. Polling systems, in
which a set of servers sequentially poll packets from a set
of queues, appears as a natural representation for modeling
the behavior of a virtual switch. However, to circumvent the
combinatorial growth of the state space associated with these
models, the proposed approach decouples the polling system
associated with each CPU into several queues, and resorts
to servers with vacation to capture the interactions between
queues. In this paper, we limited our analysis to the case in
which packets are handled sequentially, i.e., by batches of
size 1.

We carried out tens of examples to assess the accuracy
of our proposed model for various performance parameters
such as the attained throughput, the packet latency, the buffer
occupancy and the packet loss rate, that may be of interest
when sizing the resources of a virtual switch. The accuracy



of our approximation is typically very good. Additionally,
the proposed approximation is simple to implement and its
execution speed is fast. This allows us to use the model to
provide dimensioning curves analogous to the famous Erlang
curves, in order to instantaneously estimate the minimum
number of CPU core to allocate to the switch in order to
satisfy a given QoS criterion.

Future works will be devoted to extending our model to let
it handle the case of batches of arbitrary sizes. We will also
investigate the issue of automatically and efficiently discovering
the minimum number of CPU cores to meet a given QoS
criterion.

ACKOWLEDGMENT

This work is partly funded by the French ANR REFLEXION
under the “ANR-14-CE28-0019” project.

APPENDIX 1: MARKOV CHAIN SOLUTION

The continuous-time Markov chain associated with a single
queue i of the decomposition is illustrated in Figure 12 with
some cuts that will be useful in the resolution.

1,P

1,R

2,P

2,R

K-1,P

K-1,R

K,P

K,R0,E

0,F
'

K

'

Fig. 12. Continuous-Time Markov Chain associated with queue i.

If we first consider frontier equations associated with cuts
C0 and C′0, we obtain the two following stationary equations:

C0 : γiπi(0, E) + µifiπi(1, P ) = λinπi(0, F )
C′0 : µiπi(1, P ) = λi(πi(0, E) + πi(0, F ))

From these two equations, we can obtain πi(0, E) and πi(1, P )
as a function of πi(0, F ):

πi(0, E) =
πi(0, F )

γi + fiλi
(λin − fiλi) (14)

πi(1, P ) =
λi
µi

(πi(0, E) + πi(0, F )) (15)

We apply the same principle to cuts C1 and C′1:

C1 : αiπi(1, R) + µifiπi(2, P ) = λi(πi(1, P ) + πi(0, E))
C′1 : µiπi(2, P ) = λi(πi(1, P ) + πi(1, R))

giving:

πi(1, R) =
λi

αi + fiλi
[πi(0, E) + (1− fi)πi(1, P )] (16)

πi(2, P ) =
λi
µi

(πi(1, R) + πi(1, P )) (17)

We can generalize this result for all k ∈ [[2,K−1]] and obtain:

πi(k,R) =
λi

αi + fiλi
[πi(k − 1, R) + (1− fi)πi(k, P )]

(18)

πi(k + 1, P ) =
λi
µi

(πi(k, P ) + πi(k,R)) (19)

Finally, the last cut CK gives:

πi(K,R) =
λi
αi
πi(K − 1, R) (20)

Finally, all stationary probabilities of the chain have been
expressed from πi(0, F ). This last remaining unknown is of
course obtained by normalization.

REFERENCES

[1] G. Pongrácz, L. Molnár, and Z. L. Kis, “Removing roadblocks from SDN:
openflow software switch performance on intel DPDK,” in 2nd European
Workshop on Software Defined Networks, EWSDN 2013, October 10-11,
2013, 2013, pp. 62–67.

[2] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” IEEE Communications
Magazine, vol. 51, no. 11, pp. 24–31, November 2013.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner, “OpenFlow: enabling
innovation in campus networks,” Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[4] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open vSwitch,” in 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
15, May 4-6, 2015, 2015, pp. 117–130.

[5] M. Honda, F. Huici, G. Lettieri, and L. Rizzo, “mswitch: A highly-
scalable, modular software switch,” in Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, 2015,
pp. 1–1:13.

[6] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in 2012
USENIX Annual Technical Conference, June 13-15, 2012, 2012, pp.
101–112.

[7] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Performance
characteristics of virtual switching,” in 3rd IEEE International Conference
on Cloud Networking, CloudNet 2014, October 8-10, 2014, 2014, pp.
120–125.

[8] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
high performance ethernet forwarding with cuckooswitch,” in Conference
on emerging Networking Experiments and Technologies, CoNEXT ’13,
December 9-12, 2013, 2013, pp. 97–108.

[9] V. Mann, A. Vishnoi, and S. Bidkar, “Living on the edge: Monitoring
network flows at the edge in cloud data centers,” in Fifth International
Conference on Communication Systems and Networks, COMSNETS 2013,
January 7-10, 2013, 2013, pp. 1–9.

[10] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an openflow architecture,” in
23rd International Teletraffic Congress, ITC 2011, September 6-9, 2011,
2011, pp. 1–7.

[11] H. Takagi, “Queuing analysis of polling models,” ACM Computing
Surveys, vol. 20, no. 1, pp. 5–28, 1988.

[12] ——, “Analysis of finite-capacity polling systems,” Advances in Applied
Probability, vol. 3, no. 2, pp. 373–387, jun 1991.

[13] P. Tran-Gia and T. Raith, “Performance Analysis of Finite Capacity
Polling Systems with Nonexhaustive Service,” Performance Evaluation,
vol. 9, no. 1, pp. 1–16, 1988.

[14] M. Lang and M. Bosch, “Performance analysis of finite capacity
polling systems with limited-m service,” in 13rd International Teletraffic
Congress, ITC 1991, 1991, pp. 731–735.

[15] T. T. Lee, “M/G/1/N queue with vacation time and exhaustive service
discipline,” Operations Research, vol. 32, no. 4, pp. 774–784, Aug. 1984.

[16] ——, “M/G/1/N queue with vacation time and limited service discipline,”
Performance Evaluation, vol. 9, no. 3, pp. 181–190, 1989.

[17] D. Kofman, “Blocking probability, throughput and waiting time in finite
capacity polling systems,” Queueing Systems, vol. 14, no. 3-4, pp. 385–
411, 1993.

[18] A. Sohail, “Performance evaluation of a non-exhaustive polling system
with asymmetrical finite queues,” in 14th International Conference on
Computer Modelling and Simulation, 2012 UKSim, Cambridge, United
Kingdom, March 28-30, 2012, 2012, pp. 613–617.


