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Abstract

Queueing models with batch service have been studied frequently, for instance in the domain of
telecommunications or manufacturing. Although the batch server’s capacity may be variable in
practice, only a few authors have included variable capacity in their models. We analyse a batch
server with multiple customer classes and a variable service capacity that depends on both the
number of waiting customers and their classes. The service times are generally distributed and
class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by
examining the system state at embedded points, and studying the resulting Markov Chain.

We first establish the joint probability generating function (pgf) of the service capacity and the
number of customers left behind in the queue immediately after service initiation epochs. From
this joint pgf, we extract the pgf for the number of customers in the queue and in the system
respectively at service initiation epochs and departure epochs, and the pgf of the actual server
capacity. Combined with additional techniques, we also obtain the pgf of the queue and system
content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random
customer. In the numerical experiments, we focus on the impact of correlation between the classes
of consecutive customers, and on the influence of different service time distributions on the system
performance.
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1. Introduction

In a manufacturing environment, various machines may occur that are capable of processing
multiple products in a single group or batch. These machines can be modelled by a batch-service
queueing system, which differs from a multi-server system in that a newly arrived customer cannot
join a batch of which the service period has started, even if the maximum capacity of the batch5

has not been reached yet. Batch-service queueing systems are not only common in manufacturing
environments but also in transportation systems where a single vehicle can move a large number
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of items at the same time and telecommunication networks where packets are grouped into so-
called bursts before transmission in order to reduce overhead by limiting the number of headers.
The number of customers that can be grouped together either follows the general batch-service10

rule (which uses constant minimum and maximum service capacities) or varies from time to time
(in)dependently of the state of the system. In this paper, we will use a variable service capacity
that depends on the content of the queue.

Another feature we incorporate in this paper is that the server distinguishes two types of cus-
tomers and that the service time distributions depend on the type of the customers being processed.15

Customer differentiation, for instance, occurs in manufacturing where a furnace can process multi-
ple product classes with different parameters such as duration or temperature of the heating phase.
Using a batch server that allows for customer differentiation has mostly been studied in the context
of priority queueing and polling systems. These methods use a dedicated queue for each type of cus-
tomer processed by the server. However, using multiple dedicated queues or allowing for reordering20

of the customers in the queue is not always feasible, due to certain constraints such as space or
the impact of the increased complexity on the cost and reliability of the system. Another option
is to use a single queue that is shared between the classes without reordering of customers. This
results in a global FCFS service discipline. The benefit of this option is that we can guarantee a
flow throughout the queueing system since one class cannot block another class, and strict fairness25

rules since customers can not skip ahead in the queue.
In this paper, we analyse a discrete-time batch-service queueing model with two different cus-

tomer classes, with a variable service capacity that depends on the number of waiting customers and
their respective classes. Upon coming available, the single server in this system will start serving
a new batch, that contains the sequence of same-class customers at the head of the queue. This30

type of model can for instance be found in postal distribution centers where a sorter can pick items
from the front of a conveyor and sort them according to their destination area. Consecutive letters
with the same destination can be sorted simultaneously and the sorting time of such a group is only
slightly sensitive to the number of letters that are grouped together since the most significant part
of the processing time stems from moving the items to their corresponding box which is independent35

of the size of the group. This model can also model a batch process in the pacemaker loop of a
manufacturing system. The pacemaker loop is a key concept in Lean manufacturing: it is the part
of the production system closest to the customer. In the pacemaker loop, buffering is avoided as
much as possible to create a flow and, consequently, shorter lead times. However, when buffering
is needed in the pacemaker loop, for example in front of a batch process, it should be FIFO buffers40

to create a consistent flow.
We extend our previous work on batch servers with variable service capacity by including general

service time distributions, which do not have to be equal for different classes. This extension
complicates the analysis significantly by removing the memoryless property in the service process.
In addition, we include correlation, or clustering, between the classes of consecutive customers. In45

the context of a postal distribution center, for example, this feature models that letters arrive in
bags and that letters from the same bag are more likely to be addressed to the same destination
region. In the context of a batch process in a pacemaker loop, clustering follows naturally from the
scheduling of the pacemaker process, that is the first process in the loop. Customer orders during
an interval (e.g. a day) are gathered by the production control department and scheduled for the50

next interval using a so-called ’Heijunka box’.
An important point in solving the problem is to choose proper embedded points to eliminate

the need to keep track of the state of the system at the start of a service, which is required to
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know how the system transitions occur after service completion. Contrary to our previous work
on batch servers with variable capacity, we start the analysis by looking at the joint probability55

generating function (pgf) of the queue occupancy and the service capacity after service initiation
epochs. This joint pgf allows us to derive a wide range of different performance measures at different
time instances. We also include a detailed and extensive analysis of the delay of a random customer.

In the following section 2, we review the literature about batch-service queueing systems. The
discrete-time two-class queueing model with batch service is described in detail in Section 3. This60

system consists of a single First-Come-First-Served (FCFS) queue of infinite size, and a single
batch server with a variable capacity. In Section 4, we establish the system equations, from which
we deduce the stability condition, and derive a closed-form expression for the steady-state joint
pgf of the number of customers in the queue after service initiations epochs, and the number of
customers being served, which we consider to be the central result of the paper. Based on this65

result, we obtain the steady-state pgfs for the queue and system occupancy after service initiation
epochs, departure epochs, customer arrival epochs and random slot boundaries as well. We also
derive an expression for the steady-state pgf describing the number of customers in a served batch,
called the real service capacity in the remainder. We finish the analysis by studying the delay
of a random customer. Note that determining the steady-state probability distributions from the70

obtained pgfs is tedious and often inefficient and therefore usually not done since the performance
measures, such as the expected value, can easily be derived from the pgf by using the moments of
the pgf. In Section 5, we illustrate this for some specific scenarios by calculating the mean value of
the previously mentioned system properties. These results allow us to gain some insight into the
system behaviour. Finally, some conclusions and possible extensions are presented in Section 6.75

2. Literature review

Since batch servers can be used to model a wide range of applications, queueing systems with a
batch server have been studied thoroughly. In the introduction, we presented three options for the
service capacity of the batch server. The most commonly used service discipline is the general batch-
service rule where two constants are used for the minimum and maximum service capacity. These80

types of batch servers have been studied by Gupta and Sivakumar [1, 2], Tadj et al. [3], Janssen
and van Leeuwaarden [4], Arumuganathan and Jeyakumar [5], Banerjee and Gupta [6], Banerjee
et al. [7, 8], Chang and Takine [9], Chaudry and Templeton [10], Claeys et al. [11, 12, 13, 14],
Goswami et al. [15], Olbert et al. [16], Pradhan and Gupta [17], and Wang and Odoni [18].

Secondly, the number of customers that can be processed by the batch server can also be85

stochastic. Chaudry and Chang [19] analysed the number of customers in the system at different
time instances in the Geo/GY /1/N + B model, where Y denotes the stochastic service capacity,
B the maximum service capacity and N the size of the buffer. In their paper, this model was
used to model a transportation service with multiple vehicles that can have a different available
capacity. The model has been extended by Chang and Choi [20], Sikdar and Gupta [21], and Sikdar90

and Samanta [22] by considering a server that takes a vacation when a service is finished and no
customers are waiting to be processed, in order to model a broadband network using Asynchronous
Transfer Mode(ATM) technology. Yi et al. [23] published an extension of the work of Chang and
Choi [20] by using a minimum threshold before a service is initiated, i.e. by studying the queue-
length distribution of the Geo/Ga,Y /1/K model . Furthermore, Pradhan et al. [24] modelled the95

testing of blood samples for infectious diseases by considering a M/GYr /1 queue and a batch server
with a service time distribution that depends on the number of customers in the batch. Germs and
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Van Foreest [25] calculated the rejection probability of a random customer for the MX/GY /1/K+B
queue with a buffer size of K and maximum service capacity B for three different rejection policies.
The previous models study a batch service queueing system with variable service capacity that is100

independent of the number of waiting customers. The third type of batch-service queueing systems,
namely those with variable service capacity dependent on the content of the queue, have also been
studied by Germs and Van Foreest [26] where they analysed the M(n)X(n)/G(n)Y (n)/1/K + B
batch-service queueing system. In this model, the arrival rate, service time and variable service
capacity distributions depend on the number of customers waiting in the queue with finite size.105

The second main characteristic of the model considered in this paper is customer differentiation.
This has mostly been studied in the context of priority queueing or polling systems. In manufactur-
ing, Reddy et al. [27] study an industrial repair shop that repairs the most critical machines first. In
telecommunication systems, priority queueing systems have been studied by, for instance, Zhao et
al. [28] or Walraevens et al. [29]. Polling systems are also common in telecoummnications and have110

been studied by Boxma et al. [30], Dorsman et al. [31] and Fowler et al. [32]. Queueing systems
where queues are shared between different classes have been studied by, for instance, Bruneel et al.
[33, 34], Mélange et al. [35], Maertens et al. [36], Reveil et al. [37].

In our previous paper, see Baetens et al. [38], we studied the system occupancy in a simplified
model where the service times of both classes were identical to a single slot and where there was no115

correlation between the classes of consecutive customers, and in Baetens et al. [39], we analysed the
delay of customers in that model. In Baetens et al. [40], we analysed an extension of that model
by including geometrically distributed service times and customer based-correlation. The analysis
of the delay of a random customer was briefly outlined in our extended abstract, see Baetens et al.
[41]. As mentioned in the introduction, applications of the batch-service queueing system in this120

paper can be found in the pacemaker loop in Lean manufacturing which requires FIFO-buffers in
order to create a consistent flow, and a ’Heijunka box’ which introduces correlation between the
classes of consecutive customers by presorting the arrivals over short time periods. For a more
detailed explanation of these terms, we refer to Duggan [42] or Rother [43].

3. Model description125

In this paper, we consider a discrete-time two-class (called class A and B) queueing system with
an infinite queue size and a batch server whose capacity is stochastic. The batch server uses a global
FCFS service discipline, which means that newly arrived customers are added at the tail of a single
queue. When the server is idle or has finished processing a batch and finds a non-empty queue at a
slot boundary, a new service is initiated immediately. The number of customers grouped together130

in this service is determined by the length of the sequence of consecutive same-class customers at
the head of the queue. More specifically, the variable service capacity will be equal to n, if and only
if one of the following two cases occur:

• All n customers present in the queue are of the same class.

• There are more than n customers awaiting processing, and the first n customers in the queue135

are of the same class while the (n+ 1)-th customer is of the opposite class.

Since all customers in a single batch are of the same class, we define the class of a batch as the
class of the customers in the batch. We note that in theory, the server capacity can become very
large when there is a very large sequence of consecutive customers of the same type. However, in
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Lean manufacturing, one of the key principles is to keep the ”interval”, also called EPEI (Every140

Product Every Interval) low, which means smaller batches and leads to less inventory and shorter
lead times, see Duggan [42] or Rother [43]. Hence, in practice, the server capacity will mainly be
limited by the batch size.

We model the aggregated numbers of customer arrivals in consecutive slots by a sequence of
independent and identically distributed (i.i.d.) random variables. These random variables follow a
general distribution with common probability mass function (pmf) e(n) and pgf E(z). The mean
number of customers that arrive in a single slot is denoted as λ. The classes of consecutive customers
within the aggregated arrival stream are governed by an irreducible time-homogeneous two-state
Markov chain {ζj ; j ≥ 1} with transition probabilities

α := Pr[ζj+1 = A|ζj = A] , β := Pr[ζj+1 = B|ζj = B] .

The steady-state probabilities of this Markov chain readily follow from elementary theory of Markov
chains (see e.g. Ross [44], Chapter 4):

lim
j→∞

Pr[ζj = A] =
1− β

2− α− β
, lim

j→∞
Pr[ζj = B] =

1− α
2− α− β

.

The service time of a batch of customers only depends on the class of the batch and not on the
service capacity. Given that class, the service time is generally distributed and independent of the145

capacity of the server, the classes of previous batches and previous service times. The service time
of a batch of class A (B) is characterized by the pmf sA(n) (sB(n)) and the pgf SA(z) (SB(z)).

4. Analysis

In this section, we first determine the system equations that govern the system behaviour. The
key is to select proper embedded epochs on which a Markov Chain can be defined that has the150

lowest possible dimension while still enabling us to derive a wide range of performance values.
As we will explain in detail in Section 4.1, we select the epochs immediately after service

initiation epochs and keep track of the number of customers in service, the number of customers
left behind in the queue, and the class of the batch in service. Then we analyse the conditions for
stability, and we establish the steady-state joint pgf of the queue occupancy, that is the number of155

customers waiting in the buffer, after initiation of a service, and the number of customers in the
batch being served. Based on that result, we derive the steady-state pgfs for the queue occupancy
after service initiation, service departure and at random slot boundaries. Next, we deduce the
steady-state pgfs for the sizes of the served batches, and the system occupancy, that is the total
number of customers in the system, after service initiation, after service departure, and at random160

slot boundaries.

4.1. System equations

In this subsection we establish the equations that capture the behaviour of the system at con-
secutive service initiation epochs. A batch consists of all consecutive same-class customers that are
at the head of the queue at the time of its service initiation. The queue occupancy after service165

initiation of the k-th batch is denoted by qk. We also denote the class of the k-th batch in service
by tk.
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First, we examine tk+1. Let us distinguish between qk > 0 and qk = 0. If qk > 0, the first
customer left behind, that is the customer that becomes the head of the queue immediately after
the k-th service is initiated, is of the opposite class as the batch in service, because otherwise it170

would also have been taken for service. Hence, if qk > 0, the (k+1)-th batch is of the opposite class
as the k-th batch. On the other hand, when qk = 0, all customers have been taken into service and
the class of the next customer is determined by the transition probabilities α and β. Summarized,
we have

tk+1 =



6= tk if qk > 0

A with probability α if tk = A and qk = 0

B with probability (1− α) if tk = A and qk = 0

B with probability β if tk = B and qk = 0

A with probability (1− β) if tk = B and qk = 0 .

(1)

Second, we examine qk+1 and again consider two cases. The first case is depicted in Fig. 1 and175

shows the situation when the queue contains at least one customer at the end of the k-th service,
that is qk + êk > 0 with êk the number of customers that arrive during the service time of the k-th
batch. In this case, the (k + 1)-th service starts immediately after the k-th service has ended. The
situation when the queue is empty at the end of the k-th service is depicted in Fig. 2. In this case,
the server is idle until there is at least one arrival in a slot. We also define ẽk as the number of180

arrivals in the slot before initiation of the k-th service, given that there is at least one arrival. We
then obtain the following equations:

qk+1 =

{
(qk + êk − ck+1)+ if qk + êk > 0

(ẽk+1 − ck+1)+ else ,
(2)

qk

tk

qk+1

tk+1

êk   
ck 

Service batch k Service batch k+1

êk+1  
ck+1 

Figure 1: Relationship between qk and qk+1 if qk + êk > 0

where (. . .)+ := max(0, . . .) and ck is the theoretical capacity of the k-th service. The real capacity
is the actual number of customers that are served in the k-th batch, while the theoretical capacity
is the number of customers that would belong to this batch if an unlimited number of customers
were available. The real service capacity can be derived from the theoretical capacity by taking
the minimum of the theoretic service capacity and the number of customers in the queue before
service initiation. Therefore, the theoretical service capacity is an upper bound for the real service
capacity. The benefit of working with the theoretical service capacity is that it only depends
on the type of the service, and not on the queue occupancy before service initiation. The pmf
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êk 

ck qk

tk

qk+1

tk+1

Service batch k Service batch k+1

êk+1 

ck+1 

Idle

ẽk  

Figure 2: Relationship between qk and qk+1 if qk + êk = 0.

of the theoretical service capacity is Pr[ck = n|tk = A] = (1 − α)αn−1 in case of a class A
batch or Pr[ck = n|tk = B] = (1 − β)βn−1 for a class B batch, with mean values of 1/(1 − α)
and 1/(1 − β) respectively. These conditional distributions of the theoretical capacity correspond
to shifted geometric distributions, which possess the memoryless property. When ck exceeds the
number of waiting customers , then the real service capacity follows a shifted geometric distribution
truncated by the number of waiting customers before service initiation. In Eq. 2, we also used the
random variable ẽk. The pmf ẽ(n) and pgf Ẽ(z) of this random variable are given by

ẽ(n) = lim
k→∞

Pr[ẽk = n] =
e(n)
∞∑
i=1

e(n)
=

e(n)

1− e(0)

Ẽ(z) =

∞∑
i=1

ẽ(n)zn =
E(z)− E(0)

1− E(0)
.

Using the theoretical capacity instead of the real capacity is not a trivial step in the analysis.
This simplifies the analysis by eliminating the dependency between the size of the batch being pro-
cessed and the number of customers in the queue before service initiation. We can eliminate this185

dependency because the only difference occurs when the queue would be empty after service initi-
ation. When the theoretical capacity is larger than the queue occupancy before service initiation,
this means that the queue is empty after service initiation.

From Eqs. 1 and 2, it follows that {(qk, tk), k ≥ 0} is a first-order 2-D Markov chain where
qk and tk correspond respectively to the queue occupancy and class of the ongoing batch after190

initiation of the k-th service. Without significantly increasing the complexity of the analysis, we
can add the number of customers in the ongoing batch to the Markov Chain, which allows us to
obtain the pgf of a wide range of performance values.

4.2. Stability condition

Bruneel and Kim [45] have shown that the system will be stable when the mean number of
arrivals in a certain time period is less than the mean number of customers that can be processed in
the same time period. This method for calculating the stability condition has also been studied and
rigorously proven by Baccelli and Foss [46] This approach has also been used by, for instance, Kuehn
[47], Foss et al. [48], and Kim and De Veciana [49]. In a saturated system, i.e. a system where
there are always many customers present, the server of the system is always active and alternates
between serving a class A and a class B batch, whose sizes are equal to the respective theoretical
capacities. Let us therefore examine an AB-period, which starts at the service initiation of a class
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A batch and ends at the service completion of the following class B batch. The mean amount of
work that can leave the system is given by the sum of the average capacities of a class A and B
batch, leading to the following stability condition:

λ(S′A(1) + S′B(1)) <
1

1− α
+

1

1− β
, (3)

where the left-hand side corresponds to the mean number of arrivals in an AB-period, and the195

right-hand side to the sum of the expected length of a class A and B batch in a saturated system,
which is equal to the number of customers leaving the system during an AB-period. If either α or
β equals 1, then the stability condition is reduced to λ <∞, i.e., the system is always stable. This
is as expected, since in this case all customers are of the same class, which means that no matter
how many customers arrive, the queue will always be empty after service initiation epochs. Also,200

any increase in α and β leads on average to larger batches for the corresponding class and a larger
maximum tolerable arrival rate λ.

Since α and β both merely capture the class clustering (the tendency of same-class customers to
arrive back-to-back) of a single class, the combined level of class clustering is not easily quantifiable
with these parameters. By introducing the parameters σ and τ we can define the arrival process rel-
ative to a process without correlation between the classes of consecutive customers. The parameter
σ = 1−β

2−α−β is defined as the probability that a random customer is of class A, and τ = 1−σ
1−α = σ

1−β
as the ratio of the average size of a class-A (or B) batch, relative to the average size of a class-A (or
B) batch in case of uncorrelated customer classes (i.e., each customer is of class A with probability
σ, independent of the class of other customers). The global level of class clustering is thus captured
by the value of τ , and τ = 1 implies that the consecutive customer classes form an uncorrelated
process. The stability condition can now be written as

λ <
τ

σ(1− σ)

1

(S′A(1) + S′B(1))
=

τK

S′A(1) + S′B(1)
. (4)

In this condition, we defined K = 1
σ + 1

1−σ = 1
σ(1−σ) as the sum (or product) of the average

capacity provided that there is no class clustering in the system. The variable K ∈ [4,+∞[ gives
an indication of the symmetry in the arrival process without correlation. The system is symmetric205

when K = 4 and higher values of K lead to more asymmetric systems. Based on Eq. 4, we can
easily see that the maximum number of customers that the system can process is linear in τ (global
level of class clustering) and K (global level of asymmetry in the customer classes).

4.3. Joint generating function

Assuming the stability condition is met, we can characterize the state of the system just after
service initiation epochs by the type of the batch to be served, the number of customers left behind
in the queue and the number of customers being served. Analysing the system after service initiation
epochs avoids having to keep track of the residual service time, resulting in a reduced complexity.
Using ĉk as the number of customers being served (the real capacity), we can define the steady-state
joint probabilities for the Markov chain {(tk, qk, ĉk), k ≥ 0} as

pA(i, j) := lim
k→+∞

Pr[tk = A, qk = i, ĉk = j] , pB(i, j) := lim
k→+∞

Pr[tk = B, qk = i, ĉk = j] ,
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for all i, j ≥ 0, with corresponding partial pgfs PA(z, x) and PB(z, x). The marginal steady-state
pmf after service initiation epochs is then given by

p(i, j) := lim
k→+∞

Pr[qk = i, ĉk = j] = pA(i, j) + pB(i, j) ,

with pgf

P (z, x) :=
∑
i,j≥0

p(i, j)zixj = PA(z, x) + PB(z, x) .

We also define the steady-state probabilities for the 2-dimensional Markov chain {(tk, qk), k ≥ 0}
as

qA(i) := lim
k→+∞

Pr[tk = A, qk = i] =

∞∑
j=0

pA(i, j) ,

qB(i) := lim
k→+∞

Pr[tk = B, qk = i] =

∞∑
j=0

pB(i, j) ,

for all i ≥ 0, with corresponding partial pgfs QA(z) and QB(z).210

Due to symmetry between class A and B, we only present the approach to obtain pA(i, j) and
PA(z, x). The expressions for class B are obtained similarly. Using Eq. 1, we obtain, ∀k, l ≥ 0

pA(m, l) = lim
k→∞

Pr[tk+1 = A, qk+1 = m, ĉk+1 = l]

=

∞∑
i=0

lim
k→∞

Pr[tk = A, qk = i]Pr[tk+1 = A, qk+1 = m, ĉk+1 = l|tk = A, qk = i]

+

∞∑
i=0

lim
k→∞

Pr[tk = B, qk = i]Pr[tk+1 = A, qk+1 = m, ĉk+1 = l|tk = B, qk = i]

=α lim
k→∞

qA(0)Pr[qk+1 = m, ĉk+1 = l|tk+1 = A, tk = A, qk = 0]

+ (1− β) lim
k→∞

qB(0)Pr[qk+1 = m, ĉk+1 = l|tk+1 = A, tk = B, qk = 0]

+

∞∑
i=1

lim
k→∞

qB(i)Pr[qk+1 = m, ĉk+1 = l|tk+1 = A, tk = B, qk = i] . (5)

Taking the 2-D Z-transform of Eq. 5 yields

PA(z, x) =αqA(0) lim
k→∞

E[zqk+1xĉk+1 |tk+1 = A, tk = A, qk = 0]

+ (1− β)qB(0) lim
k→∞

E[zqk+1xĉk+1 |tk+1 = A, tk = B, qk = 0]

+

∞∑
i=1

lim
k→∞

qB(i)E[zqk+1xĉk+1 |tk+1 = A, tk = B, qk = i] . (6)

This can be further reduced by using Eq. 2 for qk+1. The number of customers being served in
the (k + 1)-th batch (ĉk+1) is the minimum of the theoretical capacity (ck+1) and the number of
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customers in the queue before service initiation. We illustrate our approach for the third term in the
right-hand side of the previous expression. The other terms can be found analogously. Invoking the
property that ck+1 is conditionally independent of êk and qk given tk, and that êk is conditionally
independent of qk and tk, leads to

∞∑
i=1

lim
k→∞

qB(i)E[zqk+1xĉk+1 |tk+1 = A, tk = B, qk = i]

=

∞∑
i=1

lim
k→∞

qB(i)E[z(i+êk−ck+1)
+

xmin(i+êk,ck+1)|tk+1 = A, tk = B]

=

∞∑
i=1

qB(i)

∞∑
e=0

Pr[êk = e|tk = B]
( i+e∑
n=1

Pr[ck+1 = n|tk+1 = A]zi+e−nxn

+

∞∑
n=i+e+1

Pr[ck+1 = n|tk+1 = A]xi+e
)
.

Since the theoretical capacity of a class A batch follows a geometric distribution with parameter α,
working out the innermost sums results in

∞∑
i=1

lim
k→∞

qB(i)E[zqk+1xĉk+1 |tk+1 = A, tk = B, qk = i]

=

∞∑
i=1

qB(i)

∞∑
e=0

Pr[êk = e|tk = B]
( (1− α)x

αx− z
((αx)i+e − zi+e) + (αx)i+e

)
.

Using the definitions of PB(z, x), SB(z) and E(z) leads to

∞∑
i=1

lim
k→∞

qB(i)E[zqk+1xĉk+1 |tk+1 = A, tk = B, qk = i]

=
x− z
αx− z

SB(E(αx))PB(αx, 1)− (1− α)x

αx− z
SB(E(z))PB(z, 1)

− qB(0)
( x− z
αx− z

SB(E(αx))− (1− α)x

αx− z
SB(E(z))

)
.

Combining the three terms that result from the above derivations yields for Eq. 6, after some
calculations,

PA(z, x) =αqA(0)

(
SA(E(0))

( x− z
αx− z

E(αx)− E(0)

1− E(0)
− (1− α)x

αx− z
E(z)− E(0)

1− E(0)
− 1
)

+
x− z
αx− z

SA(E(αx))− (1− α)x

αx− z
SA(E(z))

)
+ qB(0)

(
SB(E(0))

( (1− β)(x− z)
αx− z

E(αx)− E(0)

1− E(0)
− (1− α)(1− β)x

αx− z
E(z)− E(0)

1− E(0)

− (1− β)
)
− β x− z

αx− z
SB(E(αx)) + β

(1− α)x

αx− z
SB(E(z))

)
+

x− z
αx− z

SB(E(αx))PB(αx, 1)− (1− α)x

αx− z
SB(E(z))PB(z, 1) . (7)
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A similar analysis leads to the symmetric equation for class B:

PB(z, x) =βqB(0)

(
SB(E(0))

( x− z
βx− z

E(βx)− E(0)

1− E(0)
− (1− β)x

βx− z
E(z)− E(0)

1− E(0)
− 1
)

+
x− z
βx− z

SB(E(βx))− (1− β)x

βx− z
SB(E(z))

)
+ qA(0)

(
SA(E(0))

( (1− α)(x− z)
βx− z

E(βx)− E(0)

1− E(0)
− (1− α)(1− β)x

βx− z
E(z)− E(0)

1− E(0)

− (1− α)
)
− α x− z

βx− z
SA(E(βx)) + α

(1− β)x

βx− z
SA(E(z))

)
+

x− z
βx− z

SA(E(βx))PA(βx, 1)− (1− β)x

βx− z
SA(E(z))PA(z, 1) . (8)

The unknowns qA(0) and qB(0) can be determined by studying PA(z, 1) and PB(z, 1), which are
the pgfs of the queue occupancy after initiation of a class A and class B service respectively. These
variables are calculated in the next section during the analysis of the steady-state pgf of the queue
occupancy.

4.4. Probability generating function of the queue occupancy215

4.4.1. After service initiation epochs

Using the results of the previous section we readily obtain the marginal steady-state pgf of
the number of customers in the queue after service initiation. The partial pgf QA(z) is found by
evaluating PA(z, x) at x = 1. This gives the following equation:

QA(z) =αqA(0)

(
SA(E(0))

[
1− z
α− z

E(α)− E(0)

1− E(0)
− 1− α
α− z

E(z)− E(0)

1− E(0)
− 1

]
+

1− z
α− z

SA(E(α))

− 1− α
α− z

SA(E(z))

)
+ qB(0)

(
SB(E(0))

[
(1− β)(1− z)

α− z
E(α)− E(0)

1− E(0)

− (1− α)(1− β)

α− z
E(z)− E(0)

1− E(0)
− (1− β)

]
− β 1− z

α− z
SB(E(α)) + β

1− α
α− z

SB(E(z))

)

+
1− z
α− z

SB(E(α))QB(α)− 1− α
α− z

SB(E(z))QB(z) . (9)

Note that this expression contains the unknown constant SB(E(α))QB(α). Letting z → 0 in Eq. 9
and invoking that QA(0) = qA(0) yields

SB(E(α))QB(α) =αqA(0)

(
1 + SA(E(0))

1− E(α)

1− E(0)
− SA(E(α))

)
+ qB(0)

(
βSB(E(α)) + SB(E(0))(1− β)

1− E(α)

1− E(0)

)
. (10)
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By substituting Eq. 10 into Eq. 9 we obtain

QA(z) =
αqA(0)

α− z

(
1− z + (1− α)

1− E(z)

1− E(0)
SA(E(0))− (1− α)SA(E(z))

)
+

(1− α)qB(0)

α− z

(
(1− β)

1− E(z)

1− E(0)
SB(E(0)) + βSB(E(z))

)
− 1− α
α− z

SB(E(z))QB(z) , (11)

which is a linear equation for QA(z) and QB(z) that contains the unknown probabilities qA(0) and
qB(0). A similar analysis leads to a symmetric equation for class B:

QB(z) =
βqB(0)

β − z

(
1− z + (1− β)

1− E(z)

1− E(0)
SB(E(0))− (1− β)SB(E(z))

)
+

(1− β)qA(0)

β − z

(
(1− α)

1− E(z)

1− E(0)
SA(E(0)) + αSA(E(z))

)
− 1− β
β − z

SA(E(z))QA(z) . (12)

Expressions 11 and 12 constitute a set of 2 independent linear equations in QA(z) and QB(z), with
the solution

QA(z)
[
(α− z)(β − z)− (1− α)(1− β)SA(E(z))SB(E(z))

]
=α(β − z)qA(0)

(
1− z + (1− α)

1− E(z)

1− E(0)
SA(E(0))− (1− α)SA(E(z))

)
+ (1− α)(β − z)qB(0)

(
(1− β)

1− E(z)

1− E(0)
SB(E(0)) + βSB(E(z))

)
− (1− α)SB(E(z))

(
βqB(0)

(
1− z + (1− β)

1− E(z)

1− E(0)
SB(E(0))− (1− β)SB(E(z))

)

+ (1− β)qA(0)

(
(1− α)

1− E(z)

1− E(0)
SA(E(0)) + αSA(E(z))

))
, (13)

and

QB(z)
[
(α− z)(β − z)− (1− α)(1− β)SA(E(z))SB(E(z))

]
=β(α− z)qB(0)

(
1− z + (1− β)

1− E(z)

1− E(0)
SB(E(0))− (1− β)SB(E(z))

)
+ (1− β)(α− z)qA(0)

(
(1− α)

1− E(z)

1− E(0)
SA(E(0)) + αSA(E(z))

)
− (1− β)SA(E(z))

(
αqA(0)

(
1− z + (1− α)

1− E(z)

1− E(0)
SA(E(0))− (1− α)SA(E(z))

)

+ (1− α)qB(0)

(
(1− β)

1− E(z)

1− E(0)
SB(E(0)) + βSB(E(z))

))
. (14)
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The two boundary probabilities qA(0) and qB(0) are yet to be determined. To find a solution for
these unknowns, we require two independent linear equations. The first one is derived from the
normalization condition of the pgf Q(z) , QA(z) +QB(z), i.e. Q(1) = 1. Using the l’Hôpital’s rule
to establish this equation, we obtain

2− α− β − (1− α)(1− β)λ(S′A(1) + S′B(1))

=qA(0)(1− α)
(

2α+ S′A(1)λ
(
α(β − α) + 1− β

)
− S′B(1)λα(1− β)

+
λSA(E(0))

1− E(0)

(
α(1− α) + 2(1− α)(1− β) + (1− β)

))
+ qB(0)(1− β)

(
2β + S′B(1)λ

(
β(α− β) + 1− α

)
− S′A(1)λβ(1− α)

+
λSB(E(0))

1− E(0)

(
β(1− β) + 2(1− α)(1− β) + (1− α)

))
.

A second equation is obtained by exploiting the property that Q(z) is a pgf, and thus analytic for
|z| < 1 and bounded for |z| ≤ 1. We first define the numerators of QA(z) and QB(z) respectively as
NA(z) and NB(z), that is, NA(z) and NB(z) are the right-hand sides of Eqs. 13 and 14 respectively.
The common denominator Den(z) of QA(z) and QB(z) is equal to (α − z)(β − z) − (1 − α)(1 −
β)SA(E(z))SB(E(z)). We start by proving that Den(z) has two zeroes inside the closed complex
unit disk {z ∈ C : |z| ≤ 1}. The first zero is equal to 1 and leads to the same equation as the
normalization condition. To prove that there is a second zero inside the unit disk, we aim to apply
Rouché’s theorem, see Adan et al. [50], and therefore rewrite Den(z) as f(z) − g(z), where the
functions f(z) and g(z) are defined as

f(z) := (z − α)(z − β) ,

g(z) := (1− α)(1− β)SA(E(z))SB(E(z)) .

First, both of these functions are analytic functions inside the unit disk, and it is clear that f(z)
has two zeroes, α and β, inside this disk. The next step is to prove that |f(z)| > |g(z)| on the
contour |z| = 1 + ε, ε > 0

|f(z)| =|z − α||z − β| ≥ (1 + ε− α)(1 + ε− β) = (1− α)(1− β) + ε(2− α− β) +O(ε2)

|g(z)| =(1− α)(1− β)|SA(E(z))||SB(E(z))|
≤(1− α)(1− β)SA(E(1 + ε))SB(E(1 + ε))

≤(1− α)(1− β)(1 + ελS′A(1) +O(ε2))(1 + ελS′B(1) +O(ε2))

≤(1− α)(1− β) + ε
[
(1− α)(1− β)λ

(
S

′

A(1) + S
′

B(1)
)]

+O(ε2) .

Consequently,

|f(z)| − |g(z)| ≥ε(2− α− β − (1− α)(1− β)λ(S′A(1) + S′B(1)) +O(ε2) > 0 ,

where the last inequality follows from applying the stability condition, see Eq. 3.220

Consequently, all conditions are fulfilled for applying Rouché’s theorem, leading to the conclu-
sion that Den(z) has two zeroes inside and on the closed complex unit disk, including z = 1. The
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zero ẑ, different from 1, can be calculated numerically. Since the partial pgfs QA(z) and QB(z)
are analytical in the complex unit disk, their numerators must vanish at ẑ, that is NA(ẑ) = 0 and
NB(ẑ) = 0. Combined with the normalisation condition, this would constitute a set of three linear225

equations for the two unknowns. However, a closer investigation of NA(ẑ) = 0 and NB(ẑ) = 0
reveals that these are not independent equations, so either one of them, together with the normal-
isation condition, allows us to calculate qA(0) and qB(0).

4.4.2. After departure epochs

The results for the queue occupancy after service initiation epochs can be used to determine230

the pgf of the queue occupancy at departure epochs. At these time instances, the batch has left
the server and a new service has not yet been initiated. We define the partial pgf of the queue
occupancy at departure epochs of a class-A (B) batch as QD,A(z) (QD,B(z)). The combined pgf of
all departure epochs is defined as QD(z). As the queue occupancy at the end of a service is given
by the sum of the queue occupancy after service initiation and the number of arrivals during that235

service, we readily obtain these pgfs as

QD,A(z) =QA(z)SA(E(z))

QD,B(z) =QA(z)SB(E(z))

QD(z) =QD,A(z) +QD,B(z) = QA(z)SA(E(z)) +QB(z)SB(E(z)) .

4.4.3. At customer arrival epochs

In this subsection, an expression is established for QArr(z), the steady-state pgf of the queue
occupancy at customer arrival epochs. Since a customer arrives during a random slot, the server
during this slot can be busy with an ongoing service, resulting in two different periods based on240

the class of the customers in service, or idle. In case that the server is idle in a random slot, we
also need to keep track of the class of the previous service, which is equal to the class of the last
customer to arrive, since the class of the next customer to arrive depends on its predecessor. This
means that the system is in one of the four following phases:

• Service of a batch of class A is going on245

• Service of a batch of class B is going on

• Server is idle and the previous batch was of class A

• Server is idle and the previous batch was of class B

Each service period of a class A (B) batch corresponds with a single A (B)-period, and all consecu-
tive slots in which a slot is idle are grouped in a single (I, A)- or (I,B)-period based on the previous250

service. An example of how the time-axis is divided by these four types of periods is shown in Fig.
3.

The first step is to obtain the steady-state probability of the type of a randomly tagged phase,

14



B I,B A A I,A A B B B

A A A B B B
x

X
Period of class X Service initiation epoch of class X

Figure 3: Sample of time-axis divided into periods.

that is compute

pA := lim
k→∞

Pr[t̃k = A] ,

pB := lim
k→∞

Pr[t̃k = B] ,

pI,A := lim
k→∞

Pr[t̃k = I, t̃k−1 = A] ,

pI,B := lim
k→∞

Pr[t̃k = I, t̃k−1 = B] ,

with t̃k the type of the k-th period. Crucial here is that the start of A- and B-periods are exactly
the embedded points from Subsection 4.4.1, that is they correspond to the service initiation epochs.
Consequently, we find the following expression for pI,A and pI,B :255

pI,A =
qA(0)SA(E(0))

1 + qA(0)SA(E(0)) + qB(0)SB(E(0))
,

pI,B =
qB(0)SB(E(0))

1 + qA(0)SA(E(0)) + qB(0)SB(E(0))
.

Along the same lines we obtain

pA =
QA(1)

1 + qA(0)SA(E(0)) + qB(0)SB(E(0))
,

pB =
QB(1)

1 + qA(0)SA(E(0)) + qB(0)SB(E(0))
.

The second step is to compute the steady-state probabilities πA, πB , πI,A and πI,B that a
randomly tagged slot falls in an A-, B-, (I, A) or (I,B)-period respectively. These probabilities are
the weighted average of the expected lengths of each period, with weights equal to the steady-state
probabilities that a randomly tagged period is of the corresponding type. The expected lengths
of an A- and B-period are equal to the averages of their respective service time distributions, and
the length of an Idle period is equal to the expected number of consecutive slots with zero arrivals.
Since the length of a sequence of slots without arrivals follows a shifted geometric distribution with
parameter E(0), which is the probability that there are no arrivals in a random slot, the mean
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length of such a sequence is given by 1
1−E(0) . Hence,

πA =
pAS

′
A(1)

pAS′A(1) + pBS′B(1) +
pI,A+pI,B
1−E(0)

,

πB =
pBS

′
B(1)

pAS′A(1) + pBS′B(1) +
pI,A+pI,B
1−E(0)

,

πI,A =

pI,A
1−E(0)

pAS′A(1) + pBS′B(1) +
pI,A+pI,B
1−E(0)

,

πI,B =

pI,B
1−E(0)

pAS′A(1) + pBS′B(1) +
pI,A+pI,B
1−E(0)

. (15)

We first define QArr,I,A(z) and QArr,I,B(z) as the partial pgfs of the queue occupancy of a
random customer that arrives when the server is idle and the customer at the head of the queue is
either of class A or B. Using the probabilities obtained in Eq. 15, we obtain

QArr,I,A(z) =(απI,A + (1− β)πI,B)
1− E(z)

λ(1− z)
,

QArr,I,B(z) =((1− α)πI,A + βπI,B)
1− E(z)

λ(1− z)
. (16)

On the other hand, if the random customer arrives in a slot during which a service was being
processed, we both need the number of arrivals since initiation of the ongoing service and the
remaining service time of the service period. Using the random variable ei,k as the number of
arrivals before the random customer if the customer arrives in the i-th slot of the k-th service
period, we can write the probability rA(i, j) that there are i arrivals, before the arrival of the
random customer during a service of class A customers, and a remaining service time of j slots as

rA(i, j) = lim
k→∞

∞∑
m=j+1

sA(m)Pr[em−j,k = i]

S′A(1)
. (17)

Taking the z-transform of Eq. 17 leads to the joint pgf RA(z, x) of the number of arrivals during
the service period before arrival of the random customer, and the remaining service time of the
service period while the server was processing a class A batch, yielding

RA(z, x) =

∞∑
i=0

∞∑
j=0

rA(i, j)zixj =
1− E(z)

λ(1− z)
SA(x)− SA(E(z))

S′A(1)(x− E(z))
.

And analogously, if the random customer arrives while the server is processing a class B batch

RB(z, x) =
1− E(z)

λ(1− z)
SB(x)− SB(E(z))

S′B(1)(x− E(z))
.

Now we can calculate the joint pgf QArr,A(z, x) as the number of customers in the queue before
arrival of the random customer, that arrives when the server is busy processing a class A batch,

16



and the remaining service time, for the case that the customer at the head of the queue is of class
A as

QArr,A,A(z, x) =
πA

QA(1)
qA(0)αRA(z, x) , (18)

and if the customer at the head of the queue is of class B

QArr,A,B(z, x) =
πA

QA(1)
RA(z, x) (QA(z)− αqA(0)) . (19)

Analogously, we can also calculate the partial pgfs in case that the random customer arrives
while the server was busy processing a class B batch, leading to

QArr,B,A(z, x) =
πB

QB(1)
RB(z, x) (QB(z)− βqB(0)) ,

QArr,B,B(z, x) =
πB

QB(1)
qB(0)βRB(z, x) , (20)

By combining the results of Eqs. 16, 18 and 20, we can now calculate the partial pgf QArr,A(z, x)
and QArr,B(z, x) of the queue occupancy and the remaining service time at customer arrival epochs,
when the customer at the head of the queue is respectively a class A or B customer. We also define
QArr(z, x) as the joint pgf of the queue occupancy and the remaining service time at customer
arrival epochs. This results in

QArr,A(z, x) =
1− E(z)

λS′A(1)S′B(1)(1− z)(x− E(z))

(
S′A(1)S′B(1)(x− E(z))(απI,A + (1− β)πI,B)

+
πA

QA(1)
qA(0)αS′B(1)(SA(x)− SA(E(z)))

+
πB

QB(1)
(QB(z)− βqB(0))S′A(1)(SB(x)− SB(E(z)))

)
,

QArr,B(z, x) =
1− E(z)

λS′A(1)S′B(1)(1− z)(x− E(z))

(
S′A(1)S′B(1)(x− E(z))(βπI,B + (1− α)πI,A)

+
πB

QB(1)
qB(0)βS′A(1)(SB(x)− SB(E(z)))

+
πA

QA(1)
(QA(z)− αqA(0))S′B(1)(SA(x)− SA(E(z)))

)
,

QArr(z, x) =QArr,A(z, x) +QArr,B(z, x) . (21)

4.4.4. At random slot boundaries

In the previous subsection, we calculated the probabilities that the server is idle or busy with a
class A or B service in a randomly tagged slot, see Eq. 15. When a randomly tagged slot belongs
to an I-period, the queue is empty at the beginning of the slot, otherwise a new service would have
started. On the other hand, when the slot belongs to an A- or B-period, the queue contains the
customers that are left behind at the corresponding service initiation epoch and the customers that
have arrived during the elapsed service period, which is independent of the number of customers
left behind in the queue, see Bruneel and Kim [45]. Combining all elements, we find that the pgf
QR(z) of the the queue occupancy at random slot boundaries is equal to

QR(z) := πI,A + πI,B + πA
QA(z)

QA(1)

SA(E(z))− 1

S′A(1)(E(z)− 1)
+ πB

QB(z)

QB(1)

SB(E(z))− 1

S′B(1)(E(z)− 1)
.
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4.5. Probability generating function of the real service capacity260

A second important characteristic of this system is the real capacity of (i.e., the number of
customers in) each batch service, which differs from the theoretical service capacity introduced in
Section 4.1 in that it also depends on the number of customers in the queue and not only on the
class of the batch. More precisely, it follows a geometric distribution, with parameter α or β if the
customers are of class A or B, that is truncated by the number of customers in the queue. We
define the steady-state probability that the server processes i customers during a class-A (or B)
service and a random service as

ĉA(i) := lim
k→+∞

Pr[tk = A, ĉk = i], ĉB(i) := lim
k→+∞

Pr[tk = B, ĉk = i], ĉ(i) := ĉA(i) + ĉB(i) ,

for all i ≥ 0 with corresponding partial pgfs ĈA(z), ĈB(z) and Ĉ(z) := ĈA(z) + ĈB(z). These pgfs
can be calculated by evaluating the joint pgfs given in Eqs. 7 and 8 at z = 1. We find the following
equation for the real service capacity of a class-A service:

ĈA(x) =PA(1, x)

=αqA(0)

(
SA(E(0))

( x− 1

αx− 1

E(αx)− E(0)

1− E(0)
− (1− α)x

αx− 1
− 1
)

+
x− 1

αx− 1
SA(E(αx))− (1− α)x

αx− 1

)
+ qB(0)

(
SB(E(0))

( (1− β)(x− 1)

αx− 1

E(αx)− E(0)

1− E(0)
− (1− α)(1− β)x

αx− 1
− (1− β)

)
− β x− 1

αx− 1
SB(E(αx)) + β

(1− α)x

αx− 1

)
+

x− 1

αx− 1
SB(E(αx))PB(αx, 1)− (1− α)x

αx− 1
PB(1, 1)

=
1

1− αx

(
αqA(0)

(
(1− α)x+ (1− x)SA(E(0))(

E(αx)− E(0)

1− E(0)
− 1) + (1− x)SA(E(αx))

)
+ qB(0)

(
(1− β)(1− x)SB(E(0))(

E(αx)− E(0)

1− E(0)
− 1)− β(1− x)SB(E(αx))− β(1− α)

)
+ (1− x)SB(E(αx))PB(αx, 1) + (1− α)xPB(1, 1)

)
.

In case of a class-B service, this becomes:

ĈB(x) =PB(1, x)

=
1

1− βx

(
βqB(0)

(
(1− β)x+ (1− x)SB(E(0))(

E(βx)− E(0)

1− E(0)
− 1) + (1− x)SB(E(βx))

)
+ qA(0)

(
(1− α)(1− x)SA(E(0))(

E(βx)− E(0)

1− E(0)
− 1)− α(1− x)SA(E(βx))− α(1− β)

)
+ (1− x)SA(E(βx))PA(βx, 1) + (1− β)xPA(1, 1)

)
.

4.6. Probability generating function of the system occupancy

Taking into account the results of Section 4.3, we can also calculate the steady-state pgfs of the
total number of customers in the system after service initiation of a class-A, B or random service.
The number of customers in the system is the sum of the number of customers left in the queue
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after service initiation and the real capacity of the server; note that these are not independent265

random variables.
We define the steady-state partial pgf of the total number of customers in the system after

service initiation of a class A(B) service as UA(z) (UB(z)). These generating functions are found
by evaluating Eqs. 7 and 8 for x = z. This gives the following formula for UA(z):

UA(z) =PA(z, z)

=αqA(0)
(
SA(E(z))− SA(E(0))

1− E(z)

1− E(0)

)
+ qB(0)

(
− βSB(E(z))− (1− β)SB(E(0))

1− E(z)

1− E(0)

)
+ SB(E(z))PB(z, 1) ,

and the symmetric equation for a class-B service:

UB(z) =PB(z, z)

=βqB(0)
(
SB(E(z))− SB(E(0))

1− E(z)

1− E(0)

)
+ qA(0)

(
− αSA(E(z))− (1− α)SA(E(0))

1− E(z)

1− E(0)

)
+ SA(E(z))PA(z, 1) .

The sum of these two formulas produces the steady-state pgf of the system occupancy after
initiation of a random service. This leads to

U(z) =SB(E(z))PB(z, 1)− qA(0)SA(E(0))
1− E(z)

1− E(0)

+ SB(E(z))PA(z, 1)− qB(0)SB(E(0))
1− E(z)

1− E(0)

=QD(z)−QD(0)
1− E(z)

1− E(0)
.

This result can be understood probabilistically, since the system occupancy after a service
initiation is the same as the queue occupancy after the departure of the previous service if the
queue is not empty at a departure instant. If the queue was empty, the system occupancy is equal
to the number of customers that arrive during the period while the server is idle.270

The steady-state pgf of the system occupancy at departure epochs is identical to the pgf of the
queue occupancy since the server is empty. The calculation for the steady-state pgf of the system
occupancy at random slot boundaries is similar to the calculation described in section 4.4.4. The
pgfs for the system occupancy at these two time instants are therefore given by

UD(z) =QD(z)

UR(z) =πI + πA
UA(z)

UA(1)

SA(E(z))− 1

S′A(1)(E(z)− 1)
+ πB

UB(z)

UB(1)

SB(E(z))− 1

S′B(1)(E(z)− 1)
.

4.7. Delay analysis

We start the delay analysis by calculating the steady-state pgf of the delay (without residual
service time) of a random customer that finds n customers in the queue on arrival and the first
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customer is of class A and B, denoted by DA,n(z) and DB,n(z). Because the server is capable of
grouping all consecutive same-class customers at the head of the queue, if the class of the random
customer is equal to the class of the customer before it, then both customers will have the same
delay. If this is not the case, then the delay of a random customer will be equal to the sum of the
delay of its predecessor and the duration of a single service period. We also note that when the
random customer finds an empty queue on arrival, the customer will be served first since we do not
include the residual service time in these calculations. Summarising, we obtain

DA,0(z) =SA(z)

DB,0(z) =SB(z)[
DA,n(z)
DB,n(z)

]
=

[
α (1− α)SA(z)

(1− β)SB(z) β

] [
DA,n−1(z)
DB,n−1(z)

]
=

[
α (1− α)SA(z)

(1− β)SB(z) β

]n [
SA(z)
SB(z)

]
= M(z)n

[
SA(z)
SB(z)

]
. (22)

The eigenvalues λ1(z) and λ2(z) of M(z) are given by the expression:

λ1,2(z) =
α+ β

2
± 1

2

√
(α− β)2 + 4(1− α)(1− β)SA(z)SB(z) , (23)

and the matrices of the right and left eigenvectors of M(z), denoted respectively by R(z) and L(z),
are

R(z) =

[
(1−α)SA(z)
λ1(z)−α

(1−α)SA(z)
λ2(z)−α

1 1

]
=:

[
r1(z) r2(z)

1 1

]
,

L(z) =R−1(z) =

[
(1−β)SB(z)
2λ1(z)−α−β

λ1(z)−α
2λ1(z)−α−β

(1−β)SB(z)
2λ2(z)−α−β

λ2(z)−α
2λ2(z)−α−β

]
. (24)

Using these results, we can diagonalize the matrix M(z) in Eq. 22, leading to[
DA,n(z)
DB,n(z)

]
= R(z)

[
λ1(z)n 0

0 λ2(z)n

]
L(z)

[
SA(z)
SB(z)

]
. (25)

We also define L1(z) and L2(z) as

L1,2(z) =
(1− β)SA(z)SB(z) + (λ1,2(z)− α)SB(z)

2λ1,2(z)− α− β
. (26)

The delay we calculated in Eq. 25 did not take into account the phase of the server. Lets start by
defining the delay of a random customer that arrives during an idle slot of the server and the first
customer is either of class A or B, denoted by DI,A(z) and DI,B(z). In this case, a new service
is initiated at the start of the next slot which means that there is no residual service time which
could lead to an increased delay. Using qArr,I,A as the random variable of the customers before the
random customer on arrival and the customer at the head of the queue is of class A, these partial
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pgfs of the delay are equal to

DI,A(z) =

∞∑
n=0

[
Pr[qArr,I,A = n] 0

]
R(z)

[
λ1(z)n 0

0 λ2(z)n

] [
L1(z)
L2(z)

]
=r1(z)QArr,I,A(λ1(z))L1(z) + r2(z)QArr,I,A(λ2(z))L2(z) ,

DI,B(z) =QArr,I,B(λ1(z))L1(z) +QArr,I,B(λ2(z))L2(z) . (27)

On the other hand, if the server is processing a class A batch on arrival of the random customer,
we also need to incorporate the remaining service time. The partial pgfs in case that the server
is busy processing a class A batch and the customer at the head of the queue is of class A or B,
denoted by DA,A(z) and DA,B(z), are

DA,A(z) =r1(z)QArr,A,A(λ1(z), z)L1(z) + r2(z)QArr,A,A(λ2(z), z)L2(z) ,

DA,B(z) =QArr,A,B(λ1(z), z)L1(z) +QArr,A,B(λ2(z), z)L2(z) . (28)

and analogously in case that the customer arrives while the server is busy with a class B batch

DB,A(z) =r1(z)QArr,B,A(λ1(z), z)L1(z) + r2(z)QArr,B,A(λ2(z), z)L2(z) ,

DB,B(z) =QArr,B,B(λ1(z), z)L1(z) +QArr,B,B(λ2(z), z)L2(z) . (29)

Combining all partial pgfs of Eqs. 27, 28 and 29 results in the generating function of the delay
of a completely random customer. This pgf, denoted by D(z), can be written as

D(z) =
(
r1(z)QArr,A(λ1(z), z) +QArr,B(λ1(z), z)

)
L1(z)

+
(
r2(z)QArr,A(λ2(z), z) +QArr,B(λ2(z), z)

)
L2(z) .

5. Discussion of results and numerical examples

In this section, we illustrate the obtained results throughout the previous sections by looking at
some numerical examples. The considered performance measures are the maximum allowed arrival
rate, the mean queue occupancy at different time instants, the average number of customers in a275

served batch, and the mean delay of a random customer. These are readily obtained by taking
the first-order derivative of the respective steady-state pgfs with respect to z (or x) at z = 1
(or x = 1). Although the calculations are straightforward, they can become quite tedious, and
lead to extensive formulas that are not repeated here. Obviously, higher-order moments such as
the variance, can be obtained in a similar manner by considering higher-order derivatives. These280

higher-order moments will not be shown here. In all these examples we consider a geometric arrival
process with E(z) = 1

1+λ(1−z) , and use either deterministic or geometrically distributed service
times.

We first consider the maximum allowed arrival rate which is defined by

λmax :=
τ

σ(1− σ)

1

(S′A(1) + S′B(1))
=

τK

S′A(1) + S′B(1)
, (30)

and in view of Eq. 4, the equilibrium condition requires that λ < λmax. In this example, we set the
service time of a class-A or B batch always to be equal to 1 slot, implying that SA(z) = SB(z) = z285
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Figure 4: Maximum allowed arrival rate, for fixed 1-slot service times for class A and B, τ = 1, 2, 3, 4, as a function
of σ(a) and K(b).

and S′A(1) = S′B(1) = 1. Fig. 4 shows λmax as a function of σ and K, for values of τ as indicated.
In previous studies (see Bruneel et al. [33, 34], Mélange et al. [35], Maertens et al. [36], Reveil et
al. [37]) it was observed that higher levels of correlation lead to a lower performance of the system.
However, in this system, the average length of the sequences of same-class customers increases with
a higher level of correlation in the arrival process (i.e., a higher value of τ), which leads to a higher290

λmax. This indicates that more correlation between same-class customers will lead to a better
performance. This is clearly visible on the figure, since larger values of τ lead to a system that can
handle a higher average arrival rate.

We also observe that there is a global minimum in σ = 0.5 (or K = 4) for all values of τ ,
meaning that a symmetric system is a worst-case situation. This can also easily be derived from295

Eq. 4. An intuitive explanation is that the more asymmetric the system (larger K or σ further from
0.5), the larger the batches of one class in comparison to the other, or the larger the probability of
“back-to-back” arrivals for one class. Since the average length of same-class sequences is inversely
proportional to α and β, more asymmetry in a system will lead to a better performance. In the
following results we will use K instead of σ, since K gives a global indication of the asymmetry,300

while σ is a parameter of a single class. Note that the expression for λmax shows that this quantity
is also a linearly increasing function of τ for fixed values of K, which is why we have not plotted
this dependency.

In Fig. 5a, we have plotted the mean queue occupancy after service initiation epochs versus
the mean arrival rate for a symmetric system (K = 4) and multiple values of τ = 1, 2, 3, 4. The305

influence of the correlation variable τ is clearly linearly increasing in the mean number of customers
that must arrive to obtain the same average queue occupancy. Let us also define the load ρ of the
system as ρ := λ

λmax
; obviously, ρ < 1 represents the equilibrium condition as well. The influence

of τ on the average queue occupancy as a function of the load is shown in Fig. 5b. For small loads,
the queue will often be empty after service initiation, which means that the typically small number310

of customers in the queue is the limiting factor of the performance of the system. Consequently,
we observe in Fig. 5b that the influence of the correlation in the arrival process is negligible for
small loads. For increasing loads, it occurs more frequently that the performance is governed by
the real service capacity of the server, which does depend on the correlation in the arrival process.
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Figure 5: Mean system occupancy Q′(1) for fixed 1-slot service times for class A and B services, with K = 4 and
τ = 1, 2, 3, 4, as a function of λ(a) and ρ(b).

As opposed to Fig. 5a, we now observe that increasing values of τ have a negative impact on the315

system performance. This is caused by the higher mean number of customers that must arrive to
obtain the same value of ρ for increasing τ . The result of this effect is that for higher values of τ ,
more customers will be present in the queue (on average) after service initiation epochs.

The impact of asymmetry in the arrival process (captured by the parameter K) can be seen in
Fig. 6. These results were obtained for τ = 1. By comparing the Figs. 5 and 6, we clearly observe320

that asymmetry in the arrival process has a similar impact as correlation in the arrival process,
and the above qualitative conclusions therefore remain valid. From Figs. 5b and 6b we can deduce
that the impact of K is somewhat larger than that of τ . This is because, in asymmetric systems, a
larger batch and a smaller batch alternate. After service initiation of the smaller batch, a typically
large group of customers will be in the system in order to be able to create the larger batch, which325

leads to a higher average number of customers in the queue after service initiation.
In Fig. 7, we show the average queue occupancy after service initiation epochs, at departure

epochs, and at random slot boundaries, as a function of the mean arrival rate λ and load ρ. It
is important to note that the results that are discussed here are only valid for fixed deterministic
service times of a single slot for both classes. As expected, the mean queue occupancy is largest330

at departure epochs, since the queue has been building up further during the preceding batch
service time. Therefore, the difference between the mean queue occupancy at service initiation and
departure epochs is equal to the average number of arrivals during a single slot, since we consider
fixed single-slot service times for both classes. We expect that this difference becomes larger for
larger average batch service times. We can also conclude that the average queue occupancy at335

random slot boundaries is typically smaller than the queue occupancy after service initiation epochs.
This is another consequence of the single slot service times. A random slot boundary is either the
boundary of an idle slot, or a service initiation epoch, which leads to a small difference between the
average queue occupancy at the two time instances, determined by the probability that a random
slot is an idle slot. At low arrival rates, the average queue occupancy in both cases is almost zero,340

but the relative difference is highest, because there is a high probability that a random slot is an idle
slot. This probability decreases with increasing arrival rates, which implies that the average queue
occupancy at random slot boundaries will approach the queue occupancy after service initiation.
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Figure 6: Mean system occupancy Q′(1) for fixed 1-slot service times for class A and B services, with τ = 1 and
K = 4, 8, 12, 16, as a function of λ(a) and ρ(b).
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Figure 8: Mean real service capacity of a class A (µA), B (µB) or random service (µ), for fixed 1-slot service times
of class A and B services, as a function of the load ρ for τ = 1, 2 and K = 8(a) or τ = 1 and K = 4, 8, 12(b).

Another important characteristic of the system, which is influenced by both τ and K, is the
average number of customers that are being processed in a single service, also called the average real
service capacity of the server. Fig. 8 shows the average real service capacity of a class A service, a
class B service and a random service given respectively by µA, µB and µ. First, we observe that µ
is nearly linearly proportional to the load. We also see that the real service capacity is close to 1 for
all combinations of τ and K, and small loads. This is what we expected since the probability that
more than one customer arrives during a single slot is negligible under these circumstances. On the
other hand, for values of ρ close to 1, the queue becomes saturated, and the average real service
capacity of a random service becomes equal to the average theoretical service capacity, which is

µ =
1

2

( 1

1− α
+

1

1− β
)

=
τK

2
.

These are indeed the values that we observe in these figures in case of a saturated queue, which,
amongst others, confirms the calculations of the preceding sections. Fig. 8a and Fig. 8b show the345

influence of the parameters τ and K on the average real service capacities. We clearly see that
the average real service capacities of both class A and B services are linearly proportional to τ .
The influence of K can be split in two cases. If the arrival process is symmetric (K = 4), the
average real service capacities of class A and B services are equal to each other which leads to
µ = µA = µB . In case of an asymmetric arrival process (K > 4), we see that the parameter K only350

has a significant impact on the mean real service capacity of a class B customer. This is caused by
our implementation of an asymmetric system which leads to β > α.

Let us also consider a model where the distributions of class A and B service times are geometric.
In the following experiments, we let the average service time of a class A service vary from 1 slot
to 40 slots while we keep the average service time of a class B service at 5 slots. Fig. 9a shows the355

influence of τ on a symmetric system with a load of 0.8 in terms of the average service time of a
class A service. We note that there is a minimum for all values of τ and for the three chosen time
instances at S′A(1) = 5, which is as expected since the arrival process is symmetric. We also note
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Figure 9: The mean queue occupancy at random slot boundaries (Q′R(1)), service initiation (Q′(1)), and departure
epochs (Q′D(1)) in function of the mean class A service time S′A(1), which is geometrically distributed, for the load
ρ = 0.8, mean class B service time S′B(1) = 5 and τ = 1, 2, 3 and K = 4(a) or τ = 1 and K = 8, 16(b).

that, for τ = 1, the average queue occupancy at random slot boundaries is always smaller than at

departure epochs, while this is not the case for larger values of τ . The ratio
S′
A(1)
S′
B(1) , for which the360

average queue occupancy at random slot boundaries and at departure epochs are equal, is influenced
by τ . Larger values of τ shift this ratio closer to 1. As in the results of the average real service
capacities, symmetric and asymmetric arrival processes lead to a significantly different behaviour.
A symmetric system, as shown in Fig. 9a, has a minimum at the three observed time instances
while an asymmetric system only has a minimum for the average queue occupancy at random slot365

boundaries, see Fig. 9b. We clearly see that the average queue occupancy after service initiation
epochs and departure epochs are monotone decreasing functions of S′A(1). We note that this change
in behaviour has a significant impact on the point where the average queue occupancy at random
slot boundaries and at service departure epochs are equal. Larger values of the parameter K cause
this point to shift to S′B(1) and the minimum occurs at a larger value of S′A(1).370

In the previous plots we used a load of 0.8. In Fig. 10 we observe the average queue occupancy
after service initiation epochs, departure epochs and random slot boundaries with τ = 2 and K = 4
for ρ = 0.4 and ρ = 0.6 as a function of the average service time of a class A service. We see that,
while the behaviour of these two loads is similar to the results with ρ = 0.8, there is a difference in
the point where the average queue occupancy at random slot boundaries and at departure epochs375

are equal. Smaller loads mean this point occurs at a significantly larger S′A(1).
To conclude the section on the numerical experiments, we take a look at the impact of correlation

in the arrival process on the mean queue occupancy at service initiation epochs and the mean delay
of a random customer for a number of different values of the mean arrival rate λ, see Fig. 11,
and of the mean load ρ of the system, see Fig. 12. In these figures, we used a symmetric arrival380

process with K = 4. Similar figures for Q′(1) and D′(1) in function of the degree of asymmetry K
in the arrival process were also considered. They show similar behaviour as Figs. 11 and 12, and
are therefore not shown here. In these figures, the service times for batches of both classes follow
a geometric distribution with a mean of 3 slots. In Fig. 11, we clearly see that, for a constant
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Figure 10: The mean queue occupancy at service initiation, service departure epochs and random slot boundaries in
function of the mean class A service time S′A(1), which is geometrically distributed, for τ = 2, K = 4, S′B(1) = 5
and ρ = 0.4, 0.6.

arrival rate λ, both the mean queue occupancy and mean delay are decreased significantly when τ ,385

the degree of correlation between the classes of consecutive customers, increases. We also observe
that the mean queue occupancy Q′(1) is smaller than the mean delay D′(1) when τ is small but
the opposite, namely D′(1) > Q′(1), is true when there is a high degree of correlation in the arrival
process. The reason for this is that an increasing correlation leads to a higher mean real service
capacity resulting in a decrease of the delay for a fixed number of customers in the queue on arrival,390

which means that even if the delay decreases, the delay will decrease faster resulting in a higher
mean queue occupancy for high values of τ . The behaviour of this inequality can also be observed
in the same figures but for a number of different loads in the system, see Fig. 12. As shown in
Fig. 5b, we see that increasing the degree of correlation also increases the mean queue occupancy
for a system under a constant load but that the mean delay of a random customer remains almost395

constant for increasing degrees of correlation. This occurs because, while the mean number of
customers in the queue on arrival of a customer will also be larger, a higher value of τ will mean
that the server will be able to form larger groups of customers. These two effects of increasing mean
queue occupancy and mean real service capacity, almost cancel each other out.

6. Conclusions400

In this paper, we have deduced an expression for the joint pgf of the queue occupancy and the
size of the batch in service at service initiation epochs, for the discrete-time two-class single-server
queueing system with variable capacity batch service, correlated customer types and generally
distributed class-dependent service times. From this joint pgf, we have deduced the pgfs of the
queue and system occupancy at various time instances and the pgf of the variable service capacity.405

In the last part of the analysis, we focused on the delay of a random customer. Using these results,
we have demonstrated the impact of asymmetry and correlation between the classes of consecutive
customers in the arrival process on the performance of the system. Also, we investigated the impact
of differences between the service processes of both classes of batches.
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Figure 11: Mean queue occupancy(a) at service initiation epochs and mean delay(b) of a random customer in function
of the degree of correlation τ in the arrival process for a number of different arrival rates and geometrically distributed
service times with mean of 3 slots.
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Figure 12: Mean queue occupancy(a) at service initiation epochs and mean delay(b) of a random customer in function
of the degree of correlation τ in the arrival process for a number of different loads and geometrically distributed service
times with a mean of 3 slots.
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There are a number of possible extensions that could be considered for this system. A first410

extension would be to include a switch-over time to account for certain changes that must be made
to the system if the server switches between classes, such as increasing or decreasing the temperature
of a furnace or changing the colour of the used paint. Secondly, we can include an upper bound on
the variable capacity of the server, which depends on the class of the service. While this will lead
to a more realistic model, we expect that the model in this paper will be a good approximation in415

systems where the load is not too high and the probability that a random customer is of either class
is non-negligible. If this is the case, the variable service capacity is already limited respectively by
the number of customers in the queue or the length of the sequence of same-class customers at the
head of the queue. Lastly, a system with a general number of customer classes can also be taken
into consideration.420
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