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1. INTRODUCTION 
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In 1969, Cohen published "The Single Server Queue" [24]. In a sense this monumental work 

marked the end of an era in queueing theory, in which the emphasis in queueing research had been 

placed on the exact mathematical analysis of models with one server and/ or one queue. Although 

Burke's Output Theorem [15] and Burke's Sojourn-time Theorem [16] had opened the way to the 

analysis of queue lengths and sojourn times in more general networks of queues, only a very limited 

number of network results had become available in the sixties. 
Around 1970 successful applications of queueing theory to problems of computer system perfor­

mance started to appear. Rather simple queueing network models turned out to be able to yield quite 

accurate predictions of the behaviour of complex computer systems [62,19], thus stimulating queueing 

network research. It soon became clear that queueing theory presented an extremely powerful tool 

for the prediction and evaluation of performance of computer communication networks. The accep­

tance of this belief in computer science circles was strongly enhanced by the presentation in Kleinrock 

[63]. 
Presently, the interplay between queueing theory and computer system modeling is a very fruitful 

one, indeed. On the one hand, deep queueing network results have been obtained in the last decen­

nium, and have been made available for engineering purposes by the introduction of efficient numeri­

cal algorithms (see ,e.g., Lavenberg [67]); these algorithms are widely being implemented in versatile 

packages for the exact, numerical and/ or simulation analysis of queueing systems - a first step 

towards the development of decision support systems for computer system performance evaluation. 

On the other hand, computer performance modeling constantly gives rise to new, "simple", mathemat­

ically intriguing and intricate queueing models, for the analysis of which sometimes new mathematical 

tools must be developed. 
In queueing network theory there is a sharp distinction between networks for which "everything" is 

known (the extensively reviewed product-form networks) and networks for which little - apart from 

Little - is known. In the latter case, unless one has admission to unlimited computer (simulation) 

resources, the use of approximation techniques will be inevitable. In this respect decomposition and 

aggregation procedures are important, and will be even more important in the future. These pro­

cedures naturally lead to the analysis of "mini-networks" of only two, or a few, queues. A mathemat­

ical study of a mini-network may not only be useful in itself, it usually gives also considerable insight 

into the possibility of analysing its generalizations, and into techniques which are suitable for such an 

analysis. Moreover, such a study may naturally suggest sharp approximations. 
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The present paper is devoted to a discussion of models with two queues , emphasizing some interest­
ing mathematical techniques for their analysis. It reviews the substantial progress recently made in 
the analysis of a number of practically important two-queue models. We have not strived for any­
thing near completeness. To some extent we have been led by our own research preferences; in fact 
some of the results presented are new. 

The organization of the paper is as follows. In Section 2 models of two parallel queues and one 
server are studied. Subsection 2.1 also contains some results for more general multi-queue, one-server 
systems with a cyclic-service discipline. Section 3 considers models of two queues in series. The open 
(tandem) case is discussed in Subsection 3.1, and the closed (cyclic) case in Subsection 3.2; Subsection 
3.3 is concerned with an interesting mixed model with one external arrival stream and one closed 
loop. Sections 2 and 3 both end with a short discussion of variants and extensions, along with a few 
key references. 

2. Two PARALLEL QUEUES SERVED BY A SINGLE SERVER 

2.1 CYCLIC SERVICE MODELS 

Some 15 years ago the analysis of polling schemes, employed to multiplex the service requests of 
several users in computer-terminal communication systems, gave rise to a new class of queueing 
models: a single server serves a number of queues in some cyclic fashion. Presently, these queueing 
models are finding a new application in local area networks with a ring or bus topology, employing a 
medium access control protocol based on token passing. This section is mainly devoted to such 
single-server multi-queue models. We consider a number of cyclic-service disciplines, emphasizing the 
methodologies used for their analysis. 

Let us first present a more detailed model description. A single server S serves N queues 
Q1> ... ,QN (with infinite buffer capacities) in a fixed cyclic order: Q1>Q2 , ••• ,QN,Q1,. ... The ser­
vice strategy at each queue will be specified later. The switch-over times of the server between the i-th 
and (i + 1 )-th queue are independent, identically distributed stochastic variables with first moment s;. 
The mean of the total switch-over time during a cycle of the server, s, is given by 

N 
S := ~ S;; 

I 

its second moment is denoted by s<2>. Customers arrive at all queues according to independent Pois­
son processes with rates Ai. ... ,AN; the total arrival rate is A. Customers who arrive at Q; are called 
type-i customers. The service times of type-i customers are independent, identically distributed sto­
chastic variables with distribution B;(.), with first and second moments /3; and pp> and LST /3;(.); the 
service process is also independent of the arrival process and of the switch-over process. The utiliza­
tion at Q;, P;, is defined as 

P; : = A;/3;, i = l, ... ,N. 

The total utilization of the server, p, is defined as 
N 

p:= ~p;. 
I 

Several cyclic-service disciplines have been considered, which differ in the number of customers who 
may be served in a queue during a visit of S to that queue. Assume that S visits Q;. When Q; is 
empty, S immediately starts to switch to Q;+J (we disregard variants in which S does not switch if 
none of the queues contains customers). Otherwise, S acts as follows, depending on the cyclic-service 
discipline: 
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I. Exhaustive service (E): S serves type-i customers until Q; is empty. 
II. Gated service (G): S serves exactly those type-i customers present upon his arrival at Q; (a 

gate closes upon his arrival). 
III. Nonexhaustive service (NE): S serves only one type-i customer (the generalization to "service 

of at most K customers" has hardly been analysed, and will also not be considered here). 
IV. Semi-exhaustive service (SE): S continues serving type-i customers until the number present is 

one less than the number present upon his arrival. 

In all cases, the order of service within each queue is FCFS. 
Before restricting ourself to the case of N = 2 queues (Subsection 2.2), we shortly consider the most 
important results valid for an arbitrary number of queues. See Takagi and Kleinrock [87] for an 
extensive discussion of the E, G and NE disciplines. The SE discipline has recently been introduced 
by Takagi [86], who studies it in the case where all arrival rates, service-time and switch-over time dis­
tributions are the same for all queues; this will in the sequel be denoted as the completely symmetric 
case. 

Important quantities in these four single-server multi-queue models are the cycle time, C;, and the 
intervisit time, V;, for Q;. C; is the time between two successive arrivals of Sat Q;, and V; is the time 
between a departure of S from Q; and his next arrival at this queue. It is well-known, and easily seen 
(cf. Watson [92]), that for any strict cyclic-service discipline the mean cycle time EC; is independent 
of i, and is given by 

s 
EC= -

1
-. 
-p (2.1) 

The mean number of type-i arrivals during a cycle is 'A;EC; a balancing argument now implies that, in 
the stationary situation, the mean total visit time of Sat Q1 during a cycle equals p;EC, and hence the 
mean intervisit time EV; equals 

s(l-p1) 
EV; = l , i = l, ... ,N. (2.2) -p 

Clearly, p< 1 is a necessary condition for ergodicity of these cyclic-service systems. For exhaustive 
and gated service, this condition is also sufficient. For nonexhaustive service, Kiihn [65] has shown 
that 

p < 1 and 
A;S 

-
1
- < 1, i=I, ... ,N, 
-p (2.3) 

are necessary conditions for ergodicity (indeed, the mean number of type-i arrivals during a cycle 
should be less than one). 
For semi-exhaustive service, the mean number of type-i arrivals during an intervisit time V; should be 
less than one, for during visit times the number of type-i customers is at most reduced by one. This 
leads to the following necessary conditions for ergodicity for the SE case: 

'A;s(l-p;) . 
p < 1 and < 1, 1 = l, ... ,N. (2.4) 1-p 

Note that these conditions are less strict than those for NE, but stricter than those for E and G 
(which do not depend on the switch-over process). Also note that, contrary to E and G, in SE and 
NE some queues can be overloaded, without every queue being overloaded. Condition (2.4) corrects a 
minor error in [86], formulas (27a) and (28). In particular, in the completely symmetric case we have, 
with 'A;:::='A, /J; {J, 

As l-'A{J <l 
I-N'A{J ' 

which after some calculations yields (cf. (27a) of [86]): 
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"-< 2 
8+N{J+V(8+N{Jf-48{J. 

(2.5) 

Formula (2.5) implies in particular for N = 1 the intuitively obvious condition: 

A < min ( ! , ~ ). 
In the special case of zero switch-over times p< 1 is a necessary and sufficient condition for ergodi­
city, as is clear from a comparison with the related MIG/ 1 queue resulting when all customers in the 
system are served in FCFS order. 

In the case of zero switch-over times, it is well-known that a conservation law holds for the total 
amount of work in the system. This amount should not depend on the order of service, and should 
hence equal the amount of work in an M/G/l queue with arrival rate A and service time distribution 
the mixture ~(A;/ A)B;(.). Let Ex; denote the number of type-i customers waiting at an arbitrary 
epoch, and Ew; the mean waiting time of type-i customers. The foregoing implies [83] that, regardless 
of the service discipline, the amount of work of the waiting customers equals: 

N N 
~A;{J~2) 

N i=l 
i~l {J;EX; = -2-(-1--p)-

~A;(Jf> 
N {J~2) i =l 

i~t;-2{J-; = -2-(-1--p)-p. 

Application of Little's formula yields the conservation law (cf. Schrage [83], Kleinrock [63]): 
N 
~ A;(Jp> 

N Pi j =I 
-~ -Ew; = -2-(-1--)-. 
1=1 p p 

(2.6) 

Recently this conservation law has been generalized by Watson [92] to the cases E, G and NE with 
switch-over times (see also [46] for the cases E and G). One can derive a similar formula for SE, fol­
lowing Watson's approach for NE (details will be presented in a forthcoming report). Below we state 
all four (pseudo-)conservation laws, in a form which is slightly different from Watson's. 

N 

N Pi 
~ A;(Jp> 

8(2) N 
E: 

i=l 8 2 ~ 2 ~ -Ew; = +-+ 2p(l - ) [p - . p;]. 
i=I p 2(1-p) 2s p 1=1 

(2.7) 

N 

N P; 
~ A;{J~2> 

8(2) N 
G: i=I 8 [ 2 ~ 2 ~ -Ew; = +-+ 2 (1- ) p +. p;]. 

i=I p 2(1-p) 2s p p 1=1 
(2.8) 

N 

~ A;(Jf> 
N Pi A;8 j =I 8(2) 8 2 ~ 2 

NE: i~I p[l--1---p]Ew; = -2-(-1--p)- + 2;° + 2p(l-p)[p +i~I p;]. (2.9) 

N 
~ A;(Jf>(l -A;8P; Ip) 

N p· A·8(1-p·) . I 8(2) 8 2 ~N 2 SE: ~ _!..[1- 1 
_ 

1 ]Ew1. = -1 
=------- + + [ ] ;~1 p 1 p 2(1-p) 2;° 2p(l-p)p-i=lp;. 

(2.10) 

Several comments are in order. 
1. (2.7)-(2.10) yield, in the completely symmetric case, Takagi's [86] expressions for the mean waiting 
times WE , WG , WNE , WsE• with WE :;;;;;; WG , WsE :;;;;;; WNE• and with WG and WsE not strictly 
ordered. These comparisons are important for studying the trade-off between total amount of waiting 

~ 
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work and "fairness" (in the E discipline a heavily loaded station can monopolize S; for this reason 
the NE discipline is presently of greater practical importance). 
2. The expressions in (2.7)-(2.10) are independent of the order in which S visits the queues, and they 
do not involve individual switch-over times. 
3. The expressions in (2.7)-(2.10) are extremely useful for obtaining (or testing) approximations for 
individual mean waiting times (e.g., an approximation of Bux and Truong [18] for E satisfies (2.7), 
and an approximation in [12] for NE was specifically constructed to satisfy (2.9)). 
4. In view of their obvious interest, it is important to really understand (2.7)-(2.10). The interpretation 
of the right-hand sides is not fully clear, and it is not evident that the right-hand sides for G and NE 
should be equal; is this some form of conservation? 

For SE and NE, this is about all that is known for an arbitrary number of queues (see below for 
N =2 queues). Analysis of E and G turns out to be basically simpler. Let us consider the LST of the 
waiting-time distribution of a customer at Q;, w;(s), in these two cases. In the E case, w;(s) can be 
expressed in the LST v;(s) of the distribution of the intervisit time V; (Eisenberg (42]): 

1-v;(s) 1-p; 
w;(s) = EV· s-A·+A·D·(s)· (2.ll) 

I I 1/J1 

After differentiation the mean waiting time Ew; is expressed in EV'f. Ferguson and Aminetzah (46] 
show that all EVr can be computed by solving N 2 linear equations (thus significantly improving upon 
earlier results). Hereto they study the terminal service time of Q;, defined as the time between the 
server's arrivals at Q;-1 and Q; (for G: between the server's arrivals at Q; and Q;+ 1). 

The analysis and results for G are very similar. Ferguson and Aminetzah [46] express w;(s) in the 
LST of the distribution of the cycle time C;; after differentiation Ew; is expressed in ECr; these 
second moments can be computed by solving N 2 linear equations (again exploiting properties of the 
terminal service times). 

The approach sketched above breaks down in the case of zero switch-over times: an idle period of 
the whole system contains infinitely many cycles of zero length, so mean cycle times and mean inter­
visit times are zero. Cooper and Murray [30] handle this case (for both E and G) by deriving expres­
sions for the generating functions of the joint queue-length distributions at only those embedded 
epochs at which the server leaves a queue after having served at least one customer in that queue. 
Cooper [31] shows that c.>;(s) can be expressed in these generating functions (see also Cooper (32] for a 
correction for G, and see Ch. 7 of (87]). 

Both Cooper [31] and (for nonzero switch-over times) Eisenberg (42] show how one can actually 
calculate c.>h) by iteratively determining the queue-length generating functions in which c.>;(s) can be 
expressed. 

2.2 DETAILED ANALYSIS OF TWO-QUEUE ONE-SERVER MODELS 

This section is devoted to an exposition of the mathematical analysis of the E- and NE disciplines 
in the case of N = 2 queues. First Takacs' approach [85] to the E discipline is outlined, and subse­
quently the approach of Cohen and Boxma [23,25] to the NE discipline. In order to let the similari­
ties and differences between the two approaches come out as clear as possible, we restrict ourself to 
the completely symmetric case without switch-over times (i.p., let A;::::=A and /J;(.)=/J(.)). We consider 
the ergodic situation, assuming that p< 1. 

In both models, let II;(z 1,z2) denote the generating function of the joint queue-length distribution 
in Q 1 and Q2 immediately after the departure of S from Q;, i = 1,2, and define for I z 1 I :,;;;;; 1, I z 2 I :,;;;;; 1: 

/J(zi,z2): = /J(A(l -z1)+A(l-z2)). 
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The E discipline 
Takacs [85] shows for lz1 I ~1. lz2 I ~1: 

(2.12) 

and symmetrically for II2(z.,z2); here 

Ilo = II1 (0,0)+ II2(0,0) = 2II1 (0,0). 

Takacs proceeds to determine II1(zi.z2); once this generating function is known, the waiting-time 
LST is easily obtained. The analysis leading to II1(z.,z2) consists of three steps. 

Step 1: The set-up 
According to its definition as a generating function, II1(z.,z2) should be regular for lz1 I <I, con­

tinuous for lz1 I ~1. for every fixed z2 with lz2 I ~1; and similarly with z 1 and z 2 interchanged. 
Hence every zero-pair (z 1,z 2) of the denominator of the rhs. of (2.12), the "kernel" 

K(zi.z2) := z1 -/1(zi.z2), 

should make the numerator of the rhs. of (2.12) zero. 

Step 2: Analysis of the kernel 
Using Rouche's theorem one can prove (cf. Cohen [24]) that, for each z 2, lz2 I ~1, the kernel 

K(z.,z2) has exactly one root z1 = 8(z2), in lz1 I ~l, with 

8(z 2) = y(A.(1-z 2)); 

here y(.) denotes the LST of the busy-period distribution in an MIG/ 1 queue with arrival rate A. and 
service-time distribution B(.). 

Step 3: Iteration procedure 
Steps 1and2 imply that for all z1 =8(z2), lz2 I ~l, 

1 
II1(0,z2) = II1(0,8(z2)) - 2IIo(l-8(z2)). (2.13) 

Introduce 

8<0>(z) : = z, 

8(n>(z) : = 8(dn - l)(z )), n = 1,2,. .. ; 

it can be shown that, for p<l, lim 8(n>(z)= 1, lz I ~l. Iteration of (2.13) yields: 
n-+OO 

1 00 

II1(0,z2) = -2IIo n~l (l-8{n>(z2)) + II1(0, 1). (2.14) 

Substitution of II1(0,z2) and II1(0,z 1) in (2.12) gives us an expression for II1(z.,z2), in which only 
IIo is unknown; the normalization condition (or the observation that IIo is not influenced by the 
order of service) implies that IIo = 1 - p. 

Finally c.>;(s) can easily be expressed in the above generating functions. In the asymmetric case two 
functions 81(z) and 82(z) occur; the iteration procedure is not significantly more complicated. 

So far for Takacs' analysis of the E discipline. We refer to Hofri [52] for an interesting extension of 
the present model to the situation that the server, when ready at one queue, only switches to the other 
queue if the queue length there exceeds a certain threshold value. 
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The NE discipline 
In the NE case we have: 

Combination of (2.15) with its symmetrical counterpart for II2(zi.z2) yields: 

1 Z2 + /3(z i.Z2) 
II1(zi.z2) = [01(z1) - 02(z2) - Ilo(l--

2 
(z1 +z2)) -/3( ) ] (2.16) 

Z2 Zi.Z2 

with 

(2.17) 

and o2(z2) being symmetrically defined. In this symmetric case, in fact, o1(z 1) = o2(z 1). The further 
analysis consists of four steps. 

Step 1: The set-up 
Similarly as step 1 for the E discipline. 

Step 2: Analysis of the kernel 
The kernel 

K(zi.z2) : = z1z2 - /32(z1>i2), (2.18) 

is much more complicated than the kernel for the E discipline. It is no longer possible to determine, 
explicitly, exactly one zero z 1 in lz 1 I ~l for each z2 in lz2 I ~I. Kernels like the one in (2.18) 
have been studied, in more generality, in Chapter II.4 of [25]. The theory developed there yields in 
this special case the following approach. 
It turns out to be advantageous, in this symmetric case, to search for pairs of zeros of the kernel 
which are complex conjugates: (zi.z2) = (w,w). These pairs of zeros tum out to supply all the infor­
mation we need. The following should hold for w: 

lw 12 = /32(2A(l-Rew)). 

Write 

(2.19) 

Hence Rew is for each tJ> determined as the unique zero in Re 8~1of8-cos(tj>) /3(2A(l-8)). Finally 
(2.19) implies that 

Im w = tan(tj>) Rew. (2.20) 

It is readily seen that, for tj>E[0,2'17], w =w(q,) once encircles a smooth contour F that is contained in 
the unit circle, having the point w = 1 in common with this circle; OEF+, the interior of F. For 
every w EF, (zi.z2) = (w,w) forms a pair of zeros of the kernel K(zi.z2). 

Step 3: Formulation of a boundary value problem 
The basic idea of the approach is to transform the analysis of (2.16) into the analysis of a standard 

boundary value problem from mathematical physics. Steps 1 and 2 imply that, for all 
(zi.z2) = (w,w), w EF, 

~ ( ) -( ) _ fio(l R ) w+/3(2A(l-Re w)) o1 w - o1 w - - e w . 
w-/3(2i\(l - Rew)) 

(2.21) 
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Now the advantage of considering complex conjugate zeros becomes apparent: 

01(w) = 01(w). 

It follows, introducing 

Ilo(l-Re w) 
Q(Re w) : = P(2A(l - Rew)) - Rew' 

that for all w E F, 

l 
Im o1(w) = 2Im w Q(Re w). 

We can now formulate a Dirichlet boundary value problem for the determination of o1(w): . 
determine a function o1(w), w EF+ UF, with 
(i) o1(w) is regular in p+, continuous in p+ UF; 
(ii) (2.23) holds for w EF (the boundary). 

Step 4: Solution of the boundary value problem 

(2.22) 

(2.23) 

In the standard Dirichlet problem formulation the contour involved is the unit circle. The confor­
mal mapping/(.) of p+ onto c+ (with as inverse the conformal mapping / 0(.)) accomplishes 
transformation into the standard formulation (this hardly presents an additional problem: the confor­
mal mapping / 0(.) is uniquely determined, and easily numerically evaluated, as the continuous solu­
tion of the Theodorsen singular integral equation, cf. [25]). It follows (cf. [48]) that for w EF+: 

l l l 
01(w) = 01(0) + -

2 
{ ( -/( ) - -) Im/o(y) Q(Re fo(y)) dy. (2.24) 

'IT lyl=I y W y 

After application of the Plemelj-Sokhotski formula [48], o1(w) is also determined for w EF; in particu­
lar we now have the important value 01(1). Analytic continuation subsequently yields o1(w) for 
lw l:e;;;I. Finally II1(zi.z2) follows from (2.16); the normalization condition implies that IIo=I-p. 
Mean waiting times are easily evaluated. In this symmetric case their expressions are simple, but in 
the general case contour integrals occur (however, the "conservation law" (2.9) still holds). 

We refer to [23,25] for a (more detailed) discussion of the asymmetric case, and to [9] for an 
analysis of the case with switch-over times. 

The foregoing discussion reveals a considerable difference in complexity between the E- and NE 
cases; a difference which becomes more apparent for N>2. E.g., in the completely symmetric case we 
get, for E, N kernels z; - /3(zi. ... ,zN) and, for NE, one kernel z 1 · · · zN - pN(zi. ... ,zN). The 
E analysis can be straightforwardly extended, whereas the NE analysis breaks down; it is not clear 
how the above two-dimensional analysis can be generalized to higher dimensions. 

REMARK 2.1 
The reader will have observed that there is considerable freedom in the choice of zero-pairs of the ker­
nel in (2.18). Generally speaking, a careful scrutiny of the structure of the kernel and of the right­
hand side of the functional equation under investigation (here (2.16)) should suggest a suitable choice. 

REMARK 2.2 
Cohen [29] has recently investigated the SE discipline in the asymmetric case without switch-over 
times, following a similar approach as for the NE discipline. The kernel is 

Z1Z2 - Y1(A2(l-z2)) Y2(A1(l-z1)), 

with Y;(.) the LST of the busy-period distribution in an M/G/l queue with arrival rate A; and 
service-time distribution B;(.). A suitable choice of zero-pairs of this kernel enables transformation 
into a Riemann boundary value problem. 
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2.3 VARIANTS 

A. Cyclic-service systems and vacation times 
The intervisit time at a queue in a multi-queue single-server system with cyclic service can be 

viewed as a vacation time for the server w.r.t. this queue. The Gl/G/l queue with vacation times has 
been the subject of several studies. Skinner [84] is an early reference; we refer to Doshi [40] for further 
references, and for a beautiful geometric proof (based on sample-path arguments) of the following 
very general result. Assume that the server in a Gl/GI 1 queue takes a vacation when becoming idle; 
when on return from vacation the system is still empty, he takes another vacation, and so on. Under 
fairly general conditions the stationary waiting time is distributed as the sum of two independent sto­
chastic variables: one corresponding to the waiting time in the same system without vac;itions, and 
the other to the stationary forward recurrence time of the vacations. ' 

Of particular interest for cyclic-service systems, and throwing new light on the convolution result in 
(2.11), is Doshi's extension: in the case of a Poisson arrival process, the above-mentioned result even 
holds when a vacation time is only independent of the interarrival times during and after this vaca­
tion, but not necessarily before this vacation. 

Lee [68] presents an exact analysis of the MIG/I queue with vacations and with finite waiting 
room. The assumption of finite waiting space is also realistic in cyclic-service systems; see Tran-Gia 
and Raith [88] for an approximate analysis of this model under the NE discipline. 

Almost all studies of cyclic-service systems have restricted their attention to the case of only one 
server. An interesting exception is the approximation study of Morris and Wang [72] for multi-queue 
systems with multiple cyclic servers. They argue that, from the point of view of obtaining simple, rea­
sonably accurate approximations, the fact that there are multiple servers can actually be helpful 
because of an "averaging out" effect. 

B. Non-cyclic service disciplines 
It is interesting to compare results for multi-queue single-server systems with a cyclic-service discip­

line with those with a priority discipline. Priority disciplines without switch-over times have been 
extensively studied. Murata and Takagi [74] present one of the few priority studies with switch-over 
times. 

Cohen [27] investigates a new priority model which is of practical interest, viz., a two-queue one­
server model with priority for the longer queue: after each service completion, the server chooses the 
first customer of the longest queue. He reduces the analysis to the solution of a Riemann boundary 
value problem. Although the approach is somewhat similar to that described above for the NE­
discipline, the "longer-queue priority discipline" poses several mathematically interesting complica­
tions. 

C. Other models of two parallel queues 
We close this section by mentioning a few practically relevant systems of two parallel queues with 

two servers and some form of interaction between the two parts of the system. These models are gen­
erally mathematically hard to analyse, but recently several have been successfully tackled by the tech­
nique of transformation into a boundary value problem. 

Fayolle and Iasnogorodski in their theses (see also [44D thus solved the "shortest-queue" problem: 
two servers, two queues and arriving customers choosing the shortest queue. Note that the "shortest­
queue" model is in a sense dual to the "longer-queue priority" model. 

Fayolle and Iasnogorodski [43] have also studied a model of two coupled processors: two MIMI 1 
queues with service speeds dependent on whether the other server is busy or idle. They determine the 
joint queue-length distribution by reducing the problem to a Riemann-Hilbert boundary value prob­
lem. The coupled-processor model is contained in a fairly general two-dimensional model investigated 
in [45]: a two-dimensional birth-and-death process with birth rates and death rates that are state­
dependent in a restricted way. It is of interest to remark that this also includes the following model: 
two queues and two servers, with all arriving customers choosing the first queue when the first server 
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is idle. Thus an open problem described by Roque [80] can be considered to be solved. 
The coupled-processor model with general service-time distributions is analysed in Chapter 1113 of 

[25]. The stochastic process characterized by the workloads of the servers is investigated. Hence 
Laplace-Stieltjes transforms occur instead of generating functions, and a Wiener-Hopf type of boun­
dary value problem is formulated instead of a Riemann-Hilbert one. It is conjectured that in general a 
state-space description by means of workloads instead of that by queue lengths, if possible, will lead 
to a simpler and more general analysis, since there is less need to assume negative exponential 
service-time distributions. 

The technique of transforming two-dimensional queueing problems into boundary value problems is 
still in its infancy; a large field of further research is lying open. Already several notorious problems 
have been solved, and recent numerical experience suggests that efficient numerical solution pro­
cedures can be developed on the basis of the theory. We refer to Fayolle [44] for a short exposition 
of the technique developed by him and Iasnogorodski (which is based on an analysis of the branch 
points of the algebraic curve(s), determined by the zeros of the kemel(s)). Cohen [26] presents a 
review of the application of the boundary value technique to a large class of two-dimensional random 
walks. This class contains several of the queueing models mentioned above; the kernel is specified in 
less detail than the kernels of those queueing models, but still quite general results can be obtained. 

3. Two QUEUES IN SERIES 

3.1 TANDEM QUEUES 

In 1954, R.R.P. Jackson [55] analysed an extremely simple model of two queues in series: the out­
put of an MIMI 1 queue Qi. with arrival rate A and mean service time /Ji, forms the input to a 
single-server queue Q2 ; the required service times at Q2 are independent, negative exponentially dis­
tributed stochastic variables with mean /J2 , independent of the arrival and service processes at Q 1• Cf. 
Fig. 1. 

Fig. l A tandem model 

Jackson obtained the stationary joint distribution of queue lengths x1 and x2 at Qi and Q2 by solv­
ing the steady-state equations. His surprising result, 

Pr{xi = ni,x2 = n1} = (l-A/Ji)(A/J1t' (l-A{h_)("-/J2t'. ni,n2=0,l, ... , (3.1) 

has the following implications: 

(i) The queue-length distribution at Q2 is the same as the queue-length distribution in an MIMI 1 
queue with arrival rate A and mean service time {32 ; 

(ii) The queue lengths at Qi and Q2 are independent. 

These results are explained by Burke's [15] 
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OUTPUT THEOREM 

(i) In equilibrium the departure process from an MIMI s queue is a Poisson process, with the 
same rate as the arrival process; 

(ii) The queue length in an MIMls queue at an arbitrary time t0 is independent of the departure 
process prior to t 0 • 

See Reich [78] for a simple proof based on reversibility, which immediately explains the remarkable 
second statement. 

Reich [78] also studied the joint distribution of a customer's sojourn times ( = waiting + service 
times) at the two queues of Fig. 1; he showed that these sojourn times, too, are independent. This 
result, in its tum, was explained by Burke's [16] 

SOJOURN-TIME THEOREM 

The sojourn time of a customer in an MIMI s queue, with service in order of arrival, is independent 
of the departure process prior to his departure. 

The most elegant proof of both the Output Theorem and the Sojourn-time Theorem is based on the 
reversibility of the state process of the MIMI s queue. A very lucid discussion of the above-mentioned 
results, their implications and several extensions, is presented in Burke [ 17]. One extension should be 
mentioned here: the independence of successive sojourn times remains true in the case of an arbitrary 
number of stationary MIMI 1 queues in series. The first and the last queue may contain multiple 
servers, but when one or more of the intermediate queues has multiple servers the sojourn time 
independence is destroyed by the possibility of customers overtaking each other at those queues. 

The network extension of the above-mentioned results concerning independence of queue lengths 
(and the resulting "product form", cf. (3.1)) and concerning independence of sojourn times of a custo­
mer at consecutive nodes forms a fundamental chapter in queueing theory. A very short review will be 
presented in Subsection 3.4. The remainder of the present subsection is devoted to two important 
new developments concerning two queues in series. 

Recently Blanc [4] has studied the relaxation time of the model of two MIM/l queues in series 
described above. The relaxation time of a system is a measure for the time required to reach ergodi­
city from an arbitrary initial state. In many practical queueing situations it is crucial to have infor­
mation concerning the system relaxation time (e.g., for simulation purposes, or in models where 
underlying parameters do not remain constant over a lengthy period of time). However, the complex­
ity of a time-dependent analysis has caused this to be a neglected subject in queueing theory. Morse 
[73] seems to have been the first to use the term "relaxation time" in a queueing context; see Cohen 
[24], Keilson et al. [58] and Blanc and Van Doom [5] for some exact relaxation-time results for 
single-server queues, and see Odoni and Roth [76] for an empirical study. Blanc's exact analysis [4] of 
the tandem model is a very important contribution, as it yields much insight into the relaxation time 
of a Jackson network (in this respect the interesting study of Massey [70] and a generalization in [89] 
should also be mentioned). 

Blanc determines the transform of the joint time-dependent distribution of the queue lengths at the 
two MIMI 1 queues in series (following the boundary-value approach sketched in Subsection 2.2 
above for the NE discipline). First he derives a functional equation for this transform; subsequently 
he analyses the zeros of the kernel of this equation, using the technique of Fayolle and Iasnogorodski 
(cf. [44]); the functional equation gives rise to a Riemann-Hilbert boundary value problem, solution of 
which yields an explicit expression for the sought transform. Thus Blanc finally obtains the following 
deep results. 

Let p;: =A/3;, T;: = ~ 
2

, i = 1,2, and let p 0(t) denote the probability that the whole system is 
(1- p;) 

empty at time t, given that it is empty at time 0. Then, as t-'J.OO, 
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for P2<p1<1, 
I 

1 Pt (yp; -P2)2 e -t /T, 1 
Po(t) = (l-p1)(l -P2) + 2- r -~ 2 - ( I a )3/2 [l +O(-t )]; 

V 'IT (1- V PI ) PI P2 t PI 
(3.2a) 

for PI =P2<1, 
1 -t /T1 l 

P (t) - (1-p )2 + -- pl/4 (1- - ~p )-e -- [l +O(-t )]·, o - I 2-v:; I VPI.(t/f1i)lf2 (3.2b) 

for p1<P2<1, the expression in (3.2a) should be replaced by one in which all indices 1 and 2 are 
interchanged. These formulas should be compared with the corresponding one for Q 1, cf. Cohen [24], 
p. 178. Following Cohen's definition of relaxation time [24], Blanc's results imply that the relaxation 
time of the tandem model in the ergodic case is: 

(3.3) 

i.e., the maximum of the relaxation times of the two M/M/l systems Q1 and Q2• Formula (3.3) leads 
to the conjecture that the relaxation time of an ergodic system of exponential queues in series is the 
maximum of the relaxation times of each of the components. Much research will be needed to further 
investigate this intuitively appealing conjecture and further extensions. The time-dependent behaviour 
of the tandem system in the non-ergodic case is also analysed in [4]; see also Goodman and Massey 
[50] who, in the non-ergodic case, determine the maximal subnetwork that does achieve steady-state. 
In [3] Blanc discusses the transient behaviour of networks with infinite-server nodes. 

Many variants of R.R.P. Jackson's model have been considered: more general arrival process, gen­
eral service-time distributions at Q 1 and/or Q2 , finite waiting rooms, dependent service times of a 
customer at both queues. We refer the interested reader to Chapter 7 of Gnedenko and Konig 
[49,Vol. II] and Section VI.3 of Disney and Konig [39]. We restrict ourself here to one recent study . 
that is interesting both from a methodological and a modeling point of view. 

Coffman, Fayolle and Mitrani [21] study the total sojourn time of a customer in the simple model 
of Fig. 1, but with the processor-sharing (PS) discipline at Q1 and/or Q2• An interesting aspect of 
this discipline is that overtaking is possible, so that the remaining sojourn time of a customer can be 
affected by later arrivals. The reversibility of the system implies that, as far as total sojourn time is 
concerned, one can restrict oneself to the two cases in which Q 1 has a PS discipline and Q2 has either 
a PS- or a FCFS discipline. The analysis in both cases proceeds as follows. Let q,1(n1>n 2,s) be the 
conditional LST of the remaining sojourn time of a customer in the system, given that the customer is 
at Q1 and that there are n 1 other customers at Q1> and n2 at Q2• Introduce the generating function 
G(x,y,s) of '1>1(n1>n2,s), a function which is regular in the region lxl<l, IYl<I. Let '1T(nl>n2) 
denote the probability that, upon arrival at the system, a customer finds n; customers at Qi, i = 1,2. It 
is well-known that '1T(n1>n2) is given by (3.1). Defining Pi:=A/3;, i=l,2, the LST q,(s) of the total 
sojourn time of a customer in the system is given by 

00 00 

q,(s) = ~ ~ '1T(n1>n2) '1>1(n1>n2,s) = (l-p1)(1-P2)G(p1>P2,s). (3.4) 
n1 =0n2 =0 

Hence G(P1>P2,s) has to be determined. Unfortunately, for this evaluation it appears to be necessary 
to determine G(x,y,s) for arbitrary values of x andy, with lxl<l, lyl<L G(x,y,s) is shown to 
satisfy a functional equation, not completely unlike the one found by Blanc [4] in his relaxation-time 
study. Like Blanc, Coffman et al. carefully study the zeros of the kernel of this functional equation, 
and use the information provided by these zeros to transform the problem. In the case of one PS and 
one FCFS server, G(x,y,s) can be obtained by solving (numerically) a Fredholm integral equation of 
the first type, while solution of two such integral equations is required in the case of two PS servers in 
tandem. 
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3.2 CYCLIC QUEUES 

In this subsection we consider the simplest possible cyclic-queue configuration: N customers cycle 
through a system of two single-server queues Qi and Q2, requiring services with negative exponen­
tially distributed service times ( cf. Fig. 2). Such a system can, e.g., serve as a model of the central 
part of a multiprogrammed computer system (cf. Allen [l]) . 

- .Bi - /12 -

N customers --

Fig. 2 A cyclic model 

It is well-known and easily verified that, if the service discipline in both queues is FCFS, then Qi and 
Q 2 behave like M/M/l queues with finite capacity N; if Qi has a general service-time distribution, 
then this queue behaves like an M/G/l-N queue. This observation immediately yields the marginal 
queue-length distribution at Qi (both at an arbitrary epoch, a departure epoch and an arrival epoch), 
and hence - trivially - also the joint queue-length distribution. 

Let us turn to the more interesting study of sojourn times. The paper of Chow [20] can be con­
sidered as the starting-point for the research of sojourn times in closed queueing networks. Chow stu­
dies the model of Fig. 2 with a FCFS discipline at both queues. He obtains, after a lengthy derivation, 
the distribution of the cycle time, i.e., the time between two consecutive departures of a particular cus­
tomer from Q2 (or from Qi, what yields the same result). 

Boxma and Donk [6] generalize this result, determining the joint distribution of a customer's succes­
sive sojourn times at Qi and Q2• They exploit the fact that Qi behaves like an M/M/l-N queue. The 
queue-length process at such a queue is a birth-and-death process and hence a reversible process, what 
leads to the following conclusion: the distribution of a tagged customer's sojourn time at Qi. condi­
tionally that he has just left k customers behind, is equal to the distribution of a tagged customer's 
sojourn time at Q 1, conditionally that he found k customers present upon arrival. One can now easily 
determine the joint distribution of a tagged customer's successive sojourn times S 1 and Si at Q 1 and 
Q 2 , by conditioning on the number of customers he leaves behind in Qi. In the stationary situation 
we have, introducing p : = /11 I /12: 
for Re vi.v 2 ~0, p~l, 

N-1 1-n 1 1 E[exp(-v1Si - v2S2)] = ~ _;:_.r;_I ( l+I ( )<N-k-I)+I ; (3.5) 
k=O 1-r/" l+/J1Vi l+/J2V2 

(here 
1 

- ~ I represents the probability that a departing customer leaves k customers behind in Q 1 ; I-p 
for p = 1, it should be replaced by 1 / N). 
Both the derivation and (product-)form of (3.5) are natural analogues of those of the sojourn-time 
result for the tandem model of Fig. 1. Of course Si and Si are not independent, as they are in the 
tandem model, but their dependence has a special structure, inherited from the dependence of the 
underlying queue lengths. We have, with Z the number of customers left behind in Q 1 at a departure: 

cov(Si.S2) = /11/12 cov(Z+ l,N-Z) = -Pi.Bi Var(Z) < 0. (3.6) 
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The result (3.5), revealing a product-form of the LST of successive sojourn times of a customer w.r.t. 
the underlying queue-length distribution at a departure epoch, has recently been generalized exten­
sively for closed product-form networks (see Subsection 3.4). Just as in the case of sojourn times 
along a path in an open product-form network, there is one basic restriction: the path should be 
overtakefree, i.e., a customer cannot be overtaken directly by customers behind him, nor indirectly by 
the influences created by such customers. 

Let us, as in Subsection 3.1, turn to some simple two-queue models in which overtaking is possible. 

I. Queues with processor sharing 
Consider the model of Fig. 2, but with processor sharing at both nodes. Now overtaking of custo­

mers is possible because of the internal structure of the nodes. Nevertheless, Daduna [37] is able to 
derive an explicit expression for. the LST of the cycle time of a customer. He defines the cycle time of 
a customer to be the time between two successive departures of this customer from Q 1. He starts 
(similarly as in several of his other interesting cycle-time studies) by writing down a recursive relation 
for /i,N,n(s), the LST of the cycle time of a tagged customer, given that this customer finds n custo­
mers present at Qi upon his arrival. Considering the various jump possibilities, he obtains: 

_ M(n) [(1-8n,N-1)//J1 _n_ l//Ji 
/i.N,n(s) - M(n)+s M(n) fi.N,n+1(s) + n +I M(n)Ji,N,n-1(s) (3.7) 

1. l//Ji l + n + 1 M(n)fl,N,N-1-n(s) , O:s;;;n :s;;;N-1, 

with 

1 1 
M(n) := Pi +(1-8n,N-1)p;-; 

M(n) / (M(n)+s) represents the LST of the time until the next jump in the system after the tagged 
customer's arrival at Qi, and / 1,N,n(s) denotes the LST of the sojourn time of the tagged customer in 
Qi. given that he finds n customers present there upon arrival. Daduna first calculates / 1,N,n(s) expli­
citly. Then he shows by induction that 

/i,N,n(s) = /i,N, o(s )vn -wm 

where Vn and Wn can now be explicitly determined. /i,N,o(s) can also be determined; finally the LST 
of the cycle time is a weighted sum of the terms /i,N,n(s). 

Although complex, this analysis is considerably simpler than the one in [21] for the tandem (open) 
model of two PS nodes, discussed in Subsection 3.1. It would also be interesting to determine the 
joint distribution of successive sojourn times, and to investigate the dependence between such sojourn 
times. 

II. Successive cycles 
Consider the exponential model of Fig. 2. In some applications it is of importance to have insight 

into the distribution of the sum of a number of consecutive cycle times. In such a situation with more 
than one cycle, indirect overtaking can occur: if a customer returns to Q 1, he may still find there cus­
tomers who were waiting behind him at his previous visit to Q 1• Their influence has overtaken him. 
An explicit expression for the LST of the joint distribution of four consecutive sojourn times of a par­
ticular customer in Qi. Qi, Qi.Qi has been derived in [8]. The concept of reversibility can again be 
used, but the analysis is much less straightforward than in [6]. Daduna [35] obtains the LST of the 
distribution of the sum of r consecutive cycle times. The result is given in a way that makes it suitable 
for recursive evaluation. 

The resulting formulas in [8] and [35] are rather complicated. However, they give rise to some 
interesting practical observations. Theoretical and numerical results in [8] concerning the dependence 
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between two successive cycle times suggest that, in most cases, this dependence is so small that the dis­
tribution of the sum of r successive cycle times can be very accurately approximated by the rfold convolu­
tion of the distribution of one cycle time. In particular it has been shown in [8] that, with C1 and C2 
two successive cycle times of a tagged customer, 

lim correl(C1>C2) = 0. (3.8) 
N->oo 

In all cases investigated numerically, correl(C1>C2)<0 (probably a result with quite general validity), 
and, for fixed N, correl(C1>C2) takes on its most negative value for /11 =/12. The extreme value, 
correl(C1>C2)= -0.113, is found for N =4, /11 =/12. The correlation between cycles which are farther 
apart can be expected to be even smaller. 

The following discussion concerning the (overbearing) influence of the slowest of the two servers on 
the cycle-time distribution supports the views expressed above (in [11] this discussion is extended to 
more general networks). Suppose that /11 >/12; the server at Q1 is "slower" than his colleague at Q2. 
Let C denote the cycle time of a customer. One can prove, using (3.5), that 

1 s+ 1 I /11 
E[exp(-sq] = ( 1 +f:Jis f [1 + 0( s+ 1 I /1

2 
f], s;;;;.O, N~oo; (3.9) 

in particular, for N ~oo, 

EC= N/11[1 + O((~ )N)], 

Ec2 = N(N + l){Ji[l + 0(( :~ f)]. (3.10) 

Numerical results presented in [11] show that replacement of C by the sum of N service times at Q 1 
(as suggested by (3.9)) leads to remarkably small errors, even if /12 is close to {J1 and N is not very 
large. The following reasoning yields an intuitive explanation. Let us define the cycle time (from the 
viewpoint of a customer) as the time between two successive departures of a tagged customer from 
Q 1 ; then we can write, considering one cycle from the point of view of Q 1 : 

C = fo+T1 +I1 +T2+ ... +IN-I +TN, (3.11) 

where T1> ••• ,TN and Jo, ... ,IN-I denote the N service times at Q 1 during a cycle, and the N idle 
periods of the server at Q 1 immediately before those services (Ij - I >0 iff Q 1 is empty just before the 
j-th service). As Q 1 has the slowest server, Pr{Ij=O} will be close to one for allj (in particular if N 
is large), and C will be closely approximated by T1 + · · · + TN. Returning to the case of several con­
secutive cycles, we note that the same queue-view argument can be applied here. With an obvious 
notation, 

N N N N 
C1+C2 = ~{Ij-1,l+Tj,i} + ~{lj-l,2+Tj,2} ~ ~Tj,1 + ~Tj,2• (3.12) 

j=I j=I j=I j=I 

unless N is small and /11 ~/12 ; and the two cycle times are almost independent (cf. (3.8)). 

REMARK 3.1 
The relaxation time in the system of Fig. 2, with FCFS service discipline at both nodes, can be easily 
obtained using the fact that Q 1 behaves like an M/M/l-N queue. See, e.g., Keilson et al. (58]; their 
results imply that a sharp peak in the relaxation time occurs for /11 =/12. This phenomenon, which 
has also been observed by Tran-Gia (personal communication) is not surprising in view of the above 
discussion concerning the influence of the slowest server. 

REMARK3.2 
In [7] Q2 is allowed to have a general service-time distribution. An explicit (invertible) expression for 
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the LST of the joint distribution of the successive sojourn times of a customer in Q 1 and Q2 has been 
derived, by again exploiting the connection with the M/G/1-N queue. Subsequently Daduna [34) has 
obtained a recursive scheme to calculate the LST of the cycle-time distribution; in his model, more­
over, the service-time distribution at Q 1 is a mixture of Erlang distributions. 

3.3 FINITE AND INFINITE SOURCE INTERACTION 
In Subsections 3.1 and 3.2 the simplest possible open and closed queueing-network configurations 

have been considered. We now turn to the simplest possible two-queue configuration with one exter­
nal arrival stream and one closed loop. It is a model of finite and infinite source interaction. Infinite 
source customers arrive at a single-server queue Q according to a stationary Poisson process with rate 
A, requiring service times which are i.i.d. stochastic variables with distribution Bp(.) with LST /Jp(.) 
and mean 1 / p.p. There is one finite source (fs), having negative exponentially distributed think times 
with mean 1 / y. The finite-source customer also requires a service at Q; successive service times of 
the fs customer at Q are i.i.d. stochastic variables with distribution Bfs(.) with LST /Jft(.) and mean 
1 / P.Js• independent of think times and of the Poisson customers. Both customer types thus share Q 
( cf. Fig. 3). The queueing discipline at Q is FCFS; hence no customer type has priority over the 
other type. 

fs 

Fig. 3 An interaction model 

If Bp(t) = Bfs(t) = 1-e -/lpt, then the network is a simple product-form network. A much more 
interesting situation arises if the two service-time distributions of the fs customer and the Poisson cus­
tomers at Q are not identical (and negative exponential) - a realistic assumption if the network is used 
to model, e.g., the interaction of batch traffic and interactive traffic at a CPU (Q). It is now crucial to 
take the exact position of the fs customer in Q into account, and to know, in particular, whether the 
customer in service in Q is the fs customer. The above model, with both service-time distributions at 
Q negative exponential, has been studied by Kaufman [56). He presents a very accurate approxima­
tion method for estimating all mean performance measures of interest, thus obtaining insight in the 
extent to which the fs customer increases the congestion experienced by the Poisson customers. He 
allows not just one but N identical finite sources. In [57] he extends his analysis to the case of N 
heterogeneous finite sources. 

Doshi and Wong [41), and, independently, the present author [13] have given an exact analysis of 
the model of Fig. 3. Doshi and Wong allow generalized hyperexponential distributions for the think­
time and service-time distribution of the fs customer; the Poisson customers have negative exponen­
tially distributed service requirements. They obtain the generating function of the queue-length distri­
bution at Q seen by the arriving ft customer. They also consider the case of LCFS service in Q. In 
[13) only negative exponential distributions are admitted, but somewhat more general results are 
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obtained: the joint distribution of queue length at Q and position of the fs customer in the system is 
determined, leading to exact expressions for various performance measures. The analysis of [13] can 
be extended to allow completely general service-time distributions for both customer types in Q. The 
approach for this general case is sketched below; details will be presented in a forthcoming paper. 

In the sequel we assume that 

i\ 
p : = - < 1 ; (3.13) 

/LP 

(this can be shown to be a necessary and sufficient condition for ergodicity of the system). 
Consider successive departure epochs from Q. Let 

with 

here 

Introduce 

q(x,m) := Pr{x = x,n = x+m}, x,m = 0,1, ... , 

n : = the total number of customers in Q just after a departure from Q, 
x : = the position of the fs customer just after a departure from Q; 

x = 0 if the fs customer is in its source, 
x = i if the fs customer is in Qin position i (position 1: about to receive service). 

00 00 

R(w,z) := ~ ~ q(x,m)wx zm, lw I :;;;;;1, lz I :;;;;;1, 
x=O m=O 

00 

S(z) := ~ q(l,m)zm, lz I :;;;;I. 
m=O 

(3.14) 

(3.15) 

(3.16) 

Our goal is the determination of R(w,z). Recurrence relations for q(x,m) at successive departure 
epochs lead, in a standard way, to the following formulas: for I w I :;;;;;1, lz I :;;;;;1, 

I 
R(O,z) = fJJs(i\(1-z))S(z) + -fJp(i\(1-z)+y)[R(O,z)-R(O,O)] (3.17) 

z 

[1 
fJp(i\(1-z)) 
---][R(w,z)-R(O,z)] = -{Jp(i\(1-z))S(z) 

w 
(3.18) 

i\ 
+ [R(O,O) y+i\ w + R(O,w)- R(O,O)] y+i\(1-w)-i\(l -z) [{Jp(i\(l -z))-{Jp(y+i\(1-w))]. 

Substitution of (3.17) into (3.18) yields after some calculations: 

[R(w,z)-R(O,z)] = w[w-{Jp(i\(l-z)))- 1 (3.19) 

{[R(O,O) y: Aw+ R(O, w)-R(0,0)] y+l>.(l -w)-1.(l -z) [,8,(1>.(l -z))- Jlp(y+),(1-w))] 

{Jp(i\(1 - z )) 1 
- fJJs(i\(l-z)) R(O,z)[I--;fJp(i\(l-z)+y)] 

{Jp(i\(1-z)) 1 i\ _J_ } 
- fJJs(i\(1-z)) R(O,O)[(-;- y+i\ ){Jp(i\(1-z)+y) - y+i\ P1s(i\(l-z))] . 

Once R(O,z) is determined for lz I :s;;;;;l, R(w,z) follows from (3.19). Determination of R(O,z) proceeds 
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as follows (note the close resemblance with the analysis of the E discipline in Subsection 2.2). The 
denominator of the rhs. of (3.19), the kernel of the functional equation (3.19), becomes zero for 

w = 8(z) := flp(A(l-z)). (3.20) 

For lz I ~I, clearly l8(z)I ~I. Since the lhs. of (3.19) is regular in lw I ~I. lz I ~I, the numerator 
of the rhs. of (3.19) should be zero for w=8(z), lz I ~I. This condition yields a linear relation 
between R(O,z), R(O,O) and R(0,8(z)); for all z with lz I ~I. we can write with appropriately defined 
functions C(z) and D(z): 

R(O,z) = C(z) R(O,O) + D(z) R(0,8(z)). (3.21) 
R(O,z) has to be determined from the conditions that, for all z with lz I ~I, (i) it is a regular func­
tion of z, and (ii) it satisfies (3.21 ). An essential role in this analysis is played by 8(z) and its iterates, 
defined by: 

d-0>(z):=z, (3.22) 
a<-n>(z) : = 8(dn - J)(z )) , n = 1,2, .... 

One can prove that, for p<l, Iima<n>(z)=l, lz l~l. Iteration of relation (3.21) yields (an empty 
n-->OO 

product being one, by definition): 
00 i-1 00 

R(O,z) = R(O,O) ~ {C(di>(z)) II D(d-J1(z))} + R(O, 1) II D(lfJ>(z)), lz I ~l. (3.23) 
i=O j=O j=O 

The two unknowns R (0, 0) and R (0, l) in (3.23) still have to be determined. In this connection note 
that the functions C(z) and D(z) have exactly one pole zi. O<z 1 <l, in lz I ~1. with 

z1 = flp(A(l-zi)+y). (3.24) 
One relation between R (0, 0) and R (0, 1) is obtained by observing that R (O,z) should be regular in 

00 00 j-) 
lz I ~1. Using properties of 8(z) one can show that IID(lf..i>(z)) and ~ {C(di)(z))IID(lf..i>(z))} 

j=O i=O j=O 
are well-defined and regular in lz I ~1, except for those z for which a nonnegative integer n exists 
such that a<-n>(z) = z 1• In particular, D(z), occurring in every term in the right-hand side of (3.23), 
has a pole at z=z 1• Divide both sides of (3.23) by D(z), and subsequently put z=z 1; the regularity 
of R (O,z) in z = z 1 now implies that (with appropriate definition of C (z 1) / D (z 1 )), 

R(O,O) ~~1 (C(d1
'(z1)) ;~ D(IP'(z1))} + ~;;:~ l + R(O, I) J~ D(/Pl(z1)) = 0. (3.25) 

Similarly, divide both sides of (3.23) by D(z)D(8(z)), and put z=8- 1(z 1); the analyticity of R(O,z) in 
z=8- 1(z 1) again implies relation (3.25). Continuing in the same way, it is seen that Condition (3.25) 
ensures the analyticity of R (O,z) in all those values of z, for which a positive integer n exists such that 
a<-n>(z)=z 1 (the fact that one and the same condition takes care of all the singularities is a direct 
consequence of the structure of (3.21) and of C(.) and D(.)). 

Relation (3.25) provides one equation for determining the constants R(O,O) and R(O, 1). The second 
equation is obtained by putting w=z in (3.19), dividing both sides by z -1 and subsequently substi­
tuting z = 1. This yields: 

1-p = R(0,1)(1-p+~](l-/Jp(y)) + R(O,O)[~+~/Jp(y)(l -p+~)]. (3.26) 
/Ljs y+ I\ y+ I\ /Ljs 

Combination of (3.23), (3.25) and (3.26) yields explicit expressions for R(O,O), R(O, 1) and, more gen­
erally, R(O,z). Finally, the joint generating function R(w,z) of x and n follows from (3.19). 

00 00 
Numerical evaluation of these expressions requires evaluation of ~ { C (di)(z 1 )) /II D (lf..i>(z i))} 

i=O j=i 
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and similar terms. It turns out that very accurate results are already obtained when only a1 few terms 
of the infinite sum and product are taken - unless p is very close to one. The numerical calculations 
are extremely simple, hardly occupying any computer time. 

It is not difficult to evaluate various performance measures, starting from R (O,z ). E.g., define "Jya, 
EL/s and ESJs to be the arrival rate of the fs customer at Q, the mean number of fs customers in Q at 
an arbitrary epoch, and the mean sojourn time of the fs customer in Q, respectively. Clearly 

AJs = y(l - ELfa). (3.27) 

Furthermore, the fraction of times that the customer in service in Q is the fs customer equals: 

~- . _J_ '\ '\ - S(l)+R(O,O) '\. (3.28) 
/\ft +I\ y+I\ 

S(l) can be expressed in R(O,O) and R(O, I) (and hence, using (3.26), only in R(O,O)) by putting 
z = 1 in (3.17): 

S(l) = [R(0,1)-~R(O,O)][l-pp(y)], (3.29) 

so that "Jya, and hence EL/s, can be expressed in R(O,O). Finally, using Little's formula, 

ES = ELts = EL/s 
'ft Aft y(l - ELfs). (3.30) 

One can even obtain the distribution of the sojourn time Sfs, by relating its LST to the generating 
function of the distribution of the number of customers left behind by the fs customer in Q. It is also 
possible to obtain the total mean queue length in Q just after a departure epoch, thus measuring the 
influence of the finite source on the Poisson customers. Details will be provided elsewhere. See [13] 
for an extensive analysis of queue lengths at an arbitrary epoch in the case of negative exponential 
distributions of both customer types at Q. 

3.4 EXTENSIONS 
The results of R.R.P. Jackson [55] and of Reich [78] concerning independence of queue lengths and 

of sojourn times in tandem queues formed the starting-point for one of the most beautiful theories of 
Queueing. This theory has been exposed in several textbooks and surveys. Therefore we restrict our­
self here to a sketch of the main developments. A distinction is made between queue-length results 
and sojourn-time results. 

QUEUE LENGTHS: product-form results for joint queue-length distributions 
J.R. Jackson [53]: open exponential FCFS network, no feedback. 
J.R. Jackson [54): open and closed exponential FCFS networks, state-dependent arrival and service 
rates. 
Gordon and Newell [51]: closed exponential FCFS network. 
Baskett et al. [2]: open, closed and mixed networks with exponential FCFS servers, PS nodes, LCFS 
nodes, IS nodes. 
Kelly [59,60]: a very general network structure, which leads to a significant generalization of Jackson's 
network concept. Kelly fully exploits the concept of time-reversal. 
Cohen [22): a useful generalization of processor sharing. His analysis does not require the often made 
assumption that the involved distributions have a rational LST. 
Surveys can, e.g., be found in Disney [38] (with particular attention for the work of J.R. Jackson and 
Kelly) and Disney and Konig [39]. 
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In closed product-form queueing networks with many nodes and/or many customer types, the curse 
of dimensionality causes the numerical evaluation of performance measures to be a complex problem 
An excellent discussion of the best available algorithms, and of some sharp approximations based on 
these algorithms, is given by Lavenberg and Sauer ((67], Chs. 3 and 4). The development of efficient 
(exact or approximate) algorithms for the analysis of very large product-form networks is an impor­
tant trend in queueing network theory. Many more interesting results may be expected in the near 
future. 

SOJOURN TIMES: product-form results for the LST of joint sojourn-time distributions 
Open networks: 
independence of successive sojourn times of a customer along a path has been proved by: 
Reich (79]: arbitrary number of M/M/l queues in series. 
Lemoine [69]: tree-like networkS of MIMI 1 queues. 
Walrand and Varaiya [91] (see also Melamed [71]): overtake-free paths in open multi-class Jackson 
networks. Here, in contrast to earlier papers, the internal customer flows are not Poisson. 

Closed networks: 
Two parallel developments can be witnessed, starting from [20] and [6], respectively, and discussing 
cycle-time (and passage-time) distributions and joint sojourn-time distributions, respec.tively: 
Schassberger and Daduna (81] and Boxma, Kelly and Konheim [ 1 O], resp.: cyclic system, arbitrary 
number of queues. 
Daduna (33], Kelly and Pollett [61], resp.: overtake-free paths in closed multi-class Jackson networks. 
These two papers aptly illustrate the strength of the respective techniques of recursive equations for 
passage-time LST's and of time-reversal. 
Finally the most general result is contained in Daduna and Schassberger (36]. Here not only a series 
of infinite-server nodes is allowed at the beginning arid end of a path, but also one multi-server node 
is allowed between the strings of infinite-server nodes and single-server nodes. Thus a complete anal­
ogy between results for open and for closed networks is reached ( cf. the discussion of the Sojoum­
time theorem in Subsection 3.1). 
See Schassberger [82] for a survey, which contains an extensive discussion of the results of (36]. 

REMARK 3.3 
We have so far neglected the important subject of insensitivity, i.e., the phenomenon that stationary­
state probabilities of some queueing networks are insensitive to the form of the service- (and/ or 
arrival-) time distributions, apart from the means of those distributions. A discussion of the insensi­
tivity concept is presented in Disney and Konig [39], Ch. IV; several references to the important work 
of the East-German school can here be found. See also the books of Kelly (60] and of Franken et al. 
(47], which, a.o., contain interesting discussions of necessary and sufficient conditions for insensitivity. 
Cohen (28] demonstrates a new proof technique for insensitivity. Exploitation of geometric properties 
of the sample functions of the inherent stochastic processes is shown to lead to an easy proof and a 
better understanding of the insensitivity of the queue-length distribution in the Engset model (and 
many other models). 

EPILOGUE 
In this paper we have discussed some simple-structured queueing network models. Emphasis has 

been put on new developments (mainly methodological) concerning models of two queues. 
Queueing network theory is presently going through a very exciting period. Many interesting 

developments are taking place, upon most of which we have hardly touched so far. The following 
techniques and developments, which enhance the possibility of obtaining useful numerical results for 
large queueing networks, should not be left unmentioned: 
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- The emergence of standard packages for the analysis of queueing networks by analytic, numerical 
and simulation methods; a variety of packages is displayed in [77]. 

- Decomposition and aggregation techniques. Brandwajn [14] casts several approximation tech­
niques based on aggregation and decomposition in a unified framework, and supplies many refer­
ences. 

- Singular perturbation methods. Knessl et al. develop such methods, in [64] and other reports, for 
the asymptotic analysis of M/G/l-generalizations; their results are superior to those obtained by 
diffusion approximation. 

- The method of first-passage times (cf. Kiihn [66]); a promising tool for the numerical study of 
time-dependent processes (busy periods, sojourn times) in Markovian queueing networks. 

- The development of computational probability techniques for the analysis of queueing models 
(Neuts [75], Tijms [90]). · 

- The parametric-decomposition approximation method of Whitt, culminating in the software pack­
age QNA [93,94]. Whitt characterizes arrival (and service) processes by two or three parameters, 
and then analyzes individual nodes separately. 
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