74 research outputs found

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    Offset Surface Light Fields

    Get PDF
    For producing realistic images, reflection is an important visual effect. Reflections of the environment are important not only for highly reflective objects, such as mirrors, but also for more common objects such as brushed metals and glossy plastics. Generating these reflections accurately at real-time rates for interactive applications, however, is a difficult problem. Previous works in this area have made assumptions that sacrifice accuracy in order to preserve interactivity. I will present an algorithm that tries to handle reflection accurately in the general case for real-time rendering. The algorithm uses a database of prerendered environment maps to render both the original object itself and an additional bidirectional reflection distribution function (BRDF). The algorithm performs image-based rendering in reflection space in order to achieve accurate results. It also uses graphics processing unit (GPU) features to accelerate rendering

    Fifth Biennial Report : June 1999 - August 2001

    No full text

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    3D oceanographic data compression using 3D-ODETLAP

    Get PDF
    This paper describes a 3D environmental data compression technique for oceanographic datasets. With proper point selection, our method approximates uncompressed marine data using an over-determined system of linear equations based on, but essentially different from, the Laplacian partial differential equation. Then this approximation is refined via an error metric. These two steps work alternatively until a predefined satisfying approximation is found. Using several different datasets and metrics, we demonstrate that our method has an excellent compression ratio. To further evaluate our method, we compare it with 3D-SPIHT. 3D-ODETLAP averages 20% better compression than 3D-SPIHT on our eight test datasets, from World Ocean Atlas 2005. Our method provides up to approximately six times better compression on datasets with relatively small variance. Meanwhile, with the same approximate mean error, we demonstrate a significantly smaller maximum error compared to 3D-SPIHT and provide a feature to keep the maximum error under a user-defined limit

    Analyse und Modellierung dynamischer dreidimensionaler Szenen unter Verwendung einer Laufzeitkamera

    Get PDF
    Many applications in Computer Vision require the automatic analysis and reconstruction of static and dynamic scenes. Therefore the automatic analysis of three-dimensional scenes is an area which is intensively investigated. Most approaches focus on the reconstruction of rigid geometry because the reconstruction of non-rigid geometry is far more challenging and requires that three-dimensional data is available at high frame-rates. Rigid scene analysis is for example used in autonomous navigation, for surveillance and for the conservation of cultural heritage. The analysis and reconstruction of non-rigid geometry on the other hand provides a lot more possibilities, not only for the above-mentioned applications. In the production of media content for television or cinema the analysis, recording and playback of full 3D content can be used to generate new views of real scenes or to replace real actors by animated artificial characters. The most important requirement for the analysis of dynamic content is the availability of reliable three-dimensional scene data. Mostly stereo methods have been used to compute the depth of scene points, but these methods are computationally expensive and do not provide sufficient quality in real-time. In recent years the so-called Time-of-Flight cameras have left the prototype stadium and are now capable to deliver dense depth information in real-time at reasonable quality and price. This thesis investigates the suitability of these cameras for the purpose of dynamic three-dimensional scene analysis. Before a Time-of-Flight camera can be used to analyze three-dimensional scenes it has to be calibrated internally and externally. Moreover, Time-of-Flight cameras suffer from systematic depth measurement errors due to their operation principle. This thesis proposes an approach to estimate all necessary parameters in one calibration step. In the following the reconstruction of rigid environments and objects is investigated and solutions for these tasks are presented. The reconstruction of dynamic scenes and the generation of novel views of dynamic scenes is achieved by the introduction of a volumetric data structure to store and fuse the depth measurements and their change over time. Finally a Mixed Reality system is presented in which the contributions of this thesis are brought together. This system is able to combine real and artificial scene elements with correct mutual occlusion, mutual shadowing and physical interaction. This thesis shows that Time-of-Flight cameras are a suitable choice for the analysis of rigid as well as non-rigid scenes under certain conditions. It contains important contributions for the necessary steps of calibration, preprocessing of depth data and reconstruction and analysis of three-dimensional scenes.Viele Anwendungen des Maschinellen Sehens benötigen die automatische Analyse und Rekonstruktion von statischen und dynamischen Szenen. Deshalb ist die automatische Analyse von dreidimensionalen Szenen und Objekten ein Bereich der intensiv erforscht wird. Die meisten Ansätze konzentrieren sich auf die Rekonstruktion statischer Szenen, da die Rekonstruktion nicht-statischer Geometrien viel herausfordernder ist und voraussetzt, dass dreidimensionale Szeneninformation mit hoher zeitlicher Auflösung verfügbar ist. Statische Szenenanalyse wird beispielsweise in der autonomen Navigation, für die Überwachung und für die Erhaltung des Kulturerbes eingesetzt. Andererseits eröffnet die Analyse und Rekonstruktion nicht-statischer Geometrie viel mehr Möglichkeiten, nicht nur für die bereits erwähnten Anwendungen. In der Produktion von Medieninhalten für Film und Fernsehen kann die Analyse und die Aufnahme und Wiedergabe von vollständig dreidimensionalen Inhalten verwendet werden um neue Ansichten realer Szenen zu erzeugen oder echte Schauspieler durch animierte virtuelle Charaktere zu ersetzen. Die wichtigste Voraussetzung für die Analyse von dynamischen Inhalten ist die Verfügbarkeit von zuverlässigen dreidimensionalen Szeneninformationen. Um die Entfernung von Punkten in der Szene zu bestimmen wurden meistens Stereo-Verfahren eingesetzt, aber diese Verfahren benötigen viel Rechenzeit und erreichen in Echtzeit nicht die benötigte Qualität. In den letzten Jahren haben die so genannten Laufzeitkameras das Stadium der Prototypen verlassen und sind jetzt in der Lage dichte Tiefeninformationen in vernünftiger Qualität zu einem vernünftigen Preis zu liefern. Diese Arbeit untersucht die Eignung dieser Kameras für die Analyse nicht-statischer dreidimensionaler Szenen. Bevor eine Laufzeitkamera für die Analyse eingesetzt werden kann muss sie intern und extern kalibriert werden. Darüber hinaus leiden Laufzeitkameras an systematischen Fehlern bei der Entfernungsmessung, bedingt durch ihr Funktionsprinzip. Diese Arbeit stellt ein Verfahren vor um alle nötigen Parameter in einem Kalibrierschritt zu berechnen. Im Weiteren wird die Rekonstruktion von statischen Umgebungen und Objekten untersucht und Lösungen für diese Aufgaben werden präsentiert. Die Rekonstruktion von nicht-statischen Szenen und die Erzeugung neuer Ansichten solcher Szenen wird mit der Einführung einer volumetrischen Datenstruktur erreicht, in der die Tiefenmessungen und ihr Änderungen über die Zeit gespeichert und fusioniert werden. Schließlich wird ein Mixed Reality System vorgestellt in welchem die Beiträge dieser Arbeit zusammengeführt werden. Dieses System ist in der Lage reale und künstliche Szenenelemente unter Beachtung von korrekter gegenseitiger Verdeckung, Schattenwurf und physikalischer Interaktion zu kombinieren. Diese Arbeit zeigt, dass Laufzeitkameras unter bestimmten Voraussetzungen eine geeignete Wahl für die Analyse von statischen und nicht-statischen Szenen sind. Sie enthält wichtige Beiträge für die notwendigen Schritte der Kalibrierung, der Vorverarbeitung von Tiefendaten und der Rekonstruktion und der Analyse von dreidimensionalen Szenen

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    A Toolset for Visualization, Interaction, and Rendering in Virtual Environments

    Get PDF
    Diese Arbeit beschäftigt sich mit einigen der interessantesten Kernpunkten der Erstellung eines VR-Systems: die Vorbereitung und Vorverarbeitung der Daten, deren Visualisierung, die Interaktion mit den Daten und deren Darstellung. Es werden problem-zugeschnittene Algorithmen, sowie allgemeine Strategien zur Lösung der entstehenden Probleme vorgestellt. Insbesondere wird ein neuer Algorithmus zur Segmentierung von Bild- und Volumendaten eingeführt, der vor allem für medizinische Anwendungen relevant ist. Weiterhin wird detailliert die Visualisierung von Daten erläutert, die einen Zeitparameter enthalten. Dabei wird eine Reihe von Visualisierungs- und Interaktionswerkzeugen zur Analyse historischer Daten demonstriert. Desweiteren wird der Frage nach der Navigation und der Manipulation entfernter Objekte nachgegangen und eine neue Interaktionsmetapher vorgestellt: die Durch-Die-Linse-Metapher (through-the-lens). Basierend auf diesem Konzept werden verschiedene Navigationswerkzeuge präsentiert, die die Eigenschaften bekannter Techniken instrumentalisieren, jedoch deren Einschränkungen umgehen und eine leistungsfähige Interaktion ermöglichen. Schließlich werden zwei Algorithmen vorgestellt, die eine schnelle Darstellung der zu visualisierenden Daten in einer virtuellen Umgebung ermöglichen. Jeder dieser Algorithmen nutzt typische Eigenschaften der Repräsentation. Erstens wird ein bild-basierter Ansatz vorgestellt, der auf Merkmalen des Durch-Die-Linse-Konzeptes beruht. Zweitens wird auf die Stereo-Ausgabe von großen Szenen im Allgemeinen eingegangen.This work addresses some of the most pressing issues considering the assembly of a virtual reality system: the data preprocessing and preparation, the data visualization, the interaction with the data, and their display. The work presents problem-tailored algorithms, as well as general strategies for tackling the introduced problems. In particular, a new algorithm for segmenting image and volume data is discussed, addressing foremost medical applications in general. Moreover, a detailed discussion on visualization issues of data containing a time dimension is provided, demonstrating a set of visualization and interaction props for the analysis of historical events in time. We describe a set of tools for simultaneously visualization of various parameters of interest and for interactive study of historical events. In addition, the navigation in general is analyzed, as well as the remote object manipulation in virtual environments, presenting a new interaction metaphor: the through-the-lens metaphor. Based on this new concept, a set of navigation tools is introduced, which exploit features of existing techniques, attempting to overcome their limitations and to enable more powerful interaction. Finally, in order to enable fast rendering of the visualized data, two algorithms for accelerating the rendering performance of a virtual reality system are proposed. Each of them exploits particular characteristics of the representation: (1) an image-based rendering approach based on the features of the introduced through-the-lens tools is presented, (2) the stereo rendering of large scenes is addressed in general

    Part decomposition of 3D surfaces

    Get PDF
    This dissertation describes a general algorithm that automatically decomposes realworld scenes and objects into visual parts. The input to the algorithm is a 3 D triangle mesh that approximates the surfaces of a scene or object. This geometric mesh completely specifies the shape of interest. The output of the algorithm is a set of boundary contours that dissect the mesh into parts where these parts agree with human perception. In this algorithm, shape alone defines the location of a bom1dary contour for a part. The algorithm leverages a human vision theory known as the minima rule that states that human visual perception tends to decompose shapes into parts along lines of negative curvature minima. Specifically, the minima rule governs the location of part boundaries, and as a result the algorithm is known as the Minima Rule Algorithm. Previous computer vision methods have attempted to implement this rule but have used pseudo measures of surface curvature. Thus, these prior methods are not true implementations of the rule. The Minima Rule Algorithm is a three step process that consists of curvature estimation, mesh segmentation, and quality evaluation. These steps have led to three novel algorithms known as Normal Vector Voting, Fast Marching Watersheds, and Part Saliency Metric, respectively. For each algorithm, this dissertation presents both the supporting theory and experimental results. The results demonstrate the effectiveness of the algorithm using both synthetic and real data and include comparisons with previous methods from the research literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art
    • …
    corecore