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Abstract

Virtual reality (VR) applications play a significant role in computer graphics nowa-
days. They act as an interdisciplinary bridge between the visualization of data and
their interactive exploration on the one hand, and various other research areas like
medicine, tele-robotics, computer aided design (CAD), visualization of simulation
data, etc. on the other hand. This work addresses some of the most pressing is-
sues considering the assembly of a virtual reality system: the data preprocessing and
preparation, the data visualization, the interaction with the data, and their display.

Elaborating on each of these components, the work presents problem-tailored
algorithms, as well as general strategies for tackling the introduced problems. In
particular, a new algorithm for segmenting image and volume data is discussed, ad-
dressing foremost medical applications in general. The proposed method offers a
solution to the up to now unsolved problem of segmenting objects of interest out
of given input data. Moreover, a detailed discussion on visualization issues of data
containing a time dimension is provided, demonstrating a set of visualization and
interaction props for the analysis of historical events in time. The described set of
tools has proved to be a valuable companion for historians, helping them to simul-
taneously visualize various parameters of interest and to study historical events.

In addition, the navigation in general is analyzed, as well as the remote object
manipulation in virtual environments, presenting a new interaction metaphor: the
through-the-lens metaphor. Based on this new concept, a set of navigation tools is
introduced, which exploit features of existing techniques, attempting to overcome
their limitations and to enable more powerful interaction. The through-the-lens
concept has been also applied to develop a new remote manipulation technique for
adjusting various parameters of objects out of the user’s reach, while still at their
original location.

Finally, in order to enable fast rendering of the visualized data, two algorithms
for accelerating the rendering performance of a virtual reality system are proposed.
Each of them exploits particular characteristics of the representation: (1) an image-
based rendering approach based on the features of the introduced through-the-lens
tools is presented, (2) the stereo rendering of large scenes is addressed in general.

To summarize, the contributions of this work facilitate the creation of virtual rea-
lity applications, as well as the interaction with the visualized data in particular. The
presented interaction props and rendering algorithms provide a set of easy to use,
while valuable techniques based on new and extending existing approaches.
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Kurzfassung

Heutzutage spielen Anwendungen aus dem Gebiet der virtuellen Realität (VR)
eine wichtige Rolle in der Computergraphik. Sie ermöglichen die Datenvisual-
isierung und die interaktive Datenerkundung in verschiedenen Forschungsgebieten
wie Medizin, Telerobotik, CAD-Systeme, Visualisierung von Simulationsdaten usw.
Diese Arbeit beschäftigt sich mit einigen der interessantesten Kernpunkte der Er-
stellung eines VR-Systems: der Vorbereitung und Vorverarbeitung der Daten, deren
Visualisierung, der Interaktion mit den Daten und deren Ausgabe.

Eingehend auf jede einzelne Komponente, stellt diese Arbeit problem-zuge-
schnittene Algorithmen, sowie allgemeine Strategien zur Lösung der entstehenden
Probleme vor. Insbesondere wird ein neuer Algorithmus zur Segmentierung von
Bild- und Volumendaten eingeführt, der vor allem für medizinische Anwendungen
relevant ist. Das präsentierte Verfahren bietet eine Lösung des bisher ungelösten
Problems der Segmentierung von Objekten aus vorliegenden Eingabedaten. Weiter-
hin wird detailliert die Visualisierung von Daten erläutert, die einen Zeitparameter
enthalten. Dabei wird eine Reihe von Visualisierungs- und Interaktionswerkzeugen
zur Analyse historischer Daten demonstriert. Die vorgestellten Techniken haben
sich als wertvolle Werkzeuge für Historiker erwiesen, die damit eine Vielzahl ver-
schiedener Parameter gleichzeitig graphisch darstellen und historische Ereignisse
studieren können.

Weiterhin wird der Frage nach der Navigation und der Manipulation entfernter
Objekte nachgegangen und eine neue Interaktionsmetapher vorgestellt: die Durch-
Die-Linse-Metapher (through-the-lens). Basierend auf diesem Konzept werden ver-
schiedene Navigationswerkzeuge präsentiert, die die Eigenschaften bekannter Tech-
niken instrumentalisieren, jedoch deren Einschränkungen umgehen und eine leis-
tungsfähige Interaktion ermöglichen. Das Durch-Die-Linse-Konzept wird eben-
falls verwendet, um eine neue Technik zur Manipulation entfernter Objekte zu ent-
wickeln. Diese dient dazu, verschiedene Parameter von Objekten außerhalb der
Reichweite des Benutzers, jedoch in ihrer natürlichen Umgebung, einzustellen.

Schließlich werden zwei Algorithmen vorgestellt, die eine schnelle Darstellung
der zu visualisierenden Daten in einer virtuellen Umgebung ermöglichen. Jeder
dieser Algorithmen nutzt typische Eigenschaften der Repräsentation. Erstens wird
ein bild-basierter Ansatz vorgestellt, der auf Merkmalen des Durch-Die-Linse-
Konzeptes beruht. Zweitens wird auf die Stereo-Ausgabe von großen Szenen im All-
gemeinen eingegangen.

Der Beitrag dieser Arbeit liegt darin, die Interaktion mit Daten, sowie deren Visu-
alisierung in einer virtuellen Umgebung zu unterstützen. Die vorgestellten Interak-
tionswerkzeuge und Darstellungsalgorithmen zeigen, dass sie einfach einzusetzen
und trotzdem mächtige Techniken sind, die auf neuen Konzepten basieren und ex-
istierende Methoden erweitern.
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Chapter 1

Introduction and Motivation

Virtual reality (VR) entails the use of advanced technologies, including computer
graphics, multidimensional input, large screen displays, and head mounted dis-
plays, to produce a simulated, thus, virtual environment (VE) that users perceive as
comparable to real world objects and events. The major aim of a VR-application is to
let the user feel the artificial world as real as possible. In other words, the user inter-
acts with displayed images, moving and manipulating virtual objects, and perform-
ing other actions in a way that creates a feeling of actual presence in the simulated
environment.

The virtual reality area has been subject of extensive research over the past years.
Many researchers have addressed various issues in this field reaching from hardware
components through software architectures and models to human factors and hu-
man computer interaction.

This work addresses the way of creating a virtual reality application. In partic-
ular, it deals with issues concerning the single steps towards creating real feeling,
powerful, versatile, and efficient virtual reality applications. In order to accomplish
this task, we first have to identify what we intend to present. In general, this is some
kind of data, which has to be prepared in a way that the user can interactively work
with it. Thus, the first step towards creating an interactive virtual environment is the
data acquisition. Once the data have been acquired, it has to be processed in order
to enable further visualization and interaction. The next step is the design of the ap-
plication’s architecture. In our context, this term is narrowed to include the human
computer interface, the interaction design, the data visualization, and the rendering.
We endeavor to abstract from the underlying realization and source code. Where this
is not possible, short details are given.

Finally, the last main component is the hardware. This is a factor defining to a
great degree the possible interaction type, the user interface, and even the applica-
tion area. The techniques presented throughout this work are developed on a par-
ticular hardware setup. Nevertheless, they are not limited to our setup, but are in
general applicable to various immersive scenarios and different input and output
devices. Whenever a hardware component is strictly required, this is pointed out.

1.1 Overview and Historical Notes

The first immersive virtual environment has been presented more than 30 years
ago [Sutherland, 1968]. Ivan Sutherland described a system involving a tracked
head-mounted display and “real time three dimensional computer graphics” based

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

on two CRTs. Since these first efforts towards creating the illusion of being sur-
rounded by a virtual world, many VR-setups and applications have been presented
in the literature.

The main features defining the difference between a traditional desktop appli-
cation and a virtual environment are the head tracking, the stereoscopic vision, the
three-dimensional interaction, and the large projection displays used. Thus, there
have been four main research directions defining the progress and the quality of a
virtual reality setup over the past thirty years considering the involved hardware: the
tracking technology, the computer graphic hardware, the display technology, and
haptic feedback technology.

The development in the computer graphics area was mainly driven by the game
industry and thus, led to more reliable, faster, and cheaper graphics hardware. This
fact has revolutionized not only the gaming industry, but also the virtual reality. In
the early days, millions of dollars have been needed to set up a VR-lab. This cost was
mainly caused by the graphics hardware, which has to be fast enough to guarantee
interactive frame rates for displaying complex, thus realistically looking scenes on
multi-screen stereo projections or head mounted displays. Since these requirements
are met even by consumer graphics hardware nowadays, cheaper graphics boards
can be used to build a modern VR-setup.

The next component, the display technology, has also dramatically im-
proved since the introduction of the first VR-systems [Cruz-Neira et al., 1993,
Agrawala et al., 1997]. Not only similar systems can be built at fraction of the
costs, but also new scenarios (like powerwall, virtual table, etc.) have been
implemented enabling application development and research in the VR-area
[Schmalstieg et al., 1999].

On the other hand, the tracking hardware, applied for carrying out the interaction
in a VE, is still “special purpose” hardware, which stability and precision significantly
improved over the past years. The precise tracking devices are the key to head/hand
tracking and implementation of virtual tools. The latter in turn predetermine the
convenience of the interaction in a virtual environment. Even more, they make up a
real-feeling virtual environment. In the first VR-systems, it was sufficient to track the
user’s head in order to generate and display the appropriate images. Nowadays, we
can observe the utilization of various input devices for position tracking, data gloves,
and even devices offering haptic feedback [Brooks, Jr. et al., 1990, Hirose et al., 2001,
Gibson, 1998, Darken et al., 1997, Iwate et al., 2001].

Looking at the software, we also encounter significant progress during the
past years. Many of the VR-applications are meanwhile well beyond the ex-
perimental stage. Some are even daily utilized in various medical applications
[Rothbaum et al., 2000, Rothbaum and Hodges, 1999, Hodges et al., 1999], tele-ro-
botics [Heguy et al., 2001], scientific simulations and visualization [Jaswa, 1997,
Rau et al., 1998, Weiskopf, 2000], and other areas. This progress is mainly based on
two development directions: the research on rendering techniques in the classical
computer graphic and on user interfaces and interaction techniques in virtual envi-
ronments.

To the first group count algorithms in the areas of model simplification, multi
resolution representation, lighting and shading, hidden surface removal, geometry
database management, texture mapping, image based rendering, etc. These ap-
proaches help the developers of VR-applications to focus on the VR-components:
the interaction with, and the behavior of the applications. They enable more realistic
presentation and rendering of complex scenes at interactive frame rates. The latter
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is a crucial requirement for every VE. A system, which does not run fast enough, (ca.
25 fps) may cause motion sickness, fatigue, and perceptible ill effects.

On the other hand, the user interfaces and the interaction techniques, still pro-
vide an enormous challenge for the designers of VR-systems. Since one of the pri-
mary goals of a virtual environment is to create for the user the illusion of being
surrounded by a real world, the degree of realism and detail richness has to be in-
creased, while enabling the participant to interact with the synthetic world in a natu-
ral way. The developments in this area can be divided in two groups: the adaptation
of techniques, which have and such, which do not have a counterpart in the real
world. Even though, many of the natural navigation and interaction abilities of the
human are well understood, it is hard, often impossible to use this knowledge to de-
sign tools and techniques for the virtual world scenario. Furthermore, the aim of
many virtual worlds is to provide powerful exploration capabilities, which might not
have a counterpart in the real life, while offering valuable interaction aids tailored to
the particular application or task.

Independent of the interaction, however, the goal of a virtual environment is
to provide visualization better than common desktop computers provide. This can
only be achieved when sound visualization and interaction techniques are applied,
exploiting the typical features of a VR-system. Moreover, the visualization heavily
depends on the underlying data, how it is prepared, displayed, and what type of in-
teraction is supported.

1.2 Problem Statement, Goals, and Contributions of This
Work

Putting it together, the main components of a virtual reality application can be di-
vided in two main categories: hardware and software components. The hardware
has to be present in order to construct a virtual environment. This work is based on
a particular hardware, discussed in detail in Chapter 2, on which we demonstrate
the proposed concepts and ideas. However, our hardware setup does not restrict
the application of the presented tools to these particular hardware components. In
the remainder of this work, we concentrate on the software issues. We elaborate on
concrete applications from particular science areas, as well as interaction concepts
and rendering techniques in general. The various topic categories, which we discuss
here, are shown in Figure 1.1.

1.2.1 Scientific Visualization

First, we address the data processing and visualization problem in two particular
cases: (a) the visualization of 4D data consisting of space and time dimensions and
(b) the extraction of object boundaries out of 2D images and 3D volume data. The
second problem, the segmentation of 2D and 3D data, is up to now an unsolved
problem in the image processing and computer vision area. The target of the seg-
mentation is to extract features of different objects contained in an input dataset. In
the past years, the watershed transformation has been widely used for performing
this task. It is generally performed on the gradient image of the original data. The
watershed transformation extracts basins out of the data. The dams of these basins
lie more often than not on boundaries between objects.



4 CHAPTER 1. INTRODUCTION AND MOTIVATION

Output Dev.
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Figure 1.1: Components of a virtual reality application. The marked components are ad-
dressed throughout this work.

Unfortunately, the watershed transformation has the problem of over-segmen-
ting the input data. Thus, a basin merging criteria have to be applied in order to
extract meaningful areas out of the basins containing data. The main difficulty of
this step is that often the diverse objects contained in the input define locally differ-
ent criteria for basin merging. However, the conditions for the merging are defined
globally and fail to cover the features of all single objects in the input data. Further-
more, the watershed transformation is in its nature a global transformation. That
is, the watershed transformation is applied to the entire input data and produces a
segmentation of it. Therefore, our goal in this computer graphics area was to ex-
amine and develop new algorithms, making use of local object characteristics and
apply them locally in order to segment a single object rather than the entire input
data. This in turn would allow precise segmentation of particular structures out of
the given dataset.

The resulting algorithm, presented in this work, supports fast and accurate ex-
traction of objects of interest with a little user input, exploiting only local features
of the marked objects. Therefore, we propose a set of criteria for merging adjacent
basins, implementing a form of a controlled region growth algorithm. The local ap-
plication and the proposed merging criteria not only significantly improve the seg-
mentation results, but also speed up the application of the watershed transforma-
tion, especially when a volume dataset is considered. In this way, we developed
an approach overcoming the most significant drawbacks of the original watershed
transformation, while implementing the basic idea and the advantages of the latter.

The second visualization challenge addressed in this work is the visualization of
historical data. Up to now, the researchers working in this area still utilize 2D-maps
in combination with data sheets that contain various information about particular
points on the map. These requisites, however, make it extremely difficult to analyze
events in time and to answer questions like: “Why are some decisions made in the
way they were made by the people participating in the studied wars, migrations, or
battles”. The question here was: How can we employ computer graphics in order to
facilitate the visualization and interactive exploration of historical data?

The main difficulty concerning the visualization of 4D data we are dealing with,
is the appropriate display and the interaction with it. Many people are meanwhile
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familiar with the interaction with 3D data. The display of 3D data including a time
dimension, however, is not straightforward and can be carried out in various differ-
ent ways. Another question arising at this point is how could we display as much
data as possible, in order to allow the user to concentrate on the visualization and
not on the data sheets. On the other hand, the display of too many data parameters
may lead to cognitive overload and even worsen the visualization.

The goal of this work was mainly geared towards the generation of powerful vi-
sualization tools that facilitate the interactive exploration of historical data. We pro-
pose new interaction concepts for the vivid exploration of such data in a virtual en-
vironment improving upon the traditional 2D visualization combined with study of
the accompanying data sheets. Moreover, the presented tools are not limited to the
application to historical data. They can be applied to various other visualizations
of 3D data containing a time dimension as well. Finally, the work in this area con-
sisted of two main components: the development of a portable traditional desktop
application and of a versatile virtual reality application. The latter aims to exploit the
various interaction features of a VR-system and to offer vivid gain of insight into the
data.

1.2.2 Interaction in Virtual Environments

Additionally to the employment of VR-techniques for the visualization of historical
data, we also address the interaction in VEs in general. Although, much effort is
made towards providing suitable navigation in virtual reality applications, many of
the resulting tools still cause loss of orientation and inadequate navigation. Fur-
thermore, considering the remote object manipulation, none of the published ap-
proaches is suitable for manipulation at the remote location, while enabling inter-
action with the object of interest as if it is within the reach of the user’s hands. Lastly,
none of the various special purpose interaction techniques and tools published in
the literature addresses the interactive exploration of 3D data containing a time di-
mension. These facts introduce the next goal of this work: to investigate and develop
new navigation and interaction techniques making use of available concepts, while
overcoming the drawbacks of the existing tools.

The result of our research in this direction is a new paradigm for the simultaneous
exploration of two superimposed virtual worlds: a primary world surrounding the
user and a secondary world explored with a lens-like tool. Due to the applied lens,
connecting both virtual worlds with each other, we call this idea the through-the-lens
paradigm (as shown in Section 4.2, p. 51). Based on this concept, we propose a set of
techniques for convenient navigation, exploration, visualization, and remote object
manipulation in VR-applications.

Considering the navigation in virtual environments, we show how the through-
the-lens concept was applied in order to circumvent the typical limitations of tradi-
tional navigation aids like orientation loss and fatigue, while still supporting power-
ful, intuitive, and precise work in virtual environments. We discuss three different
navigation concepts for interactive traveling within the secondary world. Each of
them is applied for navigation with a particular target: from coarse level exploration
to high precision viewpoint positioning.

The second technique based on the through-the-lens concept, the remote object
manipulation, enables the accurate interaction with distant objects in their natural
environment. This is a feature that is not supported by any of the known remote in-
teraction techniques, which, however, greatly improves the completion of the aimed
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task. Even though this is a typical technique that does not have a counterpart in the
real world, it proved to be extremely useful, even indispensable in virtual environ-
ments.

Finally, with the through-the-lens tools for exploration of historical data we have
shown how this concept can be successfully combined with the navigation through
the time dimension. The proposed system for visualization of historical data offers a
valuable companion for the analysis and interactive study of historical events. Sum-
marizing, we can state that the through-the-lens tools significantly enhance the in-
teraction and enable a versatile visualization of the explored data.

1.2.3 Rendering Algorithms

Although the computer graphics hardware is being rapidly improving and is capable
to render even very large scenes, the amount of data is growing even faster and this
is still a potential bottleneck of a graphical application system. This in turn may
affect and negatively influence the interactivity of a virtual environment. Especially
when displaying a scene in stereo mode, the data has to be rendered twice in order to
generate one image for each eye, even though there is a lot of redundant information
in both images. On the other hand, the through-the-lens tools addressed above, may
also cause a deterioration of the frame rate, since the complete scene behind the
through-the-lens window passes through the rendering pipeline additionally to the
primary synthetic world surrounding the user. The goal of this work in this context
was to detect potential bottlenecks and avoid them exploiting the characteristics of
these two problems.

Considering the stereo rendering, we propose a method for partitioning the
scene in two parts: (a) the near foreground, which has to be rendered separately for
each eye and (b) the far background, which appears to be nearly the same for both
eyes. In order to prove, that this scenario does not affect the stereo-based depth per-
ception and to compare the traditional stereo rendering with the proposed mixed
(stereo/mono) rendering, we performed a set of usability studies. The latter have
shown that this approach is applicable and that the human depth perception can be
fooled without causing distortion in the stereovision.

In addition, in order to speed up the rendering of the through-the-lens tools, we
propose an image-based approach for displaying the world behind the through-the-
lens window. Thereby, we exploit the fact that only small part of the secondary scene
(behind the through-the-lens window) can be viewed through a window with limited
size. Keeping in mind these restrictions, we have developed an image-based render-
ing technique, which enables fast rendering and adaptive acquisition of the required
data, while still supporting the features of the geometry-based rendering.

To summarize, throughout this work, we address typical problems in each of the
components marked in Figure 1.1. For each of them, we analyze the reasons why
the problems appear and point out possible ways for overcoming the limitations of
existing algorithms. We also present new approaches in order to solve the addressed
problems.

1.3 Summary of This Work

The remainder of this work is organized as follows. In Chapter 2, we describe the soft-
and hardware, on which the developed tools and techniques are based. We present
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in detail the fundamental interaction tools based on the available hardware, as well
as the underlying software system. We also shortly point out the main differences
between a traditional desktop computer and a virtual reality application with the
associated hardware environment. Finally, we address some of the problems with
the input devices in a virtual reality setup.

Chapter 3 (p. 19) consists of two main parts that are independent of the virtual
environment. These two parts elaborate on the visualization and the data prepro-
cessing. In the first, we present the new watershed transformation for extraction of
objects of interest out of image and volume data. We give an outline of the proposed
algorithm, as well as results of its application in terms of the required time and the
achieved segmentation. In the second part of this chapter, we address the prepro-
cessing, digitalization, and display of historical data. Furthermore, we also discuss
some additional props for orientation in, and navigation through the space and the
time dimensions of the underlying data.

In Chapter 4 (p. 47), we present the through-the-lens concept. First, we intro-
duce a taxonomy for the states of the two aligned virtual worlds and the way they are
visualized in each other. Thereafter, we present the set of techniques based on this
metaphor, which can be applied for navigation, interaction, remote object manipu-
lation, and visualization of historical data in a virtual environment. For each of these
tools, we discuss its implementation and application.

Finally, in Chapter 5 (p. 83), we give a detailed overview of two approaches for
accelerating the rendering in virtual environments. Each of them exploits differ-
ent features of (a) the stereo rendering in general and (b) of the through-the-lens
tools described in Chapter 4. For each algorithm, we compare the performance on
at least two different datasets and show the improvements achieved with the de-
scribed methods. We conclude this work with Chapter 6 (p. 111), which gives a brief
summary and some concluding remarks.
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Chapter 2

System Setup

In this chapter, we describe in detail our tabletop-projection output device, as well
as the tracker-based input device. First, we discuss related work on input and output
devices including stereo projection techniques and two-handed interaction. Then,
we present the hardware used to realize the interaction and display in our system.
Finally, we also address calibration issues and discuss the software environment, in-
troducing design requirements to the developed system. Even though our imple-
mentation exploits the hardware and software presented in this chapter, all tech-
niques described later on can be easily ported and integrated into other scenarios
and setups.

2.1 Output Devices

Like any traditional desktop computer, a virtual reality system consists in gen-
eral of an input device, an output device, and a “main computer”. The out-
put device defines the type of the VR system and predetermines its application
area. Considering the output, a VR-system may be immersive or augmented (also
known as “see-through”). In the first scenario, the participant views a com-
pletely virtual world. She/he is essentially isolated from the outside world and
fully enveloped within the computer-generated environment. The typical devices
applied in this case are multiple wall-projections (so called CAVE-like systems
[Cruz-Neira et al., 1993]), single wall projections, one or two sided virtual work-
benches [Agrawala et al., 1997], tabletop displays, as well as head mounted displays
(HMD) [Sutherland, 1968, Feiner et al., 1993]. The second group, the see-through
systems, is typically based on semi-transparent HMDs, allowing to view the sur-
rounding environment and to simultaneously superimpose information via semi-
transparent HMD [Bajura et al., 1992, Pausch, 1991]. Depending on the target ap-
plication area one of these types has to be chosen. In both cases, different input
devices and thus interaction concepts are utilized.

Although CAVE-like devices are impressive and provide remarkable immersion
into a virtual environment, the evolution trend of VR technology is clearly oriented
towards smaller, cheaper, and more flexible systems. The latter offer great resolu-
tion bringing 3D immersive technology into the workplace at a fraction of the cost of
customary VR technology. One direction of this technology development makes up
table-like devices (virtual tables). Among the first tabletop devices, the most impor-
tant is the virtual workbench presented in 1997 at Siggraph [Agrawala et al., 1997].
Since then, many similarly designed projection setups have been developed. Such

9
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systems are especially designed for applications that are traditionally performed
with or on workbenches, tables, or presentation surfaces. Through the scene pre-
sentation (synthetic or real-world scenes) on a horizontal or vertically-tilted output
surface, the usual dialog concept for man-machine communication is put into an
application-oriented form that is tailored to the particular working situation. This
facilitates the intuitive work within this “common”, though virtual environment.

Throughout this work, we address the immersive scenario. Even though all tech-
niques and tools we present in the subsequent chapters are developed on a virtual
table output device (described in Section 2.3), all of them are portable and applicable
in any other immersive scenario.

2.2 Input Devices

There are various ways for realizing input devices in a VR-system. The extremely
diverse employment configurations and scenarios require the development of ap-
propriate technologies for interaction with them. Since an immersive virtual reality
setup aims to surround the participants, who can move freely in the virtual environ-
ment, traditional input devices like keyboard and mouse are unsuitable for interac-
tion in this scenario. The most common way to integrate input is to use a tracker,
which gives information about the position and orientation of tracked points of in-
terest. Such points of interest are typically the viewer’s head and hands.

Conceptually, there are five main tracking approaches: electro-magnetic, me-
chanical, optical, acoustic (ultrasonic), and gyroscopic tracking, which differ mainly
in the accuracy, resolution, tracking speed, latency, working volume, and liability.
The most frequently used approach is the electro-magnetic tracking, since such
tracker systems are robust, occlusion-independent, precise, and readily extendable.
Unfortunately, the price we have to pay for these features is the sensibility to noise
and the cables still used to connect the sensors to the tracker. The first problem can
be circumvented in many different ways. In Section 2.3.3, we elaborate on the way
this undistortion step is performed in our system. The second problem, the wired
sensors, is not addressed in this work, since we do not elaborate on any hardware
issues.

2.3 Hardware Setup

The hardware used in our setup consists of an electro-magnetic 6DOF tracking sys-
tem (Ascension, Flock of Birds) used as an input device and a tabletop display (Barco,
Baron or Virtual Table) as an output device. The screen has an approximate size of
140 × 105cm. It is tilted about its x-axis, on which the images are back-projected in
stereo mode. The virtual table can be arbitrary rotated about the tilt axis as shown
in the Figure 2.1. The rotation angle varies between 0◦ and approximately 80◦ from
the horizontal position. Thus, it enables the realization of traditional workbenches,
as well as (almost vertical) power-walls. The latest version of the table allows even a
90◦ tilt and provides an improved display on a high-resolution screen supporting a
wide viewing angle with built-in optical correction and distortion reduction. These
outstanding features, combined with a modular design and the compactness of the
unit make it the product of choice for our 3D virtual reality setup.
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Figure 2.1: The projection technology of the virtual table with projection surface tilted 30◦

about the x-axis.

2.3.1 Stereoscopic Display

One of the main features distinguishing the common desktop output from the out-
put of a virtual reality application is the stereo display of the virtual world1. As
pointed out by Rosenberg [Rosenberg, 1993], the use of stereo projections over
monocular projections is strongly recommended in order to improve performance
in depth perception tasks. Intensive research has been carried out in the area of
stereo projection and depth perception in the past years [Yeh and Silverstein, 1990,
Wann et al., 1995, Yeh and Silverstein, 1992]. It has been shown, that the most im-
portant cues for a subject’s depth judgment are the dynamic flow (which is achieved
through head-tracked displays), the perspective, the stereo display, and the scene
lights and objects’ shadows. Although much depth information can be inferred from
the introduced monocular depth cues alone, the stereoscopic depth cues provide
additional information. It enhances the speed and accuracy of tasks requiring depth
perception [Rosenberg, 1993], as this is typically the case in immersive virtual envi-
ronments.

There are various ways to realize stereo projection [Hodges, 1992, Lipton, 1997].
In our scenario, we have chosen the alternating projection of pictures generated for
the left and right eyes combined with an LCD shutter. In other words, each frame
shown to the participant is generated with two slightly shifted and among the point
of focus rotated virtual cameras. Afterwards, the LCD shutter switches the appro-
priate shutter on and off depending on which picture (for the left or the right eye)
is being currently displayed. This process is typically performed approximately (or
more than) 60 times per second, creating the illusion of perceiving one stereoscopic
image.

2.3.2 Tracker, Pad, and Pen

As introduced above, another important depth perception aid is the dynamic flow
achieved through head tracking. We applied an electro-magnetic tracker for carrying

1A detailed discussion on stereo vision and implementation of stereo displays is given in Sec-
tion 5.3.2, p. 96.
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out the interaction in our system. The data captured by the tracker is processed by a
tracker-server [Reitmayr and Schmalstieg, 2001], which is responsible for the trans-
formation of the received sensor position and orientation into the world coordinate
system. The tracking unit is attached to and communicates directly with the tracker-
server, which creates small data packets and sends them via multicast over the local
area network (LAN), as shown in Figure 2.2. Each packet contains a time stamp, the
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Figure 2.2: Hardware setup of the virtual environment. The images on the hand-held panel
are back-projected via the table display and are aligned with the (tracked) interaction pad.

ID of the tracked station, its position, and orientation. Our tracker system tracks
three stations with (at least) 50Hz frequency. Measurements showed that no tracker
events get lost when sent trough a 100 Mbit LAN. Hence, each tracker client receives
these packets with the same frequency.

The three receivers, tracked by our Flock-of-Birds unit, provide information
about their position and orientation in the space. The first is used to track the
viewer’s head (see Figure 2.2). The virtual camera is attached to this receiver. The
second and the third receivers are attached to the devices held in both hands in or-
der to enable two-handed interaction. The first contributions to two-handed inter-
action we know of are the work of Buxton and Myers [Buxton and Myers, 1986] and
Guiard [Guiard, 1988]. Buxton and Myers reported on significant performance in-
crease when bimanual navigation/selection is applied compared to accomplishing
the task unimanually. Guiard’s work showed how a prop in the non-dominant hand
is used to define a (coarse oriented) coordinate system, a kind of a reference frame,
while the dominant hand is used for fine positioning relative to that coordinate sys-
tem. Kabbash [Kabbash et al., 1994] evaluated two-handed interaction techniques
and compared them with unimanual interaction. The conclusion of his work is that
bimanual interaction can improve overall performance, especially when asymmet-
ric partition of labor is possible. Further work in this area, as well as systems ap-
plying bimanual interaction are described in [Brooks, Jr., 1988, Turner et al., 1996,
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Cutler et al., 1997].
Exploiting the above observations on the asymmetric use and coordination of

human hands, several research groups developed two-handed interaction tech-
niques for different virtual environments. The resulting tools are known under vari-
ous names like:

• pen and palette [Sachs et al., 1991],

• pen and tablet [Angus and Sowizral, 1995],

• physical clipboard [Stoakley et al., 1995],

• 3D-Palette [Billinghurst et al., 1997], the

• personal interaction panel (Pip) [Szalavári and Gervautz, 1997],

• virtual palette and remote control panel [Coquillart and Wesche, 1999].

The idea is quite simple: the user is provided with a tracked pad used as a frame of
reference for the interaction with computer generated widgets. In addition, a tool
for manipulating these interface elements is provided, e.g. a virtual pen. The vir-
tual tool is a visual duplicate of a six-degrees-of-freedom input device, providing
tactile feedback, similar to the Virtual Tricorder introduced by Wloka and Green-
field [Wloka and Greenfield, 1995]. This two-handed interaction concept turned out
to be very intuitive to use and suitable for utilization in various kinds of virtual envi-
ronments. Therefore, we based the interaction in our system on the personal inter-
action panel [Szalavári and Gervautz, 1997].

In this scenario, one receiver is attached to physical pen, which the user holds in
his/her dominant hand. The virtual counterpart of the pen is used to manipulate the
virtual 3D buttons, sliders, and other interaction elements projected on the interac-
tion pad. The pad is tracked with the third receiver and is a transparent panel, on
which the interaction elements are back-projected [Schmalstieg et al., 1999]. Since
we always know the exact position and orientation of the pad, the virtual interaction
elements are displayed in such a way on the table, that the user sees them on the
pad’s surface (through the transparent material). Furthermore, the pad can be used
as a tool itself. It allows to superimpose information through it like this is done with
the magic lens [Bier et al., 1993]. In addition, it can also display images on its sur-
face as seen from a different viewport, through which the scene is projected. In this
case, not only the viewport (with the pad on which surface it is mapped), but also the
scene seen through it can be freely positioned in the space, applying the proposed
through-the-lens technique (as will be discussed later on).

The basic aim of the pad is to provide passive tactile feedback when touched with
the pen. Even though the physical pen cannot collide with the virtual tools mapped
on the pad, the surface of the pad defines a physical reference frame facilitating the
interaction.

The pen is a transparent device, with two buttons. It is held in the dominant hand
and used as a real pen, as opposed to using a wand. The two buttons on the pen can
be thought of as mouse buttons, which have a state (pressed or not) and generate
events on state changes. Additionally, a sensor responsible for tracking the pen is
attached to its tail. This allows realizing intuitive and powerful two-handed interac-
tion, which has proven to be very valuable concept in modern VR-applications. On
this interaction concept we have based all the tools and techniques described in the
remainder of this work. Whenever we talk about two-handed interaction, we refer to
the concept presented above.
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2.3.3 Calibration

Finally, to complete the hardware description, we have to address the distortion
problem. In every tracker system, there are various distortion sources. Since we have
used an electro-magnetic tracker in our setup, we discuss only the electro-magnetic
distortion sources. Although the Ascension (Flock of Birds) tracker is DC pulsed, as
opposed to the Polhemus devices which are AC pulsed, metal (conduction and fer-
rous) objects and interleaved electro-magnetic fields magnify the distortion. Due to
the DC nature of the tracker, the sensitivity to metal is claimed to be in the order 5 to
10 times less than AC tracker systems. However, some tracker distortion sources still
have significant impact on the tracking quality.

When we consider distortions, we distinguish between static and dynamic dis-
tortions. Static distortions are fixed with respect to their continuity and their posi-
tion. There are two ways to compensate the error caused by static sources: using
passive shielding and applying active correction (or filtering). Dynamic distortion
sources are very difficult to handle, due to their changing position, size, and inter-
leaved electro-magnetic fields. Fortunately, dynamic distortion sources are small
and thus have a rather little impact on the tracking. Therefore, in the following we
concentrate on the static distortion.

The main distortion sources in our setup were a large current transformer one
level bellow our VR setup, and the beamer used to generate the output images (see
Figure 2.1). Here only the position distortion is addressed, since it turned out that

Tracker position
Extended Range

Transmitter (ERT)

a b

Figure 2.3: The space above the Virtual Table’s surface was sampled on a regular 5×5×5cm

grid. The points on the grid, however, were received by the system as shown in these two
images. Image (a) shows the curved vertical lines caused by the transformer field. Image (b)
shows the distortion near the beamer.

the orientation is not crucially affected by the distortion sources. In order to meas-
ure and correct the distortion of the position, we have sampled the space above the
surface of the Virtual Table (140 × 105 × 120cm) on a regular 5 × 5 × 5cm grid. For
each of these 15950 points we have recorded the values measured by the tracker.
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Figure 2.3 shows these measured values. The box above the virtual table indicated
the position of the Extended Range Transmitter (ERT), which generates the required
electro-magnetic field and was therefore mounted using only non-magnetic materi-
als like wood and plastic. We can clearly see in Figure 2.3 the two distortion sources:
(a) the transformer causing distortion in form of curved vertical lines and (b) the
beamer mounted on the upper side of the table.

In order to compensate the distortion sources, we have to compute between
which sampled and measured points lies the currently measured position and apply
an interpolation scheme in order to determine its final position. For this, all sampled
points corresponding to measured points within a sphere with particular radius are
taken into account and weighted with the distance to the measured points.

Unfortunately, since this step is performed for each frame, this computation soon
becomes the bottleneck of the tracking. Even though the tracker packets are re-
ceived with 50 Hz frequency, not all of them can be processed. In practice, we have
achieved processing frequencies of 30 Hz, which means that approximately each
second tracker event is taken into account. This is sufficient for reasonable interac-
tion with scenes with limited complexity. However, for large scenes that can be ren-
dered on the same machine at reasonable frame rates (without tracking), the undis-
tortion step can cause significant deterioration of the overall performance when
tracking is activated. This is due to the fact, that the rendering time has to be added
to the computation time for the undistortion. For instance, if the geometry can be
rendered 20 times per second (20 Hz), the overall time for rendering one frame is
33ms for the undistortion and 50ms for the rendering, which results in 83ms per
frame or 12 Hz. In Chapter 5, we discuss in detail two techniques for accelerating
the rendering speed.

2.4 Software Environment

In this section, we do not address software design issues. Instead, we rather in-
troduce the development environment in order to allow detailed description of the
techniques discussed in the following chapters. The first basic criterion for the de-
velopment was the object-oriented design. Object-oriented programming is gen-
erally focused on the development of classes as basic units. These units are de-
rived from the types of data relevant to the implementation. While each class de-
scribes a certain general category, an instance of a class is a data structure represent-
ing one specific representative of this type. Through inheritance, object-oriented
software development provides a mean to organize related classes in order to take
advantage of their commonalities and to keep the class structure understandable
and manageable. Furthermore, through polymorphism and dynamic binding, it al-
lows building structures made of objects of different, yet related types, and to en-
sure that every operation will automatically adapt to the type of its target object. In
this way, object-oriented programming provides a set of powerful concepts to ad-
dress some of the most pressing issues of software development. Its most promis-
ing contributions refer to the aspects reliability, efficiency, reusability, portability,
and extendibility of software quality [Meyer, 1995]. These observations strongly fa-
vor the use of the object-oriented, standardized, and widely accepted programming
language C++ [Stroustrup, 1997], available on all Unix and Windows platforms.

In addition to the decision to extensively follow standards in order to support
portability, we had to choose an object oriented graphics library. Since the graphics
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output is still a crucial and time critical task, another decision criterion was the ren-
dering performance. Due to these conditions, the library of our choice was Open In-
ventor [Wernecke, 1999], which is object oriented, portable, and readily extendable
library, built on top of OpenGL [Woo et al., 1998]. OpenGL is a software interface to
graphics hardware supporting various hardware features and offering great perfor-
mance. Although it is available on various operating systems, its design is kept sim-
ple and for performance reasons not object oriented. Open Inventor provides the
bridge between object oriented design and fast, while portable graphics interface,
which justified our choice.

Since Open Inventor is a graphics library, in its native form it only limitedly sup-
ports interaction and interface elements. However, it offers all mechanisms required
for implementing interface aids. All these features are bundled in the Studierstube
framework [Schmalstieg et al., 1996], which is an object-oriented library extending
the standard Open Inventor functionality, allowing for transparent processing of 3D
events. The latter are propagated through the Open Inventor scene-graph and can be
used to define 3D interface elements like buttons, sliders, etc. and to realize various
interaction concepts with them. Figure 2.4 shows the layers between the (VR) ap-
plications and the hardware discussed in the previous section. The manager classes
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Figure 2.4: The layers of the software architecture.

are responsible for receiving the 3D events from the input devices, which are sent
through the LAN. The windowing system, the event system, and the Device I/O are
not directly visible for the application programmer, who rather utilizes traditional
Open Inventor classes as well as the additional Studierstube classes using one com-
mon interface: Open Inventor. The Studierstube library also supports concepts like
the window-concept, in which each application can run in a designated window.
This is similar to the traditional 2D window concept. Unlike the 2D window, how-
ever, a window is in this case a three-dimensional area.

Moreover, the Studierstube provides many additional useful classes. For in-
stance, it implements the SEAM -paradigm [Schmalstieg and Schaufler, 1999]. A
SEAM is defined by Schmalstieg and Schaufler as a “door into another world” and
stands for a Spatially Extended Anchor Mechanism. It makes it possible to connect
virtual worlds using a kind of a wormhole. The participant can view or enter a world
(called secondary world) seen through a window fixed in the space of the world sur-
rounding him/her (called primary world). The Studierstube implements this and
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other concepts within its object-oriented framework. We discuss further architec-
tural and implementation details in Chapter 4.

To summarize, the Studierstube library is used in our system as a layer between
the user interface and the application. With it, we are able to readily create, (re-)
configure, and maintain new and existing virtual reality applications. Through its
independence from the underlying hardware, it provides a convenient and flexible
library for implementing immersive or augmented, collaborative, and distributed
applications.
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Chapter 3

Visualization Approaches

3.1 Introduction

The visualization of data is a problem requiring preprocessing algorithms and dis-
play techniques tailored to the particular input data. With this in mind, the visu-
alization task can be considered as covering following subtasks: data acquisition,
data preprocessing, and data display, followed by interactive data exploration (see
Figure 1.1, p. 4).

The first step, the original data acquisition, is not an issue in this work. We as-
sume that the data exist in some form. The main emphasis now is the data prepro-
cessing and display. To the preprocessing count the application of various filters,
simplification algorithms, even transformation of the data from one type to another
(e.g. 2D to 3D, nD to 3D and 4D). After completing this step, the display of the data
has to be considered. This in turn includes visualization (e.g. streamlines), rendering
(e.g. image-based/polygon representation), and display algorithms (2D, 3D, stereo,
etc.).

In this chapter, we discuss in detail the preprocessing steps performed with two
different data types towards assembling a VR-application. First, we present a seg-
mentation approach applied for extracting objects of interest out of 2D image and
3D volume data. Since the interactive direct volume visualization is not possible on
many machines nowadays, surface models have to be generated out of the input
data. We propose a method for semi-automatic extraction of data structures based
on a local watershed transformation [Stoev and Straßer, 2000]. The result of this ap-
proach is a surface model, which can be readily displayed with customer hardware.
Section 3.2 is completely devoted to this problem and provides a discussion on each
of the performed steps. Once the approach is applied and the data extracted, the
resulting surface model can be used for displaying three-dimensional geometry in a
conventional manner or in a VR-application.

The emphasis of the second part of this chapter (Section 3.3, p. 38) is on the pre-
processing and visualization of historical data [Stoev and Straßer, 2001]. We present
a pipeline reaching from the raw historical delineations to the display of a triangu-
lated model. Furthermore, we discuss techniques that independently of the inter-
action with the data improve the data display and help to understand the visualized
processes. This model is embedded in a VR-application for historical data explo-
ration. Due to the four-dimensional (3D space and a time dimension) nature of the
data, in Section 4.5 (p. 71) we also discuss in detail the interaction techniques used
for data exploration.

19
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3.2 Segmentation with the Watershed Transformation

In this section, we present a new technique for extracting regions of interest (ROI)
applying a local watershed transformation. The proposed strategy for computing
catchment basins in a given region of interest is based on a rain-falling simulation.
Unlike the standard watershed algorithms, which flood the complete (gradient mag-
nitude of an) image, the proposed approach allows us to perform this task locally.
Thus, a controlled region growth is performed, saving time and reducing the memo-
ry requirement especially when applied to large image or volume data.

A second problem arising from the standard watershed transformation is the
over-segmented result and the lack of sound criteria for merging the computed
basins. For overcoming this drawback, we present a basin-merging strategy intro-
ducing four criteria for merging adjacent basins. The threshold values applied in
this strategy are derived from the user input and match the attributes of the selected
object rather than the attributes of all objects in the image. In doing so, the user is
not required to adjust abstract numbers, but to simply select a coarse region of inter-
est. A drawback of this strategy, however, is that the result of the segmentation often
cannot be exactly reproduced.

The proposed algorithm is not limited to the 2D case. As we shall show, it is suit-
able for processing volume data as well. Concluding this section, we present the
results of applying the proposed approach on several example images and volume
datasets.

3.2.1 Introduction and Related Work

The extraction of meaningful regions from image and volume data continues
to be an important and unsolved topic in the image analysis and image pro-
cessing area. In the past years, the watershed transformation [Meyer, 1994,
Najman and Schmitt, 1994] has proven to be a very useful and powerful tool
for morphological image segmentation. Since its introduction in [Band, 1986],
it is becoming increasingly popular in different science areas like biomedi-
cal, medical image processing [Higgins and Ojard, 1993, Sijbers et al., 1997], com-
puter vision and segmentation [Wegner et al., 1995], even mesh segmentation
[Mangan and Whitaker, 1999], etc.

The idea of the watershed transformation is quite simple. A (gradient mag-
nitude of a) gray-scale image or volume is considered as a topographic relief
[Vincent and Soille, 1991]. Each pixel in this digital image is assigned during the
transformation to the catchment basin of a regional minimum. The catchment basin
of a regional minimum is defined as the area, in which the pixels hit by a raindrop will
cause the raindrop to flow to the regional minimum. In this way, influence zones for
each of the (eventually pre-determined [Meyer, 1994]) regional minima are defined.
The watershed lines are now the lines separating influence zones from each other.

Beucher and Lantuéjoul [Beucher and Lantuéjoul, 1979] were the first who pro-
posed an immersion based watershed algorithm. In [Beucher and Meyer, 1993] and
[Meyer, 1994] couple of techniques and algorithms related to the problem of water-
shed computing are described. In his work, Meyer [Meyer, 1994] defines the water-
shed transformation in the continuous and in the digital space in terms of a distance
function, called topographic distance. One of the classical algorithms for computing
the watershed transformation for a gray-scale image is also found in this work. The
author predetermines the regional minima (single pixels or plateaus) and starts the
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flooding process at these minima [Meyer, 1994].
Another approach for computing the catchment basins is described in

[Vincent and Soille, 1991]. The authors simulate flooding with water, coming up out
of the ground and defining the catchment basins without predetermining the re-
gional minima. This approach processes all image pixels in a sorted order, such that
pixels with lower altitude are processed first. The preprocessing step here consists of
sorting all (pointers to) pixels in an array. Utilizing a First-In-First-Out (FIFO) struc-
ture, the pixels at altitude h+1 are processed after those at altitude h. This divides the
problem into m sub-problems, where m is the number of all present pixel altitudes.
Due to the processing of pixels at altitude h per iteration, the problem is reduced to
computing the geodesic skeleton of influence zones (SKIZ). After sorting the pixels
depending on their altitude, in order to guarantee fast access to pixels at given h, the
SKIZ for each h is computed. Hence, the plateaus at the current altitude are flooded.
Whenever two floods originating from different catchment basins reach each other,
a dam is built to prevent the basins from merging. The presented approach is ap-
plied in [Vincent and Soille, 1991] to several data structures, including graphs and
grids with arbitrary connectivity.

Moga et al. [Moga et al., 1995] report another approach for computing the wa-
tershed transformation based on rain-falling simulation within a gray-scale image.
Their work describes a parallel algorithm, which first transforms the original image
into a lower complete image Il. In Il the pixels belonging to a non-minimum plateau
are labeled with the geodesic distance to the plateau’s nearest outdoor. In doing so,
a second ordering relation for the pixels in a non-minimum plateau is introduced in
the resulting image. Afterwards a raindrop starts at each pixel and its path toward
the line with the steepest descent (due to gravity) is followed until a regional min-
imum is reached. The set of all pixels attracted on the way to a particular regional
minimum defines the catchment basin for this minimum. The process of following
a raindrop’s motion is sequentially performed for all pixels, which results in a set
of catchment basins. Adjacent catchment basins are separated by watershed lines.
Thus, raindrops falling on both sides of a watershed line flow into different catch-
ment basins.

In order to achieve a meaningful segmentation, the watershed transformation
is in general performed on gradient images. The gradient transformed images are
computed in a preprocessed step. In these images, the gradient maximums are more
often than not watershed lines surrounding homogenous regions.

One of the main disadvantages of the watershed transformation as described in
the literature is that it is a global transformation. This means that it requires the
processing of the entire input data. However, the goal of the segmentation is often
the extraction of only a single region of interest (ROI) out of a given image or vol-
ume data. Especially when volume data is considered, the process of computing the
watershed transformation is very time and memory consuming.

On the other hand, the extraction of a sole catchment basin does not pro-
vide sufficient results. Since the global watershed transformation produces in
general heavily over-segmented results, a sole catchment basin is often meaning-
less for the segmentation of a region of interest. Nevertheless, the correct con-
tours are most of the time present in the watershed-transformed image. Thus,
an additional task after applying the global watershed transformation has to be
performed: the computed catchment basins have to be merged appropriately.
Various approaches for accomplishing this task are described in the literature
and are based on gradient-watersheds on graphs [Vincent and Soille, 1991], basin
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dynamics [Najman and Schmitt, 1996], markers [Meyer and Beucher, 1990], inclu-
sionary and exclusionary cues [Higgins and Ojard, 1993], image component label-
ing [Moga and Gabbouj, 1997], and multi scale gradient analysis [Jackway, 1995]. In
practice, however, it is very difficult to define sound criteria for all objects in the im-
age. Therefore, the definition of local merging criteria, matching the attributes of a
given ROI, yields a sound solution of this problem.

Here we present a new approach for locally applying the watershed transforma-
tion. We first describe how a single basin can be extracted without computing the
watershed-transformed for the entire input data and without preprocessing the in-
put data. Afterwards, this method is generalized to the case, where a user makes a
coarse region selection, which is flooded and the basins within the selected ROI are
merged. These selected basins are now utilized to derive threshold values for a set
of merging criteria, which is discussed in Section 3.2.4 (p. 28). Thus, a sort of con-
trolled basin-level region growth is performed based on both the regular input data
and its gradient magnitude transformed. This makes it possible to precisely define
the merging criteria for the object of interest, instead of defining merging criteria for
the entire input data.

3.2.2 Notations

For clarity, we introduce the single steps for the 2D case considering pixels located on
a regular rectangular grid without loss of generality. Before describing in detail our
approach, we make some definitions used throughout the remainder of this section.
We define Df to be the domain of the gray-scale image or volume dataset, where f
denotes the image (volume) function. NG(p) stands for the set of neighbor pixels of
a pixel p on the underlying grid G. Furthermore, we define the following terms:

• A pixel p ∈ Df is called an isolated minimum if f(p) < f(q), ∀q ∈ NG(p);

• A pixel p ∈ Df is defined as being on a plateau P with altitude h (or p ∈ Ph), if
∃q ∈ NG(p) with h = f(p) = f(q);

• A pixel p ∈ Df is called an outdoor of a plateau P , if p is on the plateau P and
∃q ∈ NG(p) such that f(p) > f(q);

• A pixel p ∈ Df is called an inner pixel of a plateau P , if ∀q ∈ NG(p), f(q) = f(p);

• A pixel p ∈ Df is called a border pixel (p ∈ B(P )) of a plateau P , if p ∈ P and p
is not an inner pixel;

• A plateau P is called a minimum plateau (or PM ) in Df , if ∃\p ∈ B(P ), such that
p is an outdoor;

• A plateau P is called a non-minimum plateau (or PN ) in Df , if ∃p ∈ P , such
that p is an outdoor.

3.2.3 The Local Watershed Transformation

Unlike the standard watershed algorithms, the aim of the approach described in this
section is to provide a strategy for basin computing, which does not require prepro-
cessing or other global information about the data. Unfortunately, all approaches
published in the literature require such preprocessing steps, in order to either sort all
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pixels of the input image [Vincent and Soille, 1991], to pre-compute the local min-
ima from where the basins are flooded [Meyer, 1994], or to introduce a metric for
pixels with equal altitude: plateau pre-computing [Moga et al., 1995]. The last ap-
proach seemed to us to be the most suitable for modification toward developing a lo-
cally working basin extraction technique. However, the authors of [Moga et al., 1995]
concentrate on the parallelization and neither the local applicability of the proposed
approach, nor the processing of large datasets (i.e. volume data) are discussed. On
the other hand, since the plateau computing can be performed only when this is re-
quired (i.e. a plateau is reached), we utilize a modified version of this technique in
our algorithm. In the preprocessing step applied in [Moga et al., 1995] the entire in-
put data is traversed. This makes the approach time and memory consuming, when
applied on large volume datasets. Moreover, the authors of [Moga et al., 1995] do
not sort the outdoors of a plateau before it is flooded. Hence, an error is introduced
compared with the immersion based watershed algorithms (see below). Finally, a
second error source is introduced due to the arbitrary choosing of a pixel in case 4 as
described in the next section.

In order to explain the proposed local watershed transformation, we first explain
how a basin is extracted given a starting pixel. Afterwards, we describe how the user
input is processed based on the local basin extraction. Finally, we introduce a set
of merging criteria and depict how they are applied for extracting the target object
consisting of many merged basins.

3.2.3.1 The Local Basin Extraction

During the data processing, a raindrop-hit is simulated for a given pixel. Then the
raindrop follows the path of the steepest descent due to gravity, until a regional min-
imum is reached. A regional minimum M is a single pixel (isolated minimum) or
a set of pixels with equal altitude (minimum plateau), from which it is impossible
to reach a point of lower altitude on an always-descending path. When such a mini-
mum is reached, the pixels attracted on the path of steepest descent are marked with
the label of the latter.

The reached minimum M is now flooded in the following way. For each of the yet
unmarked pixels q adjacent to the minimum M , again the steepest path is followed.
In case the minimum reached from q is M as well, q is assigned to the catchment
basin of M denoted by C (see Figure 3.1). In this case, the unprocessed pixels q′ ad-
jacent to each q are assigned to the set of unprocessed pixels Q. These pixels are con-
sidered in the next pixel iteration for the current basin. Otherwise, if another local
minimum M ′ is reached, M ′ is put on the queue QB containing the yet unprocessed
adjacent basins/minima (considered in the next basin iteration). The pseudo-code
outline of the algorithm for computing the catchment basin for a given pixel follows:

/* given a pixel p */
0 follow steepest path(p,Mi); /* stores reached minimum in Mi */
1 Ci ←Mi; /* initialize Ci with the pixels in Mi */
2 Q← border(Mi); /* initialize Q with the pixels surrounding Mi */
3 while (not empty(Q))
4 q ← pop pixel(Q);
5 follow steepest path(q,Mj);
6 if (Id(Mj) == Id(Mi))
7 add pixel(Ci,q); /* assigns q to the basin Ci */
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Figure 3.1: A raindrop hits the pixel p. The algorithm follows the steepest path toward a
local minimum (upper diagram). Afterwards, the basin is flooded with water coming up out
of the reached minimum (lower diagram).

8 get unmarked neighbors(Q, q); /* result- stored in Q */
9 else
10 push(Mj , QB); /* the queue QB stores the adjacent basins */
11 endif
12 end while;

The only complex procedure requiring detailed discussion is the process of following
the steepest path toward a local minimum, starting at a given pixel (see line 0 and line
5 above and Figure 3.1). In order to explain the single steps, we assume that we start
with pixel p, which has not been processed yet. Thus, four cases can occur (see also
Figure 3.2):

1. ∃\q ∈ N(p) with f(p) > f(q), hence p has no adjacent pixel with lower altitude
and is an isolated regional minimum;

2. ∃!q ∈ N(p) with f(p) > f(q), hence p has only one adjacent pixel with lowest
altitude q. This is the regular case, where the algorithm follows the steepest
path along the shortest topographic distance;

3. ∃\q ∈ N(p) with f(p) > f(q), however ∃q ∈ N(p) with f(q) = f(p), which means
that p has at least one adjacent pixel with the same altitude, hence p belongs to
a (minimum or non-minimum) plateau;
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4. ∃qi ∈ N(p), 1 ≤ i ≤ m with f(qi) = f(qi+1) for i = 1, ..,m − 1 and f(p) >
f(qi),∀i. In this case, p has more than one adjacent pixel with lowest altitude
qi. The algorithm cannot determine which of the adjacent pixels is the one the
raindrop should flow to.

p qp

p

q

q
q

1
2

3

p

neighbor with equal altitude
Case 3: There is at least one Case 4: There are more than

one lower neighbor

lower neighbor
Case 2: There is only one

Case 1: There is no lower neighbor

and no lower neighbors with equal altitude

Figure 3.2: The four cases, which can occur when the steepest path toward a local minimum
is followed.

The first two cases are the trivial ones (see Figure 3.2). When case 1 occurs, an iso-
lated regional minimum is reached and a new Id is assigned to the basin. In case 2,
the current pixel is assigned to the path and if the lowest neighbor q is not marked
yet, it is considered as the next processed pixel: p← q. If q is already marked, the cur-
rent path is terminated and its pixels are labeled with the label of q. This technique
is called early path termination and can be formulated as follows: let the sequence
(q1, . . . , qn) be a path with qn belonging to a regional minimum or being an isolated
minimum. If (p1, . . . , pm) is the path with already marked pixels, qi ∈ NG(pm), and
qi = q is the pixel, chosen to be the successor of pm = p, then (p1, . . . , pm, qi, . . . , qn)
is a complete steepest slope path. Notice, that qi needs not to be the beginning of a
steepest slope path, but can be any arbitrary pixel lying on a processed steepest slope
path.

In case 3, the reached plateau has to be processed first, since the steepest path
cannot be unequivocally determined within plateaus. Therefore, when a plateau P
is reached, its border pixels pbi ∈ B(P ) are determined (see Figure 3.3). If there are
no border pixels with lower altitude, the plateau is a minimum plateau and the al-
gorithm proceeds like in case 1, namely, all pixels are marked with a unique label.
Otherwise, the outdoors of the plateau P are sorted and used as starting points for
flooding P , as depicted in Figure 3.3.

In order to prevent multiple flooding of the same plateau, the flooding results
are saved in a special data structure. In this structure, the pixels are wired, stor-
ing for each pixel the distance to the nearest outdoor and the direction of the lat-
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Figure 3.3: When the plateau with altitude 6 is reached, the algorithm first determines its
outdoors and then floods the plateau, wiring the pixels within it. The pixels with the shortest
distance and if these are equal, the one with the lowest outdoor is chosen to be processed
next.

ter (see Figure 3.3). This approach is similar to the arrowing technique described
in [Vincent and Soille, 1991] and [Meyer, 1994]. Later on, when a pixel of a processed
plateau is reached, the arrows to the nearest outdoor are followed and no additional
computations are performed. Thus, the nearest and lowest outdoor considering p is
now set to be the next pixel in the current path and is processed next. If a marked
pixel is reached within the plateau, the current path is terminated and labeled with
the Id of this pixel (as in case 2).

When case 4 occurs, the algorithm cannot unequivocally decide which pixel
should be processed next. In this case, all adjacent lowest pixels are traversed as
if they were hit by a raindrop. Since the lowest pixel pn = p of the current path
(p1, . . . , pn) has a greater altitude than the pixels qi and a path always follows the
steepest slope, none of the pixels (p1, . . . , pn) is affected while qi are being processed.
This allows the algorithm to remain consistent in this case. Hence, after processing
all qi, the pixel qj with the lowest and nearest outdoor is chosen to be the next pro-
cessed one p← qj and the computation of the steepest path continues. For pixels qi

not belonging to a plateau, the outdoor-distance is assumed one.

This technique allows us to determine for each pixel the regional minimum it
belongs to, without performing a global flooding (typically performed in immersion
based watershed transformation) or preprocessing the data. In particular, a raindrop
follows the steepest path toward a local (gradient) minimum. The path is then tra-
versed and its pixels are labeled with the Id of the reached minimum. Afterwards,
the basin is flooded “piercing” its minimum and letting the water come up out of the
ground. This procedure is repeated until all boundary pixels of the current catch-
ment basin have adjacent pixels belonging to other basins. In this way, we are able
to extract a single catchment basin given an image/volume dataset and a starting
pixel/voxel. When volume data is processed, 26-connectivity grid is used, instead
of the 8-connectivity grid applied in regular 2D images. All other steps remain un-
changed. Moreover, the proposed approach can be applied even on data structures
with higher connectivity in the same way.
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3.2.3.2 Flooding the Selected Region

As introduced above, the local watershed transformation requires a selection of a
region of interest (ROI) from the user. For user convenience, this is performed with
the original input image I. In a separate preprocessing step, a simple edge detection
based on the standard Sobel edge detector [Pratt, 1991] is applied to the entire input
data. This is a straightforward process with insignificant time cost, compared to the
global watershed transformation, hence not slowing down the entire process.

When this is accomplished, the gradient of the input area is flooded, simulating
raindrops starting with an arbitrary pixel within the selected area. Afterwards, the
above transformation is repeatedly performed on I ′ until all pixels and basins within
the ROI are processed (as shown in Figure 3.4 for the 2D case). Since these basins be-
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Figure 3.4: The selected ROI in a simple 2D example, the corresponding gradient magni-
tude image (lower diagram) and its basins.

long to the same region due to the user selection, they are used to derive thresholds
for the merging criteria. As shown in Section 3.2.4, both the original image data I
and the gradient magnitude image I ′ are applied.

Unfortunately, there are basins that are not completely, but only partially within
the user-selected ROI. These basins are processed as follows: for each pixel, not be-
longing to a basin with local minimum within the selected region, again a rain-falling
simulation is started (see also [Stoev, 2000]) and the regional minimum of the new
basin is determined as described above (eventually outside the user selection). Each
of these minima is used to start a flooding process as described before (in the Sec-
tion 3.2.3.1, p. 23). The so computed layer of basins surrounding the user-selected
area is utilized to derive a second set of auxiliary thresholds for the merging crite-
ria as discussed next. When this step is completed, all basins that are partially or
completely included in the selected region are processed.
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3.2.4 Merging Criteria

The most important part of the proposed approach is the suitable definition of
the basin-merging criteria. These criteria define the quality of the segmentation
results. As introduced before, various merging criteria are described in the lit-
erature. The most prominent ones are based on gradient-watersheds on graphs
[Vincent and Soille, 1991], basin dynamics [Najman and Schmitt, 1996], and multi
scale gradient analysis [Jackway, 1995]. Most of these approaches define appropriate
merging criteria based on the basin’s features, hence using the information about the
gradient image. In contrast, we implemented a method, which uses a combination
of the first two approaches, additional information about the original image data I,
and the second derivation of the input image I ′′. Thus, a more sound merging con-
dition is introduced. Additionally, it is very difficult, often even impossible, to define
a merging criterion matching the attributes of all objects in the input image. Apply-
ing a local watershed transformation and merging only basins fulfilling local ROI-
specific merging criteria yields significantly better results as shown in Section 3.2.7
(p. 34).

3.2.4.1 Merging Criterion A

Now let us consider two adjacent basins as depicted in Figure 3.5. As proposed
in [Najman and Schmitt, 1994] the basin’s dynamic introduces a good criterion for
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Figure 3.5: The basin’s dynamic is the minimum height, which has to be overcome, in order
to reach a basin with lower or equal minimum altitude.

merging adjacent basins. The dynamic of a basin is defined by the minimum height,
which has to be overcome, in order to reach a basin with lower or equal minimum
altitude. Basins with dynamics lower than a given value dt (dynamics threshold) are
now merged in larger regions. The usual values of dt are in the interval [5, 20] for
8-bit gray-scale images and depend on the image content and it’s noise. Applying
this strategy for basin merging helps us to merge insignificant basins, introduced by
various noise sources in I and I ′ (see Figure 3.10 image b, p. 32).

3.2.4.2 Merging Criterion B

Nevertheless, there are still situations, in which even basins with a great difference
between the (mean) gray-values in I have to be merged when only their dynamic
is taken into account (as shown in Figure 3.6). To tackle this problem, we applied
additionally to the concept of basin dynamics a second criterion. This is based on the
mean gray value of the region in I, corresponding to the basin in I ′. A similar strategy
is introduced in [Vincent and Soille, 1991], where the authors use the infimum of the
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Figure 3.6: A case is shown in which the basin’s dynamic only does not provide a good
merging criterion.

area in I, corresponding to the basin’s regional minimum in I ′. Furthermore, the
authors apply a watershed algorithm on a graph with nodes representing the basins
and arcs linking adjacent basins. Thereby, the nodes are colored with the infimum
value of the basins minimum in I. For our application, however, it turned out that
applying the average color ca of the catchment basin in the original image I is a better
criterion for basin merging. Unlike [Vincent and Soille, 1991], we compare the values
c′a and c′′a of each two adjacent basins in order to determine whether they should be
merged or not (|c′a − c′′a| < ct - color threshold). In this way, we define a second
criterion for basin merging based on the global basin attributes in I and in I ′.

Another problem occurs with these merging criteria: too many basins fulfilling
the requirements, but not belonging to the same region are merged. This may sig-
nificantly worsen the segmentation results (see Figure 3.10, image c). To circumvent
this obstacle, we introduced two additional criteria for preventing basins from merg-
ing.

3.2.4.3 Merging Criterion C

The third criterion we applied in our algorithm is based on the characteristics of the
dam between two catchment basins CA and CB . During the basin extraction, we
record the length, the average color, and the color of the lowest pixel pb on the dam
between CA and CB in I ′. If the altitude difference between the lowest common bor-
der pixel pb and the average height of the border ba is greater than a given threshold
value bt (border threshold, with values typically within the interval [5, 15]), the basins
are not merged even if the conditions stated in the first two criteria are fulfilled (see
Figure 3.7). In case the basins have more than one common border, the border pieces
are processed separately. This criterion prevents from merging basins, which have
small dynamics due to noise-containing borders.

3.2.4.4 Merging Criterion D

Finally, we introduced a measurement for the steepness of the border between two
basins in I ′. For this, we consider each border pixel pb and the next pixel on the path
toward the local minimum p1, as shown in Figure 3.8. For each such border pixel
pb, we determine the pixel p1 and compute the magnitudes of the second deriva-
tions p′′b and p′′1, hence the values of pb and p1 in I ′′. The absolute difference between
these values ps = |p′′b − p′′1| gives a measurement of the gradient’s variation in I ′. If
ps is greater than a given threshold st (steepness threshold), for any pixel on the bor-
der between adjacent basins, this basins are not merged even if the criteria A-C are
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Figure 3.7: The basins are not merged if the gap between the lowest border pixel, defining
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Figure 3.8: The magnitude of the second derivation is computed at each inner border pixel
and at the next pixels on the path toward the basin’s minimum (pixels (3,2) and (3,3)). If the
absolute difference between these two values is greater than a given threshold st for any two
border pixels, the basins are not merged. On the right, a case is shown in which the steepness
of the basin’s border prevents from merging two adjacent basins.

fulfilled (see the right of Figure 3.8). This criterion is applied to each two adjacent
basins (for instance A and B in Figure 3.8). The border steepness of both of them
has to be below the given threshold (in general within the interval [5, 20]), in order to
merge the basins.

To summarize, for each extracted catchment basin A, we evaluate the following
data structure in order to determine whether it should be merged with an adjacent
one B:

• the average gray value of the basin in I (criterion B);

• the lowest and highest altitude of a basin pixel in I ′ (criterion A,C, and D);

• lowest and average border value for each pair of adjacent basin (A,B) (criterion
C);

• for each inner pixel of the border and each adjacent basin the maximum ps

(criterion D).

Results of applying the various merging strategies are shown in Figure 3.9 and Fig-
ure 3.10. We first show the result of applying the standard global watershed transfor-
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Original image with ROI
selected by the user

The result of the edge detection is interpreted as a relief 

Figure 3.9: Selected area in the original image and the corresponding area in the edge de-
tected image.

mation and the application of the criteria A and B. Afterwards, the results of applying
the local watershed transformation are shown evaluating the criteria A and B in im-
age c and criteria A-D in image d.

3.2.5 Evaluation of the Merging Criteria

After flooding the ROI selected by the user, we compute the values for the thresholds:
T = (dt, ct, bt, st). The value of dt is the value of the greatest dynamic for basins
within the selected ROI (criterion A). ct is defined as the greatest allowed mean color
deviation for two adjacent basins (criterion B). When all basins in the given ROI are
computed, the mean color of these regions is used to define the reference gray value.
ct is now applied for defining the deviation threshold relative to the reference gray
value. bt is initialized with the maximum difference between the average border color
and the lowest border pixel for each pair of adjacent basins (criterion C). In contrast
to dt and ct, the value of bt may require additional adjustment depending on the noise
of the basin border in the selected region. Finally, the magnitude of the greatest
second derivation of the gray value in I ′ on the inner border is assigned to st (see
Criterion D above).

In order to determine whether a pair of computed catchment basins A and B
match the initial user selection, we evaluate the following merging rule, applying the
thresholds T :

IF Criterion A(A,B) AND Criterion B(A,B)
AND Criterion C(A,B) AND Criterion D(A,B)

THEN Merge Basins(A,B).
Since there are basins, which are only partially covered by the selected ROI, these

border basins are utilized in the same way as this was done for T , for deriving an
additional threshold set: T ′ = (d′t, c

′
t, b

′
t, s

′
t). When a new basin is extracted, we first

check whether the premise of the above rule is true for the threshold set T . If this is
the case, the basin is assigned to the initial ROI. Otherwise, the second threshold set
T ′ is applied and if the rule’s premise is ‘false’, the basin is definitely marked as not
matching the user selection. Finally, if the condition of the above rule is true applying
of the second set of thresholds T ′, the current basin is assigned to the layer of basins
surrounding the user selection and processed as described next (see Figure 3.10 gray
area in image d and Figure 3.11).
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cd b

a

After local watershed transf.
and basin merging (criteria A and B)

After basin merging
with criteria A and B

Original image after edge detection

After local watershed transf. and
basin merging with criteria A−D.

The basin layer defined by T’

After watershed transformation

user selection

Figure 3.10: Results of applying the watershed transformation. Image a shows the result
of applying the standard algorithm, which obviously produces heavily over-segmented im-
ages. After merging the basins with the described criteria, more meaningful segmentation is
achieved as shown in image b. Image c shows the results achieved with the proposed local
watershed transformation, starting with the selected ROI and applying the criteria A and B.
Applying all of the proposed criteria (A-D) results in image d. The basins inBc are also shown
in image d.

3.2.6 Basin Growth

After the user input is processed so far, the algorithm starts with the controlled basin-
level region growth. At this stage all basins completely or partially within the selected
ROI and a one-pixel thick layer surrounding these basins are processed. When fol-
lowing the path of steepest descent for each of the pixels in this layer, the reached
minima are completely outside the given ROI and thus not processed (flooded) yet.
The regional minima of these basins, however, are known and the flooding process
can be started as described in Section 3.2.3.1 (p. 23). In this way, in every basin-
iteration a set of basins surrounding the ones extracted in the previous step are com-
puted.

Every time a new catchment basin C is extracted, its attributes are applied for
evaluating the merging rule with the threshold set T . If C matches the user selection,
that is if the rule’s premise is true, it is assigned to the initial ROI. Unprocessed basins,
adjacent to C are pushed on a queue M containing the yet unprocessed minima
and are flooded in the next basin iteration. Otherwise, if C does not match the user
selection, the merging rule is evaluated again with the thresholds T ′. If the rule’s
premise is true this time, the basin is assigned to a set of potential candidates for
merging Bc. Any extracted basin C ′ adjacent to a basin in Bc, but not having any
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adjacent basin belonging to the currently extracted ROI can be only added to Bc but
not to the ROI itself. On the other hand, if there is an adjacent basin in the ROI,
the basin C ′ can be assigned to the ROI if the rule’s premise is true for T . Finally, in
case the rule’s condition is false for both threshold sets T and T ′, the current basin
is a border basin, not matching the initial user selection (see Figure 3.11). In the
following, this algorithm is stated in pseudo-code:

0 /*M – contains yet unprocessed minima */
1 do
2 N ← card(M);
3 while (N > 0)
4 N ← N − 1;
5 M ← pop(M);
6 C ← flood(M,M); /* basins adjacent to C are added toM */
7 if (merging rule(T,C)) /* check threshold set T */
8 assign to ROI(C);
9 else if (merging rule(T ′, C)) /* check threshold set T ′ */
10 assign to potential ROI(C); /* assign to Bc*/
11 endif;
12 end; /* while (N > 0) */
13 while (card(M) 6= N) /* until no new basins are added */

The mosaic of un-merged basins in Bc and their adjacency we utilized for
the definition of an adjacency graph G. In this graph, the nodes correspond
to the basins, the arcs link adjacent basins, similar to the approach introduced
in [Vincent and Soille, 1991]. The nodes within the initial ROI and the ones merged
during the basin growth are pooled together in a node U (as depicted in Figure 3.11).
The basins, for which the merging rule turns true only for the second threshold set

initial ROI
adjacency graph

Bc

final region
basin in

border basins

U

Figure 3.11: The user selection on the left and the extracted region in the middle. The graph
on the right shows (a part of) the (colored) adjacent basins in Bc.

T ′, are also assigned to the graph. However, they are not merged with the node U ,
but are connected with each other and with U . In addition, the following condition
can be added to the previous algorithm: if the basins Ci adjacent to a flooded basin
C ′ are not part of U , thus not meeting the merging criteria with threshold set T but
only with threshold set T ′, C ′ is automatically assigned to the set of potential regions
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of interest Bc. Each of these basins contains the attributes listed at the end of Sec-
tion 3.2.4. Thus, in a post-processing step, the user can manually assign basins out
of Bc to the initial ROI. Furthermore, the threshold set T can be updated each time a
basin is manually assigned to U . This makes a precise final basin-level-adjustment
possible, without having to explicitly manipulate single parameters.

In both cases, the result of the proposed algorithm is a set of connected basins,
extending the initial ROI. In other words, the input data is classified and marked in
such a way, that there is a connected region of interest and an area not belonging to
the ROI. In the 3D case, this data can be used to generate a surface surrounding it
(see Figures 3.12, 3.13), for volume rendering, or for raycasting [Tiede et al., 1998].

3.2.7 Results

To demonstrate the power of the proposed approach, it was applied to several im-
ages and two volume datasets. Each dataset was first preprocessed and the standard
Sobel edge detector [Pratt, 1991] was applied either to the image data in the 2D case,
or to each slice in the volume data.

In the next step, a slice was selected out of the two volume datasets and a region

User input Applying the proposed local
watershed transformation to

a volume dataset

Original image

After iso−surface extraction applied to the result

on which flooding
is performed.

detected input slice,
The relief of the edge−

Figure 3.12: The surface in the bottom is extracted with the marching cubes algorithm,
after performing the basin growth approach.
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User input
Original image

Applying the proposed local
watershed transformation to

a volume dataset

on which flooding
is performed.

detected input slice,
The relief of the edge−

After iso−surface extraction applied to the result

Figure 3.13: The surface in the bottom is extracted with the marching cubes algorithm,
after performing the basin growth approach.

was marked (as depicted in Figures 3.12 and Figure 3.13). Afterwards, the algorithm
described above was applied on a 26-connectivity grid. The computed results con-
sist of a set of marked pixels. In order to visualize this region we extracted a surface
applying the standard marching cubes algorithm [Lorensen and Cline, 1987]. Unfor-
tunately, this may introduce ‘stairs’ in the surface. To solve this problem, the basin
extraction has to be combined with the surface extraction. Since borders between
adjacent basins are in general smooth, this would improve the quality of the gener-
ated surface.

The image data was processed in a similar way, however, without applying a con-
tour extraction algorithm. Instead, after selecting a region and applying the pro-
posed technique, the pixels defining the border between the marked region and the
unmarked background, were colored red as shown in Figure 3.14. The proposed ap-
proach was applied three times, for three different objects of interest in the original
image. Each time the coarse contour of the target object was extracted appropri-
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Figure 3.14: Results of applying the proposed local watershed transformation on a 2D im-
age with three different user selections.

ately, even though the original picture contains noise and is hard to segment. For
each of the examples, the 2D images and the 3D volume sets, we have displayed the
computation times in Table 3.1. These times depend on the size of the extracted
object and not on the size of the dataset. As expected, the required time for the
three-dimensional input datasets were significantly longer than for the 2D images.

3.2.8 Summary

In this section, we presented a new semi-automatic method for extracting regions of
interest based on a local watershed transformation. We described how a catchment
basin is computed, given an initial pixel in the dataset. The proposed technique
does not require preprocessing of the data, while applying a modified rain-falling
simulation.

Unlike the standard watershed transformation, which floods the entire input
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Dataset Data size Number of Computation
regions time

Jaw bone 300x400x50 36542 14.07 sec
Vessel tree 512x512x64 54263 21.6 sec
Peppers Region A 512x512 2320 2.8 sec
Peppers Region B 512x512 3859 3.91 sec
Peppers Region C 512x512 3619 3.34 sec

Table 3.1: Computation times for the example volumes and images measured on an SGI O2
with 180MHz R5000.

data, the presented approach computes and merges only the catchment basins ful-
filling a set of criteria. In addition, the standard approach attempts to define basin-
merging criteria for all objects in the input data. In contrast, the proposed technique
utilizes the introduced criteria applying local attributes of a given user-selected re-
gion of interest. The features of a coarse manual user selection are utilized for intro-
ducing the threshold values for four criteria for merging the catchment basins in a
meaningful region.

Furthermore, the described technique can be applied more precisely, since it is
easier to define merging criteria for basins within one object of interest in the in-
put data, than for the entire dataset. The merging rule introduced in this way, util-
izes basin attributes like the basin’s dynamics, its average gray-color, as well as bor-
der characteristics like it’s steepness and gradient magnitude. This significantly im-
proves the results computed with the proposed technique, offering a reasonable so-
lution to the segmentation problem.
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3.3 Historical Data Visualization

The second visualization area we address in this work is the visualization of histori-
cal data. Despite the progress in the area of scientific visualization and information
visualization, historians often still utilize the approved 2D maps (see Figure 3.15),
combined with drawings and accompanying data sheets. These requisites, however,
make it very difficult to analyze, interpret, and comprehend events in time, looking

peasants’ war
peasants in the 

motion of the
Map of the

Figure 3.15: Example of a map used by historians to visualize events in time.

for answers to particular questions. For instance, it is often incomprehensible why
a given motion of people was performed in a particular way. Displaying the motion
on a three dimensional map, on which terrain facts and other local conditions are
shown, often gives explanation to such questions. Furthermore, the visualization
of the time-dependent events may also be hard to understand (see Figure 3.15). In
this case, the chronological display of events and the ability to interactively explore
the time dimension may significantly contribute to the detailed study of the data.
Therefore, the employment of computer graphics may significantly facilitate the ex-
ploration, analysis, and teaching of complex time dependent events in the space.

Although we are able to visualize almost any kind of data nowadays, the visu-
alization of historical data is still a challenging task. The problem with 3D space
combined with an additional time dimension in general, and with historical data in
particular, is the fourth dimension– the time. Until now, the visualization of and the
interaction with this kind of data has not been subject of active research. There have
been only few attempts to offer interactive exploration. Unfortunately, the results are
usually (VR-) techniques tailored to the specific problem. Thus, the developed con-
cepts are hard or even impossible to adapt to applications other than the one they
have been developed for. Nevertheless, the exploration of historical data in a VR-
application may significantly improve the interpretation and help understand the
visualized events and dependencies. Especially when complex migrations and bat-
tles are displayed on a 3D map (e.g. using tabletop displays), a VR-application can
be a valuable tool offering comprehensive visualization.

Conceptually, the problem of visualizing historical data is similar to the problem



CHAPTER 3. VISUALIZATION APPROACHES 39

of visualizing particles and their motion in time. The data contain a time-invariant
component (e.g. terrain) and a set of event points on the time axis. Unlike particle
visualization, however, we are not interested in the entireness of the particle system,
neither in all particle paths representing the particle flow. Instead, we are interested
in the single time steps and the events happening at a given point in time or in a
given time interval. Therefore, we cannot adapt techniques applied in particle flow
simulation application to the historical data visualization context.

The simplest way of visualizing two-dimensional data containing a time dimen-
sion is the generation of traditional image sequences (movies). Such image se-
quences are in general displayed with a constant speed. Thus, the way the “movie-
time” (event time) is elapsing relative to the user time is fixed. Since we cannot con-
trol the user time, the only way to manipulate the relation between both time scales
is to let the event time elapse faster or slower with respect to the user time.

More challenging is the scenario where the visualized data consist of three-
dimensional data and an additional time dimension. Often this case is reduced to
the definition of a fixed path through the three-dimensional dataset with prede-
fined speed of motion and elapsing event time. Thus, the result of the visualiza-
tion is an image sequence, where the challenge is the implementation of the ap-
propriate camera control. A number of researchers have addressed the issues be-
hind camera control in manipulation and exploration applications [Brooks, Jr., 1988,
Ware and Osborne, 1990, Ehricke et al., 1993]. Unfortunately, the resulting image se-
quences are not as interactive as desired and do not allow free motion in space and
time. Such a simultaneous motion in all four dimensions is difficult to display, since
we are unable to view more than three dimensions at a time.

There are also various contexts, in which the visualized data contain time-
dependent component. Fedak et al. [Fedak et al., 1996] describe a system for under-
water tracking and visualization of seals and whales. However, they only address the
three-dimensional data exploration and do not consider the interactive exploration
of the fourth dimension. When the time is taken into account, most of the efforts
result in a movie generation, for which the challenging task is the camera motion in
space and time. Palamidese [Palamidese, 1996] describes a context driven camera
motion. Drucker and Zeltzer [Drucker and Zeltzer, 1994] propose camera controls
based on an analysis of the tasks, which are required in a specific environment. Gle-
icher and Witkin [Gleicher and Witkin, 1992] address a similar problem. They pro-
pose methods for camera manipulation using features seen through the lens of the
camera. Finally, Galyean [Galyean, 1995] presents a different approach called the
river analogy. He describes a system, which pulls the user within a given time along
a predefined path. This guidance guarantees that the user will not miss given events,
while providing some degree of interactivity. He applies a spring/damper system
with variable spring/damper constants. One end of the spring is attached to a parti-
cle continuously moving along the predefined path. The virtual camera is attached
to the other end. Depending on the location of the moving particle on the path, dif-
ferent values for the spring/damper system are applied. Thus, different degree of
interactivity is given to the user. Even though the river flow is a simple and powerful
concept, it is predefined and constant, thus, no interactive time control is possible.
Another drawback of the approach is the inability to manage free exploration of the
space, i.e. the user cannot move freely in space.

Throughout this work, we demonstrate the entire process from the data acquisi-
tion to the visualization and guided exploration of a particular event: the peasants’
migrations and battles during the peasants’ war in 1525 in Germany. Even though,
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we present only this example, the proposed techniques can be used for visualizing
any type of motion in time, no matter whether this is a 90 minutes hiking trail or
species migration with duration of many thousands of years. In addition, the tech-
niques proposed in Section 3.3.3 allow simultaneous exploration of any arbitrary
number of motions in time. The only requirement is that the underlying terrain
model does not change within the visualized time interval. If this is not the case, we
cannot guarantee that the projection of the data contained in a given time interval
parallel to the time axis will produce a sound image.

The remainder of this section is organized as follows. First, we introduce in de-
tail the data acquisition and the preparation steps. Afterwards, we describe how the
data is visualized and different parameters are encoded in the displayed extrusion.
We also present a set of techniques for improving the exploration of the data, which
are independent of the interaction. In Section 4.5, we discuss in detail a set of tech-
niques for enhancing the interaction and visualization of historical data in virtual
environments. We also provide a summary of the interaction concept, as well as a
taxonomy of the interaction types in the four-dimensional space.

3.3.1 Data Acquisition and Preparation

The data originate from notes and delineations recorded during the peasants’ war
in the spring of 1525. They contain the route of the peasants, from village to village
gathering people and protesting against the feudal system and the growing taxes.
Unfortunately, the original data sheets were destroyed during world war two. We
only have copies of the delineations and notes made before they were destroyed. The
copies show the motion of the peasants as a simple polygonal line lo (see Figure 3.16).
These documents, originating from the time of the peasants war, are hand made
and hence not very accurate. Therefore, no direct mapping onto a terrain model
followed by instant visualization is possible, since the high precision terrain model
would not match the inaccurate hand-made drawings. Instead, in the first step we
had to transfer by hand these data (lo) onto a 2D topographic map lm.

On the other hand, we have a triangulated terrain model of the corresponding
2D topographic map. Thus, the next step of the data preparation is to assign height
to the 2D line lm. For each point, we can determine the height by interpolating the
z-coordinate of the corresponding triangle points. For each pair of points (a, b) of lm,
not lying in the same triangle, all intersections of the line (a, b) with triangle edges
are computed (see Figure 3.17). This may cause the addition of auxiliary points on
each edge intersection. Applying this approach to all point pairs in lm results in a
three-dimensional line lt, which lies exactly on the surface of the terrain.

The digital elevation model is acquired from a real digital elevation model with
5 meters resolution. For performance reasons, we have simplified the model. Thus,
our final dataset consists of not more than 25’000 triangles. This amount of data
can be rendered with reasonable frame rates of at least 25fps on currently available
consumer graphics hardware.

At this stage of the data preparation, we have a three-dimensional line lt. How-
ever, we do not have yet information about the time values associated with it. For-
tunately, for some of the places visited by the peasants, we know the exact arrival
and departure times, which were recorded by participants in the war. These points
define the mapping of the 3D polygon lt into the four-dimensional space (lf ). The
times associated with the points between two time-sampled points are interpolated.
In other words, we assume that the speed of the peasants’ movement is constant in
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lo

Figure 3.16: The copies of the original maps showing the path of the peasants. We only
have single pictures (therefore the gaps between the images), copied before the originals
were destroyed.

each segment between two time-sampled points. Thus, to each intermediate point
we assign a time value depending on the distance to the two adjacent time-sampled
points, concerning the time. In the remainder of this work, we call the polygon pieces
between two time-sampled points timed segments. The entire data preprocessing
pipeline is shown in Figure 3.18.

In order to enhance realism, instead of assuming constant speed, we also intro-
duced constraints to the interpolation of time between two time-sampled points. In
particular, we assigned decrease of the velocity depending on the elevation, respec-
tively acceleration of the velocity in parts with decreasing elevation. This last step in
our data preprocessing pipeline is done for each pair of points on the line lf . After it
is accomplished, we can start with the data visualization.

Path of the peasants

t al

b

Figure 3.17: The 3D path mapped on a triangulated terrain model. The arrows indicate the
points inserted on triangle edge intersections with the line lm.
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Figure 3.18: Data preprocessing pipeline. Starting with the original data, the arrows show
how it is transformed in order to generate real 4D data.

3.3.2 Data Visualization

There are various ways of displaying four-dimensional data. The most convenient
way is to compute a projection along one of the four axes. This reduction of a
four-dimensional problem to a three-dimensional visualization is applied in our
historical data visualization as well. In particular, we are always displaying three-
dimensional slices of the four-dimensional space orthogonal to the time axis. In
contrast to a movie, which undergoes the same transformation (from 3D to 2D), the
tools we propose in Section 4.5 enable interaction with the 4D data, and not only
equidistant 2D slicing of a 3D dataset (i.e. showing a movie). In our scenario, each
displayed 3D scene is either a real slice of the 4D space orthogonal to the time axis,
or a projection of a time interval parallel to the time axis. In the latter case, the re-
sult of the projection is a set of points each of which originally lay on a time slice of
the 4D space. In case the time value of a queried point (the fourth dimension) lies
between two time-sampled points (thus 3D slices of the 4D space), we perform four-
dimensional linear interpolation before the point is projected parallel to the time
axis. The connection of all projected points in the resulting 3D image corresponds
to the path (i.e. part of lf ) of the tracked subject within the given time interval.

In general, the path of the peasants is displayed always for a given time interval.
In other words, we have points in time, which are connected in order to express the
motion of the migration. Aiming to display more than the sole way of the migra-
tion, we use geometry with varying size in order to encode the number of partici-
pants in a particular time segment. Therefore, the migration is displayed as a set
of truncated cones. For the time-sampled points, we also know the exact numbers
of the participants, which are interpolated between the time sampled points (see
Figure 3.19). Furthermore, the geometry’s color can be used to encode any other
three-dimensional parameter (RGB-space) (see image B in Figure 3.20). This may be
the mood of the troops, the affiliation of the troops, their religion, belligerence, etc.

For visualizing the data, we utilize a modified version of the OpenGL’s extrusion
library [Vepstas, 2000]. This library provides a set of functions for extruding a 2D ge-
ometry shape along a given three-dimensional path. However, the extrusion has to
be computed for every frame, even if the input data do not change. For performance
reasons, we modified this library in such a way that the extrusion is computed only
once in a preprocessing step, whereas the resulting triangle strips are stored. Dur-
ing visualization, triangles belonging to sample points within the currently activated
time interval are displayed using the pre-computed geometry. The beginning and
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15 cones

Figure 3.19: For the visualization we utilized truncated cones with different radii, in order
to enable displaying of time varying data.

the end of the extrusion have to be computed each time the current time (inter-
val) has changed. This step is necessary, since the interactively adjusted time val-
ues (beginning and end of the time interval) can lie, considering the time, between
two points on the four-dimensional polygonal line lf . Thus, we have to interpolate
between these two points.

With this preprocessing, we achieve rendering times of 40 fps on average with a
terrain model consisting of 25’000 triangles and extrusion with approximately 40’000
triangles: 750 sample points, for each pair of points 40 triangles, plus additional tri-
angles for the joints between each two truncated cones1.

3.3.3 Simultaneous Display of Multiple Extrusions

When we intend to visualize many timed segments simultaneously, we treat each of
them as a single unit, which is displayed the way described above. For the realization,
we had to introduce a single global event time parameter that can be interactively
manipulated by the user. During rendering, each timed segment draws its parts in
the given global time interval, if there are any visible parts at all. This enables the
visualization of complex battles (see Figure 3.20) and even tracking (parts of) several
people’s lives simultaneously. The only required information is the mapping onto a
3D terrain and assigning time values to the extrusion, vide supra.

3.3.4 Landmarks and Orientation

In Section 3.3.1, we have described how the original polygonal line is mapped on a
today’s topographic map. This map can be used as a texture, which is mapped onto
the terrain model (see image B Figure 3.20). Even though the texture may improve
the orientation and help understand the data, due to the limited resolution and the
poor readability it does not provide the expected enhancement.

On the other hand, we have the exact descriptions of the timed segments includ-
ing, besides the number of the people being there and the arrival/departure times,

1All measurements are performed on a PIII 766 with NVidia GeForce 2 GTS.
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Figure 3.20: Image A shows a battle consisting of several single timed segments active in
the current time interval. Image B shows some of the additional visualization aids including
the names of the places, the time of the extrusion’s tip, and the topographic texture.

the names of the places they stayed at. In order to provide this useful information, we
display flags with the names of known places visited by the peasants. These names
often offer more concrete information about the drawn extrusion than the flat tex-
ture.

Furthermore, the user is free to activate an option for displaying the current time
above the tip of the extrusion. Thus, the user knows not only the position in the
space, but also the current position in the time dimension. In order to enhance the
navigation we discuss in Section 4.5, we also display the events within the current
time interval (date/time and place’s name) and the closest event in the future time
with its name and date/time. In this way, the user is enabled to plan the naviga-
tion and to estimate the duration of a currently not moving extrusion. For instance,
when the migration stays at a particular location overnight, the current time and the
departure time, thus, the next event in time, are displayed simultaneously.
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3.3.5 Daytime Modeling

Since the time can be interactively adjusted in our system, the user can feel lost in
time. In other words, it is hard to display how fast/slow the time is elapsing, or what
the current time is. This is especially confusing when the visualized data is not mov-
ing for a longer period of time (e.g. couple of days) and when the time display option
is not active.

In order to circumvent this obstacle, we implemented a daylight colored back-
ground. Depending on the current daytime, which is always the end of the active
time interval (tip of the extrusion), the colors used for drawing the background are
computed adaptively (see Figure 3.21). Thereby we do not consider the seasonal

Light effects
B

A

Figure 3.21: Image A shows the extrusion without the additional light source (sun light) and
with dark background rendered as a night image. In contrast, image B shows the extrusion
with bright background and with additional light source as rendered during the daytime.

variation of the daylight. In particular, we simulate nightlight, daylight, sunrise, and
sunset. Each time the scene is redrawn, we display an interpolated value as a back-
ground.

For completing the realistic effect, we also let a light source with time dependent
color rotate among the y-axis around the scene, thus simulating the motion of the
sun. Since it has been shown that shadows and lights are important cues for the
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depth judgment of a subject, besides the visualization, this technique also improves
the depth perception.

3.3.6 Summary

Armed with these display techniques, we are able to visualize slices of the 4D space
for particular time values and time intervals between two such slices. These visu-
alization tools make up the basis of the analysis and the interactive exploration of
historical data. The interactive manipulation of these time values, as well as other
forms of interaction and display of the data are discussed in detail in Section 4.5.
Before discussing these techniques, we first introduce the main concept of the pro-
posed tools and elaborate on the implementation of general techniques for interac-
tion in virtual environments.



Chapter 4

Interaction Concepts

The research in this direction came into being because in the author’s opinion VR-
applications still lack techniques implementing tools for exploiting the virtual na-
ture of applications and allowing more versatile insight into the virtual world. Al-
though there are various navigations and visualizations concepts available, we often
still need tools avoiding the typical side effects of immersive virtual environments:
the loss of orientation, inadequate navigation, and the cause of fatigue due to indi-
rect viewpoint manipulation. Viewpoint motion control, or navigation, is the task of
interactive positioning the viewpoint. Since the space physically available in a virtual
reality setup is in general limited compared to the size of a virtual world, navigation
metaphors have to be used in order to travel through the virtual world. Thus, head
tracking alone is not sufficient as a sole navigation tool. This fact, however, implies
that an indirect viewpoint manipulation has to be implemented in order to provide
navigation that is more convenient. For instance, a vehicle-like navigation control
may be used. With this concept, the user maneuvers the vehicle, while his/her ac-
tions are applied to translate and rotate the viewpoint in the space.

Indirect viewpoint manipulation often causes fatigue and motion sickness in im-
mersive VR-setups. The main reason for this, despite the latency often introduced by
the tracking device, is that the participant views a completely virtual world. The head
tracking applies every change of the position and the orientation as a transformation
to the virtual camera. Due to the fact, that the entire world is affected by this trans-
formation, the human brain can be fooled in its visual perception. Since there is no
physically fixed point in space to orient at and the eyes see something that the other
organs (e.g. vestibular organ) cannot confirm, this may lead to motion sickness. The
situation becomes even worse when the viewpoint is manipulated indirectly, as this
is the case when applying a navigation metaphor.

Therefore, one of the goals of this work was the development of techniques and
concepts for overcoming this drawback, while not restricting the interaction and
the visualization. As a result, we present in this section the basic concept of the
through-the-lens metaphor (TTL), as well as set of navigation, remote object manip-
ulation, and visualization tools based on this concept. We also present a taxonomy
for the various different states of the through-the-lens-metaphor in general and dis-
cuss their application in particular. Some of the cases of the proposed taxonomy are
well-known to the VR-developers. However, the entireness of all possible combina-
tions of the states of the virtual worlds when applying the TTL-metaphor has never
been investigated before. In this section, we identify and classify a set of known con-
cepts and present a set of new metaphors based on the TTL-concept. The basic idea
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of the latter is to introduce an additional viewpoint besides the one representing the
user in the virtual world, as described in Section 4.2.

4.1 Introduction and Related Work

Since their introduction in 1968 [Sutherland, 1968], VR-setups and applications are
widely used in many different areas of the computer science. Some of them have
made it even beyond the experimental stage and proved to be valuable tools for re-
search, training, therapy, and tele-working.

In each of these traditional virtual environments, various interaction techniques,
based on problem-tailored hardware, have been implemented. The goal of each of
them is clearly to provide vivid, powerful and on the other hand easy to understand
and to use tools. In this chapter, we will not discuss the entire hardware palette ap-
plied for constructing interaction tools, but will concentrate on two-handed interac-
tion applying the hardware presented in Chapter 2, while not restricting the utiliza-
tion of the proposed tools to it. Beforehand, we briefly review related work on two-
handed interaction and navigation in order to compare our tools with other available
navigation techniques and to motivate the utilization of two-handed interaction.

4.1.1 Two-Handed Interaction

The first milestone developments allowing the user to feel as comfortable as possi-
ble in the way he/she interacts with and within a virtual environment were set by the
work of Buxton and Myers [Buxton and Myers, 1986] and Guiard [Guiard, 1988]. Bux-
ton reported on significant performance increase when bimanual navigation or se-
lection is applied compared to accomplishing the task unimanually (as already intro-
duced in Chapter 2). Guiard’s work showed how a prop in the non-dominant hand is
used to define a (coarse oriented) coordinate system, a kind of reference frame, while
the dominant hand is used for fine positioning relative to that coordinate system.
Kabbash et al. evaluated two-handed interaction techniques and compared them
with unimanual interaction [Kabbash et al., 1994]. The conclusion of their work is
that bimanual interaction can significantly improve overall performance, especially
when asymmetric partition of labor is possible.

Based on the above observations on the asymmetric use and coordi-
nation of human hands, different research groups developed two-handed
interaction techniques for different VR-scenarios (e.g. [Cutler et al., 1997]).
The resulting tools are known under various names like pen and palette
[Sachs et al., 1991], pen and tablet [Angus and Sowizral, 1995], physical clipboard
[Stoakley et al., 1995], 3D-Palette [Billinghurst et al., 1997], personal interaction
panel (Pip) [Szalavári and Gervautz, 1997, Schmalstieg et al., 1999], and the virtual
palette and remote control panel [Coquillart and Wesche, 1999].

The idea is quite simple: the user is provided with a tracked pad used as a frame
of reference for the interaction with computer generated widgets. Interaction menus
and tools are projected on this pad. In addition, a tool for manipulating these inter-
face elements is provided, e.g. a virtual pen. The virtual tool is a visual duplicate
of a six-degrees-of-freedom input device, providing tactile feedback, similar to the
virtual tricorder introduced by Wloka and Greenfield [Wloka and Greenfield, 1995].
This two-handed interaction concept turned out to be very intuitive to use and suit-
able for application in various kinds of virtual environments (augmented and im-
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mersive, e.g. CAVE-like, tabletop displays, and head mounted displays). Further work
in the area of interaction techniques and systems applying bimanual interaction is
presented in [Turner et al., 1996, Cutler et al., 1997, Brooks, Jr., 1988].

As described earlier in Section 2.3.2 (p.11), we implemented the concept of two-
handed interaction in our system. We applied three tracked devices for determining
the position and orientation of the viewpoint and the hands of the participant. A
detailed description of the developed tools is given in the remainder of this section.

4.1.2 Navigation

Besides the two-handed interaction, another key issue in a virtual environment is
the navigation. This is a problem with increasing importance, since the size of vir-
tual worlds is rapidly growing. Moreover, the adequate navigation is one of the most
important features defining the usability and user acceptance of a virtual environ-
ment.

Andries van Dam and coauthors [van Dam et al., 2000] divide the navigation into
three groups of techniques:

• Searching is the motion to a particular location in the virtual environment.

• Exploration is defined as navigation without particular target.

• Maneuvering is the high-precision adjustment of the user position in order to
perform other tasks.

Due to the application of these navigation techniques for performing particular
tasks, each of them has a different application range. Searching and exploration
techniques are utilized for overcoming large distances, while maneuvering is applied
rather locally. Considering these three categories, the research towards developing
navigation tools can be divided in two main research directions: (1) adaptation of
known and well established approaches and metaphors (like maps, zooming, and
driving a vehicle); (2) development of new tools and aids supporting easy to use nav-
igation in VEs.

Fortunately, people are often confronted with the counterpart of the navigation
problem in every day life, which facilitates the exploration of this subject. In their
work, Darken and Sibert [Darken and Sibert, 1993] presented a toolkit for navigation
applying principles from real world navigation aids (e.g. maps). They also compare
the strengths and weaknesses of such aids. Stoakley et al. [Stoakley et al., 1995] ex-
tended this work to three-dimensional maps. He defines navigation as a term cover-
ing two related tasks: movement through a virtual space and determining the orien-
tation relative to the surrounding environment. Considering these two issues, Stoak-
ley introduced the World-in-Miniature or WIM-technique. A WIM is a scaled down 3D
copy of the virtual world displayed on a hand-held panel. Originally, the WIM was ap-
plied for interaction in virtual worlds, i.e. manipulation of objects in space. Pausch
et al. [Pausch et al., 1995] extended this approach to provide a navigation tool for
accomplishing searching and exploration tasks, enabling the user to directly manip-
ulate the current viewpoint. For this, they utilize a doll representing the user in the
miniaturized world. However, they also reported that despite the intuitive applica-
tion of the WIM, the direct viewpoint manipulation was confusing to many users.
This is caused by the fact that the world surrounding the user moves simultaneously
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with the movement performed on the WIM. In addition, due to the applied miniatur-
ized fixed-size copy of the virtual world, precise manipulation and navigation tasks
are difficult to perform.

Another work discussing and comparing navigation tools was presented by Ware
and Osborne [Ware and Osborne, 1990]. They describe and evaluate three naviga-
tion metaphors: the “flying vehicle control”, “eyeball-in-hand”, and “scene-in-hand”,
concluding that: “None of the techniques is judged the best in all situations, rather
the different metaphors each have advantages and disadvantages depending on the
particular task”. Similarly to the WIM-technique, the main problem with the eyeball-
in-hand and the scene-in-hand techniques is that the viewpoint is directly manipu-
lated and the resulting image immediately displayed. This, however, often leads to
confusion of the user or may even cause loss of orientation.

A more detailed analysis of navigation considering its basic components:
direction selection, velocity selection, and input conditions is discussed
in [Bowman et al., 1997]. In their work, Bowman et al. introduce a taxonomy
for viewpoint motion in virtual environments. Furthermore, they discuss experi-
ments showing that “pointing”-based travel techniques are advantageous compared
to “gaze-directed” steering techniques. In addition, they found out that the instant
user teleport is correlated with increased user disorientation. This cognition is
closely related to the techniques described in the remainder of this chapter. Instead
of teleporting the user, we offer a sort of preview window, through which the location
seen through the window can be entered.
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4.2 Through-The-Lens Concept

The main idea of a through-the-lens-tool (introduced in [Stoev et al., 2001e,
Stoev et al., 2000c]) is to provide a viewpoint, additional to the one used to represent
the user and thus to display the surrounding scene. Thereafter, the scene as seen
from this viewpoint is shown in a dedicated output window Wo (as shown in Fig-
ures 4.1, 4.2 and 4.4). In other words, we assume that there are two synthetic worlds
existing simultaneously in the physical space. The user is surrounded by one of these

Position and orientation of the camera

Figure 4.1: The primary world surrounds the user, while the secondary world can be ex-
plored only through a window in the primary world (e.g. mapped on the interaction pad).

worlds, called the primary world. He/she is represented by the primary viewpoint
in the primary world. The secondary world is the world not visible from the current
viewpoint in the primary world. It can be viewed only through a sort of magic lens
[Bier et al., 1994, Viega et al., 1996] in the primary world, which displays images seen
by a virtual camera in the secondary world. The so defined lens acts as a gate to the
location seen by the virtual camera in the secondary world. A simple example of this
scenario is depicted in Figure 4.1: the window mapped on the interaction pad shows
the image of the scene as seen by a virtual camera in the secondary world. In this
case, the primary and the secondary scenes consist of the same data. Thus, the posi-
tion of the camera in the secondary world can be depicted in the primary world. The
house visible in the secondary world exists in the primary world as well. However, it
is not visible from the current viewpoint in the primary world.

Conceptually, there are two virtual worlds and thus two windows, one in each of
the worlds. The window in the primary world, through which the user views the sec-
ondary world, we call output window (Wo). The virtual counterpart of this window
in the secondary world we call viewing window (Wv). Although in practice this is the
same window, since both are always attached to each other, for clarity we use these
two different terms throughout this section, depending on the world we refer to.

4.2.1 Taxonomy for the States of the Two Worlds

Regarding the relation of the two worlds to each other and the windows connecting
them, we distinguish different states, as depicted in Figure 4.3. Let us first consider
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the output window Wo, hence, the window in the primary world. Wo can have three
different states in the primary world (as shown in Figure 4.2):

• (case O1) fixed in the space explored by the user (primary world);

• (case O2) fixed in the image plane of the user;

• (case O3) mapped onto a pad that is held in the non-dominant hand of the
user.

cba

Figure 4.2: Figures (a)-(c) display the states O1-O3 respectively.

In the first case O1, the window is only visible when viewed from the right direc-
tion. Since it is fixed in the primary world, the user cannot move it. Changes of the
user position in the primary world allow viewing the virtual world behind the win-
dow from different angles. This window can be thought of as a real window placed
somewhere in the primary space explored by the user.

In the second case O2, the window is fixed within the image plane of the viewer.
This means, that when the user moves his/her viewpoint, the window remains at the
same position in the image plane. In other words, this scenario can be compared
with a sort of glasses worn by the user. When the view direction is changed, the
position of the glasses remains unchanged relative to the view frustum.

Finally, for the realization of the last case O3, we utilized the Personal Interaction
Panel (PIP) concept [Szalavári and Gervautz, 1997, Schmalstieg et al., 1999]. The PIP
consists of a tracked palette, on which the virtual tools are displayed in such a way,
that the user sees them on the pad’s surface. This is accomplished either using back-
projection and a transparent palette (Virtual Table, Virtual Workbench, Cave, Power-
wall, etc.) or front-projection (opaque and transparent head-mounted-displays). In
either case, the window is mapped onto the interaction pad (see Figure 4.1). In con-
trast to the first two scenarios, where the window Wo is fixed either with respect to
the explored primary world, or with respect of the viewing frustum, in this case the
pad, thus the window mapped on it, can be freely moved within the primary space.
This is usually performed with the user’s non-dominant hand.

These were the possible states of the output window in the primary world. Re-
garding the additional viewpoint and the scene seen through it, there are also three
conceptually different states of the viewing window Wv and the secondary world
seen through it:

• (case V1) the secondary world is fixed in the primary world’s space,

• (case V2) the secondary world is fixed with respect to the viewing window;
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State of the State of W   in

the primary viewpoint
V3 - fixed with respect to

o

v

secondary worldthe primary world

V2 - fixed with respect to W

O3 - freely movable in the space
(on interaction pad)

O2 - fixed in the image plane

(primary world)
O1 - fixed in the user space V1 - fixed in the space

(secondary world)

Figure 4.3: Summary of the possible states of the windows in both spaces: the primary and
the secondary world.

• (case V3) the secondary world is fixed with respect to the primary viewpoint.

In the first case V1, the coordinate systems of the two worlds are fixed with re-
spect to each other. The window connecting them can be positioned arbitrarily in
the primary space. Depending on the position of the window, different areas of the
secondary world are visible through it. This is the only scenario, in which the pri-
mary viewpoint is coupled with the secondary viewpoint. Thus, the motion of the
primary viewpoint in the primary world causes the motion of the secondary view-
point in the secondary world. This is the only natural way of entering the secondary
world as shown in Section 4.2.2, p. 56.

In contrast, in the second scenario (V2), the secondary world is fixed in the out-
put window’s coordinate space. This means, that independent of the position of the
output window, the viewing window remains fixed in the coordinate space of the
secondary world. Thus, looking at the output window from different viewing angles
enables exploration of different areas behind it. This is due to the fact that chang-
ing the position of the primary viewpoint with respect to the output window in the
primary world (or vice versa), causes the scene seen through the viewing window
to change its position with respect to the secondary viewpoint. On the other hand,
the motion of the primary viewpoint in the primary world does not cause a motion of
the secondary viewpoint in the secondary world, since the secondary world is always
fixed with respect to the viewing window.

Finally, in the third case V3, the secondary world is fixed with respect to the pri-
mary viewpoint in the primary world. In other words, independent of the position
and the orientation of the primary viewpoint in the primary world, the area of the
secondary world seen through the window remains the same if the position of the
output window in the viewing frustum does not change. Should the position of the
output window change, different areas behind the output window can be explored
similar to the case V1.

4.2.1.1 Wo Fixed in the Primary World (O1)

When the output window Wo is fixed in the primary space (case O1), the secondary
world and the primary world are fixed with respect to each other. Thus, we can-
not distinguish between the cases V1 and V2. This scenario was first described
in [Schmalstieg and Schaufler, 1999], where the window is used for sewing two dif-
ferent virtual worlds together. Once this is done, the user can travel from one world
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to the other moving the viewpoint through the provided window. Unfortunately, the
authors elaborate only on this single case and its application, not discussing further
states of the primary and the secondary world.

On the other hand, in case (O1/V3) the secondary world moves with the user mo-
tion in the primary world. This means, that the position of the secondary viewpoint
in the secondary world remains unchanged, when the primary viewpoint is moved
in the primary world. Only the clipped part of the secondary world may change.
Thus, when the user moves in a particular direction, different parts of the secondary
world can be examined with the output window Wo, which is static in the primary
world. Even though we can identify this constellation of the primary and the sec-
ondary world and the windows connecting them, it does not make much sense and
is not been reported in the literature.

4.2.1.2 Wo Fixed in the Image Plane (O2)

When Wo is fixed in the viewing frustum of the user (case O2), two cases O2/V1 and
O2/V23 are theoretically possible. Since the output window is fixed with respect to
the primary viewpoint, the cases O2/V2 and O2/V3 are the same, since the position
of the output window does not change with respect to the primary viewpoint.

In the first case (O2/V1), when the primary viewpoint is moved in the primary
world, the output window and thus the viewing window move with the image plane
and the user sees different parts of the secondary world. This corresponds to mov-
ing the viewpoint in both worlds simultaneously. Since both worlds are fixed with
respect to each other, we achieve the effect described above.

This scenario is often applied in semi-transparent head mounted display sys-
tems, where the primary world is the physical world surrounding the user. The sec-
ondary world seen through the HMD is a virtual world, allowing for superimposing
information aligned with the primary world, which does not exist or is not visible in
the primary world (e.g. pipes or conduction in the wall).

The second case (O2/V23) is not widely used, since a secondary world fixed with
respect to the viewing window would result in displaying always the same image in-
dependent of the viewing direction and position of the viewer in the space (primary
world). This is the same as attaching the secondary world to the primary viewpoint,
since the window is fixed in the image plane. The only scenario in which this feature
may be useful is when the user intends to “keep an eye” on a given location in the
secondary world, regardless the position/motion in the primary world. In this case,
the state O2/V23 allows viewing the same image of the secondary world at a fixed
position in the viewing frustum.

4.2.1.3 Wo Mapped on the Pad (O3)

Until now, we considered cases in which the output window was fixed either with re-
spect to the primary world or in the image plane. The most interesting case, however,
is case O3. In this scenario, we are able to interactively position the output window
in the primary world and thus the viewing window in the secondary world. Let us
now consider the different possible applications of the different state combinations.

In case O3/V1, the output window Wo mapped on the pad is used to explore parts
of the secondary world that is fixed in the primary world’s space (see Figure 4.4(c)
and (d)). Moving the pad with the output window Wo in the primary world causes
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Figure 4.4: The position of the viewing window (Wv) is shown with respect to the scene
seen through it (a). Va and Vb are two different viewing positions. (b) shows the two viewing
positions A and B, derived from the current camera positions Va and Vb. In case the view-
ing window Wv is fixed in the secondary scene and the output window Wo is moved in the
primary scene, the secondary scene moves with the viewing window as shown in (c) and (e).
(d) illustrates the “scene fixed in space” scenario (O3/V1) with the secondary scene frozen in
the space of the primary world (compare with (c)). Moving Wo (compare (c) and (d)) allows
viewing different parts of the scene. Detaching the secondary viewpoint from the primary,
allows the user to travel the primary world, while staying at the same position in the sec-
ondary world (compare (c) and (f)). When the viewpoint changes (e.g. from Va to Vb), the
scene shown in Wo can be viewed from different angles as depicted in (e) and (g).

the motion of the viewing window Wv in the secondary world’s coordinate space.
Thus, a magic lens-like tool [Bier et al., 1994, Viega et al., 1996] is realized.

In contrast, in the second scenario (O3/V2) the window can be adjusted to show
a given part of the secondary scene (location of interest), such that even if the output
window Wo is moved, the virtual window Wv remains fixed in the secondary world’s
space (see Figure 4.4 (c) and (e)). In this way, an “eye is kept” on a target location in
the secondary world independent of the user’s motion in the primary space (similar
to cases O2/V23, however with freely adjustable position of Wo). In addition, in this
scenario the user still can view the world behind the window from different angles
and thus explore different areas of it.

Finally, case O3/V3 makes it possible to travel the primary world, without ap-
plying the changes of the primary viewpoint to the secondary viewpoint in the sec-
ondary world. This is similar to the case where the secondary world is anchored to
the viewing window (case O3/V2). However, unlike in case O3/V2, moving the output
window in the primary world enables exploration of different parts of the secondary
world, while looking at the window from different angles does not enable exploration
of different areas in the secondary world. This is an analogy to case O3/V1, in which
the output window is also used for exploring the secondary world. State O3/V3 is
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especially useful when the user travels the primary world and wants to keep the po-
sition of the secondary viewpoint unchanged in the secondary world. If the user
position does not move and only the window Wo is moved in the primary space, the
scenario is equal to case O3/V1, hence to the case where the secondary world is fixed
with respect to the primary world.

4.2.2 Entering the Secondary World

As introduced above, the proposed concept of providing an additional view-
point for an explored scene is a more generalized 3D magic lens [Bier et al., 1993,
Viega et al., 1996] and extends the seam concept (seam stands for spatially ex-
tended anchor mechanism) described in [Schmalstieg and Schaufler, 1999] (there-
fore through-the-lens-tools). In the original seam implementation, the output win-
dow Wo is fixed in the primary world and the viewing window Wv is fixed in the sec-
ondary world (case O1/V1). In contrast to this, in our scenario both windows can be
freely moved in both spaces.

When we set the primary and the secondary world to be the same, this corre-
sponds to introducing two viewpoints to one scene: a primary and a secondary view-
point, as this is the case in Figure 4.4. In this way, we provide a dynamic viewpoint for
exploring distant locations in one and the same virtual world. Thus, an interactively
defined wormhole is introduced, through which a location is viewed from the sec-
ondary viewpoint. Due to the flexible positioning of the output window attached to
the interaction pad, the remote location can be viewed from any arbitrary location in
the primary world. In other words, the user travels through the primary world with
the pad held in the non-dominant hand, hence, with the window to the secondary
world attached to it.

In addition, the proposed concept can be used not only to view the scene from a
different viewpoint, but also to immerse the secondary scene through this viewpoint.
In order to enter the secondary world as seen from the additional viewpoint, the
user has to move the pad towards her/his face until the image on the pad completely
covers the viewing area. Once this is done, the system automatically detects this
state and sets the remote viewpoint vr to be the current viewpoint vp ← vr. The old
current viewpoint v′p is saved as an icon for the case the user intends to return to
the previous location. In this case, the same procedure is performed, namely the old
viewpoint v′p is entered through the window mapped on the interaction pad.

In the above discussion, we assumed that when the secondary world is entered, it
is fixed with respect to the primary world. In other words, moving the output window
Wo in the primary world corresponds to moving a magic lens (the viewing window
Wv) and exploring the distant location (case O3/V1). This is the natural way to enter
a new location in the way described above, since the final state of the system is a vir-
tual space that is fixed with respect to the former primary world. Theoretically, it is
possible to enter a world fixed with respect to the output window Wo (case O3/V2),
however, in this scenario the remote viewpoint vr depends on the position and ori-
entation of Wo. Hence, a state change has to be performed: the world is switched
from window-fixed to fixed in the primary space, as the target state is always virtual
secondary world fixed in the primary space.

Finally, in case O3/V3 the secondary world cannot be entered, since the sec-
ondary viewpoint is detached from the primary viewpoint and the motion of the
primary viewpoint is not transferred to the secondary viewpoint. Hence, the sec-
ondary viewpoint is always fixed in the secondary world. In order to enable entering
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of the secondary world in this scenario, a state change has to be performed similar
to case O3/V2.

This way of entering the secondary world through the window mapped on the
interaction pad, helps to avoid the application of the “teleporting” mechanism that
was found out to be often confusing to the user [Bowman et al., 1997]. Furthermore,
we provide a vivid preview of the remote location, which can be remotely explored
before it is “smoothly” entered.

4.2.3 TTL Requirements

The hardware realization of the proposed tools requires a virtual environment setup
with three tracked devices: one for the user’s head position and orientation and one
for each hand. This is the only information we need in order to realize the described
concept. Moreover, the application of the TTL-idea can be realized in any type of
immersive VR-setup (Virtual Table, Virtual Workbench, Cave, Powerwall, as well as
opaque head mounted displays), in which the systems provide this tracking capabil-
ity.

If the virtual world is organized in a scene graph-like structure, the software real-
ization is simple as well. In order to display the virtual world as seen from an addi-
tional viewpoint vr, the entire scene S, preceded by an appropriate transformation
(Ta), passes the rendering pipeline once again (see Figure 4.5). The projection of the
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TransformationTransformation Window

prim
ary world

S
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Figure 4.5: The transformation Tw positions the window. Ta is responsible for the position
of the secondary world.

output window (e.g. mapped on the pad) defines the area in which the rendering
of S as seen from vr is performed. During drawing, the virtual counterpart of the
physical pad is applied to fill the OpenGL’s stencil buffer with an appropriate mask.
Afterwards, S is displayed only within the masked area as seen from vr, which is the
same as transforming the scene with Ta before it is rendered. Further implementa-
tion details are discussed in [Schmalstieg and Schaufler, 1999].
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4.3 Through-The-Lens Navigation Tools

After introducing the different states of the output and viewing windows within the
primary and the secondary world, here we address the adjustment of the secondary
world in such a way that a particular target location can be viewed through the out-
put window Wo. In other words, we discuss how the secondary viewpoint vr is posi-
tioned in the secondary world such that given location is within the viewing frustum.
Once this task is accomplished, the new location can be entered as described in Sec-
tion 4.2.2, thus providing navigation capabilities.

Various navigation techniques belonging to one or more of the navigation types
introduced in Section 4.1.2 are reported in the literature. The navigation tools we
present in this work are inspired by the eyeball-in-hand, scene-in-hand (we call grab-
and-drag ) [Ware and Osborne, 1990], and WIM-techniques [Pausch et al., 1995], but
attempt to overcome their limitations. We introduced to these tools the above
through-the-lens concept, extending their functionality and improving their usabil-
ity. In particular, we apply the manipulation described in the original techniques to
the secondary viewpoint. Hence, the effect of the manipulation is observed through
the window, rather than applying direct transformation of the primary viewpoint. In
this way, the presented navigation aids provide a set of flexible and powerful tools,
covering all of the navigation categories introduced in Section 4.1.2.

In all through-the-lens tools described next, the primary and the secondary
worlds are the same. Hence, the viewpoints are in the same synthetic world. De-
pending on the manipulation of the secondary viewpoint, we distinguish two differ-
ent categories of techniques: applying direct viewpoint manipulation (e.g. eyeball-
in-hand) or indirect manipulation (e.g. TTL-WIM and TTL-grab-and-drag ). Note
that this manipulation is always applied to the secondary viewpoint. Thus, the dis-
advantages of the indirect primary viewpoint manipulation are circumvented. In
this section, we first describe the indirect manipulation techniques, which allow in-
tuitive adjusting the scene seen through the second viewpoint without having to ex-
plicitly define a virtual camera position and view direction. Afterwards, we discuss
in detail the eyeball-in-hand-technique for direct viewpoint manipulation.

4.3.1 TTL Scene-In-Hand Concept

This technique was first presented in [Ware and Osborne, 1990]. It provides a handle
attached to the scene, where the translations and rotations of the handle are applied
one-to-one to the scene. It is akin to have such direct linkage of the scene and a
tracked device. It is easy to understand and apply even for motions extending the
hand’s reach: a button is used to attach and release the scene to/from the virtual
handle. This approach has shown to be useful for manipulating discrete objects and
changing the viewpoint of the user for scene exploration [Ware and Jessome, 1988,
Mapes and Moshell, 1995].

In our implementation, we start with two aligned viewpoints, which correspond
to two aligned (primary/secondary) synthetic worlds. Now, the user is able to ma-
nipulate the scene seen from the secondary viewpoint by grabbing a point of it (e.g.
an object or event the air) and dragging it in the desired direction (Figure 4.6). Note
that the secondary scene remains always fixed with respect to the primary world
(case O3/V1), except when it is grabbed. In this scenario, the secondary scene can
be grabbed at any arbitrary location, using the second button of the interaction pen.
Once the button is pressed, the secondary world is attached to the interaction pen.
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Figure 4.6: Initially, both viewpoints are aligned as shown on the left. Grabbing the scene
at point P and dragging to point P’ corresponds to a translation (eventually combined with
rotation) of viewpoint A to viewpoint B, as shown on the right.

Moving and rotating the pen corresponds to moving and rotating the secondary
world. In contrast to the original implementation [Ware and Osborne, 1990], we did
not fix the center of rotation to the center of the scene, since, as the authors point
out, rotations are difficult to perform when the viewpoint is far from the fixed center
of rotation. Instead, the rotation is mapped one-to-one to the secondary world.

This approach is similar to the scaled-world grab locomotion metaphor de-
scribed by Mine et al. [Mine et al., 1997]. They propose a technique for grabbing
distant objects using a form of image-plane interaction. Thus, the user can pull
him/herself towards any visible object. Unlike the scaled-world grab where the au-
thors apply the motion immediately, we (a) provide a preview window, (b) use a di-
rect technique for grabbing and dragging the secondary world, and (c) do not require
from the user to grab an object, instead any point in the space can be grabbed. The
scene seen through the output window is now manipulated applying a simple grab-
and-drag handle. In this way, the viewed part of the scene can be chosen very pre-
cisely, without requiring the user to physically or virtually walk/fly to the location of
interest.

In addition to the grab-and-drag mechanism, the user can also scale the sec-
ondary scene if needed (see slider in Figure 4.6), hence, making this tool especially
suitable for final high-precision adjustment. Furthermore, the scaling facilitates the
traveling of large distances. When the user intends to view a distant location he/she
can scale down the secondary world, place the target location underneath the center
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of the output window using the grab-and-drag mechanism and scale the secondary
world up again. With this additional aid, the application range of this technique is
not limited to the reach of the user’s hand. Nevertheless, when applied for viewing
distant locations, the proposed technique may be circumstantial. This drawback can
be overcome by combining our through-the-lens technique with other techniques
for remote object grabbing (e.g. go-go technique [Poupyrev et al., 1996], image plane
techniques [Pierce et al., 1997], or scaled-world grab technique [Mine et al., 1997]).

Similar to the original eyeball-in-hand tool, we implemented a one-to-one map-
ping for the translation. Moreover, we also implemented a one-to-one mapping of
the rotation, instead of allowing rotations only about the center of the (secondary)
scene. In this way, we can easily compute the transformation Ta (see Figure 4.5,
p. 57). For Ta, we only need the position and orientation of the dragging handle
at the beginning of the dragging motion and the current position of the handle. If
another grabbing technique is applied, the transformation Ta has to be generated
properly.

4.3.2 TTL World-In-Miniature

Originally, the WIM metaphor was applied for remote object manipulation
[Stoakley et al., 1995]. The miniaturized copy of the world is mapped onto a hand-
held device. Now the manipulation of the icons of the objects in the miniaturized
world causes the corresponding objects to move in the surrounding world. Pausch
et al. [Pausch et al., 1995] extended this concept to traveling in immersive environ-
ments. They found out, that the direct mapping of the manipulated user viewpoint
icon in the miniaturized world to the full-scale virtual world causes disorientation.
Furthermore, they state that the user’s attention is focused on the miniature and
not in the full-scale virtual world. In order to circumvent these drawbacks, the au-
thors propose a slow-in-slow-out animation [Lasseter, 1987] of the viewpoint given
the current user position in the full-scale world and the target position set in the
miniature. This, however, is still confusing to the user, as the authors note. Instead,
they propose the user to become a doll. This means, that the doll representing the
user is animated into the miniature. Afterwards, the user is animated to the new lo-
cation and the graphics forming the old full-scale virtual world are faded out and a
new WIM is presented to the user.

In contrast to the original WIM tool, with the TTL-WIM we do not map the minia-
ture copy of the virtual world on top of the pad. Instead, we display the latter un-
derneath the pad’s surface. In this way, we create the impression of looking into the
miniaturized virtual world through a window defined by the pad on top of an imagi-
nary box. Instead of explicitly defining the final position of the user in the miniatur-
ized world, the user interactively selects a region of interest dragging a box around
it. This approach is well-known from the traditional two-dimensional desktop appli-
cation. The main differences are that (a) the user views a three-dimensional world
and (b) the miniaturized world is mapped onto a hand-held interaction pad. The se-
lection is made on the top of the bounding box of the virtual world. Afterwards, the
miniaturized world is scaled up in such a way, that the selection fills up the viewing
window and the top of the secondary scene’s bounding box is still aligned with the
surface of the interaction pad (as shown in Figure 4.7). Due to the fact that the minia-
turized world is displayed on top of the interaction pad in the original scenario, the
free choosing of a scale factor is not possible.

With the proposed technique, the selected part can be examined not only
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Figure 4.7: Initially, a miniaturized copy of the entire scene as seen from viewpoint I is
displayed on the interaction pad (do not confuse with the current viewpoint A). During the
interactive selection of a region of interest, the selection is shown in the primary world as
well. After completing the selection, the viewpoint is moved to B, such that only the selected
region is visible through the pad. In addition, the lower right image shows the transformation
applied to the current viewpoint in the primary world.

through the pad, but also in the virtual world surrounding the user (if visible from
the current viewpoint). The size of the dragged box defines the position of the vir-
tual camera in the secondary world, while the orientation always remains orthogo-
nal to the virtual world (z-axis of the world) as shown in Figure 4.7. In this way, the
viewing window Wv is always fixed in the secondary scene. Thus, this scenario cor-
responds to case O3V2 (see Figure 4.3, p. 53), whereas an indirect manipulation of
the secondary viewpoint is applied.

This technique is primarily used for coarse selection of the viewed area. It is espe-
cially suitable for subsequent dragging a box around the target area at different scale
levels. Once the user has adjusted the desired part of the scene to be seen through
the output window on the pad, there are two ways of entering the new location:

(a) Either the user is automatically teleported to the new location, whereas the
view orientation relative to the surrounding world remains unchanged. Only
the primary world is appropriately scaled taking into account the center of the
interactive selection (see Figure 4.7), or

(b) The secondary scene behind the window is released from the window and can
be further adjusted applying another through-the-lens technique, or directly
entered as usual (see Section 4.2.2, p. 56).

In order to immerse the world seen through the output window on the pad, this
world has to be fixed in space (state V1). Since this is not the case with this tool, after
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selecting the location of interest the scene has to be explicitly fixed in the space,
which corresponds to releasing it from the viewing window it was attached to.

We can easily determine the scale factor and the point of interest (the middle of
the dragged box). Thus, the computation of Ta is simple as well. Knowing the size
and location of the dragged box, the camera in the secondary world is positioned
right over the point of interest in order to display the new miniaturized world under
the pad’s surface, as shown in Figure 4.7. When this tool is used to automatically
scale the underlying terrain, the appropriate transformation (derived from Ta) is ap-
plied to the primary world as well.

4.3.3 TTL Eyeball-In-Hand Concept

This technique has been introduced and explored by several researchers
(e.g. [Badler et al., 1986, Brooks, Jr., 1988, Ware and Osborne, 1990]). The eyeball-in-
hand originally uses a tracked device as a virtual camera that can be moved about
the virtual scene. The scene acts like an invisible model surrounding the user that
can be explored only through the hand-held camera. Thus, the participant sees on
the screen what the camera sees through its lens.

With this implementation, however, the boundaries of the scene have to be lo-
cated inside the boundaries of the device’s domain. In other words, in order to move
the camera around the scene, the user has to physically walk. This is due to the fact,
that the camera can only be positioned within the hand’s reach. Therefore, Ware
and Osborne [Ware and Osborne, 1990] presented an extension enabling to travel
through the scene using a button for activating the display of the camera view. In
this way, they implemented a form of grabbing: when the button is pressed the cam-
era view is tracked, otherwise, the camera is detached from the tracked device. A
side effect of this feature, however, is that the mental model of a fixed invisible scene
surrounding the user is destroyed. Instead, the user must imagine that the invisible
scene can be grabbed using the camera as a kind of handle. In practice, this model
turned out to be confusing to the user and was not discussed further by Ware and
Osborne [Ware and Osborne, 1990].

Despite the intuitive mental model applied with this metaphor, the main prob-
lem is the often-caused disorientation. This is due to the motion of the virtual view-
point, which is directly applied to the current camera. Moreover, the one-to-one
mapping of the hand to the virtual viewpoint makes precise adjustment of the virtual
camera very hard. Even though, the eyeball-in-hand metaphor is simple to under-
stand and requires a simple mental model of the scene, the above limitations make it
unsuitable as a sole navigation technique. In order to circumvent these limitations,
while still supporting the features of this metaphor, we introduced a preview window
(TTL) to the eyeball-in-technique. This makes it possible to view the scene from var-
ious viewing positions (in the hand’s reach) without changing the current viewpoint
of the user in the primary world, thus, reducing confusion and disorientation.

In particular, the pen held in the dominant hand is used to define the secondary
viewpoint in the surrounding virtual environment (see Figure 4.8). It defines the
position and the orientation of the secondary virtual camera. The scene, seen from
the secondary viewpoint, is displayed in the output window, which is mapped on the
pad held in the non-dominant hand. In this scenario, the secondary world is always
in state O3V2, thus it is fixed with respect to the output window. Since the user sees
the position of the virtual camera in the primary world (surrounding environment)
and the scene as seen by the positioned camera simultaneously, the virtual camera
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Figure 4.8: Applying the eyeball-in-hand tool, the secondary viewpoint can be positioned
directly by defining a position and orientation of the new virtual camera B. A is the current
viewpoint.

can be positioned very precisely. In this way, our tool overcomes the limitations of
the original eyeball-in-hand metaphor, while still supporting its features.

In order to display the appropriate part of the scene, we first compute the trans-
formation T transforming the current position and orientation of the pen to the cur-
rent camera’s position and orientation. The matrix T−1 is now used to compute the
transformation Ta. This is set to be the transformation preceding the scene drawn in
the output window (see Figure 4.5, p. 57).

4.3.4 Usability

Event though we have not performed detailed quantitative usability studies yet, pre-
liminary qualitative evaluation of interactive sessions with a virtual world assembly
application have shown that the TTL grab-and-drag and the TTL WIM tools are in-
tuitive and do not require training time in order to apply them appropriately. The
eyeball-in-hand tool, however, turned out to be confusing for some users due to the
6DOF manipulation (see Table 4.1). This conclusion was reached when a group of
50 users was provided the opportunity to work with the TTL-tools. The participants’
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experience in interaction in virtual environments reached from novice users with no
experience to expert users in this area.

Each of the users was first shown a short demonstration of how the principle in-
teraction works. This was primarily geared towards explaining the interaction pen
and tabled paradigm. This was followed by a short introduction to each of the pro-
posed techniques. Finally, we let the users work with the application on their own.
We did not ask the participants to complete some questionnaires, instead, we ob-
served their reaction and how fast and how accurate the techniques are applied.

4.3.5 Conclusion

One of the most important features of the proposed through-the-lens concept is that
the surrounding virtual world remains unchanged during the two-handed manipu-
lation of the secondary viewpoint. This strategy prevents from causing motion sick-
ness and loss of orientation, which are the main problems of the original navigation
tools.

Although each of the proposed techniques has some limitations, the combina-
tion of all of them provides a powerful toolkit for exploring distant locations in a
virtual world, as well as navigating in the virtual environment (see Table 4.1). The de-

Technique Features Limitations

TTL grab-and-
drag

• suitable for searching tasks,
and precise final adjustment
tasks

• circumstantial for distant
objects and locations

• intuitive viewpoint manipu-
lation

TTL WIM • suitable for exploration and
searching tasks

• scene cannot be entered
until not “fixed in space”

• supports multiple scale levels • improper for fine view-
point manipulations

TTL eyeball-in-
hand

• requires very simple mental
model
• easy to use for fine precision
camera adjustment

• unsuitable for exploration
• may be confusing (too
many degrees of freedom)

Table 4.1: Brief comparison of the proposed navigation tools.

scribed through-the-lens world-in-miniature technique overcomes the main draw-
backs of the original WIM-metaphor. The arbitrarily adjustable scale factor allows the
user to view large virtual worlds at a freely chosen scale, which is not supported by
the original WIM. Since the miniaturized world is not displayed on top of the hand-
held palette, the scale size is not limited to the distance between the user’s head and
the projection pad. The presented through-the-lens WIM is primarily used for ac-
complishing searching and (coarse-level) exploration tasks.

In contrast, the grab-and-drag technique can be applied for all of the navigation
categories introduced in Section 4.1.2, namely: exploration, searching, and maneu-
vering. The only limitation is that it is not easily used for setting the viewpoint to
very distant locations. However, there are various alternative ways for overcoming
this obstacle. The most intuitive one is to use the slider for scaling up and down
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the secondary world, as proposed in Section 4.3.1, p. 58. Another alternative is the
combination of the grab-and-drag tool with other techniques for remote grabbing.

The eyeball-in-hand tool is mainly used to directly define the view position and
orientation within the reach of the user’s hand. Hence, it falls into the category of the
maneuvering-tools. This technique is very intuitive and requires a simple mental
model for the correct adjustment of the secondary viewpoint. With the proposed
preview window, this tool provides a valuable navigation aid, while circumventing
the limitations of the original eyeball-in-hand tool.

In summary, the application of the through-the-lens concept for navigation in
virtual environments provides a powerful mechanism for implementing preview-
enriched navigation tools. This concept allows exploring distant locations or hid-
den features of the virtual world surrounding the user, without having to virtually
or physically fly/walk to the remote location. It allows viewing locations of interest,
while still being at the same location in the primary virtual world. This main con-
tribution of this section enables the enhancement of existing navigation aids and
development of new tools exploiting the through-the-lens concept.
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4.4 Through-The-Lens Remote Manipulation Tools

The through-the-lens metaphor described in Section 4.2, is not only suitable for uti-
lization as a preview window during navigation, but it can be even extended and
applied as a remote object manipulation technique. In this case, the TTL-concept
provides an intuitive and powerful prop for moving objects from a remote location
to the user and vice versa, as well as direct manipulation of objects at the remote
location [Stoev et al., 2001d, Stoev et al., 2002]. Similar to the through-the-lens nav-
igation tools, in this scenario the primary and the secondary worlds are the same.
This is an important condition, since otherwise the objects manipulated through the
output window would not be in the same scene. Consequently, the effect of manip-
ulating and observing the changes in the surrounding scene would not be achieved.

4.4.1 Introduction and Related Work

Even though it does not have a counterpart in real life, remote object manipulation is
both useful and intuitive. It allows the user to work with objects not within the reach
of his/her hand and to examine the virtual world as seen from the current viewing
position. Without the ability to perform remote object manipulation, the user would
have to navigate to the location of interest, apply the intended manipulation and
travel back in order to examine the results of the manipulation.

Many researchers have addressed the subject of remote object manipulation in
virtual environments. Pierce et al. [Pierce et al., 1999] presented the Voodoo Dolls-
technique for remote object manipulation. A doll looks like a minified (or magni-
fied) copy of an object. The user creates a doll by framing an object with her/his
hand on the image plane and pinching his/her fingers together. The system then
instantaneously creates a copy of the object, scales it (up or down) so that the new
doll reaches a comfortable working size, and moves the object to the user’s hand.
Afterwards, depending on which hand holds the doll, the object associated with it
can be manipulated in various ways: either the user changes objects features, when
the object is held in the non-dominant hand, or the position and orientation of the
original object can be adjusted, when it is held in the dominant hand.

Mine et al. [Mine et al., 1997] presented another approach for remote object ma-
nipulation: the scaled-world grab. The basic idea of this technique is to automati-
cally scale objects in such a way, that their projected size remains unchanged, while
bringing them close to the user. He/she can now manipulate them as if they were in
the hand’s reach. After the manipulation is completed and the object released, it is
scaled back to its original location.

Poupyrev et al. [Poupyrev et al., 1996] described the go-go mechanism for non-
linearly extending the arm of the user, thus, enabling manipulation of objects out
of the reach of the user’s physical hand. This metaphor provides the user with the
traditional one-to-one mapping of the translation of the tracked device to the vir-
tual hand within given application radius. Outside this area, the mapping extends
the virtual hand applying a quadratic increase of the arm extension. This results in a
tool extending the physical reach of the user, however, with still limited application
radius.

Bowman and Hodges [Bowman and Hodges, 1997] gave a brief evaluation of this
and other existing techniques for grabbing and manipulating objects at remote loca-
tions. In their work, they report on a user study and compare the go-go-technique,
other arm extension techniques, and a ray-casting technique [Mine, 1995]. The au-
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thors also propose the HOMER technique, which carries out a combination of the
ray-casting technique for object selection and in-hand object manipulation. The
paper concludes that none of the tested techniques is a clear favorite, because none
of them were easy to use and efficient throughout the entire interaction consisting
of grabbing, manipulating, and releasing.

Pierce et al. [Pierce et al., 1997] presents a set of image plane techniques, which
enable selection, manipulation, and navigation in virtual environments. Their idea
is to work not with the objects, but with their projections onto the image plane. In
this way, interaction with any visible objects is possible.

Finally, as stated before, the WIM technique [Stoakley et al., 1995] can also be
used to remotely manipulate objects in the space. The user can grab, manipulate
and release the objects in the miniaturized world, which are linked with the full size
world and its objects. Hence, manipulating the miniaturized objects causes the ob-
jects in the surrounding world to change their position, orientation, and other prop-
erties.

4.4.2 Remote Object Manipulation – a Taxonomy

In general the remote object manipulation can be realized in two different ways, con-
sidering the underlying concept of the technique:

• (UR) the manipulated object (or an icon of it) is brought into the reach of the
user’s hand (User Reach - techniques);

• (ER) the manipulation tool is extended to reach the remote object (Extended
Reach).

To the first set of techniques count the Voodoo Dolls, the WIM, the world scale grab,
and the image plane interaction. Within this set, the techniques can be divided in
two main categories:

• projection plane techniques;

• manipulation of copy of the target object.

The first category consists of techniques that make use of the projection of the ob-
ject being manipulated. The second provides an appropriately scaled copy of the
target object. This copy (icon) is linked with the original, in such a way, that actions
performed on the icon are immediately applied to the original object.

The idea of the second category (ER) is to extend the physically limited reach of
the user’s hand. To this set count techniques like the go-go interaction, the HOMER
technique, and the ray-casting technique. The latter provides a light-ray-like exten-
sion of the user’s arm that is used mainly to select objects and translate them orthog-
onal to the ray direction. In contrast, with the HOMER-technique the manipulating
hand is extended to reach the remote object using ray-castin-based selection. After-
wards, the manipulations are performed directly as if the object is in the user’s hand,
so that any rotation can be achieved.

The common feature of the techniques in the first category (UR) is that all of
them support interaction with objects in the local environment. In contrast, with the
second set of metaphors (ER), the manipulation is performed in the remote location.
Unfortunately, none of the referenced techniques allows spontaneous combination
of both. This capability would make it possible to exploit the best features of both
remote manipulation concepts simultaneously.
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Furthermore, none of the above techniques supports precise translation. The ap-
proaches in both main categories suffer from this disadvantage. In order to translate
an object with an ER-technique, the user can translate and rotate the arm exten-
sion. The rotation component, however, has a great impact on the translation, since
with increasing distance between the user and the object small rotations can result
in significant translations. The only ER-technique allowing adequate translation is
the HOMER-technique, since the grabbed object can be translated as if it is within
the physical reach of the user.

On the other hand, with the UR-techniques, the user performs the manipulation
with scaled (by factor s) copies of objects, which enables precise interaction with the
object itself. However, another problem arises, when the aim of the interaction is
to translate an object at its remote location. Namely, if the translation is mapped
one-to-one and the scale factor s is significantly greater or smaller than one, the pre-
cision of the translation is too coarse/fine. For instance, let us assume a house is
selected, which is significantly scaled down in order to allow convenient interaction.
When the translation is mapped one-to-one, moving the scaled down house by one
unit in the desired direction will cause the full-scale house to move in the desired
direction by only one unit, which will induce very small translation relatively to the
size of the object. The same problem occurs with an object, which is small in the
full-scale world, thus has to be scaled up. In this case, the translation would cause
too coarse positioning in the full size world, since small displacements of the icon
induce significant displacements in the full size world.

Similarly, if the translation is scaled with the scale factor s (e.g. WIM interaction),
every little change of the scaled object will cause significant change in the full-scale
world. Due to the limited spatial resolution of the tracking hardware, the limited
visual resolution of the display system, and the limited precision of the fine hand
motion, the correct translation is a challenging task.

4.4.3 TTL Remote Manipulation

What we would like to have is a tool, which allows working with the remote objects
in their natural environment at a freely chosen scale. The through-the-lens remote
object manipulation is an improvement allowing both modes, ER and UR, to be ar-
bitrarily combined. The basic idea is to allow reaching through the window and ma-
nipulating the objects in the secondary world seen through it.

We have shown in Section 4.3 (p. 58) how the secondary world viewed through
the output window can be adjusted such that a target location is viewed through
it. In this way, a kind of preview window to a remote location is provided, similar
to a wormhole known from science fiction. In our immersive setup, this window is
mapped onto a hand-held pad tracked with 6DOF for convenient placement.

For the application of the remote object manipulation, we assume that the sec-
ondary world is fixed in the space (state V1) as discussed on page 52. In this way, the
pad becomes a magic lens revealing the remote location. Once the secondary world
is adjusted as desired and fixed in the space of the primary world, the window has to
be detached from the surface of the interaction pad. Decoupling the window from
the pad’s surface allows projecting interaction tools on the latter and applying them
as usual. This scenario corresponds to case V1/O1 (p. 52), namely, the secondary
world and the output window are fixed with respect to the primary world’s space.

After accomplishing this step, the tracked stylus is used to interact with the re-
mote objects. The user can manipulate remote objects by reaching with the stylus
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into the frustum volume defined by the lens and the current viewpoint (see Fig-
ure 4.9). If the stylus is outside this volume, it acts in the local environment in the

The houses at the remote

world

location in the primary

Interaction pen in

the secondary world

the primary and

Remote location

the output window

viewed through

(a) (b)

(c) (d) (e)

Figure 4.9: (a) and (b) show a sketch of the remote object manipulation. The left sketch
shows the output window and the remote location in the primary world, while the right
shows an object (fountain) added through the lens at the remote location. The snapshots
(c), (d), and (e) show the proposed technique in action. After defining a window to the sec-
ondary world, the user can manipulate the objects at the remote location. While the tip of
the pen is behind the output window, the pen appears in the primary and the secondary
world at the same time (e).

normal way. Moving the stylus from the remote volume to the local volume and vice
versa instantly changes the context of interaction. This context switching method is
similar to the point-to-focus policy popular in some 2D windowing systems.

This scenario enables the user to select an object at the remote location and
change its properties. Furthermore, the proposed tool can be used to rotate and
translate the object at its original position in an intuitive way, not supported by most
of the ROM techniques published in the literature. Since the secondary world can
be viewed at an arbitrary scale, the translation problem addressed above is elegantly
circumvented, and the remote objects can be moved with high precision at any de-
sired scale size.

4.4.4 TTL Remote Drag-And-Drop

The change of context applied when the stylus is moved can be exploited to teleport
object between locations by drag-and-drop operations between volumes. As soon
as the interaction pen and an object picked with it leave the view volume described
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above, the object is dragged to the primary world (the test is performed for the tip of
the stylus). Now the object can be arbitrarily manipulated. When the manipulation
is completed, it is put back to its original location.

This remote manipulation strategy is a mixture of the conceptually different tech-
niques discussed in Section 4.4.2 (p. 67). It has some similarities with the Voodoo
Dolls: the object is brought into the physical reach of user’s hand. It also resembles
some features of image plane techniques: the pen is used to grab through the output
window to the secondary world. On the other hand, similar to the go-go technique
the virtual arm is extended in such a way, that the user can interact with objects at
the remote location in the secondary world without being there.

In a slightly more complex scenario, objects can be even transferred between
multiple remote locations with drag and drop operations. In this way, the user
can assemble a complex scene with arbitrary fine details without having to change
his/her position in the primary world, while still being able to examine the scene
from different viewing positions. Thus, our approach provides a solution to the prob-
lem of changing and examining the scene from the current viewpoint, while manip-
ulating objects in distant locations of the virtual world.

4.4.5 Conclusion

We have found through-the-lens manipulations to be both: intuitive and efficient.
The user is not required to navigate to the remote location in order to manipulate
objects, but can stay at the current location and examine the result of the remotely
performed actions. The proposed scenario is useful even if the “remote” location
is in the reach of the user, since the scale and the position of the secondary view-
point can be arbitrarily chosen. For example, a magnifying lens allows precise ma-
nipulation of details, while a minifying lens allows manipulation similar to using a
world-in-miniature approach [Stoakley et al., 1995]. In addition, the proposed ap-
proach offers a sound solution to the translation problem, while carrying out a tool
that supports the features of numerous remote manipulation techniques presented
in Section 4.4.1 (p. 66).

The through-the-lens remote object manipulation provides a universal tech-
nique for working with objects out of the user’s physical reach. It proved to be a
valuable tool for assembling virtual worlds, circumventing some of the disadvan-
tages of other known remote manipulation metaphors.

Considering the usability of the TTL remote object manipulation, we found out
that once the secondary world is adjusted appropriately, the manipulation at the
remote location is easy to perform. This is due to the fact that the applied tools
behave like normal tools for interaction in the surrounding environment.
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4.5 Tools for Interaction with Historical Data

So far, we have described in Section 3.3 (p. 38) the acquisition, preprocessing, and
display of historical data. In particular, these steps were performed on data rep-
resenting the migration and the battles during the peasants’ war in 1525 in Ger-
many [Stoev and Straßer, 2001]. In this section, we discuss in detail the interaction
with the data in a virtual environment [Stoev et al., 2001a]. The latter is a promising
alternative to the traditional desktop paradigm, since in the virtual environment the
user can perform various forms of interaction not supported by 2D desktops. Instead
of studying 2D maps and attempting to imagine the motion in time, the terrain facts,
the participants’ speed of motion, etc., the more convenient computer aided inter-
pretation within a synthetic virtual environment can be used. This in turn greatly
facilitates the analysis and the visualization of the underlying data, helping to an-
swer questions like: “Why did the participants in the war react in a given way in a
particular situation”? Another typical props for analyzing the peasants’ decisions of-
fer the display of their range of sight and the range of their weapons. An additional
feature of the proposed system is that it corroborates our supposition that the peas-
ants did not have any military education, training or war experience. Their strategy
in the battles, the location of the troops, and spread over the battlefields prior to the
battle clearly certify this fact

4.5.1 Interaction with 4D Data

Due to the fact, that there is no simple way of interacting with four-dimensional data,
we have to apply projection parallel to the time axis as described in Section 3.3.2
(p. 42). Thus, we introduce two different times to our system: the user time tu, which
is constantly and unidirectionally elapsing and the event time te, which is the time
associated with the dataset. In contrast to the user time, the event time can be freely
adjusted or set to be continuously incremented or decremented.

In order to enable interactive visualization concerning all four dimensions of the
dataset and not restrict the visualization to a simple movie, we consider the following
conceptually different interaction strategies:

(a) Interaction with fixed time value/interval and adjustable position in space;

(b) Interaction with a fixed user position and adjustable time;

(c) Interaction with freely adjustable time and space parameters (3 1/2 D).

Case (a) is a trivial case, in which the interaction is reduced to regular terrain visual-
ization, since we display a 3D slice with a certain thickness (depending on the time
interval) orthogonal to the time axis. In case (b) the interaction is more powerful
and enables us to visualize not only the peasants’ position, but also to display their
movements within an interactively adjusted time interval. Although the alternating
combination of (a) and (b) allows gaining insight into the explored data, it does not
allow interactive simultaneous manipulation of both parameters: time and space.
Thus, the most interesting case is case (c), which is discussed in detail in the follow-
ing sections.

4.5.2 Continuous Time Increment

Even though it is difficult to navigate through time and space simultaneously, one
of these parameters can be adjusted to be continuously incremented. This implies
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that the incremented parameter is a one-dimensional parameter, or there is another
way of mapping one continuously changing value to a multi dimensional parame-
ter. While this parameter is being continuously incremented, the space spanned by
the remaining axes can be freely navigated. In this way, we artificially reduce the
dimensions of the data and visualize a three dimensional dataset.

When this is applied to the time parameter in our scenario, the event time te is
incremented by a fixed value. In other words, the event time is elapsing, while the
user can navigate freely through the space. If we imagine a two-dimensional dataset
and a time dimension, this concept corresponds to the movement of a slice orthog-
onal to the time axis (i.e. a movie, consisting of 2D images and a time axis). In the
four-dimensional scenario, a 3D hyper-plane is continuously moved in the 4D space.
The analogy to a time interval in 4D is the motion of a slice with certain thickness in
the three-dimensional scenario. The data within this slice are projected parallel to
the time axis and the resulting image is displayed. This is the most popular way of
displaying data containing a time dimension. Most of the 4D datasets are visualized
applying such an elapsing time parameter (mostly in an infinite loop) and enabling
three-dimensional navigation.

In order to allow the user free exploration of the four-dimensional space, we in-
crease the current time value by a user-adjusted increment. While the time value is
continuously increased, the three-dimensional projection parallel to the time axis
can be freely navigated at each point in time. Note that the time increment can-
not only be adjusted with arbitrary precision, but it can also have a negative value,
thus enabling backward motion in time. Figure 4.10 shows a sequence of snapshots,
which demonstrates this tool in action. While the time is continuously elapsing, the
user is viewing the terrain from different angles. In this case, we show only the view-
point change caused by the head position change. In practice, any other navigation
technique for motion of the primary viewpoint in the primary space can be applied
as well.

We also implemented an adaptive strategy for the time increment ti. In particu-
lar, if the space distance between two points in time (Pt and Pt+ti) is smaller than a
given value d, the time increment ti is increased until d is exceeded. In other words,
in time intervals in which the displayed geometry does not change significantly, ti
is increased. On the other hand, if the distance in space between two points Pt and
Pt+ti is greater than the value d, the time increment ti is decreased (e.g. halved) until
either the distance drops below d, or the minimum time step is reached. In the latter
case, the speed of motion is too large to allow display of smaller pieces of the way.
Optionally, we provide a time scale that displays to each point in time the speed of
motion of the tracked subject. This additional information helps to easily discover
intervals in time with no motion at all (e.g. during the night time) or such with high
speed of motion.

Despite the fact that this technique is easy to use and therefore often applied in
similar visualization scenarios, it has some limitations. For instance, it is suitable
for visualizing only a couple of simultaneous time events and can be hardly utilized
for depicting many complex events and motions in time. If we aim to provide such
functionality, one of the following techniques has to be applied.

4.5.3 Navigation with Continuous Space Movement

A strategy, similar to the introduced time increment strategy has been implemented
for the space parameter. Even though, the space is not a one-dimensional parameter,
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Figure 4.10: While the time is continuously incremented, the user can navigate the 3D
space. The upper and lower images show the change of the viewpoint while the event time
is elapsing (“extrusion is moving”).

we can use a (pre-)computed parameterized path in space. Thus, the problem is
reduced to a one-dimensional problem. Instead of permanently increasing the event
time, the user can now interactively explore it, while being guided through the space.

We define a path in space in the following way: the user is required to in-
teractively select points, which are interpolated with Hermite splines [Farin, 1988,
Hoschek and Lasser, 1993] in order to provide a smooth, interpolating camera path.
Note, that in this case, the view direction is not taken into account. Instead, the user
can interactively select a viewing direction, while the system pulls her/him along the
predefined path.

Once the virtual camera path is defined, the user is required to define the velocity
of the flight. This is done interactively modeling the curve of the velocity for the
generated path. The result of this step is the function f(x), which maps to each x
a camera position in the space. Depending on the speed of the motion, applying a
constant increment xi will cause the camera to move with the desired speed.

When this step is accomplished, the user can start “flying” along the path. Dur-
ing the flight, not only the view orientation, but also the event time, respectively
the event time interval, can be interactively adjusted and viewed. This exploration
method can be compared with flying an airplane along a predefined route and ad-
justing the event time in such a way, that one can observe the events happening in
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the currently visible area. Unlike the continuous event time increment described in
the previous section, in this scenario the user can freely manipulate the event time,
while being pulled along the predefined path. Thus, another way of exploring a four-
dimensional dataset is introduced.

Such type of navigation, however, has one main limitation: the manipulated data
can be “out of sight”, if the camera’s view direction is set inappropriately. This means
that the extrusion corresponding to the interactively adjusted time interval is not in
the viewing frustum of the user. Therefore, another way of interaction is to provide
fixed viewing direction along the predefined path. If the aim of the visualization
is to provide guidance through the four-dimensional space, the set of techniques
proposed in Section 4.5.7 has to be used.

4.5.4 Fly-With Mode

For more vivid visualization, we provide a fly-with mode. When this mode is acti-
vated, the user can fly with the tip of the migration and view the environment as
seen from the perspective of the peasants. Considering the four-dimensional data
we are visualizing, this approach is similar to the continuous time increment pre-
sented in Section 4.5.2. In particular, we are visualizing three-dimensional slices of
the four-dimensional space, applying the constraint that the tip of the migration is
always within the viewing frustum of the virtual camera. This implies that the view-
point and the view direction have to be computed appropriately. When displayed,
this corresponds to a guided traveling in space.

It has been shown, that such direct manipulation of the user’s view-
point can confuse the user and even cause disorientation [Pausch et al., 1995,
Ware and Osborne, 1990]. Therefore, we applied the through-the-lens concept (see
Section 4.2, p. 51), allowing the user to stay at the current location, while simulta-
neously viewing the migration through a window mapped on the hand-held pad
(shown in Figure 4.11). The terrain is fixed with respect to the viewing window. This

camera
position and
orientationcamera path

Figure 4.11: The original path lf is shifted in z direction and interpolated, such that points
closer in the time are weighted more than distant points in time. The image also shows the
view of the participants projected onto the hand-held pad.

means that moving the window cause the scene behind the window to move with
the window, which corresponds to case O3/V2 in Figure 4.3 (p. 53). Additionally, the
window can be released from the pad and frozen in space. Thus, the pad’s surface
can be used to map another tools on it and interact with the visualized data as usual.
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In this scenario, the event time te of the data displayed through the window is the
same as the event time adjusted in the primary world. In other words, when the user
interactively manipulates the event time te, the adjusted time is valid in both the
secondary world seen through the window and in the primary world surrounding
the user. Thus, the secondary world is transformed compared to the primary world,
while the event time te is valid in both of them.

Due to the sharp turns in the migration’s way, if we would follow the path lf (de-
fined in Section 3.3.1, p. 40), the result would be a camera path with sudden changes
in the movement and the orientation of the camera. This fact makes the smoothing
of the path indispensable. The simplest way of applying such a smoothing step is to
take the original path, to shift the points about a fixed offset zo in z direction, and to
compute for each pixel a (time distance) weighted sum of the time-adjacent points
as a function of the time t:

P ′
t =

∑
j∈[−k,k]

(Pt+j)fw(j) + Pzo

Whereas Pt+j = P (t + j) is a point on lf at time t + j, [−k, k] is the time interval in
which the points are taken into account, Pzo is the offset zo, and fw(j) is the weight
of each point used for the computation of the new point P ′

t . The weight function is a
simple Gaussian function:

fw(x) = e
−x2

p

with parameter p defining the impact of the function in terms of the number of
points affecting the final position of P ′

t , thus p depends on k.
At the beginning and at the end of the computation, when there are not enough

time-sampled points, the first, respectively the last point is extended in the time di-
mension. Thus, these points are weighted in such a way that the camera path starts
respectively ends slowing down the speed of motion at these points.

The result of this interpolation and smoothing method is shown in Figure 4.11.
It is clear, that for the path generation we have to take into account not only the
pure geometry distance, but also the time. This corresponds to a computation inte-
grating the velocity of the migration’s movement and thus of the camera flying with
the migration’s speed. In order to complete the description of the cameras on the
path computed so far, their orientations have to be computed. This is done setting
the point of interest to be always the tip of the displayed migration as shown in Fig-
ure 4.11.

The problem with this computation appears at places, at which the peasants are
staying overnight and then going back the way they approached the place. This
causes the virtual camera to stay above the current location, since the tip of the mi-
gration is under the camera position, before continuing to follow the moving migra-
tion in the backward direction. In this way, the virtual camera always keeps “an eye
on the migrations tip”, while always flying behind or above the migration. Thus, this
tool provides an aid for precise tracking of a moving extrusion in time and space.

4.5.5 The Magic Time Lens

Often we want to know what will happen on a particular location at a particular point
in time, while exploring another event time. This means that we have to introduce
an additional event time te2. The question now is, how to display both times without
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confusing the user and negatively influencing the interaction with the system. In-
spired by the magic lens concept [Bier et al., 1994, Schmalstieg et al., 1999], we have
implemented a tool called the magic time-lens or time-lens. With this tool, the event
time te2 is valid only within the time-lens-window. Unlike the “fly-with”-mode, with
the time-lens the explored area within the window (secondary world) and the ter-
rain surrounding the user (primary world) are always aligned, while allowing for ad-
justment of different event times te and te2 valid in the primary, respectively in the
secondary worlds. The time lens enables the user to explore the time and space as
described above, while additionally viewing events at interactively chosen location
and time.

The time lens provides two time parameters, defining a time interval: the begin-
ning and the ending time of interest (depicted in Figure 4.12). All events happened in

Time interval sliders:

- current time 
- interval length

Figure 4.12: The time interval displayed via the time lens can be adjusted using the two
slider of the lens. In this case, the lens is used to explore a textured model with names of the
places visited by the peasants, as well as a later time than the one explored in the surrounding
world.

this time frame are displayed via the lens and are aligned with the underlying terrain,
which is assumed constant in the time. When the lens is held close to the viewer’s
eyes, the entire scene can be viewed through it, thus ignoring the event time te and
exploring the time te2.

Combined with the continuous time increment-method (introduced in Sec-
tion 4.5.2) for the primary world, this concept allows the user to view the virtual
world applying the time-increment and to view a region and time of interest simul-
taneously. In this way, the user is able to quickly discover regions and events of in-
terest, travel to them, and even let the event time te elapse slowly in order to study
the events happening at the given location.

Furthermore, the time window can be used for viewing migration parameters
other than those displayed in the regular view (primary world). Like with the normal
magic lens, the color of the extrusion can be set to display parameters other than
those shown in the primary view frustum. In addition, a textured model of the un-
derlying terrain can be shown via the lens (as shown in Figure 4.12). This can be a
today’s texture or even the original data consisting of the hand-made drawings. This
imparts the proposed time-lens additional attractiveness and makes it a valuable aid
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for exploration and interactive study of historical data.

4.5.6 The Time-Space-Window

Combining the time-lens with interactive adjustment of the scene part viewed
through the window, results in a time-space-window. In this scenario, we apply
the through-the-lens manipulation of the scene viewed through the window as de-
scribed in Section 4.3 (p. 58). Since the extent of the terrain is limited, the “grab-
and-drag”-tool is applied for adjusting the location of interest behind the viewing
window. This tool implements one-to-one mapping of the transformation of the in-
teraction pen to the scene viewed through the window. Once this step is completed,
the user is able to interactively manipulate the event time valid in the secondary
world. Thus, he/she can explore the time and the space of the surrounding world,
while simultaneously viewing the scene from a different viewpoint with interactively
adjusted event time te2.

Such a tool can be applied in various different scenarios. A typical utilization is
to scale up the surrounding scene in order to explore particular events of interest
happening in a particular time interval [a, b]. In the same time the user can view a
map-like miniaturized version of the entire terrain through the additional window,
which contains all events happening in a time interval completely covering [a, b]. In
other words, the secondary world is a sort of world in miniature [Pausch et al., 1995]
used for orientation and extension of the time interval [a, b] visualized in the main
view.

On the other hand, another typical application scenario is the reversed situation.
The surrounding environment is adjusted to show the entire virtual terrain at a given
time, while the additional window is set to display a close view of particular events
happening in another time interval. In this case, the window displaying the sec-
ondary world is utilized as a magnifying lens that additionally enables arbitrary time
exploration.

Even though this tool offers a powerful combination of the through-the-lens ex-
ploration concept and the time lens, its circumstantial utilization in terms of time
and space adjustment may confuse the user. Therefore, a topic of future research
will be the introduction of marks in the time and space, such that when the user ex-
plores the data, a time-space window is automatically popped up in order to display
the target event from a predefined viewing position. In this way, a keyhole intelligent
user guidance defined by an expert user can be provided.

4.5.6.1 Observer Points

In order to facilitate the application of the time-space-like window, we developed a
mode in which a privileged user can pre-define so called observer positions in the
space. These positions can be individually activated and allow to view the scene as
seen from a given viewpoint. In order to keep track of the displayed extrusion, the
view direction is set such that a selected extrusion is always in the middle of the
viewing frustum. Thus, even though the observer’s viewpoint is fixed in the space,
the orientation is adapted to the position of the tracked extrusion, hence, it is com-
puted depending on the current event time (see Figure 4.13).

As with the previous tools, the scene as seen from these pre-defined positions is
displayed in a dedicated window mapped on the interaction pad. This concept en-
ables the user to simultaneously navigate the space and observe the scene from the
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Interaction pad viewing window detached from the pad

displayed observer position

Figure 4.13: The display window is detached from the interaction pad. This allows the user
to select a predefined observer position displayed on the pad. The position is displayed as a
sphere (see arrow). The extrusion is always in the middle of the display window.

given position. In order to provide better orientation, the observer point is displayed
as a sphere in the surrounding full-scale world as well.

4.5.7 Guided Exploration

In order to facilitate the navigation, we also provide guided exploration. This corre-
sponds to motion through the 4D space with predefined path in space and speed of
motion along this path. Hence, the proposed approach is also suitable for animation
generation.

The implementation is an extension of the approach described in Sections 4.5.3
(p. 72): we have to define a (time-parameterized) path in space providing addition-
ally fixed orientation for each of the points on the path. The only condition we have
to consider is that the extrusion of interest is within the viewing frustum for each
camera position on the interpolated path. This has to be done during the definition
of the camera positions.

When a path is interactively defined setting camera positions and orientations,
the view direction is set implicitly. Afterwards, we applied (slightly modified) Her-
mite splines for interpolating the input points and the associated orientations, as
depicted in Figure 4.14. In this way, we define a parameterization of the entire ca-
mera path. An additional constraint is that the visualized extrusion is visible for each
virtual camera position on the interpolated camera path. Hence, we have to con-
sider the motion of the tracked extrusion. This is implemented as a constraint for
the computation of the speed of the camera motion along the pre-computed path.
As soon as the moving extrusion reaches the border of the image seen from the cur-
rent camera, the camera is moved slower or faster in order to keep track of it. When
the extrusion’s motion stops, the speed of the camera motion is slowed down. De-
pending on the duration of the pause, the virtual camera may also completely stop
its motion. Afterwards, when the extrusion continues moving, the camera speeds up
slowly. This strategy allows to successfully manage even stops with longer duration,
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Figure 4.14: Camera path interpolation generated from the points a to i with the given ori-
entation.

providing smooth deceleration and acceleration on sudden “stop and go”-events in
the visualized extrusion.

Unlike Gleicher and Witkin [Gleicher and Witkin, 1992], we compute the speed of
the camera during the flight generation. Furthermore, we also have to deal with dy-
namic objects, the positions of which change in the viewed three-dimensional space.
However, since we always know the position of the extrusion at the current and later
time, these parameters are considered during the computation as well. The result
of this step is a smooth path in space, tracking the motion of the time-depending
events. Hence, we assigned for each time value t a particular position and orienta-
tion of the virtual camera.

Such a path in space cannot only be used for generating animations for guided
exploration, but it can be also integrated in the “fly-with”-tool. In this case, the cam-
era path is utilized for setting the appropriate position and orientation of the sec-
ondary viewpoint. The scene as seen by that camera is displayed onto the output
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window mapped on the interaction pad. Like with the “fly-with”-tool, in this sce-
nario the user interactively adjusts the event time te. Afterwards, the corresponding
camera position for the current te is computed and the image seen from this virtual
camera displayed.

In doing so, we provide a way for an authorized user to predefine a path guaran-
teeing that an inexperienced user will not miss particular events when interactively
exploring the data. Moreover, displaying the guidance on the pad’s surface in the
designated window avoids any impact on the interactivity of the system.

4.5.8 Discussion

In summary, it turned out that the proposed tools were well accepted and judged as
valuable and useful by our partners from the Historical Department of the Univer-
sity in Stuttgart. Although each of the techniques can be used for exploration, the
combination of all of them provides more powerful visualization tools.

Since each of the tools has advantages and drawbacks, there is no single ap-
proach we can judge best. Table 4.2 gives a brief overview of the features and the

Tool Advantages Disadvantages
Continuous
time incre-
ment

• suitable for interactive exploration
of the input data
• the user can freely navigate
through the space

• the user may miss some features
of the data if he/she navigates to a
location with no events in the cur-
rently explored time

Fly-with
mode

• provides a vivid way for tracking
the tip of a selected extrusion
• through displaying this view in a
designated window, the interactivity
of the system is not affected
• there is still one event time te valid
in the user view and in the addi-
tional window

• only one motion in time can be
visualized
• each single time segment re-
quires a display window

Time lens • enables simultaneous view of an
additional event time and various
extrusion features

• only areas within the primary
view can be “enriched” with the
superimposed information

Time-space
window

• allows to permanently view given
location in the primary/secondary
world while navigating through the
dataset in the secondary/primary
world
• enables interactive adjustment of
the event time te

• may be circumstantial for inex-
perienced users

Guided
exploration

• an authorized user can pre-define
a path through the space and time
and guarantee that given features of
the data are not missed during the
exploration
• does not affect the interactive
exploration when displayed in the
window on the pad

• too limited interactivity when
applied as a sole exploration tool

Table 4.2: Comparison of the proposed tools.

limitations of each tool. The comments in this table are not empirically proven, but
were discussed during and after interactive sessions with our system. Therefore, this
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will be an issue for further research towards finding out which tools are preferred
and properly applied by different users.

Based on the observations of interactive sessions, we were able to recognize a
typical interaction pattern. In a typical exploration scenario, users with historical
background first explored the terrain without manipulating the time parameters.
Their aim in this phase was to get familiar with the terrain fact (i.e. cities, mountains,
and valleys). Afterwards, in most of the cases they preferred to visualize the events
happening in the entire time interval. In this stage of the exploration, the users were
creating a mental model of the terrain and the trace of the peasants’ motion mapped
on it. This was followed by detailed exploration applying the continuous time in-
crement, combined with interactive navigation through the virtual world. Finally,
focusing on particular events, the users employed the more advanced techniques,
i.e. “fly-with” mode, time lens, etc.

In conclusion, it also turned out that the interactive exploration with continuous
time increment is the preferred way to explore the data. It enables intuitive naviga-
tion, while allowing the elapsing event time to have the same behavior as the real
user time. This was the favorite approach of our partners from the Historical De-
partment of the University of Stuttgart. It was employed for cooperative study of the
data, as well as for studying the behavior of the peasants in particular situations.

The second favorite technique was the provided “fly-with” mode, enabling the
simultaneous viewing of two perspectives: the interactively manipulated user view-
point and the miniaturized view of time-tracked data. This technique allows the user
to put himself/herself in place of the peasants and to view the situation from their
point of view, thus, helping to understand the reasons for some of their decisions.
The “fly-with”-mode also allows vivid display of the scene seen from the participants’
point of view, while enabling the user to remain at his/her current location. This
concept of displaying the synthetic world as seen from an additional viewpoint on a
designated window proved to be a useful and powerful visualization approach. Since
in this case the primary view position and orientation of the virtual camera attached
to the user’s head are not automatically changed, confusion and loss of orientation
are avoided. Moreover, with the time-lens and the time-space lens, we have pre-
sented two tools, which apply the features of the original magic-lens concept, while
extending the functionality of the lens into the time-dimension.

Our cooperation with scientists from the Historical Department of the University
in Stuttgart has certified the usefulness of the proposed tools. Besides the animation
generation, which was a great step towards enhancing the visualization of historical
data, the proposed set of tools are valuable companion for visualizing various types
of data containing a time dimension.



82 CHAPTER 4. INTERACTION CONCEPTS

4.6 Other Through-The-Lens Tools

Despite the remote object manipulation and the visualization of different location
and event time, the secondary viewpoint can also be used to provide a “snapshot”-
tool. The snapshot mechanism can be used for providing multiple views during the
creation and exploration of virtual worlds. Viewing a scene simultaneously from
multiple different perspectives is often used in CAD-systems. This in turn allows
a better understanding of the explored scene and better orientation. Once the scene
seen through the transparent pip is adjusted as desired, a window with this content
can be arbitrarily positioned in the space. This multiple viewpoint tool can be ad-
justed to always display a live-scene containing even objects added after the scene
was “frozen” in the output window.

Freezing means in this context that the scene, the user sees through the out-
put window, is fixed relatively to the viewing window (compare cases on pages 52
and 52). In the next step, the output window itself can be fixed in the primary space
in front of the user, which is the final state O1/V1 (see Figure 4.4, p. 55). Note, that
freezing does not mean that the scene behind the window is static. It is rather a live
3D picture with frozen viewing window in the secondary world and frozen output
window in the primary world.

On the other hand, the snapshot tool can also be used for freezing an unchange-
able copy of the scene. This tool may be very useful for reflecting particular stages of
development. This corresponds to freezing not only the geometry in the space, but
also a particular event-time valid only in the secondary world. Each statically frozen
window depicts now particular space and time.

4.7 Usability and Conclusions

In this chapter, we have presented the through-the-lens metaphor. Based on this
metaphor, we have described a set of navigation techniques, a technique for remote
object manipulation, and various techniques for interactive exploration of 4D his-
torical data. One of the most interesting questions arising at this point is: “How do
the TTL-tools perform and are they easy to understand and use”?

We have not performed usability tests and detailed comparison with other re-
lated tools, instead, we have let 50 users work with the proposed techniques. Some
of them had no experience with VE-interaction, other were very experienced users.
It turned out that all participants were able to easily grasp and immediately apply
the TTL-concept. Only a short demonstration was provided, explaining the idea of
the tools. Thereafter, the participants were let to work with the application on their
own.

We found out that once the concept of the interaction was clear and the partici-
pants could adequately apply the pen and pad paradigm, the TTL-tools were easy to
comprehend and to use. The only problem the users had, was related to the eyeball-
in-hand technique. Since with this tool there are 6-DOF, some users had difficulties
positioning the additional camera appropriately. Nevertheless, the feedback we had
considering the majority of the TTL-tools was quite positive. Even people with no
or little computer experience could interact with the system surprisingly good. This
fact testified a good overall usability of the TTL-concept and the tools based on it.



Chapter 5

Rendering Algorithms

Considering the application of the proposed tools and visualization strategies, but
also aiming to display the nowadays-typical huge amount of data at interactive
frame rates, we face another problem: the efficient rendering. Although the graph-
ics hardware is becoming ever faster, the requirements for new hardware increase
with each new graphics hardware generation. Typical consumer graphics hard-
ware boards are able to render more than 25 millions triangles per second (NVidia
GeForce2 GTS). Even though these are impressing numbers, scenes of large size and
rich in details rapidly reach the bounds of the hardware. Since we are not dealing
with hardware issues in this work, we discuss algorithms for rendering (parts of) vir-
tual scenes on existing hardware, using alternative rendering strategies. In particu-
lar, we address the representation of large scenes under the constraint of (a) appli-
cation in stereo-based virtual environments and (b) applying the through-the-lens
navigation, manipulation, and visualization tools discussed in the previous chapter.

5.1 Introduction

In the past years many researchers have presented new approaches and techniques
aiming to accelerate the rendering of three-dimensional scenes. The most promi-
nent research direction is still the image-based rendering (IBR), which makes use of
the fact that the display resolution is limited and that in large scenes most of the data
do not significantly contribute to the final image. In addition, the success of image
based rendering techniques is mainly based on the fact that the geometrical com-
plexity of a scene, we want to render using image-based representation, does not af-
fect the complexity of the image-based scene representation itself. The image-based
representation depends in general on the (limited) resolution of the images used for
the generation of the IBR-representation. Due to these facts, IBR-techniques allow
rendering of scenes with nearly arbitrary complexity in real-time, which is especially
important in virtual environments. This makes IBR techniques a suitable candidate
for embedding them into our tools, since with the original through-the-lens tools the
entire scene viewed through the output window (the secondary world) passes twice
through the rendering pipeline in the straightforward implementation.

In the second part of this chapter, we address another problem: the stereo ren-
dering, which requires the entire scene to be rendered twice, each time with a slightly
different camera position representing the observer’s eyes. Fortunately, we have
found that parts of the images seen from these two different camera perspectives are
very similar. This fact we exploited in order to split the scene in two areas: the one
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close to the virtual camera, which appears to be different for both eyes (near fore-
ground) and the area further away from the user (far background). The implementa-
tion details, as well as the user studies performed with this approach, are presented
in Section 5.3.

5.2 The Multi-LDI

The research in this direction was motivated by the fact that each through-the-lens
tool can only be viewed through a given window, thus the viewing angle, as well as
the part of the scene visible through the viewing window are limited. This makes the
integration of image-based techniques a logical part of our efforts towards develop-
ing fast rendering algorithms for the tools proposed in the previous chapter. In this
section, we show how the above features of the through-the-lens tools are exploited
in order to provide algorithms for efficient rendering of the secondary world (behind
the output window)[Stoev et al., 2000b, Stoev et al., 2001c].

5.2.1 Image-Based Rendering

Various attempts to integrate IBR in virtual environments have been reported in
the literature. For architectural walkthroughs [Aliaga and Lastra, 1997] or city scenes
[Wimmer et al., 1999a] it is often sufficient to use pictorial information to replace
distant parts of the scene. Instead of rendering the complete interior of a distant
room seen through a door, Aliaga and Lastra [Aliaga and Lastra, 1997] use a portal
texture. Such a texture shows a picture of the room and is placed into the door open-
ing. The texture is replaced by real geometry when the user approaches the respec-
tive door.

In [Rafferty et al., 1997, Rafferty et al., 1998] the portal textures, which are “flat”
images, are replaced by depth images. Depth images store to each pixel color addi-
tionally the disparity value of the latter. This allows carrying out a correct perspective
warp of all pixels with respect to the viewer’s position. In contrast to portal textures,
the perspective distortion of the image is handled correctly. Problems with depth im-
ages occur if parts of the scene are visible from the viewer’s position, which are not
stored in the depth image. Therefore, Aliaga and Lastra [Aliaga and Lastra, 1999] em-
ployed Layered Depth Images (LDI) [Shade et al., 1998] to replace parts of a complex
scene, which are distant from the observer. Unfortunately, the time and memory re-
quirements of their approach are very extensive, because all LDIs (from 180 to more
than 5000 LDIs), for all possible view directions have to be calculated. Since this was
reported to take from one up to 28 hours, the LDIs are computed in a preprocessing
step.

5.2.2 The Image-Based Interaction Props

In Section 4.2, we have presented the through-the-lens concept for rendering scenes
seen through a given output window (e.g. mapped on the surface of the interaction
pad). Since the scene seen through the output window is in general not fixed with
respect to the output window and can be even manipulated concerning size and
viewing angle, image based techniques are rather unsuitable for this scenario. In
other words, as long as the scene viewed through the output window is not fixed with
respect to the output window, image-based rendering techniques are rather slowing
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down the rendering process. This is due to the slow acquisition of the data for the
image-based representation. First, when the secondary world is fixed with respect to
the output window, an IBR approach can be applied. This is the case in all scenarios
O1-O3/V2 (on pages 52 and 52), as well as O1/V1 and O2/V3. In all these cases,
the movement of the output window does not cause the secondary world to change
significantly, i.e. only the viewing angle changes when the user moves the current
viewpoint in the primary world (e.g. all cases O1-O3/V2).

A strategy implementing case O1/V1 is often used for defining 3D “snapshot”-
windows, similarly to the window defined before the remote object manipulation
is applied (see Section 4.4, p. 66 and Section 4.6, p. 82). With the snapshot tool a
live 3D picture of the scene can be made in order to view the scene from a partic-
ular viewpoint. On the other hand, the snapshot tool can also be used for freezing
an unchangeable copy of the scene, reflecting particular stages of development of
the virtual world. In this case, this tool acts like a simplified time-space window, as
described in Section 4.5.6 (p. 77). In this section, we refer to both the remote ob-
ject manipulation tool and the snapshot tools for exploration of artificial worlds as
remote snapshot-tools.

Besides its strengths, the main problem with the realization of the through-the-
lens concept is that every time the artificial world is caught on the interaction pad
(on which the output window is mapped), a reference or a copy of the latter is added
to the rendered data. Thus, the original scene has to pass through the rendering
pipeline an additional time for each provided viewing window. Even though these
additional viewports are in general much smaller than the primary viewport, the
complete scene is rendered once for each additional viewport. Since this is unac-
ceptable for large, detail-rich artificial worlds, we employed an image-based tech-
nique for accomplishing this task. The proposed technique allows displaying the
remote snapshot of the scene independent of its complexity, while supporting all
features of the original remote snapshot tools.

Another contribution of this work is the extension of the through-the-lens-WIM-
metaphor described in Section 4.3.2 (p. 60). The problem is similar to the one in-
troduced by the above addressed remote snapshot tools, namely the doubling of
the rendered data. The WIM representing image-based structure, however, has to
be computed with significantly higher resolution, in order to provide sufficiently de-
tailed information when parts of the map are zoomed. Fortunately, the map tool
does not have to be generated on-the-fly during the interaction, thus we can com-
pute it in a preprocessing step. This is the main difference between the image-based
realization of the remote snapshot tools and the TTL-WIM-tool. Since the user has
the freedom of choosing arbitrary viewpoints for freezing the scene with a remote
snapshot tool, it is not possible to pre-compute a number of images in this scenario.

5.2.3 Requirements

To summarize, the through-the-lens props introduce the following requirements,
which have to be considered when developing an appropriate image-based render-
ing technique:

• Fast data acquisition on-the-fly,

• Fast rendering of multiple views of the scene, covering a wide angle of viewing
directions,
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• Addition and removal of geometry objects to/from the scene.

In order to meet these requirements, which are addressed in the subsequent
sections, we developed a new image-based data structure, the multi LDI
[Stoev et al., 2000b, Stoev et al., 2001c]. A multi LDI consist of several small LDIs in-
stead of providing one large LDI for covering the entire range of view directions (in
our case a hemisphere).

5.2.4 Layered Depth Images

The LDI idea was first introduced by Shade et al. [Shade et al., 1998]. LDI stands for
Layered Depth Image and is in general an image, in which every pixel represents a
ray (Figure 5.1). Each ray stores a number of depth pixels. Thus, parts of the scene

image plane

viewpoint A

viewpoint B

Figure 5.1: LDI storing three objects. The small tree is not visible for viewpoint A, but visible
for viewpoint B. A depth ray in the LDI may store more than the first hit of a viewing ray as
shown for the small tree.

that are occluded for the main viewpoint (see viewpoint A in Figure 5.1) are stored
in the LDI as well. In this way, an LDI permits to calculate different views of a scene
without exposing any gaps caused by incomplete object information. The rendering
time and the memory requirements of an LDI depend linearly on the total num-
ber of all pixels stored in all rays of the LDI structure. In contrast to layered impos-
tors [Decoret et al., 1999, Schaufler, 1998], LDIs do not use a fixed depth resolution.
In this way, LDIs provide high image quality, while requiring moderate amount of
memory. Furthermore, the acquisition of LDIs is very simple. Using a set of depth
images, the spatial position for each source pixel in the LDI can be calculated and the
pixel inserted into the LDI structure. Pixels representing the same surface point, but
originating from different views, are easily removed by comparison of the projected
depth values, thus keeping only relevant information stored in the LDI.

LDIs are widely used in various application areas, where complex geometry ren-
dering is replaced by image-based rendering. For instance, in an Image-Based Object
(IBO) [Oliveira and Bishop, 1999], six LDIs form a single object, which can be viewed
from all directions. Up to three of the LDIs, positioned on each side of a cube, are ren-
dered to generate a correct view of the stored object. Chang et al. [Chang et al., 1999]
introduce in their work an extension of the LDIs for rendering of multi resolution
images, which is another valuable feature of this image-based representation.
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As stated before, the memory requirements and rendering time for an LDI de-
pend linearly on the number of depth pixels stored in the LDI in total. The higher
the amount of internal occlusion in the LDI, the less efficient will be the rendering.
Apparently, for an average scene the following observation is valid: the more the
viewing position is altered, the more visibility changes in the scene will occur. In the
context of LDIs this means: The greater the range of viewing angles for which an LDIs
enables the rendering of a correct image, the more depth pixels have to be stored in
it and the less efficient will be the LDI rendering.

Since we have to cover the whole hemisphere of possible viewing angles above
the output window for each of the through-the-lens tools, storing all the scene in-
formation in a single large LDI would be quite inefficient. Therefore, the proposed
multi LDI subdivides this hemisphere into patches and attaches one single LDI to
each of them as shown in Figure 5.2. Each time a through-the-lens prop with sec-
ondary world fixed with respect to the output window is rendered, the viewing angle
relative to the display window is used to determine the appropriate LDI patch. Since
each of the LDIs covers only a small range of view directions, it can be rendered very
fast.

In contrast to an IBO [Oliveira and Bishop, 1999], which requires the simultane-
ous rendering of up to three LDIs, with the multi LDI only one LDI is rendered at a
time. Furthermore, each LDI of an IBO covers a wider range of viewing directions.
Thus, the rendering time for each IBO’s LDI is greater than the rendering time for
one LDI of the multi LDI. Finally, the LDIs for an IBO have to be pre-computed and
cannot be generated on-the-fly as this is done with the multi LDI as shown next.

5.2.5 Application

Initially, the interaction described in Section 4.3 (p. 58) is applied for adjustment of
the output window in the primary world and the viewing window in the secondary
world. Once this is task is completed, we assume that the viewing window is fixed
with respect to the secondary world. Thereafter, the output window can be fixed
in the primary world’s space in order to perform remote object manipulation or to
keep track of the changes at the particular remote location (snapshot tools). This
corresponds to state O1/V1, namely to an output window fixed in the primary space
and a viewing window fixed in the secondary space.

Since the creation of an LDI can be an expensive task, we left the initial concept
of geometry-based rendering unchanged, until the user freezes the output window
in the primary space. When this task is completed, we assume that the secondary
world will not be significantly manipulated considering its size and position. At this
point, the generation of the multi LDI is triggered and the generated LDI is displayed
in the output window. In case further transformations are applied to the secondary
world, the geometry representation for displaying the scene is activated again, until
the secondary world is fixed in space again. In other words, when the scene is being
manipulated and when the current state of the primary and secondary world is not
state O1/V1, the scene is rendered as geometry, otherwise it is rendered applying the
image-based representation.

In this way, the rendered geometry is not more than doubled, since there is al-
ways exactly one primary world and one active secondary world (being currently
manipulated). This doubling is independent of the number of the output windows
in the primary space (fixed in space or attached to the interaction pad). Each time
a geometry containing output window is frozen in the primary space, the LDIs for
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it are generated and the rendering of geometry is avoided. Hence, there can be no
more than one copy of the scene rendered as geometry at a time. Thus, the rendered
geometry is doubled in the worst case.

Furthermore, when the output window is fixed in space, the user can approach it
in order to enter the secondary world as described in Section 4.2.2 (p. 56). Since the
main application of the proposed image-based approach is to enable viewing from
a particular distance, if we would allow the user to enter an image-based represen-
tation of the secondary scene, this would be a very coarse sampled scene. Therefore,
we have to introduce a criterion for switching from the image-based representation
back to a geometry-based representation based on the distance between the current
viewpoint and the output window: In case the user is close to the output window,
the geometry representation is rendered, otherwise the proposed image-based rep-
resentation is displayed.

5.2.6 LDI-acquisition

When the user freezes the output window in the primary space, we start with the
LDI-generation. First, an imaginary hemisphere over the front side of the output
window is aligned with the center of the window (Figure 5.2 (a)). The radius of the
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Figure 5.2: The dots indicate the camera positions used to generate the pictures for the
single LDIs. The patches correspond to LDIs. The set of all LDIs defines the multi LDI. For the
generation of the LDI A in (c), the depth images of the cameras A1, A2, and B1 are applied.
The LDI B contains the data from the cameras B1, B2, B3, and A2.
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hemisphere is set to be the current distance between the user’s head position and the
center of the output window. Since the output window is generally attached to the
interaction pad, in practice this distance corresponds to half up to full hand reach
(i.e. 30− 80cm).

Now the hemisphere is divided into eight equally sized patches and a central
patch, defining the multi LDI, as shown in Figure 5.2 (b). The patches cover 2/3 of the
hemisphere’s area corresponding to an angle of 120◦. For each patch, which defines
an interval of viewing directions, an LDI is created. The image plane (LDI-plane) of
each patch is parallel to the plane defined by the three camera positions of the patch
and contains the midpoint of the output window (Figure 5.2(c)). The image plane of
the central patch is the surface of the output window.

The outer shell of the hemisphere is not covered with patches, since the view-
angle in this area is very narrow and rarely used. In general, the user views the
window from the front, moving the virtual camera within the space covered by the
LDI-patches. We ascertained that this restriction is not limiting or distorting the uti-
lization of the remote snapshot tools. However, in order to not confuse the user, we
display a kind of an opened box (Figure 5.2(c)), which occludes the area not covered
with LDI-patches before gaps can occur.

In the next step of the LDI-acquisition, we position a number of virtual cameras
in each patch as depicted in Figure 5.2 (b). Each camera uses an off-screen-renderer
to generate a depth image of the scene (Figure 5.3). Knowing the position and orien-
tation of the camera we can compute the position of each depth pixel in the LDI.

For the generation of a single LDI, we merge the depth images generated with
cameras positioned within the patch (dots in each patch in Figure 5.2), as proposed
by Shade et al. [Shade et al., 1998]. Initially, we need three images with the corre-
sponding depth values for each pixel in order to enable the rendering of the scene
from the current camera position. Note, that these three camera positions may not
belong to the same patch. The depth images generated with each of these virtual
cameras are assigned to each of the adjacent patches. Thus, the complete depth im-
age information is put into each of the affected patches. This means that to each
patch belong not only the cameras within the patch itself, but also five cameras from
the adjacent patches (for the eight symmetrical patches, as shown in Figure 5.2(b)).
For the central patch, eight additional cameras are involved in the LDI generation.
During rendering of the multi LDI we use only the patch, which contains the current
viewpoint.

As soon as the current viewpoint of the user moves out of the triangle defined
by the three initial camera positions, an additional image has to be offline rendered
and added to the corresponding patches. In this way, after generating the initial three
depth images, we always add one depth image to the region already covered with LDI
patches. Hence, the implemented multi LDI behaves as a progressive dynamic data
structure, adapted to the current viewpoint.

Due to the multiple insertion of a depth image into all adjacent patches, we can
guarantee that no distorting “flickering” appears, when the view direction moves
from one LDI to the next. Note, that this is especially awkward, when the LDI is
viewed in stereo mode and each eye sees the image splatted from a different LDI
patch.

On the other hand, this problem does not occur, when one large LDI is utilized.
Using a set of small LDIs, however, provides much better performance than utilizing
one large LDI for the whole hemisphere. As stated above, since each two adjacent
LDIs contain common depth images, the switching from one LDI to the other is im-
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Figure 5.3: In order to create an LDI, we use the frame and depth buffer data of each shot
picture and sort the pixels in the appropriate LDI(s).

perceptible for the observer.

5.2.7 The LDI Structure and Splatter

As introduced before, each LDI of the multi LDI consists of a number of rays. Each
time a depth image is added to the LDI, the pixels are inserted in the appropriate
rays. First, the depth values are used to compute the position of the associated pixels
in the space with respect to the origin. Thus, an inverse projection transformation
is applied to all pixels. Afterwards, the position and the orientation of the virtual
camera, with which the depth image was shot, are taken into account in order to de-
termine the final pixel position in space. Now the pixel is projected onto the image
plane for finding out to which ray it has to be assigned. Unfortunately, this approach
may cause too many redundant pixels to be stored in each LDI-ray, when multiple
depth images are added to the same LDI-patch. Therefore, pixels on a ray with simi-
lar depth and color are assumed to represent the same object. Thus, they are merged
and replaced by one single depth pixel.

During the rendering of an LDI onto the output window frozen in the primary
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space, we first determine the position and the angle of the window (LDI-projection
plane) relative to the viewer. This determines which LDI-patch of the multi LDI has
to be rendered. The current camera position and the projection plane position are
used to compute the projective transformation, which maps the LDI pixels onto the
projection window (Figure 5.4). The pixels of the LDI are splatted using a software
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Figure 5.4: The camera positions A, B, and C are used to generate the pixels in the LDI. The
contribution of the cameras A and C are the pixels, occluded for camera B (on the rays with
the numbers 2 and 3 respectively 11 and 12). When the image seen from the camera position
D is generated, the projection transformation is computed and applied to all pixels stored in
the LDI.

renderer. In order to access the single pixels in such a way, that they can be suc-
cessively drawn without applying an explicit depth test, we implemented McMillan’s
ordering algorithm [McMillan, 1995]. McMillan introduced in his work an approach,
which defines how the single rays have to be back-to-front traversed in order to avoid
depth tests once the pixels are sorted for one particular viewpoint (e.g. viewpoint A
in Figure 5.1, p. 86). Depending on the position of the new viewpoint (e.g. viewpoint
B in Figure 5.1) relative to the original viewpoint, the rays have to be traversed in
a given order. Applying this algorithm, the depth pixels are sorted once, thereafter,
the depth test is not required in order to compute the final image seen from the new
viewpoint.

A similar strategy based on McMillan’s ordering algorithm was applied by Shade
et al.[Shade et al., 1998]. In contrast to their work, however, we compute the splat
size for each pixel individually1. This increases the precision and avoids visual ar-
tifacts caused by the coarse splat-size approximation. The resulting picture is ren-
dered as a texture, which is mapped onto the projection plane using the graphics
hardware.

Since the Studierstube is based on Open Inventor, we implemented the LDI-
splatter as an Inventor class derived from the regular 2D texture class. The new ob-
ject is able to draw itself (i.e. the secondary world) depending on the current view-
point in the secondary world. As stated above, this image-based representation is
only used when the secondary world is fixed with respect to the viewing and output
window. Thus, the viewpoints in the secondary and the primary worlds are moved

1In some cases one depth pixel may be responsible for more than one image pixels in the final image.
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simultaneously. This means that we can use the primary virtual camera position in
order to determine the position of the secondary viewpoint.

During rendering, each time an instance of the above class is traversed, a new
view-dependent texture is generated and mapped onto the given window in space.
Thus, it creates the illusion of viewing a real 3D world behind the LDI’s projection
plane. This holds also for stereo mode setups, in which the appropriate texture is
re-computed for each eye and every frame.

5.2.8 Adding and Removing Objects in an LDI

The scene frozen on the multi-LDI contains all details of the latter, being present
when the acquisition was started. However, depending on the application area, up-
dates of the LDI might be desirable. For instance, during the construction in a virtual
environment a window (multi LDI-rendered) may be applied to show an area invis-
ible from the current viewpoint. In this window, objects added or manipulated in
the primary or in the secondary world (using the remote manipulation concept pre-
sented in Section 4.4, p. 66) have to be displayed in the multi LDI-rendered window
as well.

This concept can be easily adapted to the LDI data presentation. When an object
is created and it is visible in the LDI window, we can render the object as a geome-
try object. For this, we need the depth information for the pixels in the final splatted
image. Fortunately, the LDI structure presented above can be easily extended to pro-
vide this capability. In this case, we need the depth values of each pixel in the final
image. We first render the LDI-representation of the scene, as this is done in the
usual rendering step, whereas, we generate beside the color image a depth image as
well. Thereafter, we have to copy the depth image into the z-Buffer of the graphics
hardware. Finally, the geometry object is drawn as usual and the graphics hardware
computes which parts of its geometry are visible and which are not. Thus, a mixed
rendering including geometry and LDI data has to be performed. When an object is
removed, its geometry is simply removed from the list with objects rendered in the
output window.

5.2.9 Results

In order to evaluate the performance of the proposed technique, we compute the
times for the geometry rendering of three scenes with 126′790, 264′247, and 630′799
triangles respectively. Afterwards, we compare the times for rendering various num-
ber of through-the-lens windows fixed in the primary world, applying traditional ge-
ometry rendering and rendering of the multi LDI data (Figure 5.5). The number of
windows varies from none, which means that only the surrounding world is ren-
dered as geometry, to 4 windows. The measurements are performed on a Pentium
III 733Mhz machine (1Gb main memory) with NVidia Ge-Force 2 GTS graphics hard-
ware (64Mb texture memory).

The window with the LDI containing the scene was positioned in such a way, that
the required resolution of the multi LDI was not more than 256 × 256 pixels. This is
quite large when we consider, that the resolution of the Virtual Table we use in stereo
mode is 1024 × 768. After offscreen-rendering a depth image, the time required for
inserting it in an LDI-patch was on average 0.06 seconds. Since each pixel is inserted
in a depth-sorted order, this time varies depending on the number of the pixels that
are already stored in the LDI.
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Figure 5.5: Comparison of the geometry rendered snapshot tool and the multi LDI-based
rendering. All measured times are given in seconds.

More important is the rendering time for the LDI when applied in the proposed
tools. Depending on the viewing angle and the distance to the current viewpoint
this time may vary as well: when the observer is close to the projection plane a sin-
gle splatted depth pixel may cover several image pixels. The values for the multi
LDI rendering shown in Figure 5.5 are “worst case” values. They include the time
for computing a texture with the given resolution (splatting) and mapping it on the
output window. On our machine this step took in the worst case 0.02 seconds per
frame.

Figures 5.5 and 5.6 clearly show, that the proposed technique is especially useful,
when several views are used during exploration of the scene, and when it contains
complex geometry. For instance, let us consider a case in which there are two si-
multaneous views of the scene and the regular surrounding scene, i.e. the scene is
rendered three times per frame. Our scene with 126′790 triangles requires approxi-
mately 0.47 seconds per frame using the standard geometry rendering pipeline. Ap-
plying our approach, this cost is reduced to rendering the scene as geometry once
and rendering two multi LDIs. This results in 0.23 seconds in total. In other words,
the rendering time was reduced by more than 50%, which means that the frame rate
was more than doubled.
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Figure 5.6: Rendering time for scenes with various complexities, rendered as geometry and
as multi LDI data.

5.2.10 Conclusions

The image-based rendering structure presented in this section can be rendered sig-
nificantly faster compared to geometry rendering, as well as compared to rendering
a single large LDI. We have also described in detail how the multi LDI can be in-
tegrated in a through-the-lens tool and in which scenarios this data structure can
be applied for accelerating the rendering performance of the system. Furthermore,
we discussed an extension of the standard LDI-approach towards allowing for a dy-
namic addition and removal of geometry objects. This feature allows us to exchange
the rendering algorithm: The geometry based rendering is replaced by image-based
rendering, without any perceptual difference for the end-user.

In our opinion, the proposed multi LDI approach is a promising modification
of the standard geometry rendering of the through-the-lens tools, considering the
growing amount of data managed in virtual worlds nowadays. With the multi LDI we
managed to exploit the constraints introduced by the through-the-lens tools, namely
the limited angle of viewing directions, as well as the limited size of the viewing win-
dow.
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5.3 Stereo Rendering of Complex Scenes

The rendering of artificial scenes in stereo mode is a feature typical for virtual reality
applications. This process involves the generation of images from two slightly dif-
ferent viewpoints of the virtual camera. In order to speed up the rendering in stereo
mode, in this section we present a novel approach for scene splitting in order to de-
fine two parts of the entire scene [Stoev et al., 2000a, Stoev et al., 2001b]. The one
appears to be different for both eyes and has to be rendered in stereo (for each eye
separately) typically including the area close to the observer. The second part of the
scene typically includes the background and is rendered once, as seen through the
lens of a middle camera. Hence, it is displayed in mono mode. In other words, the
proposed technique exploits the spatial coherence of the two cameras involved in
the stereo image generation.

One of the most important advantages of the presented approach is its suitability
for combining it with alternative rendering methods. For instance, the mono back-
ground can be displayed applying image-based approaches, as well as ray-casting
approaches.

5.3.1 Introduction and Related Work

Stereo projection techniques are widely used in virtual reality applications nowa-
days. Typical examples are the CAVE [Cruz-Neira et al., 1993], the responsive work-
bench [Agrawala et al., 1997], and the virtual table [Schmalstieg et al., 1999]. The
aim of displaying stereoscopic images is to enhance the depth perception of the
participants. Extensive research has been done in the area of stereo projec-
tion and depth perception in the past years [Wann et al., 1995, Rosenberg, 1993,
Yeh and Silverstein, 1990, Yeh and Silverstein, 1992]. It has been shown, that the
most important cues for depth judgment are:

• the dynamic flow, mainly achieved through tracking the viewer’s head position
and orientation, and setting the virtual camera properly,

• the perspective, relative object size, and occlusion,

• the scene lights and objects’ shadows, and

• the stereo image generation.

Although, much depth information can be inferred from the introduced monoc-
ular depth cues alone, the stereoscopic depth cue provides additional informa-
tion. It often enhances the speed and accuracy of tasks requiring depth percep-
tion [Rosenberg, 1993], as is typically the case in virtual environments.

The main problem of rendering large scenes with complex geometry is the com-
putation time, independent of whether rendered in stereo or mono mode. There-
fore, many authors made the attempt to combine the pure geometry rendering
with geometry and either image based rendering [Wonka and Schmalstieg, 1999]
and simplification [Darsa et al., 1998], warping [Rafferty et al., 1997], or even ray-
casting [Wimmer et al., 1999b]. Although, these approaches seem to be very promis-
ing, none of them considers the stereo mode, which is usually applied in virtual en-
vironments.

The idea of combining real 3D objects with “flat” 2D background is not new. The
answer to the question whether this approach is possible or not, was given already
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in the 18th century. One of the most prominent Venetian artists of that time was
Giovanni Battista Tiepolo, who shaped the painting in the Residence in Würzburg
(1750 - 1753). In his work, he achieved an outstanding combination of real 3D sculp-
tures and 2D paintings (as shown in Figure 5.7). This “mixed world” gives a very

Figure 5.7: The segment “Africa” of the great fresco painting covering the ceiling of the stair-
case of the Residence in Würzburg. Here the combination of real 3D objects like sculptures
and textiles in the foreground and a 2D picture background gives a perfect depth impression.

good depth impression, while showing most of the scene as a regular painting. Un-
fortunately, due to the static scene composition, this impression only works from a
particular point of view. Hence, the main challenge of our partitioning method is the
dynamic definition of the appropriate scene partition criterion. Before describing in
detail the proposed approach, we first introduce the basics and the computer aided
realization of stereovision.

5.3.2 Stereovision and Stereo Rendering

Most of the stereoscopic systems nowadays make use of the display of left and right
images in order to create the impression of permanently perceiving one stereoscopic
image [Hodges, 1992, Lipton, 1997]. This is accomplished either by displaying se-
quentially different images for the left and for the right eyes, or displaying simulta-
neously images visible only for the left, respectively only for the right eye. In the first
case, the user is provided with a shutter that is synchronized with the display sys-
tem. Whenever the image for the appropriate eye is displayed, the corresponding
shutter is open and the eye sees the image. Due to the not perfectly closing shut-
ter glasses and to the conceptual structure of this type display system, crosstalk may
occur. Crosstalk in a stereoscopic display results in each eye seeing an image of the
unwanted perspective view. In a perfect stereoscopic system, each eye sees only its
assigned image.

In the second scenario, the images are displayed simultaneously, however using
light polarized in different directions. In this case, the user is wearing glasses with
polarized foil, which lets only the appropriate light pass to each eye. The effect in
both cases is the same: the participant views two different images generated with
two different (virtual) cameras. Finally, the last component of the stereo system is
the human brain, which fuses two pictures into one with stereopsis.

In order to describe the process of generating stereo image pairs, we first intro-
duce some specific terms. Disparity is the distance in a horizontal direction between
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the corresponding left and right image points of the (superimposed) retinal images.
The disparity is caused by the fact that each of the eyes sees the world from a differ-
ent viewpoint. This is the basis for stereo seeing. The parallax is defined in a simi-
lar way: parallax is the distance between left and right corresponding image points
measured at the display screen. In other words, in contrast to the disparity measured
at the retinal image, the parallax is measured at the display screen.

In a straightforward implementation of a stereo system, the two virtual cam-
eras are positioned at a given distance from each other. This distance corresponds
to the real distance between the human eyes (eye separation). Experimental stud-
ies [Surdick et al., 1997, Yeh and Silverstein, 1990] have shown that users with nor-
mal stereoscopic vision often have trouble fusing stereo image pairs if the eyes are
modeled based on exact eye separation. Therefore, in practice, it turned out that
an underestimation of this modeled eye separation [Wartell et al., 1999] might lead
to better depth impression. Note that the quality of a pair of stereo images gener-
ated with differently modeled eye separation depends on the scene, as well as on the
individual ability to perceive and fuse stereo images. Nevertheless, as a side effect,
the underestimation also reduces the crosstalk, since the difference between the two
displayed images is smaller. Therefore, the images appear sharper to the user.

Once the cameras for both eyes are placed at the new position, thus, the eye sep-
aration is modeled, they have to be rotated in such a way that the view direction
of both eyes crosses at the focal point. When the object the human eyes are focus-
ing on is close to the observer, the angle α between the view directions of both eyes
increases (see Figure 5.8). In case the object is at infinity, the view directions are
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Figure 5.8: Positive parallax on the left: the point of focus P is behind the image plane. A
negative parallax is shown on the right: the point of focus P is in front of the image plane.

(almost) parallel. This is the natural way of seeing stereo.
With the human visual system, objects in front and behind the focal plane appear

blurred and doubled. This effect cannot be modeled in a synthetic display system.
Instead, in order to make an as good as possible approximation, the orientation of
the eyes is modeled. Unlike the natural human seeing, however, display systems
provide only one fixed focal point. This means that the modeled view direction for
both eyes is fixed, independent of the point on which the real eyes are focused. The
only way to close the gap between the synthetic stereo and the real stereovision is
to employ eye tracking. This will in turn allow the display system to provide the
correct images for both eyes. Since this was not possible by the time this thesis was
completed, we will not discuss the eye tracking in this work. For the remainder of
this section we assume that the focal distance is always fixed until not explicitly (e.g.
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manually) changed.
As introduced above, when the object at which the participant is looking is far

away from the observer, the view directions of both eyes are almost parallel. In con-
trast, when viewing objects close to the user, the angle between the view directions
increases. Similar to this scenario, and in order to achieve good depth impression
for objects in front of the projection plane, a negative parallax is used when the dis-
played objects are in front of the projection plane (see Figure 5.8). Otherwise, when
the displayed objects are behind the projection plane (this is often called within the
CRT space), the parallax is positive.

After positioning and orienting the virtual cameras appropriately, each of them
shoots a picture of the artificial scene. For this, a single projection plane is used for
both virtual cameras (see Figure 5.9). Since there is only one display, this is the only
reasonable way for generating pairs of stereo images. In this scenario, however, we
face another problem: the projection plane is not orthogonal to the view direction
of both virtual cameras. This means that the projection of the scene has to include
a shearing component in order to render the artificial world appropriately. Fortu-
nately, this feature is supported by standard graphics hardware and is easily imple-
mented.

5.3.3 Partitioning the Scene

The approach we present in this section is based on the observation, that objects far
away from the observer appear the same for both eyes. In other words, the paral-
lax for such objects corresponds to the modeled eye separation. Note, that this is
only valid when the focal point is not too close to the current viewpoint! If this case
occurs, the parallax increases significantly with increasing distance to the viewer.

In typical stereo setups, the focal point is set to a default value, which is usually
the middle point of the scene’s bounding box (see Figure 5.9 upper diagram). In this
way, half of the scene is in front of the focus plane, the remaining part is behind the
focus plane. Another implicit assumption often made in stereo systems is that the
focal plane and the image plane are the same. Decoupling the focal plane from the
image plane, however, allows more precise stereo adjustment.

Apparently, the images produced for both eyes are the same in the focal plane,
when the projection plane and the focal plane are the same. Otherwise, they are
shifted among the distance 2Sp between the projections of the focal point viewed
with the left and the right virtual cameras (see Figure 5.9). This is the more general
case, and we refer to it throughout the remainder of this section.

Based on these observations, we have found that even though the disparity in-
creases with increased distance between the viewer and the focal plane, the “far
background” is not perceived as distorted when one and the same background im-
age is displayed for both eyes. This is the main contribution of the proposed ap-
proach. In order to implement it, we render first the part of the scene, which is far
away from the viewer with a “middle eye”2. Once this is done, the images are trans-
lated by Sp to the left and to the right, and copied into the left, respectively right
buffer. Afterwards, the geometry close to the viewer is rendered twice: once for each
eye.

In addition, our approach is not limited to geometry-based rendering of the back-
ground. Various other approaches (e.g. image based rendering) can be applied for

2This denotes the camera position before translating and rotating it in order to generate the stereo
images for the left and the right eyes.
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Figure 5.9: Focusing different points in the scene and the resulting stereo images. In the
upper image, the default focal point is used (scene’s middle point). In the lower image, the
focal point is moved away from the user. The dotted object represents the real object, the
solid lines show the image of the object generated for the left and the right eyes.

generating images of this part of the scene, which appears the same for both eyes.
The resulting images are displayed for and seen by each eye, thus creating the im-
pression of viewing true stereoscopic images.

Since the standard stereo-mode software does not allow direct realization of this
idea, we had to perform the following steps, in order to realize the presented concept:

• Render the background seen by the “middle eye” into the provided buffers.
This step is performed only once, whereas the same image is rendered (and
shifted) into both buffers. These features are supported by the OpenGL stan-
dard [Woo et al., 1998].

• Render the eye-specific foreground, setting the appropriate camera position
and orientation for each eye, without resetting the content of the image buffers
and the depth buffers for both eyes.

5.3.3.1 Where to Split

In order to make the scene division imperceptible for the observer, the scene has to
be partitioned in such a way, that there is no noticeable difference between the pure
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stereo projection and the stereo foreground projection combined with the mono dis-
play mode (at least where the stereo and mono areas meet). This is achieved through
defining a splitting plane orthogonal to the observer’s view direction and intersect-
ing the point of focus. Since the images for both eyes are the same for objects in this
plane, beginning with the monoscopic part of the scene at this plane allows us to
imperceptibly switch between these two modes. The realization of such a smooth
transition can fool the human brain in its depth perception.

The most challenging task for the scene partitioning is the suitable definition of
the focal distance Df (see Figure 5.10). Since this cannot be measured and the ex-
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Figure 5.10: Projecting P with the left camera and the middle camera results in P ′ and P ′′.
After shifting the projected point P ′ among the factor Sp, there is still an error εl compared to
the position of P projected with the left camera P ′′. In order to make the switching of objects
from the foreground to the background and vice versa imperceptible for the observer, this
error εl has to be under a given bound defined by the resolution of the display screen.

act view direction cannot be tracked in traditional stereo applications, the value of
Df is usually set to the distance between the default viewer position and the middle
point of the scene’s bounding box. For values significantly smaller than this value,
diplopia3 occurs and the 3D depth illusion collapses [Yeh and Silverstein, 1990,
Southard, 1995]. On the other hand, too large values produce almost equal images
and create poor depth impression. For our setup we empirically determined, that
the value of the doubled distance between the viewer and the projection plane is for
most of the scenes and most of the users a good approximation. Since the observer’s
head is tracked and the projection plane has a fixed position, the initial distance Dp

between the observer and the display is easily determined. This value is now dou-

3The images are not fuseable for the observer.
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bled in order to compute the final fixed4 focal distance Df .
Depending on Df and the (limited) resolution of the projection display, we can

now define not only a plane, but an interval εf in front and behind the plane Df , in
which the objects have the same image when projected with the left (or right) camera
and the middle camera. Apparently, the larger the distance between the viewer and
the focal plane, the larger the value of εf , the more objects fit in this region (see
Figure 5.11).

This approach is known from the multi-resolution area, where the screen resolu-
tion is taken into account to determine which approximation error is below a given
bound. Applied to our scenario, this idea defines for which objects, at which dis-
tance from the viewer, a given (error perception) bound is overstepped and the user
will see distorted images. In particular, the computation of εf depends on the partic-
ipant’s (eye) position, the focal distance Df , and the distance to the projection screen
Dp. Hence, it can be calculated at which depth value the pixel difference between the
images for the left, the right, and the “middle eye” (positioned between the modeled
eyes) are below a given pixel error.

Assuming that Df has a fixed value, we first determine the offset Sp. This is the
value used to shift the image of the point of focus F projected with the middle cam-
era F ′ to it’s position when projected with the left camera F ′′ (the same for the right
camera), as depicted in Figure 5.10. Denoting with s the half of the eye separation,
Sp is defined by:

Sp =
(Df −Dp)

Df
· s. (5.1)

We now consider the projection of the point P onto the image plane as depicted
in Figure 5.10. The projection of P seen by the middle eye is the pixel P ′, which is
shifted among the value of Sp in order to determine its final position in the image
produced for the left eye (see Figure 5.10). Now, we can compute the error εl for the
pixel P when rendered in the left eye buffer, with Dt denoting the distance between
the viewer and the point P :

εl = εpl − Sp, with

εpl =
(Dt −Dp)

Dt
· s =

(Df ± εf −Dp)
Df ± εf

· s,
(5.2)

denoting the distance between the projections of P generated with the left (P ′′) and
the middle (P ′) cameras.

With the equations 5.1 and 5.2 we can write the interval εf as a function of the
focal distance Df and the display distance Dp, denoting with εr the resolution of the
display:

(Df ± εf −Dp)
Df ± εf

· s− (Df −Dp)
Df

· s ≤ εr. (5.3)

Transformed for both, pixels in front and behind the focal plane, this equation results
in:

εf ≥
−Df

2 · εr

Dp · s−Df · εr
,

εf ≤
Df

2 · εr

Dp · s−Df · εr
.

(5.4)

4Even though, we could vary the focal distance depending on the head position with respect to the
display, this implicit variation of Df may cause significant confusion to the user.
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These equations define a region, where the scene-partitioning plane has to be
situated. In this region objects can be displayed in stereo mode, as well as in mono
mode, without causing distortion in the stereo perception. For our setup, we utilized
the front plane defined by equation 5.4, since in this case the smallest possible part
of the scene is rendered twice in stereo mode.

In Figure 5.11, we have shown this dependence graphically, displaying εf as a

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

display distance 75cm
display distance 100cm
display distance 125cm
display distance 150cm
display distance 175cm
display distance 200cm

0

10

20

30

40

50

60

50 100 150 200 250 300 350

focal distance 75cm
focal distance 100cm
focal distance 125cm
focal distance 150cm
focal distance 175cm
focal distance 200cm

fD

Df= 2 Dp

pD

E
p

si
lo

n
 in

te
rv

al
ε f

in
 c

m
E

p
si

lo
n

 in
te

rv
al

ε f
in

 c
m

Distance to the focal plane

fixed value 

fD

Distance to the image plane pD

Figure 5.11: Upper diagram: εf as a function of Df . The distance to the display Dp varies
from 75cm to 200cm. In the lower diagram, εf is shown as a function of the distance to the
image plane Dp. All functions are drawn for the exact solution of the as equations interpreted
inequation 5.4.

function of the distance to the focal plane Df for several distances between the
viewer and the projection plane Dp. Note, that the half eye separation is constant
and is set to 2.0cm, since it has been shown in the literature, that an underesti-
mated eye separation enhances the depth perception. The screen resolution εr we
set to ≈ 0.12cm, which corresponds to our screen with resolution 1024x768 pixels
and size 120x100cm. For Df = 200cm and Dp = 100cm this results in the interval
[−22cm, 22cm].

As shown in Figure 5.11, the value of εf varies depending on Dp and on Df . The
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upper diagram shows that when the viewer moves toward the projection plane, the
interval εf gets narrow. When moving away from the projection plane it increases.
The lower diagram shows that the greater the focal distance and the smaller the
distance to the image plane Dp, the greater the value of εf . Thus, the greater the
difference between the values of Dp and Df , the greater the interval defined by εf .
Therefore, we defined a minimum distance to the projection plane (in our scenario
75cm). This value we use to compute a min(εf ), which is applied for computing
the maximum size of an object to guarantee the object’s smooth motion from the
stereo foreground to the mono background and vice versa. Because each scene con-
tains objects larger than this allowed size, the geometry of these objects is split in
a preprocessing step. For accomplishing this task, we applied the tools described
in [Optimizer, 1997, Meißner et al., 1999]. When this preprocessing is completed, we
can guarantee, that no geometry object has a bounding box with diagonal larger than
εf , thus all objects can be imperceptibly switched from the foreground to the back-
ground and vice versa.

5.3.3.2 The Stereo Frustum

In addition to the plane parallel to the projection plane, four planes defining a stereo
frustum within the viewing frustum are introduced. The default stereo frustum is
the same as the viewing frustum. However, if the stereo setup provides eye tracking,
the stereo frustum can be used to display only a small part of the scene in the view
frustum in stereo. In this way, we can cull out objects, which are not in the viewing
volume as shown in Figure 5.12.

View volume

Camera

Viewer

d

Far mono
background

Near stereo
foreground

Figure 5.12: The stereo/mono frustum and a 2D scene example. d denotes the distance to
the splitting plane.

During the scene partitioning, every object detected to be completely outside the
near (stereo) frustum, is assigned to the background and rendered once. Otherwise,
if an object is intersected by one of the planes, or is between them, it is assigned to
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the foreground. This allows us to speed up the rendering time, since only a small
part of the scene passes the rendering pipeline twice.

5.3.3.3 How to Split

In order to make the scene partition imperceptible for the observer, the dynamic
scene splitting process triggered before every rendering step has to be performed as
fast as possible. Therefore, for each geometry object we save additional information
containing the object’s bounding box and the Id of the mode (near stereo foreground
or far mono background) it has been assigned to in the previous rendering step. This
allows us to circumvent expensive reassignments of an object, which is already in
the appropriate mode. Thus, only objects, moving from the near stereo foreground
to the far background and vice versa are processed.

Since our mixed-mode-viewer is based on the widely used OpenInventor stan-
dard, the data is organized in scene graphs [Wernecke, 1994]. We provide two graphs
for the two parts of the scene. The first contains the scene’s stereo foreground, which
is rendered twice. The other scene graph, contains the mono background data and
is rendered only once.

In order to determine whether an object is flipped from one graph into the other
as the observer moves through the scene, we check the intersection of the object’s
bounding box with the clipping planes introduced above. For this computation it is
sufficient to check the intersection of the four cube diagonals with the current cut-
ting plane. For each diagonal we determine the sign of the scalar product between
the vector ~A and the (cutting) plane normal vector ~N respectively the vectors ~B and
~N (see Figure 5.13). This corresponds to determining the angles α and β as shown in
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Figure 5.13: Computing the intersection between a bounding box and a cutting plane. For
each diagonal on the left, the angles α and β have to be computed.

Figure 5.13. If one of the angles is below 90◦ and the other greater, the cutting plane
intersects the diagonal. Thus, the object is assigned to the stereo foreground. Other-
wise, if both points A and B are in the same half space defined by the cutting plane,
the object is either assigned to the stereo foreground (if both points are inside the
stereo frustum), or to the mono background.

For speeding up this entire process, the scene graph is modified after it is loaded.
When the scene is initially read, we copy the scene graph, keeping only the geometry
nodes once in the memory. This saves memory and computation time compared
to completely copying the scene graph, since the geometry nodes require the most
memory and contain the actual data. Afterwards, we replace each link to a geometry
node with a switch node, as shown in Figure 5.14. The switch nodes are special In-
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Figure 5.14: Replacing the links to the geometry node with switch nodes.

ventor/VRML/Performer nodes, which can be used to change the visibility of the un-
derlying geometry in the scene graph. Hence, when an object moves from one mode
to the other, only the value of the corresponding switch node is changed. Storing
an array of pointers to these switch nodes makes it possible to traverse all geometry
nodes before each rendering step. The performance results achieved in this way are
discussed in the next section.

5.3.4 Performance

Before discussing in detail the performance, we briefly introduce the application
of the proposed approach. The method described above is integrated in a dedi-
cated OpenInventor-viewer, used to explore modeled indoor scenes, as well as ter-
rain data. Since it has been shown in the literature [Padmos and Milders, 1992,
Olano et al., 1997], that latency plays an important role in VR-setups, we compare
the times for rendering the test scenes with our approach and with the standard
stereo rendering approach.

The main latency source nowadays is still the rendering of complex scenes. In
our setup, an additional delay source is defined by the scene-partitioning step. This
includes the computations of: (1) the cut-planes’ intersections with the bounding
box of each scene object and (2) the scene graph traversing in order to assign the
appropriate switch node’s visibility for each object.

In order to measure the quality of the proposed method, we performed walk-
throughs in two indoor scenes containing approximately 400’000, respectively
130’000 triangles. During the walkthrough, we recorded the rendering times for the



106 CHAPTER 5. RENDERING ALGORITHMS

stereo foreground, consisting of the time for rendering the scene’s near foreground in
each eye’s buffer and the rendering and shifting of the background into both buffers
(see Figures 5.15 and 5.16). In addition, the time for computing the intersections
with the cutting planes and setting the appropriate flags in the scene graph are dis-
played in Figure 5.15 and Figure 5.16. In the pure stereo mode, the rendering time
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Figure 5.15: Statistic of the path through a scene with 400’000 triangles.

includes the time for rendering the entire scene twice: once for each eye. Further-
more, for each scene we recorded the number of triangles displayed in the stereo
foreground and in the mono background. As shown in Figures 5.15 and 5.16, the
proposed approach is especially useful when the scene is large and the geometry
is regularly distributed. This is the case in the first example (Figure 5.15). In the
lower right diagram, we see that only a small part of the scene is rendered in the fore-
ground. In contrast, the second scene was small with many object concentrated in
the middle of the scene. This explains the sudden drop of performance and increase
of foreground geometry in the middle of the left and right diagrams of Figure 5.16. In
this scenario, the user navigated into the scene and turned around before flying out
of the scene again.

Nevertheless, Figures 5.15 and 5.16 show that our approach of dynamic split-
ting the entire scene in once rendered background and twice rendered foreground
achieves significant speedups of up to 40% compared to the traditional stereo ren-
dering. More important, however, is the potential of combining the proposed tech-
nique with image base rendering algorithms. This will significantly decrease the
rendering time for the background area of large scenes with complex geometry and
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Figure 5.16: Statistic of the path through a scene with 130’000 triangles.

hence increase the frame rate.

5.3.5 Usability

The stereo perception is a very subjective perception, and thus it is very difficult to
measure the applicability of the proposed approach in practice. We performed a
series of usability tests in order to present, even though only vague, usability mea-
surement. For accomplishing this task, we let eleven users walk through two dif-
ferent scenes and perform given tasks, while recording and evaluating their depth
judgment. The participants’ experience with stereo projection setups varied from
no experience to very experienced users.

The setup for all tests was based on a large screen projection: the Virtual Table.
The users were seated in front of this device, approximately 150cm away from the
display with resolution 1024x786 pixels and size 120x100cm. The interocular dis-
tance in all trials was set to 4cm, the focal distance to 200cm.

5.3.5.1 Depth Judgment

The aim of the first trial was to show that our approach is applicable, that is, that
the human depth perception is not distorted when the viewed scene is partitioned
properly and displayed as described above. For this, we let the participants perform
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two walkthroughs of each scene: once in each display mode. Thereafter, we asked
whether or not there was a perceptible distortion while viewing the scene.

After evaluating the recorded data, it turned out, that 64% of the participants did
not recognize any difference between both display modes at all (see Figure 5.17).
18% of the participants even rated the mixed mode as being more pleasant to view

Undefined difference

Pure stereo is better

Mixed mode is better

9%

Depth perception in both modes?

64%18%

9%

Difference in the display mode?

64%

36%

Mixed mode is better

No differenceNo difference

Figure 5.17: Results of the usability tests after displaying the same scene in both modes.

than the normal stereo mode. 9% of them stated, that there was a difference but
could not describe it and the remaining 9% of the participants found the normal
stereo mode better than the mixed stereo/mono mode. None of the subjects com-
plained about headache or sickness.

Being asked about their depth impression, 64% of the participants did not find
any differences in the depth of both modes (see Figure 5.17). The remaining 36% had
an even better depth impression viewing the scene in the mixed stereo/mono mode,
than in the true stereo mode. This can be explained with the only once rendered,
thus, sharper background part of the scene. In addition, the effect of so called “ghost
images”, often caused by shutter-glasses-based stereo setups (i.e. not perfect closing
shutter glasses), was significantly reduced.

5.3.5.2 Interaction

In the second test, we let the participants reposition given objects in the scene, while
recording the time they needed to perform this task. For this, we utilized the same
setup as described above. This time the users were asked to manipulate an object in
the scene, such that the object was moved once from the stereo foreground into the
mono background (Figure 5.18 A to B), then from the mono background back into
the stereo foreground (B to C), and finally within the stereo foreground (C to D and
D to A). Every participant performed this task two times, once in the normal stereo
mode and the once in the mixed stereo/mono mode. In order to achieve comparable
interaction results and not navigation dependent measurements, the viewpoint was
not allowed to be moved in space. Only the head tracking was still active.

This test showed that all participants needed approximately the same time for
moving the given object to the marked target points until the given precision is
reached independent of the rendering mode (see Figure 5.19). Hence, we can con-
clude, that the mixed mode did not affect the interaction time for performing the
requested task in the virtual environment. Considering the precision, we also found
out that the accurate positioning does not suffer from the “flat”-mono display of the
background. In both trails the positioning depended rather on the distance to the
target location, than on the display mode. In other words, it was more difficult for
the participants to position the object at distant targets independent of the render-
ing mode (comparison of points B and D). Moreover, none of the subjects recognized
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A

D

B

C

Figure 5.18: The marks A-D show how the participants moved the wine glass (at A) in the
scene during the second trial. The target locations A, C, and D are in the foreground, the
position B was in the mono-rendered background.

any disturbing effects when the picked object was “switched” from stereo foreground
to the mono background and vice versa.

During the tests, special attention was paid on the users fatigue, perception ill-
ness, as well as the participants’ orientation in the scene. As a result we ascertained,
that the mixed display mode did not cause any loss of orientation, neither did it af-
fect the precision and the time the participants needed for performing the requested
tasks.

5.3.6 Extensions and Conclusions

An important research direction towards improving the applicability of the proposed
algorithm will be the integration of an eye-tracking device in our system. Eye track-
ing will provide the perfect completion for the proposed approach. In such a setup,
we will be able to exactly determine the point of focus and display only this part of
the scene in stereo mode, which is close to it. Additionally, the stereo frustum can be
narrowed such that only the area the user is looking at is displayed in stereo mode.

The presented approach is also suitable for displaying the scene applying two
output devices. For instance, the near foreground can be displayed using a head
mounted display, the far background utilizing a large screen projection. Such a sce-
nario will allow integrating real objects into a virtual scene. Knowing the distance to
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Figure 5.19: The times measured during the participants moved the object from A to B, B to
C, C to D, and D to A (depicted in Figure 5.18). For each participant, two bars are displaying
the time needed to perform the movements in mixed mode (left bar) and true stereo mode
(right bar).

the real object will enable the scene to be split in such a way, that the foreground be-
tween the observer and the real object is projected via the head mounted display. On
the other hand, the far background, which is behind the real object, can be displayed
via large screen projection.

Even though the proposed approach cannot be combined with eye tracking yet,
it can be applied for accelerating rendering of large scenes in stereo mode, typically
applied in virtual reality applications. The discussed scene partitioning is based on
the fact that distant objects appear the same for both eyes, making the presented
approach especially suitable for large scenes with detailed background. We have in-
troduced a definition of a criterion for partitioning a VR-scene is such a way, that the
near foreground can be displayed in stereo mode and the far background in mono
mode, without affecting the subjects’ depth perception. This strategy allows us to
integrate new techniques for rendering the scene’s mono background (e.g. image
based rendering) and to further speed up the rendering process.

In addition, with the discussed usability tests, we have shown, that the presented
mixed approach does not cause any distortion of the 3D depth perception. It also
does not affect the interaction time and precision in virtual environments, while re-
ducing the rendering time up to 40%.



Chapter 6

Summary and Conclusions

In the author’s opinion, diverse applications would benefit from being embedded
into a virtual reality setup. Such an environment not only provides vivid data display,
but it also allows real three-dimensional interaction and visualization. Presently
many developers still do not dare to perform this step due to the unreliable hard-
ware, as well as inadequate interaction, visualization, and rendering tools regard-
ing the software. This work addresses various components of the application cre-
ation pipeline, considering the software aspects of a virtual reality application sys-
tem. These components include three distinct groups: the rendering approaches,
the interaction techniques, and the data itself. Considering the data, we can in turn
identify three additional subgroups: the acquisition, the preprocessing, and the vi-
sualization. Throughout this work, we were motivated by the lack of adequate tools
and algorithms in each of the above categories tailored to specific problems, as well
as regarding some of these areas in general.

Considering the data-components, we first have discussed the preprocessing and
preparation. In this area, the most challenging problem was the segmentation of
data of interest out of volume/image data. Up till now, there are no reliable ap-
proaches for solving this problem. Even worse, most of the segmentations in today’s
image processing applications are still made by hand.

We proposed an algorithm based on the watershed transformation, which, in
contrast to the traditional watershed transformation, is based on the local extrac-
tion of regions of interest. The proposed approach extracts locally basins of inter-
est applying a rain-falling simulation. Due to the typical over-segmentation pro-
duced by the watershed transformation, a basin merging step has to be applied to
the extracted basins. Many authors have published various strategies for merging
the basins extracted during the watershed transformation. Unfortunately, all pre-
sented approaches suffer from their global application aiming to extract all features
in the input image/volume data. Instead of developing sophisticated global criteria,
valid for all basins in the entire image/volume data, we presented a method for de-
riving rules meeting local conditions. Thus, achieving more precise definition of the
merging criteria compared to the traditional watershed algorithms. In this way, we
retrieve good segmentation results, which are the basis for further visualization and
exploration applications.

Besides the processing of image/volume data, we have also paid attention to the
visualization of historical data, which is still a challenging task due to the included
time dimension. Although we are able to visualize almost any type of data nowadays,
the particular challenge in this scenario is that we have to deal with data, which com-
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ponents may vary in the time and in the space. In particular, when we consider a mi-
gration of people within a period of time, we have to visualize not only the position
at a given time, but also various parameters like the number of the participants, the
mood of the people, how far they could see from their current location, etc. These
parameters are especially important for the analysis of the data. They help us to
understand why some decisions are made and to explain the behavior of the partic-
ipants in given situations.

In Section 3.3, we have described how the data is acquired and visualized in order
to enable vivid display of various dimensions of the original data. We have demon-
strated the entire process utilizing a particular dataset: the peasant’s war in 1525 in
Germany. With the proposed display techniques we are not only able to encode dif-
ferent parameters, (e.g. affiliation, mood of the troops, number of the participants,
etc.), but we also presented various visualization aids enabling better orientation in
the space and time dimension and thus allowing for better analysis of the data. The
described tools, which were developed in cooperation with the historical depart-
ment of the University in Stuttgart, have proved to be a valuable companion offering
significant support for the analysis of historical data. Furthermore, the described vi-
sualization greatly improves upon the visualization of historical data, compared to
the maps commonly used in the historical area.

In the second part of this work (Chapter 4, p. 47), we discussed in detail the in-
teraction in a virtual environment based on the well-known personal pad and inter-
action pen (see Section 2.3.2, p. 11). First, we addressed the interaction problem in
general and presented a set of new interaction techniques for virtual environments.
Thereafter, we proposed a set of tools particularly tailored to the interaction with
historical data.

Although many different paradigms and interaction tools are known in the liter-
ature, there are still problems associated with each of these tools. In order to over-
come their limitations, while still supporting the features of these tools, we intro-
duced the through-the-lens (TTL) concept, applied mainly as an extension to ex-
isting navigation techniques and used to develop new interaction tools. The basic
philosophy of this metaphor is that there are two virtual worlds existing in the same
physical space. One of these worlds is interactively explored and surrounds the user.
This is also called the primary world. The other world, also called the secondary
world, is explored using a dedicated window that acts like a wormhole connecting
both synthetic worlds. There are various different states of the secondary world with
respect to the primary world. In Section 4.2 (p. 51), we discussed a taxonomy for
these states, as well as a classification of the states of the window connecting both
worlds.

With the through-the-lens metaphor presented in this work, a secondary view-
point in the secondary world additional to the primary (current) user viewpoint in
the primary world is defined. This viewpoint allows observing and traveling to any
arbitrary location of the secondary world. Moreover, the secondary world can be
set to be a transformed copy of the primary world. In this way, the same synthetic
scene can be explored with the through-the-lens tools, either by manipulating the
viewpoint in the secondary world or by transforming the secondary world itself. Al-
though the result of these two strategies is the same, they differ in the way of the
application. This is done without having to perform any (viewpoint) motion in the
user surrounding virtual environment– primary world. Due to the fact, that the po-
sition of the participant in the surrounding environment remains unchanged, the
through-the-lens tools help to overcome typical problems of other interaction and
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navigation techniques like the caused disorientation, motion sickness, fatigue, etc.
Since the navigation and the interaction are responsible to a great degree for the
acceptance and the usability of a virtual reality application, the development of ad-
equate tools for performing these tasks is of great importance.

Based on the above through-the-lens concept, we developed various tools for
performing different tasks in a virtual environment. Although with the proposed
tools the secondary world is an interactively transformed copy of the primary world,
the through-the-lens tools can be applied in the same way in a scenario, in which
the secondary world is an arbitrary synthetic scene. On the other hand, for the nav-
igation of an artificial scene the secondary world and the primary world have to be
the same, since the secondary world offers a form of a preview for a given location
in the surrounding environment. This holds for the remote object manipulation and
the interactive visualization of historical data as well:

Navigation: The through-the-lens concept was applied for navigation within a
virtual world, where the user interactively sets the secondary viewpoint to any arbi-
trary position. This adjustment of the secondary world was realized with three differ-
ent viewpoint manipulation techniques: the TTL-scene-in-hand, the TTL-eyeball-
in-hand, and the TTL-world-in-miniature techniques. The result is a set of tools for
coarse navigation, as well as high-precision adjustment of the viewpoint in the sec-
ondary world. These tools offer high degree of interactivity, while not exposing side
effects like the original implementations, which strongly require a mental model in
order to apply them appropriately.

Remote Object Manipulation: The through-the-lens concept was also extended
towards enabling remote object manipulation in a virtual environment. The window,
through which the remote location is viewed, is used in this case to reach through it
and manipulate objects that are out of the physical reach of the user in the primary
world. An important advantage of this technique is that the remote objects manip-
ulated through the viewing window are manipulated in their natural environment
at freely chosen scale, as if they were within the physical reach of the user. Further-
more, this tool can be also applied to manipulate a magnified copy of the primary
world within the physical reach. Hence, the proposed approach enables precise ma-
nipulation of objects in the (primary and thus in the secondary) world.

Exploration of 4D Time-containing Data: Finally, we presented a set of through-
the-lens tools for visualizing and interacting with data containing a time dimension
(TTL-time-tools). To this set count the time lens, the fly-with tool, as well as the tools
for interactive traveling the 4D time-space. The main characteristic of these tools
is that they exploit the features of the above TTL-tools for navigation, while provid-
ing additionally the capability to travel the time dimension. They help the user to
explore the time and space simultaneously. In particular, we implemented tools,
which support the integration of expert data. In order to facilitate the exploration
and to guarantee that the user will not miss important features of the data, an expert
user can predefine motion in time and space. This is employed either to guide the
user through the 4D data, or to display the data seen from the predefined path in the
time and space as secondary world behind the through-the-lens window.

All these interaction techniques have in common is that they provide a preview-
like window connecting the primary and the secondary world to each other. In par-
ticular, the secondary world (and eventually another event time) is displayed in a
dedicated window in the primary world. This feature helps to circumvent the typ-
ical “loss of orientation”-problems in virtual environments. In case that the aim of
the through-the-lens tool is to navigate within an artificial world, the secondary and
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the primary worlds are the same. Otherwise, the proposed tools offer a form of tele-
presence in two synthetic worlds simultaneously. Our informal usability tests with
ca. 50 participants have shown that the TTL-metaphor is easy to understand and to
apply even for users who do not have experience in interacting within virtual worlds.

In Chapter 5, we have addressed the rendering in virtual environments. First,
we have considered a TTL-specific problem: the multiple rendering of the data as
primary world and as secondary world(s). Even though the observer sees only a
small part of the secondary world(s) from viewpoints with only little variation of the
position and view direction, the entire secondary scene passes through the render-
ing pipeline. If the user applies multiple windows for exploring the input data, this
means that for each window the complete data is rendered one more time. In or-
der to accelerate the process of rendering the secondary world, we presented a new
image-based approach tailored to this specific problem: the multi LDI. The multi
LDI is an image-based scene representation, which allows dynamic data generation,
fast rendering of the resulting data structure, and behaves like a geometry rendered
scene considering the addition and the removal of objects after the multi LDI was
generated.

We have also shown that the multi LDI may significantly increase the frame rate
especially when multiple windows into the secondary world are defined and when
the scene contains complex geometry. This makes the multi LDI a valuable extension
of the through-the-lens tools presented above.

Finally, we addressed the stereo rendering of complex scenes. In the traditional
scenario, the scene is rendered twice each time with slightly shifted and rotated vir-
tual cameras, representing the observer’s eyes. Instead of doing this, we proposed
a method for splitting the scene in two parts: the near foreground, which is seen
through each eye in a different way; and the far background, which is similar for
both eyes, when the eyes are focused at a distant point. This division of the scene
allows us to render only the part close to the observer twice. The remaining part of
the scene is rendered only once and appropriately combined with the images gener-
ated for the left and the right eyes. To make the transition between the two parts of
the scene imperceptible for the observer, we deduced a criterion for positioning the
splitting plane depending on the resolution of the screen. We have shown that the
proposed method enables the display of complex scenes in stereo mode up to 40%
faster than the traditional method for stereo rendering.

In order to demonstrate that our method is applicable and that the human depth
perception is not distorted applying our approach, we performed various usability
studies. The latter have shown that the mixed (stereo/mono) display mode was in-
distinguishable from the pure stereo rendering and does not affect the interaction in
the virtual environment.

In conclusion, we can state that the presented tools for visualization, interac-
tion, and rendering in virtual environments enhance the usability of their original
predecessors and offer new ways for rendering, analysis, and interactive exploration
of the input data. The algorithms and techniques proposed in this work provide a
powerful extension of existing tools, while overcoming many of the drawbacks of the
traditional techniques. Moreover, we have shown that the presented concepts can
be used as a basis for the development of various new interaction and exploration
techniques.
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Universität Tübingen, Fakultät für Informatik.

[Farin, 1988] Farin, G.: 1988. Curves and Surfaces for Computer Aided Geometric
Design, A Practical Guide. Academic Press, Inc. ISBN 0-12-249050-9.

[Fedak et al., 1996] Fedak, M. A., P. Lovell, and B. J. McConnell: 1996. MAMVIS: A
marine mammal behaviour visualization system. The Journal of Visualization and
Computer Animation, 7(3), 141–147.

[Feiner et al., 1993] Feiner, S., B. MacIntyre, M. Haupt, and E. Solomon: 1993. Win-
dows on the world: 2D windows for 3D augmented reality. In Proceedings of the
ACM Symposium on User Interface Software and Technology, Virtual Reality 145–
155.

[Galyean, 1995] Galyean, T. A.: 1995. Guided navigation of virtual environments. In
Hanrahan, P. and J. Winget, editors, 1995 Symposium on Interactive 3D Graphics
103–104. ACM SIGGRAPH. ISBN 0-89791-736-7.

[Gibson, 1998] Gibson, S. F. F.: 1998. Using distance maps for accurate surface recon-
struction in sampled volumes. In Proceedings of the 1998 Symposium on Volume
Visualization (VOLVIS-98) 23–30, New York. ACM Press.

[Gleicher and Witkin, 1992] Gleicher, M. and A. Witkin: 1992. Through-the-lens
camera control. In Catmull, E. E., editor, SIGGRAPH 92 Conference Proceedings,
volume 26 331–340.

[Guiard, 1988] Guiard, Y.: 1988. The kinematic chain as a model for human asym-
metrical bimanual cooperation. In Colley, A. and J. Beech, editors, Cognition and
action in skilled behavior 205–228. Amsterdam: North-Holland.



126 BIBLIOGRAPHY

[Heguy et al., 2001] Heguy, O., N. Rodriguez, and H. Luga: 2001. Virtual environment
for cooperative assistance in teleoperation. In Skala, V., editor, Proceedings of 9-
th International Conference on Computer Graphics, Visualization, and Interactive
Digital Media (WSCG’2001).

[Higgins and Ojard, 1993] Higgins, W. and E. Ojard: 1993. Interactive morphological
watershed analysis for 3D medical images. Computerized Medical Imaging and
Graphics, 17(4/5), 387–395.

[Hirose et al., 2001] Hirose, M., K. Hirota, T. Ogi, H. Yano, N. Kakehi, M. Saito, and M.
Nakashige: 2001. Hpaticgear: The development of a wearable force display system
for immersive projection displays. In Proceedings of the IEEE Virtual Reality 123–
129.

[Hodges, 1992] Hodges, L. F.: 1992. Tutorial: Time-multiplexed stereoscopic com-
puter graphics. IEEE Computer Graphics and Applications, 12(2), 20–30.

[Hodges et al., 1999] Hodges, L. F., B. O. Rothbaum, R. Alarcon, D. Ready, F. Shahar,
K. Graap, J. Pair, P. Hebert, B. Wills, and D. Baltzell: 1999. Virtual vietnam: A vir-
tual environment for the treatment of chronic post-traumatic stress disorder. Cy-
berPsychology & Behavior, 2(1), 1–9.

[Hoschek and Lasser, 1993] Hoschek, J. and D. Lasser: 1993. Fundamentals of Com-
puter Aided Geometric Design. A. K. Peters. ISBN 1-56881-007-5.

[Iwate et al., 2001] Iwate, H., H. Yano, and F. Nakaizumi: 2001. Gait master: A ver-
satile locomotion interface for uneven virtual terrain. In Proceedings of the IEEE
Virtual Reality 131–137.

[Jackway, 1995] Jackway, P. T.: 1995. Morphological multiscale gradient watershed
image analysis. In Borgefors, G., editor, 9th SCIA Scandinavian Conference on Im-
age Analysis 87–94.

[Jaswa, 1997] Jaswa, V.: 1997. CAVEvis: distributed real-time visualization of time-
varying scalar and vector fields using the CAVE virtual reality theater. In IEEE Vi-
sualization ’97 (VIS ’97) 301–308, Washington - Brussels - Tokyo. IEEE.

[Kabbash et al., 1994] Kabbash, P., W. Buxton, and A. Sellen: 1994. Two-handed in-
put in a compound task. In Proceedings of ACM CHI’94 Conference on Human Fac-
tors in Computing Systems, volume 2 of PAPER ABSTRACTS: Evaluating Pointing
Devices 230.

[Lasseter, 1987] Lasseter, J.: 1987. Principles of traditional animation applied to 3D
computer animation. In Stone, M. C., editor, SIGGRAPH 90 Conference Proceed-
ings, volume 21 35–44.

[Lipton, 1997] Lipton, L.: 1997. Stereo3d handbook. Technical Report
http://www.stereographics.com/html/whtpaprs.html, Stereo-Graphics Corp.,
San Rafael.

[Lorensen and Cline, 1987] Lorensen, W. E. and H. E. Cline: 1987. Marching cubes:
a high resolution 3D surface construction algorithm. In Stone, M. C., editor, SIG-
GRAPH ’87 Conference Proceedings (Anaheim, CA, July 27–31, 1987) 163–170. Com-
puter Graphics, Volume 21, Number 4.



BIBLIOGRAPHY 127

[Mangan and Whitaker, 1999] Mangan, A. P. and R. T. Whitaker: 1999. Partitioning
3D Susface Meshes Using Watershed Segmentation. IEICE Transactions on Visu-
alization and Computer Graphics, 5(4).

[Mapes and Moshell, 1995] Mapes, D. and J. Moshell: 1995. A two-handed interface
for object manipulation in virtual environments. Presence, 4(4), 403–416.

[McMillan, 1995] McMillan, L.: 1995. A list-priority rendering algorithm for redis-
playing projected surfaces. Technical Report TR95-005, Department of Computer
Science, University of North Carolina - Chapel Hill. Wed, 26 Jun 1996 18:10:53
GMT.

[Meißner et al., 1999] Meißner, M., D. Bartz, T. Hüttner, G. Müller, and J. Einigham-
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Fröhlich, B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 9, 13, 48, 49, 95, 123, 124
Fuchs, H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 123
Fuhrmann, A. L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 129

Gabbouj, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 22, 23, 127
Galyean, T. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 125
Gervautz, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 16, 48, 52, 129, 131
Gibson, S. F. F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 125
Giegl, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 95, 132
Gleicher, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 79, 125
Gobbetti, E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 49, 131
Gortler, S. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 86, 89, 91, 129
Graap, K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 126
Greenfield, E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 48, 132
Guiard, Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 48, 125

Hanrahan, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 9, 13, 48, 49, 95, 123, 124
Harms, T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 131
Haupt, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 125
He, L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 86, 89, 91, 129
Hebert, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 126
Heguy, O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 126
Higgins, W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 22, 126
Hirose, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 126
Hirota, K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 126
Hodges, L. F. . . . . . . . . . . . . . . . . . . . . . . . . 2, 11, 50, 57, 66, 96, 97, 124, 126, 129, 130, 131
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