3,297 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Selective rendering for efficient ray traced stereoscopic images

    Get PDF
    Depth-related visual effects are a key feature of many virtual environments. In stereo-based systems, the depth effect can be produced by delivering frames of disparate image pairs, while in monocular environments, the viewer has to extract this depth information from a single image by examining details such as perspective and shadows. This paper investigates via a number of psychophysical experiments, whether we can reduce computational effort and still achieve perceptually high-quality rendering for stereo imagery. We examined selectively rendering the image pairs by exploiting the fusing capability and depth perception underlying human stereo vision. In ray-tracing-based global illumination systems, a higher image resolution introduces more computation to the rendering process since many more rays need to be traced. We first investigated whether we could utilise the human binocular fusing ability and significantly reduce the resolution of one of the image pairs and yet retain a high perceptual quality under stereo viewing condition. Secondly, we evaluated subjects' performance on a specific visual task that required accurate depth perception. We found that subjects required far fewer rendered depth cues in the stereo viewing environment to perform the task well. Avoiding rendering these detailed cues saved significant computational time. In fact it was possible to achieve a better task performance in the stereo viewing condition at a combined rendering time for the image pairs less than that required for the single monocular image. The outcome of this study suggests that we can produce more efficient stereo images for depth-related visual tasks by selective rendering and exploiting inherent features of human stereo vision

    Perception-based global illumination, rendering, and animation techniques

    Full text link

    Visual Attention in 3D Video Games.

    Get PDF
    Understanding players’ visual attention patterns within an interactive 3D game environment is an important research area that can improve game level design and graphics. Several graphics techniques use a perception based rendering method to enhance graphics quality while achieving the fast rendering speed required for fast-paced 3D video games. Game designers can also enhance game play by adjusting the level design, texture and color choices, and objects’ locations, if such decisions are informed by a study of players’ visual attention patterns in 3D game environments. This paper seeks to address this issue. We present results showing different visual attention patterns that players exhibit in two different game types: action-adventure games and first person shooter games. In addition, analyzing visual attention patterns within a complex 3D game environment presents a new challenge because the environment is very complex with many rapidly changing conditions; the methods used in previous research cannot be used in such environments. In this paper, we will discuss our exploration seeking a new approach to analyze visual attention patterns within interactive 3D environments

    Efficient global illumination for dynamic scenes

    Get PDF
    The production of high quality animations which feature compelling lighting effects is computationally a very heavy task when traditional rendering approaches are used where each frame is computed separately. The fact that most of the computation must be restarted from scratch for each frame leads to unnecessary redundancy. Since temporal coherence is typically not exploited, temporal aliasing problems are also more difficult to address. Many small errors in lighting distribution cannot be perceived by human observers when they are coherent in temporal domain. However, when such a coherence is lost, the resulting animations suffer from unpleasant flickering effects. In this thesis, we propose global illumination and rendering algorithms, which are designed specifically to combat those problems. We achieve this goal by exploiting temporal coherence in the lighting distribution between the subsequent animation frames. Our strategy relies on extending into temporal domain wellknown global illumination and rendering techniques such as density estimation path tracing, photon mapping, ray tracing, and irradiance caching, which have been originally designed to handle static scenes only. Our techniques mainly focus on the computation of indirect illumination, which is the most expensive part of global illumination modelling.Die Erstellung von hochqualitativen 3D-Animationen mit anspruchsvollen Lichteffekten ist für traditionelle Renderinganwendungen, bei denen jedes Bild separat berechnet wird, sehr aufwendig. Die Tatsache jedes Bild komplett neu zu berechnen führt zu unnötiger Redundanz. Wenn temporale Koherenz vernachlässigt wird, treten unter anderem auch schwierig zu behandelnde temporale Aliasingprobleme auf. Viele kleine Fehler in der Beleuchtungsberechnung eines Bildes können normalerweise nicht wahr genommen werden. Wenn jedoch die temporale Koherenz zwischen aufeinanderfolgenden Bildern fehlt, treten störende Flimmereffekte auf. In dieser Arbeit stellen wir globale Beleuchtungsalgorithmen vor, die die oben genannten Probleme behandeln. Dies erreichen wir durch Ausnutzung von temporaler Koherenz zwischen aufeinanderfolgenden Einzelbildern einer Animation. Unsere Strategy baut auf die klassischen globalen Beleuchtungsalgorithmen wie "Path tracing", "Photon Mapping" und "Irradiance Caching" auf und erweitert diese in die temporale Domäne. Dabei beschränken sich unsereMethoden hauptsächlich auf die Berechnung indirekter Beleuchtung, welche den zeitintensivsten Teil der globalen Beleuchtungsberechnung darstellt

    Real-time selective rendering

    Get PDF
    Traditional physically-based renderers can produce highly realistic imagery; however, suffer from lengthy execution times, which make them impractical for use in interactive applications. Selective rendering exploits limitations in the human visual system to render images that are perceptually similar to high-fidelity renderings in a fraction of the time. This paper outlines current research being carried out by the author to tackle this problem, using a combination of ray-tracing acceleration techniques, GPU-based processing, and selective rendering methods. The research will also seek to confirm results published in literature, which indicate that users fail to notice any quality degradation between high-fidelity imagery and a corresponding selective rendering.peer-reviewe

    Efficient global illumination for dynamic scenes

    Get PDF
    The production of high quality animations which feature compelling lighting effects is computationally a very heavy task when traditional rendering approaches are used where each frame is computed separately. The fact that most of the computation must be restarted from scratch for each frame leads to unnecessary redundancy. Since temporal coherence is typically not exploited, temporal aliasing problems are also more difficult to address. Many small errors in lighting distribution cannot be perceived by human observers when they are coherent in temporal domain. However, when such a coherence is lost, the resulting animations suffer from unpleasant flickering effects. In this thesis, we propose global illumination and rendering algorithms, which are designed specifically to combat those problems. We achieve this goal by exploiting temporal coherence in the lighting distribution between the subsequent animation frames. Our strategy relies on extending into temporal domain wellknown global illumination and rendering techniques such as density estimation path tracing, photon mapping, ray tracing, and irradiance caching, which have been originally designed to handle static scenes only. Our techniques mainly focus on the computation of indirect illumination, which is the most expensive part of global illumination modelling.Die Erstellung von hochqualitativen 3D-Animationen mit anspruchsvollen Lichteffekten ist für traditionelle Renderinganwendungen, bei denen jedes Bild separat berechnet wird, sehr aufwendig. Die Tatsache jedes Bild komplett neu zu berechnen führt zu unnötiger Redundanz. Wenn temporale Koherenz vernachlässigt wird, treten unter anderem auch schwierig zu behandelnde temporale Aliasingprobleme auf. Viele kleine Fehler in der Beleuchtungsberechnung eines Bildes können normalerweise nicht wahr genommen werden. Wenn jedoch die temporale Koherenz zwischen aufeinanderfolgenden Bildern fehlt, treten störende Flimmereffekte auf. In dieser Arbeit stellen wir globale Beleuchtungsalgorithmen vor, die die oben genannten Probleme behandeln. Dies erreichen wir durch Ausnutzung von temporaler Koherenz zwischen aufeinanderfolgenden Einzelbildern einer Animation. Unsere Strategy baut auf die klassischen globalen Beleuchtungsalgorithmen wie "Path tracing", "Photon Mapping" und "Irradiance Caching" auf und erweitert diese in die temporale Domäne. Dabei beschränken sich unsereMethoden hauptsächlich auf die Berechnung indirekter Beleuchtung, welche den zeitintensivsten Teil der globalen Beleuchtungsberechnung darstellt
    corecore