25,419 research outputs found

    Critical Review of Theoretical Models for Anomalous Effects (Cold Fusion) in Deuterated Metals

    Full text link
    We briefly summarize the reported anomalous effects in deuterated metals at ambient temperature, commonly known as "Cold Fusion" (CF), with an emphasis on important experiments as well as the theoretical basis for the opposition to interpreting them as cold fusion. Then we critically examine more than 25 theoretical models for CF, including unusual nuclear and exotic chemical hypotheses. We conclude that they do not explain the data.Comment: 51 pages, 4 Figure

    Tantalum-based diffusion barriers in Si/Cu VLSI metallizations

    Get PDF
    We have studied sputter-deposited Ta, Ta36Si14, and Ta36Si14N50 thin films as diffusion barriers between Cu overlayers and Si substrates. Electrical measurements on Si n + p shallow junction diodes demonstrate that a 180-nm-thick Ta film is not an effective diffusion barrier. For the standard test of 30-min annealing in vacuum applied in the present study, the Ta barrier fails after annealing at 500 °C. An amorphous Ta74Si26 thin film improves the performance by raising the failure temperature of a /Ta74Si26(100 nm)/Cu(500 nm) metallization to 650 °C. Unparalled results are obtained with an amorphous ternary Ta36Si14N50 thin film in the Si/Ta36Si14N50 (120 nm)/Cu(500 nm) and in the Si/TiSi2(30 nm)/Ta36SiN50 (80 nm)/Cu(500 nm) metallization that break down only after annealing at 900 °C. The failure is induced by a premature crystallization of the Ta36Si14N50 alloy (whose crystallization temperature exceeds 1000 °C) when in contact with copper

    Micrometre-scale refrigerators

    Get PDF
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    Micrometre-scale refrigerators

    Full text link
    A superconductor with a gap in the density of states or a quantum dot with discrete energy levels is a central building block in realizing an electronic on-chip cooler. They can work as energy filters, allowing only hot quasiparticles to tunnel out from the electrode to be cooled. This principle has been employed experimentally since the early 1990s in investigations and demonstrations of micrometre-scale coolers at sub-kelvin temperatures. In this paper, we review the basic experimental conditions in realizing the coolers and the main practical issues that are known to limit their performance. We give an update of experiments performed on cryogenic micrometre-scale coolers in the past five years

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Ancient and historical systems

    Get PDF

    Quasiclassical Green's function approach to mesoscopic superconductivity

    Full text link
    Recent experiments on mesoscopic normal-metal--superconductor heterostructures resolve properties on length scales and at low temperatures such that the temperature is below the Thouless energy kBT≤EThk_B T \le E_{Th}. We describe the properties of these systems within the framework of quasiclassical many-body techniques. Diffusive and ballistic systems are covered, both in equilibrium and nonequilibrium situations. Thereby we demonstrate the common physical basis of various subtopics.Comment: 38 pages, LaTeX, sup.sty-style file included, to appear in Superlattices and Microstructures; several minor changes and corrections of typographical errors, two updated figure

    Transport of Surface States in the Bulk Quantum Hall Effect

    Full text link
    The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel (\hat{z}) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-terminal z-axis conductance and its mesoscopic fluctuations. Quasi-1d localization effects are evident in the limit of many layers. We consider the role of inelastic de-phasing effects in modifying the transport of the chiral surface sheath, discussing their importance in the recent experiments of Druist et al.Comment: 9 pages LaTex, 9 postscript figures included using eps
    • …
    corecore