132 research outputs found

    Toward Self-Organising Service Communities

    Get PDF
    This paper discusses a framework in which catalog service communities are built, linked for interaction, and constantly monitored and adapted over time. A catalog service community (represented as a peer node in a peer-to-peer network) in our system can be viewed as domain specific data integration mediators representing the domain knowledge and the registry information. The query routing among communities is performed to identify a set of data sources that are relevant to answering a given query. The system monitors the interactions between the communities to discover patterns that may lead to restructuring of the network (e.g., irrelevant peers removed, new relationships created, etc.)

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    The RIPE NCC internet measurement data repository

    Get PDF
    This paper describes datasets that will shortly be made available to the research community through an Internet measurement data repository operated by the RIPE NCC. The datasets include measurements collected by RIPE NCC projects, packet trace sets recovered from the defunct NLANR website and datasets collected and currently hosted by other research institutions. This work aims to raise awareness of these datasets amongst researchers and to promote discussion about possible changes to the data collection processes to ensure that the measurements are relevant and useful to the community

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    DIAGNOSING AND IMPROVING THE PERFORMANCE OF INTERNET ANYCAST

    Get PDF
    IP anycast is widely used in Internet infrastructure, including many of the root and top-level DNS servers, major open DNS resolvers, and content delivery networks (CDNs). Increasing popularity of anycast in DNS resolvers involves it in most activities of Internet users. As a result, the performance of anycast deployments is critical to all the Internet users. What makes IP anycast such an attractive option for these globally replicated services are the desired properties that anycast would appear to achieve: reduced overall access latency for clients, improved scalability by distributing traffic across servers, and enhanced resilience to DDoS attacks. These desired properties, however, are not guaranteed. In anycast, a packet is directed to certain anycast site through inter-domain routing, which can fail to pick a route with better performance in terms of latency or load balance. Prior work has studied anycast deployments and painted a mixed picture of anycast performance: many clients of anycast are not served by their nearby anycast servers and experience large latency overheads; anycast sometimes does not balance load across sites effectively; the catchment of an anycast site is mostly stable, but it is very sensitive to routing changes. Although it was observed over a decade ago that anycast deployments can be inefficient, there exist surprisingly few explanations on the causes or solutions. In addition, most prior work evaluated only one or several deployments with measurement snapshots. I extended previous studies by large-scale and longitudinal measurements towards distinct anycast deployments, which can provide more complete insights on identifying performance bottlenecks and providing potential improvements. More importantly, I develop novel measurement techniques to identify the major causes for inefficiency in anycast, and propose a fix to it. In this dissertation, I defend the following thesis: Performance-unawareness of BGP routing leads to larger path inflation in anycast than in unicast; and with current topology and protocol support, a policy that selects routes based on geographic information could significantly reduce anycast inflation. In the first part of the dissertation, I use longitudinal measurements collected from a large Internet measurement platform towards distinct anycast deployments to quantitatively demonstrate the inefficiency in performance of anycast. I measured most root DNS servers, popular open DNS resolvers, and one of the major CDNs. With the passive and active measurements across multiple years, I illustrate that anycast performs poorly for most deployments that I measured: anycast is neither effective at directing queries to nearby sites, nor does it distribute traffic in a balanced manner. Furthermore, this longitudinal study over distinct anycast deployments shows that the performance has little correlation with number of sites. In the second part of the dissertation, I focus on identifying the root causes for the performance deficits in anycast. I develop novel measurement techniques to compare AS-level routes from client to multiple anycast sites. These techniques allow me to reaffirm that the major cause of the inefficiency in anycast is the performance- unawareness of inter-domain routing. With measurements from two anycast deployments, I illustrate how much latency inflation among clients can be attributed to the policy-based performance-unaware decisions made by BGP routing. In addition, I design BGP control plane experiments to directly reveal relative preference among routes, and how much such preference affects anycast performance. The newly discovered relative preferences shed light on improving state-of-art models of inter-domain routing for researchers. In the last part of the dissertation, I describe an incrementally deployable fix to the inefficiency of IP anycast. Prior work has proposed a particular deployment scheme for anycast to improve its performance: anycast servers should be deployed such that they all share the same upstream provider. However, this solution would require re-negotiating services that are not working under such a deployment. Moreover, to put the entire anycast service behind a single upstream provider introduces a single point of failure. In the last chapter, I show that a static hint with embedded geographic information in BGP announcements fixes most of the inefficiency in anycast. I evaluate the improvements from such static hints in BGP route selection mechanisms through simulation with real network traces. The simulation results show that the fix is promising: in the anycast deployments I evaluated, the fix reduces latency inflation for almost all clients, and reduces latency by 50ms for 23% to 33% of the clients. I further conduct control plane experiments to evaluate the effectiveness of the static hints in BGP announcements with real-world anycast deployments. This dissertation provides broad and longitudinal performance evaluation of distinct anycast deployments for different services, and identifies an at-fault weakness of BGP routing which is particularly amplified in anycast, i.e., route selection is based on policies and is unaware of performance. While applying the model of BGP routing to diagnose anycast, anycast itself serves as a magnifying glass to reveal new insights on the route selection process of the BGP in general. This work can help refine the model of route selection process that can be applied to various BGP- related studies. Finally, this dissertation provides suggestions to the community on improving anycast performance, which thus improves performance and reliability for many critical Internet infrastructure and ultimately benefits global Internet users

    Review and analysis of networking challenges in cloud computing

    Get PDF
    Cloud Computing offers virtualized computing, storage, and networking resources, over the Internet, to organizations and individual users in a completely dynamic way. These cloud resources are cheaper, easier to manage, and more elastic than sets of local, physical, ones. This encourages customers to outsource their applications and services to the cloud. The migration of both data and applications outside the administrative domain of customers into a shared environment imposes transversal, functional problems across distinct platforms and technologies. This article provides a contemporary discussion of the most relevant functional problems associated with the current evolution of Cloud Computing, mainly from the network perspective. The paper also gives a concise description of Cloud Computing concepts and technologies. It starts with a brief history about cloud computing, tracing its roots. Then, architectural models of cloud services are described, and the most relevant products for Cloud Computing are briefly discussed along with a comprehensive literature review. The paper highlights and analyzes the most pertinent and practical network issues of relevance to the provision of high-assurance cloud services through the Internet, including security. Finally, trends and future research directions are also presented

    Semantic and Syntactic Matching of Heterogeneous e-Catalogues

    Get PDF
    In e-procurement, companies use e-catalogues to exchange product infor-mation with business partners. Matching e-catalogues with product requests helps the suppliers to identify the best business opportunities in B2B e-Marketplaces. But various ways to specify products and the large variety of e-catalogue formats used by different business actors makes it difficult. This Ph.D. thesis aims to discover potential syntactic and semantic rela-tionships among product data in procurement documents and exploit it to find similar e-catalogues. Using a Concept-based Vector Space Model, product data and its semantic interpretation is used to find the correlation of product data. In order to identify important terms in procurement documents, standard e-catalogues and e-tenders are used as a resource to train a Product Named Entity Recognizer to find B2B product mentions in e-catalogues. The proposed approach makes it possible to use the benefits of all availa-ble semantic resources and schemas but not to be dependent on any specific as-sumption. The solution can serve as a B2B product search system in e-Procurement platforms and e-Marketplaces

    Mirrors & Masks: Reflections and Constructions of the Self

    Get PDF
    Catalogue of an exhibition held at Bryn Mawr College March 23, 2017-June 4, 2017, curated by Steven Z. Levine and Carrie M. Robbins and students in the year-long course Mirroring the Self/Exhibiting the Self. The exhibition, organized by 11 student curators considers the role of mirrors, masks, makeup, and masquerade in explorations of the self across the centuries and cultures that are represented in Bryn Mawr College’s Art & Artifacts Collection.https://repository.brynmawr.edu/bmc_books/1031/thumbnail.jp

    Mirrors & Masks: Reflections and Constructions of the Self

    Get PDF
    Catalogue of an exhibition held at Bryn Mawr College March 23, 2017-June 4, 2017, curated by Steven Z. Levine and Carrie M. Robbins and students in the year-long course Mirroring the Self/Exhibiting the Self. The exhibition, organized by 11 student curators considers the role of mirrors, masks, makeup, and masquerade in explorations of the self across the centuries and cultures that are represented in Bryn Mawr College’s Art & Artifacts Collection.https://repository.brynmawr.edu/bmc_books/1031/thumbnail.jp
    • 

    corecore