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Abstract 

 

In e-procurement, companies use e-catalogues to exchange product infor-

mation with business partners. Matching e-catalogues with product requests 

helps the suppliers to identify the best business opportunities in B2B e-

Marketplaces. But various ways to specify products and the large variety of e-

catalogue formats used by different business actors makes it difficult.  

This Ph.D. thesis aims to discover potential syntactic and semantic rela-

tionships among product data in procurement documents and exploit it to find 

similar e-catalogues. Using a Concept-based Vector Space Model, product data 

and its semantic interpretation is used to find the correlation of product data. In 

order to identify important terms in procurement documents, standard e-

catalogues and e-tenders are used as a resource to train a Product Named Entity 

Recognizer to find B2B product mentions in e-catalogues.  

The proposed approach makes it possible to use the benefits of all availa-

ble semantic resources and schemas but not to be dependent on any specific as-

sumption. The solution can serve as a B2B product search system in e-

Procurement platforms and e-Marketplaces. 

Keywords: Information Retrieval, e-Procurement, e-Catalogue, e-Tender, 

Semantic Search, Ontology, Vector Space Model, Product Classification System. 
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Resumo 

Em contratação eletrónica, as empresas utilizam catálogos eletrónicos para 

a troca de informações sobre o produto com os parceiros de negócio. 

Correspondência de catálogos electrónicos com os produtos procurados ajuda 

os fornecedores a identificar as melhores oportunidades de negócio em 

mercados electrónicos B2B. Mas as várias formas de especificar os produtos e a 

grande variedade de formatos de catálogos eletrónicos utilizados por diferentes 

atores de negócios faz com que a correspondência seja difícil.   

Esta tese de doutoramento tem como objetivo explorar potenciais relações 

sintáticas e semânticas entre os dados do produto em documentos de 

contratação e utililá-las para descobrir catálogos semelhantes. De forma a 

identificar termos importantes em documentos de contratação, catálogos 

standardizados e licitações eletrónicas são utilizados como um recurso para 

treinar um “Product Named Entity Recognizer” de forma a descobrir produtos 

referenciados em catálogos eletrónicos.  

A abordagem proposta torna possível usar os benefícios de todos os 

esquemas e recursos semânticos disponíveis mas não deve ser dependente de 

nenhum pressuposto específico. A solução pode servir como um sistema de 

procura de produtos B2B em plataformas de contratação eletrónica e mercados 

eletrónicos.     

Palavras-chave: Recuperação de informação, Contratação eletrónica, 

Catálogos eletrónicos, Licitações eletrónicas, Procura semântica, Ontologia, 

Vector Space Model, Sistema de classificação de produtos. 
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1 Introduction 

1.1 Matching Heterogeneous e-Catalogues 

With increasing competitive pressures, manufacturers must continually 

find ways to reduce costs, increase efficiency, and reduce lead time while at the 

same time seek greater access to markets in cost effective ways. E-procurement 

platforms help manufacturers reduce costs by having greater access to raw ma-

terial suppliers while at the same time help them to sell across greater geogra-

phies and increase their market competitiveness (Ramkumar & Jenamani, 2012). 

This comes as no surprise, given one of the key competitive priorities for the 

21st century is the maximization of Internet-based technologies such as e-

procurement (Pearcy, Parker, & Giunipero, 2008). 

E-catalogues play a critical role in e-procurement marketplaces. E-

catalogues are procurement documents that explain the products subject of the 

procurement process. They can be used in both the tendering (pre-award) and 

the purchasing (post-award) processes. Companies use e-catalogues to ex-

change product information with business partners. Suppliers use e-catalogues 

to describe goods or services that they offer for sale. Meanwhile, buyers may 

use e-catalogues to specify the items that they want to buy (Ghimire, Jardim-

Goncalves, & Grilo, 2013)(Ghimire et al., 2013).  

Matching a product request from a buyer with products e-catalogues that 

have been provided by the suppliers, helps companies to reduce the efforts 

1 
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needed to find partners in e-marketplaces (Kim, Kim, & Lee, 2002)(Lee et al., 

2007). 

The large variety of e-catalogue formats (Schmitz, Leukel, & Dorloff, 2005) 

which are used by various companies is one of the major challenges in the 

matching process. Since each business actor may use a different structure, clas-

sification and identification code for describing e-catalogues, it is not easy to 

match a product with the e-catalogue requested by another partner (Lee et al., 

2007). This heterogeneity makes it difficult and time-consuming to integrate 

and query e-catalogues (Chen et al., 2010a). 

While there are too many different standards for e-catalogues and product 

classifications in use, often companies do not follow standard formats and pre-

fer to have their individual structures (Chen, Li, & Zhang, 2010). Hence, we of-

ten encounter a plethora of catalogue formats ranging from unstructured text to 

well-structured XML documents. This diversity results in the syntactic hetero-

geneity of e-catalogues.   

While syntactic diversity comes from various schemas and formats in use, 

often the heterogeneity problem has a semantic dimension as well. Semantic 

heterogeneity of e-catalogues is due to various approaches to express and mod-

el the product concepts by different actors. Business partners may express the 

same concept using different keywords, classifications or taxonomies that cause 

to get diverse results in searching for the same product (Chen, Li, & Zhang, 

2010). 

The traditional approach to integrate e-catalogues is to transform different 

formats, schemas and taxonomies into a uniform catalogue model (Ghimire, 

Jardim-Goncalves, & Grilo, 2013)(Kim, Kim, & Lee, 2002)(Chen et al., 2010a). 

Usually, ontologies are used to define such uniform models and hand-coded 

rules are used to transform the catalogues to relative knowledge bases. In the 

homogeneous space that will be provided by the uniform model, the products 

can be defined or converted to well-structured objects that can be matched effi-

ciently.  

But because of variety of known or even unknown structures that are used 

by various companies in an e-marketplace, achieving a uniform model for e-
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catalogues is usually not practical. Development of a uniform e-catalogue mod-

el requires a precise and detailed understanding of each of the various formats 

of catalogues (Benatallah et al., 2006). However, there is always a chance to en-

counter a new concept or schema which may cause difficulties in its interpreta-

tion. Furthermore, the transformation of the existing data to a uniform model 

can be costly, unscalable and tedious. 

Since in the area of e-catalogues we often face up to plenty of models and 

developing a universal model is crucial, in this research work a practical, ex-

pandable and realistic mechanism to solve the problem is proposed. To reach 

this goal, this research work uses Vector Space Model that is common in the 

world of web search engines and customizes it to solve the matching problem 

of the e-catalogues.  

Vector Space Model is an algebraic model for presenting text documents 

as vectors which is the base of many search techniques and document similarity 

methods. Using this presentation, the document can be compared and the 

search queries can be answered using simple mathematics. Vector Space Model 

(VSM) has several attractive properties and can be applied to both semantic 

(Mukerjee, Porter, & Gherman, 2011)(Widdows, 2008) and syntactic (Manning 

et al., 2008)(Carmel et al., 2002) aspects of the search problem. Although the 

basic functionality of Vector Space Model refers to keyword search in textual 

data, several efforts have been done to eliminate many of the problems associ-

ated with exact term matching and expand it to semantic matching in a wide 

range of search applications as well. Semantic search is a data searching tech-

nique in which a search query aims to not only find keywords, but to determine 

the intent and contextual meaning of the words used for search in order to im-

prove search accuracy. 

In semantic matching, traditional keyword-based VSM is adapted with 

vectors that are comprised of semantically defined entities, instead of keywords 

(Mehrbod, Zutshi, & Grilo, 2014b). Domain-specific semantic search typically 

involves recognizing entities in the query and search data and matching them 

up to entities that make sense in the particular domain. In order to reach this 

goal, the existing entities in the search domain should be extracted using 

Named Entity Recognition techniques. The product information usually is em-
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bedded in text which imposes a barrier on collecting, comparing and analysing 

the product information. Here the problem is to match free-text, semi-

structured or even structured product descriptions to their related entities in a 

semantic resource. In simple words, the problem is to detect a known product 

in a piece of data. 

Named Entity Recognition (NER) extracts information automatically from 

a given set of documents, thus requiring lower human effort than other ap-

proaches to semantics, such as hand-coded knowledge bases and ontologies 

(Turney & Pantel, 2010).  

The proposed method uses Vector Space Model and Named Entity Recog-

nition to measure the syntactic and semantic similarity ratio of providers’ e-

catalogues with a buyer’s e-catalogue or call for tender. Instead of developing 

semantic or syntactic models and combining them to universal models that try 

to cover all possible cases, the idea here is to use any available syntax and se-

mantic information of e-catalogues to interpret product data without any model 

assumption. The matching process uses the syntactic and semantic metadata for 

interpreting each e-catalogue as much as the information is available for the 

system. But is not dependent on this information and uses the basic mechanism 

of VSM for tolerating unknown formats. 

1.2 Research Questions 

Matching products queries on buyer’s side to the product data on suppli-

er’s side can help both parties to achieve business goals in digital marketplaces. 

Companies use e-procurement tools, processes and techniques to purchase their 

required goods and services. The companies usually share their product data in 

the form of e-catalogues in B2B e-marketplaces. While suppliers publish their 

offered products and services in the form of e-catalogues, buying organizations 

can also benefit from the usage of the buyer e-catalogues to announce their 

needs.  

The shared data can be a valuable resource for search engines to find the 

best suitable results for the business actors in the marketplaces. The product da-
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ta can lead the matching mechanism in finding and recommending the right 

suppliers to a buyer. In this sense, the search engine uses the product data from 

an e-catalogue in order to find similar and related e-catalogues that is referred 

as e-catalogue matching. 

The main barrier on matching product data with the same or similar 

products mentioned in different e-catalogues is the heterogeneity of e-

catalogues. Since various companies utilize different structures, schemas and 

standards to create the catalogues, it is not straightforward to identify similar 

products especially in multi-resource marketplaces. 

 Some procurement marketplaces especially in public sector try to force 

beneficiary companies to follow a specific standard. Though the standards do 

not cover all aspects of the problem and sometimes are difficult to integrate 

with in-house procurement systems, companies barely follow e-catalogue 

standards.  

In order not to impose fixed structures to the companies, the e-catalogue 

heterogeneity problem is treated using data integration models. The idea be-

hind it is to uniform all e-catalogues which come from different resources into a 

covering data model that makes the matching process easy. But achieving such 

model and transforming the catalogues to the model is a critical issue of this 

method.  This leads to the first research question of this Thesis: 

 

 Research Question 1 

How can buyers and suppliers match their e-catalogues in an efficient 

way, with no restrictions regarding data integration models? 

Since the integration process can be difficult, costly and not extendable, the 

question here is how to exploit the product data without restricting the e-

catalogues in an integrated model. Hence, the problem is to develop a flexi-

ble method which is able to find out various e-catalogues regardless of the 

structure and the content model. How can this method figure out the con-

tent of the e-catalogues without transforming them into a reference model? 

How will it exploit the possible available structures, models and standards? 

And how will it tolerate missing such knowledge? 



6 

 

Moreover, several documents have been used during the procurement pro-

cess. Among these documents, public tender notices and contract awards 

are published publicly in order to increase transparency in public procure-

ment. These documents are not only valuable for transparency goals, but al-

so contain worthwhile information for business actors about products and 

services that are being purchased. Similarly, in the private procurement sec-

tor also B2B e-marketplaces announce the tender calls and make them avail-

able to the suppliers who are looking for business opportunities.   

In the other side, suppliers publish their product e-catalogues to make them 

available for buyers in B2B e-marketplaces. Regardless of public or private 

sector of the procurement process, the main search scenario in a procure-

ment marketplace is to search in tender notices for finding business oppor-

tunities. This sets the ground for the second research question: 

 

 Research Question 2 

How can suppliers improve their efficiency in finding business opportu-

nities in e-procurement platforms using the content of their e-catalogues? 

Current opportunity search and tender notification systems in procurement 

platforms use only simple keyword-based and column-oriented search 

mechanisms. The question here is how to find the suitable business oppor-

tunities for a supplier based on his product and services. How can a suppli-

er receive the tender calls that are similar to the supplier’s products instead 

of having to check all tenders published in the business sector? How can a 

supplier have a list of all available opportunities form various procurement 

platforms and marketplaces ranked based on their similarity to the suppli-

er’s products and services?   

1.3 Propositions 

The basis of this research work is to develop a flexible and extendable 

method to search and match similar products in procurement documents that 
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have been published using various syntaxes and semantic in B2B marketplaces. 

This research work has been developed based on the following propositions: 

 

 Proposition 1 

Information retrieval techniques can be used to make a flexible model of 

the existing concepts and data in e-catalogues to search similar products 

in B2B e-marketplaces. 

This thesis aims to exploit an information retrieval solution based on Vector 

Space Model to develop an e-catalogue matching mechanism. The flexibility 

of this method makes it possible to apply it to heterogeneous and diverse 

data environments. This helps us to use all available product information 

and structures in defining the searchable elements and indexing the product 

data without requiring mandatory schemas.   

Modelling the product data in a vector-based space makes it possible to cal-

culate the similarity of e-catalogues and search queries. The definition of the 

searchable elements in the model is the key factor that specifies the similari-

ty measure and the matching mechanism.  

A multi-layer matching mechanism will be used to exploit available infor-

mation and tolerate missing information. The multilayer mechanism starts 

with measuring the similarity based on the syntactic and structural features 

of the e-catalogues. In the next layer, this will be extended to discover poten-

tial semantic relationships among product data to find semantically similar 

e-catalogues. If suitable input data for a layer cannot be found, the matching 

mechanism still can use the other layers or basic functionalities of VSM to 

make a matching. Therefore, any missing structure or data definition 

doesn’t affect the whole matching process. 

Every semantic search mechanism needs to identify the mentions of the de-

sired items from the search context. The searchable elements that will be in-

dexed by a search engine determine the search functionality. Therefore, ex-

tracting the elements from search corpus is a critical task in developing a 

search mechanism. Consequently, search mechanisms usually exploit 
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Named Entity Recognisers to extract the mentioned items and the determine 

the definition of the items from a knowledgebase or an ontology. The se-

mantic extension of the matching mechanism measures the similarity ratio 

of e-catalogues using semantic relationships of data attributes defined in 

domain ontologies. The ontologies that are built based on procurement 

product classification systems are used in an iterative process to extract the 

semantic relationships among product data and enrich the search indexes 

with synonyms, similar and semantically related elements.   

Therefore, the semantic extension of the e-catalogue matching engine will be 

supported by a Named Entity Recogniser which identifies the meaningful 

searchable elements from the procurement documents. The Entity Recognis-

er has to be trained with several known samples in order to be able to figure 

out similar occurrences in procurement documents. In order to make re-

quired training set, an extensive resource of publicly published tender no-

tices will be used in a stepwise method to make training samples. 

Although Product NER is becoming more and more attractive in e-

commerce information systems, there is no work in the area of B2B e-

commerce. The develop B2B PNER process that can serve as the basis for 

other B2B information retrieval systems, e-Procurement platforms and e-

Marketplaces. This will support the search mechanism to match various ex-

pressions of the same products.  

 

 Proposition 2 

The existing product data in procurement documents can be exploited to 

support in a much more efficient way suppliers and buyers to find busi-

ness partners and opportunities in B2B e-marketplaces. 

The information retrieval techniques are the basis of the search engines and 

full-text search methods in heterogeneous contexts. The main characteristic 

of such techniques that makes them successful is their capability to be rede-

fined and customized for various kinds of search problems. By defining the 

underlying elements, this research work will customize information retriev-
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al techniques in order to develop an e-catalogue matching engine to cope 

with syntactic and semantic heterogeneity in e-catalogues. The goal is to 

find and match similar products in different procurement documents. 

Tenders and e-catalogues that are being published in various resources have 

different semantics, taxonomies and schemas. This heterogeneity can be 

managed using information retrieval techniques. The customization of in-

formation retrieval techniques makes it possible to take intended factors into 

account for calculating the similarity ratio between tenders and e-catalogues 

in the search domain. The similarity of the products will be calculated based 

on all available information including syntactic and structural features of 

the e-catalogues and at the same time, potential semantic relationships 

among product data to find semantically similar e-catalogues. 

Using the matching mechanism, suppliers can search for similar tenders to 

their e-catalogues. The flexibility of the matching mechanism provides the 

opportunity to search tenders gathered from various procurement notifica-

tion systems. The matching results will be a ranked list of the tenders based 

on the calculated similarity ratio to the supplier’s e-catalogue. This will help 

the suppliers to find suitable business opportunities with less effort.         

1.4 Research Methodology 

The development of this thesis has followed methodologies for the various 

phases of the thesis. 

1.4.1 Collection of Literature Review 

The theoretical basis for this research work is based on three complemen-

tary Research Areas including State of the art on E-catalogue Matching, Con-

cept-based Information Retrieval techniques, and Information Extraction as 

shown in Figure 1.1. Thus a literature review of all these three areas was per-

formed to identify the characteristics of the proposed matching mechanism. 
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After a review on the benefits of matching e-catalogues, possible matching 

e-catalogue scenarios and the barriers on the matching process in procurement 

marketplaces, the State of Art in E-catalogue Matching discusses the previous 

solutions provided on the academic literature for solving the problem. Existing 

solutions are reviewed and categorized in five different groups. This helps us to 

be familiar with the available solutions, their pros and cons and available re-

sources that can be reused in solution development. 

 

 

Figure 1.1 Research Areas that lead to the development of the matching mechanism 

 

Information Retrieval and Information Extraction Researches explore the 

theoretical background needed to develop a flexible and extendable search en-

gine for matching e-catalogues. This provides us with the base to build the 

matching mechanism. Not all the elements of a search engine are explored 

within this process, but only those that deal with extracting, modelling and 

matching the products mentioned in procurement documents.  

The study of Information Retrieval and Information Extraction concepts 

provides us the attributes of the search mechanism that should be defined and 

the elements that should be extended in order to customize the search mecha-

nism for e-catalogue matching in a procurement marketplace. It also helps us to 

find a way to reuse the existing resources and knowledgebase in developing the 

matching mechanism. When the Information Retrieval and Information Extrac-

tion techniques are merged with e-catalogue matching concepts, a more fo-
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cussed approach to developing a matching mechanism for exploiting procure-

ment documents in product search is explored. 

1.4.2 Development of the matching engine 

A layer-based approach was used to develop a search engine that is appli-

cable to match a large variety of e-catalogues coming from different procure-

ment platforms. The matching process aimed to make a simplified representa-

tion of underlying product data in order to use all available information from 

documents but at the same time not to be dependent on availability of any spe-

cific information.  

The implementation of this framework has been based on an information 

retrieval technique known as Vector Space Model. Information retrieval is to 

fetch data form a resource in reply to a search query. VSM is an algebraic 

presentation model for documents which is used by many search methods for 

indexing the search data. The core of the e-catalogue matching engine is made 

based on VSM that is extended in different layers for exploiting available prod-

uct information available in procurement documents. The syntactic extension 

layer helps the matching mechanism to model the value of the data in various 

levels of a procurement document. The value of each level is adjusted using 

suitable coefficients based on the syntactic similarity of the documents. The co-

efficients are customized using boosting masks for standard e-catalogues. The 

semantic extension layer provides the ability to detect same, similar and related 

products expressed using synonym words in different procurement documents.  

The semantic layer uses Information Extraction techniques in order to de-

tect the product mentions form the documents. These extracted product ele-

ments form the searchable units of the concept-based information retrieval used 

in the semantic layer of the matching engine. The combination of Information 

Retrieval and Information Extraction techniques enable the matching mecha-

nism to use existing product information to match similar procurement docu-

ments originating from various resources.     
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1.4.3 Validation of the matching mechanism 

The e-catalogue matching engine provides us with a flexible search mech-

anism that can be used in by business actors in various search scenarios in a 

procurement e-marketplace. Three test cases have been chosen to test the range 

of applicability of the Matching Engine in retrieving procurement documents. 

Furthermore, an extra test case is used to demonstrate the accuracy of the In-

formation Extraction block of the matching mechanism. The selection of the test 

cases has been done to ensure that we have a variety of matchings based on dif-

ferent search scenarios and various features of the matching layers. Supplier 

Finder simulates the search for finding a suitable provider for a product by a 

buying organization. Opportunity finder simulates the search by a supplier in a 

procurement portal for finding business opportunities. Multi-Resource Match-

ing tests the ability of the e-catalogue matching mechanism in using available 

semantic resources for matching procurement documents coming from differ-

ent resources. B2BProduct NER Accuracy analyses the efficiency of the Infor-

mation Extraction method which is used as a complimentary block of the 

matching engine. The four selected test cases have the following main 

objectives. A comparison is also given in Table 1.1. 

 

Table 1.1 Test objectives for different test cases 

Test Objectives 
Supplier 

Finder 

Oportunity 

Finder 

Multi-Resource 

Matching 

B2BProductNER 

Accuracy 

Semantic Matching     

Extracting the concepts     

Matching Different Structures   
 

Matching Related Products    

Boosting Masks    

Multi-Resource     

 

I. Supplier Finder 

 To demonstrate the e-catalogue matching capabilities for finding a sup-

plier by using a product e-catalogue. 
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 Using syntactic and semantic term extension to match different e-

catalogues coming from various resources. 

 Adjusting the effects of the data on the matching mechanism using se-

mantic and syntactic features of the procurement data. 

 Optimizing the effects adjustment for standard e-catalogues using boost-

ing masks. 

II. Opportunity Finder 

 To demonstrate the e-catalogue matching capabilities for finding a busi-

ness opportunity by using a product e-catalogue. 

 Using semantic term and query extensions to match e-catalogues with 

potential procurement opportunities in various business sectors. 

 Exploiting semantic data resources to interpret the data and find seman-

tically related products and requests. 

 Combination of the Information Extraction method in order to increase 

the performance of the matching mechanism. 

III. Multi-Resource Matching 

 To demonstrate the e-catalogue matching capabilities for finding busi-

ness opportunities coming from deferent procurement portals by using a 

product e-catalogue. 

 Using semantic term and query extensions to match e-catalogues with 

potential procurement opportunities with different classifications. 

 Exploiting different syntactic and semantic data resources to interpret 

the procurement documents coming from various resources. 

 Tolerating the lack of semantic resources for interpreting the product da-

ta using Information Retrieval methods. 

IV. B2Bprodcut NER Accuracy 

 To demonstrate the accuracy of the Information Extraction method used 

as a complimentary block of the semantic interpretation. 
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 Exploiting known data to learn to extract similar data from unknown da-

ta. 

 Extracting product mentions from procurement documents that can be 

used as the searchable elements of the matching mechanism. 

1.4.4 Data Collection 

Data for all the test cases were collected from online procurement portals. 

The portals include online procurement resources that publish the business 

oportunities in public procurement publicly. For each test a set of randomly 

selected data has been downloaded and stored in local test repositories. In the 

case of supplier finder the test data has been stored in the development 

platform of Vortal company. 

1.5 Structure of the Thesis 

The rest of this research work has been structured as follow: 

Chapter 2 starts with an introduction about e-procurement process and 

the position of e-catalogues in this process. It continues with a discussion about 

the importance of product search in procurement documents and discusses the 

problems ahead this goal. Finally, possible e-catalogue search and matching 

scenarios in procurement marketplaces will be discussed.    

Chapter 3 describes the state of the art on e-catalogue matching. Through 

a literature review on various proposed solutions for e-catalogue matching, this 

chapter summarized previous works on matching e-catalogues and their pros 

and cons. The solutions are categorized in five different classes by a critical dis-

cussion.   

Chapter 4 provides a background on two related domains (information re-

trieval and information extraction) that are used as the basic knowledge in de-

veloping the proposed e-catalogue matching mechanism. The chapter starts 

with the aspects of the information retrieval techniques and the reasons for se-

lecting similarity-based approach for matching e-catalogues. Vector Space 
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Model as the basis of search mechanism is explained and its extension to con-

cept-based VSM for semantic matching is described. The chapter ends with the 

explanation of information extraction and its application in finding product 

mentions form text documents.   

Chapter 5 discusses the proposed e-catalogue matching mechanism based 

on VSM. In the first section of the chapter, the VSM is extended in order to de-

velop a mechanism for matching e-catalogues coming from different resources. 

The method for exploiting the structure of a document in data modelling is ex-

plained. The second section describes the semantic layer of the matching mech-

anism. The section demonstrates the method of enriching the vector model to 

use available semantic resources in matching e-catalogues. Finally, the third 

section of the chapter, discuses an information extraction method which is pro-

posed to extract the product mentions from procurement documents as the se-

mantic search elements for the e-catalogue matching mechanism.     

In Chapter 6, the evaluation results have been presented. Four test cases 

have been developed in order to validate the matching mechanism and infor-

mation extraction methods. Each test started with an introduction on the test 

scenario that continues with the definition of the test. Then the data resource 

which is used in the test is demonstrated. Finally, the test results are reported 

and discussed.  

Finally, Chapter 7 discusses the conclusions of the thesis. It briefly 

describes the motivation behind this thesis explaining the context of this 

research. It then discusses the contribution of this thesis and the considerations 

behind the proposed solution. Finally it highlights a roadmap for future 

research work based on this thesis. 
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2 E-catalogue matching 

2.1 E-procurement Catalogues 

Like any other kind of business, the relationship between suppliers and 

buyers in the procurement process is affected by information technology. The 

traditional ways that customers use to buy and suppliers use to interact with 

buyers is transformed to electronic procurement.  

E-procurement (electronic procurement) is the purchase and sale of sup-

plies, work, and services through the Internet or other electronic networks. It is 

considered to be a strategic tool for improving the competitiveness of organiza-

tions. E-Procurement helps to improve and simplify the way procurement op-

erates allowing enterprises to identify opportunities and supply goods and ser-

vices across markets (Ghimire et al., 2013).  

An e-marketplace is a virtual space in an electronic network, an inter-

organizational information system that allows buyers and sellers to participate 

trustworthy in the e-procurement process. These open electronic platforms fa-

cilitate activities related to transactions and interactions between multiple com-

panies. An Internet-based electronic commerce platform matches multiple buy-

ers and suppliers and enables transactions along with traditional project-based 

collaborative functions (Wang & Archer, 2007).  

E-Procurement (Ramkumar & Jenamani, 2012) is considered to be a strate-

gic tool for improving the competitiveness of organizations. B2B e-procurement 

chain, which is shown in Figure 2.1, consists of several necessary steps includ-

2 
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ing e-Sourcing, e-Noticing and e-Tendering, e-Awarding and e-Contract (also 

called e-Reverse Auctioning), e-Ordering, e-Invoicing and e-payment that can 

be summarized into two main phases: pre-award phase (tendering) and post-

award phase (purchasing) (Kajan, Dorloff, & Bedini, 2012). Internet-based in-

formation systems and platforms are used in e-procurement to replace one, 

some or all stages of the traditional procurement process. In other words, e-

procurement systems may provide an end-to-end solution that covers all pro-

curement phases or dedicated solutions for some important aspects of the 

procurement process, such as search and selection (Roman, 2013).  

 

 

Figure 2.1 e-procurement phases 

 

E-sourcing contains all preparatory activities conducted by the contracting 

authority (buying organization) to collect and reuse information for the prepa-

ration of a call. This process usually contains identifying the suitable suppliers 

that can be used in the awarding phase. E-sourcing gives the opportunity of 

marketing to the suppliers and its benefits for the contracting authority include 

facilitating the sourcing process, reducing prices by maximizing supplier com-

petition and creating a repository for sourcing information (Interagency 

Procurement & Working Group (IAPWG), 2006) (Pedersen et al., 2012). 

E-noticing is the advertisement of calls for tenders through the publication 

of appropriate contract notices in electronic format in a relevant official journal. 

An example of such journals is TED (Tenders Electronic Daily) which is the 

online version of the “Supplement to the Official Journal” of the EU, dedicated 

to European public procurement. E-noticing includes electronic access to tender 



19 

 

documents and specifications as well as additional related documents that are 

provided in a non-discriminatory way (Kajan, Dorloff, & Bedini, 2012) 

(Ordóñez de Pablos, 2012).  

E-tendering supports the selection stage and acts as a communication plat-

form between the buying organization and suppliers. This communication pro-

vides electronic access to tender documents and specifications for economic op-

erators (suppliers) as well as support for preparation of an offer. Furthermore, it 

provides the possibility of submission of offers in electronic format to the con-

tracting authority, which is able to receive, accept and process it in compliance 

with the legal requirements. Therefore, e-tendering covers the complete tender-

ing process, usually including support for the analysis and assessment activi-

ties. It does not include closing the deal with a supplier but facilitates a large 

part of the tactical procurement process. It results in equal treatment of suppli-

ers, transparent selection process, reduction in legal errors, clear audit trail, 

more efficiency in the tactical procurement process and improved time man-

agement of tendering procedures (Interagency Procurement & Working Group 

(IAPWG), 2006) ( Kajan, Dorloff, & Bedini, 2012).  

E-awarding is opening and evaluation of the electronic tenders received, 

and award of the contract to the best offer in terms of the lowest prices or eco-

nomically most advantageous bid. E-contracting is the conclusion, enactment 

and monitoring of a contract or agreement through electronic means between 

the buying organization and the winning tenderer. It enables the closing of a 

deal with a supplier if parties agree on a price. They operate with an upward or 

downward price mechanism e.g. e-auctioning with upward price mechanism 

for the selling organization and e-reverse auctioning with a downward price 

mechanism for the buying organization (Ordóñez de Pablos, 2012) (Interagency 

Procurement & Working Group (IAPWG), 2006). In a reverse auction that is 

used in B2B procurement, the role of the buyer and seller is reversed, with the 

primary objective to compete for purchase prices downwards. In an ordinary 

auction, buyers compete to obtain a product or service by bidding a higher 

price while in a reverse auction, sellers compete to win the business by bidding 

a lower price. 
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E-ordering phase contains presentation and issuing of an electronic order 

by the contracting authority and its acceptance by the contractor. This process 

consists of creating and approving procurement requisitions, placing purchase 

orders, as well as receiving goods and services ordered, by using software sys-

tems based on the Internet. E-invoicing is the preparation and delivery of an 

invoice in electronic format and e-payment means electronic payment of the or-

dered goods, services or works. (Management Association, 2013) (Interagency 

Procurement & Working Group (IAPWG), 2006). 

E-catalogues are electronic representations of information about the prod-

ucts and services of an enterprise (J. Z. Huang et al., 2005), considered as a key 

enabler in both phases of e-procurement process (Pedersen et al., 2012). In the 

pre-award process, e-catalogues are used by suppliers to submit offers about 

goods and services and in the post-award, they are used to exchange infor-

mation about goods and services offered under the contract. 

Companies use e-catalogues to exchange product information with busi-

ness partners. While suppliers create catalogues to make their product and ser-

vice content available to their customers, buying organizations create cata-

logues to specify the items that they want to buy and consolidate product con-

tent from diverse suppliers and make it available to their users. 

A particular application of e-catalogues in e-procurement that is not stud-

ied enough in literature is to use them as input to provide a suitable call for 

tenders. In this sense, e-catalogues are not only usable in ordering and invoic-

ing process, but also their contents can be reused by contracting authorities to 

describe goods or services in a call for tender (Icf - Ghk, 2014). 

The use of e-catalogues in B2B procurement can significantly benefit both 

buyers and suppliers due to the automated processing that e-catalogue 

management tools can offer. E-catalogues can form tenders or parts of them. 

The use of these tools can simplify the processes followed by suppliers to create 

offers, while buyers can automate processes for reception, evaluation, 

purchasing and invoicing (Pedersen et al., 2012).  
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2.2 Matching Problem 

An e-Marketplace is an inter-organizational information system that al-

lows a trustworthy e-Procurement process (Zhang & Bhattacharyya, 2008) 

(Grilo & Jardim-Goncalves, 2013a). One of the main critical success factors in e-

Marketplaces is to address technical issues in order to afford the proper coordi-

nation in a heterogeneous environment (Alvarez-Rodríguez, Labra-Gayo, & De 

Pablos, 2014). One of these technical issues is to provide more intelligent search 

engines that assist in making decisions in more time efficient and accurate way 

(Kaptein & Parvinen, 2015). 

An e-catalogue matching service in an e-marketplace which matches a 

buyer e-catalogue with product e-catalogues that have been provided by the 

suppliers, helps suppliers to reduce the efforts needed to find customers in e-

marketplaces (Lee et al., 2007). Buyer e-catalogues are catalogues created by the 

buying organisations. Normally, such catalogues are limited to the goods cov-

ered by pre-negotiated prices, specifications and terms (Lysons & Farrington, 

2006). 

But most of the available B2B e-Marketplaces only provide simple key-

word-based and category-based search services to their users for finding con-

tract and tender notices. For suppliers that want to find business opportunities 

especially in public procurements, keeping track of all potential procurement 

opportunities from various procurement portals is time consuming and expen-

sive, and typically not a part of their core business. To find suitable opportuni-

ties, they have to monitor all of the hundreds of procurement data sources. 

(Graux, Kronenburg, & August, 2012). 

Helping the suppliers to identify the best suitable opportunities with au-

tomated processes will not only decrease the time required for locating and re-

sponding to opportunities but will also benefit the buying entities in making a 

decision over the proposals, because matching between opportunities and sup-

plier catalogues will indirectly help in the submission of more closely related 

proposals.  

E-procurement documents such as Contract Notices, e-Tenders and e-

Catalogues can play a key role in the search process and be utilized in finding 
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business opportunities in e-Marketplaces. These documents contain infor-

mation about products and services. The information about the products in var-

ious procurement documents along with another information like the categori-

zation or classification code is of great importance for the suppliers to identify 

the most relevant opportunities (Ghimire, Jardim-Goncalves, & Grilo, 2013). 

This product information can be used by a product search mechanism in order 

to find and recommend similar products and services. 

The large variety of e-catalogue formats which are used by various com-

panies is a major challenge in the matching process. Since each business actor 

may use a different structure, classification and identification code for describ-

ing e-catalogues, it is not easy to match a product with the e-catalogue request-

ed by another partner (Lee et al., 2007). This heterogeneity makes it difficult and 

time-consuming to integrate and query e-catalogues (Chen et al., 2010a) (Grilo 

& Jardim-Goncalves, 2013a). The matching problem is shown in a schematic 

view in Figure 2.2. 

The problem of e-catalogue integration is more visible in B2B e-

marketplaces than the B2C e-commerce websites, since the data of the cata-

logue-creating enterprise has to be imported into an information system (target 

system) of the catalogue-receiving enterprise (Leukel, Schmitz, & Dorloff, 2002). 

However, other e-marketplaces can also be suffered from this problem.  

While, there are too many different standards for e-catalogues and prod-

uct classifications in use, often companies do not follow standard formats and 

prefer to have their individual structures (Chen, Li, & Zhang, 2010). Hence of-

ten a plenty of catalogue formats (Ghimire, Jardim-Goncalves, & Grilo, 2013) 

ranging from unstructured text to well-structured XML documents exist in e-

marketplaces. This diversity results in the syntactic heterogeneity of e-

catalogues.   

Syntactic diversity is only one side of the heterogeneity problem of match-

ing e-catalogues. The other and yet more complicated side of this problem is the 

semantic diversity of e-catalogues. There are many ways for a user to express a 

given concept using different words. The same product concept can be ex-

pressed in different keywords, taxonomies or expressions. Figure 2.3 shows 
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syntactic and semantic heterogeneity problem of e-catalogues (used in Figure 

2.2) for presenting the same product.  

Hence, different users may use different terms to express the same prod-

uct, which makes the matching process get different results when facing a syn-

onym query (Lee et al., 2007). For example, two different buyers may use “road 

maintenance work” and “road-repair works” terms for expressing similar concepts 

in call for tenders. Therefore, suppliers usually prefer to use category-based 

search or subscribe to category-based alert services in B2B e-Marketplaces and 

receive all the tenders that are being published in their desired product catego-

ries. Consequently, suppliers will receive long and unsorted lists of tenders that 

need to be checked manually in order to find proper opportunities. This process 

can be very time-consuming especially in large e-Marketplaces. 

 

Figure 2.2 Matching Problem 
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Figure 2.3 Heterogeneity of e-catalogues. 
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Furthermore, the classification categories can be too general and do not 

cover the details. The details are usually expressed in the description part of the 

tenders that can be used to improve the search precision. But as mentioned this 

valuable data is usually unstructured and heterogeneous.   

These heterogeneities make it difficult and time-consuming to integrate 

and query e-catalogues. As a result, companies cannot use e-catalogues from 

their own e-procurement systems or other organisational information systems 

directly in an e-Marketplace or a tendering portal. They have to follow e-

catalogue creation rules of each e-marketplace to provide acceptable document 

format for the e-marketplace.  

2.3 Private and public procurement 

One of the main factors that makes the procurement process and conse-

quently the procurement marketplaces different from wholesale process and 

marketplaces such as Alibaba is the direction of the purchasing process. In 

wholesale websites the producers, suppliers and distributers start the process 

by offering the goods on the website; and the buyers search to find their needed 

goods, inquiry the price and features, negotiate the purchasing, payment and 

delivery process and then order (Guo & An, 2014). But in a procurement mar-

ketplace the purchasing process starts by the buying organization. This process 

is called Reverse Auction (in comparison with forward auction) and is used in 

B2B procurement  in order to obtain the best price by encouraging competition 

between the suppliers (Jap, 2007). In pre-award phase, the buying organization 

makes a call for tender based on its requirements, publishes it publically or 

sends it to a prequalified list of suppliers based on the directives, regulations 

and its policies, and waits until a deadline for the suppliers to send their pro-

posals. After evaluating the proposals and selecting the winner, the purchasing 

process will continue by making the contract, payments and delivery in post-

award phase.  
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The procurement process can be categorized into public and private based 

on the sector of the buying organization. The private sector comprises private 

buying organizations, and the public sector comprises organizations owned by 

the national, state or local governments. While the process of acquiring goods 

and services in private procurement is customized to satisfy the needs of a par-

ticular private entity, public procurement is carried out within a specific legal 

framework to prevent corruption and provide equal opportunity. 

In public procurement usually three types of procedures have been used 

by the contracting authority to procure goods, works and services. These meth-

ods are Request for Quotations (RFQ), Invitation to Tender (ITT) and Request 

for Tender (RFT - sometimes called Request for Proposal (RFP) especially in 

private procurement). The most common method especially for high-value pur-

chases is RFT which suppliers are requested to deliver their proposed solutions, 

specifications and prices for solving a problem by a deadline. RFQ is commonly 

used for lower value purchases and when the product is well defined and the 

contracting authority wants to know about the prices. While the policy can vary 

between different public organizations, normally the project is awarded to the 

lowest price (Interagency Procurement & Working Group (IAPWG), 2006). 

RFQ may be sent to only a few suppliers and their price confirmed by the 

procurement officer against past purchases. Finding suitable suppliers and 

providing a shortlist of potential suitable suppliers for the next steps of the pro-

curement procedures is generally done by publishing an Expression of Interest 

(EOI). EOI is to inform tenderers of the context of the project, nature of pro-

posed appointment and submission requirements (Urizar, 2013).  

But for higher values a fair competition among the suppliers should be 

held using formal structured methods such as RFT and ITT. ITT that is also 

called Invitation to Bid (ITB) is used when the project is defined typically in ma-

jor construction projects and similar to RFQ the competition is based on provid-

ing the lowest price. Request for Tender (RFT) procedure is used when the re-

quirements are not fully definable at the time of solicitation. RFTs are the main 

sources for finding new business opportunities and provide new and innova-

tive products and services for the suppliers. 
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Public and private sector institutions engage in procurement for similar 

goods and services. While there might be some differences in purchasing pro-

cess of customized goods and services such as a new building or a customized 

software, the procurement process in the same in both sectors for standard  

products (Tadelis, 2012). But from the e-catalogue matching point of view in 

this research work, their potential differences in product search process are In-

tended.  

Private buying organizations operate under institutional policies that are 

often customized for their business goals. They can source suppliers at will and 

even award direct contracts without a bidding process. For example, if a private 

company wants to purchase a good, it can contact various producers to inquire 

about product quality and pricing and negotiate a potential supply deal. If pri-

vate organizations choose to invite vendors to submit bid proposals, they natu-

rally focus on awarding contracts to suppliers with favourable terms and condi-

tions. Therefore, even though all the suppliers don’t have access to the call for 

tender and the search for finding opportunities might be disannulled, still the 

buying organization can benefit from supplier search scenario. The buying or-

ganization can use the product specification or a byer e-catalogue to search for 

similar supplier e-catalogues. The suggested suppliers can be invited to the 

tender or be inquired directly by the private sector buyer. Furthermore, the 

buying organization can exploit the similar supplier e-catalogues as the base for 

making the tender for sending to the selected suppliers. 

But public buying organizations have to meet procedures and regulations 

and procure effectively by a fair bidding process. This provides the access to the 

open call for tenders for the suppliers and signify the opportunity search sce-

nario as the most common search scenario in a public procurement market-

place. As discussed in the next section, in such search scenario suppliers search 

in published call for tenders in a marketplace or procurement journal in order 

to find suitable business opportunities.   

Although private and public procurement may have some differences in 

product matching scenarios, they usually don’t have significant technical dif-

ferences in e-catalogue matching. The e-catalogue matching mechanism can be 
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applied to all search scenarios that an organization want to match similar prod-

ucts from procurement documents. 

2.4 Matching Scenarios  

In an e-procurement e-marketplace (Grilo, Jardim-Goncalves, & Ghimire, 

2013) at least two main scenarios for finding similar e-catalogues are possible. 

First, a buyer who makes a call for tender needs to select some suppliers based 

on their product catalogues in order to invite them to bid for a tender. This pro-

cess is the ITT procedure which is used in B2B procurement  to obtain the best 

price in defined projects and standard goods (Jap, 2007). In this scenario, suita-

ble suppliers can be selected based on the similarity of their offered products 

that published in e-catalogues to the products in the call for tender which is be-

ing made by the buyer.     

The second scenario occurs when a supplier searches to find opportunities 

in an e-marketplace. In this process, the suppliers search in the tenders that are 

published publically using the RFP or RFT procedures. Since RFT is the formal 

method of invitation of suppliers for bidding for high-value projects, especially 

in the public sector, the published calls provide an important resource for 

searching business opportunities for companies. As mentioned this is the most 

common search scenario in a B2B procurement marketplace and a product 

matching mechanism can help the suppliers to find best suitable opportunities 

among several tender calls. A supplier may upload a product e-catalogue to the 

search interface as the search query in order to find the similar call for tenders 

as potential markets for his products or services. In other words, in the search 

scenario, a user has an e-catalogue and seeks similar e-catalogues or tender calls 

in the platform. 

In order to prevent corruption and give equal opportunities to all competi-

tors, public tenders have to be published openly in many countries. The tender 

notices that are published every day in procurement journals and e-

marketplaces not only provide better value for money for governments, but al-

so act as a valuable resource for several suppliers for finding business opportu-

nities (Graux, Kronenburg, & August, 2012). Searching and selecting best suita-
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ble opportunities among several tender calls especially from various tendering 

portals is a crucial yet time-consuming task for several business actors in e-

procurement marketplaces. The product information provided by a supplier 

can be used by a product search mechanism in order to find and recommend 

similar product requests (Julashokri et al., 2011) and tender calls. 

Even though these two scenarios are the most common applications of e-

catalogues for searching by companies, e-catalogues recommended to be used 

in making call for tenders or purchase orders. Providing a tender based on e-

catalogues not only eases the preparation process for the buyers by providing 

initial data, but also helps the suppliers to receive correct data. 

In this matching scenario, an e-catalogue may be used for finding previous 

tenders and contract awards in order to reuse them in creating a similar call for 

tender. The content of an e-catalogue can be employed by the buyers as the in-

put to submit a new call for tender. Therefore, e-catalogues are not only usable 

in ordering and invoicing process, but also can be reused by contracting author-

ities to describe goods or services in a call for tender (Icf - Ghk, 2014). This ap-

plication of e-catalogues is considered by European commission that shows 

there is a need to extend the use of e-catalogues in pre-awarding phase.  

In most European countries (European Dynamics SA, 2007)1, suppliers use 

e-catalogues after they have been awarded, mainly for ordering activities and 

develop them according to buyer requirements (post awarding phase). Howev-

er, the use of e-catalogues in e-procurement cycle is applicable and suggested in 

both pre-awarding and post-awarding phases. In post-awarding phase, an e-

catalogue is usually considered as a management system for e-ordering and e-

invoicing activities while the current focus is on the future and proper use of e-

catalogues in pre-awarding phase as well (Icf - Ghk, 2014). In pre-awarding 

phase, e-catalogues can be exploited in forming a tender or a part of it. In this 

                                                 

 

1 Report on Electronic Catalogues in Electronic Public Procurement (2007) available at 

http://ec.europa.eu/internal_market/publicprocurement/docs/eprocurement/feasibility/ecat-vol-2_en.pdf 
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case, the e-catalogue has the meaning of an electronic prospectus covering effec-

tively and efficiently e-tendering purposes.  

The EU legislative framework of public procurement Directives 

2004/17/EC and 2004/18/EC, adopted in 2004, introduces for the first time a 

coherent and comprehensive framework for the use of electronic public pro-

curement in the EU. Amongst its most innovative provisions, it authorises the 

use of e-catalogues as a tool for the electronic submission of tenders. In line 

with its Action Plan for e-procurement, adopted in 2004, the European Com-

mission commissioned a study (European Dynamics SA, 2007) to analyse rules 

and current practices for the use of e-catalogues in both the public and the pri-

vate sectors, with a view to formulating requirements and recommendations for 

their further development. 

2.5 Summary 

A product search service in an e-marketplace can help the suppliers to 

identify the best suitable opportunities and respond them in a shorter time 

(Guo & An, 2014). But most of the available B2B e-marketplaces only provide 

simple keyword-based and category-based search services to their users for 

finding contract and tender notices. 

In e-procurement, companies use e-catalogues to exchange product infor-

mation with business partners. Hence, an e-catalogue matching mechanism can 

be a solution to improve search capability of e-marketplaces and help the com-

panies to find more opportunities. E-catalogue matching helps suppliers and 

buyers to find the suitable business partner in procurement marketplaces. Sup-

pliers can use such services to find similar tenders and sell opportunities 

according to their products and the buyers can gain lower prices in a shorter 

time by finding appropriate suppliers.  

The large variety of e-catalogue structures, expressions, and vocabularies 

which are used by various companies make it difficult to match a product re-

quest from a buyer (buyer e-catalogue) with products e-catalogues. While there 

are too many different standards for e-catalogues in use, often companies do 
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not follow standard formats. Hence, we often encounter a plethora of catalogue 

formats ranging from unstructured text to well-structured XML documents. 

This diversity makes it very expensive to solve the problem by achieving a gen-

eral common structure.  
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3 Integration Models 

Regarding the usage of e-catalogues in e-commerce, interoperability of e-

catalogues (Catalogue integration) and personalization of e-catalogues are two 

main challenges which have been studied in the literature. Although these chal-

lenges are related and many researchers studied both together, the former is to 

match a search query with product e-catalogues and the latter is more focused 

on customizing e-catalogue selection based on user profile.  

The heterogeneity of e-catalogues which come from various sources 

(Grilo, Ghimire, & Jardim-Goncalves, 2013) causes difficulty in finding same 

products from different e-catalogues. As mentioned, generally we encounter 

with two aspects of heterogeneity in e-catalogues which are semantic and syn-

tactic diversity. Syntactic heterogeneity is the result of different document 

structures and catalogue formats while semantic heterogeneity is the issue of 

existing different words for expressing the same concept and different mean-

ings of the words in various contents (Lee et al., 2007) (Leukel et al., 2002). 

In order to deal with the integration problem of e-catalogues, several ap-

proaches and methods have been proposed. These previous works on matching 

e-catalogues can be classified into five categories as follow: 

I. Standardization 

II. Uniform Schema 

III. Ontological Model 

3 
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IV. Ontology Merging 

V. Ontology Alignment 

 

3.1 Standardization 

Despite the widespread use of e-marketplaces with transactional and col-

laborative functions, there is today a plethora of electronic formats, product de-

scriptions, and classification schemes, seeking to provide guidelines for the ex-

change of data between companies, and regarding e-procurement especially, 

the challenge of having common e-catalogues structures among buyers and 

suppliers (Grilo & Jardim-Goncalves, 2013a). 

In order to avoid the product taxonomy diversity, classification systems 

such as CPV2, UNSPSC3 and eCl@ss4 try to standardize the references that are 

used for describing goods and services which are the subject of e-procurement. 

Using a common classification system for products and services enables reliable 

and efficient exchanges of product data across organizations (Hepp, Leukel, & 

Schmitz, 2005).  

CPV (The Common Procurement Vocabulary) (European Commission, 

2007)(Council, 2002) has been developed by the European Union in order to 

facilitate the processing of call for tenders published in the Official Journal of 

the European Union. The aim is to use a single classification system to describe 

the subject matter of the public contracts.  

UNSPSC (The United Nations Standard Products and Services Code) is a 

classification of products and services developed by the United Nations for use 

in e-procurement. UNSPSC is a horizontal branch spanning classification which 

                                                 

 

2 ec.europa.eu/internal_market/publicprocurement/rules/cpv/index_en.htm 

3 www.unspsc.org 

4 www.eclass.de 

http://ec.europa.eu/internal_market/publicprocurement/rules/cpv/index_en.htm
http://www.unspsc.org/
http://www.eclass.de/
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is used in the US, the UK and Scandinavian countries. But it is also in use in 

many other countries and probably is the most used classification standard 

worldwide (Kajan, 2012). 

eCl@ss (the cross-industry product data standard) is an ISO/IEC 

compliant industry standard for classification and clear description of products 

and services used in procurement, controlling and distribution.  

Besides the classification standards, e-catalogue standards such as UBL5, 

BMEcat6 and cXML7 allow the standardized exchange of product data as well as 

product classification system. In the other words, they recommend using the 

classification systems and furthermore propose common document schemas for 

unifying e-catalogue document structures usually for exchanging purposes.  

BMEcat8 is a standardized exchange format for e-catalogue data in 

the catalogue management. The BMEcat format allows the standardized ex-

change of catalogue data as well as product classification systems based on the 

XML technology. The BMEcat format is in widespread use in German speaking 

countries. The BMEcat format was initiated by the Federal Association of Mate-

rials Management, Purchasing and Logistics (BME), the leading German com-

panies (including Bayer, BMW, German Telekom, SAP, and Siemens) jointly 

developed by the Fraunhofer Institute and the Duisburg-Essen University. 

xCBL9 (XML Common Business Library) is a XML component library for 

B2B e-commerce. This standard is created, maintained, and supported for use 

free of charge by anyone needing document definitions for e-commerce applica-

tions. xCBL is a set of XML business documents and their components. The last 

version of xCBL is xCBL 4.0 which is available as XML Schema and will be the 

                                                 

 

5 www.oasis-open.org 

6 www.bmecat.org 

7 www.cxml.org 

8 www.bmecat.org 

9 xcbl.org 

http://de.wikipedia.org/wiki/Katalogmanagement
http://de.wikipedia.org/wiki/Universit%C3%A4t_Duisburg-Essen
http://www.bmecat.org/
http://www.epractice.eu/cases/ePRIOR
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standard for future releases of it. xCBL 4.0 contains 44 documents in various 

namespaces. Each namespace represents a functional area such as order man-

agement, pre-order management, financial management, catalogue and etc. The 

catalogue namespace contains the xCBL documents that are associated with e-

catalogue content creation, processing, and inquiries. The only document which 

has been published in this functional area is “ProductCatalog”. This document 

covers the pricing and product descriptions for e-catalogue content and has a 

self-describing set of extensions for further characterizing products and services 

offered.  

cXML10 (commerce eXtensible Markup Language) is a protocol, created by 

Ariba, intended for communication of business documents be-

tween procurement applications, e-commerce hubs and suppliers. cXML is 

based on XML and provides formal XML schemas for standard business trans-

actions, allowing programs to modify and validate documents without prior 

knowledge of their form. The current protocol includes documents for setup 

(company details and transaction profiles), catalogue content, application inte-

gration, original, change and delete purchase orders and responses to all of 

these requests, order confirmation and ship notice documents and new invoice 

documents. 

UBL11 (Universal Business Language) was developed by OASIS12 (Organi-

zation for the Advancement of Structured Information Standards). Like xCBL, it 

is a library of standard electronic XML business documents. UBL 2.0 was re-

leased in 2006 and is endorsed at international level. In Denmark, UBL is man-

dated by law for all the invoices of the public sector. PEPPOL that is aiming at 

expanding market connectivity and interoperability between e-procurement 

communities uses UBL formats for content of electronic documents.  

                                                 

 

10 cxml.org 

11 docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html 

12 www.oasis-open.org 

http://en.wikipedia.org/wiki/Protocol_(computing)
http://en.wikipedia.org/wiki/Procurement
http://en.wikipedia.org/wiki/E-commerce
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_schema
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PEPPOL13 (Pan-European Public Procurement Online) project initiated by 

the European Commission is an electronic transport infrastructure allowing 

governments and companies to connect their IT systems and reliably exchange 

data and business documents. It aims to develop tools and components that can 

be re-used by existing or new procurement systems at the national, regional or 

local level, in order to facilitate cross border participation in public procure-

ments and to facilitate the cross border exchange of procurement data, e.g. 

through common implementations of standards and interfaces (Graux, 

Kronenburg, & August, 2012). 

The e-PRIOR (open source e-procurement services) platform14 is being de-

veloped in parallel with the PEPPOL e-procurement project to enable public 

administrations to connect to the PEPPOL network. The goal of PEPPOL is to 

enable public procurement across borders within the EU. This project used UBL 

2.0 documents standards as a basis for developing e-catalogue and other 

procurement documents’ schemas.  

Although, the word ‘e-catalogue’ is often used interchangeably for prod-

uct categorization systems, in the context of B2B procurement an e-catalogue is 

a document scheme for electronic exchange and transfer of product data be-

tween enterprises while classification standards are categorization dictionaries 

for these products. Therefore, in contrast to the classification systems such as 

eCl@ss and CPV, which describe how things can be characterized at an abstract 

level, e-catalogue standards such as BMEcat and UBL are about actual instances 

of classes which are described by distinct values in accordance to the dictionary. 

Some researchers such as (Yen & Kong, 2002) use the term catalogue, not only 

for standard classification systems but also for referring to categorizations dic-

tionaries of e-commerce websites such as Amazon and Yahoo shopping. 

The mandatory use of standards could reduce the effort of integrating het-

erogeneous e-catalogues, but it also increases difficulties of handling changes 

                                                 

 

13 www.peppol.eu 

14 ec.europa.eu/dgs/informatics/supplier_portal/index_en.htm 
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and contexts in various e-catalogues (Guo, 2009). However, catalogue standards 

and classification systems are not sufficient to meet all the requirements of data 

exchange (Leukel et al., 2002). Many standards address vertical or even coun-

try-specific needs, thus, their relevance to global e-commerce is limited. Stand-

ardization processes are seldom transparent and open to new members. In ad-

dition, the participation of small and medium-sized companies in these pro-

cesses is rather small (Schmitz, Leukel, & Dorloff, 2005). In (Lampathaki et al., 

2009), authors analysed international standards that try to address data integra-

tion issues. They analysed a set of facts such as scope, completeness, openness, 

modularity, compatibility with other standards, ability to modify the schemas 

and maturity for some popular schema standards such as UBL, OAGIS, cXML 

and xCBL. 

Consequently, often enterprises do not follow standard formats and prefer 

to have their individual structures (Chen, Li, & Zhang, 2010). Also, the variety 

of standards makes it impractical to reach the classification and schema unifica-

tion goal. These standards differ in addressed markets, capabilities to represent 

product information, market acceptance, and standardization processes 

(Schmitz, Leukel, & Dorloff, 2005). This problem is more visible in multi-source 

e-marketplaces (Ghimire, Jardim-Goncalves, & Grilo, 2013) (Grilo & Jardim-

Goncalves, 2013b). There are at least 25 standards relating to e-catalogue and 

product classification systems, and thousands of enterprise products databases 

and e-commerce sites(Kim, Choi, & Park, 2007)(Chen, Li, & Zhang, 

2010)(Schmitz, Leukel, & Dorloff, 2005). Each standard tries to provide interop-

erability among various e-procurement systems. However, the large number of 

existing standards and their lack of effective integration (Chen et al., 2010b) is 

an obstacle to achieve this goal.  

3.2  Uniform schema 

One traditional approach to solve the integration problem is to transform 

different formats into a uniform catalogue model (Ghimire et al., 2013)(Ghimire, 

Jardim-Goncalves, & Grilo, 2013)(Chen et al., 2010a)(Liu et al., 2001) that serves 

as reference format. In order to achieve this general model, these approaches 
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formulate a formal model to represent various catalogues or extend an existing 

standard as the general model. Then mapping functions have been designed 

that can handle the transformation of different formats into the uniform model. 

For example, (Leukel et al., 2002) proposed a model to improve exchanging 

processes by extending XML e-catalogue standards. The authors argue existing 

industrial XML catalogue standards are not sufficient to meet all requirements 

of data exchange. Therefore, they extended the e-catalogue standards to sup-

port the coordination and the exchange more widely by proposing a process 

model and additional business messages. 

(Liu et al., 2001) proposed a model as the definition of diverse product at-

tributes collected from heterogeneous data resources and format translator to 

convert the product data to the proposed model. (Kim, Kim, & Lee, 2002) pre-

sented an e-catalogue model whose purpose is to provide a universal product 

catalogue repository in order to facilitate catalogue sharing and interoperabil-

ity. In addition, proposed a model for product classification that allows flexible 

representation of product hierarchies. The model merges different category hi-

erarchies in order to create one big category hierarchy that contains all the in-

formation from each of the category hierarchies while still maintaining the hier-

archical information of the original hierarchies. 

This approach, which is summarised in Figure 3.1, usually provides a 

service that acts as a central interoperable hub for collecting e-catalogues from 

various resources (Ghimire et al., 2013)(Grilo & Jardim-goncalves, 2013a)(Kim, 

Kim, & Lee, 2002). 

The catalogues can be of different formats and can come from any mar-

ketplaces of platforms independent of each other. The e-catalogue service is re-

sponsible for receiving the catalogues and usually exposes a web service which 

is responsible for receiving catalogues, map to a default catalogue format, 

acknowledge the successful reception of catalogues and store them. Figure 3.1 

shows the sequence of activities that place upon the reception of catalogues in 

this approach. 
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Figure 3.1 e-catalogues transformation to a uniform schema 

 

But within this heterogeneous set of known or even unknown structures 

achieving a uniform structure for e-catalogues is usually not practical. Devel-

opment of a uniform e-catalogue model requires a precise and detailed under-

standing of each of the various formats of catalogues (Benatallah et al., 2006). 

However, there is always a chance to encounter a new format which may cause 

difficulties in its interpretation. This problem is more crucial with enterprise 

specific formats that are used by companies. Furthermore, for transformation to 

a uniform model, e-catalogues must be completely validated and in conform-

ance to the expected format with no tolerance to format deviations. Since usual-

ly each structure is transformed to the general model, it has to be completely 

compatible with the structure which the converter expects. Implementation of 
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such converters also can be a crucial and time-consuming task. After conversion 

of the e-catalogues, there is still a general need for a service to validate cata-

logue for syntax, completeness, values inserted, etc. 

3.3 Ontological Model 

Syntactic interoperability alone does not handle all the problems of inte-

gration. Even if the structured product information is available, it does not 

guarantee that the content can be precisely interpreted when e-catalogues use 

different taxonomies. So, ensuring semantic interoperability is inevitable in the 

interpretation of product information (Kim, Choi, & Park, 2007). Therefore, sev-

eral efforts such as (J. Z. Huang et al., 2005), (Chen et al., 2010a) and (T. Lee et 

al., 2006) have encountered the integration problem by using ontologies to pro-

vide a universal semantic model for product data.  

The purpose is to introduce generic attributes to design a universal ontol-

ogy repository in order to facilitate e-catalogue sharing and interoperability 

(Chen, Li, & Zhang, 2010). The model is then used as a standard reference for e-

catalogue transformation or development. 

An ontology defines the terms used to describe and represent an area of 

knowledge. Ontologies are used by people, databases, and applications that 

need to share domain information. Ontologies include computer-usable defini-

tions of basic concepts in the domain and the relationships among them. They 

encode knowledge in a domain and also the knowledge that spans domains. In 

this way, they make that knowledge reusable (Obrst, 2003). In the case of e-

catalogue integration, these ontologies are a representation of products and 

services which include the definitions, properties, and relationships of the con-

cepts that are fundamental to products and services (T. Lee et al., 2006).  

Usually, these ontologies are constructed based on semantic concepts of 

either a product classification system or a product database. Many companies 

classify products according to generic or industry specific product classification 

standards, or by using proprietary category systems. Such classification systems 

often contain thousands of product classes that are updated over time. This im-
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plies a large quantity of useful product category information for e-commerce 

applications. Thus, instead of building up product ontologies from scratch, 

which is costly, tedious, error-prone, and high-maintenance, it is generally easi-

er to derive them from existing product classifications (Stolz et al., 2014) (T. Lee 

et al., 2006). 

In order to encounter interoperability between catalogue systems of two e-

commerce networks, (J. Z. Huang et al., 2005) proposed an ontological model 

for e-catalogues and converted the e-catalogues to the proposed integrated 

model. This model is composed of two parts including the structure of product 

classes and structure of product attributes. 

Some projects (Alvarez et al., 2011a) have focused specifically on enriching 

the publically published tenders and contract awards’ data with semantic tags 

or links to semantic definition references. One of the key issues for using this 

valuable procurement data sources in semantic matching is the lack of semantic 

definitions and heterogeneity of the data sources. While public procurement 

portals such as UNGM15 (United Nations Global Marketplace) and TED16 (Ten-

ders Electronic Daily) publish call for tenders as a resource for finding pro-

curement opportunities, they do not provide complimentary information that 

can be useful in semantic search of tenders. 

The general approach of such projects is to integrate the data resources in 

a semantic schema such as RDF and to link the data to a semantic reference 

such as an ontology. Nečaský (Nečaský et al., 2014) developed a specialized vo-

cabulary, called Public Contracts Ontology, for semantic definition of public 

procurement data especially contract awards and tender calls. Necessary extrac-

tors and transformers had been implemented for extracting public contract da-

tasets from various formats (HTML, CSV and XML) and convert into RDF for-

mat corresponding to the developed vocabulary. 

                                                 

 

15 ungm.org 

16 ted.europa.eu 
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The main target of developing the ontology and the semantic interlinking 

process was to implement an application for filing public contracts. The appli-

cation helps contracting authorities to make contracts based on data about 

themselves and their contracts, suppliers to the contracts, products and services 

in the contract, and tenders proposed by the bidders. Furthermore, it provides a 

matchmaking service to help contracting authorities first, in finding similar con-

tract awards to a call for tender that can help them in making contracts and sec-

ond, in finding suitable suppliers to invite for bidding. 

 The goal of LOTED project (Valle et al., 2010) (Distinto, D’Aquin, & 

Motta, 2016) is to improve access to public tenders published on TED portal by 

republishing it according to a semantic model and providing links to data re-

sources in order to allowing new applications to be built on top of the data. 

LOTED extracts structured information by checking RSS feeds provided by 

TED in a daily schedule and reformat it to RDF triples according to an ontology 

that has been explicitly designed to match TED tender structure. The outcome is 

an RDF triple dataset which is being updated daily with information extracted 

as linked data from the RSS feeds of the TED system, and exposed through a 

SPARQL endpoint. A custom made RDF extractor has been developed which 

parses the data of the tenders and transforms it into a structured RDF represen-

tation. 

MOLDEAS (Alvarez et al., 2012) used semantic-web technologies and 

LOD (linked open data) to provide an integrated e-procurement platform to 

aggregate, publish and search tender notices. For this purpose, an ontological 

model has developed and unstructured information from the online version of 

European public procurement journal (TED) and some other national and re-

gional public tender resources are extracted and transformed into this model. 

This data later was enriched with linking to product classification system and 

published via SPARQL endpoints. SPARQL queries can be used for search and 

retrieve the tenders. Since writing SPARQL queries can be difficult for a busi-

ness user, a query expander was developed to convert the user query to an 

SPARQL query and enrich it with the semantic data links. 

Product classification systems such as CPV and CPC had been trans-

formed to RDF format that eases their application in semantic search and 
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matchmaking services. Then the data have been linked to these vocabularies 

and an RDF view for data has been made that is stored in a triple store and 

published using SPARQL endpoints (Alvarez et al., 2011b).  

(Mynarz, Svátek, & Di Noia, 2015) developed a supplier finder service 

based on similarity of a call for tender to the history of successful previous con-

tracts. The matchmaking is based on SPARQL queries on linked data of pro-

curement data from TED and Czech public procurement journal. This project, 

reused the PC ontology to represent the contract’s data and CPV vocabularies 

in RDF and then implemented a reasoning-based matchmaking service using 

SPARQL to find similar contracts’ awards to a call for tender. The reasoning 

system uses the awarded public contracts as the learning cases or solved prob-

lems. The matching results is a ranked list of top-k matched suppliers for a call 

for tender as a query. 

PPROC ontology (Muñoz-soro et al., 2016) is designed in order to contrib-

ute to the development of standards that may be used by administrators in pub-

lishing call for tenders and contract award notices. The purpose of ontology de-

sign is to facilitate access to publically published procurement data not only for 

contracting powers and tenderer companies, but also for general public. The 

goal is to give the citizen more information that will increase the transparency 

of public contracts. 

These models have all the benefits of standard schemas and product clas-

sification systems and additionally improve the accuracy of the integration pro-

cess using semantic relationships. But they also have the drawbacks of the 

standardization approach. It seems impossible to have a globally accepted ref-

erence model to create e-catalogues. Even though some publishers started to 

use ontological models to publish tenders, still we are far from convincing all 

organizations to follow one data model. For example, two local Spanish gov-

ernments have started to publish procurement data as instances of PPROC on-

tology (Muñoz-soro et al., 2016), but it seems impossible to have a globally ac-

cepted reference model to create e-catalogues (Mehrbod et al., 2015). 

Furthermore, ontology-based search requires the search corpora to be well 

annotated according to the ontology. A huge amount of information currently 

available worldwide in the form of unstructured text and transformation cost of 
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various structured documents into formal ontological knowledge is another is-

sue for practical application of pure ontology-based search approaches. Trans-

forming product specifications to such models is crucial and often relies on 

manual efforts by domain experts, usually leading to inadequate results. 

3.4  Ontology Merging 

Ontology merging approaches try to semantically unify e-catalogues by 

integrating related ontologies. Generally, this approach is similar to uniform 

model approach but targets the semantic integration instead of syntactic inte-

gration. In this approach instead of developing a universal ontological model to 

create e-catalogues or transform them to a common format, each e-catalogue is 

interpreted in its own ontological model. Developing various models for each 

type of e-catalogues is easier and more practical than creating a universal model 

for covering all kinds of e-catalogues. 

Many companies classify products according to generic or industry specif-

ic product classification standards, or by using proprietary category systems. 

Such classification systems often contain thousands of product classes that are 

updated over time. This implies a large quantity of useful product category in-

formation for e-commerce applications. Thus, instead of building up product 

ontologies from scratch, which is costly, tedious, error-prone, and high-

maintenance, it is generally easier to derive them from existing product classifi-

cations (Stolz et al., 2014) (T. Lee et al., 2006). Recently, (Stolz et al., 2014) devel-

oped a generic, semi-automated method and tool called PCS2OWL for deriving 

OWL17 ontologies from product classification standards and proprietary cate-

gory systems. The resulting product ontologies are compatible with the Good-

Relations vocabulary for e-commerce (Hepp, 2008) that is used for annotating 

offerings and other aspects of e-commerce on the Web. GoodRelations is the on-

                                                 

 

17 www.w3.org/OWL 
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ly OWL ontology for e-commerce that is officially supported by both Google 

and Yahoo. 

Since different e-catalogue ontologies being generated from different data 

sources are heterogeneous, the key to semantic integration of e-catalogues in 

this way is the mapping and integration of catalogue ontologies (Chen et al., 

2010a)(Chen, Li, & Zhang, 2010). Ontology mapping is one of the techniques for 

semantic interoperability that combines two different ontologies into a new on-

tology that includes and reconciles all the information from the source ontolo-

gies according to semantic relations (Kim, Choi, & Park, 2007). 

Therefore, different ontologies are combined into a new ontology that in-

cludes and reconciles all the information from the source ontologies according 

to semantic relations. For example (Kim, Choi, & Park, 2007) designed a prod-

uct information mediation architecture by proposing an ontology mapping al-

gorithm using both taxonomy and the attributes of underlying ontologies. The 

authors used ontology mapping to integrate different product category names, 

attribute names, data types and units of attributes into a single unified scheme 

from the customer’s viewpoint. (Chen et al., 2010b) proposed a meta-model and 

a learning process to acquire the concepts, properties, relations and individuals 

of underlying ontologies in order to integrate some e-catalogue ontologies into 

an e-catalogue ontology. 

The ontology merging approach can automate the process of solving se-

mantic diversity between heterogeneous e-catalogue, but it could not correctly 

infer the meaningful information exchanges if there are no semantic mapping 

rules available (Guo, 2009). Furthermore, all the various matching cases in 

graphs or models must be predefined using such matching algorithms, which 

makes them difficult to define. (Kwon et al., 2008) tried to cover all the possible 

conditions in matching two structures. But within a heterogeneous set of 

structures, there is always a chance of encountering a new scenario that was not 

previously considered leading to a failure of the system.  
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3.5 Ontology alignment 

Another approach to cope with the semantic heterogeneity problem of the 

reference ontologies is Ontology alignment. In this approach instead of map-

ping and integrating different ontologies into one ontology, correspondences 

between concepts of different ontologies are determined. Assuming that Ontol-

ogy A and Ontology B are reference ontologies which have been used to anno-

tate the content of Catalogue 1 and Catalogue 2 respectively, correspondence 

between concepts and relations in the two ontologies simplifies the semantic 

matching between two catalogues (Beneventano & Montanari, 2008).  

In (Benatallah et al., 2006) the authors proposed an alignment method that 

doesn’t require an understanding of each of the underlying e-catalogues. They 

used the concept of e-catalogue communities to facilitate the querying of a po-

tentially large number of dynamic e-catalogues. A catalogue community is a 

group of e-catalogues from a domain i.e. catalogues offering products of a 

common domain such as the community of Laptops providers. It provides an 

ontological description of desired products (e.g., product categories, product 

attributes) without referring to any actual provider (e.g., Dell Computers). The 

ontology that is made from an e-catalogue community is used to interpret relat-

ed user queries. 

In order to achieve interoperability across similar or overlapping domains, 

instead of merging all ontologies to a global ontology, they used peer relation-

ships among e-catalogue communities to allow sharing of e-catalogues infor-

mation. A peer relationship is a link between a community and other communi-

ties. Once a link is formed, communities can forward queries to each other. The 

search algorithm first tries to answer each query in its own community. But if 

the query didn’t have any answer, forwards it to the linked communities. 

The terms used in community ontology can be different from one com-

munity to another. To help solve query mismatch problems, they used syno-

nym-based matching approach. As part of the community ontology, each cate-

gory (respectively, each attribute) is annotated with a list of synonyms in 

WordNet. WordNet also is used to assist community providers in defining the 

mapping between ontologies of two communities. 



48 

 

Making local ontologies for each community using its e-catalogues and 

proposed alignment process are more applicable and practical than making a 

global ontology by integrating all e-catalogues. But this approach depends on 

the efforts of community providers to define peer relationship links that are 

used in ontology mappings. 

In order to solve this problem, (Mehrbod, Zutshi, & Grilo, 2014b) pro-

posed to use a simple, automatic and applicable ontology alignment process 

based on modelling ontologies in a vector space. The e-catalogue matching pro-

cess aims to find similar concepts in different e-catalogues by expanding se-

mantic matching process using ontology alignment approach. Adding ontology 

alignment enabled the matching process to find semantically similar e-

catalogues. 

3.6 Summary  

Based on two aspects of heterogeneity, syntactic integration and semantic 

integration of multi-source electronic catalogues have been approached to make 

e-catalogues interoperable. Though there is no one-to-one correspondence be-

tween type of heterogeneity and type of integration, some previous research, 

such as from (Ghimire, Jardim-Goncalves, & Grilo, 2013) and (Ghimire et al., 

2013) considered more syntactic integration, others such as (Kim, Choi, & Park, 

2007) were more focused on semantic integration and some such as (J. Z. Huang 

et al., 2005) studied both at the same time. 

But regardless of the semantic or syntactic dimension of the problem, both 

solutions require integration of international product classification standards, 

enterprise product databases and product e-catalogue standards(Kim, Choi, & 

Park, 2007)(Chen, Li, & Zhang, 2010). The general solution in e-catalogue inte-

gration is to define a global model and transform e-catalogues to this uniform 

model. Though simple in theory, it is never used widely in industry. Therefore, 

these traditional solutions either for semantic integration or syntactic integra-

tion are dependent on universal formal models. But the variety of structures 

that are used by different companies makes it almost unachievable to have a 

uniform structure. Creating such general models has the following problems: 
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 Requires proper knowledge of the underlying catalogues’ structures. But the 

structure of individual formats which are used by some companies are un-

known for the platform and always there is a chance to encounter new for-

mats. 

 E-catalogues must be completely validated for conformance to their formats 

with no tolerance for format deviations. Since usually each structure is 

transformed to the general model, it has to be completely compatible with 

the structure which the convertor expects. Furthermore, development of 

such convertors is a crucial and time-consuming task. 

 All the various matching cases in graphs or models must be predefined in 

matching algorithms. For example (Kim, Choi, & Park, 2007) tried to cover 

all the possible conditions in matching two structures. But within a hetero-

geneous set of structures always there is a chance to encounter a new un-

considered condition. 

 Transforming product specifications to such models not only is crucial and 

relies on manual efforts of domain experts, usually led to inadequate results. 

 The need to transformers or convertors reduces the scalability of the 

solution. The huge amount of historical data that has been published in 

procurement systems needs to be remodelled in each case.  

Considering the above mentioned problems that makes it very difficult to de-

fine a reference model and   keep it up-to-date and expenses of developing cus-

tomized converters, the integration solutions are not used by e-procurement 

marketplace   providers. For example, Vortal marketplace has 120000 suppliers 

that makes it impossible to study all e-catalogues to define the reference model 

and developing this huge number of converters.
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4 Information Retrieval and Extraction 

Interlinked open procurement data and ontological model solutions 

reformat data extracted from procurement resources and link it with data from 

other resources in order to make data suitable for using in new applications 

such as semantic matchmaking. For example, LOTED project republishes pro-

curement data extracted from TED portal into a harmonized format which is 

suitable for linking with other datasets such as geographical data of the con-

tracting authority (Graux, Kronenburg, & August, 2012). 

As discussed in the previous chapter, the major barrier to integration ap-

proaches is to integrate and restructure the data based on the defined data 

models. The procurement documents coming from various and usually hetero-

geneous resources have to be transferred to the assumed data model by the so-

lution in order to be accessible for the provided services. Whereas, many of 

open procurement datasets, as well as e-catalogues, have different formats and 

semantics that makes it difficult to explore, analyse and use them in an inte-

grated manner (Nečaský et al., 2014) (Valle et al., 2010). 

Although such projects are successful in enriching procurement resources 

with semantic references to the data which is very helpful in reusing procure-

ment data and search purposes, but they are hardly extendable to other pro-

curement data resources. Integrating the data and reformatting it according to 

the relevant data models requires cleansing and transforming steps. These steps 

usually contain manual efforts or need resource specific transformers and con-

4 



52 

 

verters that affect the extensibility of the solution. According to the wide num-

ber of procurement data resources, such solutions can be expensive for compa-

nies that want to keep track of all potential procurement opportunities. 

Furthermore, in such approaches, the information retrieval (IR) problem is 

reduced to a data retrieval task usually using SPARQL queries. However, the 

Semantic search should be combined with conventional keyword-based re-

trieval to achieve tolerance to knowledge base incompleteness (Castells, 

Fernandez, & Vallet, 2007). 

Since developing a universal model to unify various e-catalogues is not 

practical, this research work uses a flexible model to solve e-catalogue matching 

problem. Similarity-based matching mostly using Vector Space Model which is 

the base of many search techniques and document similarity methods can be 

applied to both semantic (Mukerjee, Porter, & Gherman, 2011) and syntactic 

(Manning et al., 2008) aspects of e-catalogue matching problem.  

The similarity-based matching that is common in web search engines, over 

few last years has become very popular in B2C and C2C e-Commerce product 

search as well (Vandic & Milea, 2014). In this sense, the search algorithms are 

customized for finding products from various data resources.  

Several semantic search approaches combined Vector Space Model as the 

traditional keyword-based search with semantic search methods to provide 

concept-based search (Wei, Barnaghi, & Bargiela, 2008). In such approaches, 

usually SPARQL queries are used as a part of the search process, but not an al-

ternative to all the process. Although ontology-based search approaches show 

better performance than semantic VSM in a well-defined and structured envi-

ronment that all the search corpora is well annotated, but in average the seman-

tic VSM shows better performance (Castells, Fernandez, & Vallet, 2007). 

Although the base concept of VSM has been published in 1975, because of 

its highly domain-dependent features, it is still being applied to many new do-

mains of search problems. In the context of current research work, Vector Space 

Model will be used to measure the syntactic and semantic similarity ratio of 

providers’ e-catalogues with a buyer’s e-catalogue.  
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Instead of developing universal models that try to cover all underlying e-

catalogues, the idea is to define rich searchable elements from underlying 

product data. This approach makes it possible to use available models for in-

dexing and searching the data but not to be dependent on any predefined data 

model.   

In this chapter, the basic concepts of the VSM will be introduced. These 

concepts will be extended and applied to the catalogue matching problem in 

the next chapter. The goal of the application will be to customize Vector Space 

Model for matching e-catalogues. 

4.1 Similarity-based Matching 

Compared to the solutions that are studied in the previous chapter which 

have transformation overheads and require knowledge about the target sys-

tems, some researchers such as (Lee et al., 2007) , (Kwon et al., 2008), (Kim, 

Choi, & Park, 2007) and (Vandic, van Dam, & Frasincar, 2012) have developed 

approaches which are not dependent on parsing and converting different e-

catalogue schemas.  

(Lee et al., 2007) provided an index structure, called Massive Catalogue 

Index in order to semi-automate the matching process of heterogeneous e-

catalogues. The proposed approach eliminates the overhead of transformation 

and classification of e-catalogues in matching mechanism by providing index 

tables of common attributes. The main restriction to use the proposed approach 

is that all attributes of the system should be selected beforehand and this 

decreases the flexibility of the search mechanism.  

A meta-search engine (Kwon et al., 2008) was developed that matches dif-

ferent product categories from various e-commerce websites. The aim of the 

search engine is to find the most similar supplier product category to buyer’s 

desired product category among underlying categories and recommend the rel-

evant supplier’s e-commerce website to the buyer. Therefore, the main task is to 

match the categories, not matching the products or e-catalogues. In order to use 

the search engine, the user has to describe his intent using a subclass-superclass 
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relationship. Then a semantic extension of the query is made by expanding the 

class names using their synonyms from WordNet. The matching process is to 

calculate the relevancy ratio between the extended query and the suppliers’ 

product categories. Results will be a list of suppliers that their product catego-

ries have higher similarity with the category hierarchy that the user is looking 

for.     

In a more comprehensive approach (Kim, Choi, & Park, 2007), the product 

search process is divided into two main parts including context search for find-

ing the category of the desired product; and attribute related information search 

for finding the desired product. In order to cope with semantic heterogeneity, 

the proposed category and attribute mapping methods regenerate a semantic 

query conforming to a specific shopping site’s ontology with the original query 

written in a customer’s ontology. But schema of the category and description of 

the attributes are pre-defined and fixed in the proposed model for product cata-

logues. The search engine makes the semantic translation of the user search 

query in SPARQL semantic query language and assumes that all underlying 

websites understand SPARQL standard queries in order to avoid syntactic het-

erogeneity. 

In a similar approach (Vandic, van Dam, & Frasincar, 2012), a general 

product search engine called XploreProducts aggregates product information 

from different sources using standardized semantic web technologies and vo-

cabularies. Semantic matching in the proposed platform is based on two main 

steps including product identification and category mapping from different 

web shops. Product identification is to identify the product names that repre-

sent the same product. The product name identification process consists of four 

procedures that work based on similarity of characters of the input strings. For 

example, the starting procedure of identification process accepts two product 

names as inputs and compare them using calculation of the cosine similarity 

between two product names. Even though this algorithm works well for detect-

ing similar product names such as phone and telephone or names that are mis-

spelled, but it is not able to find similarity between synonyms such as 

smartphone and mobile. 
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Since web-shops use different hierarchies and different names for describ-

ing product categories on the Web, the goal of the category mapping is to map a 

category from the source taxonomy to a category from the target taxonomy. To 

cope with this problem, the proposed solution uses an existing internal product 

category hierarchy and maps the new product categories to this internal taxon-

omy. The category mapping algorithm in (Vandic, van Dam, & Frasincar, 2012), 

computes a similarity score between the input category and each category in 

the target taxonomy and then chooses the target category that has the highest 

similarity. The algorithm assumes that the category taxonomy of the input cate-

gory is available and maps this available taxonomy to its inner taxonomy. This 

approach works well for standard e-catalogues where the product classification 

is known, but usually, we encounter with unknown structures as well. 

In an application of VSM in product search, (Vandic, van Dam, & 

Frasincar, 2012) have focused on adopting web search for matching products. 

Such works are usually have focused on product search in online shopping 

websites. Many product search engines that search on various shopping web-

sites or marketplaces encounter similar problems in order to provide compara-

tive shopping search services (Julashokri et al., 2011) (Ali et al., 2010). These 

services require collecting a given product information from various web pages 

of different websites in a template-independent manner (B. Wu et al., 2009). But 

this research work puts forward the application of VSM for matching B2B e-

catalogues. An e-catalogue matching engine refers to a product search engine in 

the context of B2B e-commerce that matches a user search query with product e-

catalogues. 

In another approach, a product ontology is developed (L. Zhang, 2009) for 

annotating HTML documents and an ontology-based adaptation of the Vector 

Space Model is proposed for e-commerce product information retrieval. This 

approach tries to unify the structure of products in different websites that is the 

main shortcoming of this kind of systems and needs to develop data convertors 

or wrappers for each input. This approach works only for extraction and anno-

tation scheme for specific known websites and any new website needs a new 

wrapper. In B2B e-marketplaces, it is almost impractical to make these wrap-

pers for each company in a marketplace. Furthermore, the provided solution 
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works based on one ontology and cannot use multiple ontologies. As a conse-

quence, there is no product name identification and no solution for the align-

ment of different categories of products. 

4.2 Vector Space Model 

Vector Space Model uses the occurrences of keywords or terms in docu-

ments to produce a table of vectors. Each document is represented as a vector of 

its constitutive terms. The result of vector construction process from n docu-

ments that consist of m terms is an n × m matrix ( Figure 4.1 ) where documents 

are its rows and the terms from its columns. If a term exists in a document, its 

value or weight in the vector is non-zero and otherwise is zero. Depending on 

the application, different algorithms have been proposed to calculate the 

weights of the terms (Manning et al., 2008).   
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Figure 4.1: Matrix of term-vectors 

 

Having a vector model of the documents, mathematical vector operations 

can be applied to determine the similarity of a document with another one or 

with a search query. 

Documents that are similar to a given query can be calculated by compar-

ing deviation of the angle between the vector of each document and that of the 

query (Figure 4.2). Closer weights indicate lower deviation angles and conse-

quently more similar documents. 

The simplest example is to use the deviation angle between vectors of fre-

quent terms to calculate the relevance between text documents. The lower angle 
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between vectors of two documents shows that there are more equvalent 

weights in their vectors. Consequently, these documents have more common 

terms and are related together (Mehrbod, Zutshi, & Grilo, 2014a).  

 

 

Figure 4.2 Deviation between angles in vector space 

 

In practice, it is easier to calculate the cosine of the angle between the vec-

tors, instead of the angle itself: 

qd
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.
          (4.1) 

Where d.q is the intersection of the document d2 and the query q (i.e. the 

dot product of vector d2 and vector q), d  is the norm of vector d, and q  is the 

norm of vector q. The norm of a vector is calculated as such: 
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As all vectors under consideration by this model are element-wise 

nonnegative, a cosine value of zero means that the query and document vector 

are orthogonal and have no match (i.e. the query term does not exist in the doc-

ument being considered). 

Depending on the application, several methods have been proposed to de-

fine the weights. Keywords are commonly weighted in order to reflect their rel-

ative importance in the query or document at hand. The underlying idea is that 

http://en.wikipedia.org/wiki/Cosine
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terms that are of more importance in describing a given query or document are 

assigned a higher weight (Mukerjee, Porter, & Gherman, 2011)(Manning et al., 

2008). For example, one well-known method of weighting the terms is TF-IDF 

that takes into consideration both document and collection statistics(Turney & 

Pantel, 2010). 

TF-IDF, short for “term frequency–inverse document frequency”, is a nu-

merical statistic that is intended to reflect how important a word is to a docu-

ment in a collection. The TF-IDF value increases proportionally to the number 

of times a word appears in the document, but is offset by the frequency of the 

word in the collection, which helps to control for the fact that some words are 

generally more common than others. 

Usually, natural language processing techniques are utilized to extract 

important terms automatically from the documents and queries. Among vari-

ous types of processing that can be applied to text, usually Natural Language 

Processing analysers tokenize, lemmatize and remove stop words in the term 

extraction process. Tokenization is to decide what constitutes a term and how 

to extract terms from text.  

Stop words are the most frequent and almost useless words. For example, 

some of the most common words such as the, is, at and so on that don’t have a 

high value in the semantic intent of a text. Lemmatisation or stemming is to 

convert the different inflected forms of a word to the lemma form or stem so 

they can be analysed as a single item (Grilo, Ghimire, & Jardim-Goncalves, 

2013). For example, all the words such as go, went, goes, gone and going have 

the same stem.  

4.3 Concept-based VSM 

The same concept can be expressed in different forms of language expres-

sion. As a result, the search engines get different results when facing a synonym 

query. The current state of product search engines cannot properly deal with 

semantic heterogeneity that can even affect the predicted growth of e-

Commerce (Vandic & Milea, 2014). Therefore, researchers aim to use Semantic 
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Web technologies in information retrieval for efficient product discovery and 

presentation (Aanen, Vandic, & Frasincar, 2015). While Vector Space Model is 

used to deal with flat textual data, it is being extended since the last two dec-

ades to treat complex structured and semi-structured data (Tekli, Chbeir, & 

Yetongnon, 2009).  

Keyword-based search engines extract common terms or keywords from 

search data and produce a table of vectors. Each row or vector of this table rep-

resents a searchable element that can be for example a web page in web search 

engines or a product data specification in product search engines. The ad-

vantage of this presentation is that simple vector operations can be used to de-

termine the similarity ratio between the search query and search elements. In 

data searching phase, the same method is used to make a vector from the search 

query. The search query vector will be compared to the data vectors that are 

made in the indexing phase in order to find the similar items to the search que-

ry from the data repository. 

While the keyword-based search mechanisms are used widely by search 

engines, they suffer from lacks of semantic interpretation of the search domain. 

In order to solve the drawbacks of the keyword-based search mechanisms, the 

semantic extensions to Vector Models represent the documents in the form of 

underlying concepts instead of the keywords (Turney & Pantel, 2010) that is 

called concept-based VSM (Widdows & Ferraro, 2008).  

The similarity between terms can be found according to the semantic rela-

tionship between their corresponding concepts in an ontology and the similari-

ty between documents can be calculated as the similarity of their concepts. An 

ontology is a description of the concepts and relationships that exist in a do-

main. The purpose of the description is to enable knowledge sharing and reuse 

(Elahi & Rostami, 2012). 

After extracting of necessary information from underlying documents, the 

next step is to prepare them for matching mechanism. For example, in uniform 

model approaches such as (Ghimire, Jardim-Goncalves, & Grilo, 2013) this step 

consists of transforming the information into the uniform catalogue model. But 

in semantic search engines, this step is how to make vectors of keywords from 

documents. The main concern here is to expand traditional vectors of keyword-
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based vector space model to vectors that consist of entity names instead of 

keywords (Mehrbod et al., 2015). Figure 4.3 shows the idea of developing con-

cept vectors instead of term vectors. 

 

Figure 4.3 concept-based VSM 

 

Vectorization represents the documents based on recognized name enti-

ties. This step defines the matching elements or keywords for the search mech-

anism. This definition determines the calculation method of semantic match 

degree between a query and the search results. 

4.4 Information Extraction 

Concept-based vectorization expands the traditional keyword-based vec-

tor space model to vectors that consist of entity names instead of keywords. 
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Vectorization process defines the matching elements or keywords for the search 

mechanism and represents the documents based on existing entities.  

Finding the occurrences of entities such as movie names in a movie search 

system or product mentions in the e-catalogue matching engine that will be 

used as the searchable elements in concept-based VSM from the text is another 

challenge in developing e-catalogue matching mechanism. 

The first challenge in searching heterogeneous resources is to identify the 

mentions that refer to the entities. But finding the occurrences of entities such as 

product mentions that will be used as the searchable elements from the text is a 

challenge. The product information usually is embedded in the text that impos-

es a barrier on collecting, comparing and analysing the product information. 

Furthermore, a product may have multiple different names while different 

products may have the same name. The problem is related to a research prob-

lem called Named Entity Recognition (NER) (Marrero et al., 2012), in which the 

goal is to find short and meaningful sequences of terms from data (e.g., a prod-

uct name) (S. Wu, Fang, & Tang, 2012) and map them to the relevant entities in 

an entity collection, knowledge base or ontology (Lipczak, Koushkestani, & 

Milios, 2014).  

NER serves as the basis for many other areas in Information Management 

such as semantic search, faceted browsing, recommender systems, and text cat-

egorization (Vandic & Milea, 2014). Since Named Entities can provide much 

richer semantic content than most vocabulary words, one of the fundamental 

building blocks of every semantic search engine should be a NER procedure 

that recognises the named entities from both queries and documents in the re-

lated context (Ahn et al., 2010). 

NER task is divided into three not totally separated steps including 

(Eckhardt et al., 2014) mention identification, collecting entity candidates for 

each mention, and candidates’ disambiguation. Actually, two first steps that are 

also called spotting (Lipczak, Koushkestani, & Milios, 2014) comprise the NER. 

Spotting scans the input text and looks for interesting sequences of terms and 

produces a set of possible mentions. Additionally, a list of candidate entities 

will be retrieved for every single mention. The candidate list will contain all 

possible senses that can be associated to a specific mention. The disambiguation 
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step that can be considered as a further step to NER is to link the entities to a 

knowledge source.  

The mention identification selects relevant parts of the text. The relevant 

parts of the text are defined by the purpose of NER application. Mentions could 

be based on chosen token classes from Part-of-speech tagging (POS tagging) 

analysis, named entities or entity names from a knowledgebase, such as a 

product ontology. Candidates for each mention are collected by looking up en-

tities in a knowledgebase or can be retrieved from a database created by cluster-

ing the same mention that occurs in different contexts. The candidates are then 

ranked or pruned.  

Entity disambiguation can be done based on calculating the similarity be-

tween document and candidates. Usually, a mapping or similarity score is giv-

en to each annotation to show the disambiguation strength. This score can be 

calculated locally, modelling the mention-entity linkage compatibility; or glob-

ally, modelling the coherence among all the entities chosen to disambiguate all 

the mentions or a combination of both (Piccinno, Ferragina, & Informatica, 

2014). The experiments demonstrated that the accuracy of extracted entities re-

lies more on the successful recognition of correct entity mentions  (Finding the 

mentions) rather than their disambiguation (Linking to the resource) (Lipczak, 

Koushkestani, & Milios, 2014). 

Based on the application, various methods can be used to extract the 

named entities from data. While usually a combination of different techniques 

is used in entity extraction, the most effective approaches to NER are catego-

rized as rule-based, dictionary-based and machine learning approaches (Melli 

& Romming, 2012) (Piccinno, Ferragina, & Informatica, 2014). 

The rule-based or regex-based NER uses grammar and grammar-based 

techniques to matches incoming text against one or more predefined regular 

expressions. This approach typically uses hand-crafted linguistic rules (or pat-

terns/templates) and seeks named entities by pattern-matching or template-

filling. The entity candidates are constrained by a set of rule templates where 

each specific rule can be regarded as a relevant factor to identify the entities. 

For example, the Nokia Corporation has a series of cell phones named as ‘N#’ 

where ‘#’ represents a number, for example ‘N97’ (S. Wu, Fang, & Tang, 2012). 
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Regex-based approaches need rich and usually expressive rules in order to 

achieve good results. 

Dictionary-based NER, also known as gazetteer-based NER, matches text 

against a dictionary of (term, class) pairs to find occurrences of the dictionary’s 

terms in the text. If the text contains the corresponding terms of a class, the 

mention is easily selected as the class type. This approach assumes the presence 

of a dictionary of names of target types and identifies the names in the text.  

Machine learning approaches are usually sequence classifiers that try to 

classify a sequence of terms in the text to a class of entities. They use a training 

set of (term, class) pairs to train a model, and then use the model to predict the 

category of new (potentially previously unseen) terms. Learning approaches 

fare better across domains, and can perform predictive analysis on entities that 

are unknown in a text. Conditional Random Field (CRF) is the most used learn-

ing technique in PNER (Product NER) and NER (Bengfort, 2012)(Chen et al., 

2014). Other mostly used techniques are Maximum Entropy Markov Model and 

Support Vector Machine (Putthividhya, Hu, & Ave, 2011).  

CRF uses a classifier to predict a label for a sample that can be used in pat-

tern recognition. The task of identifying product entities in the text can be rep-

resented as a sequence labelling task, in which each text token is labelled with a 

tag indicating whether the token begins, continues, or is outside of product en-

tities. Therefore, in NER using CRF, the goal is to label a sentence (a sequence of 

words or tokens) with tags like start of a product, inside a product and end of a 

product. 

4.5 Product Named Entity Recognition 

NER is a subtask of information extraction that seeks to locate and classify 

words and phrases in text into predefined categories (S. Wu, Fang, & Tang, 

2012)(Fang Luo et al., 2011). The most common task in NER is to extract names 

of persons, organizations and locations. But with the rapid development of e-

Commerce, the need for Product NER (PNER) is increasing fast and several 

researchers have been focused on this task (Lipczak, Koushkestani, & Milios, 
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2014) (Procházka & Smrž, 2014) (S. Wu, Fang, & Tang, 2012) (Melli & Romming, 

2012) (Piccinno, Ferragina, & Informatica, 2014). NER serves as the basis for 

many other areas in Information Management and this research work aims to 

develop a B2B PNER process that can serve as the basis for other B2B infor-

mation systems.  

A CRF model is used for PNER (Luo, Xiao, & Chang, 2011), which takes 

part of speech (POS) feature, contextual feature, ontology feature into account, 

in order to probe this domain in an effective way. Also, a method for identify-

ing product named entity using CRF was developed (Fang Luo et al., 2011) 

which introduces the domain ontology features to the CRF model. 

In a learning-based approach, naive Bayesian classifiers are used for ex-

tracting attributes and values from product specifications and annotating them 

regarding a predefined set of attributes (B. Wu et al., 2009). The proposed 

method extracts attribute name and value from web pages for a given object. In 

this process, the web page is parsed into a tree and then both the value and 

name extraction are considered as the task of classifying nodes in the tree.  

A dictionary-based approach using data provided by Wikipedia (DBpe-

dia) was used (Eckhardt et al., 2014) for mention detection. In this way, a set of 

alternative names is made for each entity by using DBpedia labels for the entity. 

Then the text is processed sequentially to find all the possible text mentions 

about entities. Finally, for each mention, a set of candidate entities will be avail-

able that may be its target. 

Freebase18 is one of the most frequently used datasets as the data diction-

ary for finding the product mentions in text (Toh et al., 2012) (Lipczak, 

Koushkestani, & Milios, 2014). Freebase contains tens of millions of topics, 

thousands of types, and tens of thousands of properties. By comparison, Eng-

lish Wikipedia has over 4 million articles. Each of the topics in Freebase is 

linked to other related topics and annotated with important properties like 

movie genres and people's dates of birth. There are over a billion such facts or 

                                                 

 

18 https://developers.google.com/freebase/ 
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relations that make up the graph and they're all available for free through 

the APIs or to download from our weekly data dumps. Freebase will be ported 

into WikiData19 and be retired on June 30, 2015.  Other publicly available da-

tasets that can be used for PNER are AIDA, IITB, MSN, AQUAINT, and the one 

of the ERD Challenge (Piccinno, Ferragina, & Informatica, 2014).  

Usually, a combination of the NER approaches is used by the PNER sys-

tems. For example, the winner of CPROD1 competition20 proposed a combina-

tion of a dictionary-based matching model, a rule template model, and a condi-

tional random field model, that combines the results using a blending model (S. 

Wu, Fang, & Tang, 2012). The dictionary-based matching model is used to iden-

tify the products using a list of products that is extracted from annotated prod-

uct dataset. The Rule Templates model leverages the products naming rules 

and several semantic information. The Conditional Random Field model is 

trained to match the potential patterns which cannot be provided by simple sta-

tistical analysis. Since these models leverage different information, a hybrid ap-

proach is proposed which combines the results of these different models. 

While dictionary-based matching can easily handle the correct answer, 

rule templates are good at dealing with semantic pattern and human naming 

regulation, and conditional random field can fully utilize the potential sequence 

information. After getting the mention symbols, an interactive mechanism is 

used to recognize the whole products name and retrieve the product items. 

In another example, a combination of rule-based and dictionary-based ap-

proaches is used to extract the product names in CPROD1 competition (Toh et 

al., 2012). Regular Expression Patterns are used to capture possible model 

names such as Samsung Galaxy S3 model “I9300RWDX” where alphabets are 

                                                 

 

19 http://www.wikidata.org/wiki/Wikidata:Main_Page 

20 The goal of PRODucts Contest #1(CPROD1) competition (Melli & 

Romming, 2012) was to automatically recognize product mentions in the textual 

content and disambiguate which products in the product catalogue are 

referenced by the mentions. 
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followed by a dash and then a mixture of characters and digits. Valid manufac-

turer names and product names are extracted using dictionary-based features. 

Two sources including Freebase21 and BBY22 Product Archives were used to 

generate a large name gazetteer. The matching process is to check if a string 

matches an entry in the gazetteer list or not. String matching composed of uni-

gram and bigram matching. In unigram matching, only current word (both in 

lowercase and as it is in the text) is used in string matching. In bigram match-

ing, a group of the current word and its previous word; and a group of the 

current word and its next word are considered in string matching process. 

A further step to information extraction regarded to semantic data can be 

to recognize an entity of an ontology in the text-based data. Here the problem is 

to match free-text, semi-structured or even structured product descriptions to 

their related entities in an ontology or structured records in a classification sys-

tem. For example, (Kannan et al., 2011) developed a system to relate textual 

product sales offers received from independent merchants with Bing product 

classification system (product catalogue) that is used by Bing Shopping search 

engine. The system uses a three stage semantic parsing in order to understand 

the semantics of the product descriptions. These steps consist of tagging the of-

fer with attributes, identifying possible parses based on the tags, and finally ob-

taining an optimal parse. The process tries to extract all existing attributes of a 

product catalogue in a text string, then select a parse in which the maximum 

number of attributes agree in their values respect to a product. The product that 

has the highest similarity score with the input description will be selected as the 

result.  

(L. Zhang, 2009) developed an ontology for annotating HTML documents 

and an extractor to extract product attribute information from product pages. 

The HTML pages are transferred into OWL formatted documents by taking ad-

vantage of the proposed ontology. The entity recognition process starts with 

                                                 

 

21 http://wiki.freebase.com/wiki/Freebase_API 

22 https://remix.mashery.com/member/register 
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stop-words removing from documents, then all the classes from the ontology 

that matches terms of the document are extracted as desired concepts.  

Once the reference ontologies or standard classification systems are avail-

able, they can be used to annotate a given catalogue of products and services. 

Usually NER process produces a semantically annotated text from the input 

text. Part of speech (POS) tagging is the most basic type of annotation. POS tag-

ging, usually is done as a starting step of word disambiguation, detects the syn-

tactic role of a word in the sentence (subject, object, …) and functional role of 

the word (noun, verb).  The syntactic role of a word is more needed in applica-

tions such as sentence translation while the functional role is more useful in the 

detection of a word sense in a context. 

4.6 Summary 

This research work proposes to exploit Vector Space Model (Manning et 

al., 2008) to measure the similarity ratio of documents in order to match provid-

ers’ e-catalogues with a buyer’s e-catalogue. Vector Space Model is an algebraic 

representation of documents as vectors in a high-dimensional space that is 

widely used by web search engines and other information retrieval systems. 

VSM uses the occurrences of terms in documents to produce a table of vectors. 

Having a vector model of documents, mathematical vector operations can be 

applied to determine the similarity of a document with another one or with a 

search query. The simplest example is to use the deviation angle between vec-

tors of frequent terms to calculate the relevance between text documents. While 

it is used to deal with flat textual data (i.e. classical free text documents), IR is 

being extended, since the last two decades, so as to treat complex structured 

and semi-structured data (Tekli, Chbeir, & Yetongnon, 2009). 

Concept-based information retrieval systems use the semantic data con-

cepts in making the term vectors and show documents in the vectors of under-

lying semantic concepts instead of frequent terms. This enables the search en-

gines to find the documents not only based on the exact containing terms, but 

also considering the synonyms and related terms. 
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Hence, recognising the covered concept from the documents being in-

dexed is important for concept-based information retrieval system. Therefore, a 

fundamental part of such search engines can be a Named Entity Recogniser that 

extracts the desired searchable elements from related documents. 

The most effective approaches to NER can be categorized as rule-based, 

dictionary-based and machine learning approaches (Melli & Romming, 2012) 

(Piccinno, Ferragina, & Informatica, 2014). The rule-based approach typically 

uses hand-crafted linguistic rules and seeks named entities by pattern-matching 

or template-filling. The dictionary-based approach assumes the presence of a 

dictionary of names of target types and identifies the names in text. Machine 

learning approaches are usually sequence classifiers that try to classify a se-

quence of terms in the text to a class of entities. Learning approaches fare better 

across domains, and can perform predictive analysis on entities that are un-

known in a text.  
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5 E-catalogue Matching Engine 

The basic concepts of the VSM have been reviewed in Chapter 4. In this 

chapter, the concepts will be extended to solve the problem of matching hetero-

geneous e-catalogues. Vector Space Model can be used to determine the similar-

ity ratio between documents. The most important factor in finding similarity 

using this model is the term definition method. Since the similarity ratio has 

been calculated based on the occurrence of common terms, the way that the 

terms are defined specifies the similarity measure. Therefore, this research work 

extends the term definition in a way that can represent both semantic and syn-

tactic features of the e-catalogues. Then similar e-catalogues can be calculated 

by comparing deviation of the angle between their vectors.  

The proposed extension can take advantage of all available ontologies and 

schemas that have been provided for e-catalogues in various researches. The 

idea is to interpret each e-catalogue syntactically in its schema and semantically 

in an ontology that is made based on its product classification system. Schemas 

and ontologies will be added to the matching process by adding the syntax of 

the structure and semantic of the ontology to the indexing and searching mech-

anisms of Vector Space Model. The matching process uses the available syntac-

tic and semantic metadata for interpreting each e-catalogue. In the case of un-

known formats, it tries to use the semantics of known format to discover the 

5 
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possible concepts that may exist in an e-catalogue. Before explaining the details 

of the matching mechanism in the following sections, Figure 5.1 shows the 

overall overview of the vectorization process in a conceptual diagram. 

 

 

Figure 5.1 Term-vector extension process 
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Compared to traditional e-catalogue matching solutions that have trans-

formation overheads and require knowledge about the target systems, the pro-

posed solution is not dependent on parsing and converting different e-

Catalogue formats. 

The proposed approach for e-Catalogue matching uses combinations of 

values, names and paths of the attributes of structured e-Catalogue documents 

in term definition in order to find the syntactic correlation among e-Catalogues. 

This process is explained in the first section of this chapter.  

In the second section, we will extend the matching mechanism by discov-

ering and using potential semantic relationships of e-Catalogues in the term 

definition process. The best semantic resource that exists in an e-Catalogue is 

the product classification system that is used to define the products. Therefore, 

ontologies that are built from product classification systems such CPV, UN-

SPSC and eCl@ss (Stolz et al., 2014) will be used as the semantic reference to de-

fine the entities. These ontologies are rich sources of semantic information for 

interpreting product data of e-Catalogues (Vandic, Nederstigt, & Aanen, 2014). 

The semantic term definition process will determine existing entities and the 

semantic relationships among them in e-Catalogues. The idea is to enrich vector 

of each e-catalogue with semantic concepts that can be extracted from its terms. 

Adding extracted entities and their relations to the vectors will enable the 

matching process to match semantically related e-Catalogues.  

In vector space based search systems, the definition and selection process 

of the terms is the major challenge. Actually, the terms are the searchable items 

and determine the matching mechanism and similarity measure. For example, 

if existing movie names in a text corpus are selected as the terms for a search 

engine, the system will be able to retrieve the documents about a movie when 

the name of the movie is being searched. As discussed in the fourth chapter, 

finding the occurrences of such entities like movie names or product mentions 

that will be used as the searchable elements from the text is a NER task.  

In order to detect the existing meaningful product mentions in the e-

catalogues, the third section of this chapter will discuss a NER process for rec-

ognising B2B Products from procurement documents. Term definition might 

represent the documents as vectors based on the recognized entities, properties 
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of the entities, available relations among entities, structure of the ontology and 

entity individuals. This step defines the matching elements or keywords for the 

search mechanism. This definition later determines the calculation method of 

semantic match degree between a query and search results.  

5.1 Syntactic e-Catalogue Matching 

In order to encounter the syntactic heterogeneity problem using VSM, 

three general cases have been considered for e-catalogues (Lee et al., 2007) 

(Mehrbod, Zutshi, & Grilo, 2014a).  

 First, unstructured text such as PDF files which are common in 

online commerce.  

 Second, structured or semi-structured e-catalogues which are un-

known for the system such as enterprise-specific formats. 

 Third, structured standard documents which are known for the 

system such as cXML and UBL e-catalogues.  

XML is one of the most common formats for exchanging structured and 

semi-structured data and also standard e-catalogues in B2B e-commerce (Leukel 

et al., 2002). Among 25 e-catalogue standards, 16 of them are based on XML 

(Grilo & Jardim-Goncalves, 2013a). Hence technically, the syntactic matching 

process is to apply Vector Space Model to three groups of e-catalogues at the 

same time:  

 Unstructured text documents 

 XML documents 

 Standard e-catalogues 

5.1.1 Multilevel Term Definition 

As the starting point, a Natural Language Processing tool is needed to ex-

tract the terms from e-catalogues. E-catalogue matching mechanism uses Lu-

cene NLP analysers to tokenize, lemmatize and remove stop words from e-



73 

 

catalogues. Since our application is to match e-catalogues and term matching is 

more valuable and important than phrase matching in this application, we fil-

tered the stop words. Then, it makes a vector to represent the occurrence of 

terms in each e-catalogue document. Let D be a procurement document, after 

the tokenisation process, D can be presented as a set of its terms as: 

 nttttD ,...,,, 321         (5.1) 

E-catalogues that are similar to a given search query can be calculated by 

comparing deviation of the angle between the vector of each e-catalogue and 

that of the query. If we present the term vector of document D as V(D), and let 

wi be the weight of term ti in the term vector, the similarity ratio of document 

D1 and D2 can be calculated as: 

)V(D . )V(D

)V(D . )V(D
 = D2) (D1, Similarity

21

21       (5.2) 

Where  





n

i
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1

2V(D)         (5.3) 

In order to associate the syntaxes in calculating similarity, levels of attrib-

utes in structured e-catalogues are also included in the term definition. XML 

documents are widely used to represent structured information. Any structured 

or semi-structured document can be shown using XML files. Hence, XML-based 

similarity becomes a central issue in the structured information retrieval. Since 

in conventional information retrieval, documents are unstructured data, Vector 

Space Model has been extended towards XML information retrieval (Leukel et 

al., 2002). Using these extensions structured and unstructured queries and doc-

uments can be presented in vector space model and the matching ratio of them 

can be calculated. 

Hierarchical structures of XML documents are generally modelled as 

trees. In the traditional model, nodes of a tree represent XML elements and are 

labelled with corresponding element tag names. Since content is distributed at 

different levels of the tree, location of an attributes in the tree is effective on the 

value of the term (Tekli, Chbeir, & Yetongnon, 2009) and should be considered 
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in term extraction. Therefore, the name, value and location of attributes were 

exploited to define the terms. 

Generally, locational paths of attributes in a structured document are con-

sidered as the terms. In this ways, values of attributes are disregarded in term 

extraction from structured documents. This approach is useful for structure-

only comparing of documents (Lampathaki et al., 2009). But in the context of 

product features, the similarity measure is more sensitive to the values which 

have been saved in the e-catalogue structures. For example, we don’t want to 

match two e-catalogues that have completely same structure but present differ-

ent products. Therefore, in matching process of e-catalogues, values are crucial 

and are even more important than structures. Consequently, we used a struc-

ture-and-content tokenization process (Chen, Li, & Zhang, 2010) to define the 

terms. 

 

Figure 5.2 A part of a structured e-catalogue (D1) 

 

As an example, Figure 5.2 shows a portion of a UBL e-catalogue, D1, 

which is used by PEPPOL23. This e-catalogue can be presented using a tree as in 

Figure 5.3.  

 

                                                 

 

23 Pan-European Public Procurement Online project, http://www.peppol.eu 
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Figure 5.3 Tree model presentation of e-catalogue D1 

 

In the matching process, this e-catalogue should be similar to e-catalogue 

D2 in Figure 5.4 that has the word paper. Moreover, it should have a higher sim-

ilarity ratio with document D3 in Figure 5.4 that has the word paper in attribute 

name and even higher to document D4 in Figure 5.4, that has paper in the 

hierarchy of name and item and so on. 

 

 

Figure 5.4 Similar e-catalogues to D1 
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One way of doing this is to define a term as a value together with its posi-

tion within the XML tree. Figure 5.4 illustrates this representation. We use all 

the sub-trees of a document that contain at least one value as terms (Schmitz, 

Leukel, & Dorloff, 2005). In other words, we first take each value (paper) as a 

term. This help the matching process to match this document with unstructured 

documents or structured documents such as D2 that have same values but in a 

different structure. Next, we add values with the last level of their position 

(name/paper) to the terms. It helps matching process to increase similarity of D1 

with structured documents such as D3. Then we continue adding levels of posi-

tions (item/name/paper) to the terms to the root of the tree. It keeps increasing 

similarity of D1 with structured documents such as D4. These position-adjusted 

terms constitute a set of leaf terms together with their paths to the root of the 

document tree as: 

 

 leaf a is t//t.tP           (5.4) 

Therefore, document D is not considered just as its basic term. It is seen as 

a union of its basic terms and its positional terms: 

PDD           (5.5) 

And the term vector of the document will be:  

  )()( PVDVDV SynBase         (5.6) 

 

Table 5.1 shows all possible terms for the tree of Figure 5.2. Note that hav-

ing values attached to all the terms helps the search process to avoid matching 

documents with the same structure but different products. Therefore, D1 will 

have one common term with D2, two common terms with D3 and tree common 

terms with D4 which guarantees more ratio of similarity for documents with 

resembling structures. Note that having value attached to all the terms helps 

the search process to avoid matching documents with the same structure but 

different products. 
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Table 5.1 All possible terms for D1 

Value Terms  

Paper Manufacturer Manufacturer 

Name/Manufacturer 

PartyName/Name/Manufacturer 

ManufacturerPar-

ty/PartyName/Name/Manufacturer 

Item/ManufacturerParty/PartyName/Nam

e/Manufacturer 

CatalogueL-

ine/Item/ManufacturerParty/PartyName/Name

/Manufacturer 

Paper 

Name/Paper 

PartyName/Name/Paper 

ManufacturerPar-

ty/PartyName/Name/Paper 

Item/ManufacturerParty/PartyName/Nam

e/Paper 

CatalogueL-

ine/Item/ManufacturerParty/PartyName/Name

/Paper 

12345678 12345678 

ID/12345678 

StandardItemIdentification/ID/12345678 

Item/StandardItemIdentification/ID/123456

78 

CatalogueL-
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ine/Item/StandardItemIdentification/ID/123456

78 

A4 A4 

Description/A4 

Item/Description/A4 

CatalogueLine/Item/Description/A4 

Paper Paper 

Name/Paper 

Item/Name/Paper 

CatalogueLine/Item/Name/Paper 

 

Documents such as D5 should have a lower matching ratio with D1 as 

compared to its matching ratio with D3 and D4. Because the same value for an 

attribute (item) exists in both documents but not necessarily in the same path 

order. Therefore, the terms of Table 5.2 have also been added to the terms of D1 

to cover this type of similarity. In order to give a lower similarity ratio to the e-

catalogues that match D1 using the terms of Table 5.2 instead of the terms of 

Table 5.1 (don’t have completely the same structure), the weight of a term is di-

vided by twice the number of nodes between the value and the attribute. With 

this simple approach, we don’t have to change the similarity formula as pro-

posed in (Kim, Choi, & Park, 2007) and (Chen, Li, & Zhang, 2010). 

 

   Table 5.2 Additional terms for the last entry in Table 5.1 

Value Terms  Weight Ratio 

Paper Item/Paper 

CatalogueLine/Item/Paper 

CatalogueLine/Name/Paper 

CatalogueLine/Paper 

½ 

½ 

½ 

¼ 
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5.1.2 Boosting Masks 

Standard e-catalogues are sources of diverse types of information. They 

usually include not only product data but also general document information 

and partners’ data. This extra information can mislead the product search pro-

cess. Furthermore, various attributes of product data can have different values 

in the matching process. For example, classification code of a product is more 

important than a description of the product in the matching process. Hence, ta-

bles of coefficients are used for known formats to adjust the impact of each at-

tribute in the matching process. Let p

iw  be the weight of the positional term ip in 

P, let pC be the coefficient assigned to ip  in the boosting mask, where  1,0pC , 

the following equation calculates the discussed weight for each positional term: 








10,

1

pp

p

i CskboostingmaC

otherwise
w       (5.7) 

Now, the syntactic term vector of an e-catalogue can be shown as: 

 PpwDV i

p

iSyn )(         (5.8) 

And 
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p
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1

2

Syn (D)V         (5.9) 

Figure 5.5 shows the coefficients for the sample e-catalogue of Figure 5.2. 

These coefficients are values between 0 and 1 which are multiplied by the 

weights of terms. Undesired information such as partners’ data can be simply 

excluded from matching process by putting 0 coefficients. Using this simple 

mechanism, a new known structure can be easily added to the search system. 

Default values for all coefficients are 1 which reduces the status of an e-

catalogue to an unknown structure for the matching process. 
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Figure 5.5. Coefficients for the sample e-catalogue 

5.2 Semantic e-Catalogue Matching 

In order to solve the syntactic heterogeneity in the previous section, we 

applied Vector Space Model to the e-catalogues matching problem (Mehrbod, 

Zutshi, & Grilo, 2014a). In this section we want to expand the solution to cope 

with the semantic heterogeneity of e-catalogues as well (Mehrbod, Zutshi, & 

Grilo, 2014b). This section uses not only the attributes and their locations, but 

also the semantic interpretation of the terms in the matching process.  

One of the most common approaches in semantic Vector Space Model is to 

expand the terms using their synonyms in a vocabulary set. Many researches 

exploit WordNet lexical database to enrich the vectors with the synonyms of the 

terms (Turney & Pantel, 2010). WordNet is a large lexical database of sets of 

synonyms that is freely and publicly available. Synonym sets are interlinked by 

means of conceptual-semantic and lexical relations. The structure of WordNet 

makes it a useful tool for computational linguistics and natural language pro-

cessing. This approach is useful, simple and practical. Therefore, it is used as a 

part of the proposed term expansion process and will be explained in the next 

section, but the proposed semantic matching mechanism is more comprehen-

sive than this. Furthermore, the proposed approach uses domain specific se-

mantic resources for e-catalogue interpretation. 
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5.2.1 Ontology Deriving 

Semantic applications require semantic references for interpreting data. 

The best semantic resource that exists in an e-catalogue is the product classifica-

tion system that is used to define the products and services of the e-catalogue. 

As previously mentioned, many efforts have been made to build up product 

ontologies from existing classifications and standard classification systems. 

These ontologies are rich sources of semantic information for interpreting 

product data of e-catalogues (Schmitz, Leukel, & Dorloff, 2005) and can be used 

to enrich product descriptions with information from existing data sources.  

As highlighted in chapter 3, (Stolz et al., 2014) developed a generic, semi-

automated method and tool called PCS2OWL for deriving OWL24 ontologies 

from product classification standards and proprietary category systems such as 

CPV, UNSPSC and eCl@ss. Making ontologies using classification systems is 

usually superior to building them up manually that is usually tedious, costly, 

and time-consuming in the domain of products and services. To date, ontolo-

gies for 13 product classification systems of different scopes, sizes, and struc-

tures such as CPV, UNSPSC and eCl@ss have been created using the PCS2OWL 

tool and are available online. Web Ontology Language (OWL) can be used to 

explicitly represent the meaning of terms in vocabularies and the relationships 

between those terms in an ontology. OWL has more facilities for expressing 

meaning and semantics than XML, RDF, and RDF-S, and thus OWL goes be-

yond these languages in its ability to represent machine interpretable content. 

In addition to these ontologies that have been developed based on e-

procurement classification systems for modelling procurement products, some 

ontologies have been developed for considering more details of the e-

procurement process. Nečaský (Nečaský et al., 2014) argue that none of availa-

ble product or e-procurement ontologies such as LOTED, MOLDEAS, KOCIS, 

Call for Anything, GoodRelations appears sufficient for matchmaking demand 

                                                 

 

24 www.w3.org/OWL 
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and supply on the procurement market. Therefore, they designed Public Con-

tract Ontology (PCO) that specifically targets public contracts.  

PCO is comprised of two main classes, called pc:Contract and pc:Tender as 

the core concepts that are complemented using other ontologies’ concepts. For 

example, it reuses gr:offering for modelling contract and tender items, 

gr:PriceSpecification for modelling pricing conditions and gr:BusinessEntity for 

modelling contracting authorities from GoodRelations Ontology1. Regardless of 

supplementary concepts such as locations, dates and so on that can be defined 

or reused to enrich such ontologies, one of the most concepts for a procurement 

ontology is the class used for modelling the classification of products and ser-

vices. PCO reused Simple Knowledge Organization System (SKOS2) to express 

code lists and classifications based on CPV.  

In a similar approach called MOLDEAS (Alvarez et al., 2012), an ontology 

for public procurement data has been designed. The main entity of this ontolo-

gy is moldeas-onto:Notice class for modelling the tender notices, that is comple-

mented by other classes such as moldeas-onto:Country and moldeas-onto:Region 

for modelling Geographical information. MOLDEAS reuses concepts of existing 

vocabularies and ontologies as well. For example, gr:ProductOrServiceModel 

class of GoodRelations is reused for describing contract type. Similar to PCO, 

SKOS concepts have been reused for modelling the product classification sys-

tem but it reused GoodRelations entities to link product scheme classifications. 

Public Procurement Ontology, PPROC, is another ontology developed 

based on PCO. The main difference between this ontology and other similar on-

tologies is that PPROC is designed not only for procurement data modelling 

and data sharing of public procurement contracts but also for management of 

whole procurement process. Furthermore, it focuses on transparency on data 

sharing in public procurement.  

PPROC reused the core concepts of PCO such as pc:tender, pc:supplier and 

pc:contractingAuthority, complemented it with inherited or new concepts such as 

pproc:contract and detailed attributes such as pproc:awardDate necessary for the 

detailed description of buyer profile. In contract classification, PPROC has ex-

tended the pc:kindScheme by defining several class taxonomies for different 

types of contracts. For product or service classification, a combination of CPV 
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vocabulary as the primary and gr:offering class of GoodRelations as the extend-

ed taxonomy are exploited (Esteban, 2015; Muñoz-soro et al., 2016).  

As mentioned, the classification of the products and services that consti-

tute a B2B document is one of the most useful information available in such on-

tologies for developing a product matching service. These classifications, nor-

mally are defined based on the available standard classification systems such as 

CPV, UNSPSC and GPC. Even though the structure and features of such 

Knowledge Organization Systems are very heterogeneous, they enable users to 

annotate information providing an agile mechanism for performing tasks such 

as exploration, searching, automatic classification or reasoning (Alvarez et al., 

2012). 

Since the proposed e-catalogue matching mechanism focuses on utilizing 

the product data on the search process, the vocabulary used on the procure-

ment ontologies appear to have a higher impact on the matching results than 

the other classes defined in the ontologies. In a tender, e-catalogue, contract 

award notice or generally a procurement document rather than the products or 

services, other main information sections such as contract restrictions, buyer 

and supplier profile and deadlines are also available. Even though this infor-

mation is a valuable resource of data for matching a search query to available 

calls or e-catalogues, employing it in matching process is another search do-

main and beyond the scope of this research work.  

Therefore, the proposed e-catalogue matching engine doesn’t use such da-

ta and focus on exploiting product related information such as title, description 

and classification of product items in the matching process. The existing pro-

curement ontologies not only focused on all aspects of procurement data at the 

same time that may not have value added in product matching, many concepts 

of such ontologies have designed to address legislation specifics and process 

management issues than the product search process.     

5.2.2 Ontological Matching 

As discussed, it is straightforward to have an ontology for the semantic 

presentation of each e-catalogue. In the case of standard formats, the relevant 
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ontologies have been published by making ontologies from their product classi-

fication systems. For enterprise specific e-catalogues, ontologies can be provid-

ed by their companies using available tools such as pcs2owl. Once the reference 

ontologies have been derived from the standard classification systems, they can 

be used to describe a given catalogue of products and services (Beneventano & 

Montanari, 2008). 

Semantic expansion of the e-catalogue matching process aims to find se-

mantically related terms between e-catalogues. The idea is to enrich vector of 

each e-catalogue with semantic concepts that can be extracted from its terms. In 

this way the term-vector of each e-catalogue is expanded by terms of all seman-

tic concepts that exist in the e-catalogue. Each distinct concept or property rep-

resents one extra term in the vector space. Adding these terms to the vectors 

enables the matching process to find semantically similar e-catalogues: 

 

  )()()( DVDVDVDV SemSynBase        (5.10) 

 

In other words, each e-catalogue is considered as a combination of seman-

tic entities and its previous terms including the basic keywords and the syntac-

tic elements. 

 

EPDD           (5.11) 

 

Where E is the set of existing semantic concept in document D, extracted 

by the semantic term expansion process and P is the positional terms that have 

been extracted by syntactic term extension process.  

Term expansion process that is shown in Figure 5.6 using pseudocodes, 

tries to extend V(D), the term-vector of an e-catalogue, by synonyms, similar 

and semantically related concepts to the terms of the e-catalogue. The process 

starts with determining existing entities in the e-catalogue.  
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expand_vector (e-catalogue) 

{ 

TermVector = extractTermVector (e-catalogue); 

foreach Term in TermVector 

{ 

TermVector = TermVector ∪ Select_synonyms_term 
(Term);//select synonyms from WordNet 

} 

Ontologies = selectOntologies (e-catalogue); 

EntityVector = {}; 

foreach Ontology in Ontologies 

{ 

foreach Term in TermVector 

{ 

Entity = selectEntity (term, Ontology); //check if the term 
is an entity in the ontology 

EntityWeightCoefficient Entity = 1; //equivalency coefficient 
of syntactic and semantic similarity 

if ((Entity ≠ Ø) and (Entity ∉ EntityVector)) 

{ 

RelatedEntitiesSet = {}; 

RelatedEntitiesSet = selectRelatedEntitiesSet (Entity, 
Ontology, EntityWeightCoefficient Entity); 

EntityVector= EntityVector ∪ {Entity} ∪ RelatedEnti-
tiesSet; 

} 

} 

} 

return (EntityVector U TermVector) 

} 

 

Figure 5.6. Term expansion process 
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selectRelatedEntitiesSet (Entity, Ontology, EntityWeightCoefficient Entity) 

{ 

PREFIX owl: <http://www.w3.org/2002/07/owl#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

SELECT ?RelatedEntities 

WHERE  

{ 

{ 

?RelatedEntities owl:equivalentClass | rdfs:subClassOf ?Entity. 

} 

UNION 

{ 

?Entity owl:equivalentClass | rdfs:subClassOf ?RelatedEntities. 

} 

} 

If (RelatedEntities ≠ Ø) 

{ 

Results = RelatedEntities; 

foreach RelatedEntity in RelatedEntities 

{ 

EntityWeightCoefficient RelatedEntity = ½ * EntityWeightCoefficient 

Entity; 

Results = Results U selectRelatedEntitiesSet (RelatedEntity, On-
tology, EntityWeightCoefficient RelatedEntity); 

} 

return (Results); 

} 

else  

return (Ø); 

} 

Figure 5.7. Related entities extraction process 
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selectOntologies (e-catalogue) 

{ 

If ( isStandard (e-catalogue) ) 

{ 

return ontology that is made based on classification system 

of the e-catalogue; 

} 

else  

  { 

return all ontologies from the ontology repository; 

} 

} 

Figure 5.8. Relevant ontology selection 

 

In order to determine existing entities, first the relevant ontology for the e-

catalogue is selected based on its classification system (Figure 5.8). If no ontolo-

gy can be found in the repository for the e-catalogue that can occur especially in 

the case of unstructured and unknown formats, the algorithm uses all available 

ontologies in the system and tries to recognize any available entity in the e-

catalogue. The ontology repository of the system can be enriched by all availa-

ble ontologies from various accessible resources such as (Hepp, 2008), (Stolz et 

al., 2014) and (T. Lee et al., 2006).  

Let O be the selected ontology for e-catalogue D, the process should de-

termine E as a subset of O that consists of the semantic concepts of D:  

OE            (5.12) 

For this purpose, each term is compared with the entities of the ontology 

to check if there is an entity for describing the term. The list of terms already 

enriched by the synonyms of terms. So far, E can be considered as:  

  OeeeeE
ntttt  ,...,,,

321
       (5.13) 
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Where 
it

e is an entity for describing term it of document D in ontology O. 

While 
te can be determined from t  using exact string matching, a NER based 

method has been used for this function. The NER method will be explained in 

details in the next section.       

Next, a list of all related entities to each 
te is extracted using an iterative 

process that is implemented using a recursive procedure shown in Figure 5.7. 

The procedure that is called selectRelatedEntitiesSet, accepts an entity and an on-

tology as input and recursively returns all related entities to the given entity 

from the given ontology. Therefore, for each 
te we will have a set of related 

entities that will be added to E in order to enrich )(DVSem : 

    OeeeeeeeeE otttt n
 ,...,,,,...,,, 321321

      (5.14) 

And, 

 EewDV i

e

iSem )(         (5.15) 

In order to extract related entities, owl:equivalentClass and rdfs:subClassOf 

predicators were used. The procedure can be extended easily with a more 

complete list of predicators. Note that the entity extraction process discards re-

petitive entities in order to avoid infinitive loops in the extraction of the related 

entities.  

In order to justify the impact of the extracted entities on semantic similari-

ty ratio, by the geodesic distance of each entity to the relevant term, a weighting 

coefficient has been considered for each entity. The default value for the 

weighting coefficient is 1 and in each level of relationship chain, it is divided by 

2. This weighting coefficient will be multiplied by the weight of the entity in the 

term vector. The default value is set to 1 that shows an entity in the first level of 

relationship chain, shown as te , has the same value as the relevant term t. But 

the values of the entities decrease with the increase in their geodesic distance in 

ontology graph from the relevant terms:  

),(istancegeodesic_d2

1
enthtCoefficiEntityWeig

eet
    (5.16) 
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Therefore, e

iw  that is the weight of semantic concept 
ie in )(DVSem

 can be 

calculated as:   
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Distancet  (5.17) 

 

As mentioned the numerator of the Entity Weight Coefficient fraction is 

set to 1 by default that shows an entity (in the root of relationship graph) has 

the same value as a term in the term vector. To give a higher importance to the 

semantic similarity than the syntactic similarity, the default value can be in-

creased to ec . By assigning different coefficients to the weights, the impact of 

each type of similarity on the overall similarity ratio can be controlled: 

 

)(.c)(.c)(.cV(D) epd DVDVDV SemSynBase       (5.18) 

or, 







omn

i

iiwc
1

2V(D)         (5.19) 

 

Finally, the extracted entities are added to the term vectors that enables 

the matching process to find semantically related e-catalogues. Consequence 

term vectors have some terms related to the semantic concepts, in addition to 

terms relevant to syntactic structures. The similarity ratio that is calculated us-

ing such vectors is a combination of all these similarity measures. 
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Figure 5.9 A sample ontology based on CPV 

 

As an example, suppose the ontology of Figure 5.9 is selected for the e-

catalogue of Figure 5.10. This sample ontology is made based on the CPV 

standard classification system and will be used to expand the terms of the sam-

ple e-catalogue.  

 

 

Figure 5.10 A part of a structured e-catalogue 
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Table 5.3 Syntactic Terms for Mobile in Figure 5.10. 

Value Terms  Ratio 

Mobile Mobile 

Name/Mobile 

Item/Name/Mobile 

CatalogueL-

ine/Item/Name/Mobile 

Item/Mobile 

CatalogueLine/Item/Mobile 

CatalogueLine/Name/Mobile 

CatalogueLine/Mobile 

1 

1 

1 

1 

½ 

½ 

½ 

¼ 

 

 

Table 5.4 Related entities to the term Mobile. 

Term Related Entity Coefficient 

Mobile Mobile_telephones 

GSM_telephones 

Transmission_apparatus 

telecommunication 

ProductOrService 

Product 

32000000 

1 

 

 

 

 

 

 

 

Table 5.3 shows the syntactic terms, P, that were added to the vector of 

this e-catalogue for the value Mobile in the attribute name by syntactic term ex-
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pansion process. For a complete sample of the syntactic term expansion please 

refer to the previous section. Semantic term expansion process extracts the re-

lated entities to each of these terms, E, from the selected ontology O. Table 5.4 

shows the related entities to the term Mobile extracted from the sample ontolo-

gy. 

5.2.3 Synonym Matching 

As discussed, product data is distributed in various levels in structured 

and semi-structured e-catalogues. Attribute values that are the leaves of the tree 

in a tree presentation of such documents, constitute the main product aware da-

ta. For interpretation of such data, we have to use domain specific semantic re-

sources. Therefore, as explained in the previous part, we used product classifi-

cation ontologies to expand the terms. 

Since the terms in other levels of the tree are not necessarily domain-

specific terms, in this section we want to use a more general semantic resource 

to interpret the data of upper levels. One of the most common approaches in 

semantic Vector Space Model is to expand the terms using their synonyms in a 

vocabulary set. Many researchers exploit WordNet lexical database to enrich 

the vectors with the synonyms of the terms (Turney & Pantel, 2010).  

WordNet is a large lexical database of sets of synonyms that is freely and 

publicly available. Synonym sets are interlinked by means of conceptual-

semantic and lexical relations. The structure of WordNet makes it a useful tool 

for computational linguistics and natural language processing. This approach is 

useful, simple and practical. Therefore, we have used it as a complimentary 

part of our semantic term expansion process. 

As an example, consider term CatalogueLine/Item/Name/Mobile in Figure 

5.10. According to Table 5.4, seven related entities are available for attribute 

value Mobile and this term will be expanded as Table 5.5 using the explained 

approach in the last part. 
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Table 5.5. Ontological term expansion. 

Term Related Entity Expanded Terms 

Mobile Mobile_telephones 

GSM_telephones 

Transmis-

sion_apparatus 

telecommunication 

ProductOrService 

Product 

32000000 

CatalogueLine/Item/Name/ 

Mobile_telephones 

CatalogueLine/Item/Name/ 

GSM_telephones 

CatalogueLine/Item/Name/ 

Transmission_apparatus 

CatalogueLine/Item/Name/ 

telecommunication 

CatalogueLine/Item/Name/ 

ProductOrService 

CatalogueL-

ine/Item/Name/Product 

CatalogueL-

ine/Item/Name/32000000 

 

In order to complete term expansion process using synonyms from 

WordNet, we consider element and component as synonyms of item; and label, 

brand and fullname as synonyms of name in the dictionary. Table 5.6 shows the 

results of the synonymous expansion of the term CatalogueL-

ine/Item/Name/Mobile in Figure 5.10 and one of its ontological expansions (term 

CatalogueLine/Item/Name/Mobile_telephones).  

 

Table 5.6. Synonymously term expansion. 

Term  Synonymously Expanded Terms 

CatalogueL-

ine/Item/Name/Mobile 

 

CatalogueL-

ine/Item/Name/Mobile 

CatalogueLine/element/Name/ 
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Mobile 

CatalogueLine/component/Name/ 

Mobile 

CatalogueLine/Item/Label/Mobile 

CatalogueL-

ine/Item/Brand/Mobile 

CatalogueLine/Item/Fullname/ 

Mobile 

CatalogueLine/element/Label/ 

Mobile 

CatalogueLine/element/Brand/ 

Mobile 

CatalogueLine/element/Fullname/ 

Mobile 

CatalogueLine/component/Label/ 

Mobile 

CatalogueLine/component/Brand/ 

Mobile 

CatalogueL-

ine/component/Fullname/Mobile 

CatalogueL-

ine/Item/Name/Mobile_telepho

nes 

CatalogueL-

ine/Item/Name/Mobile_telephones 

CatalogueLine/element/Name/ 

Mobile_telephones 

CatalogueLine/component/Name/ 

Mobile_telephones 

CatalogueL-

ine/Item/Label/Mobile_telephones 

CatalogueL-
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ine/Item/Brand/Mobile_telephones 

CatalogueLine/Item/Fullname/ 

Mobile_telephones 

CatalogueLine/element/Label/ 

Mobile_telephones 

CatalogueLine/element/Brand/ 

Mobile_telephones 

CatalogueLine/element/Fullname/ 

Mobile_telephones 

CatalogueLine/component/Label/ 

Mobile_telephones 

CatalogueLine/component/Brand/ 

Mobile_telephones 

CatalogueL-

ine/component/Fullname/Mobile_telep

hones 

 

5.3 B2B-Product NER 

As explained in the previous section, the proposed semantic term expan-

sion compares each term of a vector with the entities of the relevant ontology to 

check if there is an entity for describing the term. The process adds the potential 

related entities to the vector in order to enrich the vector with the semantically 

related concepts to the existing terms. In order to find the entities from the e-

catalogues the matching mechanism uses NER during indexing phase.   

Hence, as a requirement of the developed e-catalogue matching engine, 

this section presents a B2B-Product NER process that can serve as the basis for 

other B2B information systems such as semantic search mechanisms and docu-

ment classifier systems in B2B e-Commerce as well. Although several works 

have been done on developing semantic search, semantic modelling and se-
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mantic matchmaking on B2B documents, a NER model for entity recognition in 

B2B context is the missing part such works. This will help the semantic search 

mechanisms to find product mentions from various B2B documents that can be 

a necessary block for e-procurement information retrieval systems such as the 

proposed e-catalogue matching engine, and a complementary work for e-

procurement semantic data modelling systems such as (Nečaský et al., 2014) 

and (Esteban, 2015). B2B-Product NER can help the information retrieval sys-

tems in extracting important and meaningful keywords in both data indexing 

and query generating tasks. Furthermore, the recognised elements can comprise 

the dynamic classifications for faceted search services in information retrieval 

systems.  

For semantic data modelling systems (Nečaský et al., 2014)(Esteban, 2015), 

the NER process can help them in extending the modelling to new data re-

sources. These systems that rely on the concept of linked open data, develop an 

ontology to model and publish the linked data; and a search system to query 

call for tenders. Mapping the data to the ontology concepts is the most expen-

sive step in this process (Esteban, 2015). Therefore, usually the mapping and 

data transformation is done for the main data fields from known structures. The 

proposed NER mechanism can extract elements that are covered in text descrip-

tions and other unstructured attributes and also can reduce the manual steps of 

the mapping in annotating new data resources that have different schema. To 

achieve this purpose, the results of the NER process can be saved into RDF or 

similar structures as defined in the procurement semantic models that later can 

be queried using SPARQL.  

Among various kinds of NER techniques, learning-based approaches 

show reasonable results while requiring less manual work. Unfortunately, su-

pervised learning approaches require large amounts of annotated training data 

in order to be effective. Since making such annotated data needs manual efforts, 

this thesis proposes to use standard e-Catalogues such as UBL, BMEcat and 

cXML as the training set in order to recognize entities from other e-Catalogues. 

The schema of a standard e-Catalogue is known and can be used to find the 

place of product mentions in the document. Furthermore, products in a stand-

ard e-Catalogue are usually defined according to a standard product classifica-
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tion system such as CPV. These relationships are represented using identifiers 

that refer to the relevant product classes in a given classification system.  

The main objective is to recognize mentions of products in e-catalogues 

and map them to the relevant entities in the given products classification sys-

tem. This will help the search mechanism to match various expressions of the 

same products. 

As mentioned the learning-based NER mechanisms usually require mas-

sive training sets to be accurate. Since providing a large annotated product da-

taset that could be used as the training set for CRF model needs manual efforts 

and can be very expensive and time-consuming, a self-learning method 

(Teixeira, Sarmento, & Oliveira, 2011) (Vieira et al., 2015) (Putthividhya, Hu, & 

Ave, 2011) has been used to bootstrap the training set.  

This section adopts a supervised named entity recognition method for 

product named entity extraction problem from tender notices. The proposed 

method uses e-tenders as the training set in order to learn to recognize B2B-

Product entities. The idea here is to use these already known product mentions 

and their references as the training data to train the model and then use the 

trained model to recognize the product mentions from other B2B documents.  

5.3.1 Bootstrapping 

While gazetteers can be used to perform named entity recognition through 

lookup-based methods, ambiguity and incomplete dictionaries lead to a 

relatively low recall. A learning-based approach which uses more general fea-

tures can achieve higher recall while maintaining reasonable precision, but typ-

ically requires expensive annotated training data. In order to provide such 

training data, bootstrapping methods have been proposed to train learning-

based NER models. 
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Figure 5.11 Bootstrapping process 

 

While several bootstrapping approaches have been proposed for training 

NER classifiers, the general technique which is illustrated in Figure 5.11 is to 

start from a small set of labelled training examples and generate more training 

data from unlabelled data. Usually, a dictionary-based approach is used to an-

notate a text collection using an initial dictionary of already known entities. 

Then the annotated collection is used as the input for training the NER model. 

Finally, the trained model is used to extract new named entities from the text. 

Even though it is not crucial, this procedure can be repeated iteratively by add-

ing new entities to the initial dictionary until the trained model satisfies the de-

sired measures for the application. 

For example in a bootstrapping approach, first, a labelled dataset is auto-

matically generated by matching a manually prepared  initial seed list of 6312 

brand names to an unlabelled dataset (Putthividhya, Hu, & Ave, 2011). Then, 
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these auto-labelled training set is used to train a classifier to identify new enti-

ties from a separate set of unlabelled data. Thirdly, newly discovered entities 

are added back to the seed list. Thus, the original classifier for entity extraction 

can be improved through an expanded seed list i.e. by adding these newly dis-

covered entities back to the seed dictionary, the supervised NER system can be 

retrained with the extended seed list.  

An iterative bootstrapping method for extracting names of person was 

started by annotating person names on a dataset of 50,000 news items (Teixeira, 

Sarmento, & Oliveira, 2011). This was performed using a simple dictionary-

based approach. Using the annotated news as the training set, a classification 

model was built based on Conditional Random Fields (CRF). Finally, the 

trained CRF model was used to extract the entities from the text. The extracted 

entities were again used for annotating the training set that was used to train a 

new CRF model. This cycle was repeated until the NER model stabilized. Re-

ported results show that this bootstrapping approach stabilizes after 7 itera-

tions, achieving high values of precision (83%) and recall (68%). 

Also, a dictionary-based NER framework based on a Local Filters model 

was used to recognize Persian named entities (Khormuji, 2014). The method is 

first to detect named entity candidates using lookup dictionaries and second to 

filter false positives by filtering out noisy matches of the first stage. The integra-

tion is done by feeding the output of the dictionary-based system as the training 

set to a machine-learning classifiers. 

A dictionary of known entities can also be used as a complimentary fea-

ture into a classifier in learning-based entity extraction25. But in bootstrapping, 

these seed values are used to either automatically generate labelled training da-

ta or to extend the initial dictionary itself. The method and the implementation 

details of the bootstrapping process depend on the application and can be dif-

ferent in various cases. 

                                                 

 

25 For example this option is available in Stanford NER by adding RegexNER annotator 

into the NER pipeline 
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5.3.2 Learning-based B2B NER 

We employ the idea of using a dictionary for providing the annotated 

training set needed for supervised learning from bootstrapping approaches. 

Although in bootstrapping approaches the training set is produced automatical-

ly, but the initial dictionary is still prepared manually by the experts 

(Putthividhya, Hu, & Ave, 2011). In this section, an automatic approach has 

been used to prepare the initial dictionary and no manual step exists on the 

proposed method.  

 

 

Figure 5.12 B2B-Product NER training and test Process 
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Figure 5.12 summarises all the process including making the training da-

taset, training the model and application of the model. As it can be on the Fig-

ure, in summary, the process starts by preparing a dictionary of B2B products 

from online available resources of B2B tenders. This dictionary is used in a gaz-

etteer-based approach to prepare an annotated corpus. The annotated corpus 

has comprised the training set for training a learning-based model. Finally, the 

trained model is tested to extract B2B-Product named entities from four differ-

ent datasets of B2B tenders. The following subsections explain the first and sec-

ond phases and the next section will explain the third phase in details. 

5.3.2.1 Making the dictionary 

E-procurement documents such as Contract Notices, e-Tenders and e-

Catalogues contain information about products and services. For example in 

Contract Notice commodities being procured are specified, Tender has the 

products being quoted as per the call and Catalogue has the products from the 

supplier’s inventory (Ghimire, Jardim-Goncalves, & Grilo, 2013). Because of 

open tendering policy that tries to open up sufficient and fair competition be-

tween suppliers, e-Tenders are the most publically available resources of e-

procurement documents. This huge resources of e-procurement documents can 

provide the required data for making the training set.     

Tendering is a kind of reverse auction in which suppliers bid on the ser-

vices or goods that buyers need (Du, 2009). In this procedure, different bidders 

generate competing offers on tenders and look to obtain an award of business 

activity in works, supply, or service contract (Dorn et al. 2009). In order to have 

a great improvement on the accessibility and transparency of tenders and pro-

vide equal opportunities to all suppliers, e-Tendering Marketplaces should be 

accessed anywhere globally. The publically noticed tenders in such marketplac-

es are used by various companies to find business opportunities.  

Hence, we used e-Tenders of public Tendering Marketplaces as the data 

source. Tenders Electronic Daily (TED)26 is the online version of the “Supple-

                                                 

 

26 ted.europe.eu 
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ment to the Official Journal” of the EU, dedicated to European public procure-

ment. TED provides free access to business opportunities from the European 

Union, the European Economic Area and beyond. Every day, from Tuesday to 

Saturday, a further 1,700 public procurement notices are published on TED. 

The main challenge here is to develop an automatic method to utilise such 

a huge and useful resource of procurement data in order to provide an annotat-

ed data resource. For this purpose, the titles and CPV references of tender no-

tices from TED are used as entries of the dictionary of B2B products. The titles 

of tenders in TED refer to the products or services that are the subject of the 

tender. Therefore, the titles are used as the potential B2B-Product Entities for 

making the initial dictionary. Within these titles, those who consist of a few 

words are mostly the name of the desired product or service in the relevant 

tender. CPV codes are used in tenders in order to refer to the category of de-

sired product or service in the Common Procurement Vocabulary classification 

system. These code references also contain several expressions related to the 

topic of the tender. These expressions are used to enrich the dictionary of short 

titles with longer product names. Figure 5.13 shows the title and Figure 5.14 

shows the CPV references of a Tender Notice from TED.  

 

 

Figure 5.13 Title of a Tender Notice from TED  

 

Therefore, the titles that consist of one word, two words or three words 

and all the CPV references are extracted from the tenders and considered as the 

primary dictionary of B2B-Product entities. Using this method after removing 
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duplicate entries, a primary dictionary including 776 one-word, 2507 two-word, 

1396 three-word titles and 8691 CPV references has been made from 446419 

tenders that had been published in TED in 2014.  

 

 

Figure 5.14 CPV references of a Tender Notice from TED  

 

 

Figure 5.15 B2B-Products Dictionary 

 

Figure 5.15 illustrates a sample of the generated B2B-Products dictionary. 

The first column shows the product title and the second shows the type of the 
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named entity in the NER system. This file structure can be used as the diction-

ary for many dictionary-based NER tools (Llorens, Saquete, & Navarro-

Colorado, 2013).  

5.3.2.2 Annotating the data  

In the next step, the primary dictionary was used as the seed list in a dic-

tionary-based NER approach. The dictionary-based NER approach was applied 

to the tenders’ descriptions in order to label product names in the tender de-

scriptions using exact matching to the entries of the dictionary. Descriptions of 

the tenders convey more details about the desired products and services. From 

the Named Entity Extraction point of view, they have more words than the ti-

tles and comprised of sentences.  

The Dictionary-based NER extracted the existing B2B-Product entities 

from the descriptions according to the primary knowledgebase gazette list and 

annotated them in the text. The output of this step is an annotated corpus which 

involves the B2B-Products annotated in product description sentences. Figure 

5.16 shows a sample of the annotated corpus. In this file the Insurance service is 

marked as “B2BProduct” and the other parts of the sentence are tagged as “O”. 

 

 

Figure 5.16 Sample annotated Corpus 
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The result annotated description corpus is used as the training set for 

training a CRF model using Stanford NER tool27. The training set is provided in 

a standard format and can also be used in any other NER framework. Stanford 

NER is a Java implementation of a Named Entity Recognizer and provides a 

general implementation of CRF models. That is, by training a model, actually 

this code can be used to build sequence models for any task. 

Since statistical NER systems such as CRF typically require a large amount 

of annotated training data (Khormuji, 2014), making the training set manually 

can be time-consuming, expensive and exhausting. Therefore, as mentioned, the 

annotated output of the dictionary-based NER system was fed to the CRF train-

ing process as the training set. In the same way, it can be fed to any other su-

pervised machine-learning system that requires such a training set. This can 

provide an enormous training set for B2B product NER that is important in or-

der to have a satisfying trained model without any manual efforts. The training 

set and its features for a NER system are the most important aspects of any 

NER system. 

 

 

Figure 5.17 Named Entity Extraction from B2B context 

 

                                                 

 

27 http://nlp.stanford.edu/software/CRF-NER.shtml 
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The last step is to use trained model for NER task in B2B context that is 

explained in details in next section. The trained model can be used in a NER 

tool (Figure 5.17) in order to extract the Named B2B-Product entities from e-

Catalogues, e-Tenders and other B2B documents. The extracted entities not only 

include the products from the initial dictionary, but also newly discovered 

products as well as misspelled versions of the known products in the initial dic-

tionary. Later, these entities can comprise the search elements of any semantic 

B2B product retrieval system. 

5.4 Proposed Methodology Steps 

The developed product matching method exploits the structures and se-

mantics of product e-catalogues in term definition in order to use both syntactic 

and semantic concepts in calculating the similarity among products in B2B 

marketplaces. The e-catalogue matching engine that has been implemented us-

ing this method is capable of finding similar products from various types of e-

catalogues. 

The search engines utilize the semantic technologies to interpret the data 

elements and relationships among the data elements. It not only uses the 

structures, but also utilizes the semantic interpretation of the terms in data in-

dexing and search processes.  

The product classification systems and ontologies that are built based on 

(Stolz et al., 2014) are used in an iterative process to extract the semantic rela-

tionships among product data. Product classification systems are standard cat-

egorizations that are used for describing goods and services in e-procurement. 

These classifications can be used as semantic resources to describe the products 

mentioned in e-catalogues, tenders and other procurement documents as well. 

The iterative process extends the term-vector of a product e-catalogue 

with synonyms, similar and semantically related terms of its terms. The process 

starts with determining existing entities in the e-catalogue. The procedure ac-

cepts an entity and an ontology as inputs and recursively returns all related en-

tities to the given entity from the given ontology. Before that, the relevant on-
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tology for the e-catalogue is selected based on its classification system. If no on-

tology can be found in the repository for the e-catalogue that can occur especial-

ly in the case of unstructured and unknown formats, the algorithm uses all 

available ontologies in the system and tries to recognize any available entity in 

the e-catalogue. The ontology repository of the system can be enriched by all 

available ontologies from various accessible resources such as (Hepp, 2008) and 

(Stolz et al. 2014).  

In order to summarize the proposed approach for applying VSM to e-

catalogue matching problem, all the steps are resumed as following: 

1. Tokenization: extracting terms from e-catalogues using the NLP tool 

2. Vectorization: making term-vectors 

a. Syntactical extension: Extending terms using name, value and lo-

cation of attributes  

i. Representing the tree structure of the e-catalogues 

ii. Extracting locational values of the attributes 

iii. Excluding extra information and adjusting the importance 

of attribute 

b. Semantic extension: Extending terms using related concepts from 

a domain ontology 

i. Extending terms using their synonyms 

ii. Selecting relevant ontology 

iii. Recognizing existing entities 

iv. Iterative extraction of related entities 

c. Adding extended terms to the term-vectors 

3. Calculating the similarity score 
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5.5 Summary  

Based on many standards and data resource, e-catalogue search  is 

affected by integration problems (Chen, Li, & Zhang, 2010). Since IR-based 

methods are applicable to wide range of structured and unstructured 

documents which we encounter in matching e-catalogues, this research work 

proposes a Vector Space Model approach to search e-catalogues. Furthermore, 

these methods target loosely structured data, thus useful and generally 

exploited for fast simple structured search and retrieval (Tekli, Chbeir, & 

Yetongnon, 2009). 

In the proposed matching mechanism (Mehrbod, Zutshi, & Grilo, 2014a), 

VSM has been used to measure the similarity ratio of providers’ e-catalogues 

with a buyer’s e-catalogue. Combinations of values and attributes of structured 

e-catalogues have been used to find the correlation of documents based on the 

relationship of their common items. In order to associate the structures in calcu-

lating the similarity score, levels of attributes in XML documents are included 

in the search element definition. Then a simple table of coefficients has been 

used to specify the matching model for standard e-catalogues. This mechanism 

increases the search precision by removing unrelated information from the 

matching process and boosting weights of important tags.  

The proposed solution exploits the structures as much as their details are 

known whilst it is independent of the structures. Structure independency pro-

vides the ability to match unstructured information as well as unknown struc-

tures. Although the structure can be discarded (Lee et al., 2007) in order to pro-

vide search indexes for matching e-catalogues regardless of the structures, the 

information existing in structures is valuable and can be helpful in matching 

process. 

This syntactic matching approach has been extended using a semantic 

mechanism (Mehrbod et al., 2015) which is not dependent on the underlying 

ontologies and schemas. While the syntactic method uses a combination of val-

ues, names and location of attributes of structured information to find the syn-

tactic correlation of e-catalogues, the semantic method uses domain ontologies 

to expand the matching mechanism with existing semantic relationships among 

data attributes. In this process vectors of each e-catalogue were enriched with 
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semantic concepts that exist in the e-catalogue. Adding semantic relationships 

to the terms of the vectors enables the matching process to find semantically 

similar e-catalogues. Combining semantic queries with information retrieval 

techniques makes it possible to use the benefits of all available ontologies and 

schemas but not to be dependent on them. 

An entity recogniser has been trained to help the semantic matching 

mechanism in recognizing the products mentioned in e-catalogues. Such prod-

uct mentions constitute the existing semantic concepts in the search domain. 

Learning approaches require large amounts of annotated training data in order 

to be effective. Since making such annotated data needs manual efforts and 

should be repeated manually for any new data resource, we develop an auto-

matic self-training mechanism to train the required model for the learning-

based NER approach. 

The goal is to use these already known product mentions and their refer-

ences as the training data to train the model and then use the trained model to 

recognize the product mentions from unknown e-catalogue structures. 
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6 Validation 

In the previous chapter, a multilayer solution has been proposed to solve 

different aspects of the e-catalogue matching problem. In this chapter, the pro-

posed mechanism will be tested in order to evaluate its capabilities in different 

possible search scenarios in a B2B e-marketplace. Four test cases as summarised 

in Table 6.1 will be applied to the proposed matching mechanism.  

The first test scenario (Supplier finder) represent the capability of the 

proposed matching process in matching diverse structures and semantics of 

catalogues from various resources.  

The second test scenario (Opportunity Finder) evaluated the ability of the 

e-catalogue matching engine for matching synonym queries in the tender 

search process. The tender search is one of the most common search scenarios 

in B2B e-marketplaces. The goal of the test is to improve search performance 

and to help the suppliers in finding more relevant opportunities. 

The third test scenario also applied and tested the developed product 

matching engine in finding tenders from public procurement resources. But this 

test evaluated the capability of the matching mechanism to use available se-

mantic data and tolerating absence of semantic information as well.  

The B2B-Product NER test addresses the issue of extracting meaningful 

sequence of words from documents in e-procurement domain. Extracting 

6 
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meaningful sequences of the words from text is an important task of 

information extraction called NER. In the case of e-Procurement domain, these 

meaningful sequences are the products, works or services that are mentioned in 

a tender or e-catalogue. 

 

Table 6.1 Overview of the test cases  

Test Method Target 

Supplier Finder Information 

Retrieval 

Test the capability of the matching mecha-

nism in solving semantic and syntactic het-

erogeneity 

Opportunity finder Information 

Retrieval 

Test the capability of the matching mecha-

nism in improving opportunity search and 

encountering synonym queries 

Multi-Resource 

Matching  

Information 

Retrieval 

Test the capability of the matching mecha-

nism in using available information and tol-

erating lack of information 

B2B-Product NER Information 

Extraction 

Supporting the matching engine in recog-

nizing the searchable items 

6.1 Evaluation Measures 

In information retrieval, precision and recall are the two most used met-

rics for performance measurement. The performance of search engines and 

matching mechanisms is shown and compared using these two factors and 

their combinations.  

Recall is the ratio of the number of correct answers (relevant documents) 

that are retrieved, to the number of all correct answers (All relevant docu-

ments that exist in the search repository). Therefore, the Recall factor shows the 

ability of a search engine to retrieve more correct answers from the search area. 

For example, if there are 10 documents related to a desired query in the reposi-
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tory and the search mechanism retrieves 7 of them, the recall measure will be 

0.7.  

answerscorrect  All#

answerscorrect  returned#
R        (6.1) 

Precision is the ratio of correct answers (related documents) in all re-

trieved result set.  For example, if the search method returns 10 documents (re-

lated and non-related) for a query, but only 7 of them are related to the query, 

precision is 0.7. Therefore, the Precision factor shows the accuracy of a search 

engine to retrieve less false answers from the search area. While recall shows 

the percentage of relevant results that the matching method is able to return, 

precision shows the accuracy of the method in returning more relevant results 

than irrelevant ones.  

answers returned All#

answerscorrect  returned#
P        (6.2) 

In general, recall and precision vary inversely. Increasing the precision 

rise the risk of reducing the recall, because some relevant documents may be 

erroneously rejected. Conversely, increasing the number of recalled documents 

increases the risk of many non-relevant documents being returned. Finding a 

balance between these two metrics is dependent on the mission of the search 

engine. 

 Generally, the overall performance of a search engine is shown using Pre-

cision-Recall curves that represent these two inversely related metrics 

(Mehrbod et al., 2015). The performance curves can be used to compare differ-

ent search methods. 

While the common way of evaluating results of Information Retrieval sys-

tems is using Recall and Precision curves, for evaluating Machine Learning ex-

periments usually a combination of these two parameters called F1-score meas-

ure is used. F1-score is a measure that considers both precision and recall. The 

measure can be interpreted as a weighted average of the precision and recall, 

where an F1-score reaches its best value at 1 and worst at 0 (Powers, 

2011)(Mehrbod et al., 2015)(Llorens, Saquete, & Navarro-Colorado, 2013).  
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Precision, recall and F1-score are defined based on the retrieved results set 

and correct results set. In other words, these measures are calculated on an un-

ordered set of items that there is no difference between the set members. This 

feature makes them suitable for measuring Boolean search results where an 

item either belongs to the correct answer set or not.  

In order to apply the measures to a ranked information retrieval tech-

nique, the calculations should be done for the sets of top k items in the retrieved 

results. In a ranked result set, the retrieved items are sorted by the similarity 

ratio to the search query and naturally the top list of the result set is considered 

as similar enough to the query. Usually a similarity threshold which specifies k 

or a direct approximation of k is considered based on the search domain and the 

magnitude of the search repository (Manning, Raghavan, & Schutze, 2008).  For 

example for ranked search result sets of size about 30 items, the precion and 

recall values might be calculated for k5, k10, k15 and k20.  

Calculating the precisoin for Top kx result items, gives us the precision of 

the search method for a specific recall point. For example, k5 may show the 

precision of search engine se1 for recal point r1 and precision of search engine se2 

for recal point r2 for the same query where r1 is not necessarily equal to r2. 

Therefore, prececions of se1 and se2 are not comparable on k=5. Furehtermoe, 

precision and recall values for top kx for a query may not be defined if there are 

no correct answers among top kx retrived answers. 

Hence, in order to compare the performance of search engines the 

precesions should be calculated on standard recall levels (0 to 1 in increments of 

0.1). The precision on each standard recall level can be calculated using 

interpolation. The interpolated precision value for recall level r is the highest 

measured precision value over all recalls greater than r: 

  )(maxint rprp rr
          (6.4) 

In order to make a fare compration, the interpolated precisions should be 

calculated for all queries available in the test collection. Hence, for each recall 
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level, the arithmetic mean of the interpolated precisions is considerd as the 

precision at that recall level.  

The outcome will be a 11-point Interpolated Average Precision-Recall 

table that is usually shown as a curve. Each search mechanism in the 

comparation can be shown as a curve on the average interpolated precision-

recall graph. In such graph that the curve to the top right shows better search 

performance, the search mechanisms can be easily compared.  

Another measure that have become more common and accepted as the 

most standard measure is Mean Average Precision (MAP). MAP provides a single 

figure measure of quality across all recall levels. Among evaluation measures, 

MAP has been shown to have especially good discrimination and stability 

(Manning, Raghavan, & Schutze, 2008).  

For a query, jq , Average Precision is the average of the precision values 

obtained for the set of top k returned results after each relevant document is re-

trieved. That is, the precision is calculated for all k values that a new correct an-

swer is retrieved in the results. The average of all these precessions comprises 

the Average Precision for query jq .  

The Average Precisions should be calculated for all queries Qq j   in the 

test set. These values are then averaged for all queries to obtain Mean Average 

Precision as a single measure of the performance as: 

j

m

k

jk

j
m

R

qAP

j


 1

)(Precision

)(        (6.5) 

Q

qAP

QMAP

Q

j
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1
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)(         (6.6) 

Where the set of the relevant documents (correct answers) for the query 

jq is  
jmdd ,,1   and jkR is the set of ranked retrieval results from the top results 

until you get to the document kd . In other words, for each relevant document to 
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the query, k is the rank of the document in the retrieved results and  

 
jkRPrecision  is the precision for top k retrieved documents. 

When a relevant document is not retrieved at all, the precision value in the 

above equation is taken to be 0. For a single query, the average precision ap-

proximates the area under the precision-recall curve. Therefore, the MAP is 

roughly the average area under the precision-recall curve for a set of queries. 

Using MAP, fixed recall levels are not chosen, and there is no interpolation. The 

MAP value for a test collection is the arithmetic mean of average precision val-

ues for individual information needs (Manning, Raghavan, & Schutze, 2008). 

6.2 Supplier Finder 

6.2.1 Test Scenario 

In order to test the capability of the e-catalogue matching mechanism in 

solving heterogeneity problem, a supplier finder service has been implemented 

in the e-procurement platform of Vortal. VortalNext is a large global e-

procurement platform that allows buying organizations to purchase goods and 

services cheaper and more efficiently and gives suppliers access to a greater 

number of sales and revenue opportunities. 

Vortal28 is a leading Portuguese G2B2B (Government to Business to Busi-

ness) e-sourcing an e-procurement operator and the third largest e-marketplace 

in Europe. Vortal currently has over 60,000 companies and 2000 contracting au-

thorities connected to its platform, covering the markets of Public e-Tendering, 

AEC, Health, Energy & Utilities, and Industry & Office Supplies, mainly in Por-

tugal, but now serving companies and contracting authorities in 3 continents. 

More 25 billion Euros have been awarded on its platforms. 

                                                 

 

28 en.vortal.biz 
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The supplier finder service is developed as a part of an industrial research 

project called VortalSocialApps that provides a B2B social network for compa-

nies within the VortalNext e-procurement platform. The social network makes 

it possible for the companies to share their business information and e-

catalogues directly from their local e-procurement systems in the platform.  

One of the major services that are provided by the platform to the users is the 

capability to search and find a company in the B2B social network. This service 

which is called “Supplier Finder” provides company search and e-catalogue 

matching facilities to the users and helps them to find a company using its 

business information. The e-catalogue matching mechanism that provides a 

framework for matching various e-catalogues originating from suppliers and 

buyers in the e-procurement platform helps companies to find partners and op-

portunities in the network. The service can be used to find companies using 

their profile data or/and their product e-catalogues.  

Using this service, users are able to search within the e-catalogues that are 

uploaded by various suppliers to the B2B social network. Users can use an e-

catalogue as the search query and simply upload their e-catalogues to find simi-

lar documents. This search mechanism allows users who prefer to specify the 

tag relations while searching (Tekli, Chbeir, & Yetongnon, 2009) to get rid of us-

ing content-and-structure queries (Carmel et al., 2002). Generally, two types of 

queries are possible to search within the structured data. The queries with 

structural constraints called content-and-structure, and those without con-

straints called content-only. In the other words, users can use e-catalogues as 

structured search queries but they don’t have to use a specific structured query 

language to communicate with the search engine.  

6.2.2 Data Gathering  

In order to evaluate the matching performance, a set of product e-

catalogues files in the following three general cases have been inserted into the 

e-catalogue repository.  

 First, unstructured text such as PDF files which are common in 

online commerce.  
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 Second, structured or semi-structured e-catalogues which are un-

known for the system such as enterprise-specific formats. 

 Third, structured standard documents which are known for the 

system such as cXML and UBL e-catalogues. 

The variety of document structures and schemas that have been used to 

make the search repository guarantees to model the diversity of e-catalogues 

used by various suppliers and buyers in the platform. 

6.2.3 Test Definition 

Next step is to calculate the semantic similarity between the search query 

and documents. The similarity between catalogues is measured based on the 

similarity between the products contained in each of them. In order to apply 

and evaluate the e-catalogue matching mechanism in supplier finder search 

scenario, the test that is shown in Figure 6.1, has been designed and implement-

ed. Having made the term vectors for all e-catalogues in the repository, similar 

e-catalogues to a sample e-catalogue in the platform were searched. The match-

ing ratio for the following states of the matching mechanism are shown in Fig-

ure 6.2: 

 

 State 1: The basic functionality of Vector Space Model. 

 State 2: The previously proposed syntactic e-catalogue matching 

mechanism. 

 State 3: The proposed masking mechanism for standard e-

catalogues. 

 State 4: The proposed semantic extension for e-catalogue matching 

mechanism. 
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Figure 6.1 Supplier Finder Test  

6.2.4 Test Results 

Figure 6.2 shows the normalized score results for e-catalogue matching. 

The figure shows the result of using an e-catalogue as the search query and 

then searching for similar e-catalogues that have been provided to the platform 

by the suppliers. A higher score indicates a higher similarity ratio that boosts 

the position of an item amongst the search results. Thus, increased scores for 

related e-catalogues shows improvement in matching performance. The vertical 

axis shows the percentage of similarity ratio of each retrieved e-catalogue to the 

search query. Similarity ratios are calculated using four different mentioned 
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states. Although the number of retrieved documents are more, for the purpose 

of comparison, the horizontal axis only shows three retrieved e-catalogues as 

representative of the three mentioned groups of the e-catalogues in the reposi-

tory. Document D1 is an unstructured text e-catalogue that contains associated 

information with the desired parts in the search query. Document D2 and D3 

are respectively a structured XML e-catalogue and a standard UBL e-catalogue 

that contain the same information as D1. Therefore, the containing information 

of all documents (D1, D2 and D3) are same, but they are structured in different 

ways.    

Using the basic functionality of VSM, the matching scores are lower for 

structured e-catalogues than unstructured documents, because structured doc-

uments have some extra data such as XML tags that represent their structures. 

But for the basic functionality, there is no difference between data and its struc-

ture. Therefore, this metadata that is considered as data by the basic method re-

sults in lower matching scores. Furthermore, in this state, there is no significant 

difference between standard structures and unknown structured formats for 

the system. 

Using the proposed syntactic e-catalogue matching mechanism, this 

metadata results in better matching and therefore the similarity scores increase 

for the structured documents. The extra information in the structured docu-

ments has been used to make more terms for related vectors resulting in an in-

crease in the matching scores. Calculated similarity score for the unstructured 

e-catalogue is equal to the calculated similarity score using the basic functional-

ity of VSM. Obviously, there is no structure in the unstructured document to 

help the matching process. The increase in matching score is lower for the 

standard structure than the non-standard structured document. This anomaly is 

the result of extra information such as addresses and contacts in the standard e-

catalogue that is not related to the product data. 

The proposed masking mechanism for standard e-catalogues solves the 

matching score anomaly for standard formats by eliminating unrelated data 

from similarity calculation method. As it can be seen in Figure 6.2 this approach 

increases the matching score for the standard e-catalogue. Obviously, the mask-
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ing mechanism doesn’t have any effect on similarity ratio for unknown struc-

tures.  

While the proposed syntactic matching mechanism only increases the sim-

ilarity ratio for structured e-catalogues, the semantic matching mechanism im-

proves the similarity ratio for all types of documents. Since semantically related 

terms can be detected in this approach, related e-catalogues to the search query 

have more matched terms with the query that lead to higher similarity scores. 

 

 

 

Figure 6.2 E-catalogue matching scores 
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The proposed matching mechanism not only improves the ranking result 

by increasing the similarity scores for related documents, it can also return 

more documents that is another important measure in search evaluation. 

6.3 Opportunity Finder 

6.3.1 Test Scenario 

Public procurement, also called public or open tendering, is the purchase 

of goods, works or services by a public authority, such as a government agency. 

Open tendering opens up sufficient and fair competition between suppliers and 

ensures that public contracts are awarded fairly, transparently and without dis-

crimination. This not only helps to achieve benefits such as increased efficiency 

and cost savings, but also can improve transparency in order to reduce corrup-

tion in public procurement services.  

While transparency is one of the important factors in the efficiency of a 

public procurement system, the usage of e-procurement is another important 

efficiency factor (Molander, 2014)(Miyamoto, 2015). E-procurement digitalizes 

the important aspects of the procurement process, such as search, selection, 

communication, bidding or awarding of contracts; with a specific emphasis on 

efficiency, transparency and policy in the public sector (Roman, 2013). 

Public e-procurement platforms allow reaching these objectives through a 

web-based open tendering e-marketplace. Since e-Tendering Marketplaces can 

be accessed anywhere globally, they can have a great improvement on the ac-

cessibility and transparency of tenders and provide equal opportunities to all 

suppliers (Grilo, Jardim-Goncalves & Ghimire, 2013). 

In public procurement e-marketplaces, suppliers search published tender 

notices in order to find available business opportunities that match their prod-

ucts. Matching goods and services provided by a supplier with similar tender 

calls published by contracting authorities can be a sufficient way to find suita-

ble business opportunities in B2B e-marketplaces. However, many tendering 

websites and marketplaces provide only simple keyword-based search. The 
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main drawback of such exact keyword-based search mechanisms in product 

search is their problem in detecting semantically similar products (S.-L. Huang 

& Lin, 2010). Applying semantic technologies to product search mechanisms of 

e-tendering e-marketplaces can help suppliers to find similar and semantically 

related tenders to their product e-catalogues.   

In procurement industry, companies usually exchange their product in-

formation in the form of product e-catalogues. E-catalogues are used by suppli-

ers to describe goods or services offered for sale and may be used by buyers to 

source goods or services, or to obtain product or pricing details. This product 

information can be used by a product search mechanism in order to find and 

recommend similar product requests (Julashokri et al., 2011). In this sense, a 

supplier delivers his product e-catalogue to the search engine and receives ap-

plicable tender calls sorted based on the similarity ratio to his productions. 

This test evaluates the e-catalogue matching mechanism in public tender 

search. The previous test evaluated, the e-catalogue matching engine to find 

business partners by measuring the similarity ratio of providers’ e-catalogues 

with buyer’s e-catalogues. This new test applies and evaluates it in the tender 

search process using tenders published in a public tendering website, called 

Tenders Electronic Daily, in order to improve opportunity search service. TED29 

is the online version of the 'Supplement to the Official Journal' of the EU, dedi-

cated to European public procurements. According to the EU rules on public 

procurements, information of public procurement contracts and notices pub-

lished in the EU Member States, European Economic Area (EEA) can be ac-

cessed openly on TED. 

6.3.2 Test definition  

In existing tendering e-marketplaces, suppliers use keyword-based search 

engines to find products that match their conditions. The keyword-based search 

may have low precision especially when the users use synonyms for searching 

                                                 

 

29 ted.europa.eu 
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for a product. Furthermore, theses search mechanisms cannot find potentially 

interesting products for the users that don’t match their conditions exactly (S.-L. 

Huang & Lin, 2010).  

 

 

Figure 6.3 Tender search test 

 

Semantic product search engines aim to encounter these problems by im-

proving search capabilities using semantic web technologies in information re-

trieval process. Since the mentioned e-catalogue matching engine achieved 

good results in finding semantically similar products from e-catalogues, this 

test surveys the application of the engine for finding business opportunities in 

public tenders.  
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In order to apply and evaluate the e-catalogue matching mechanism to a 

tender search scenario, the following test has been designed and implemented. 

As it can be seen in Figure 6.3, the test evaluates the improvement of tender 

search performance using the e-catalogue semantic matching mechanics. 

6.3.3 Data Gathering 

The tender notices that have been published on the TED website are used 

as the tender repository in order to search for business opportunities. Tenders 

Electronic Daily (TED) is the online version of the “Supplement to the Official 

Journal” of the EU that is dedicated to European public procurement. TED pro-

vides free access to business opportunities from the European Union, the Euro-

pean Economic Area and beyond. Ted is updated five times a week, from Tues-

day to Saturday, with more than 1,700 public procurement notices from the Eu-

ropean Union, the European Economic Area and beyond. These procurement 

notices can be browsed, searched and sorted by country, region and business 

sector. All published tenders since January 2011 have been archived in TED that 

can be used as an enormous resource of half-million procurement notices per 

year for research purposes.  

TED allows the users to search using a number of methods, including 

Business Opportunities, Business Sector (by CPV code), Place of delivery (by 

NUTS code) and Heading. Business Opportunities search is a structured search 

that the user can select interested country or countries for supplying and define 

the type of notice that is looking for. The notice types include contract (tender) 

notice, Design contest, prior information notice and Qualification system with 

call for competition. The search will return absolutely everything that’s been 

published in the last issue and can be refined based on publication date, dead-

line and so on. 

Business Sector search categorizes the notices using CPV codes that can 

help the user to narrow down the search results to the types of desired goods 

and services. Each code relates to an overarching category, with subcategories 

each having their own code. This allows the user to either search for a main cat-

egory, e.g. ‘construction’, which would deliver many results and may be too 
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broad and time-consuming to trawl through, or search more specific underlying 

layers which sit under the main category, e.g. ‘Sanitary fixture installation’. 

Place of Delivery search uses NUTS codes (Nomenclature of Territorial 

Units for Statistics) in order to allow the user to filter search results based on 

country or region which is interested in tendering for. This is useful for suppli-

ers that generally provide services locally and want to avoid results from other 

places. Heading provides the option to search by a type of authority, e.g. by Eu-

ropean Economic Area, European Commission, Government Procurement 

Agreement, international institutions, Member State, agencies and so on.  

Since the website provides the category-based search, the tenders from 

each business sector can be retrieved separately. In order to make a sample test 

repository, tenders from three different sectors including “Cable, wire and re-

lated products”30, “Insurance”31 and “Mobile telephones”32 are collected. All 

tenders from the three mentioned categories that have been published in 2015 

in the UK are collected and saved in the test repository. The test repository con-

tains 28 tenders of “Mobile telephones” category, 107 tenders of “Cable, wire 

and related products” category and 550 tenders of “Insurance” category. Each 

category contains the tenders that are considered as the correct answers for the 

related search. Therefore, a search mechanism will be considered as 100% pre-

cise, if retrieves all the tenders from a category in response to a search query for 

the topic.  

This small sample test set is used in a forthcoming demonstrative test in 

order to show the performance of the e-catalogue matching mechanism in a 

simple example. In the following, a large test set will be used to evaluate the 

performance of the matching engine in a fare test using more queries. 

                                                 

 

30 CPV code: 44300000. 

31 CPV code: 66510000. 

32 CPV code: 32250000. 
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Table 6.2 TED Test repository based on main activities  

Business section Main Activity 

code 

Number of Tenders 

Housing and community amenities A 2422 

Social protection B 321 

Recreation, culture and religion C 598 

Defence D 1073 

Environment E 574 

Economic and financial affairs F 496 

Production, transport and distribu-

tion of gas and heat 

G 345 

Health H 5172 

Airport-related activities I 240 

Port-related activities / Maritime or 

inland waterways 

K 172 

Education L 4334 

Exploration and extraction of coal 

and other solid fuels 

M 14 

Electricity N 571 

Postal services P 89 

Railway services R 380 

Urban railway/light rail, metro, 

tramway, trolleybus or bus services 

T 288 

Public order and safety U 732 

Water W 543 

Not specified/Other Z/8/9 7333 
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In order to make the comprehensive test set all tenders that have been 

published in English in 2015 on TED have been collected and categorized in 21 

main business sectors. All procurement documents in TED can be retrived 

using the main activity criteria, such as education, health, housing and 

community amenities, etc. TED website allows the registered users to 

download XML packages including monthly records of all published notices. 

Having downloaded all notices published on 2015, we assorted the tenders 

based on their main activity into 21 groups as is shown in Table 6.2. 

6.3.4 Test Results 

Two different search mechanism including keyword search and semantic 

search have been tested and compared on the data repository. The keyword 

search is considered as the basic approach of searching for opportunities in 

open tendering websites. The e-catalogue matching mechanism that is ex-

plained in the previous section is used as the semantic tender search. The re-

sults of these two mechanisms are compared with the correct answers that are 

gathered using category-based search service of the TED in order to calculate 

search performance measures. In simple words, the results of the semantic 

matching mechanism are compared with the results of simple keyword search 

(as the basic search algorithm) for searching on the gathered tender repository. 

As mentioned, Precision and Recall are two common metrics for measur-

ing the performance of search engines. As an example, the collected repository 

contains 550 tenders in Insurance sector and if the search mechanism retrieves 

400 of them in response to “insurance” search query, the recall measure will be 

400/550. In the search repository, there are 135 tenders from two other sections 

that are not related to Insurance and considered as false answers. Hence, if the 

search engine returns 450 documents (400 correct and 50 wrong answers), pre-

cision is 400/450. 

Table 6.3 shows the precision and recall calculated for both mentioned 

search mechanisms. The results are reported for three different synonym search 

queries including ‘mobile’, ‘phone’ and ‘gsm telephones’ on the repository for 

finding tenders from “Mobile telephones” section. All available tenders in this 
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section are considered as correct answers and the tenders from the other sec-

tions are considered as false answers.  

 

Table 6.3 average interpolated precision-recall values 

 Keyword-based search E-catalogue matching engine 
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.1 100 100 100 100 75 60 75 70 

.2 0 0 100 33.33 71.42 35.71 83.33 63.48 

.3   87.5 29.16 77.77 35.71 70 61.16 

.4   90.9 30.3 55.55 38.46 76.92 56.97 

.5   92.3 30.76 27.90 27.9 75 43.6 

.6   87.5 29.16 22.58 22.58 77.77 40.97 

.7   89.47 29.82 16.83 16.83 68 33.88 

.8   0 0 0 16.37 18.44 17.40 

.9    0  12.35 17.79 15.07 

1.0    0  0 0 0 

 

Since in practice we can calculate the precision in specific recall points, it is 

not easy to compare the results of different search mechanisms. In order to have 

comparable results, the precisions should report for standard recall levels. 

Thus, the averages of all three queries are used to plot the interpolated standard 

precision-recall curve in Figure 6.4.  



130 

 

 

 

Figure 6.4 Precision-Recall curve for the sample test set 

 

Each curve represents average interpolated precision-recall values for one 

search mechanism. In such curve, the one to the top right shows better search 

performance. As it can be seen in the figure, the semantic e-catalogue matching 

engine can improve tender search on a tendering website and consequently can 

help supplier in finding business opportunities. Even though the keyword-

based search gets higher precision when using an exactly same keyword as ex-

ists in the data source, it has very low recall, especially when searching using 

synonym keywords.  

As mentioned, after this demonstrative test, a comprehensive test also is 

done on the collected full test repository of 2015. In order to calculate the per-

formances measures based on an extensive query set, the test has been repeated 

for all tenders available in the test repository as query for both semantic and 

keyword-based search mechanisms. I.e. catalogue files made using the data of 

each tender call used as the query to find similar calls from the relevant busi-

ness section form the test repository and the test is redone for each query. The 

calculated Precision-Recall values for each query are interpolated to the stand-

ard Precision-Recall points in order to be comparable. The averages of all Recall 

and Precisions value are reported in Table 6.4 as the performance of the match-

ing engine compared to the base matching mechanism in the relevant business 
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sector. Finally, the mean value for all the business sections is used as an indica-

tor factor which is illustrated on Figure 6.5. 

 

Table 6.4 Precision-Recall for comprehensive test set 

Recall .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

K
e
y

w
o

rd
-b

a
se

d
 s

e
a
rc

h
 

A 1 .690 .302 .302 .057 .026 .026 .010 0 0 

B 1 .787 .703 .387 .212 .091 .082 .037 .004 .004 

C .870 .649 .525 .505 .429 .393 .217 .139 .044 .007 

D .474 .337 .289 .258 .208 .174 .147 .108 .075 0 

E .644 .288 .163 .155 .108 .109 .083 .068 .051 .021 

F 1 .836 .836 .533 .533 .062 .051 .051 .008 .008 

G .461 .392 .350 .252 .215 .193 .116 .051 .034 .002 

H .526 .323 .234 .052 .050 .014 .014 .005 0 0 

I .518 .284 .144 .148 .116 .086 .063 .043 .021 .019 

K .934 .636 .515 .413 .383 .352 .266 .235 .033 .033 

L 1 .625 .460 .358 .363 .195 .158 .047 .011 0 

M 1 1 .503 .503 .010 .010 0 0 0 0 

N .761 .694 .616 .369 .248 .159 .103 .083 .060 .036 

P .681 .478 .402 .317 .247 .198 .164 .125 .090 .069 

R 1 .703 .493 .414 .330 .287 .224 .154 .057 .028 

T .789 .685 .598 .498 .359 .208 .125 .079 0.21 .005 

U .727 .607 .543 .499 .296 .089 .078 .038 .035 .024 

W .635 .574 .505 .422 .337 .293 .167 .122 .069 .039 
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Table 6.4 (continued) Precision-Recall for comprehensive test set 

Recall .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

E
-c

a
ta

lo
g

u
e
 m

a
tc

h
in

g
 e

n
g
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e

 

 A 1 1 1 .711 .711 .059 .059 .059 .059 .059 

B 1 1 .765 .710 .617 .595 .526 .473 .449 .148 

C .866 .886 .796 .796 .784 .786 .793 .798 .422 .128 

D 1 .776 .518 .499 .389 .358 .296 .136 .063 .039 

E .739 .654 .565 .309 .163 .136 .093 .089 .065 .043 

F 1 .844 .844 .838 .838 .829 .774 .774 .662 .662 

G .878 .80 .716 .552 .401 .198 .186 .133 .097 .042 

H .530 .437 .384 .294 .231 .202 .149 .072 .049 .011 

I .733 .701 .611 .521 .253 0.86 .081 .072 .033 .029 

K 1 .842 .725 .725 .198 .162 .162 .068 .009 .009 

L 1 1 .933 .933 .370 .370 .058 .058 .066 .066 

M 1 1 .823 .823 .483 .483 .474 .474 .066 .066 

N 1 1 .804 .804 .400 .400 .194 .194 .027 .027 

P .855 .806 .692 .646 .529 .342 .147 .095 .036 .006 

R .801 .741 .734 .730 .727 .684 .672 .619 .328 .078 

T 1 .665 .490 .504 .474 .393 .271 .072 .021 0 

U .611 .522 .487 .449 .403 .335 .266 .170 .095 .004 

W .893 .804 .735 .681 .634 .602 .506 .422 .347 .264 
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Table 6.4 (continued) Precision-Recall for comprehensive test set 

Recall .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
E

-c
a
ta

lo
g

u
e
 m

a
tc

h
in

g
 e

n
g

in
e

 u
si

n
g

 N
E

R
 

A 1 .952 .928 .928 .901 .904 .904 .890 .706 .706 

B 1 .899 .860 .786 .795 .754 .675 .451 .369 .080 

C 1 .962 .944 .911 .857 .756 .708 .638 .479 .479 

D 1 .796 .690 .380 .293 .150 .131 .087 .013 .013 

E .752 .750 .732 .652 .549 .461 .280 .138 .082 .022 

F 1 .863 .863 .875 .875 .884 .865 .865 .748 .748 

G .979 .744 .536 .415 .399 .376 .274 .230 .042 .042 

H 1 1 .502 .502 .502 .012 .012 0 0 0 

I .879 .629 .540 .531 .450 .437 .250 .169 .051 .012 

K 1 .791 .728 .571 .571 .290 .194 .127 .100 .100 

L 1 1 1 1 .388 .388 .116 .116 .134 .134 

M 1 1 .933 .933 .870 .870 .893 .893 .517 .517 

N 1 .747 .638 .683 .646 .427 .427 .167 .003 .003 

P .899 .755 .683 .655 .545 .464 .341 .271 .145 .049 

R 1 .873 .874 .874 .750 .756 .756 .561 .175 .175 

T 1 .758 .758 .535 .535 .114 .109 .109 .013 .013 

U .757 .724 .626 .619 .547 .538 .513 .463 .208 .110 

W 1 .866 .823 .749 .548 .508 .460 .428 .363 .208 

 

Knowing that in a Precision-Recall diagram the curve on the top-right 

shows the better performance, it can be seen in the Figure 6.5 that the e-

catalogue matching mechanism provides better results compare to the key-

word0based matching. But, in order to have a single-figure measure of quality 

for comparing the performance of the proposed e-catalogue matching method 

with the basic matching mechanism easily, MAP values are reported in Table 
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6.5. The MAP values are calculated using the average precisions of all queries 

across all recall levels on each business sector separately and then average of 

the MAPs for all business sectors together is reported at the end of the table.  

  

Table 6.5 MAP Values 

Business 

section 

MAP (Keyword-

based search) 

MAP (E-catalogue 

matching engine) 

MAP (E-catalogue 

matching engine 

using NER) 

A 29.81 59.02 89.77 

B 36.73 62.85 66.75 

C 12.58 73.27 80.65 

D 40.67 40.79 39.36 

E 24.49 34.31 50.36 

F 41.53 82.46 87.27 

G 26.57 45.58 45.14 

H 18.87 29.37 37.87 

I 20.32 37.50 42.13 

K 43.24 42.96 47.55 

L 32.48 48.56 52.79 

M 37.85 56.96 84.28 

N 38.17 48.53 51.86 

P 31.54 46.71 52.28 

R 36.93 65.98 71.28 

T 38.85 38.92 42.18 

U 35.82 37.72 55.31 

W 35.71 62.51 61.68 

AVG 32.99 50.78 58.81 
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Figure 6.5 Precision-Recall curve for comprehensive test set 

 

The evaluation results show the semantic e-catalogue matching engine can 

improve the search capabilities when searching using synonym terms in tender 

search. This helps the suppliers to achieve better results in finding relevant ten-

ders that can facilitate finding business opportunities in public procurement 

marketplaces.  

The matching mechanism was tested on different business sectors availa-

ble in TED public procurement portal. The MAP table shows an overall im-

provement in matching performance regardless of the business sector. In order 

to test the independency of the matching mechanism to the dataset, an F-test 

has been used to show if the variances of the keyword-based result set and the 

e-catalogue matching result set are not significantly different.  

As it can be seen in Table 6.6 and Table 6.7, F is lower than FCritical that 

shows two samples come from populations with almost equal variances. This 

means there is no significant difference in variances of the two results sets. Con-

sequently, the matching algorithms shows almost similar improvement in all 

different business sectors.  
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Table 6.6 F-Test Two-Sample for Variances 

 Keyword-based matching e-catalogue matching 

Mean 32.34222 50.77778 

Observations 18 18 

Df 17 17 

F 0.354207 

P(F<=f) one-tail 0.019488 

F Critical one-tail 0.440162 

 

Table 6.7 F-Test Two-Sample for Variances 

 Keyword-based matching e-catalogue matching 

using NER 

Mean 32.34222 58.80611 

Observations 18 18 

Df 17 17 

F 0.251452 

P(F<=f) one-tail 0.003413 

F Critical one-tail 0.440162 

 

The second question that we should answer here is that if the e-catalogue 

matching mechanism shows a significant performance improvement compare 

to the keyword-based matching. This question can be answered by using a T-

test. A T-test is a statistical test that can be used to determine if two sets of data 
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are significantly different from each other33. This test is most commonly applied 

when the test statistic would follow a normal distribution. The histogram in 

Figure 6.6 shows that both result sets follow almost a normal distribution.  

 

 

Figure 6.6 histogram of MAP result sets 

 

The results of the T-test for comparing keyword-based result set with e-

catalogue matching results are shown in Table 6.8 and the results of comparing 

with e-catalogue matching using NER results are shown in Table 6.9. In a T-test, 

absolute value of Tstat should be bigger than Tcritical in order to show a significant 

difference. As it can be seen in both cases the results show a significant differ-

ence.  

                                                 

 

33 T-test is used since the population variance is unknown, otherwise we could use Z-test 

for the same target. 
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Table 6.8 t-Test: keyword-based Vs. E-catalogue matching 

 Keyword-based matching e-catalogue matching  

Mean 32.34222 50.77778 

Observations 18 18 

Pooled Variance 164.2699 

Pearson Correla-

tion 0.154858726460093 

Hypothesized 

Mean Difference 0 

df 17 

t Stat -4.99601342536436 

P(T<=t) one-tail 0.0000552480907492111 

t Critical one-tail 1.73960672607507 

P(T<=t) two-tail 0.000110496181498422 

t Critical two-tail 2.10981557783332 

 

Table 6.9 t-Test: keyword-based Vs. E-catalogue matching using NER 

 Keyword-based matching E-catalogue matching 

using NER 

Mean 32.3422222222222 58.8061111111111 

Observations 18 18 

Pearson Correla-

tion 0.0716268688815951 

Hypothesized 

Mean Difference 0 
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df 17 

t Stat -6.01755392511439 

P(T<=t) one-tail 6.92619767697676E-06 

t Critical one-tail 1.73960672607507 

P(T<=t) two-tail 0.0000138523953539535 

t Critical two-tail 2.10981557783332 

6.4 Multi resource matching 

6.4.1 Test Scenario 

Searching and selecting the best suitable opportunities among several 

published tender calls especially from various tendering resources is a crucial 

and time-consuming task for several business actors in e-procurement market-

places. Most of the tendering portals provide keyword-based search and cate-

gory-based notifications to the subscribers for Tenders and Contract Awards. 

The idea is that the tender notification systems deliver tender opportunities to 

the suppliers, dramatically reducing the amount of time spent looking for these 

tenders. But according to the potential wide range of products in a business sec-

tor, a supplier may receive an extensive list of notifications which makes it dif-

ficult to find the best-matched opportunities with the supplier’s product portfo-

lio.  

This problem can be solved using a search mechanism that is able to rank 

and sort the tender calls coming from various resources based on their similari-

ty to a supplier’s products or services. Consequently, suppliers can save time in 

searching and work on preparing proposals for the most similar calls to their 

products that definitely have more chance to win the competition. To reach this 

goal, the product information provided by a supplier can be used by a product 

search mechanism in order to find and recommend similar product requests 

(Julashokri et al., 2011) and tender calls (Mehrbod et al., 2017). 
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Since different e-procurement platforms follow their own standard for-

mats for modelling contracts, tender notices, and catalogues, they will not be 

able to share this information with each other. The biggest disadvantage of this 

is that the users have to subscribe in all the platforms to be able to get access to 

various opportunities originating from different platforms and apply for the 

opportunities. While using standard formats helps to use the same information 

in different documents in the process flow and decrease the efforts needed to 

correct errors and fix problems by automating e-procurement process, stand-

ards do not provide sufficient coverage for all steps of procurement (Mehrbod, 

Zutshi, & Grilo, 2014a). 

In order to improve interoperability of such systems, the e-catalogue 

search approach is applied to the problem of finding tender notices from open 

tendering e-marketplaces in order to find opportunities from heterogeneous 

tender resources. A test mechanism has been used to evaluate the performance 

of the search approach in finding related calls from different tendering web-

sites. Tender notices from two major tender resources including United Nations 

Global Marketplace (UNGM) and Tenders Electronic Daily (TED) have been 

used to test the search mechanism. 

One of the main features of the semantic mechanism used by the e-

catalogue matching engine is that the search process is not dependent on any 

specific ontology and relevant annotated data. The search engine is able to use 

any ontology and tries to find the best ontology for interpreting the data among 

all available ontologies and in the absence of a suitable ontology uses basic 

keyword search methods. This approach makes it possible to use the benefits of 

all available ontologies and schemas but not to be dependent on them. I.e. the 

search service exploits the data and the structures of B2B documents in the 

matching process but is not independent of any pre-specified structure. For 

more details about the e-catalogue matching mechanism and used algorithms 

please refer to Chapter 5. 

A test mechanism has been used to evaluate the performance of the search 

approach in finding related calls from different tendering websites. Tender no-

tices from two major tender resources including United Nations Global Mar-
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ketplace (UNGM) and Tenders Electronic Daily (TED) have been used to test 

the search mechanism. 

6.4.2 Test definition 

This test applies the mentioned e-catalogue matching engine to the public 

tenders’ search and evaluates it on finding tenders from two different procure-

ment resources. This will open the opportunity to find tenders from various da-

ta resources and marketplaces without converting data to a uniform model that 

can be time-consuming and costly. 

Based on the application and the target data resource, each e-procurement 

ontology used a clarification vocabulary. As mentioned, this clarification vo-

cabulary is more important than the ontology schema for searching product da-

ta especially when searching data from unstructured or semi-structured re-

sources. 

In this section, we want to study the effect of using different classification 

vocabularies on the tender search using the e-catalogue matching mechanism. 

The proposed e-catalogue matching engine allows using various ontologies for 

data indexing and query process. The effects of using two different vocabularies 

including CPV and UNSPCS on search performance have been compared in or-

der to evaluate the search mechanism in tender notice search. This test shows 

the capability of the matching mechanism in using relevant vocabularies for in-

terpreting tenders from different resources and tolerance of the search mecha-

nism to encounter unknown data.  

Figure 6.7 shows the overall view of the evaluation mechanism. Tender 

notices from UNGM and TED have been collected in the tenders’ repository. 

Search results in three different states using CPV vocabulary, UNSPSC vocabu-

lary and both at the same time have been illustrated and compared in Figure 

6.8. 
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Figure 6.7 Classification vocabularies test 
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6.4.3 Data Gathering 

The tender notices that have been published on TED and UNGM websites 

are used to provide a tender repository in order to search for business opportu-

nities. These two portals are selected as two major resources of public tenders 

published using different structures and classification systems. The goal is to 

provide a heterogeneous repository of public tenders to test the business oppor-

tunity search scenario. 

TED is the online version of the “Supplement to the Official Journal” of 

the EU that is dedicated to European public procurement. TED provides free 

access to business opportunities from the European Union, the European Eco-

nomic Area and beyond. Every day, more than 1,700 public procurement notic-

es from various European countries are published on TED.  

UNGM is the common procurement portal of the United Nations. The 

United Nations represents a global market of over USD 15 billion annually for 

all types of products and services. The UNGM acts as a single window, through 

which potential suppliers may register in the UN vendor database. These or-

ganizations account for over 99% of the total UN procurement spent. The 

UNGM enables vendors to be aware of upcoming tender notices. 

Tender notices in both websites are categorised according to the relevant 

procurement vocabularies and can be searched by the business category. TED 

uses CPV that has been developed by the European Union to classify products 

and services in procurement contracts and is mandatory in the European Union 

since 1 February 2006. UNGM uses UNSPSC which is the product coding de-

veloped and used by UN to describe the product and services that their agen-

cies need. 

The test repository constructed from tenders of these two different re-

sources in order to evaluate the capability of the matching mechanism in deal-

ing with tenders from heterogeneous resources. Tenders that have been pub-

lished on 2015 collected to make the tender repository. In the TED websites, the 

tender archives can be downloaded for registered user in the form of XML files. 

For UNGM a JSOUP based extractor has used to gather the data. Table 6.10 

shows a summary of the collected tenders. 
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Table 6.10 test repository 

TED (CPV) UNGM (UNSPSC) 

Code Title Count Code Title Count 

32250000 Mobile phones 37 43191501 Mobile telephones 23 

44111000 

44110000 

Building materials 

Construction mate-

rials 

46 11111600 

22101600 

30130000 

30131700 

40141700 

Stone 

Paving equipment 

Structural building 

products 

Tiles and flagstones 

Hardware and fittings 

20 

66110000 Banking services 96 84120000 Banking and invest-

ment 

36 

79341000 Advertising ser-

vices 

53 82100000 Advertising 66 

90700000 

38000000 

71630000 

Environmental ser-

vices 

Laboratory, optical 

and precision 

equipments (excl. 

glasses) 

Technical inspec-

tion and testing 

services 

581 77000000 Environmental Ser-

vices 

254 
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64110000 Postal services 5 78102201 National postal deliv-

ery services 

0 

65100000 Water distribution 

and related services 

11 83101501 Supply of water 1 

45232430 Water-treatment 

work 

16 70171501 

83101506 

Water quality assess-

ment services 

Water treatment ser-

vices 

2 

37520000 Toys 1 60141000 Toys 0 

15000000 Food, beverages, 

tobacco and related 

products 

150 50000000 Food Beverage and 

Tobacco Products 

37 

38300000 Measuring instru-

ments 

31 41110000 Measuring and ob-

serving and testing 

instruments 

167 

35113000 Safety equipment 6 46160000 Public safety and con-

trol 

18 

03111000 Seeds 2 10150000 Seeds and bulbs and 

seedlings and cuttings 

13 

72222300 Information tech-

nology services 

47 81110000 Computer services 217 
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6.4.4 Test Results 

Since for the measuring we have to define the correct answer set, tender 

notices from similar categories (listed in Table 6.10) of different portals com-

bined to make correct answer set for each category. For example, tender notices 

from “Mobile telephones” (CPV code 32250000) and “Mobile phones” (UNSPSC 

code 43191501) are considered as the correct answers while searching for ten-

ders about mobile phones. The test repository contains 23 tenders of “Mobile 

telephones” category and 37 tenders of “Mobile phones” category that consti-

tute the correct answer set and more than 1100 tenders from other business sec-

tions that are considered as false answers for this test. Therefore, a search 

mechanism will be considered as 100% precise, if retrieves all 60 tenders from 

the mobile category in response to a relevant search query. If a search mecha-

nism retrieves 20 tenders from the correct answer set and 10 from the rest of the 

repository, its recall is 20/60 and precision is 20/30. Table 6.11, Table 6.12 and 

Table 6.13 show the test results in three different states consequently. First, 

when the search mechanism uses the UNSPSC vocabulary for data indexing 

and search. Second, when it uses CPV vocabulary for data indexing and search. 

Third, when both vocabularies are used by search mechanism at the same time 

and when the search engine doesn’t use any vocabulary.  

 

Figure 6.8 Test results in three different states 

The results of these test cases are compared with the correct answers that 

are gathered using category-based search service of the TED and UNGM in or-
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der to calculate the search performance measures. In order to compare the re-

sults easily, Figure 6.8 shows a summary of all tables. Each curve shows the av-

erage of all search results for finding related tender calls from all sections (last 

entry of each table) in the repository.  

 

Table 6.11 test results using UNSPSC vocabulary 

UNSPSC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 MAP 

10150000 1 0.49 0.51 0.51 0.24 0.18 0.18 0.07 0.07 0.07 36.87 

11111600 1 0.79 0.61 0.34 0.26 0.13 0.10 0.11 0.11 0.11 36.09 

41110000 1 0.72 0.59 0.41 0.09 0.09 0.09 0.10 0.11 0.10 33.33 

43191501 0.95 0.25 0.24 0.13 0.11 0.11 0.09 0.09 0.09 0.09 21.78 

46160000 0.93 0.44 0.28 0.25 0.15 0.11 0.11 0.11 0.12 0.11 26.54 

50000000 1 0.40 0.38 0.29 0.13 0.9 0.10 0.9 0.03 0.03 28.83 

60141000 1 1 1 1 1 1 1 1 1 1 1 

70171501 0.9 0.61 0.32 0.32 0.24 0.16 0.16 0.08 0.09 0.09 34.85 

77000000 0.85 0.53 0.35 0.17 0.15 0.11 0.10 0.09 0.09 0.09 25.83 

78102201 1 1 0.53 0.53 0.43 0.43 0.07 0.07 0.05 0.05 41.92 

81110000 1 0.49 0.40 0.19 0.17 0.14 0.13 0.13 0.11 0.10 28.95 

82100000 1 0.59 0.43 0.20 0.14 0.12 0.12 0.11 0.10 0.10 29.44 

83101501 1 0.11 0.11 0.14 0.14 0.14 0.12 0.12 0.07 0.07 26.78 

84120000 0.90 0.56 0.44 0.27 0.26 0.14 0.14 0.14 0.14 0.14 31.69 

AVG 0.96 0.57 0.44 0.34 0.25 0.26 0.18 0.22 0.16 0.15 35.92 
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Table 6.12 test result using CPV vocabulary 

UNSPSC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 MAP 

10150000 1 0.63 0.51 0.51 0.25 0.20 0.20 0.08 0.04 0.04 36.84 

11111600 1 0.65 0.63 0.61 0.32 0.20 0.18 0.16 0.14 0.08 36.11 

41110000 1 0.64 0.46 0.44 0.10 0.10 0.04 0.02 0 0 33.33 

43191501 1 0.60 0.53 0.53 0.30 0.18 0.18 0.18 0.05 0.01 21.79 

46160000 1 0.48 0.18 0.17 0.15 0.13 0.13 0.12 0.09 0.07 26.56 

50000000 1 0.58 0.54 0.46 0.37 0.22 0.19 0.05 0.02 0.02 28.83 

60141000 1 1 1 1 1 1 1 1 1 1 100 

70171501 1 0.79 0.54 0.54 0.47 0.24 0.24 0.15 0.17 0.17 34.86 

77000000 1 0.66 0.57 0.33 0.16 0.13 0.14 0.13 0.06 0.02 37.23 

78102201 1 1 0.56 0.56 0.50 0.50 0.14 0.14 0.01 0.01 43.9 

81110000 1 0.54 0.26 0.20 0.15 0.12 0.13 0.11 0.10 0.03 26.8 

82100000 1 0.51 0.48 0.47 0.45 0.14 0.13 0.11 0.07 0.04 29.66 

83101501 1 0.55 0.55 0.26 0.26 0.23 0.16 0.16 0.13 0.13 26.78 

84120000 0.95 0.69 0.62 0.52 0.36 0.16 0.13 0.12 0.12 0.10 31.29 

Average 0.99 0.66 0.53 0.47 0.34 0.25 0.21 0.18 0.14 0.12 36.71 
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Table 6.13 test results using both UNSPSC and CPV vocaburalries 

UNSPSC 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 MAP 

10150000 1 0.99 0.92 0.78 0.64 0.64 0.64 0.62 0.08 0.08 39.01 

11111600 1 1 0.98 0.93 0.76 0.75 0.71 0.17 0.14 0.13 40.30 

41110000 1 1 0.92 0.75 0.67 0.67 0.60 0.19 0.06 0.03 28.29 

43191501 1 1 0.97 0.88 0.77 0.76 0.82 0.70 0.078 0.01 36.15 

46160000 1 1 1 0.97 0.81 0.65 0.60 0.14 0.13 0.12 25.69 

50000000 1 1 0.99 0.95 0.89 0.88 0.86 0.33 0.32 0.32 38.60 

60141000 1 1 1 1 1 1 1 1 1 1 1 

70171501 1 1 0.98 0.82 0.69 0.61 0.50 0.25 0.16 0.16 48.50 

77000000 1 0.98 0.83 0.65 0.6 0.57 0.68 0.17 0.13 0.11 32.55 

78102201 1 1 0.91 0.86 0.72 0.52 0.51 0.52 0 0 44.64 

81110000 1 0.95 0.86 0.7 0.59 0.53 0.52 0.13 0.09 0.05 27.05 

82100000 1 1 0.99 0.96 0.85 0.84 0.76 0.16 0.15 0.15 34.57 

83101501 1 0.94 0.8 0.68 0.52 0.53 0.52 0.21 0.14 0.14 39.41 

84120000 1 1 0.94 0.91 0.76 0.72 0.71 0.16 0.17 0.16 38.01 

Average 1 0.99 0.93 0.84 0.73 0.69 0.67 0.34 0.19 0.17 40.91 
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In order to compare the search results, the precisions are calculated for 

standard recall points that are shown on the interpolated standard precision-

recall curve in Figure 6.8. Generally, the performance of a search engine is 

shown using Precision-Recall curves that represent these two inversely related 

metrics (Mehrbod et al., 2015). Finding a balance between these two metrics is 

dependent on the mission of the search engine. In such curve, the one to the top 

right shows better search performance. Each curve represents average interpo-

lated precision-recall values for the matching mechanism in one of the men-

tioned states. 

As it can be seen in the figure, the semantic product matching engine can 

use various vocabularies to improve tender search performance while searching 

tenders from various resources. The test tender repository includes tenders de-

veloped based on CPV and UNSPSC classification systems. The test results 

show the capability of the search mechanism to use relevant vocabularies for 

interpreting the data.  

The CPV and UNSPSC curves show the search performance while using 

the CPV and UNSPSC vocabularies respectively. In each case, the search mech-

anism uses one vocabulary, consequently some part of underlying data is 

known for the system and some part is not. As it can be seen in Figure 6.8, the 

system has almost similar performance in both cases. While the search perfor-

mance shows the system didn’t fail to return the results, the performance is 

lower than the third state which both ontologies have been used to index and 

search the data. In CPV & UNSPSC state, the search mechanism uses both vo-

cabularies at the same time to interpret the data that causes to obtain higher 

performance.  

The test results show the matching mechanism not only is able to use 

available vocabularies to interpret the tenders in order to improve the search 

performance, it also can tolerate lack of existence of relevant vocabularies. By 

using different vocabularies, the search engine can find tenders from different 

resources of tendering websites and consequently can help suppliers in finding 

more business opportunities in procurement marketplaces. 
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6.5 B2BProduct NER Accuracy Test 

6.5.1 Test Scenario 

Published tenders in e-Procurement marketplaces are the main resources 

for finding business opportunities for suppliers. Besides the tender search, e-

sourcing that acts as the starting point of the e-procurement process contains 

searching for suitable suppliers. Accordingly, e-tendering repositories such as 

UNGM and TED have an essential role in connecting contracting authorities 

and suppliers. However, e-Tendering marketplaces rerely provide supplier 

search and usually provide simple keyword-based search and category-based 

notifications to the subscribers for Tenders and Contract Awards. Semantic 

search can improve search capabilities of such marketplaces.  

The matching mechanism has to find the product mentioned from B2B 

documents in all search scenarios. For example, for finding business opportuni-

ties for a supplier, the matching mechanism has to find product mentions from 

published tenders to match them with products in the supplier e-catalogue. 

Therefore, providing a NER system that can recognise the products mentioned 

in such tenders is a fundamental block in the process of searching for business 

opportunities. For this purpose, as presented in the previous chapter, a B2B-

Product recogniser was developed and used as a part of the matching mecha-

nism. In order to test the accuracy of the B2B-Product NER model, the trained 

model has been tested in two different test datasets, consist of an automatically 

annotated dataset and a manually annotated dataset. 

Most of the available NER applications are developed in order to extract 

names of persons, organizations and locations from text. But the rapid 

development of e-Commerce increased the demand for Product NER (PNER). 

All previous researches in the area of Product NER, are focused on B2C e-

commerce, but this research work applied NER issue to B2B e-commerce.  
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6.5.2 Test Definition 

This section evaluates the performance of the trained model on two new 

corpuses of B2B product data. The objective of this evaluation is to measure and 

analyse the efficiency of the discussed training approach in training the learn-

ing-based NER mechanism and the accuracy of the trained model for NER task 

in B2B e-Marketplaces.  

In order to evaluate the trained B2B-Product NER model, test datasets 

have been created automatically by applying the same method that has been 

used to prepare the training corpus to different data sources from four different 

tendering websites. Furthermore, small samples of each corpus are used to cre-

ate manual test dataset in order to compare the performance of the model with 

the manual results that experts can achieve. Figure 6.9 shows the overview of 

the test. 

 

Figure 6.9 B2Bproduct NER test 
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6.5.3 Data Gathering  

The TED 2013 test set includes 443,079 tenders that had been published in 

TED on 2013. The TED 2015 test set includes 270,467 tenders that have been 

published in TED on 2015 until October. These tenders have been used to pre-

pare two different annotated test corpuses. Note that the tenders of 2014 have 

been used to train the model and two groups of tenders, one that had been pub-

lished before and another that have been published after are used to evaluate 

the model. 

Furthermore, the model has been evaluated on other test datasets from 

different tendering websites including The United Nations Global Marketplace, 

B2B Quote and UK Government’s contracts finder. 

The United Nations Global Marketplace (UNGM34) is the common pro-

curement portal of the United Nations system of organizations. It brings to-

gether UN procurement staff and the vendor community. The United Nations 

represents a global market of over USD 15 billion annually for all types of 

products and services. 

The UNGM acts as a single window, through which potential suppliers 

may register in the UN vendor database. These organizations account for over 

99% of the total UN procurement spent. The UNGM enables vendors to keep 

abreast of upcoming tender notices. By subscribing to the Tender Alert Service, 

vendors can receive relevant business opportunities emailed directly. The 

UNGM also acts as an important procurement tool to shortlist suppliers for 

competitive bidding. 

B2B Quote35 was established in 2006 as a low cost, high quality and easy to 

use 'business to business' Tendering website. The website is focused on two 

ranges of tenders including low value public and private sector tenders and 

high-value tenders in the UK. It focuses on a specific range of Industry Sectors 

                                                 

 

34 www.ungm.org 

35 www.b2bquote.co.uk 
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in order to provide a much more personalized service to customers, therefore, it 

doesn’t follow any standard product classification system.  

Contracts Finder36 is the UK Government’s marketplace for suppliers to 

find new procurement opportunities totally free of charge. It allows users to 

view and search the UK Government’s pipelines of potential procurement ac-

tivity and awarded contracts. It is a critical tool for addressing the Govern-

ment’s transparency commitments. The Public Contracts Regulations require 

most public sector bodies to advertise their new opportunities and contract 

award information here, so that all suppliers have better, more direct access to 

Public Sector work. 

Contracts Finder provides search for information about contracts worth 

over £10,000 with the UK government and its agencies. It can be used to search 

for contract opportunities in different sectors, to find out what’s coming up in 

the future and to look up details of previous tenders and contracts. 

6.5.4 Test Results on automatic annotated test datasets 

In order to evaluate the performance of the model, the precision and recall 

of the model have been calculated in the mentioned test datasets. Table 6.14 

shows the results obtained from the application of trained model in a learning-

based NER task on TED 2013 dataset, TED 2015 dataset, Contracts Finder da-

taset, B2B Quote dataset and UNGM dataset. 

The evaluation results show the trained model is able to recognise the 

product mentions from various resources of B2B tenders. The discovered prod-

ucts not only include the known products from the initial dictionary but also 

include new product mentions as well as misspelled versions of the products, 

which is the advantage of learning-based NER approaches. 

                                                 

 

36 www.gov.uk/contracts-finder 
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Table 6.14 B2B-Prodcut NER Evaluation results 

Test set Recall Precision F1-score 

TED 2013 83% 94% 0.88 

TED 2015 80% 94% 0.86 

Contracts Finder 71% 98% 0.82 

B2B Quote 67% 81% 0.73 

UNGM 63% 74% 0.68 

 

The trained model obtained a high ratio of precision in different test da-

tasets. This means the NER process is able to correctly recognise the B2B-

Products that are mentioned in the test tenders. Obviously, this will help any 

search mechanism which uses the NER model to correctly extract more im-

portant keywords for product search in B2B documents. The high ratio of recall 

shows the ability of the model to retrieve high ratio of the available B2B-

Products from the search corpus. Therefore, the search mechanism will miss 

fewer keywords that should be included in the search process.    

As it can be seen in Table 6.14, the model has obtained better results on 

TED and Contracts Finder than UNGM and B2B Quote. Actually, the difference 

comes from the different classification systems that are used by these e-

marketplaces to categorise products. TED and Contracts Finder use Common 

Procurement Vocabulary (CPV) classification system that is common in Europe 

while UNGM uses United Nations Standard Products and Services Code (UN-

SPSC) and B2B quote uses its own categorization. CPV is developed by the 

European Union to facilitate the processing of invitations to tender published in 

the Official Journal of the European Union (OJEU) by means of a single classifi-

cation system to describe the subject matter of public contracts.  

UNSPSC is an open, global, multi-sector standard for efficient, accurate 

classification of products and services managed by UN Development Pro-

gramme. Since tenders from TED has been used to train the model, the 

recogniser is more precise in detecting terms that are used to describe goods 



156 

 

and services in CPV based tenders. The accuracy of the model can be improved 

by using tenders from other resources in preparing the initial dictionary and the 

training process that can be future work of this research work.  

6.5.5 Test Results on manually annotated test datasets 

In order to provide test datasets for testing the performance of the trained 

model in extracting the products that are not mentioned in the titles and CPV 

references of the tenders, small samples from each data set are selected and the 

mentioned B2B products are annotated manually. The importance of this test is 

that some products may be mentioned in the descriptions of the tenders but 

don’t be mentioned in the titles. Therefore, this test provides the performance 

evaluation in a new situation. Furthermore, since the test datasets are annotated 

manually the test results can be compared with the optimal results that can be 

achieved manually by experts.      

Each test dataset includes a few randomly selected tenders and contains 

about sixty B2B product mentions. All available B2B product mentions in the 

sample dataset are annotated manually in order to compare with the B2B-

Produtcs that are extracted by the model from these datasets. Table 6.15 shows 

the performance results of the model on manually annotated sample test data 

sets.    

In order to have a comprehensible view of the obtained results, Table 6.15 

also shows the results obtained by a dictionary-based NER mechanism using 

the initial dictionary on the same test datasets. The initial dictionary that had 

been made from the titles and CPV references of the tenders and had been used 

in providing the training set, is used as the dictionary for a dictionary-based 

NER approach. The obtained results can provide an overview of comparing the 

results of the trained model with the results of a non-machine learning mecha-

nism on the same test data. 

While a dictionary-based NER approach can provide very high Precision 

value, the problem of such approaches is the very low value of the obtained Re-

call that results in low F1-Score. In other words, the dictionary-based NER looks 

for the occurrences of its dictionary seeds in the descriptions of the tenders and 
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retrieves them as the results. Since all the returned B2B-Products exist in the 

dictionary and therefore are correct answers, the precision is 100%. But the 

problem is this technique fails to extract the B2B-Products that don’t exist in the 

dictionary which leads to low Recall value. As in can be seen in Table 6.15, the 

trained model improves the Recall factor by detecting more B2B-Producs that 

are don’t exist in the initial dictionary.  

 

Table 6.15 Evaluation Results on manual test datasets 

Test set Recall 

(traine

d mod-

el) 

Preci-

sion 

(trained 

model) 

F1-Score 

(trained 

model) 

Recall (in-

itial Dic-

tionary) 

Precision 

(initial 

Diction-

ary) 

F1-Score 

(initial 

Diction-

ary) 

TED 

2013 

42.30 95.65 58.66 27.86 100 43.58 

TED 

2015 

53.08 84.31 65.15 22.58 100 36.84 

Con-

tracts 

Finder 

45.45 83.33 58.82 18.18 100 30.76 

B2B 

Quote 

35.29 72.0 47.36 22.72 100 37.03 

UNGM 32.0 72.72 44.44 18.64 100 31.42 

6.6 Summary 

In order to validate the proposed e-catalogue matching mechanism, we 

developed a supplier finder service (Mehrbod et al., 2015) in a G2B2B 

procurement platform called Vortal. The supplier finder service helps the 

buyers to find suitable suppliers on the platform based on the similarity 

between suppliers product e-catalogues to the buyers e-catalogue. The hetero-

geneity of the underlying product catalogues was the main reason to use the 
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concept-based VSM approach for developing a practical product matching en-

gine. The developed product search mechanism is able to match similar prod-

uct from various resources without the transformation and integration over-

head. 

The supplier finder has been tested in four different states in order to 

evaluate the different blocks of the matching mechanism. The syntactic match-

ing mechanism is tested using a set of e-catalogues in various structured and 

unstructured formats. The experimental results show the matching process is 

able to match diverse formats of catalogues from various sources. 

The semantic matching mechanism is tested using a set of e-catalogues 

from various classification systems and semantically heterogeneous resources. 

The matching process is capable of matching various types of catalogues that 

come from different sources. The experimental results show that the proposed 

approach improves the similarity ratio between similar e-catalogues compared 

with the basic approach of Vector Space Model and syntactic matching 

mechanism. 

 The semantic search mechanism tries to understand the contextual 

meaning of the words within the search domain. Accordingly, a B2B-Product 

recogniser has been developed that can extract “B2B Product” mentions from 

tenders and other B2B documents. The recogniser can be used as a fundamental 

search element extractor in semantic search process in B2B e-marketplaces. A 

self-learning approach has been adopted in order to train the required model 

for extracting B2B-Product mentions. The proposed approach uses already 

known product mentions in tenders as the training data to train the model and 

then use the trained model to recognize the product mentions from other 

documents.  

The model has been tested using tenders that have been published in 

public procurement e-marketplaces including The United Nations Global 

Marketplace (UNGM), Tenders Electronic Daily (TED) which is dedicated to 

European public procurement, B2B Quote which is focused on tenders in UK 

and UK Government’s contracts finder. The results show that the proposed 

approach achieved high values of precision and recall in different test datasets. 
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7 Conclusions 

7.1 The problem and the motivation 

In a procurement marketplace, many companies and organizations come 

together to purchase the products that they need or to sell their products. Ten-

ders that are published by the buyers provide an extensive and valuable re-

source for suppliers to find business opportunities. E-catalogues that are used 

by companies to explain the products have an effective impact in this process. 

The product data that is published in the e-catalogues can be used as search 

queries to find appropriate tenders for a company. Matching an e-catalogue 

with the similar e-catalogues in the system helps the buyers in selecting proper 

suppliers. It also helps the suppliers to find new markets for their products in 

B2B marketplaces. This turns the search service to one of the major technical 

factors in the success of a procurement e-marketplace. But procurement e-

marketplaces usually provide simple keyword search services for finding busi-

ness opportunities. 

 While e-catalogues are widely used by suppliers and buying organiza-

tions to share the product and services information, diversity of structures and 

terms in creating e-catalogues is a barrier on their search ability. Since organiza-

tions may use different schemas, classifications and expressions for describing 

products in e-catalogues, it is challenging to match a product with the e-

catalogue requested by another partner. This heterogeneity makes it difficult 

and time-consuming to integrate and query e-catalogues.  

7 
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Enriching product data with semantic concepts can improve the 

searchability of the tenders and helps companies in finding suitable business 

opportunities. However, the heterogeneity of e-catalogue structures and tender 

resources is the challenge for finding related documents to a request. Integrat-

ing and publishing tenders, catalogues and other B2B documents in uniform 

semantic data models is suggested for avoiding the matching problem. But the 

integration process not only is difficult and expensive because of variety of 

structures that are used by different companies, it cannot tolerate lack of seman-

tics and violations from the model assumptions.  The documents have to be 

published or republished according to the semantic resources expected by the 

model which is not always feasible. These steps usually contain manual efforts 

that affect the extensibility of the solution. According to the wide number of 

procurement data resources, such solutions can be expensive for companies 

that want to keep track of all potential procurement opportunities. 

Therefore, the main question covered by this research work was how can 

buyers and suppliers match their e-catalogues in an efficient way, with no re-

strictions regarding data integration models? In other words, how can the pro-

curement documents be matched without forcing a data integration model to 

the companies, publishers or the matching solution providers? 

7.2 Contribution of this Thesis 

This research improves product search in e-procurement platforms by 

providing a semantic and syntactic matching mechanism for e-catalogues. Vari-

ous procurement datasets, as well as e-catalogues, have different syntaxes and 

semantics which makes it hard to search and use them in an integrated manner. 

In consideration of cost, limitations and extensibility issues of the data integra-

tion models for matching heterogeneous e-catalogues, this research work pro-

posed a flexible data indexing method to solve e-catalogue matching problem. 

Therefore, an information retrieval technique is used to encounter this problem 

and match various types of e-catalogues. This technique that is called Vector 

Space Model, is basically designed for text searches and is used by many search 
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engines. But because of its flexibility and simplicity, it has extended to apply to 

a wide range of search problems.  

In the first step, Vector Space Model had been applied to find syntactic 

similarity ratio between e-catalogues. In order to implement the proposed 

matching process, an open source full-text search tool and a natural language 

analyser were used to extract terms from flat text files. Then the search tool was 

extended to consider the locational values of words in term extraction process 

when such information is available. The matching process has used 

combinations of values, names and location of attributes of structured docu-

ments to find the syntactic correlation of e-catalogues.  

A table of coefficients is proposed to specify the matching process for 

standard e-catalogues as a boosting mask. This mechanism increases the search 

precision by removing unrelated information from the matching process and 

boosting the weights of important tags. Since an e-catalogues contains various 

information with different importance for matching process, this adjustment 

helps the process to benefit from customizing search mechanism for known 

structures. 

In the next step, the matching process has been expanded to exploit both 

syntactic and semantic aspects in the calculation of the similarity ratio. Pro-

curement ontologies were used to expand the matching mechanism with se-

mantic relationships of the product data attributes. In this process vectors of 

each e-catalogue were enriched with semantic concepts that exist in the e-

catalogue. Adding semantic relationships to the terms of the vectors enables the 

matching process to find semantically similar e-catalogues. The proposed ap-

proach makes it possible to use the benefits of all available ontologies and 

schemas but not to be dependent on them. I.e. the search service exploits the 

data and the structures of e-catalogues in the matching process but is inde-

pendent of any pre-specified structure.  

Coefficients corresponding to the geodesic distances of semantic concepts 

are used to adjust the effects of available semantic relationships on the overall 

similarity. The default values for the weight coefficients and their growth rates 

can influence the similarity measure. This helps the semantic matching mecha-
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nism to give higher effect on the matching results to the terms that are semanti-

cally closer to the search query than the less related words.  

The semantic e-catalogue matching process includes finding the potential 

entities to enrich the vector model with the semantically related concepts in the 

search domain. In order to detect semantic concepts from a procurement docu-

ment, an Entity Recogniser has been developed. A supervised machine learning 

approach has been used to develop the Recogniser as a complimentary 

component of the matching engine. A self-learning method has been adopted to 

provide a training dataset that is needed to train the supervised learning model. 

Test results show the trained model is able to recognise product mentions from 

different tenders that have been collected from various e-procurement 

marketplaces. The entity recogniser in B2B context can help the semantic 

matching process in information retrieval systems of e-procurement 

marketplaces by providing a richer semantic search on heterogeneous 

procurement documents. 

The proposed matching process has been tested using a heterogeneous set 

of e-catalogues and e-tenders. The test scenarios evaluated the application of 

the e-catalogue matching engine in searching in procurement e-marketplaces 

and its capability in improving the search performance. Four test cases have 

been defined to evaluate various features of the e-catalogue matching mecha-

nism in main search scenarios that are possible in a procurement marketplace.  

The proposed approach was implemented in a G2B2B e-procurement plat-

form and the results of the e-catalogue matching mechanism were reported. 

The search results show the matching process is capable of matching various 

types of catalogues that come from different sources without restricting a data 

integration model. The proposed approach is not dependent on any assumption 

or underlying structure and is extendable to any new type of e-catalogue. The 

experimental results show that the proposed approach improves the similarity 

ratio between similar e-catalogues compared with the basic approach of Vector 

Space Model. Although the evaluation shows improvement in the matching ra-

tios and number of retrieved instances, the most important value proposition of 

the proposed approach is its simplicity and practicality for implementation.  
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Beside the e-catalogue matching scenario that is mostly used by the buyers 

to find suppliers or in the other words helps the supplier to be seen by the buy-

er using their e-catalogues, another common search scenario has been tested to 

see how suppliers can improve their efficiency in finding business opportuni-

ties in e-procurement platforms using the content of their e-catalogues? 

   The business opportunity finder test-case evaluates the proposed e-

catalogue matching engine in tender datasets retrieved from online public pro-

curement portals. This test-case which evaluates different features of the match-

ing mechanism such as the capability of detecting semantically related terms, 

exploiting available semantic resources and tolerating missing semantic re-

source, results shows improving the matching performance in tender search. 

This helps the suppliers to achieve better results in finding similar tenders to 

their e-catalogues as the main resource of business opportunities in procure-

ment marketplaces. Consequently, suppliers can use the search engine to find 

tenders from various procurement resources using content of their e-catalogues. 

7.3 Areas for Further Development and Research 

This thesis has proposed a flexible approach for finding similar and relat-

ed procurement documents in e-marketplaces. The matching mechanism pro-

vides the search results based on the product data contained in e-catalogues 

and other procurement documents. The research on e-catalogue matching and 

proposed solution can be extended in various aspects. 

The syntactic matching layer is responsible for exploiting the information 

that can be figured out from the structure of the procurement documents. This 

process can be easily fine-tuned for the formats that are known for the system 

using boosting masks. Each boosting mask is a coefficient table for a known 

structure for adjusting the indexing weights. In future, these tables can be cus-

tomized automatically for different structures using a learning mechanism 

based on searchers’ profiles, search history and user feedback on the matching 

results.  
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The semantic matching layer is responsible for exploiting the information 

that can be understand from the content and meaning of the procurement doc-

uments. This process can be easily fine-tuned for the formats that are known for 

the system using boosting masks. This process finds the semantically related 

terms from procurement documents to the search query in an iterative process 

and grade them based on their semantic distances to the desired terms. The ad-

justment has been done based on the inverse geodesic distance. In future work, 

a learning mechanism can be used to find the optimum values and growth rates 

for these parameters.  

Furthermore, the developed NER mechanism can be extended to a data 

linker system in order to disambiguate the extracted B2B Products using a B2B 

standard product classification system. Standard classification systems such as 

CPV, UNSPSC and eCl@ss can be employed to standardize the references that 

are used for describing goods and services in e-procurement documents. 

Linking the detected B2B-Product mentions using a common classification 

system for products and services will enable reliable and efficient search 

services for B2B e-marketplaces.   

Business opportunity search as one of the main search scenarios provides 

the opportunity to evaluates the matching mechanism using large and every 

day growing data sets of procurement data. Public procurement portals pro-

vide a valuable resource of structured procurement documents that can be used 

in improving different features of the proposed solutions and also can be used 

for other research works in procurement. In future work the semantic matching 

method will be applied to procurement documents from more tendering mar-

ketplaces.
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