
DISSERTATION

THE FUTURE OF NETWORKING IS THE FUTURE OF BIG DATA

Submitted by

Susmit Shannigrahi

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2019

Doctoral Committee:

Advisor: Dr. Christos Papadopoulos
Co-Advisor: Dr. Craig Partridge

Dr. Shrideep Pallickara
Dr. Indrakshi Ray
Dr. Patrick J. Burns
Mr. Inder Monga



This work is licensed under the Creative Commons Attribution-Noncommercial 4.0

International (CC BY-NC 4.0).

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative

Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.



ABSTRACT

THE FUTURE OF NETWORKING IS THE FUTURE OF BIG DATA

Scientific domains such as Climate Science, High Energy Particle Physics (HEP),

Genomics, Biology, and many others are increasingly moving towards data-oriented

workflows. Each of these communities generates, stores and uses massive datasets

that reach into terabytes and petabytes, and projected soon to reach exabytes. These

communities are also increasinglymoving towards a global collaborativemodel where

scientists routinely exchange a significant amount of data. The sheer volume of

data and associated complexities associatedwithmaintaining, transferring, and using

them, continue to push the limits of the current technologies in multiple dimensions

- storage, analysis, networking, and security.

This thesis tackles the networking aspect of big-data science. Networking is the

glue that binds all the components ofmodern scientificworkflows, and these commu-

nities are becoming increasingly dependent on high-speed, highly reliable networks.

The network, as the common layer across big-science communities, provides an ideal

place for implementing common services. Big-science applications also need to work

closely with the network to ensure optimal usage of resources, intelligent routing of

requests, and data. Finally, as more communities move towards data-intensive, con-

nected workflows - adopting a service model where the network provides some of

the common services reduces not only application complexity but also the necessity

of duplicate implementations.

Named Data Networking (NDN) is a new network architecture whose service

model aligns better with the needs of these data-oriented applications. NDN’s name

based paradigm makes it easier to provide intelligent features at the network layer

ii



rather than at the application layer. This thesis shows that NDN can push several

standard features to the network. This work is the first attempt to apply NDN in the

context of large scientific data; in the process, this thesis touches upon scientific data

naming, name discovery, real-world deployment of NDN for scientific data, feasibility

studies, and the designs of in-network protocols for big-data science.

iii



ACKNOWLEDGEMENTS

This journey has been a long but delightful one. The exercise of listing everyone

who has helped -mentors, collaborators, peers, friends, and family - will undoubtedly

be incomplete. I am indebted to all the wonderful people whom I had the privileged

to work with and learn from, and family and friends who have supported me uncon-

ditionally.

iv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problems of Scientific Data Management . . . . . . . . . . . . . . . 4
1.2 Networking for Big Science . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Requirements for Big Scientific Data . . . . . . . . . . . . . . . . . 12
2.2 Problems with scientific data management . . . . . . . . . . . . . 14
2.2.1 Data Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Inflexibility in Data Access . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Disorganization in Data Management . . . . . . . . . . . . . . . 18
2.2.4 End-to-end networking paradigm . . . . . . . . . . . . . . . . . 20

2.3 Current Scientific Data Management Systems . . . . . . . . . . . . 23
2.3.1 CDNs as a solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Peer-to-Peer Networks as a solution . . . . . . . . . . . . . . . . 29
2.3.3 Xrootd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 ESGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 iRods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Named Data Networking . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Hierarchical naming . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.3 Data-Centric Security . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.4 Data Provanance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.5 Intelligent Data Plane and Forwarding Strategies . . . . . . . . 53
2.4.6 In-network Caching . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 3 NDN Prototyping for Scientific Data Management . . . . . . . . . . . 57
3.1 CMIP5 and the ESGF . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.1 Data Access Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Request Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 Request Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Duplicate Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1.5 Request Size Distribution . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.6 Duplicate Request Inter-arrival Times . . . . . . . . . . . . . . . 68
3.1.7 Request Frequency Distribution . . . . . . . . . . . . . . . . . . . 69

v



3.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.1 Interest Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.3 Where to Cache? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.4 How Long to Cache? . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 A CDN-like Strategy for ESGF . . . . . . . . . . . . . . . . . . . . . . 84
3.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 4 Testbed Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 5 Naming Scientific Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Existing Naming in Scientific Communities . . . . . . . . . . . . . 102
5.2 Naming Data for NDN . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.1 Climate Data Naming . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 High Energy Particle Physics data naming . . . . . . . . . . . . . 110
5.2.3 Genomics data naming . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Translating Existing Names to NDN names . . . . . . . . . . . . . . 113
5.3.1 General NDN Discussion . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 NDN Naming Recommendations . . . . . . . . . . . . . . . . . . 120

Chapter 6 Name Discovery in NDN . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1 NDN-based Distributed Name Catalog . . . . . . . . . . . . . . . . 124
6.2 Actors in the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Protocols for a Scalable NDN Name Discovery System . . . . . . . 130
6.4.1 The data publication protocol . . . . . . . . . . . . . . . . . . . . 132
6.4.2 Synchronizing the name catalogs . . . . . . . . . . . . . . . . . . 136
6.4.3 The catalog updation protocol . . . . . . . . . . . . . . . . . . . . 141
6.4.4 The Data Query Protocol . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Performance Evaluation of NDN-SCI . . . . . . . . . . . . . . . . . 144
6.5.1 Publication latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.2 Name discovery latency . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5.3 Query latency for parallel requests . . . . . . . . . . . . . . . . . 146
6.5.4 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 7 The NDN-SCI Data Management Framework . . . . . . . . . . . . . . 151
7.1 High Performance Data Retrieval Challenges . . . . . . . . . . . . 154
7.1.1 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.1.2 Multi-source Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.1.3 Retrieval from “Best” Data Source . . . . . . . . . . . . . . . . . . 160

vi



7.1.4 Creating high-speed on-demand path . . . . . . . . . . . . . . . 163
7.2 Time-constraint challenges . . . . . . . . . . . . . . . . . . . . . . . 165
7.2.1 Bandwidth Reservation Protocol . . . . . . . . . . . . . . . . . . 167
7.2.2 SCARI - A Strategic Caching and Reservation protocol for NDN 169
7.2.3 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2.4 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.5 SCARI Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.6 A Deadline-Based Data Transfer Protocol: Design and Imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2.7 Component Interaction . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.8 Fulfilling Requests with Soft Deadlines . . . . . . . . . . . . . . . 185
7.2.9 Fulfilling Requests with Hard Deadlines . . . . . . . . . . . . . . 186
7.2.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.3 Usability Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.1 Remote subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.3.2 Staging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.3 Common Interface in the Network . . . . . . . . . . . . . . . . . 194

Chapter 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.2 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

vii



LIST OF TABLES

2.1 Data Size in Various Scientific Communities . . . . . . . . . . . . . . . . . . . 16
2.2 CDN Request Redirection Mechanisms . . . . . . . . . . . . . . . . . . . . . . 26

3.1 ESGF logging details - grey rows are used in the simulations . . . . . . . . . 60
3.2 Details of topologies by week. Legends are: FT:Full Topology, N:Nodes,

L:Links, C:Clients after pruning, RQ:Requests, URQ:Number of unique re-
quests, USR:Unique Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 NDN Testbed Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 NDN Testbed Network Stack Parameters. Most of these values were taken

from the ESnet’s guide for fast data transfers over Wide Area Networks [4].
The valueswere thenmanually examined and tuned to achieve highest pos-
sible throughput on the testbed. With these values, data transfers between
two nodes were able to achieve 9.8Gbps over the 10Gbps links using TCP.
NDN throughput was lower as described below. . . . . . . . . . . . . . . . . . 96

5.1 Name components of a climate data name . . . . . . . . . . . . . . . . . . . . 109

6.1 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Reservation Table in SCARI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 RESERVATION SCHEDULING TABLE . . . . . . . . . . . . . . . . . . . . . . . . 184

viii



LIST OF FIGURES

2.1 Metadata from a Climate Data File . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 CDN Overview [186] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Xrootd Architecture [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Xrootd Server Layers [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Xrootd Client Layers [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 ESGF Overview [179] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 ESGF Architecture [179] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 iRODS Overview [144] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 NDN Request/Response Overview . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.10 NDN in Network Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.11 NDN Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.12 NDN Packets - [196] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.13 An example NDN name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.14 NDN Forwarding Strategy [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Geolocations of requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Geolocation of failed requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Bandwidth Requirement vs Transfer Size . . . . . . . . . . . . . . . . . . . . . 63
3.4 Failed Requests by User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Duplicate Requests by Week . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Classification of clients based on number of partial transfers . . . . . . . . . 65
3.7 Duplicate Requests by Failure Rate . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 Daily duplicate requests from three client groups. Clients are grouped by

percentage of partial transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 File size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10 Inter-arrival time between duplicate requests . . . . . . . . . . . . . . . . . . 69
3.11 Popularity distribution of datasets . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.12 Sample Anonymized Topology for Simulations . . . . . . . . . . . . . . . . . . 71
3.13 [Requests by week]Number of Requests, transfer volume, and percent-

age of duplicate requests for the whole log at weekly intervals. Colored
boxes show sampled weeks. Actual weeks are W1:2013-11-19, W2:2014-
01-29, W3:2014-5-21, W4:2014-07-17, W5:2015-01-29, W6:2015-10-01, and
W7:2015-12-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 Effect of Interest aggregation: Requests that reach the data producer.
Cache Size = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 Number of hops saved using request aggregation. Cache Size = 0 . . . . . . 78
3.16 Request reduction at the server . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.17 Cache at the edge vs cache everywhere . . . . . . . . . . . . . . . . . . . . . . 81
3.18 Cost of caching at the network vs at the edge . . . . . . . . . . . . . . . . . . 82
3.19 Hop reduction by Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



3.20 Percentage of requests served by each server. Server 6 is the original data
producer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.21 Mean delay of retrieving a data packet at clients . . . . . . . . . . . . . . . . . 86
3.22 Mean number of hops at clients . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 NDN Science Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 NFD and TCP Optimization for better throughput . . . . . . . . . . . . . . . . 97
4.3 Pipelined Interests for better throughput . . . . . . . . . . . . . . . . . . . . . 98

5.1 Naming a climate dataset into NDN . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Naming a root dataset into NDN . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Naming convention for DNA sequence datasets . . . . . . . . . . . . . . . . . 112
5.4 Name Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5 A translator Schema File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6 NDN retrieval example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.7 NDN partial retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Catalog Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 The Catalog Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3 Database Schema for the Climate Catalog . . . . . . . . . . . . . . . . . . . . . 128
6.4 Data Discovery UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5 Catalog’s Interaction Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6 Data Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.7 Data Publication Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.8 Valid vs. Invalid Catalog Instructions . . . . . . . . . . . . . . . . . . . . . . . . 136
6.9 An example of digest tree used in catalog federation . . . . . . . . . . . . . . 140
6.10 Data Retrieval over Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.11 UI performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.12 Parallel Query Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.1 HTTP/FTP/ESGF vs NDN comparison topology . . . . . . . . . . . . . . . . . 155
7.2 Cache size vs cache hit ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3 Cache hit vs number of files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4 Cache hit vs number of consumers . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5 Caching Benefit of NDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.6 Scalable Retrieval using NDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.7 Content Availability and graceful degradation for retrieval using NDN . . . . 160
7.8 Percentage of requests served by each server. Server 6 is the original data

producer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.9 Mean delay of retrieving a data packet at clients . . . . . . . . . . . . . . . . . 162
7.10 Mean delay of retrieving a data packet at clients . . . . . . . . . . . . . . . . . 164
7.11 OSCARS with NDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.12 Reservation with NDN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.13 Overview of a deadline-based data transfer protocol. . . . . . . . . . . . . . . 169
7.14 Namespace Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.15 Reservation Communication Overview. . . . . . . . . . . . . . . . . . . . . . . 172

x



7.16 Reservation Protocol Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.17 Using reservation with strategic caching. . . . . . . . . . . . . . . . . . . . . . 177
7.18 Evaluation topology for SCARI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.19 Number of successful reservation requests . . . . . . . . . . . . . . . . . . . . 181
7.20 Number of reservation requests that arrived on the data producer . . . . . 182
7.21 Resource utilization at the intermediate node . . . . . . . . . . . . . . . . . . 183
7.22 Strategy decisions on client node’s NFD. . . . . . . . . . . . . . . . . . . . . . . 187
7.23 Using reservation with strategic caching. . . . . . . . . . . . . . . . . . . . . . 187
7.24 Duplicate requests for individual datasets over time. . . . . . . . . . . . . . . 189
7.25 Reduced bandwidth consumption with NDN. . . . . . . . . . . . . . . . . . . . 190
7.26 NDN remote subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.27 Discovery and Retrieval Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.28 NDN common interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

xi



Chapter 1

Introduction

This thesis is about employing Named Data Networking (NDN), a future Inter-

net Architecture, that can better serve scientific communities with large amounts

of data. Technologically, big-data dependent science or “big-science” is a critical but

very challenging domain with an ever-increasing volume of data, long distance net-

works, global collaborations, contention for resources at a global scale continuously

require cutting-edge technologies that can optimize resource usage, improve per-

formance, reduce bottlenecks, and support scientific workflows. This thesis shows

that Named Data Networking can support big-science communities better through

simplified data publication and discovery, fast retrieval, intelligent resource usage,

and the support for functionality such as remote computation. More importantly,

this thesis shows how an NDN-based network can move the common functionality

into the network and allows reusability of protocols and software across scientific

domains.

Scientific communities are entering a new era of exploration and discovery in

many fields, from climate science [57] to High Energy Particle physics (HEP) [26],

from Astrophysics [59] [66] to Genomics [21], and from Seismology [182] to Biomed-

ical research [117], that is complemented by data. An increasing number of science

experiments are making observations, generating a hypothesis, creating experiments

(simulations, observational experiments, or both), and collecting data. Based on the

simulated or observed data, changes to the hypothesis and experiments are made,

until the observations can be adequately explained. These datasets used for the ex-

1



periments as well as data derived from these experiments then become reference

datasets that are used in further research that continues to move the cycle of scien-

tific discovery forward.

With the help of data-intensive science, scientists are now able to use the ob-

served and simulated dataset to translate abstract ideas into conclusive findings and

concrete solutions. Data-intensive science is opening up radically new opportuni-

ties as well. Take for example the Next Generation DNA Sequencing (NSG) . Until

the very recent years, DNA sequencing was slow, expensive, and only a few institutes

were capable of performing it [23]. With the advances in supercomputers, special-

ized sequencers and algorithms, the cost of sequencing has dropped considerably and

continues to drop. For example, sequencing a complete human genome used to cost

around $2.7 Billion in 2013, and currently, it costs under a thousand USD [23]. With

commercial incentives, several companies offer full sequencing under one hundred

USD. This massive drop in cost has opened the door for more advanced scientific dis-

covery - for example, earlier scientists could only focus on testing their hypothesis on

a smaller number of genomes. With more publicly available datasets [21], scientists

can test their hypothesis against a larger number of genomes, potentially enabling

them to identify rare mutations, precisely classify diseases, andmore accurately treat

the diseases [156].

Another such example is the climate community. In a recently published arti-

cle [110] researchers from UC Davis show that extreme heatwaves in the Central Cali-

fornia Valley directly correlateswith heavy rainfall half-a-world away - over the Indian

Ocean and Southeast Asia. For this study, the researchers utilized weather data col-

lected from several weather stations in California as well as data from the Australian

Bureau ofMeteorology. Using heat wave data from June through September collected

over 32 years, from 1979 to 2010, they show that heavy rainfall over the Indian ocean

can predict an oncoming heatwave (within 4-14 days) in central California.

2



These ongoing paradigm shift is not only restricted to the Genomics or climate

community but is common across many scientific domains. The Large Hadron Col-

lider, the Climate modeling supercomputers, the large telescopes, low-cost genome

sequencers, the high-stability, high-resolution transmission electron microscopes,

are but a few examples of this shift where science is becoming increasingly inter-

twined with data-intensive technologies, high-performance algorithms and comput-

ing facilities. The volume of data that is being recorded, published, and analyzed is

highest in the human history [57] [50] [99] [172] - leading to important scientific dis-

coveries that enhance the understanding of our surroundings, present pictures of

atoms and the galaxy, and cure diseases that were untreatable until very recently.

On the other side of the story, the shift of scientific communities towards data-

intensive research has started to create huge amounts of data. For example, the

largest data- and network-intensive programs such as the Earth System Grid Fed-

eration (ESGF) [57], the Large Hadron Collider (LHC) [26] program, the Large Syn-

optic Space Telescope (LSST) [59], photon-based Sciences, the Joint Genome Insti-

tute applications, andmany other data-intensive emerging areas have each produced

Petabytes of data and quickly approaching the Exabyte scale [141]. The global na-

ture of these communities along with the astronomical rate of growth in data volume

create unprecedented challenges: in global data distribution, processing, access and

analysis, in the coordinated use of massive but still limited computing, storage and

network resources, and in the coordinated operation and collaboration within global

scientific enterprises each encompassing hundreds to thousands of scientists. While

data-intensive science makes the scientists more efficient in their scientific endeav-

ors, this newly found efficiency, in turn, generates more data. Therefore, the contin-

ued cycle of scientific breakthroughs in each of these fields depends crucially on the

ability to efficiently manage and utilize massive datasets whose scale and complexity

continues to grow exponentially with time.

3



1.1 Problems of Scientific Data Management

Due to the massive volume of data and the lack of standard organization prac-

tices, these scientific communities face tremendous data management challenges in

archiving, searching, sharing, visualizing, and analyzing the datasets generated by

large-scale measurements and supercomputer simulations. Each of these domains

also requires complex workflows supported by large-scale computing, data handling,

and network capacities; scientists in these domainswaste significant resources on the

logistics of handling andmanaging Big Data. While high-speed networks, data repos-

itories, and sophisticated software have helped to reduce such complexity signifi-

cantly, these communities need to maintain their unique software and hardware in-

frastructures, ensure data integrity, and improve data distributionmechanism. More-

over, as research progresses and data is distributed, these already massive datasets

are further enlarged with additional copies, metadata, annotations, emails, and other

auxiliary information. These datasets are often generated or stored at different sites

with elusive ties back to the original dataset.

In addition to the size of the datasets, the number of Big Data users and their

download demands has been increasing at an exponential rate [12] [50]. For keeping

up with the demand of ever-increasing global participants, various scientific com-

munities have created a plethora of specialized scientific data management solutions

that painstakingly reimplement same functionality [12] [1] [144]. These solutions are

almost always at the application layer, hard to use, and requires familiarity with vari-

ous home-grown data formats, naming schemes and storage architectures. This lack

of flexibility affects both data producers and consumers. Users often spend hours,

days or weeks to find and download big datasets which often fails midway or are un-

acceptably slow. Even when users are only interested in a small subset of the data,

4



they often need to download a massive amount of data only to discard a significant

portion, usually due to lack of sufficient granularity in data access.

The scientific workflows vary greatly. However, from a scientist’s perspective, the

following describes a very high-level picture; data is created at a central location (e.g.,

LHC), collected from various distributed sources (e.g., Weather data) and moved to

storage hosts. Strategically placed hosts on Internet stores and serves large amounts

of data to scientists across the world. Data is often replicated to other hosts to ensure

reliability and load distribution. In many communities, high-performance computer

clusters or supercomputers provide computation capability. Storage at these com-

putation locations are not infinite, so datamust bemoved from the storage location to

computation facilities and eventually removed after computation finishes. The net-

work plays a vital role in this ecosystem - connecting instruments, connecting storage

and supercomputing facilities, connecting users to these facilities, routing requests

to them, transporting data as well as results, and supporting a plethora of applications

for various functionality, data access, computation, visualization, and collaboration.

1.2 Networking for Big Science

In the scientific communities, the network is often viewed as a black box, offer-

ing only packet transport and connectivity. The current Internet protocols were not

designed to support Petabytes of Data, and certainly not Exabytes; the Internet de-

signers did not anticipate this deluge of data and networking design artifacts such

as end-to-end connections, congestion control algorithms, stateless networks often

works at odd with large data ecosystems. Additionally, since the current network

exposes very little and supports a limited set of operations by design, each of these

software ecosystems must develop ancillary software and protocols for monitoring

and interacting with the network, leading to the increased complexity of the software

5



ecosystems. Technologies such as Content Distribution Networks, Software Defined

Networking, Peer-to-Peer networking, and Network Virtualization are changing this

perspective slowly, though the underlying limitations remain.

The current model of data distribution and access does not affect only the users

but also the data producers. Producers often see a large number of failures and du-

plicate requests [161] which waste resources and causes evenmore failures. Since the

available resources are not sufficient to rapidly accommodate all requests for data and

results at any given location [166], these failed requests, and subsequent retries cre-

ate a ripple effect in multiple dimensions - network, storage, and computing power.

These problems necessitate the optimization of workflow in such a way that makes

the most efficient use of the available resources while serving the highest priority

requests with reasonably short turnaround time. However, only optimizing the re-

sources is not enough, and steps must be taken to reduce wasting the resources and

to reduce the turnaround times. An example of a current issue to be resolved is that

of failed large transfers following completion of a long-running job; it not only takes

resources away from other competing requests, but it also leads to delays and ineffi-

ciencies in the research work of the entire scientific collaboration.

Named Data Networking (NDN) , an instance of Information-Centric Network-

ing (ICN), is a new Internet architecture [196] which focuses on the what (the ac-

tual content names), rather than the where (the host where the data resides) . By

making content, and not the hosts, the central focus of the design, NDN can better

address the needs of data-intensive applications. NDN-supported applications can

better interact with the network, offload the standard functionality into the network,

implement intelligent functionality in the network, and detaches specifics of the path

from content retrieval. Several features of NDN can be beneficial to the scientific

communities. For example, directly using names in the network for forwarding and

6



content retrieval, in-network caching, and smart forwarding strategies can simplify

data management for scientific domains.

This thesis builds on the promise of NDN - it shows the incongruities between

data-intensive applications and the current network paradigm. UsingNDNat the net-

work layer, this thesis shows howNDN can support data-intensive science. This work

uses Climate, High Energy Particle Physics(HEP), and Genomics workflows as exam-

ples, studies the problems that these big-data communities face, find the common-

alities among these challenges, and shows how to address them better using NDN.

1.3 Contributions

The contribution of this work is in two complementary directions; it contributes

to the big-data science by demonstrating how applications can be simplified, generic

functionality can be pushed to network, and problems of large data transport ad-

dressed. On the other hand, it demonstrates a compelling use case of NDN, an emerg-

ing architecture. In the process, this thesis contributes to network research by creat-

ing novel in-network protocols, discussing trade-offs of naming schemes, deploying

the protocols on an actual testbed, and contributing to the architectural design. This

work designs, implements, and deploys NDN-SCI, a generic data management frame-

work built on top of NDN that helps with scientific data publication, discovery, re-

trieval, and other specialized operations in various workflows. The in-network proto-

cols not only demonstrates NDN’s compatibility with big-data science but also shows

howNDNcan interactwith other cutting-edge networking technologies such as Soft-

ware Defined Networking (SDN), ESnet’s OSCARS. Another contribution of this work

is presenting the in-network framework thatmoves standard functionality across sci-

entific domains into the network and showing that an NDN supported network can

7



adequately support the needs for future big-data applications, and at the same time,

simplify applications and increase software reusability.

1.4 Organization

The rest of this thesis is organized as follows: first, it discusses the problems of

the current network in the context of current scientific workflows. It then introduces

NDN in the context of scientific data management. Using a real climate access log,

this thesis evaluate NDN’s potential to improve large datamanagement and shows the

NDN is indeed capable of supporting big-data science. The next chapter discusses the

deployment of a real testbed and elaborates the considerations of deploying a new

Internet architecture. Chapter 5 presents naming guidelines for NDN based applica-

tions and demonstrates a potential migration path for current scientific applications

into NDN. Only naming of data is not sufficient for creating a name-based ecosystem;

Chapter 6 demonstrates a framework for discovering such names. Finally, Chapter 7

shows how “NDN-SCI”, a Data Management framework in the network can support

the needs of scientific applications in domains such as Climate Science, High Energy

Particle Physics and Genomics. Finally, Chapter 8 summarizes the effort and dis-

cusses the lessons learned - lessons that the author hopes would be useful for both

scientists and network operators involved in the logistics of big science data as well

as the networking research community.

8



Chapter 2

Background

In the past few decades, scientific domains have seen a proliferation in sophis-

ticated instruments [11], observational facilities [59] [66], and computing resources

[11] [54] [111] that have tremendously improved capabilities for scientific communities

ranging from climate science [12] to high energy particle physics (HEP) [11], from as-

trophysics [59] to genomics [144] [172], and from seismology [77] to biomedical and

heathcare research [184]. Scientists can now corroborate their theories and math-

ematical models using simulated [11] [12] and collected data [59] [66], making them

more efficient in their scientific endeavors, which, in turn, generate more data. Addi-

tionally, using raw data for experiments create more derivative data, metadata, notes,

annotations, and indexes, which increases the total data volume. For example, the

large telescope project [100] needs additional 15PB of storage for this additional in-

formation in addition to the 75PB raw data. Given the size of the data, the continued

cycle of breakthroughs in scientific fields depends crucially on our ability to efficiently

manage and utilize massive datasets whose scale and complexity continues to grow

exponentially [176] [51] with time.

Networking is the underlying technology that enables these intelligent scien-

tific applications [192] [125]. The Internet has proved to be invaluable in support-

ing new applications in scientific domains, fostering global collaborations, and pro-

viding access to data at scale [12] [1] [172]. However, in addition to the size of the

datasets, the number of Big Data users and their download demands has been in-

creasing at an exponential rate [176] [51]. For keeping up with the demand of ever-

9



increasing global participants, various scientific communities have comeupwith their

domain-specific software solutions and have created a plethora of specialized scien-

tific data management solutions [3] [172] [77] that painstakingly reimplement same

functionality. These solutions are almost always at the application layer, often re-

quire familiarity with various community-specific data formats [148] [43] [104], nam-

ing schemes [178] [163] [133], and storage architectures. This lack of flexibility and

application layer complexity affects both data producers and consumers. Users of-

ten spend hours, days or weeks to find and download big datasets which often fails

midway [166] or are unacceptably slow [10]. Even when users are only interested in a

small subset of the data, they often need to download a massive amount of data only

to discard a significant portion, usually due to lack of sufficient granularity [12] in data

access.

Further, there is no provenance or verifiability associated with scientific data

themselves. The security and trust are associated with the hosts that store the data.

Data is trusted onlywhen it comes from a verified and trusted source, such as a repos-

itory hosted at a well-known institute. However, lack of trust in data itself means data

cannot be served from anywhere - even if data is stored near the user, the user must

retrieve the data from a trusted source to ensure validity and provenance of data.

However, this method can be sub-optimal since the trusted source can be far away,

may fail, or become overloaded.

The current model of data distribution does not affect only the users but also the

data producers. Producers often see a large number of failures and duplicate re-

quests [161] which waste resources and can cause even more failures. Since the avail-

able resources are not sufficient to rapidly accommodate all requests for data and

results at any given location [166], these failed requests, and subsequent retries cre-

ate a ripple effect in multiple dimensions - network, storage, and computing power.

These problems necessitate the optimization of workflow in such a way that makes

10



the most efficient use of the available resources while serving the highest priority

requests with reasonably short turnaround time. Moreover, only optimizing the re-

sources is not enough, and steps must be taken to reduce wasting the resources and

to reduce the turnaround times. An example of a current issue to be resolved is that

of failed large transfers following completion of a long-running job [70] [171]; it not

only takes resources away from other competing requests, but it also leads to delays

and inefficiencies in the research work [132] of the entire scientific collaboration.

Another problemwith current scientific datamanagement paradigm is the definite

lack of interoperability among scientific communities [129] [69]. Though the opera-

tions on data are similar, e.g., all communities need to publish, discover, and retrieve

data, each scientific community has developed independent data management solu-

tions. An elegant solution to this problem could be pushing the common functionality,

such as content discovery, retrieval, and placement to the network layer so that all

these communities could use them without developing them scratch [72]. However,

it is challenging to implement such a model using the existing network model. As

a result, each of these communities must (re) -implement everything from scratch,

creating an ecosystem of one-off solutions that are often hard to maintain, tightly

integrated around a single scientific workflow, and unusable by other scientific com-

munities [72].

This chapter points out the requirements and the problems of scientific dataman-

agement, many of which are the result of incongruity between application require-

ments and current workflows and network models [161] [163]. These mismatching

semantics lead to complex logic and software modules at the application layer - of-

ten created to work around the network’s limitations, making them hard to debug and

maintain [161] [163] [132].

The significant contribution of this chapter is two-fold - it discusses why these

contemporary solutions are inadequate for solving data management problems de-

11



spite innovative engineering and large amounts of resources. It also shows why in-

telligent engineering that addresses the network’s shortcomings (e.g., CDNs) are not

acceptable solutions for most of these communities. At the same time, this chap-

ter discusses how pushing the standard functionality, such as content discovery, re-

trieval, and content placement into the network layer can create an elegant solution

for the big-science communities.

2.1 Requirements for Big Scientific Data

Scientific communities have different workflows and requirements, even with the

same communities [76] [101]. The goal of this section is not to exhaustively enumerate

all such requirements since such an exercise will most definitely be incomplete and

futile. Rather, this section focuses on enumerating the requirements that are com-

mon across most scientific communities. These requirements were gathered while

working with domain scientists from diverse domains such as Climate Science, HEP,

and Genomics.

• Data Publication - In most of the systems, data is published from several nodes

around the world [161]. There is a necessity to publish data into the system

quickly, without conflict, and consistently. In some cases, such as in HEP, data is

published from a centralized place. Currently, data publication is not consistent

across communities - often data is hidden in FTP or HTTP sites that are neither

indexed nor easy to find.

• Data discovery - Users need to find data easily. In some cases, catalogs are used

to hold the names of the data that the users can query. However, in most cases,

data discovery begins with the discovery of associated hostname, which in itself

is difficult. Currently, users need to know where data is replicated as well - if

12



there are several replicas, users/applications need to know them all in case one

becomes unavailable.

• Time constrained retrieval - Time constrained retrieval is another aspect of big-

science. Since existing infrastructure is insufficient to adequately accommodate

all requests at a given time [161] [166], users or applications must complete their

data retrieval or transactions within a specific time allowing other applications

to utilize the network.

• High-Performance bulk data transfers - Scientific applications need to trans-

fer a large amount of data over the network. The transfers are susceptible to

loss and congestion. Even a tiny amount of packet loss can kill the data transfer

performance [10]. Additionally, having the ability to transfer data from multi-

ple sources at the same time, switching path depending on path characteristics

(such as loss) are some of the properties that can help bulk data transfers.

• Pushing computations to the data source - Transferring large amounts of data

over the network can be time-consuming and prone to failure. Also, large scale

scientific computations need the significant processing power of [192] data cen-

ters or supercomputers. The currentway to pushing computations to data is not

straightforward - applications need to track where data is and push computa-

tion to it. A name based network can route the computation to the data source

without application involvements.

• Optimized resource usage - Since resources in scientific communities are not

infinite, optimizing available resources in the network is essential. Right now,

resources are hard to reuse, partially because of the end-to-end nature of the

network and also because provenance is not attached to the data itself. How-

ever, reusing data already flowing through the network and strategically caching

13



content in the network can cut down on bandwidth usage and free up network

resources to the other users.

• Reusability of applications and protocols - Currently, each community designs,

develops, deploys, and maintains their protocols and applications that repeat

functionality. Reusable frameworks can provide opportunities for developing

protocols that can be used by multiple communities cutting down on cost and

effort. A number of these common functionalities can be implemented in the

network. Functions such as high-speed retrieval, caching, bulk data transfer

and others can be network supported and do not necessarily need to be reim-

plemented repeatedly.

2.2 Problems with scientific data management

The massive volume of science data is a problem for scientific communities [64].

However, data size not the only problem that requires attention [64]; this thesis shows

that the data volume merely exposes underlying data management problems in the

fundamental building blocks, such as the network, data management applications,

and scientific workflows. Further, this thesis argues (and later demonstrates) that a

number of these problems arise from themismatch between the requirements of dis-

tributed scientificworkflows and the underlying network architecture, either directly

or often as an indirect side-effect.

This section presents a background on the problems of scientific big-data man-

agement, the factors that contribute to it, and how the network and workflows can

be adapted to solve (or minimize) these problems. In summary, scientific data man-

agement problems have several axes; the aggregate sizes of data requests for these

communities are enormous. Scientific communities often name and organize con-

tent in an ad-hoc manner since the ad-hoc organization does not currently inhibit

14



information exchange. However, the ad-hoc organization certainly makes data man-

agement process decidedly inefficient and finding, downloading, and reusing datasets

very hard. Finally, lack of support from the underlying network means all aspects

of data management solutions must be implemented at the application layer (or at

the middleware), leading to increased application complexity and reduced software

reusability. Each of these problems deserves attention, and the following sections

discuss them individually.

2.2.1 Data Volume

The amount of data currently produced in various communities is already enor-

mous. Table 2.1 shows data volume in a few of these scientific disciplines and in one

community in each of them. This massive volume of data poses a significant challenge

to scientific communities. For example, we studied an access log from a climate data

distribution node and found that it served 2PB data (approximately 250K 8TB hard

drives) in three years [161]. The CMS experiment [166] at CERN [141] produces about

1PB data ( 125K 8TB hard drives) per month and expects data volume to go up from

Petabytes to several Exabytes in the near future [141]. The Large Telescope [100]

is projected to produce about 20 terabytes (TB) of raw data per night, and the total

amount of data collected over the ten years of operation is projected to be around 60

petabytes (PB) (7.5 million 8TB hard drives) .

The raw data is not the only component that contributes to the cumulative data

volume [100] [12]. The raw data must be accompanied by ancillary information such

as where they were collected, the name of the project, date, the format of the file and

the data, and many other information. Figure. 2.1 shows the metadata information

from a single file in the Climate domain. Often each file will contain such metadata

[133], leading to a significant increase in the total volume of data. In fact, for the large

telescope project [100] this additional information needs another 15PB of storage for

15



Table 2.1: Data Size in Various Scientific Communities

Scientific Discipline Community Data Size Avg. File Sizes
Atmospheric Sciences CMIP5 2PB [12] 500MB
Atmospheric Sciences CMIP6 18PB [29] -

High Energy Particle Physics CMS 36PB [22]1 2GB
Genomics Human Genomes 2-40EB [172] 100GB [172]

Astrophysics LSST 75PB 20TB

the catalog database in addition to the 75PB raw data. Figure. 2.1 shows an example

of metadata accompanying a climate data file. Once the raw data and the metadata is

stored, the actual scientific analysis can begin. Depending on the workflow and the

number of users, each workflow can produce orders of magnitude more secondary

data than the original raw data [100] [65]. The amount of data produced is only going

to explode, by most predictions [100] [141] [172], exponentially.

2.2.2 Inflexibility in Data Access

The immense volume of large scientific data not only puts an immense load on the

existing infrastructures, but scientists must also invest their time and effort in cre-

ating data distribution infrastructure at the expense of scientific discoveries [12] [1].

Some of the problems cannot be avoided because the data volume is simply too large.

However, scientists can avoid many large data transfers by pushing the computation

to the data or retrieving a required subset of the larger datasets [163] [166]. Due to

lack of flexible tools, workflows, and intelligent protocols at the network, users often

retrieve entire datasets at a significant cost [65] [161]; they spend hours, days or weeks

downloading big datasets, often canceling and retrying several times [161]. Moreover,

users typically retrieve data through various dissimilar processes, often with a sub-

stantial manual component requesting it from a colleague, creating logins and nav-

igating public web servers, learning several native data formats, making the process

16



netcdf pr_19020101_060000 {
dimensions:

time = UNLIMITED ; // (124 currently)
grid_cells = 40962 ;

variables:
float pr(time, grid_cells) ;

pr:long_name = "Total precipitation rate- 6 hourly" ;
pr:title = "Total precipitation rate- 6 hourly" ;
pr:units = "kg/m2/s" ;
pr:type = "no " ;
pr:positions = "center" ;
pr:missing_value = 1.e+36f ;

double time(time) ;
time:quantity = "time" ;
time:units = "days since 1-1-1" ;
time:calendar = "noleap" ;

// global attributes:
:calendar = "noleap" ;
:institution = "Colorado State University" ;
:history = "Fri May 18 13:22:42 2012:
ncks -v pr gatm_y0000201.g2.nc pr_19020101_060000.g2.nc\n",

"Mon May 7 13:42:01 2012: ncks -d time,612,735
gatm_0001-08-01T00:00:00.g2.nc ../gatm_y0000201.g2.nc\n",
"Created: 05/05/2012 at 20:30 -0700 GMT " ;

:run = " Real world amip test case (02562) ! " ;
:grid = "geodesic" ;
:version = "0.5" ;
:extravaratts = "yes" ;
:total_grid_size = 40962 ;
:NCO = "4.0.2" ;

Figure 2.1: Metadata from a Climate Data File

cumbersome [12] [133]. A coherent framework working in sync with the network and

scientific workflows can help tackle this ever-increasing volume of datasets.

17



2.2.3 Disorganization in Data Management

The problem of science data is not only in its massive size but also a distinct lack

of data organization [65] [154]. Scientific data is seldom organized optimally for data

access. Instead, they are typically organized by the time order (e.g.,

pr_19020101_060000.g2.nc), or by appending increasing numbers to a fixed string

(pr_19020101_060000.g2.0.nc, pr_19020101_060000.g2.1.nc) [179]. The resulting

datasets are not only cumbersome to manage, but the arbitrary organization makes

them very hard to find, retrieve, and use [127].

Ad-hoc data management processes, various data naming schemes, data formats,

and lack of structured metadata makes data management more problematic [161]. A

scientist needs to know where data resides and how they are named. Finding the

names is a hard problem in itself since most scientific data is not indexed either by

search engines or existing scientific data management systems and more often than

not, the easiest way to find data is to contact the scientist who generated or col-

lected the data. Even when data location and names are known, moving data between

repositories often requires advanced planning and operator intervention because of

their large sizes [15]. All these manual components make the data management pro-

cess cumbersome. The lack of built-in provenance in data means scientists are often

unable to reuse data from their neighbors and can only get data from trusted repos-

itories.

The naming of scientific datasets is also arbitrary. For example, data names are

often tied to filesystem structures or HTTP URLs making them non-portable. More-

over, the names often do not follow any established naming conventions. Even when

naming conventions exist, they are often not enforced [133]. Modifying these names

are not easy since there are millions of scripts and other tools in existence that make

assumptions about the structure and location of the data.

18



As data is shared and research progresses, these already unwieldy datasets are

further enlarged with additional copies, metadata, annotations, emails and other

auxiliary information that not only grow the size of a dataset but are often gen-

erated or stored at different sites, with sometimes elusive ties back to the original

dataset [12] [59]. Retrieving, grouping and verifying the authenticity of such datasets

are very hard. Additionally, as the previous section mentions, the raw data is only a

small part of the whole dataset. The derived datasets are often more substantial than

the raw data, stored at different locations, alongwith copies of the original data. Since

reproducibility is essential in scientific communities [34] [128], these datasets are of-

ten stored with the copy of raw data, increasing the data management challenges.

Currently, names are mutable and not strongly bound to the content; the only way to

ensure reproducibility is to store both original as well as derived data. This approach

not only increases the data size but also creates multiple copies of the same data at

various institutes and organizations.

There is also a definite lack of interoperability among scientific communi-

ties [129] [69]. Though the operations on data are similar, e.g., all communities need

to publish, discover, and retrieve data, each scientific community has developed inde-

pendent data management solutions, as discussed earlier. Often, such solutions are

hard to use, requiring human involvement or familiarity with various home-grown

data formats, naming schemes and storage architectures. Besides, all these solutions

are built at a considerable cost, both in terms of money and effort [105]. An elegant

solution to this problem could be pushing the common functionality, such as content

discovery, retrieval, and placement to the network layer so that all these communi-

ties could use themwithout developing them scratch [72]. However, it is impossible to

implement such a model in the current IP model. As a result, each of these communi-

ties must (re) -implement everything from scratch, creating an ecosystem of one-off

19



solutions that are often hard to maintain, tightly integrated around a single scientific

workflow, and unusable by other scientific communities [72].

2.2.4 End-to-end networking paradigm

The architecture of the network itself causes many problems faced by today’s data

management applications. IP networking uses hosts as the core primitive; one must

first identify the host responsible for the desired content or service. As a result, data

management is complicated by needing to keep location state up to date in the face of

changing network dynamics. Several overlay techniques have been proposed on top

of the current network that can simplify this challenge. For example, bittorrent [37],

tor [169], publish-subscribe systems [87] [86], and peer-to-peer systems [183] [94]

can make the network transparent to the applications. However, all these techniques

still must maintain location information somewhere and periodically update them.

Host-based networking complicates data discovery andmakes data transfers brit-

tle; a failed node requires the consumer applications to identify an alternative content

source and restart the transfers. Since data is bound to host in the IP network, data

becomes unavailable when the host goes down. Currently, this problem is addressed

by replicating data among multiple hosts where each host has a full or partial copy of

the content. However, scientific data is usually large and requires massive resources

for replicating all data. Replication also increases the overheads for managing such

data; each location, data names, and attributes must be recorded in a catalog and

multiple instances of the catalog need to be synchronized and updated periodically.

Additionally, replication alone does not automatically result in an efficient content

distribution system, network and application protocols must get involved to create a

successful failover mechanism.

Currently, there are two ways to download data over IP networks. When transfers

are not very large or do not need to meet a deadline, data is requested using HTTP or

20



FTP over a shared network without any QoS guarantees [180]. When it is critical that

requested data reach the requester by a deadline, flows are separated from other

traffic using reserved resources [204] [25]. Reservations include router resources

such as queue capacity and interfaces, as well as the capacity of network links [204].

However, a reservation does not eliminate the underlying architectural shortcomings

of TCP/IP, such as aggressive congestion control, inability to optimally utilize network

resources, among others.

Network monitoring is hard: The current IP based network layer does not ele-

gantly support network condition monitoring [180]. As a result, the applications (or

the users) must keep track of the network performance and if unacceptable, restart

the transfers manually. Consequently, scientific communities often deploy intelli-

gent but complex applications that keep track of the network performance and try to

adapt in the face of changing conditions. This communication is often indirect since

the applications have no way to communicate with the network directly.

TCP congestion control interferes with transfer speed: For a large bandwidth

link, losing even one in hundreds of thousands of packets can dramatically reduce

transfer speed [41]. To circumvent congestion and packet loss in public networks sci-

entific communities have built dedicated science networks such as the LHC Optical

Private Network (LHCOPN) [119] and ESnet [4] that provide dedicated paths for sci-

ence data. However, while dedicated networks can remove some of the uncertainties

of public networks, scientific traffic flowing over these networks may still encounter

congestion and packet loss, as a result of a problem in a router or when other sci-

entific flows are competing for bandwidth. Losing any packet during the transfer is

very problematic for large data transfers since it usually results in degraded perfor-

mance. The potential solution proposed by the networking community range from

newer congestion control algorithms [48] [149] to multiple parallel TCP streams [84],

and from UDP based solutions [124] to multipath TCP [140].

21



Ad-hoc usage of network resources: Scientific communities routinely transfer

data ranging frommultiple Terabytes to Petabytes [161]. As this thesis just discussed,

using TCP/IP for such large data transfers can dramatically reduce transfer perfor-

mance [41] leading to missed transfer deadlines, wasted resources, and possible re-

tries from the clients. Due to the ever-changing nature of the large networks, sci-

entific applications often use bandwidth reservation to ensure lossless data transfers

and seamless performance. In IP networks, end-to-end channels with reserved band-

width are usually created using protocols built on top of RSVP [197]. However, the cur-

rent model of resource reservation can be inefficient [165]. First, reservations are of-

ten made by the users in an ad-hoc manner. A user trying to reserve bandwidth must

know the data source and the destination, request a reservation, and transfer data

within the reservation’s validity period [165]. There are several inherent problems as-

sociated with this approach. The users need to make sure the chosen source and the

destination are optimal and need to know the operational details of the network and

its capacity. From the network’s point-of-view, the whole affair can be highly inef-

ficient; if a user creates a reservation but only uses a small portion of the available

bandwidth, the rest of the reserved bandwidth is wasted. Contents from end-to-end

flows are not reusable even if multiple reservations share the same underlying path

and retrieve the same content.

IP network architecture does not support big-data applications well: In IP all

data transfers are end-to-end. There is also no way for the applications to commu-

nicate with the network and the operations necessary for data dissemination is hard

to implement. For example, in scientific communities data is often replicated among

multiple servers [161] [12]. Theoretically, these replications should help with faster

download by supporting parallel retrieval from multiple sources.

However, even when multiple data sources are available, it is hard to utilize them

simultaneously at the network layer. Though the networking community has pro-

22



posed workarounds such as multiple connections at the application layer or multi-

path TCP [142] at the transport layer, these approaches still require knowledge of the

underlying network. Moreover, multipath TCP works only between a pair of source

and destination - if the access link to the data producer is congested or if the data

producer fails, multipath TCP does not help. Multiple connections at the application

layer only work if the data is created to support parallel retrieval. For example, some

protocols such as HTTP supports byte range requests. However, using HTTP for all

applications might not be optimal, and all applications that choose not to rely on a

specific higher layer protocol must implement parallel transfer protocols indepen-

dently.

Network changes are hard to react to: Traditional IP networks do not keep any

state in the network, and there is no built-in measurement state in the network. As

a result, even when a path or the data producer degrades, an IP-based network con-

tinues to use the same path for data transfer unless there is some external inter-

vention. Recently, there have been multiple efforts to use SDN [83] to measure the

performance of paths and rapidly change the paths in case of a failure or degrada-

tion. However, this approach is still dependent on external entities to make decisions

and communicate these decisions to the router. As a result, the process is still inher-

ently slow - a faster and more straightforward approach would be to keep states in

the network routers themselves; keeping states in the routers will enable them to re-

act to the changing conditions rapidly and without external intervention, potentially

eliminating the need to involve the applications in network decisions.

2.3 Current Scientific Data Management Systems

Sheer size and complexity of scientific data as well as its distributed nature

make data management complex. Scientific datasets are typically generated at ge-

23



ographically distributed sites, curated, and made available to remote users. Signifi-

cant resources are required to rapidly accommodate all requests for retrieval, post-

processing, visualization, and analysis of the data. While large super-computing cen-

ters can accommodate such requirements, resources are scarce, and large amounts

of data must be moved to various repositories to eliminate bottlenecks. High-Energy

Physics datasets are typically generated at a single location and then distributed

around the world via a tiered system. They also need to support the distribution of

secondary data such as simulation output.

Since the IP networking protocols do not provide uniform frameworks to ad-

dress these common problems, various communities have designed and developed

customized data management software at a significant effort and cost to satisfy

their needs. The climate community uses ESGF [57] for searching and accessing

CMIP5 [179] data. Similarly, the HEP community has developed xrootd [68] for its

data, and the Genomics community has developed iRODS [189]. These IP based ap-

plications do not provide an appropriate network service model to facilitate data dis-

covery and retrieval operations smoothly. Moreover, much of the functionality of

these software is similar and could potentially be served by a common infrastructure.

The next sections describe these data management systems as well as contemporary

solutions such as P2P networks and CDNs. The sections also discuss the limitations

of these solutions and then introduces NDN in the context of large science require-

ments.

2.3.1 CDNs as a solution

Content Delivery Networks [186] tries to address some critical problem of content

delivery, namely, making content widely available, provide resilience though content

replication, and reduce user latency by moving content closer to the user. As a result,

CDNs fit very well into the content delivery requirements such as content generation,

24



sharing, and access [186]. CDNs usually replicate contents on a large number of sur-

rogate servers that are placed strategically at various points on the Internet. These

surrogate servers host content for content producers and improves the quality and

speed of content delivery, reduce latency and increase efficiency by placing content

near the users. Today’s CDNs also support dynamic content and video distribution;

Netflix, YouTube, Hulu, and others use CDNs for delivery of large amounts of video

content.

At a very high level, typical CDNs have three main components [186], origin

server(s), request redirection mechanisms, and a large number of surrogate servers

strategically places around the Internet. The origin servers contain original content

that a content producerwants to distribute. These origin servers are controlled by the

content producer or an entity that manages these servers on the content producer’s

behalf. The surrogate servers are distributed geographically and replicate content

from the origin server, either partially or fully. These servers also serve requests on

behalf of the origin server, essentially acting as caches. The replication strategy for

CDNs differ, some CDNs pull content on a cache miss, some CDNs provide full stack

replication, and some CDNs replicate only the larger objects such as video or image

files. Sometimes CDNs employ heuristics to prefetch content based onwhat the users

might be interested in the near future. The surrogate servers play multiple vital roles;

first, they reduce the load on the origin server and prevent slashdot effects. They also

reduce the latency experienced by the clients. Finally, they reduce the traffic in the

network, which results in savings both regarding money and network resources.

The request redirection is possibly the most important function of a CDN. Request

redirection chooses the most optimal replica based on several parameters such as

network congestion, distance to the user, the load on other replicas, latency to the

user and others. Request redirection mechanisms come in many flavors and Table

2.2 summarizes them.

25



Table 2.2: CDN Request Redirection Mechanisms

DNS based request
routing

Uses DNS to route requests to nearest replica

HTTP Redirection UsesHTTP Redirect to route requests to nearest replica
URL Rewriting Returns a new URL with best replica
DNS anycast Use closest DNS server for looking up IP
CDN peering Direct interconnect between CDNs and data providers
Global load balancing Centralized system for routing request to best servers
Multi-CDN Data provider chooses which CDN to use

Figure 2.2: CDN Overview [186]

The DNS based request routing [168] is very common in CDNs. The hostname

(e.g., cnn.com) points to a DNS server that returns one server IP address from a pool

of server IPs. By returning different IP addresses for different requests, CDNs can

balance the load on the servers and improve client experience. GLSB [96] [16] uses

the same principle, but at a different layer; a GLSB master server keeps track of all

the replica servers and their loads. When a browser requests for cnn.com, the re-

quest comes to the GSLB master server. Depending on the load and the geographic

proximity, the master server returns an IP address for the request. The big differ-

26



ence between DNS and GSLB is the fact that DNS is unaware of network or server

conditions and load whereas GSLB tracks the health of each server and can make a

more informed decision in choosing the surrogate server. URL rewriting and redi-

rections [187] are also used to redirect requests a suitable server- the request for

cnn.com is either rewritten at the server side to a new URL or a new redirection URL

is returned to the client which follows the new URL. The main difference between

these two methods is the URL rewriting happens at the server-side, and transparent

to the user and URL redirecting happens at the client-side and involves the client.

Anycast can also work for redirecting the requests to the nearest server [46] - in DNS

anycast, the DNS servers are assigned the same IP address. Based on the routing

topology, the network redirects the requests to the nearest DNS server. Note that

anycast can also be used to redirect requests to services other than DNS, such as

HTTP servers. There are other ways to redirect requests too - for example, a client

that needs to send enormous amounts of data over the network (e.g., Netflix) may

peer with other CDN providers [39]. In such a scenario, the client deploys servers

inside multiple CDNs and control how content is served with the help of “in-house”

heuristics and one of the other redirection mechanisms.

The previous section discussed at a high level how CDNs work. Note that all the

solutions are built on top of IP semantics and almost always involves clever engi-

neering to work around IP’s end-to-end semantics and the limitations. For example,

CDNs must carefully consider user access patterns and available server and network

resources for provisioning resources. However, the data producer can not always

predict how popular their content will be (the so-called “Slashdot effect”) and it might

not always be economical to over-provision resources in expectation of such a sce-

nario. Another observable shortcoming comes from DNS based redirections - if a

CDN uses DNS based redirection and one of the servers goes down, the IP address

must be removed from the pool of servers [168]. However, the DNS protocol does

27



not know if a server is up or has gone down - as a result, more sophisticated appli-

cations (such as GSBL) must be built that tracks server health and work with DNS to

update the available server pool when a server becomes unavailable. DNS updates

are not instantaneous, making it difficult to react to ever-changing network condi-

tions efficiently. To summarize, though CDNs provide novel ways to work around the

IP network’s limitations, they are still limited by the current host-based networking

paradigm.

Additionally, while CDNs can address some of the data management challenges,

current data management solutions bypass commercial systems in favor of custom

solutions, partly due to costs associated with CDNs [161] [6]. In addition to the high

hosting and access costs, scientific datasets are extraordinarily long-lived and ex-

pected to be useful for several decades [1]. This type of long-term agreements are

virtually impossible in commercial CDNs, and the risk of losing data is high if a host

CDN goes out of business. Proprietary CDN technology stacks and lack of compati-

bility between CDNs also makes it hard to switch providers.

Though commercial CDNs have gained much popularity in recent years, they have

not gained wide adoption in scientific communities for data distribution. Analyzing

a climate access log from ESGF, this work found that for a single workflow, the total

transfer size is 2.1 Petabytes over five years or approximately 4TB/month. If a CDN

provider such asMicrosoft Azure served those requests, it would cost the community

over $314,000 [6] for the basic service. Note that ESGF has more than twenty nodes

around the world and cumulatively serves much more than 4TB/month. Since CDN

costs also grow exponentially with the volume of data [2], serving exabytes of data

will make CDNs prohibitively expensive.

Distributing Exabytes of data using CDNs will not only be prohibitively expensive,

but CDNs have little or no economic initiatives to carry scientific traffic for free. The

long lifetime of these datasets is also a problem. Unlike typical CDN contents such

28



as traditional web pages, videos or files, scientific data are extremely long-lived and

therefore, expected to be useful and delivered for several decades. This type of long-

term agreements are costly, and the risk of losing data is high if the host CDN goes out

of business. Proprietary CDN technology stacks and lack of incompatibility between

CDNs make it difficult to switch providers. Such a move will require careful planning,

modification of existing tools and protocols. Once the data is locked into a proprietary

ecosystem, it is inconvenient at the least to re-develop all the tools that were built

around the ecosystem, retrain the personnel, and move to another provider.

Since using commercial CDNs for data distribution is neither very attractive nor

practical for the scientific communities, they must develop and maintain home-

grown software stack and data distribution infrastructure. Widely varying workflows

requires different communities to develop their highly specialized solutions at great

effort and cost, primarily at the application layer. Application layer solutions usu-

ally target a single workflow which makes them harder to reuse for other scientific

workflows. The following sections discuss three such applications, one each for High

Energy Particle Physics, Climate, and Genomics.

2.3.2 Peer-to-Peer Networks as a solution

Peer-to-peer (P2P) networks are overlay systems built on top of lower-layer trans-

port and network mechanisms, predominantly TCP/IP. The overlay networks do not

have any centralized control, and peers form self-organizing overlays that can offer

features such as smart routing, peer selection for storage, advanced routing, fault

tolerance and more [116]. P2P networks are different from client-server models in

the sense that there is no strict role for any of the participants. Nodes can func-

tion as both client and server; some nodes may also have special functions such as

tracking content replicas. There are primarily two classes of P2P network overlay -

structured and unstructured [116]. Structured P2Ps are tightly controlled and peers

29



agree on how an where to place content - examples are Chord [173], Tapestry [202],

Pastry [153], and others. Though structured P2Ps are efficient in locating items, they

incur higher overheads in maintaining the overlay [116].

Unstructured overlays organize peers in random order and use various meth-

ods such as flooding or random walks to find content [116]. While unstructured

overlay means less overhead in maintaining the overlay, the cost of looking up con-

tent is higher. Examples of this type of overlays are BitTorrent [91], Freenet [58],

Gnutella [151], and others.

BitTorrent is probably the closest in functionality to NDN. The files are split into

named blocks, and anyone who wants to download the content can request one or

more blocks from a peer. However, the data-centric view exists only at the applica-

tion layer - underneath, peers must discover other peers’ IP address, set up TCP con-

nections to them, and continuously estimate the quality of the connection in terms of

download speed and content correctness. Peers also need to incentivize other peers

to keep sharing content (a tit-for-tat mechanism) [91].

Though there are projects that share scientific data over BitTorrent, such as Aca-

demic Torrents [13] and Open Science Torrents [20], there are several problems with

sharing scientific data over BitTorrent. First, there is no way to tell if the content be-

ing retrieved is genuine until the download finishes. For large scientific data, this is

problematic since this approach wastes resources. Second, obscure content is hard

to find; as chapter 3 will show later, this poses a big problem for scientific data where

content popularity distribution has a long tail. Third, the performance of a BitTor-

rent network is directly related to the number of interested peers. So while popular

content is downloaded faster, unpopular content will not be. Finally, if a tracker goes

offline, the content becomes unavailable. The lack of security and lack of predictable

performance makes BitTorrent and similar protocols hard to use for scientific data.

30



Figure 2.3: Xrootd Architecture [1]

However, NDN can facilitate BitTorrent and similar protocols at the network layer and

is an active research area [122].

2.3.3 Xrootd

Xrootd (“eXtended” rootd) [68] [1] is a system for scalable cluster data access

created by the High Energy Particle Physics community that provides scalable stor-

age, discovery and retrieval capabilities. The Xrootd framework offers an intelligent

solution on the server side to distribute the data distribution load among multiple

machines that host either partial or fully replicated datasets. At the same time, the

framework provides the client side with transparent data access APIs where the users

need not know where the data resides.

31



In xrootd, the data resides on multiple servers organized in a system that dynami-

cally matches clients with servers that have the desired data. Xrootd’s architecture is

shown in Figure. 2.3. The system consists of a manager, several data servers and the

clients. All data servers register themselves with the manager. When a client wishes

to open a file the client sends a request to the manager with the desired filename.

Upon receiving the request the manager multicasts the request to all the data servers

andOnly those servers that have the desired file respond. Themanager decides which

data server should serve the request and informs the client accordingly. The client

then contacts the server directly.

xrootd provides various functionality that facilitates data distribution without

client/user involvement. The clients provide user authentication, resource/data lo-

cation discovery, access and transfer of data both in streaming and block transfer

form [68]. Additionally, the system handles failure by finding another working server

when a server fails, tracks failed data servers and brings them back into the federation

when they become available again, retries the requests automatically until no server is

found or a specified number of attempts have been made. Finally, the system also op-

timizes network resource usage and achieves high throughput by exploiting TCP/IP

characteristics, such as multiplexed persistent TCP connections. In the Xrootd sys-

tem, a server can manage resources by asking clients to delay contacting the server.

Furthermore, clients can be redirected to another server at any time, an approach that

improves fault tolerance. When a server becomes unavailable, the client launches

another search. Xrootd employs several mechanisms to optimize performance and

minimize resource usage such as multiple independent streams on a single socket.

The server side in xrootd has four layers [68] [1]; (a) a Network and thread man-

agement layer, (b) a Protocol layer, (c) a File system layer, and (a) a Storage layer.

Figure. 2.4 shows the server layer architecture. The layered approach allows for flex-

ibility in each layer and a way to substitute modules without affecting other layers.

32



Figure 2.4: Xrootd Server Layers [1]

The network and the thread management layer isolates all other layers from the de-

tails of the underlying network. It also maintains a thread pool and assigns work to

them when appropriate. The protocol layer is the layer that supports different data

access protocols. xrootd is the default protocol in this layer. The xrootd protocol is a

TCP based data access protocol withmultiple optimizations. For example, it supports

multiple independent streams on a single socket which minimizes resource usage.

Additionally, clients are redirected to more suitable servers at any time, allowing

for dynamic server selection and load distribution. Besides, the server side may ask

the clients to delay server contact. By pushing the decision back to the network, the

server is able to avoid being overloaded and allows the network to find another server.

A clientmay also ask the server to be prepared for future transfers, enabling the server

to do intelligent prefetching.

The file system later provides a higher layer API for various underlying file systems.

Additionally, this layer also merges multiple client requests allowing more efficient

file access and resource usage. In addition to eliminating redundant requests, the

file system layer also keeps track of active and idle files and closes them as necessary.

33



Figure 2.5: Xrootd Client Layers [1]

Finally, the layer provides file-based access control based on the information provided

by the protocol layer.

Finally, the storage layer provides a logical file system. The logical file system pro-

vides transparent interfaces to the underlying storage. Also, it also provides specific

optimization based on the underlying storage. A logical file system ensures a single

consistent view of storage, add or remove storage without affecting functionality, and

ensures multiple storage systems work together seamlessly.

The client side works with the server side to ensure fault tolerant and reliable be-

havior of the system. When the server tells the client to delay a request (or when a

server crashes) the client re-launches the search for the file. The client has built-in

policies for redirection, failure recovery, and read caching. Additionally, the client

performs connection multiplexing, data retrieval, and conversion to various data for-

mats.

Xrootd has several limitations since it is built on TCP/IP networks. The following

section summarizes the shortcomings.

34



• Based on TCP/IP networks: xrootd provides many functionalities that are bet-

ter implemented in the network. Request rerouting, transparent failover, high-

speed retrieval are functions that are currently built at the application layer that

requires complex engineering. Further, while xrootd tries to optimize network

resources by multiplexing multiple connections into a single TCP stream, the

mechanism is limited by TCP’s inability to perform well over long distance links

for large scale data transfers [180].

• No data provenance: Xrootd’s security framework allows any authentication

protocol and channel-based security but these mechanisms do not currently

provide data provenance.

• Use of application-level redirectors: For requesting content, clients must con-

tact a manager/redirector which may be unavailable, or overloaded, creating a

choke point or a central point of failure. Xrootd’s redirection and fallbackmech-

anisms introduce delays, and the algorithms and parameters for failover must

be implemented and tuned case by case, which becomes difficult in the HEP

case where the data is distributed at sites in all world regions, some with poor

or highly variable network connections [1].

• No transparent failover: Failover in xrootd is not transparent to clients since

they are active participants in remedying the failure. When the server or the

manager returns a failure code, the client must re-initiate the whole content

retrieval process beginning with the content search.

• Complexity: Xrootd protocols are implemented to work around the point-to-

point client-server model over TCP/IP networks. This paradigm introduces

complexity in the application layer. Functions such as caching of extracted data

object collections, and dynamic relocation of datasets are possible, but not im-

plemented automatically due to the complexity [68].

35



Simulation

Observation

Reanalysis

Da
ta

 a
nd

 M
et

ad
at

a 
Ac

ce
ss

Researcher

Policy Maker

Exploration
Processing

Analysis

Information

Output

Output

Reports

Decisions

Knowledge

Figure 2.6: ESGF Overview [179]

While xrootd provides an excellent framework for HEP data distribution, it is still

limited by the limitations of the TCP/IP network. Besides, it must work around the

limitations of the application layer, making it complex and domain specific. xrootd is

not the only datamanagement framework that suffers from this problem, as this thesis

shows below, data management software from Climate and Genomics communities

suffer from similar problems.

2.3.4 ESGF

The Earth System Grid Federation (ESGF) [57] is a data management system used

by the climate community to distribute CMIP5 data [179]. ESGF adopts a federated

software architecture consisting ofmultiple geographically distributed nodes that co-

ordinate through a peer-to-peer (P2P) protocol. The development of the system is led

by the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Re-

search (BER) . Additionally, international institutes and partners in Europe and the

US help to develop, deploy, and maintain the software framework as well as the data.

The system not only hosts and transfers petabytes of data but also hosts data for a

36



very long term, at least a few decades. Figure. 2.6 reproduces ESGF’s architectural

overview from the paper that introduces ESGF [179].

ESGF adopts a federated software architecture that has multiple geographically

distributed nodes connected over a peer-to-peer (P2P) protocol. Various institutes,

known as sites, host one or more of these nodes. There are four types of nodes in

ESGF that performs various tasks. Data nodes for secure data publication and ac-

cess, Index nodes for indexing and metadata search, Identity Provider Node for user

authentication and secure delivery of user attributes, and finally, compute nodes for

data analysis and visualization. ESGF uses off-the-shelf as well as homegrown pro-

tocols for providing these functionalities. For example, ESGF uses OpenID for user

authentication, a custom catalog for search, and provides wget scripts to the users

for data download. Users search for data through the ESGF web portals or desktop

client that connects to a local node. This node distributes the user queries to other

nodes in the federation, assembles the results, and finally returns them to clients as

scripts containing wget requests.

The generator of the data is responsible for naming the data based on commu-

nity agreed schemes. For ESGF and CMIP5, the most common data naming scheme

is described in the data reference syntax manual or the DRS. Once the data is gen-

erated and named appropriately, Data and metadata are ingested into a data node

via an ESGF Publisher software. This software parses the data file, populates a SQL

database on the data node, and the database eventually populates a global database,

called the THREDDS catalog. Users access the system through the ESGF web portals

or desktop client that connects to a local node which distributes the user query to

other nodes in the federation. The users search for the data using the web interface,

the local node assembles the results and return them to clients as scripts contain-

ing hyperlinks, which clients can then invoke to download data through various tools

such as wget, GridFTP [5] or OpenDAP [8].

37



Figure 2.7: ESGF Architecture [179]

ESGF has several limitations as well. Querying different ESGF nodes with the same

set of parameters often generates different results [133]. Data distributed through

ESGF lacks built-in provenance. Climate community acknowledges the need to sup-

port subsetting operations [12] which is not currently supported. Many retrieval tools

associated with ESGF cannot provide advanced capabilities such as parallel retrieval

or transparent failover. ESGF uses various technologies such as OpenID/PKI-based

authentication methods and custom middleware for user authorization and myproxy

for PKI infrastructure. However, configuring and maintaining such software is bur-

densome for both users and administrators [12]. Below, this thesis summarizes these

problems.

• No data provenance: Consumers can download CMIP5 data from secure nodes.

However, the files themselves are not signed by the data producers and only

have checksums associatedwith them. While checksums are useful for verifying

38



file integrity, they do not provide publisher provenance. Relying on checksums

and host-centric security means an attacker can change any datasets and the

associated checksums without alerting the users. Lack of publisher provenance

also makes in-network caching impossible.

• Batch mode downloads: When users want to download a set of files, the ESGF

portal generates a bash script containing several wget commands. A user can

then run the script on any Unix system, and the wget commands in the script

execute serially. There are several limitations to this approach. Serially request-

ing data is inefficient since it does not utilize available bandwidth; neither can it

usemultiple sources for file downloads. These scripts are not intelligent enough

to recover from a failure or stop retrieval when failures happen.

• No partial download: The scripts generated by ESGF does not use the resume

option provided byWget, and an unsuccessful transfer has to start over from the

beginning. The granularity of a successful download is the whole file - even a

missing byte requires restarting the download from the beginning. Users often

need to run download scripts multiple times for retrieving all content success-

fully.

• No parallel download: HTTP does not provide an easy way to parallelize file

downloads. Though intelligent clients can use multiple threads to retrieve parts

of a file, all requests still go to the same server. In case the server or a link is

overloaded, parallel transfers cannot speed up downloads. Since the requests

go to the same server, transfers cannot use an alternate server if something fails

but must restart the transfer from another server.

• Intelligent clients require complex configuration: ESGF provides Globus [5], a

sophisticated client for high-speed transfers. However, globus calls for an elab-

orate setup, not portable like bash scripts, and requires complex authentication

39



mechanism. Users often prefer simpler but less robust wget scripts over com-

plex setups.

• Authentication failures: ESGF uses OpenID for user authentication. Though

CMIP5 data is open, clients need to authenticate for accounting and auditing

purposes. Downloaded retrieval scripts request user credentials before running

actual wget commands. The community recognizes the authentication module

as a ”major pain point” [12]. Indeed, we noticed many failures from the same

user within a very short time. If a user improperly configures his/her creden-

tials, all subsequent download requests fail. Though the log specifically does not

mention what causes these failures, anecdotal evidence points towards a large

number of authentication failure.

• ESGF does not exploit the temporal locality of requests: The IP networking

model does not provide request aggregation or caching at the network layer.

However, the access log shows a significant amount of temporal locality among

duplicate requests. Currently, all these requests must travel to the server, con-

suming considerable network and server resources. We show in the later sec-

tions that even some aggregation will result in considerable bandwidth savings.

• No caching: The fact that requests are temporally close suggests caching might

be useful in reducing server and network load. It might also speed up data de-

livery to the client. Currently, there is no default caching mechanism in the

network or the application stack, and therefore, each client must configure and

maintain their caches. Convincing each consumer to configure their individual

caches is a daunting task. We show that the ability to place caches in the net-

workmakes data transfers faster, reduces network and server load, and requires

minimal user involvement.

40



iRODS Data System
Components

User Interface
Web/GUI

iRODS Server
Data on Disk

iRODS Rule
Engine

(Policies)

iRODS Metadata
Catalog

Database

Figure 2.8: iRODS Overview [144]

This section shows ESGF makes climate data easily accessible. However, it also

inherits significant problems from the IP network and application stacks that it uses

as the building blocks. As this thesis shows later, instead of working around the

network limitations, a network supported next-generation data management can be

more simplified, flexible, and have better performance.

2.3.5 iRods

Similar to xrootd and ESGF, iRODS [144] is a data management solution for the

Genomics community. iRods is open-source and solves similar data management

problems as xrootd and ESGF but implements them differently. Figure. 2.8 shows

the functional overview of iRODS. Each iRODS deployment is a “zone”, which are es-

sentially logical separations among different entities. A zone consists of several data

41



servers and a catalog server. The data/storage servers store actual data as well as

metadata. For example, an institutional deployment could be a single zone or can

have multiple departmental zones. iRODS provides four core functionality for data

management as described below.

• Data Virtualization: iRODS organized data objects in ‘collections” [144]. Data

objects and collections resemble files and subdirectories, respectively. However,

they are logically different from files and subdirectories. However, there are a

few subtle differences; collections do not refer to physical storage path, making

the system more flexible. A data object may refer to multiple replicas. This way,

if a replica becomes unavailable, the data is still available from another replica.

These collections and the data objects are then stored in “Storage resources” in

iRODS. Each resource has a logical name mapped to an URL like representation,

made of the hostname and the storage device. This scheme provides a layer

of indirection where the underlying mapping can be changed without changing

the logical names.

• Data Discovery: Like most scientific communities, the Genomics communities

associate a certain amount of metadata with the actual raw data. These meta-

data then can be parsed, indexed, and organized for data discovery. A user of

iRODS can associate any metadata with the actual data, the collections, users,

or resources. These metadata are then transformed into a catalog and stored

into a relational database that can be queried and used for data discovery.

• Workflow Automation: iRODS servers run a rule engine that allows the users

to define their workflow. It allows scientists to create specific workflows that

are tightly managed but at the same time, automated. It also allows flexible

rules where data objects can be manipulated and organized based on the rules.

Automating most of the workflowmeans scientists can no longer need to create

42



custom scripts for automating their jobs, which can often be tedious and error-

prone. For example, one rule might be to check the integrity of files before

running a job.

• Secure Collaboration: Scientists often need to keep data private due to privacy

requirements, non-disclosure agreements, or for practicality reasons. However,

scientific collaborations need to share data between multiple groups. Without a

framework, keeping track of data and permissions become very difficult. iRODS

provides public data access through temporary tickets, a Unix like file system

permissions for users and groups, and a federated access model for sharing data

across multiple iRODS zones. This flexible, multi-tiered access control enables

easy sharing and manageable data security [144].

While iRODS provide a simplified system for data management, similar to xrootd

and ESGF, it implements all these intelligent functions at the application layer. Func-

tions such as replication, data transfer, failover are all implemented at the application

layer, and not at the network. Hence, the problems faced by iRODS is similar to the

problems faced by xrootd and ESGF sections. Some of the additional problems faced

by iRODS are:

• Fast Data transfer: iRODS provides an option for fast parallel transfers by break-

ing down the bigger files into smaller chunks. These chunks are then transferred

in parallel. However, this approach still transfers between two end hosts and can

not exploit replicated datasets. While multi-source retrieval can be supported

at the application layer by individually naming each chunk, the underlying nam-

ing schema will need to track multiple hostnames and where data is located,

making it complex.

• Remote computation: iRODS supports remote execution of a chain of com-

mands. However, these remote executions are bound to a particular host that

43



is running the service. The clients must know the host addresses of where the

service is running and send the requests to the specific server. A name based

service may be better suited since the users no longer need to know the host

address; just knowing the name of the service would suffice.

To summarize, contemporary data management technologies are always built at

the application layer, which leads to increased complexity. While much work has

been done to alleviate the big-data problem in scientific domains, the solutions of-

ten need to work around the current network’s primitives, and not with it, making

them complex, community-specific, and hard to maintain and reuse. Additionally,

each of these communities painstakingly re-implements every functionality, ranging

from data discovery to data retrieval, from data replication to failure recovery, and

from access control to security. While some communities implement functionalities

that are useful across domains (e.g., fast parallel retrieval in iRODS), no cross-domain

reusability exists. Sincemany of these functions are shared across scientific domains,

pushing them into the network stack not only simplifies the applications but also pro-

vides a common platform that can be used across scientific communities, reducing

development and maintenance costs.

The function of the IP network is to only forward packets. As a result, imple-

menting such functionality in the network is not possible. On the other hand, Future

Internet Architectures such as NDN provides robust semantics that can allow these

scientific communities to push these functions into the network stack. The following

section provides a brief overview of NDN. Later, in Chapter 7 this thesis describes a

domain-agonistic data management solution built on top of NDN.

44



Figure 2.9: NDN Request/Response Overview

2.4 Named Data Networking

This section discusses Named Data Networking (NDN) [196] in the context of sci-

entific data management. Named-Data Networking (NDN) is one of NSF’s Future In-

ternet Architecture (FIA) [73] projects that investigate Information-Centric Network-

ing (ICN) . The NSF FIA program supports the investigation of new Internet architec-

tures that are possible replacements for the current host-centric model. NDN is an

instance of ICN. In NDN data is accessed by name rather than through the host where

it resides. Naming the data allows the network to participate in operations that were

not feasible before. Specifically, the network can take part in discovering and local

caching of the data, merging similar requests, intelligent retrieval and more. A con-

sumer asks for the content by name, and the network forwards the request towards

the publisher. In-network routers also cache returning content along the return path.

Requests for data may be retrieved from the original publisher, a repository, a router

cache or a neighbor; all content is signed making it easy to for the client to verify

that it received an untainted copy. By using extensive caching in the network, NDN

allows more efficient distribution (the more popular the content, the more available

it becomes) . Additionally, NDN provides mechanisms for in-network failover, fast

data retrieval, customized retrieval strategies, and others. Through these features

45



NDN can significantly benefit scientific communities; the following section provides

an overview of the NDN architecture in the context of large science data distribution.

NDN addresses the problems of big-science at the network layer. For example,

NDN uses caching and Interest aggregation to efficiently use available bandwidth by

reducing request duplication; name-based forwarding adapts to network changes im-

mediately; creative forwarding strategies use multiple paths, and NDN’s hop-by-hop

congestion control mechanism does not need to slow down consumers if another

path is available [157].

2.4.1 Architectural Overview

Figure 2.10: NDN in Network Stack
[198]

Similar to today’s IP architecture, the thin waist is the centerpiece of the NDN ar-

chitecture. Like IP, NDN is a “universal overlay” [196] - NDN can run over any trans-

port technology, including IP and the reverse is also true. IP’s hourglass architecture

makes the original Internet design elegant and successful where a particular layer (IP)

46



implements aminimal set of functionality for forwarding packets. Due to the universal

and simplistic nature of this layer, the upper (e.g., application) and lower (e.g., physi-

cal) layer technologies were able to evolve without changing the universal packet for-

warding mechanism. As Figure. 2.10 shows, NDN retains the same hourglass model.

However, today’s applications are typically written for retrieving content [196] [74]

instead of connecting remote computers. The applications themselves or application

specific middleware need to map this content-centric requirement to the current In-

ternet’s host-based model. NDN attempts to align these two models by using data

names in the thin-waist instead of IP addresses. As Figure. 2.10 shows, using data

names instead of IP addresses for delivery offers a new set of minimal functionality

based on content names. By changing the semantics of network service from deliver-

ing packets to a destination to retrieving content, NDN can essentially eliminate the

need for complex middleware and the need for the applications to perform common

network functions.

For communication, NDN uses two types of packets, Interest and Data. The con-

tent consumer drives communication in NDN. To retrieve data a consumer sends out

an Interest packet, which carries a name that identifies the desired data. One such

name might be /nytimes/frontpage. A router maintains a name based forwarding ta-

ble (FIB) (see Figure. ) . The router remembers the interface from which the request

comes in, and then forwards the Interest packet by looking up the name in its FIB.

FIBs are populated using a named based routing protocol, such as NLSR [95]. When

the Interest reaches a node or router with the requested data, it returns the content

which carries both the name and the content of the data, signed with the producer’s

signature. This Data packet follows in reverse the path taken by the Interest. Note

that Interest or Data packets do not carry any host information or IP addresses, they

are simply forwarded based on names (for Interest packets) or state in the routers

(for Data packets) .

47



NDN routers remember both Interests and Data for a while. How long these pack-

ets are remembered depends on the router configuration as well as the content va-

lidity period set by the data producer. Storing packets in the network allow dedu-

plication of requests and reply. The router uses a Pending Interest Table (PIT) for

keeping track of all the Interests waiting for returning data. If a duplicate Interest

comes in, the router simply logs the interface in the PIT but does not forward the

request upstream. This mechanism essentially aggregates all duplicate upstream In-

terests. When a downstream Data packet arrives, the router forwards it to all the

interfaces listed in the PIT entry, removes the PIT entry, and caches the Data in the

Content store, which can be either in router’s buffer memory or on the disk. Because

anNDNData packet is signed, the router can store it locally in a cache to satisfy future

requests. The content in the content store is replaced based on the local cache re-

placement policy. Data is returned precisely following the same path, and one Inter-

est brings back exactly one Data packet, archiving hop-by-hop flow balance. Caching

and signing of Data packets decouples content from the content producer. NDN can

support various functions without additional complexity - it can serve popular con-

tent from a router near the edge, create effective multicast groups, and adequately

supportmobility and delay-tolerant networks using a store-and-forwardmechanism.

2.4.2 Hierarchical naming

The NDN design assumes hierarchically structured names, e.g., a video produced

by Netflix may have the name /netflix/videos/movie1.mpg, where “/” indicates a

separator between name components. The whole video probably will not fit in a

single packet, so the segments (or chunks) or the videos will have the name /net-

flix/videos/movie1.mpg/1..n. Data that is routed and retrieved globally must have

a globally unique name. This is easily achieved by creating a hierarchy of naming

components, just like DNS. In the netflix example, all movies under netflix will poten-

48



Figure 2.11: NDN Forwarding
[196]

Figure 2.12: NDN Packets - [196]

tially reside under /netflix; /netflix is the name prefix that will be announced into

the network. This hierarchical structure of names is useful both for applications and

the network. For applications, it provides an opportunity to create structured, orga-

nized names. On the other hand, the network does not need to know all the possible

content names, only a prefix, e.g., /netflix is sufficient for forwarding.

NDN places few restrictions on naming, only requiring that, (a) the name structure

is hierarchical, (b) naming rules are globally agreed among content users, and (c) name

prefixes are allocated to publishers (similar to how the current DNS assigns domain

names) . The NDN architecture conceptually divides names into two variable parts,

49



/CMIP5 (activity)

/CMIP5/query

(network query 

service for 

/cmip5)

/CMIP5/reservation

(reservation creation 

service for /cmip5

/CMIP5/data

(data under /cmip5)

Figure 2.13: An example NDN name

the routing prefix (lbl.gov in Figure. 7.14), stored in router FIBs and used to route Inter-

ests, and the application-specific portion of the name. Once a routed name reaches

the producer, it can extract the application specific part, such as a query, and return

the appropriate data.

Named data enables NDN to automatically support various functions including

content distribution, multicast, in-network caching, and producer and client mobil-

ity. Since the core component of an NDN basedworkflow is name-based, it provides a

strong incentive to name datasets appropriately, which, in turn, should improve data

organization.

50



2.4.3 Data-Centric Security

In NDN, security is built into the content. Each piece of data is signed by the

data producer and is carried with the content. Data signatures are mandatory; on

receiving the data, applications can decide if they trust the publisher or not. The

signature, coupled with data publisher information, enables determination of data

provenance. NDN’s data-centric security is helpful in establishing data provenance.

Current SSL/TLS based security models place trust in the data provider. However,

there is no assurance of data validity if the data producer is compromised. Since

the SSL/TSL based model requires trusted hosts, in-network data cannot be cached

and reused. NDN’s data-centric security enables in-network caching; it is no longer

critical where the data comes from since the client can verify the authenticity of the

data.

NDN’s data-centric security can provide essential security through encryption.

Additionally, all NDN objects, including routing announcements, content, control

messages can be secured using public key cryptography. Since NDN is data-centric,

the widespread DDoS attack in the current Internet is hard to achieve by targeting a

particular host. Even if a particular host is attacked using NDN specific attacks (e.g.,

Interest flooding), consumers can still retrieve data from alternate sources, if such

sources are available.

2.4.4 Data Provanance

NDN solves the problem of data provenance, too. In IP, SSL/TLS secures the data

transmission channel between the source and the client. Secure data transmission

combined with embedded file checksums verifies file integrity and assures authen-

ticity. However, if both the file and checksum are altered at the source, there is no

way to detect the modifications.

51



Figure 2.14: NDN Forwarding Strategy [19]

Moreover, with the current workflows, there is no way to prove publisher prove-

nance. While scientific data often includes publisher details, they not signed and

therefore has no cryptographic binding to the producer. This might be a problem in

scientific communities; data and results from scientific communities have wide ap-

plications ranging such as economic forecast and policy-making, and as a result, data

provenance and reproducibility of results are very important.

As mentioned earlier, in NDN each data packet has publicly verifiable built-in sig-

natures. NDN makes it mandatory for the data producers to sign data digitally. Un-

signed data is rejected either in the network or at the receiving client. This signature

is used to verify data provenance at the client and also decouples the content from its

original publisher. The receiver can get content from anyone, such as a repository, a

router cache, or a neighbor, as well as the original publisher and verify that the data

is authentic.

52



2.4.5 Intelligent Data Plane and Forwarding Strategies

NDN routes and forwards packets based on content names [19], which eliminates

various problems that addresses pose in the IP architecture such as address space ex-

haustion, NAT traversal, mobility, and address management. In NDN, routers perform

component-wise longest prefix match of the Interest name the FIB. Routing in NDN

is similar to IP routing. Instead of announcing IP prefixes, an NDN router announces

name prefixes that it is willing to serve (e.g., /netflix) . The announcement is propa-

gated through the network and eventually populates the FIB of every router. Routers

match Incoming Interests against the FIB using longest prefix match. For example,

/netflix/videos/movie1.mpg might match /netflix or /netflix/video. Though an un-

bounded namespace raises the question of how to maintain control over the routing

table sizes and whether looking up variable-length, hierarchical names can be done

at line rate, previous works have shown that it is indeed possible to forward packets

at 20Gbps or more [170].

One of the fundamental features that enables intelligent functionality in the net-

work is multipath forwarding. IP routing uses a single best path to prevent loops. In

NDN, the name combined with a random nonce effectively identifies duplicate Inter-

ests and stops them from propagating. As a result, NDN can record and forward using

multiple paths for the same Interest. This multipath state in the network enables in-

network load balancing, in-network failure recovery, and intelligent forwarding of

requests.

In NDN, a particular module is in charge of making these intelligent decisions;

these are called NDN strategies. NDN strategies are pluggable modules that allow

an intelligent processing pipeline for requests and responses. Figure. 2.14 shows how

strategies support intelligent data retrieval by creating and acting upon in-network

states. Strategies are per-prefix and determine how to process Interest and Data

53



packets based on various parameters such as pre-defined rules, values in a measure-

ment table, or current network condition. As a result, forwarding strategies decide

which path(s) to use, based on per-prefix, user-defined policies, a unique feature of

NDN that can significantly benefit scientific applications. For instance, if an NDN

router has two paths to the same prefix, a strategy can choose the least congested

one; or a strategy may deploy BitTorrent-style forwarding for parallel retrieval. Be-

sides, when the only way to guarantee timely completion of large data transfers is to

create a reserved bandwidth path [41], NDN strategies can facilitate the creation of

such a path [163].

2.4.6 In-network Caching

Automatic in-network caching is enabled by naming data since a router can cache

data packets in its content store to satisfy future requests. Upon receiving a new In-

terest, the router checks if the content is in its local Content Store (CS), and if it is,

returns the cached content. The CS is an in-memory buffer that keeps packets tem-

porarily for future requests. However, there is no architectural restriction in mak-

ing it large. This thesis assumes that in addition to the in-memory CS, there will be

other larger, disk-based caches for facilitating content delivery. The content store is

similar to router buffers in today’s Internet. However, unlike today’s Internet, NDN

routers can reuse the cached data packets since they have persistent names and the

producer’s signature. For static content, NDN can serve temporally close requests

from the cache. For dynamic content, caching benefits applications using multicast

or when packets need to be retransmitted after packet loss.

While caching of content raises some privacy concerns. However, in NDN, the re-

quester is anonymous (though not to the first hop router physically connecting the

requester to the Internet) . Additionally, content can always be encrypted for ensur-

ing privacy. Additionally, while NDN names are human-readable, the names do not

54



need to have anymeaning themselves (thoughmeaningful names are certainly conve-

nient) . A movie named /netflix/movie1 can also be named as /netflix/b2ee4 without

affecting the network functionality.

In addition to the CS, NDN supports persistent, disk-based repositories (repos)

[53] [52] [159]. These storage devices can support CDN-like functionality without

additional application-layer engineering. Caching can also facilitate intelligent pro-

tocols such as in-network strategic caching where a router caches popular content

for a longer duration for future requests, freeing up valuable upstream bandwidth.

While caching is convenient for applications and enables a rich set of functionality,

it is not themost critical aspect of NDN. NDN provides other vital features discussed

above that are equally important in aligning content-centric applications to the net-

work semantics.

To summarize, this section discussed the problems of large scientific data man-

agement and showed in addition to the intelligent applications we need intelligent

network layer protocols that can provide the foundation to a generic data manage-

ment framework. Named Data Networking (NDN) is a future Internet architecture

that adopts a drastically different communication model than IP. NDN routes re-

quests based on content names and not by the address of end hosts. NDN has a wide

range of potential benefits such as in-network content caching with request dedupli-

cation that reduces congestion and improves delivery speed, simplifies applications,

and provide data-centric security built into the network. By aligning the network

with the application requirements, NDN not only makes the applications simpler but

also enable a richer set of functionality that improves content distribution, reduces

resource usage, and improve application reusability. The next chapter demonstrates

the benefits of NDN for scientific data flows using a real-world scientific data access

log; it shows NDN not only optimize resource usage and provide a consistent frame-

55



work for data management, but it also improves data distribution by automatically

providing CDN-like features at the network layer.

56



Chapter 3

NDN Prototyping for Scientific Data

Management

We are entering a new era of exploration and discovery in many fields, from cli-

mate science to high energy particle physics (HEP) and astrophysics to genomics,

seismology, and biomedical research, each with its complex workflow requiring mas-

sive computing, data handling, and network capacities [75] [130] [54] [201]. The con-

tinued cycle of breakthroughs in each of these fields depends crucially on the ability

to extract the wealth of knowledge, whether subtle patterns, small perturbations or

rare events, buried in massive datasets whose scale and complexity continue to grow

exponentially with time [30] [78] [75].

As described previously in Chapter 2, despite technological advances, the largest

data- and network-intensive programs including the Earth System Grid (ESGF) [57],

the Large Hadron Collider (LHC) [26] program, the Large Synoptic Space Telescope

(LSST) [59] and the Square Kilometer Array (SKA) astrophysics surveys [66], the Joint

Genome Institute applications [172], and many other data-intensive emerging areas

of growth, face unprecedented challenges: in global data distribution, processing,

access and analysis [99] [130] [76] [101], in the coordinated use of massive but still

limited computing, storage and network resources, and in the coordinated operation

and collaboration within global scientific enterprises each encompassing hundreds

to thousands of scientists [50] [180] [120].

57



This thesis has hypothesized that NDN, with its network-centric model of data

management and transport, can support the needs of big-data applications better.

This chapter looks at a contemporary scientific application, the Earth System Grid

Federation (ESGF) [12], that presently distributes large amounts of climate data to a

global scientific audience. Using ESGF as an example, this chapter presents a study of

the NDN networkmodel for scientific data distribution. This chapter shows that NDN

can significantly reduce the load on the data producer, provide novel functionality in

the network, improve reusability of data, speed up retrieval, and simplify applications

through the use of name-based data retrieval, intelligence in the network, and in-

network caching. The following section in this chapter describes why the ESGE log

is representative of diverse scientific workflows, the details of the log, and the data

access patterns, and how NDN can support these data access patterns.

The ESFG log is the most detailed log that this thesis was able to find; the topology

generated from the log contained 12,000 nodes and 21,000 links. The log also spanned

over three years with 33 million requests. While the author found data logs from

both High-energy particle physics and Genomics workflow, they are either smaller in

duration or did not have a complete topology and access patterns. However, the study

of these limited logs did show that the data access patterns in those communities are

indeed similar to the ESGF data access pattern. Due to the completeness of the ESGF

log and its representativeness, this thesis replays the actual data requests in the log

on a simulated NDN network and studies how NDN can improve data distribution for

scientific communities with big-data.

3.1 CMIP5 and the ESGF

The Coupled Model Intercomparison Project (CMIP) [71] is a collaborative frame-

work for studying the output of coupled atmosphere-ocean general circulation mod-

58



els. Phase 5 of this project is referred to as CMIP5. The CMIP5 project facilitates an

assessment of the strengths and weaknesses of current climatemodels and facilitates

the development of future models. For example, if the models indicate a broad range

of values either regionally or globally, then scientists may be able to determine the

cause(s) of this uncertainty using CMIP5 models. The volume of CMIP5 data, approx-

imately 3.5PB, already presents significant data management challenges [174] and the

upcoming CMIP6 [71] program is expected to have data sizes that reach into the ex-

abytes, substantially increasing these challenges [135]. The size of this dataset and

its distributed nature represents many of the contemporary scientific workflows and

makes it ideal for the study. While data access details are subtly different in other

scientific workflows [164] [50], for example, climate scientists access individual files

while the physicists access datasets (a set of files), basic operations such as publica-

tion, discovery, retrieval, staging [161] [166] [185] remains same.

The Earth System Grid Federation (ESGF) is a distributed federation of nodes that

publishes and distributes CMIP datasets. Section 2 includes a detailed discussion

of ESGF’s architecture. Briefly described, ESGF has several nodes around the world

that holds parts of the CMIP5 dataset. These nodes are organized as a peer-to-peer

overlay. Intelligent applications are used for data discovery, retrieval, and other oper-

ations. This section looks at a server log exported by an ESGF node at the Lawrence

Livermore National Laboratory (LLNL), which is part of the ESGF federation. This

works also looked at another log from an ESGF node at the German Climate Com-

puting Centre (DKRZ), the access patterns and the findings from the other log were

identical and therefore, not repeated in this chapter.

3.1.1 Data Access Log

This section utilizes an HTTP server log from the LLNL ESGF server that spans

from November 2013 to June 2016. Each entry in the log represents a file download

59



Table 3.1: ESGF logging details - grey rows are used in the simulations

Field Description
Request ID Unique ID of the request

User ID User’s OpenID
User Email User’s Email address (Optional)

File URL Location of the File
File ID Unique ID of the file requested

Remote Address IP address of the requested
User Agent Requester’s browser agent (Optional)

Service Type Type of the Client (Optional)
Time of the request When the file was requested
Success/Failure flag Boolean flag denoting outcome
Duration of transfer How long it took for serving the request

User ID Hash Hash of User ID (optional)
Data Size Size of the data on disk (Bytes)

Transfer Size Bytes transferred

request and contains the filename that was requested. It also contains ancillary infor-

mation such as the requester’s IP address, User ID, request timestamp as the number

of seconds since the epoch, the name of the requested file, a success/failure code,

and file transfer size. Table 3.1 shows all the fields present in each entry. The re-

quest ID is the unique ID of the request used for identifying requests, and the User

ID is the user’s OpenID for identifying unique users. The user email field is optional

and was not used for this work since the userID was sufficient for identifying users

uniquely. The File URL field represented the unique HTTP URL for accessing the file.

The FileID is a unique ID for each file that was not used since this is a subset of the

previous FileURL field. The remote address was the remote requester’s IP address.

The next two fields, user agent and service type, was optional and mostly not pop-

ulated, so they were not used for this study. The next three fields, the time of the

request, success/failure flag, and the duration of transfer were extensively used, and

they provided the timestamps of requests, whether the requests were successfully

started, and if they were successful, the duration of the transfer. The userID hash is

simply hashes of the UserID and as a result, need not be used. Data Size represented

60



the size of data on the disk (the actual file size), and the transferred size showed how

many bytes were transferred. Data Size and Transfer size together pointed out if a

transfer was completed fully or partially; if the data size was equal to the transfer size,

then the transfer completed fully, and the transfer was partial if the transfer size was

less than the data size. A partial transfer can happen when a user kills the transfer

midway or due to a network, client, or data server failure.

As the subsequent sections will demonstrate, the analysis of this log provides us

with user request patterns, the average size of the files that were requested, the

amount of time needed to satisfy each request, and more, as the next sections elab-

orate. These details allow us to infer the performance of the current system, identify

potential bottlenecks, and evaluate NDN’s fit with a global scientific workflow.

3.1.2 Request Locations

Figure 3.1: Geolocations of requests

The log contains about 18.5 million entries. Each entry represents an HTTP GET

request for a single file. The analysis of this log yielded a set of unique IP addresses

from these 18.5 million requests, henceforth referred to as the “clients”. The analysis

found 5692 unique users (derived from theUserID field in Table 3.1 and 9266 unique IP

addresses (derived from the Remote Address in Table 3.1) in the log, so clearly users do

61



not always download data to the same machine. The clients were from 78 countries

and belonged to 911 individual ASes. The highest number of users in an AS is 683

and 80% ASes had ten or fewer users. Figure. 3.1 shows the locations of these globally

distributed clients created using the usingMaxmindCity Database [123]. The requests

came from all over theworld with significant portions fromEurope (17 percent), North

America (25 percent), and Asia (44 percent) .

3.1.3 Request Statistics

Figure 3.2: Geolocation of failed requests

To better understand the users’ demand on ESGF and how efficiently the system

handles the request, this work investigates the success and failure rate of the re-

quests. The requests that failed to transfer any data (or transferred zero bytes) are

tagged as “failures”. The remaining requests fall into two categories: partial trans-

fers, where transfer size is less than the requested file size, and completed transfers,

where transfer size is equal to the requested file size. Figure. 3.3 demonstrates that

the ESGF server was overloaded throughout the entire period of study. The band-

width demand (the blue line in 3.3) on the server was orders of magnitude more than

the server was able to serve (the red line), pointing to a significant bottleneck at the

server.

62



Oct 
2015

Nov 2015

Dec 2
015

Jan 2016

Feb 2016

Mar 2
016

Apr 2
016

May 2016

Jun 2016

Time (10 mins)

10-8

10-6

10-4

10-2

100

102

104

106

A
g
g
re

g
a
te

 B
a
n
d
w

id
th

 R
e
q
u
ir

e
m

e
n
t 

(G
B

)

IP bandwidth requirement

Actual Data Transferred

Figure 3.3: Bandwidth Requirement vs Transfer Size

Out of the 18.5 million requests, only 5.7 million are partial or completed (around

33 percent) ; the remaining failed without transferring any data. Since the log only

provides a generic error code (-1) upon failure, the precise reason for such a signif-

icant number of failures is hard to find. Anecdotal evidence and consultation with

system administrators of the LLNL node point toward authentication failures, server

overload or user error. The failure heat map as shown in Figure. 3.2 that failures oc-

curred all over the world and not restricted to a particular geographical region. For

example, a large number of failed requests were from North America and Europe, re-

gions with historically better connectivity; failures were also noticed in regions with

historically worse connectivity. Figure. 3.4 shows that most of the users experienced

failure, regardless of their location.

Since the primary goal of this section is studying actual data distribution, and the

log does not provide a reasonable explanation for the failures, the failed requests were

excluded from the study, but the entries with partial and completed downloads re-

mained. Even extended discussions with the administrators of the node and the sci-

entists were also unable to pinpoint the exact causes of these failures. Removing

63



Figure 3.4: Failed Requests by User

failed requests left approximately 5.7 million (henceforth referred to as the usable re-

quest set) entries in the three-year log. While the failure rate is high, this is the most

complete log this thesis was able to find. Additionally, this work has observed fail-

ure in other scientific applications in High energy particle physics and Genomics. As

this section shows later, the servers are always overloaded which may lead to failures.

A complete redesign of the applications is out-of-the-scope of this work. However,

the findings from this work point out deficiencies and how they might be addressed,

paving the path for more efficient future applications.

3.1.4 Duplicate Requests

Over the three years, the usable request set had approximately 1.8 million unique

files; so on average, two out of three requests were duplicate. Figure. 3.5 shows the

percentage of duplicate requests by week; in some of the weeks, the number of du-

plicate requests was between eighty to ninety percent.

One potential explanation for such a high percentage of duplicate requests might

be interrupted, or partial requests since partial requests might trigger repeated re-

64



2013-09-23

2014-01-17

2014-05-13

2014-09-06

2014-12-30

2015-04-25

2015-08-19

2015-12-13

2016-04-06

2016-07-31
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f 
d
u
p
lic

a
te

 r
e
q
u
e
st

s

Figure 3.5: Duplicate Requests by Week

0 1000 2000 3000 4000 5000
Number of Clients

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
FD

 o
f 

P
a
rt

ia
l 
T
ra

n
sf

e
rs

CDF of Partial Transfers

Figure 3.6: Classification of clients based on number of partial transfers

65



quests when a user retries requests that stopped midway. Figure. 3.6 shows par-

tial transfers across clients, sorted by the percentage of partial transfers. The figure

visually classifies clients into three categories: (a) approximately 3500 clients who

successfully retrieved data about 90% of the time, (b) 500 clients with widely vary-

ing success rates ranging between 10% and 90%, and (c) approximately 500 clients

who did not complete transfers about 90% of the time. Plotting the number of dupli-

cate requests from these three groups in Figure. 3.8 confirms the earlier observation:

both successful, as well as clients with partial transfers, were responsible for dupli-

cate requests, though the number of duplicate requests wasmore for the latter group.

Additionally, as figure 3.7 shows, the duplicate requests came from clients that expe-

rienced a high failure rate as well as from those who did not.

Figure 3.7: Duplicate Requests by Failure Rate

Another possible explanation for duplicate requests is a user requesting different

parts of the same file in parallel. An investigation into the repeated requests from

the same user showed that the combined size of the temporally close requests for

the same file never adds up to the requested file size; they were either much larger

66



100101102103104105106 Less than 10% transfers are partial

100101102103104105106

N
u
m

b
e
r 

o
f 

D
u
p
lic

a
te

 R
e
q
u
e
st

s

10-90% transfers are partial

2013-05-12

2013-11-28

2014-06-16

2015-01-02

2015-07-21

2016-02-06

2016-08-24
100101102103104105106 More than 90% transfers are partial

Figure 3.8: Daily duplicate requests from three client groups. Clients are grouped by percent-
age of partial transfers

or smaller. Other plausible explanations for duplicate requests are, file popularity,

space/memory constraints at the user, possible trial runs before actual retrieval or

failure at the client after retrieval. None of these conjectures can be confirmed with-

out access to user logs and possibly real users. Therefore, this study treats duplicate

requests as legitimate and do not try to guess users’ intentions. However, there have

been several studies [111] [67] that reaffirm locality of access in the scientific work-

flows. Additionally, more recent works by the author of this thesis on High-energy

particle physics and Genomics workflows show a similar trend of the locality of ac-

cess. Therefore, though the exact reason for the high number of duplicate requests

unknown, this access pattern is well documented [166] [67] [111].

3.1.5 Request Size Distribution

Figure. 3.9 shows the file size distribution observed in the log. While the cumu-

lative transfer size for scientific data is Petabytes or more, individual files are in the

range of 30MB to 3GB, and 95% of the files were 1.3GB or less. 95% of the clients typi-

cally requested less than 10TB of data over the period covered by the log. These trends

67



0
.0

 G
B

0
.5

 G
B

1
.0

 G
B

1
.5

 G
B

2
.0

 G
B

2
.5

 G
B

3
.0

 G
B

Size of Requests

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f 
R

e
q
u
e
st

s

CDF of Object Sizes

Figure 3.9: File size distribution

are consistent across scientific domains - subsequent works done by the author show

that the average file size for High-Energy Particle Physics is around 2GB [166], and

around 500MB for Genomics. These observations have implications on caching, and

Section 7.25 shows that caching popular datasets in scientific domains do not neces-

sarily require large in-network caches.

3.1.6 Duplicate Request Inter-arrival Times

Figure. 3.10 shows that duplicate requests are closely spaced in time. Specifically,

more than 60% of the requests were repeated within a minute and 95%median inter-

arrival times are less than 400 seconds. Therewere hardly any duplicate requestswith

an inter-arrival timemore than 500 seconds. The short inter-arrival timemakes these

datasets ideal candidates for caching. Moreover, this observation shows that setting

the content freshness time, the time that defines how long cached data is valid for

fulfilling subsequent requests, to around 500 seconds is optimal for this workflow.

Note that this is not the caching duration but provides an estimate the amount of

cache needed in the network. Since duplicate requests are closely spaced, the total

68



0 100 200 300 400 500
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

tr
ib

u
ti

o
n
 o

f 
re

q
u
e
st

 I
n
te

rv
a
ls

CDF of Average Inter-request time at server

CDF of Median Inter-request time at server

Figure 3.10: Inter-arrival time between duplicate requests

amount of cache required for effectively aggregating requests can be smaller, around

500GB for this specific workflow, certainly feasible today.

3.1.7 Request Frequency Distribution

100 101 102 103 104 105 106

Request ID

10-1

100

101

102

103

104

105

106

R
e
q
u
e
st

 F
re

q
u
e
n
cy

Observed Frequency

Zipf, α=1.15

Figure 3.11: Popularity distribution of datasets

69



The request pattern for individual files follows a very long-tailed distribution with

98% of the files requested less than 20 times. However, Figure. 3.11 shows that some

files were also prevalent, the highest number of requests for a single file was 700,000.

The red line in Figure. 3.11 shows a Zipf distribution with α = 1.15. The observed data

request pattern follows an expected distribution [40] where some of the datasets are

extremely popular followed by datasets with diminishing popularity. This observa-

tion can be useful for carrying out similar experiments or in constructing NDN traffic

generators. The request distribution combined with inter-arrival time distribution

can also produce a realistic traffic flow for future studies.

3.2 Simulation Setup

The previous section describes the analysis of a three-year log of ESGF data ac-

cesses as observed at a single server at LLNL. This section uses those analysis results

to create and drive a simulation to determine the benefits of NDN in thismajor domain

application. This work uses the user requests in the log and the derived topologies to

drive NDN based simulations using NDNSim [121]. The simulation scripts are available

on Github [9].

These simulations use approximated network topologies derived from the log con-

taining all the clients. The network topologies were generated using a machine in the

same subnet as the server at LLNL and the tool traceroute [118]. Reverse traceroutes

from the server to the clients discovered all the hops that were then combined to cre-

ate the final topologies. Figure. 3.12 shows aweek’s topology. Note that this work used

different topology for different weeks; though the data producer remains unchanged,

some of the clients and intermediate routers change for each week.

Clearly, this approach maps the reverse path of the requests which might not be

the exact routes these requests took [102]. However, without access to all clients’ ma-

70



Figure 3.12: Sample Anonymized Topology for Simulations

71



chines, this is the best topology that could be generated. While a reverse traceroute-

generated topology may not accurately represent the original topology used by

clients, the actual topology is not crucial for this study. The generated topology is

adequate to draw valid conclusions since this study only studies how caching and

request patterns affect content distribution. Some network paths are likely to be dif-

ferent as well as the path lengths might be different. This work also assumes that

the paths have not changed significantly over the last few years. Again, an accurate

approximation of the internal network proves to be less critical in caching since most

benefits come from edge caching. As long as workflows have duplicate requests and

the network paths they follow intersect, NDN based in-network caching, interest ag-

gregation, and intelligent strategies can simplify and optimize them.

The topology generated from the reverse traceroute results has approximately

12,000 nodes and 21,000 links. This topology was imported into NDNSim [121] and

the NDN stack was installed on each node. NDNSim uses real data packets, and the

total memory usage for a simulation grows linearly with the number of nodes (Total

MemoryUsage =Content Store Size XNumber ofNodes) . As can be expected, the first

attempt to run the scenario on a machine with 128GB RAM proved to be challenging

as NDNSim quickly exhausted the available memory.

At this point, it was evident that a compromise was needed. The two choices were

either to downsample the entire log using Poisson sampling or use a smaller portion

of it to drive the simulations. Previous work has demonstrated that Poisson sampling

of web access logs can sufficiently reduce the size of the data while preserving the

original characteristics [136] [137]. However, downsampling the log alters request

inter-arrival times and may result in inaccurate cache volume and caching duration

estimates. Thus, a smaller portion of the log had to be used. Seven weeks out of the

three-year log were randomly selected - the best NDNSim could do; These weeks

were chosen randomly and were not cherry-picked based on some property, for ex-

72



ample, most traffic. Figure. 3.13 shows request patterns, and actual data volume for

the selected weeks, and the percentage of duplicate requests per week over the en-

tire log. While simulating only seven weeks is a limitation in the study, figure 3.13

demonstrates that the qualitative observations remain valid since the chosen weeks

had very typical request patterns and transfer volumes.

100

80

60

40

20

0

Sampled Week # 
1    2          3     4              5                         6    7

Figure 3.13: [Requests by week]Number of Requests, transfer volume, and percentage of du-
plicate requests for the whole log at weekly intervals. Colored boxes show sampled weeks.
Actual weeks are W1:2013-11-19, W2:2014-01-29, W3:2014-5-21, W4:2014-07-17, W5:2015-01-
29, W6:2015-10-01, and W7:2015-12-15

After selecting the target weeks, the next step was to create the corresponding

topologies (one for each week) from the log, which are trees with the LLNL node

at the root. However, the available memory was still unable to accommodate the

simulation, and the simulations needed a lower number of events. Figure. 3.11 shows

that a few clients made most of the requests, followed by a long tail of clients that

made very few requests. This long tail added a significant number of nodes in the

topology that stressed NDNSim. By keeping the clients responsible for 95% of the

traffic and pruning the long tail, the number of nodes in the topology came down to

a point where NDNSim could produce results.

73



What exactly did the simulations lose by removing the long tail? The tail (5%)

consists of mostly unique requests. Looking at them more closely, these requests

contain a small number of duplicates and thus had little effect on Interest aggregation.

Given their relatively small number, these requests would not have a significant effect

on caching either.

The simulations scheduled the requests in relative time based on the first request’s

timestamp (tsfirst_request) . A request r1 with a timestamp 1378400495 is scheduled at

time 1378400495 - tsfirst_request. This simple manipulation of timestamps keeps the

simulation running time low but does not alter the original request pattern. The

simulations start with cold caches and do not account for the cache warm-up time.

However, this only underestimates the usefulness of caching and Interest aggrega-

tion since using a full cache would serve some of the “warm-up” requests from the

cache. Figure. 3.11 shows the content popularity trend. Statistically pre-populating

the caches/PITs would have resulted in more cache hits and Interest aggregation for

the popular content.

In the simulation, the server returns a portion of the data as a signed binary con-

tent object upon receiving an Interest; this is referred to as a chunk. The content

producer defines the size of this returned NDN object; this particular study sets the

chunk size to 100MB. The producer also records the Interest names and the time

when it received them.

The NDN pending interest table (PIT table) size is unlimited for these simulations.

This table allows NDN to aggregate duplicate requests that are temporally close. The

cache size varied depending on experiments and are describedwith each experiment.

Since a well-accepted congestion control mechanism is still lacking in NDN [147],

these simulations used clients with a fixed Interest window size of 64, since the work

74



Table 3.2: Details of topologies by week. Legends are: FT:Full Topology, N:Nodes, L:Links,
C:Clients after pruning, RQ:Requests, URQ:Number of unique requests, USR:Unique Users

N L C RQ URQ USR
FT 11570 16618 - 5724796 370623 2942
W1 142 152 20 4174 3935 19
W2 66 78 10 241452 4558 8
W3 119 124 15 1722 1658 15
W4 168 175 20 2632 1366 19
W5 1320 145 20 3118 3036 18
W6 76 79 10 105607 3097 11
W7 85 87 10 14282 570 8

found to be most performant. The log drives interest sending, and clients use In-

terests created using the NDN names followed by monotonically increasing segment

numbers. These simulations use the file names from the log as-is; the NDN name

for file x is /cmip5/x for this study. A client may request data for file x using Inter-

ests starting with segment number 0 (/cmip5/x/segment0) through segment number

n (/cmip5/x/segmentn), with each segment bringing in a fixed amount of data. Origi-

nal file size and NDN data chunk size set by the producer determine the total number

of segments. Clients record Interest and Data names, request and reply timestamps,

the number of hops, and Nacks or timeouts if any. On receiving the Interest, the

producer returns a portion of the data as a signed binary content object. The pro-

ducer also logs the Interest names and the times when they were received. Once the

simulations complete, the resulting logs provides enough data for evaluating NDN’s

performance. Specifically, the simulations provided the following:

1. Request time and completion time of the requests that enable us to calculate

transfer times

2. Requests that were forwarded to the server; this allows us to calculate the num-

ber of requests that reached the server

75



3. Requests that were aggregated in the network and Requests that were served

from the cache, this shows how NDN can improve data distribution

4. Hop counts of each fulfilled requests that show how far requests traveled before

being fulfilled either from a cache or the data server

3.3 Evaluation

This section evaluates NDN capabilities such as Interest aggregation, caching, and

forwarding strategies in order to quantify how the performance of a system such as

ESGF might benefit from them. This section shows that an NDN based network not

only reduces the load on the server but also eliminate unnecessary network traffic,

and speeds up data retrieval.

3.3.1 Interest Aggregation

NDN aggregates pending requests using the Pending Interest Table (PIT) . Such

aggregation works if requests arrive before data comes back. Under normal network

conditions, the round-trip time is small, which limits the usefulness of Interest ag-

gregation in some applications [63].

The log tells a slightly different story; the log had several occurrences where the

server saw repeated requests for the same data within a very short period. Since

these requests are temporally very close, the first experiment investigated if the de-

fault PIT aggregation in NDN offers any benefits. To ensure in-network caching does

not interfere with the study, the content store size was to zero on all nodes, including

the producer and the clients, and content freshness time to 10 seconds. The simula-

tion produced a graph showing the results of default Interest aggregation; Figure. 3.14

shows the number of Interests that reached the server. Three weeks saw no reduc-

76



tion in server hits, one week saw a minimal reduction, and the three remaining weeks

saw a significant amount of reduction.

The weeks that saw no reduction had a relatively small number of requests, mostly

unique. A small number of requests means that (a) the server is not very busy and

can serve content very fast, and (b) the average time between requests is on aver-

age longer, which explains why there was no aggregation benefit. Weeks that saw a

substantial reduction had a high number of duplicate requests, caused by many par-

tial transfers and popular content requests. For example, in one week two clients

requested 7,800 unique files for a total of almost 45,000 times.

2013-11-19

2014-01-29

2014-05-21

2014-07-17

2015-01-29

2015-10-01

2015-12-15
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

N
u
m

b
e
r 

o
f 

se
rv

e
r 

h
it

s

Minimal Reduction

No Reduction

Large Reduction

Server hits without aggregation

Server hits with aggregation

Figure 3.14: Effect of Interest aggregation: Requests that reach the data producer. Cache Size
= 0

To further evaluate Interest aggregation benefits, the experiment calculated the

reduction in the number of hops Interests traversed as a result of aggregation. This is

accomplished by first calculating the total number of Interest hops across all clients

without aggregation and then comparing it with the number of hopswith aggregation.

As Figure. 3.15 shows, some weeks saw a significant reduction in hop count in the

weeks where aggregation was helpful.

77



A few nuances in this experiment should be mentioned here. To ensure timely

completion of the scenarios, large chunk sizes (100MB) were used. While larger trans-

mission delays improved aggregation by a small amount, using a large chunk size

is both reasonable and beneficial for scientific data and also reduces NDN’s signing

overhead and improves throughput [166]. The retrieval time, hop counts, and the

number of server hits also decrease linearly when the chunk size is increased. Fi-

nally, the experiments did not consider competing traffic; unless the PIT table is full,

background traffic does not affect Interest aggregation.

Figure 3.15: Number of hops saved using request aggregation. Cache Size = 0

The simulations show that there is little or no benefit from aggregation alone

(without caching) when the number of duplicate requests is small.

3.3.2 Caching

After investigating the benefits of Interest aggregation, this section evaluates the

combined effect of Interest aggregation and caching. In the experiments, the cache

size was in the range 0 to 10,000 slots. Note that NDN uses the available number

78



of cache slots as the unit of caching. For example, if a node has 100 slots available,

it can accommodate 100 data packets in the cache. This experiment uses a leave-

copy-everywhere caching policy, i.e., every node on the data path caches the data

packets for an object. All nodes in the topology had the same amount of cache, and

the content freshness time was set to infinity, so the validity of content does not

expire. This means any content in the cache is valid, but content can still be evicted

as the caches become full.

This experiment did not model background traffic in the simulations for several

reasons. First, there are no accurate models for scientific traffic, so any artificially

created background traffic would not be accurate. Second, NDN lacks mature con-

gestion control models [147], and therefore these experiments exclude them. While

the community has proposed some congestion control algorithms [147], [157], it is

still an active research area, and none has been widely adopted. Finally, while caches

would undoubtedly interact with other applications, in science networks and large

applications such as climate or HEP, reserving cache space for specific applications is

plausible, just like scientific communities reserves bandwidth [82]. These simulations

used caches up to 1TB, which can be easily provisioned today, even per-application

for a few large applications. However, as noted earlier in this section, much smaller

caches, in the order of gigabytes, will be useful in reducing network traffic and huge

in-network caches may in-fact be an overkill.

Figure. 3.16 shows the reduction in server hits when caching and Interest aggre-

gation both are used together. The figure shows that a small cache is effective in

reducing server hits and, as expected, the number of server hits drops as the size of

the cache increases. However, the figure also shows that hit reduction is not propor-

tional to the cache size. While a small cache is effective in reducing network traffic,

there was a clear trend of diminishing return as cache sizes increase. The amount of

cache needed to reduce traffic will depend on the traffic volume and request pattern.

79



However, Figure. 3.16 shows promising results: even a 1GB cache can provide a signif-

icant reduction in server and network traffic. The amount of reduction also depends

on the traffic pattern. For example, in the week of 2014-01-29, caching reduced the

number of server hits from 248,899 to 13,013. On the other hand, the week of 2013-11-

19 saw a minimal reduction and the same amount of caching reduced the number of

hits from 10,917 to 10,855. Caching not only reduces server load but benefits clients

by decreasing the number of hops required to retrieve content. Figure. 3.16 shows

the hop reduction due to caching.

0 10 20 50 10
0

20
0

30
0

40
0

50
0

10
00

10
00

0

Number of Cache Slots

100

101

102

103

104

105

106

N
u
m

b
e
r 

o
f 

se
rv

e
r 

h
it

 r
e
d
u
ce

d

Effect of Aggregation

Effect of Small cache

Diminishing Return

2013-11-19
2014-01-29
2014-05-21

2014-06-20
2014-07-17

2015-01-29
2015-10-01

Figure 3.16: Request reduction at the server

3.3.3 Where to Cache?

Having established that caching and aggregation are useful, the study now inves-

tigates how cache placement influences data dissemination. The study first divided

the nodes into two categories, edge nodes, which act as clients and network nodes,

80



0 10 20 50 10
0

20
0

30
0

40
0

50
0

10
00

10
00

0

Number of Cache Slots

100

101

102

103

104

105

106

N
u
m

b
e
r 

o
f 

S
e
rv

e
r 

H
it

 R
e
d
u
ce

d

Slight reduction in server hits

Network caches do 
not reduce server hits

2013-11-19
2014-01-29
2014-05-21

2014-06-20
2014-07-17
2015-01-29

2015-10-01
Cache at Edge
Networkwide Cache

Figure 3.17: Cache at the edge vs cache everywhere

which act as NDN routers. The study installed caches on the edge nodes but not on

the network nodes and repeated the simulation described in Section 3.3.2. Figure. 3.17

compares edge caching and the cache-everywhere policy described earlier.

The experiments found that the cache-everywhere policy performs slightly bet-

ter than the cache-at-the-edge policy. This is not surprising; the cache-everywhere

policy can serve multiple clients while cache at the edge serves only clients at each

edge. However, the experiments also found that the cost of this improvement is very

high. Figure. 3.18 compares the cumulative amount of cache used in these two sce-

narios. The cumulative cache volume of the cache-everywhere policy is consistently

7-8 times higher than cache-at-the-edge policy. Thus, for this application, caching at

the edge provides a good compromise. This observation has immediate applicability

- scientific nodes can deploy edge caches and improve their dataflow. However, NDN

provides added opportunities to create dynamic caches at network hotspots which

81



might be near the edge or at the core (at the border of an ISP or a country) and more

self-reliant than an application layer cache.

2013-11-19

2014-01-29

2014-05-21

2014-06-20

2014-07-17

2015-01-29

2015-10-01
0

20

40

60

80

100

120

140

160

180

C
u
m

u
la

ti
v
e
 a

m
o
u
n
t 

o
f 

C
a
ch

e
(G

B
)

Cache everywhere Cache at Edge

Figure 3.18: Cost of caching at the network vs at the edge

Figure 3.19: Hop reduction by Cache

82



3.3.4 How Long to Cache?

Duration of caching impacts data distribution and the amount of cache needed in

the network. To find out how long data should be in the cache, this study calculated

the inter-request time between duplicate requests. Inter-arrival times are calculated

as follows - let’s assume a consumer requested three pieces of content, /a at time t1

and t2, /b at time t2 and t3, and /c at time t1 and t3. Inter-arrival time for /a is t2 − t1,

/b is t3 − t2 and /c is t3 − t1. By repeating this calculation for all unique files at all

clients, this study is able to find out the client side inter-request times. Inter-arrival

time can predict how long the content object is useful in in-network caches; keeping

the content less than the optimal time will increase network traffic and keeping them

longer will not benefit the clients but will consume cache space. Figure. 3.10 showed

the inter-arrival time to be around 400 seconds for 95% of the duplicate requests.

Data rate along with caching duration can predict the approximate cache size for a

particular use case; in this case, caching all content on a 10Gbps link for 400 seconds

would require a 500GB cache, certainly feasible today.

To summarize, this section makes several important observations:

• For this workflow, caching at the edge provides benefits that are very close to

network-wide caching. This study shows that even a 1GB cache at the edge

can significantly reduce network traffic. Network-wide caches work better than

edge caching in some cases but at the expense of a massive increase in total

cache volume across the network.

• Small caches at the edge seem sufficient to improve data distribution, and there

is a limit beyond which the system sees diminishing returns. For this workflow,

the size of sufficient cache volume is around 500GB.

83



• Finally, content from this workflow does not need to be cached for a long time.

Data request patterns for this workflow is localized, and content only needs to

be cached for a short period, around 400 seconds.

3.4 A CDN-like Strategy for ESGF

CDNs provide many services to clients in addition to data delivery [177] [98]. For

example, they provide data replication and direction of client requests to the nearest

replica [155]. NDN can provide similar services using forwarding strategies. This sec-

tion presents a hypothetical scenario where data is replicated over multiple servers

around the world and made available over an NDN network.

As mentioned earlier, ESGF provides wget scripts [188] for data download that tie

users to a specific server. The existing system does not automatically distribute re-

quests to the nearest replica. For example, many requests in the log came from India

and China though there are geographically closer ESGF replica servers [188]. Assum-

ing the requested datasets are also available from these replicas, NDN can transpar-

ently choose these nearer servers. Selecting a far-away data producer affects these

clients, and others, negatively since TCP based protocols do not work very well in

high-bandwidth, high-delay networks [10]. Slow download speed also means that

users may cancel their downloads and try again, taking up valuable bandwidth and

server resources [81].

NDN is capable of addressing this problem at the strategy layer [164]. For ESGF or

a similarly distributed system with multiple replicas, a simple strategy that chooses a

server near the clients should improve data distribution. This work investigates how

NDN can achieve this as follows: the study first amends the topology to add five more

data producers; two in China, one in France, one in the US, and one in Germany. Lo-

cations of these replica sites are matched to the actual ESGF data servers. The study

84



then updated the topologies using the method described in Section 3.1.1. The study

then deployed an NDN strategy that finds the lowest latency path from a client to its

nearest data producer as follows: on receiving the first Interest, the strategy multi-

casts the first Interest over all matching Faces. After receiving replies, the strategy

ranks the faces according to latency, for subsequent requests. The operation is rela-

tively lightweight since one multicast Interest is required at each node for an entire

namespace. For example, after calculating the lowest latency route for /cmip5, In-

terests named /cmip5/a, and /cmip5/b are both forwarded over the same route. In

real networks, the nodes will repeat this periodically and update route rankings – this

study simply calculated the routes once at the beginning. This study then simulated

traffic flow for the week of 2015-10-01 with only one server, followed by the same

simulation with multiple servers/replicas.

Figure. 7.8 shows the new request distribution among the servers. In the original

log, server 6 was the only producer and served 100% requests. With the new strategy,

server 6 received only 0.03% of the requests. The remaining requests were redirected

to other servers closer to the clients. For this week, most of the requests were from

China. The simple strategy redirected 96% of the requests to the two servers in China

(server 1 and 2), freeing up resources at the LLNL node.

Choosing the server with the lowest latency also reduces the delay at the clients.

Figure. 7.10 shows themean delay at each client. Most clients saw a reduction inmean

delay, but the level of reduction is also interesting; the mean delay for Client 3 was

reduced from around 200ms to around 25 ms, an order of magnitude improvement.

Other consumers also saw a significant reduction in latency.

This experiment demonstrated how a simple NDN strategy could provide sophis-

ticated, CDN-like services to scientific data distribution systems. The ability to au-

tomatically select a server with low latency can significantly improve large data dis-

85



server1

61.73%

server2 35.51%

server3

2.42%

server4

0.22%

server5

0.10%

server60.03%

Figure 3.20: Percentage of requests served by each server. Server 6 is the original data pro-
ducer.

Clie
nt

-1

Clie
nt

-2

Clie
nt

-3

Clie
nt

-4

Clie
nt

-5

Clie
nt

-6

Clie
nt

-7

Clie
nt

-8

Clie
nt

-9
0

50

100

150

200

250

M
e
a
n
 D

e
la

y
(m

s)

One Server
Six Servers

Figure 3.21: Mean delay of retrieving a data packet at clients

86



tribution by increasing throughput, improving robustness and lowering distribution

costs.

Clie
nt

-1

Clie
nt

-2

Clie
nt

-3

Clie
nt

-4

Clie
nt

-5

Clie
nt

-6

Clie
nt

-7

Clie
nt

-8

Clie
nt

-9
0

5

10

15

20

M
e
a
n
 #

H
o
p
s

One Server
Six Servers

Figure 3.22: Mean number of hops at clients

3.4.1 Summary

To summarize, analyzing a 3-year data access log from ESGF, a federated system

for distributing climate data, this study demonstrates the benefits of NDN for sci-

entific workflows. These analyses bring out several observations that help to define

various parameters for improving data distribution for scientific workflows:

1. The analyses showhigh-level of duplicity exists among user requests, and there-

fore aggregating temporally close requests can potentially reduce the load on

the server and the network.

2. This study also characterized the data access patterns. This study shows that

while climate data is very large, the average file size is small, around 1.3GB. This

study also demonstrates that requests are highly localized and can benefit from

87



NDN’s in-network request aggregation. The request distribution contents a few

very popular files, followed by increasingly less popular content.

3. While network caching is useful for popular datasets, caches do not have to be

large: small caches at the edgemay significantly reduce network traffic because,

despite the overall data aggregate being huge, individual files are small. This

observation suggests that large caches at every network node might be unnec-

essary for scientific workflows. Instead, caching at the edge provided the best

trade-off, and even a 1GB cache could significantly improve data distribution.

Large data did not translate to long caching times either; only a few minutes

was sufficient. The useful lifetime of data in in-network caches was also low,

around 400 seconds.

4. Figure. 3.10 shows that the average inter-arrival time of duplicate requests is

around 300-400 seconds. This observation means requests shows a high de-

gree of spatial and temporal locality, a strong argument for network caching.

It further means that long-lived caches in the network might be unnecessary,

allowing us to reduce in-network cache sizes.

5. Finally, using a simple, latency-based forwarding strategy, this study shows how

NDNcould provide nearest-replica retrievalwith very lowoverhead. This simple

strategy could reduce the load on the data servers while reducing latency at the

clients.

All these observations are good news for ICN and align well with the properties

of ICN. The following sections use NDN simulations to investigate and quantify ICN

benefits for this particular workflow. The results from this work will help both the

NDN and climate communities. The climate community may benefit by incorporating

NDN or its concepts into their current distribution tools. On the other hand, the

NDN community can benefit from a real-life example to help guide NDN research

88



and development. The study may also help create NDN-based tools, such as an NDN

science traffic generator and help designing congestion control algorithms. The next

chapters build on this study and show the necessary steps for integrating NDN with

actual scientific workflows.

89



Chapter 4

Testbed Deployment

In order to developNDNbased applications and network protocols, the NDN com-

munity created a generic global testbed [18] where the community could investigate

and develop various aspects of NDN, such as security, application support, routing,

and forwarding. However, the generic testbed lacked resources and isolation needed

to investigate many important research and implementation aspects of the network

architecture at scale, such as caching, routing, scaling, performance that is required

for big-data science applications [166]. Additionally, the generic testbed among global

institutes lacked control and the flexibility of instrumentation of software stacks, re-

quired coordination among the participants for installing and maintaining software

stacks. Additionally, the experimental nature of big-data experiments required in-

stalling modified versions of NFD [19] and the ndn library, ndn-cxx. Installing exper-

imental versions of these core software on a shared testbed inconveniences other

participants and affect the quality of results collected from various experiments.

For continuing network research for big-datawithout hindering other participants

and allowing dedicated resources necessary for such research, NSF funded a small

but dedicated high-performance testbed [166] that could handle the scale of big-data

science. Figure. 4.1 shows the topology of the testbed. The proposal allocated re-

sources for a campus NDN deployment between the Computer Science Department

and the Atmospheric Sciences department at Colorado State University. The goal

was to look at scientific data management problems in collaboration with the cli-

mate scientists, identify the critical problems facing the scientific communities, and

90



Figure 4.1: NDN Science Testbed

investigate an NDN based framework that can adequately address these problems.

The climate community was ideal as the initial partner since they face enormous data

management issues; datasets in the terabyte to petabyte range, management of dis-

tributed auxiliary information such as annotations, metadata, and other well docu-

mented problems emanating not only from the data size, but also the exponentially

increasing user population and lack of a proper management framework. The reader

should note that the testbed alone was not enough for evaluating all protocols devel-

oped during this work - this work routinely and extensively used NDNSim [121] when

hundreds of nodes were needed for experiments. However, the testbed proved to be

a valuable instrument for translating simulations to real-world deployments, albeit at

a small scale.

The primary objective of this exercise was to enable research into both of a new

networking architecture as well as its interaction with a challenging application in Big

Data. This research providedwith useful tools and protocols for the big-data commu-

nity as well as created experience with a new, content-oriented network paradigm.

Beyond the initial goal of the project, the testbed has proved to invaluable in develop-

ing, debugging, and deploying state-of-the-art NDN protocols open to the commu-

nity. As the following sections will show, the testbed is still a valuable resource and

91



has expanded to other communities such as High Energy Particle Physics, Genomics,

and others. Additionally, other institutes, such as Clemson, KISTI, and Washington

State University have joined the testbed by creating nodes at their respective insti-

tutes.

As this thesis has discussed in Chapter 5, NDN is able to help with the scientific

data management issues by naming content appropriately. Users can locate and re-

trieve the required data by merely asking for it by name, thus integrating naming and

storage – the network will not only locate the nearest copy but will authenticate and

ensure the data integrity has not been compromised. The testbed provided an op-

portunity to test these protocols, looked into the challenges of deploying them, and

how to address these challenges in the context of large scientific data.

The testbed cumulatively hosts over 70TB of climate, HEP, and genomics data that

this work used for research, experimentation, and development of NDN-SCI [72], a

distributed data management framework. The following section discusses the hard-

ware and software used to create this testbed and enumerates the lessons learned

from this exercise.

4.1 Equipment

The initial deployment of the testbed started with six dedicated nodes. These

nodes were high-end machines with 20 cores each, 128GB RAM, 48TB disk space,

and multiple 10Gbps network interfaces, both copper and optical. Since most of the

machines were being outside the Colorado State University, the machines also had

remotemanagement ports enabled. Table 4.1 summarizes the configurations of these

machines. The newer nodes that joined the testbed had upgraded hardware. For

example, the Caltech and the Northeastern node have several SSD drives that are

used as front-end caches, and the network ports on these nodes are also 40Gbps

92



or more. These diverse configurations helped perform a variety of experiments. For

example, the initial nodes were used to develop Ethernet transport for NDN that does

not require an IP overlay and the nodes with SSDs are still being used to develop

hierarchical caching schemes.

Table 4.1: NDN Testbed Hardware Specifications

CPU 2 x Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz
Core Count/CPU 10
Thread Count/CPU 20
Memory Capacity 1536 GB
Installed Memory 128 GB

PCI Slots 6
1 Gigabit Ethernet Ports 4
10 Gigabit Ethernet Ports 2 x Intel Corporation Ethernet X520
Hardware Raid Controller DELL PERC H710
Remote Access Controller Dell IDRAC

Hard Disk Drives Dell 4TB
Hardware Raid Version 60

4.2 Connectivity

To address the transport needs of the applications while stressing the limits of the

new architecture, this work deployed a 10Gbps network in the Colorado State Uni-

versity campus between the Computer Science and the Atmospheric Science depart-

ments. The network supporting big-data was separated from other campus traffic to

minimize disruptions. Additionally, new optical fibers were deployed between the

data centers to ensure seamless connectivity. Figure. 4.1 shows the locations of these

nodes.

Outside Colorado State, the testbed currently utilizes existing infrastructure of

several ISPs. The connectivity between CSU andWyoming is provided by the Bi-State

Optical Network or BiSON [92], a private high-speed optical network that connects

93



the University of Wyoming to the Front Range GigaPop (FRGP) [93] in Denver, Col-

orado. The FRGP (www.frgp.net) is a network peering location in Denver and is oper-

ated by a consortium of research and higher education institutions that includes the

University of Wyoming, Colorado State University, University of Colorado - Boulder,

University of Colorado - Denver, Denver University, Colorado School of Mines, and

the National Center for Atmospheric Research [126]. FRGP provides a peering point

to the Commodity Internet as well as specialized research networks such as Inter-

net2 [175] and Department of Energy’s Energy Sciences Network (ESnet) [4]. All of

these links have atleast 10Gbps available bandwidth that is isolated from commercial

as well as other scientific traffic.

At Denver, the testbed joins ESnet [4]. A node at Denver, along with the nodes at

Sacramento and Berkeley are connected using 10Gbps links and separated from com-

mercial traffic using separate VLANs. This separation of traffic provides predictable

round-trip times aswell as eliminates the possibility of network congestion. The node

at Caltech is connected over the Corporation for EducationNetwork Initiatives in Cal-

ifornia (CENIC) [131], at 40Gbps. The node at KISTI is connected over a trans-pacific

10Gbps link provided by the Pacific Wave [17]. The node in Otago, New Zealand is

connected over a 10Gbps link over the Kiwi Advanced Research and Education Net-

work(REANNZ) [62].

Over ESnet, the testbed possesses the ability to instantiate additional on-demand

Layer 2 Paths using the On-Demand Secure Circuits and Advance Reservation Sys-

tem (OSCARS) [82]. OSCARS allows network users to reserve time and resources

on the high-speed networks, essentially allocating dedicated resources for large data

transfers. OSCARS eliminates the need for manually configuring individual network

devices for creating a dedicated path with reserved resources. Additionally, OSCARS

provides the ability to provision backup resources in case of a network failure or un-

foreseen outages [82]. OSCARS has been useful in experiments where interaction be-

94



tween various layers of networking was required, for example, when the forwarding

daemon did not find enough resources to fulfill a request and needed to instantiate

a new path [165]. This thesis discusses these protocols in more details in the next

Chapter.

4.3 Software Stack

Each of these testbed nodes run either CentOS7 or the latest version of Fedora as

the operating system with all the latest patches applied. Besides, the machines are

behind firewalls to prevent unauthorized access. Access and disk space are granted

to the collaborators upon request. Additionally, monitoring, maintenance, and pro-

visioning software are also installed on the testbed, but these are not specific to this

testbed and therefore, are not included in this discussion.

The network stacks on these machines are tuned based on ESnet’s recommenda-

tion for large data transfers [10]. Table 4.2 shows the testbed specific modifications.

Since the most common network mode for NDN is an overlay over TCP or UDP trans-

port, these modifications were necessary for achieving higher throughput. Addition-

ally, this work contributed code towards creating Ethernet transports for NDN, so

that NDN could function without an IP based underlay [19]. However, the Ethernet

transport, along with congestion control and loss recovery algorithms in NDN is still

work-in-progress. As a result, the testbed and the experiments this work performed

extensively utilized NDN over TCP (and UDP) .

The testbed uses the latest version of NDN Forwarding Daemon(NFD) [19] and the

NDN library (ndn-cxx) . However, similar to the default TCP/UDP stacks, this work

made some modifications to the NDN stack as well. The first modification was to

modify NFD and the ndn-cxx library to publish and receive large data objects. TCP

95



Table 4.2: NDN Testbed Network Stack Parameters. Most of these values were taken from
the ESnet’s guide for fast data transfers over Wide Area Networks [4]. The values were then
manually examined and tuned to achieve highest possible throughput on the testbed. With
these values, data transfers between two nodes were able to achieve 9.8Gbps over the 10Gbps
links using TCP. NDN throughput was lower as described below.

Parameter Variable Size Rational
Max Socket re-
ceive buffer

net.core.rmem_max 128MB Default Socket
Buffer size is too
small [4]

Max Socket send
buffer

net.core.wmem_max 128MB Default Socket
Buffer size is too
small

Linux autotuning
TCP read buffer
limit

net.ipv4.tcp_rmem 4096
87380
33554432

Scale the TCP
sending window
for long paths

Linux autotuning
TCP write buffer
limit

net.ipv4.tcp_rmem 4096
87380
33554432

Scale the TCP
receiving window
for long paths

Default con-
gestion Control
algorithm

tcp_congestion_control htcp Experimentally
found to work
better than CU-
BIC [4]

Check if Jumbo
Frames are en-
ableds

net.ipv4.tcp_mtu_probing 1 Avoid MTU black
holes [108]

Default Queuing
Mechanism

net.core.default_qdisc Fair
Queu-
ing

avoid overrun-
ning a slow re-
ceiver [97]

MTU Size - 9K Performs better
for both TCP &
UDP [28]

UDP CPU afinity - Set to a
core not
used
for In-
terrupt
han-
dling

UDP at 10G is CPU
limited [4]

96



parameters alongwith large packets providemuch better throughput than the default

parameters provided by NFD and the Linux network stack.

Figure 4.2: NFD and TCP Optimization for better throughput

Specifically, the following optimization improved application throughput on the

testbed:

1. Large NDN packet sizes: The default packet size of NFD is 8800 bytes [19], too

small to enable the high throughput required for scientific data. Experimenta-

tion on the testbed found that NFD throughput increased up to a packet size

of 300MB. In most of the subsequent experiments for large science data, large

packet sizes were used.

2. Pre-signing packets: The packet signing cost of NDN [166] is expensive, and

in order to keep this from slowing down the data transfer, application packets

were pre-signed. Sincemost data needs to be signed during publication, this is a

realistic compromise. Additionally, for most scientific applications, data signing

is a onetime operation, and once data is published, there is no recurring cost.

However, this observation does not apply to dynamically generated datasets,

and those operations would have to incur the delay of packet signing.

97



Figure 4.3: Pipelined Interests for better throughput

3. Need for a congestion control protocol: Originally, NFD’s default pipeline size

was 4 Interests. The experiments over the testbed showed that this value is

too small for large data, achieving only 400Mbps throughput [166]. The use

of larger pipeline size, along with other changes (described below) improved

NDN’s throughput dramatically, up to 4Gbps. Several experiments [166] ob-

served that either a larger pipeline or a new NDN layer congestion control is

needed to improve application throughput, leading to new research and imple-

mentations of congestion control algorithms for NDN networks [157]. With the

above optimization, NFD was able to achieve around 4Gbps throughput with an

NDN packet size of 300MB and a pipeline of 10 [166].

4.4 Lessons Learned

In establishing the testbed, a number of valuable lessons were learned. This sec-

tion enumerates them below.

• Network tuning makes a huge difference in performance: The default network

parameters supplied by the Operating systems and Networking stack are not

adequate for high-speed transfer of big-data. Each parameter that affects the

98



networkmust be set very carefully - a task that has beenmade easy by the tuning

guide from ESnet [4]. However, many of these parameters need to be further

tuned based on the topology, delay of the paths, and application requirements.

• Identifying NDN’s bottlenecks: While this is expected of an evolving network

stack, running big data experiments over the testbed pointed out several bot-

tlenecks in the NDN codebase which included creating multiple copies of the

same packet [166], huge signing overheads [19], and single threaded processing

of packets [19]. All of these bottlenecks have been reported to the NFD devel-

opers and some of them has since been addressed.

• Development of Ethernet Transport for NFD: The integration with OSCARS [82]

required developing an Ethernet transport for NDN. The testbed was invaluable

in developing and testing these protocols since long-distance Layer 2 circuits

are hard to find in regular intra-institute deployments. The NDN community

and the author of this thesis have successfully demonstrated that NDN can suc-

cessfully run without needing an IP underlay, a massive step in demonstrating

NDN’s feasibility as a future network architecture [164].

• NDN over UDP is not suitable for large data transfers: Several attempts were

made to deploy NDN over UDP with the goal to bypass TCP’s congestion control

algorithms. However, it was soon evident that some congestion control algo-

rithms are needed at the application or the NDN layer. Without any congestion

control algorithms, severe packet loss was observed, which led to new research

in NDN congestion control algorithms [157].

• Configuring long-distance networks is work-intensive: Configuring a high-

speed testbed with the help of multiple stakeholders is a tedious process. First,

the operators needed to agree on address allocation, correctly configure the

VLANs, debug any connectivity problems, and even run new optical fiber ca-

99



bles. Once the basic configurations were done, troubleshooting any interme-

diate routers required coordination with various network operators. Addition-

ally, even when options for dynamically creating paths were available, they often

failed without sufficient feedback. Creating this global testbed underlined how

configuring a network a very manual, labor-intensive, and inflexible process.

Cutting-edge network provisioning and configuring methods, possibly with the

use of Software Define Networking along with the next generation packet for-

warding/routing mechanism, such as those provided by NDN, can work to-

gether to make the network more flexible.

In the next chapter, this thesis discusses the NDN-based protocols that were de-

veloped and deployed over this testbed. These protocols demonstrate how NDN can

benefit big-science data in a real deployment scenario. More importantly, the testbed

provides the opportunity to demonstrate shows how next-generation architectures

such as NDN and SDN can work collaboratively to create a complete in-network

framework for supporting large data distribution in various scientific communities.

100



Chapter 5

Naming Scientific Datasets

Scientific communities have a long history of collecting massive amounts of di-

verse data over tens of years and from numerous teams [178] [33] [119] [172]. It is not

uncommon for a research team to run extensive simulations on supercomputers or

generate data volumes that reach into the petabytes [178] [47]. These communities

have a long history of sharing data among scientists around the globe, which means

they are constantly challenged by discovery and distribution problems [12] [119]. In-

deed, scientists often still share data by shipping physical disks around despite the

availability of 10G and 100G links [55] [106]. While there are several reasons why sci-

entific communities cannot fully utilize such high-speed links, part of the problem is

ad-hoc data management and inconsistency in naming [166].

The previous chapter shows that content retrieval over NDN is beneficial to sci-

entific workflows, and the ability to request content directly using content names has

some significant advantages [161]. For example, NDN-supported requests to reposito-

ries can be substantially simplified and automated, with requests issued transparently

to repositories that have the data without the need for application infrastructure to

locate them (and users to establish login credentials, log in to various portals, search,

and issue targeted requests) [72]. Data can be fetched from the nearest location,

often a boon to collaborative efforts [163]; and finally, data can be published by the

simple act of naming it [72]. Content can be retrieved from any available location: the

publisher, a repository, a router cache, or even a friendly neighbor. Additionally, the

network is able to support intelligent functionality in the network such as retrieval

101



from the nearest data source, retrieval using multiple sources simultaneously, and

others [161].

This chapter illustrates how to convert existing content names in large and de-

manding application domains, specifically, climate modeling, high energy particle

physics, and genomics, to NDN-compatible formats. In the process, the chapter also

discusses the current naming conventions in these communities, the trade-offs be-

tween various naming choices, and the author’s experience of converting existing

names to NDN compatible names.

In addition to demonstrating naming schemes for these significant categories of

scientific datasets, this chapter also describes how to write translators to convert

dataset names from existing, ad-hoc namespaces into NDN compliant names. The

exercise in translating existing names is not only crucial for supporting legacy ap-

plications but also for creating naming guidelines for future applications, and this

translation is not always straightforward. The lessons learned from this exercise are

not only applicable to scientific communities but also broader use cases.

The contribution of this section is to demonstrate how the naming problems for

a name-based network can be approached. In addition to creating a generic frame-

work for translating existing names into NDN compliant names, this section discusses

what should be the considerations for designing such names. Additionally, this sec-

tion shows how naming affects basic operations of a name based network such as

routing, discovery, and retrieval. Finally, this section provides general naming guide-

lines for future scientific applications.

5.1 Existing Naming in Scientific Communities

Currently, scientific content names can be divided into two categories. In the

communities that have not established a naming convention, content naming is ad-

102



hoc. In communities with established naming conventions, files are named according

to these conventions and stored in a directory structures that closely follow those

particular conventions [139] [178]. Depending on the actual community, naming con-

vention and granularity of data access differ. These naming conventions are often

created for convenience - in this case, the file names are human readable to allow the

scientists to gather information from the names. Additionally, the directory struc-

tures often duplicate most of the information present in the filename. The following

sections describe existing naming in three scientific domains - Climate Science, High

Energy Particle Physics, and Genomics.

The climate communities usually access individual files [72]. Each of these files

has several components that describe various attributes of the data, such as which

project generated them, the temporal range of data in the file, the institute name

where it was generated, and other. The file name components are often duplicated

in the directory structure as well.

High-energy physics (HEP) communities generally utilize “datasets”, a collection of

files. In this community, there is little importance of individual file names, and they

can often be hexadecimal strings [166]. However, the directory structure is critical

since it contains vital information such as parameters to expect in the data, when the

datawas generated, andwhich experiment generated the data. Not knowing the exact

filenames does not impede data access; data consumers can ask for all files under a

specific namespace.

In Genomics, files are individually named, just like the climate communities [32].

However, genomics communities usemultiple files with the same names but different

extensions. The common part of these names is the base portion of the name, and

the extensions denote what types of data they contain. For example, one file might

contain the base pair of a Genome, and another might content annotations [21]. Since

all files in the dataset have the same base namewith different extensions, applications

103



that use these names might be able to infer the existence of various files once they

know the base name. Being able to use only the base name for inferring filenames is

convenient but on the other hand, implicitly assuming the existence of files based on

a name might be problematic in some cases, for example, when files are missing.

There are many similarities in how these communities name their data. Names

are almost always hierarchical and composed of several distinct components. The

components (and therefore the names) are human-readable in most cases. However,

there might be one or more component that might not be human readable, e.g., the

file names in High Energy Physics communities. Looking at the complete name, a

domain expert can identify various information about the file and the data without

actually looking into the file.

These are properties that fit naturally into the NDN paradigm. However, all names

are not created equal, this thesis has often encountered names where components

were arbitrarily ordered in the naming schemas, components were missing or trans-

posed, and components disagreed with the actual data in the files. Though these

names are almost immediately usable in an NDN network, benefiting from an NDN

network requires consistent naming. For example, a name with a more general com-

ponent at the beginning (e.g., /CMIP5/CSU/data1) allows NDN to perform transpar-

ent failover if multiple repositories serve /CMIP5. However, the same name with

components transposed, /CSU/CMIP5/data, is usable in an NDN network but may

not provide automatic failover benefits.

Another example is how naming affects caching. Take for example a database that

holds the daily temperature of a region. Let’s assume the names are in the format

- /region/year/month/day. An application trying to get data from January 30th

to Feb 2nd, 2019 would request data in the form of /region/2019/01/30 to /re-

gion/2019/02/02. These data are easily cacheable in the network. If another ap-

plication requires data from January 30th to Feb 3rd, 2019, it can simply ask for /re-

104



gion/2019/02/03 and get the rest from the network cache. However, naming the

data in the format /institute_name/region/year_month will still work, but will not

have the caching benefits described above.

NDN naming, while flexible, also imposes the requirement for consistent naming.

By naming data consistently, the communities can not only standardize data man-

agement logistics but also can get multiple in-network benefits, such as request ag-

gregation, caching, failover, fast transfers, and others. The following sections provide

more insight into current naming efforts and how we can convert existing names to

consistent names that can benefit from a name-based network.

5.2 Naming Data for NDN

NDN places few restrictions on naming, merely requiring that, (a) the name struc-

ture is hierarchical, (b) naming rules are globally agreed upon among content users, (c)

name prefixes are allocated to publishers (similar to how the current DNS system as-

signs domain names), and (d) names are human-readable providing some additional

level of assurance [196]. NDN names can conceptually be divided into two variable

parts, the routing prefix, stored in router FIBs and used to forward Interests, and

the application-specific portion of the name. NDN Routers currently match the full

name when de-duplicating Interests or matching content in their cache but only use

the routing prefix to forward Interests.

As discussed earlier, the data names in scientific communities are already hierar-

chical. In some scenarios, converting the names to NDN names requires simply re-

placing the delimiters. In other cases, names need to be checked for errors, duplicate

components need to be consolidated, and unnecessary elements removed. In most

of the cases, the NDN names can be derived from the actual filename and the direc-

tory structure. However, not all name components can be gleaned from the directory

105



structure and filename of the dataset. In some cases, consulting the metadata in the

files, and in some cases even the data itself to mine for missing name components is

necessary.

After creating names and naming rules for each community, the author has con-

sulted with domain scientists and confirmed that these naming rules are acceptable

for their datasets and are appropriate for global distribution. However, global nam-

ing conventions are hard to implement and enforce. This work assumes that each of

these communities will have some top-level prefix they will use for publishing their

datasets, e.g., /cmip5 for a climate community. These organizations will allocate sub-

namespaces as they see appropriate, e.g., CMIP5 many allocate Colorado State a sub-

namespace of /cmip5/csu.

Since NDN does not impose any restrictions on naming, the network can sup-

port any number of organizations as long as they have unique prefixes. Among sci-

entists in big data domains, there is a general consensus that global namespaces are

needed, especially given the current explosion of data [178] [166] [72]. For example,

the CMIP5 project [178] that collects datasets for global climate research, prescribes

precise specifications and tools to convert local names into CMIP5-compliant names.

The Data Reference Syntax (DRS) document [178] describes in detail these specifica-

tions.

A naming convention is required to move from the filesystem to an NDN realm.

However, this thesis does not propose the renaming of all existing data but a file (or

dataset) name to NDN name mapping, so the files are available over NDN with mini-

mal user intervention. The requirements for NDN names compliment natural naming

schemas for most data. As an example, a large portion of the climate community uti-

lizes the Coupled Model Intercomparison Project (CMIP5) [178] naming schema. This

schema is fully NDN compatible without any changes. Since an essential considera-

tion for naming existing data is to ensure the least disruption to current workflows,

106



the next sections describe (a) how to design names to NDN-compatible names and (b)

how to automate existing name to NDN-compatible name conversion with the help

of a name translator.

The following section shows three naming scheme and demonstrates how to con-

vert a set of existing names into NDN compatible names. It depicts three naming

schema that has been developed and deployed on the testbed - for Climate Science,

High-energy particle physics, and genomics, respectively.

5.2.1 Climate Data Naming

Figure 5.1: Naming a climate dataset into NDN

Climate data names are hierarchical. The NDN names for climate applications can

be divided into the routable prefix of the name that has a relatively fixed structure,

and the model-specific portion of the name. Both these portions together form the

complete name. In addition, as Figure. 5.1, the name might also contain a query por-

tion at the end.

The goal of the routable part of the name is to get an Interest routed to the set

of machines that host the data. The following name components are standard across

many different climate projects [133].

Activity - defines data collection (or similar) activity

Product - Sub-activity

Organization - Institute responsible for the results

107



Model - Model used for generating data

Ensemble - Distinguishes among closely related simulations

Experiment or Field Campaign - Name of the experiment

Thus, a routable name prefix may be defined as follows:

/Activity/[Sub-Activity or Product]/Organization/Model/

For example, one such namemight start with /cmip5/output1/csu/MPI−M , where

CMIP5 is the activity, output1 is the product, CSU is the organization, and the MPI-M

is the model. This captures the fact that CMIP5 is a globally unique effort, followed by

more specific information about the names. In NDN, organizations are free to choose

any unique name they want, not just those limited to DNS domains. An NDN network

will use this routable prefix for forwarding Interest, retrieving data, and intelligently

distributing requests to available CMIP5 data replicas.

For more specific information such as those from the output of a specific cli-

mate model, the naming scheme might add additional components unique to the

model [178]. These may include the following:

Experiment - the name of the experiment

Start Time - When data collection started

Modeling realm - which high-level modeling component was used

Variable Name - sampling frequency and modeling realm

Ensemble Member - a string used for distinguishing among closely related simula-

tions

Table 5.1 shows the components of one such climate data name -

“ /CMIP5/output/MIROC/MIROC5/historical/6hr/atmos/psl/r1i1p1/1984010100-

1984123118/”.

108



Table 5.1: Name components of a climate data name

Component Value
Activity CMIP5
Product output

Organization MIROC
Model MIROC5

Experiment historical
Frequency 6hr

Modeling_realm atmos
Variable_name psl

Ensemble r1i1p1
Time 1984010100-1984123118

In designing the model-specific portion of the NDN names, this thesis determined

that names must include enough information to uniquely identify data. Examples of

such information might include models such as CESM [103] and SAM [194], which are

other well-known climate models. The model-specific names then might be struc-

tured as follows:

CESM /Ensemble/Experiment/Sample Granularity/Start Time

CMIP5 /Experiment/Frequency/modeling realm/ variable name/ensemble mem-

ber/

SAM /field campaign/optical properties for radiation/grid resolution/output type-

/timestamp/

Note that this model specific portion of the names are primarily used by the ap-

plications. An NDN network will also use them for caching and request aggregation.

It is relatively easy to see how to extend the names above to support operations

such as subsetting. For example, the communities can add a portion (e.g., a suffix)

to the NDN name to indicate which variables the subset should contain, for example

using key-value pairs such as

109



subset_variable=temperature and latitude = 30,60 and longitude = 90,120$.

Figure. 5.1 shows an example of climate data naming. The first part of the name

is the globally routable name, potentially an unaltered existing domain name. The

second part is the local organizational name followed by a string of query. Note that

the last two parts can be encrypted to ensure privacy; only the first part is necessary

for routing.

5.2.2 High Energy Particle Physics data naming

Figure 5.2: Naming a root dataset into NDN

Similarly, the High Energy Particle Physics (HEP) dataset names are easily trans-

lated into NDN names. The HEP community has been able to agree on specific nam-

ing schemes and decide which name components are necessary. In this example, the

original name is simply divided into logical segments separated with “/”. This exer-

cise (arbitrarily) decided that the software-version element is not needed and can be

replaced by a site name. This change, however, does not affect the underlying NDN

layer as long as the names are hierarchical.

The hierarchical naming structure of NDN is especially suited for HEP

datasets, which are already named using a hierarchical name schema.

Here is an example of a name for a collection of HEP data [166]:

/store/mc/fall13/BprimeBprime_M_3000/GEN − SIM/POSTLS162_v1 −

110



v2/10000/ < UUID.root >. The last component signifies a set of files with a

.root extension having a unique ID. The translator takes the HEP name that signifies

a directory structure and turns it into an NDN name by removing the “/” delimiters

and converting all directory names into NDN name components. The file name is also

converted into anNDNcomponent. A userwhowants a filewith a specific ID can issue

an Interest as follows (where the “/” now signifies the NDN name component de-

limiter) : /store/mc/fall13/BprimeBprime_M_3000/GEN − SIM/POSTLS162_v1 −

v2/10000/001.root. This Interest will return the contents of the file named under the

directory structure. However, the full NDN name of the file will be the name ex-

pressed in the Interest. Now suppose a user does not know the names of the specific

files, but only the prefix. In NDN, the user can issue an Interest with just the prefix:

/store/mc/fall13/BprimeBprime_M_3000/GEN −SIM/POSTLS162_v1− v2/10000/

and the application at the data producer might return the first object that lexico-

graphically matches the name prefix. Finally, suppose a repository wants to advertise

an entire collection of files as available to users. The repository will advertise a prefix

that covers the collection, for example, /store/mc/fall13/BprimeBprime_M_3000/.

This advertisement tells NDN to forward all Interests with that prefix to the repos-

itory. In the implementation of the HEP translator, it converted the HEP names

directly into NDN names because the HEP names are well-formed.

5.2.3 Genomics data naming

Just like Climate, and High-energy Particle Physics (HEP), the Genomics commu-

nity needs to store and distribute large amounts of data. However, data can be spread

around the world, named arbitrarily, and may not always be easy to discover, retrieve

and use.

By carefully examining a genomics workflow this thesis has investigated how

Named Data Networking (NDN) can facilitate such workflow by augmenting mech-

111



anisms such as discovering genomic data repositories around the world, and search-

ing and retrieving data efficiently. For example, the National Center for Biotechnol-

ogy Information (NCBI) inMaryland, USA, contains 25.5 petabytes of high-throughput

DNA sequence data with varying degrees of associated metadata resolution [21]. Ge-

nomic datasets eventually make it to public repositories like NCBI, but individual re-

search labs maintain the data before publication and often share data with collab-

orators through ad-hoc approaches or shared data grids like iRODS (the Integrated

Rule-Oriented Data System) [144]. Regardless of where the dataset resides in the data

life cycle, the data could be quite useful for distributed research teams and potentially

thousands of genomics researchers if the datasets became discoverable.

Genome/
[ genus ]_[ species ] {_[ i n f r a spec i f i c name] }/[ assembly_name]
[ genus ]_[ species ] {_[ i n f r a spec i f i c name]}−[assembly_name ] . fa
[ genus ]_[ species ] {_[ i n f r a spec i f i c name]}−[assembly_name ] . extn

Figure 5.3: Naming convention for DNA sequence datasets

Modern genomic DNA data comes in the form of “static” reference genomes with

coordinate-based annotation files, and “dynamic” measurements of genome output

(e.g., RNAseq data files that contain RNA molecule snapshot strings in the tens of mil-

lions of sequence records) [56]. A common aspect of genomics datasets is that they

are already named in an evolution-based, hierarchical manner, which is easily map-

pable to an NDN framework.

This work has translated the names of multi-purpose static genome files and

demonstrate how to map them in NDN. Later sections show how NDN helps with

locating and retrieving static datasets as well as pushing computations to the edge

for generating dynamic datasets on-the-fly.

112



5.3 Translating Existing Names to NDN names

The problem of organizing science data is hard due to the size, diversity, and num-

ber of datasets generated. However, the NDN naming paradigm fits nicely with the

existing naming conventions of data. These scientific communities often contain sim-

ple rules about how to organize their output, typically in directories and files with

meaningful names. This helps manage datasets in local file systems but is not an

adequate naming solution for sharing data, a deficiency well recognized by the sci-

ence communities [133] [166]. Recognizing that it is simply impossible to rename the

vast collection of datasets and update all the assorted tools that manipulate them,

this work develops translators that ease the burden of migrating existing datasets to

NDN. Translators are not always easy to implement; they often need to ingest arbi-

trary names that do not describe the data well and turn them into NDN names. Often

translators need to mine the directory structure, filenames, and potentially file con-

tent to compose appropriate NDN names.

Figure 5.4: Name Translator

This work envisions that there will be multiple domain-specific translators de-

pending on the data and even the version of the models. Collaborations with domain

113



[Name]

### Target component sequence for \g ls {NDN} name ###
ndnMapping = project_id , product , inst i tute_id ,
model_id , experiment_id , frequency , modeling_realm ,
variable_name , parent_experiment_rip , start_time

### Example F i l e Name:
hurs_Amon_C\gls {CS}M4_decadal1961_r4i2p1_196101−199012.nc ###
### The schema describes each component ###

filenameMapping = variable_name , mip_table , model_id ,
experiment_id , parent_experiment_rip , start_time , f i l e t ype

### Delimiters for separating the name components ###
seperators = _ , .

### This component value w i l l come from actual data
in the f i l e ###
compsFromData = frequency

### These component values w i l l be read from the metadata
in the f i l e . Can be used for sanity checking as well ###

compsFromMetadata = project_id , product , inst i tute_id , model_id ,
experiment_id , frequency , modeling_realm

### Manual override of component values , i f necessary ###
userDefinedComps = ac t i v i t y : cmip5 , subact iv i ty : atmos ,
organization : csu , parent_experiment_rip : r3 i 1p 1

Figure 5.5: A translator Schema File

114



scientists have shown that translators need information gleaned from the filesystem

path, the filename, limited user-provided configuration information, and metadata

mined from within the data itself to construct appropriate NDN names. Thus, this

work expects the need for some intelligence in the translators.

Metadata determines the behavior of a translator to NDN name mapping. Fig-

ure. 5.5 shows how this mapping is accomplished using a schema file. This schema

file provides a list of ordered NDN name components to the translator along with in-

structions for retrieving the data from the directory structure, filename, file content,

or user-defined configuration. The translator takes two arguments as input, the full

filename and a file that describes how to map the name components to NDN name.

Figure. 5.4 provides an overview of the operation. The schema file is straight-

forward but requires both domain knowledge and NDN insights for producing NDN

names that enable applications to benefit from an NDN network. The schema file

provides two lists - the first one describes the name fields of existing data and the

second one describes the desired fields in NDN name and their respective orders.

For example, the following filename represents a climate data file - psl_6hrP lev_bcc−

csm1 − 1_historical_r3i1p1_198001010000 − 201212311800.nc. The filename list in the

configuration file will look like [variable_name, mip_table, model_id, experiment_id,

parent_experiment, start_time, filetype], components that were used build the file

name. Now, let’s say assume the scientists want the following changes in the trans-

latedNDNname - all names are preceded by a ‘‘/CMIP5” prefix, followed by [product,

institute_id, model_id, experiment_id, frequency, modeling_realm, variable_name,

parent_experiment, start_time]. Note that the value of the component “frequency”

is not in the file name and must be derived by looking at the actual data. In this

example, let us also assume that the “mip_table” and “filetype” fields are unneces-

sary. The translator would compare both lists and come up with the NDN name -

/CMIP5/output/NCAR/CCSM4/decadal1961

115



/monthly/atmos/hurs/r7i1p1/196101 − 199012/. Note that the use of a schema allows

name specifications to be shared, and if agreed, the schema can be easily updated

to add or remove fields in the derived NDN name. This thesis expects the routing

prefix to be part of the schema, so once the NDN name is translated, the content is

automatically published under that particular name prefix.

Since NDN naming is flexible and virtually any appropriate translation schema can

be plugged into, a translator works across many current naming schemes as long as

the existing name can be broken down in hierarchical components, as demonstrated

by the domain-specific translators above.

5.3.1 General NDN Discussion

The experiences in naming data for various use cases allow this thesis to generalize

naming conventions in NDN. This section presents guidelines about how to name data

for future applications that will be compatible with NDN networks and enumerates

the considerations for designing such names.

NDN names for scientific data should be both expressive and human readable. The

advantages of long, expressive names versus short, easy to remember names need to

be considered. Scientists often use the names to understand the content, and the

structure of the data, hence maintaining human-readability is essential. At the same

time, longer names with many components might be easier to index for searching,

but it makes readability a problem. Fortunately, NDN allows multiple names to refer

to the same object, and also provides the concept of a “link object” (a redirection from

a shorter name to a longer name, or vice-versa), perhaps easing the decision process.

For example, a shorter name with essential name components might help the scien-

tists to understand the data, and at the same time, it might point to a larger name

with additional components that can be used for cataloging and indexing.

116



Names need not be restricted to existing, static data items. The names may refer

to derived data objects, for example, subsets of existing files, a dataset, which may

be composed of sets of many files, or even future data that is yet to be generated. A

hierarchical naming pattern in NDN makes this varying level of granularity possible,

as long as the applications understand how to interpret the names. For example, a

name component can include a lambda function that (see Figure. 5.1) extracts specific

data from the raw dataset. In addition to providing for varying levels of granularity,

the hierarchical names will also be used in the routing of the data. A data provider

publishes a data prefix which acts as a globally routable prefix covering all of the data

made available by the provider.

Additionally, naming plays a vital role in routing. The trade-offs of placing com-

ponents at the beginning vs. at the end should be carefully considered. For exam-

ple, hosting CMIP5 data under the namespace /cmip5/organzation_name is simpler

to manage. However, organizations participating in the project must advertise this

prefix through their routing system. CSU will announce /cmip5/csu and UCLA will

announce /cmip5/ucla in addition to their normal prefixes, e.g., /CSU and /UCLA.

The alternate approach might be to have /cmip5 as a sub-namespace of participat-

ing organizations - such as /CSU/cmip5 and /UCLA/cmip5. However, this approach

creates a fragmented namespace and maintaining a name catalog becomes more dif-

ficult. However, more critically, this approach also binds data to locations and should

be generally avoided. With this naming approach, creating an in-network transparent

failover mechanism becomes tricky. For such mechanisms to take place, the UCLA

node either needs to announce a /CSU prefix, or the name discovery system must

maintain a mapping of CSU’s names to corresponding names at UCLA, a cumbersome

prospect either way.

Finally, within a name, the tradeoff of placing components earlier vs. later should

be carefully considered. Consider two applications at running at CSU. Placing the

117



application name immediately after general name component speeds up name pars-

ing. For example, a name like /cmip5/csu/filtering_application requires parsing only

three name component before handing the data over to the appropriate applications.

On the contrary, placing application names at the end requires parsing the full name

before deciding which application should receive the request. Consequently, naming

designs must weigh the trade-offs of placing name components earlier vs. later.

In some cases, names do not aggregate very well, especially in the cases of par-

tial data replication. For example, in the genomics use-case, names in the for-

mat /genome/genus/species do not aggregate very well since there might be hun-

dreds of species under a genus. In case of full data replication, only the /genome

portion of the names may be advertised in the routing system. However, let’s

assume CSU hosts data for /genome/genus/species_(1 − 10) and UCLA hosts data

for /genome/genus/species_(10 − 100). In this case, these two sites must individu-

ally announce all distinct names up to /genome/genus/species since there can not

be any name aggregation up to that component. For example, the request for

/genome/genus/species_1 needs to go to CSU. If UCLA announces /genome/genus/,

the request for /genome/genus/species_1 might end up at UCLA, though it does not

have that piece of content. However, in case of data is replicated or published at the

genus level (i.e., both CSU and UCLA have /genome/genus/species_(1− 100), the num-

ber of routes would be only the combination of the genome and genus components.

Therefore, this thesis observes that in some cases, in-network functionality (such as

automatic network supported failover) can be at oddswith the routing and forwarding

table size.

However, getting the names right benefits applications. For example, a common

datamovement operation in scientific communities is to retrieve a subset of an object

in order to use it for analysis. The ability to retrieve only a specific subset of an object

118



is critical due to the volume of the data stored after the initial model simulation. The

following is an illustrative example using a water vapor objects.

Figure 5.6: NDN retrieval example

Figure 5.7: NDN partial retrieval

The dataset this example uses is organized by date (an object is one month’s worth

of data) and contains several water vapor related metrics. Assume that a user would

like to retrieve all of themetrics from objects spanning 4 days of January and February

of a given year. Further, assume that eachmonthly object resides on a different server.

Using the current Internet architecture to retrieve the desired subset a user would

(a) have to determine where the two files reside, (b) manually fetch files from each

server, and (c) merge and trim the files into the final dataset. Note that in addition to

requiring a priori knowledge of the location of the datasets (often very hard in itself)

this process involves several manual steps.

119



Contrast the above steps with those required with NDN. A researcher interested

in 4 days of data sends out one Interest for each day. Since data is distributed

among multiple servers, the intermediate routers forwards Interests to the appropri-

ate servers automatically; the user need not take any manual steps. Only the required

subset of the data arrives, which is in turn presented to the user. Figure. 5.6 shows

the process - a researcher asks for data from January 30th to February 2nd. Note that

the data is distributed between two servers as indicated by the name prefixes they

advertise. The intermediate router can now forward requests for January 30th and

31st to Server1 and February 1st and 2nd to Server2. Upon receiving the Interests,

each server sends back the matching data. The retrieved data objects are cached at

all intermediate nodes. In situations when the same data or any subset of a previously

requested data is requested again, it is served from the intermediate caches without

the need to go to the original data sources. As shown in Figure. 5.7 - beyond the obvi-

ous speed-up advantage in data retrieval, the datamay still be available in case Server1

or Server2 goes down.

5.3.2 NDN Naming Recommendations

Based on these observations above, this section proposes a few guidelines for de-

signing NDN compatible namespaces for science data:

1. Names should be built as a set of well-defined components.

2. The components should be organized in a hierarchical pattern.

3. More general (more common) name components should appear earlier in the

hierarchy.

4. The routing portion of the names should not contain private information and

should not be encrypted. The non-routing part can be encrypted without any

loss in functionality

120



5. Care should be taken not to bind names to locations when data is expected to be

replicated. The top-level prefix should describe the data, not an organization.

For example, a name/CSU/CMIP5 binds the data to a location (CSU), but a name

like /CMIP5/CSU does not.

6. Naming should carefully consider the trade-offs of placing name components

earlier in the hierarchy vs. later. For example, names like /CSU/CMIP5/<> and

/CSU/HEP/<> might direct requests to directs requests to climate and physics

applications, respectively, without parsing the full name. However, placing those

components at the end of the name will require parsing the full name and might

be resource intensive.

7. There might be cases where names do not aggregate well, e.g., in the genomics

use case above. Name developers should be mindful that routing/forwarding

table sizes might be at odds with intelligent in-network functionality.

Naming is of paramount importance in NDN. This section shows how to name

data to be compatible with an NDN network, how to translate existing data names

into NDN, and presents general naming guidelines for NDN based applications. The

next section will demonstrate how to find names once they are published. This thesis

shows that naming data and finding names are the most critical components of the

whole name-based ecosystem. Once data is named, and infrastructure for finding

names is in place, all other functionality in the network becomes easy to implement.

The effect is profound - scientific applications are not only simplified, but the intel-

ligent functions in the network are shareable among various communities, reducing

cost and efforts of implementing similar but domain-specific solutions.

121



Chapter 6

Name Discovery in NDN

The previous chapter shows how to name scientific data to be compatible with a

named based network. However, only naming the data is not sufficient - mechanisms

must exist for discovering names as well. Once names are discovered, scientific ap-

plications and users can retrieve data and benefit from in-network intelligence that

NDN can provide. The reader to should note the subtle difference between name

discovery and search in the context of this thesis. “Search” is a specific function that

returns results based on user queries. The web search engines are good examples of

this. Though overly simplified, this is how they work [42] - they download pages that

are published on the Internet, index these pages based on the words and phrases they

contain, and rank these pages according to some matrix (e.g., current popularity, his-

tory of user interactions, and other proprietary algorithms) . When a user searches

for content using some keywords, the search engines matches these keywords with

the database of pages and keywords and returns the ones that best match the user’s

query.

Name discovery in the context of NDN is a subset of this generic search function-

ality. The process for name discovery works similarly, but the scope of the search

is contained only to the content names. The name discovery process in this work

is accomplished using a “catalog”, a database that holds and indexes the data names.

The users enter the keywords on a web-based front-end that is similar to web search

engine front-end. The keywords are then converted into a database query, a lookup

is performed, and the content names are returned to the front-end. An application

122



can also interface with the catalog using an API that is exposed. Once the names are

known to the applications (or the users), they are free to utilize these names in any

way they see fit. For example, the applications might use these names to transfer the

actual data. Unlike a traditional network, no other additional information is necessary

for these subsequent actions (e.g., retrieval) - only sending out an “Interest” into the

network is sufficient.

Chapter 5 discusses a fundamental building block of an NDN-based ecosystem for

big science, naming. However, only naming data is not sufficient - an infrastructure

must exist that allows participants of this ecosystem to look up names easily, accu-

rately, and within a reasonable timeframe. This chapter discusses this other funda-

mental building block of a name-based, NDN-supported ecosystem, name discovery.

This chapter discusses the limitations of real-time name discovery protocols for large

scientific data (time and difficulties in enumerating a complete namespace) and why

a catalog-based system works better.

The idea of a catalog is not new. In fact, various scientific communities use cata-

logs extensively [145] [79] [45] [152]. However, the current way of cataloging is often

loosely coupled [79]. For example, a scientific community often use multiple cat-

alogs [166] for storing names, metadata, auxiliary data, derivative data, replication

data, and others. These catalogs often use multiple technologies depending on data

type, access pattern, and resource requirements [145] [79] [45] [152]. As a result there

is a certain disconnect between these catalogs making them harder to use.

In an NDN-based system, only one catalog is needed, the catalog that holds the

names of the data. Once the name is known, it can be used across all catalogs hold-

ing different pieces of information. Though separate catalog for different function-

ality will still exist, the names can work as a universal key across all these catalogs.

The name discovery catalog, therefore, is a fundamental construct in an NDN-based

ecosystem. This chapter discusses how this work designed such a distributed name-

123



based catalog, what are the components that were necessary for building a catalog

over NDN, and what are the security and performance considerations. Finally, this

chapter also discusses how this catalog performs in a real-world deployment, both

qualitatively and quantitatively.

This chapter describes the protocols that bind the actors in a scientific workflow

and the software components together, specifically, the data/name publication pro-

tocol, the catalog updation protocol, the catalog synchronization protocol, and the

data query protocol. All these protocols are also name based and supported by NDN.

Protocols for data publication, query, synchronization, update, delete, and authenti-

cation all of which use names. This is the first scalable name discovery catalog that

has been built on top of NDN. This chapter discusses the experiences and the lessons

learned from this exercise.

6.1 NDN-based Distributed Name Catalog

A catalog holds a list of NDN names to provide ease of discovery of names. Once

the names are known, all other subsequent operations, such as metadata lookup, data

retrieval, or remote data placement can be performed using the names. Figure. 6.1

provides a high level overview of the catalog system. The basic building blocks are a

publication tool for the data producer, a query tool for the user, anNDNdatabase built

around a traditional SQL database, and a number of protocols for publishing, catalog

synchronization, and query. The data publisher publishes the names of data to a local

catalog through the update protocol. Multiple distributed catalogs are synchronized

among themselves to provide a consistent discovery experience across catalogs. The

catalog also supports user query thorough a web-UI or a command line interface

- allowing users to discover NDN-based names through the use of common search

techniques such as auto-complete, specifying keywords, or browsing a name tree.

124



Figure 6.1: Catalog Backend

The high-level functionality from the scientists’ perspective, as Figure. 6.5 shows,

are (a) Publication: wherein a scientist produces new datasets and adds (or up-

dates/removes) their names to the catalog system, making them discoverable to the

world and (b) Query: wherein the scientist search for existing names. Also, the sys-

tem needs to make sure the scientist has permission to do what they are requesting

125



and after the scientist make local changes to the system, the rest of the system is also

updated.

6.2 Actors in the System

Figure 6.2: The Catalog Architecture

This section outlines the actors in the system and how they interact with the cat-

alog. Three main actors are involved - the catalog provider, the data publisher, and

the user. Figure. 6.2 shows the interactions between these actors.

The Catalog Provider

The primary goal for catalog providers is to answer user queries. They take the user

queries and return NDN names in response. The catalog can coexist with a data

provider. If the catalog provider is not co-located with a data provider, they can not

make changes to the catalog themselves. They can only sync the changes other data

providers have done since the changes to the catalog need to be with names signed

126



by the original data publisher and communicated to the local publisher. Each catalog

provider publishes its local catalog uses a shared namespace, e.g., /cmip5/catalog in

this example.

The Data Publisher

The data publisher publishes data into NDN. The data provider is also responsible for

providing data in response to users’ requests. The data provider translates the at-

mospheric simulation data into appropriate NDN format, stores, and serves it when

a request for data comes in. Furthermore, the data provider is responsible for del-

egating cryptographic keys necessary to sign the NDN data to the data publishers

(e.g., a scientist) . The publisher signs the data with the key received from the data

provider. Once the data is signed and published into a repository, the data publisher

triggers a callback which updates the catalog. The publisher can only remove the data

they published. They can sign such a change and notify the data provider. The data

provider applies the changes after verifying its authenticity.

The User

The user uses the catalog for discovering names. Once the user knows the name of

the dataset he/she wants to retrieve, the rest of the retrieval process is straightfor-

ward. The usermay also perform other operations such as remote subsetting, remote

computations that the next chapter describes. The fundamental operation the user

performs is content name discovery.

6.3 System Components

The goal of the catalog system is to provide reliable and seamless dataset discovery

and retrieval using NDN-layer protocols. The primary functional components for the

catalog are the following -

127



The Name Database: This work uses a standard SQL database (MySQL) for this par-

ticular implementation. Figure. 6.3 shows the table for climate data, tables for other

domains are also similar. The fields are typically the name components we described

in Chapter 5. Additionally, the table includes two other fields - one is ID, a serial num-

ber which acts as the primary key of this table. The second one is the hash value of

the full name. This work often found duplicate files and datasets during translating

community names - a hash value of the full name helps to deduplicate these names.

+----------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+---------------+------+-----+---------+----------------+
| id | int(100) | NO | PRI | NULL | auto_increment |
| sha256 | varchar(64) | NO | UNI | NULL | |
| name | varchar(1000) | NO | | NULL | |
| activity | varchar(100) | NO | | NULL | |
| product | varchar(100) | NO | | NULL | |
| organization | varchar(100) | NO | | NULL | |
| model | varchar(100) | NO | | NULL | |
| experiment | varchar(100) | NO | | NULL | |
| frequency | varchar(100) | NO | | NULL | |
| modeling_realm | varchar(100) | NO | | NULL | |
| variable_name | varchar(100) | NO | | NULL | |
| ensemble | varchar(100) | NO | | NULL | |
| time | varchar(100) | NO | | NULL | |
+----------------+---------------+------+-----+---------+----------------+

Figure 6.3: Database Schema for the Climate Catalog

This work decided to build adapters into an existing database system rather than

modifying or building a database since building a new database would not neces-

sarily improve the state of this research. At the same time, the reader should note

that though this work uses MySQL databases, there is no reason why other high-

performance databases cannot be used.

128



The User Interfaces (UI) : There are two UIs for this system: a graphical user inter-

face (GUI) for discovery and a command line user interface (CLUI) for publishing. The

discovery tool is similar to the climate community’s ESGF interface [14] as the atmo-

spheric scientists interviewed stated a preference for and comfort with it. Similarly,

the CLUI matches their existing publishing tools. However, this interface has proven

to be sufficient for both physics and genomics communities.

Figure 6.4: Data Discovery UI

TheWeb UI loosely based on the ESFG [14] to help consumers discover and down-

load datasets. The Web UI is shown in Figure. 6.4. Users discover datasets in three

ways: (a) by specifying a set of filters, (b) typing the name prefix directly or (c) brows-

ing through a name tree. The filters are automatically populated based on the name

components in the database. To help users type a name prefix directly, the UI pro-

vides name auto-completion as users type in the search box.

The CLUI does the reverse. It allows the data producers to add, modify, or remove

names to/from the catalog. A GUI for data publication is not only cumbersome but

mostly unnecessary according to the scientific collaborators.

129



Figure 6.5: Catalog’s Interaction Diagram

TheData StorageThe data storage is separate from the name discovery process and is

not an integral part of the catalog. In this system, the data storage part is implemented

and described separately in the next chapter.

6.4 Protocols for a Scalable NDN Name Discovery Sys-

tem

The catalog design is independent of data types or specific namespaces, only

requiring the published names to be hierarchical. This thesis assumes these NDN

names, while not required, are under the jurisdiction of some specific entity, such as

CMIP5. Inspired by the similarly named effort, this work will use the prefix /CMIP5

130



for illustration and brevity but does not claim that the NDN names used in this work

should be the final names.

The catalog system is a loosely-coupled (only by name) distribute federation of

multiple independent catalogs that use appropriate forwarding strategies in NDN to

ensure that publishers and clients reach the best (e.g., the closest or the least con-

gested) instance when making requests. The clients do not have to use the same

instance, and the catalog allows them to move between instances even in the mid-

dle of a query if the network condition changes. Also, the system allows publishers

to publish data into any catalog instance using their NDN publishing key - no other

form of authentication is required. The trust system is also based on names, as Fig-

ure. 6.8 will show. The publishersmay communicatewith any of the catalog instances,

typically the closest one as selected by NDN. Upon publication request, the catalog

authenticates the request and updates the name listing. The catalogs also run a syn-

chronization protocol among them that ensures all instances maintain the updated

name listing. Finally, the catalog accepts search requests from clients and returns

appropriate matches.

Figure. 6.2 shows the high-level view of the protocols. The protocols work to-

gether to achieve the following functionality -

• Publication: The data publishers should be able to publish names and other

ancillary information to the catalog. Ancillary information may contain meta-

data or application-specific content thatmight be needed for variousworkflows.

Note that the actual data must be published separately under the specific name.

The act of publishing a name makes the data discoverable.

• Update and Delete: A data producer or an authorized agent of the data producer

should be able to update published data. However, a data producer should not

be able to change data published by other producers. Similarly, when a data

publisher wishes to remove data from circulation, it can remove corresponding

131



names from the catalog. Similar to the update operation, a data producer is only

allowed to delete names published by it.

• Query: The catalog should be able to support user queries. Queries can be key-

word based, key pair value based or both.

• Synchronization: Different data producers should be able to change their por-

tions of the catalog. The producers will apply these changes to their local cat-

alog and without coordination. Changes will propagate to other data providers

through the sync protocol (described below) . Once synchronized, all catalogs

will have uniform information. If there is a delay or failure in synchronization,

the catalogs will continue to return results. This work prioritizes availability

over consistency.

The following sections expand each of these protocols.

6.4.1 The data publication protocol

In this design, the catalogs are independent but trusted entities that all exist under

a specific namespace, e.g. /cmip5/catalog_name or /hep/catalog_name. Each catalog

syncs to the other catalogs to fully populate its index of all the NDN names of NDN

objects published under a certain namespace, e.g., /cmip5. The catalog can be stored

as a text file, a database object or in any other binary form

This work assumes a distributed publishing model where publishers are various

institutions that own datasets and wish to publish them under the same /CMIP5

prefix. The owner of /CMIP5 prefix delegates publisher keys to each institution.

This publisher key enables each institution to publish names under a prefix such as

</CMIP5/.../institution>/. In this work, all catalog instances serving CMIP5 names

operate under the same namespace, e.g., /CMIP5/catalog . The catalog holds only

names of datasets, not the actual data. The actual data is stored in the repositories

132



Figure 6.6: Data Publication

operated by the publisher. Figure. 6.6 describes the publication protocol. When a

catalog is launched, it registers a prefix with the local NFD. The registration prefix is

/CMIP5/catalog/publish. For publication. A publisher encapsulates and signs a list of

NDN names along with associated actions such as “add” or “remove” in one or more

NDN data packets. The publisher then sends an Interest to the nearest catalog com-

municating its intention to update the catalog database. This is the typical way inNDN

uses to upload information to a server - the publisher asks the server to pull newly

available data. Upon receiving this publication Interest, the catalog replies with an

acknowledgment. There are several reasons for sending an acknowledgment rather

than immediately asking for the data; the update may be big, and if the catalog is

currently busy it may not want to pull the data immediately. Without an acknowledg-

ment, this would result in the publisher timing out and trying again. An acknowledg-

ment can carry back an estimate for when the catalog will retrieve the data, allowing

the publisher to retry on an informed timeout. An acknowledgment also erases state

133



in the network, thus saving router resources. As Figure. 6.6 shows, the catalog pulls

a set of instructions by the publisher. These instructions may include anything that

the protocol supports, which, in this example, a list of new dataset names to be added

or removed from the catalog.

Figure 6.7: Data Publication Payload

As soon as the catalog responds the publication Interest, it constructs Interests to

fetch the published name list from the name prefix /<publisher-prefix>. To enable

both add and remove operations, each published name list contains the JSON format

(Figure. 6.7 shows the format) as the payload. The keys “add” or “remove” indicates

associated operations with each name. Each key is followed by a list of dataset names

so that the catalog could process dataset names in a batch. The publication data must

also conform to the trust model to be successfully inserted into the catalog.

The publication API provides the ability to publish to the catalog. For example,

let’s say a publisher, CSU wants to publish two files, /cmip5/file1 and /cmip5/file2.

The publisher calls the publish method which does the following:

134



• Calls a method publish_file with the file names. This publishes the files into

NDN.

• Upon completion of the publishing, the publish_file method triggers a callback

update_catalog that appends the following to the local version of the catalog.

• Once updation is done, the catalog is synced between other data providers (de-

scribed later) . Upon reaching a steady state, all providers will have the same

catalog.

Publication Access Control

As mentioned earlier, catalogs make use of the digital signatures provided by NDN

to enforce access control for publishers. Keys for these digital signatures are dis-

tributed separately, and NDN does not dictate how they are distributed; they may be

distributed through a PKI, web-of-trustmechanisms, or anything else agreed upon by

the applications. This work uses PKI as the mechanism to distribute the keys. When

an Interest initiates a pull for instructions from a publisher, the catalog will fetch the

instructions but not accept them if they are not correctly signed. This forms the first

line of defense against illegitimate publishers from making changes to the catalog.

Although we have not implemented this, the catalog may also maintain a list of ap-

proved publishers, either built-into the distribution process or distributed out of the

band. The next line of defense is designed to prevent publishers from making unau-

thorized changes to catalog entries. This work assumes that the policy in place is

to allow a publisher to make changes only to entries published under the publisher’s

prefix; a publisher in CSU is only allowed tomake changes to datasets under the prefix

/CMIP5/CSU/. This process is depicted in Figure. 6.8.

The trust model takes both the valid publisher and the malicious publisher into

account. Since signatures are built in NDN Data packets, NDN naturally can reject

malicious publishers by checking the signature in each Data packet. Note that the

135



Figure 6.8: Valid vs. Invalid Catalog Instructions

signature checking procedure does not bind to any specific key management model.

The hierarchical key structure, for example, assumes that there is a root key that all

users trust (a trust anchor) . If the catalog adopts the hierarchical key structure, the

validation procedure will check the signature until it reaches a trust anchor.

However, signature validation is unable to prevent valid publishers from

adding/removing names of datasets that do not belong under their namespace. To

assure valid publishers perform changes correctly, the trust model further checks if

all dataset names that contained in the payload are under the publishers’ namespace

(Figure. 6.8) .

6.4.2 Synchronizing the name catalogs

A single centralized catalog instance can easily become a bottleneck when sub-

jected to a large number of queries or publication requests. Moreover, it becomes a

single point of failure and introduces increased latency for distant clients. The re-

search community has worked on distributed synchronization from the very early

days of the Internet [109] [38]. A plethora of centralized solutions such as Dropbox,

136



Office365, Google Docs, as well as peer-to-peer synchronization solutions such as

BitTorrent has also been proposed and deployed.

The requirements for this particular catalog were as follows:

• The scientists should be able to publish names to any of the catalog instances.

The ability to publish to any catalog instance allows the network to choose the

most appropriate catalog instance (e.g., the nearest) for the publisher.

• The catalogs should be automatically synchronized to each other.

• In case of a network failure or partition, the catalogs should be able to serve

the most recent data. If a network partition happens, the available names might

differ between two catalog instances.

• The catalogs should be able to recover from failure and reconcile their state

automatically.

• In normal network conditions, the catalogs should return consistent results.

The synchronization delay might affect some queries; therefore this delay

should be kept to a minimum.

NDN, with named data and native multicast support, presents a new opportunity

for distributed synchronization [203]. To make the name catalog scalable, this work

adopts a federated architecture of several catalogs running an NDN-based synchro-

nization protocol, Chronosync [203]. At the time of the implementation, this was the

only NDN-based sync protocol available, therefore was the only choice. The goal of

this section is not to engineer a distributed sync protocol overNDNbut to design a dis-

tributed catalog that utilizes an NDN-based sync protocol. Other more recent NDN-

based sync protocols such as PartialSync [200], VectorSync [158], or FileSync [114] will

also work for the requirements enumerated above.

137



In this work, all catalog instances in the federation announce a single prefix; this

method allows the network to route queries to the most appropriate instance as de-

termined by the NDN strategy. Depending on the strategy queries may go to the

nearest catalog instance or the least congested one. This work uses a synchroniza-

tion protocol called ChronoSync [203] to ensure consistency. Chronosync is a digest

tree-based state exchange protocol. As shown in Figure. 6.9, the state is calculated

based on the published content and its sequence number. When new content is pub-

lished, a new state is calculated, and sync messages are propagated to other nodes.

A multicast namespace /ndn/broadcast/sync is reserved to exchange sync messages.

In our application, the sync messages are simply the instruction messages described

in the previous section. Whenever a catalog instance receives such a message, it val-

idates the payload and applies the updates to its local database. It then propagates

the sync message to other catalog instances. A periodic database snapshot is gener-

ated to serve as a recovery state in case of failure or a database restart. The following

section describes the mechanisms in details.

Upon startup, data providers register local dataset with the local cataloging ser-

vice instance. Using chronosync protocol, each data provider then retrieves differ-

ences between its own catalog and other copies of the catalog. An application authen-

ticates and applies all differences on the local copy. Once the system stabilizes, every

data provider has all the object names under the given name prefix, /catalog/cmip5.

We call this a “master catalog”. This catalog will then be used for data discovery,

search and other functionalities. Similarly, when something changes in the catalog,

chronosync carries the changes to every data publishing node and catalogs are up-

dated.

138



Chronosync for exchanging diffs

In chronosync, every node keeps a standing Interest for the master catalog name

/catalog/cmip5 appended by the digest of the local version of the catalog, i.e., /catalog

/cmip5/current_digest. When someone publishes more data, the catalog, and the di-

gest changes. The new catalog is published under /catalog/cmip5/current_digest/

new_digest. Data with longer names fulfill Interests with a shorter prefix. Therefore,

all the nodes with standing Interests will receive recent changes. The data providers

can take these changes and apply to the local catalog. The new catalog’s hash should

be equal to the new_digest. Once the data is received and catalogs updated, the

new_digest becomes current_digest, and the same process continues.

Chronosync uses two prefixes, a broadcast prefix, and a data prefix to exchange

updates and data, respectively. Broadcast prefix for the catalog will be, e.g, /ndn/

broadcast

/cmip5/catalog. Data producers can publish data under /cmip5. There is a monoton-

ically increasing sequence number starting from 0 and is updated when new data is

produced. This sequence number makes it easier to infer all data produced by a cer-

tain publisher.

Each node keeps a digest tree which keeps track of everyone else’s Name prefix

andmax sequence number. Together all these digests create a state digest. The nodes

keep a standing Interest for the state digest.

For example, let us say the state digest for the catalog is< ABC >. The nodes keep

a standing Interest for /ndn/broadcast/cmip5/catalog/ < ABC >. When Bob makes

changes to the catalog, Bob’s digest change. Since the state digest is dependent on

Bob’s digest, it changes too. Let us say this new digest is < DEF >. The node pub-

lishes the sync data under /ndn/broadcast/cmip5/catalog/ < ABC > / < DEF >. Since

this is prefix is longer than the standing Interest, it satisfied the standing Interest.

139



Figure 6.9: An example of digest tree used in catalog federation
[203]

Once the sync data is received, each node applies the data to its internal digest

tree and updates it. For example, let us say 1010 is the new max sequence number

after sync. If a node had data objects up to sequence number 1000, it simply ex-

presses 10 Interests for new data objects. Note that this list will contain names under

the data prefix, not the broadcast prefix. So the expressed Interests would look like

/ndn/cmip5/1001.

Once the sync is applied, the nodes express a standing Interest for the current

state digest /ndn/broadcast/cmip5/catalog/ < DEF >.

Bootstrapping for sync

For joining a sync group, a new node only needs to know the broadcast address

for the catalog, e.g., /ndn/broadcast/cmip5/catalog/. This needs to be communicated

out-of-band.

Once a node boots up, it knows nothing about the catalog. It sends out an Interest

for /ndn/broadcast/cmip5/catalog/ and gets back a reply with the current state digest,

e.g., /ndn/broadcast/cmip5/catalog/ < DEF >. This node does not have a digest tree,

140



and it can send out a special Interest for

/ndn/broadcast/cmip5/catalog/bootstrap/ < DEF >. Once a node which has digest

< DEF > receives the Interest, it sends back the maximum sequence numbers along

with all the publisher data prefixes. The newnode then can pull all the data and update

its digest tree.

Chronosync recovery

When a node receives an unknown digest (e.g., after network partition), it sends

out a recovery Interest. The recovery interest has the Interest name followed by “/re-

covery and the unknown digest. Upon receiving this Interest, nodes who produced

the particular digest sends back the entire state of their producers. The recipient

compares these and applies the differences to the local tree.

Authentication of changes

Chronosync does not provide a mechanism to authenticate changes. All changes

must be authenticated at the application layer. The data publisher signs each line

(each line represents a name) of the catalog. The application verifies if any changes to

published data is signed by the producer or some entity higher in the trust keychain.

If this is true, the application then applies the changes to the local catalog.

6.4.3 The catalog updation protocol

update_catalog

{

” add ” : [

”/publisherA/ f i l e /1 ” ,

”/publisherA/ f i l e /2” ,

”/publisherA/ f i l e /3” ,

141



] ,

” remove ” : [

”/publisherA/ f i l e /4” ,

”/publisherA/ f i l e /5” ,

]

}

For publication, data need to be signed. Scientists can obtain a key from the data

provider. In case the scientist has multiple affiliations, he/she can choose one to

publish the data. For example, a scientist with affiliationwith LBL andCSUwill choose

one key to sign the data.

Deleting Names from the catalog

Since many data providers update the catalog, only the original publisher should

be allowed to update the particular listing. For deleting /cmip5/file1 for this example,

CSU will delete the file, which will trigger a callback for updating the catalog with a

delete action. When this change propagates to other data publishers, the data pub-

lishers verify and apply the change if the same signature signs the original entry and

the new change.

update_catalog(action, file_name)

{

delete {filename, publisher name, signature to catalog}

}

delete_file(file_name, update_catalog)

{

publish file1 under /cmip5/file1

142



update_catalog(delete, /cmip5/file1)

}

6.4.4 The Data Query Protocol

Figure 6.10: Data Retrieval over Catalog

This section describes consumers’ interaction with the catalog federation for dis-

covering NDN names. The message exchanges between consumers and the catalog

are shown in (Figure. 6.10) . The catalog design does not restrict consumers to a spe-

cific catalog instance. Since the query name captures all the necessary parameters,

all catalogs will generate consistent results for a given query.

When the query Interest arrives, the catalog responds with an ACK. The ACK

name contains the catalog ID, the query parameters, and the local database version

(/CMIP5/catalog

/query/<catalog-id>/<query-params>/<version>) . The freshness time for the ACK

143



is set to 0, which means it will not be cached in NDN routers. This ensures con-

sumers receive responses not from a cached response but a live catalog instance.

After the ACK is sent, the catalog converts the query parameters into an appropri-

ate SQL string and issues a SQL request to retrieve the results. The query results

contain a list of names. They are packetized and published into the memory stor-

age under /CMIP5/catalog/query-results namespace. As soon as the ACK arrives,

the consumer constructs the corresponding query-result content names by replacing

“query” with “query-results” (/CMIP5/catalog/query-results/<catalog-id>/<query-

params>/<version>) . Currently, the NDN strategy directs queries consistently to the

same catalog instance.

Note that query-results packets are cacheable and therefore same query Interests

do not trigger multiple database queries which also protects the catalog from DoS

attacks.

The catalog, either directly or through other means (e.g., by being stored in a

database) need to support user queries. The users enter queries in the front end,

which gets translated into keyword-based query or a key, value pair lookup. A layer

between the catalog and the user translates the user query into an appropriate format

that the catalog understands and can respond to.

6.5 Performance Evaluation of NDN-SCI

The previous section has described how name discovery can be accomplished us-

ing NDN and a distributed catalog. This section evaluates the performance of the cli-

mate instance of the catalog deployed over the ndn-sci testbed. This section shows

that the delay for publication, search and parallel queries are all in the order of tens

of milliseconds. While this work finds (and the anecdotal evidence from the scientists

back these up) these numbers to be reasonable, note that the current implementation

144



is a prototype and therefore, is not optimized for performance. The goal of this study

is not to provide performance numbers but to simply show thatNDN is capable of sup-

porting features that can be beneficial to scientific communities. As NDN adaptation

grows, the performance numbers should improve. The following sections evaluate

the performance of NDN-SCI in terms of publication and search performance.

This work used the complete CMIP5 namespace. The namespace had 2.7 million

names; these names were translated and published into a local catalog. Once the

names were inserted, the catalog instances exchanged and synchronized the names.

Once the names are synchronized, users can query any catalog instance.

6.5.1 Publication latency

The central components of this framework are NDN names. Rest of the function-

ality such as retrieval and search built on top of the published names. It is therefore

vitally important to be able to publish names in the system quickly since the delay in

publication will render content unreachable. In addition to the publication, the syn-

chronization delay between the catalog instances are also important. If the names are

not properly synchronized, the same query might bring different answers depending

on which catalog instance it reaches.

To estimate how fast names can be published and synchronizes in NDN-SCI, this

experiment took two instances of the catalog deployed on the testbed and measured

the name publication and synchronization times. The RTT between these two ma-

chines hosting the catalog instances is approximately 3.5 ms.

This experiment then randomly picked some names from the list of 2.7 million

CMIP5 names and published them in the catalog. For statistical accuracy, each exper-

iment was repeated ten times. Each of the experiments measured how the number of

published dataset names affect the combined synchronization and publication delays

between catalog instances. This delay in the context of this experiment is defined as

145



the time interval between the arrival of the first publish request at a catalog and final

synchronization of all catalog instances. According to the results, the median syn-

chronization delay is around 50ms, including the propagation delay, processing time,

signature verification and authentication time of the publishing request. This delay

increases as the number of dataset names increases but remains below 200ms. Since

the catalog does not synchronize the actual data but only the names, the operation is

lightweight.

6.5.2 Name discovery latency

Query speed is essential for searching data, to test the performance of the catalog,

this experiment selected 10K names of random lengths, with lengths varying from 1

to 9 components. This experiment then uses these names as actual queries to the

catalog systems. The reader should remember from the previous section that the

catalog supports path query (similar to an SQL command) and auto-complete based

search. First, the experiment runs all queries synchronously to guarantee that no

query affects others. Depending on the name length, these queries took between 20-

120ms. Note that the delay is comparatively more substantial for the first queries;

after that, responses are cached. Not having to perform repeated database lookups

significantly reduces the delay for subsequent queries.

6.5.3 Query latency for parallel requests

This experiment measures catalog query delay, i.e., the time between user issues

a query and the first name appears on the screen during high-load situations. This

experiment randomly chose a number of parallel queries and sent them to the catalog.

Figure. 6.12 shows that parallel delay increases as the number of parallel queries grow

but remain under 70ms for 128 parallel queries. Note that given the ability of the

NDN’s intelligent forwarding plane to balance requests transparently to the requester,

146



Figure 6.11: UI performance

it is indeed possible to spread the query load among multiple catalogs or dynamically

spawn new instances of the catalog to reduce delays.

Figure 6.12: Parallel Query Time

147



6.5.4 Qualitative Evaluation

Table 6.1: Qualitative Evaluation

Question Positive Response
(%)

Negative Response
(%)

Is the UI intuitive and easy to
use?

100 0

Is the data naming scheme
appropriate?

100 0

Were you able to search
through the datasets?

100 0

Were you able to view any
metadata?

100 0

Are all three search methods
(filter, name and namespace)
useful?

100 0

Were you able to stage data? 80 20
Were you able to perform
subsetting?

80 20

In addition to performing quantitative measurements, the author also requested

feedback from climate scientists at CSU. The sample size of this survey was deliber-

ately small (less than 10) since the goal was to perform a preliminary evaluation before

sending it out to a larger community. Table 6.1 summarizes the questions and the re-

sponses. Essentially, the scientists were asked questions about how easy and intuitive

the software was and if the participants were able to perform the normal tasks. The

responses were very encouraging, not only were they perform the normal functions

such as search, retrieval, and staging, they were also happy with the ease of use and

the intuitive UI design. The users found that performing subsetting, one of the spe-

cialized tasks, was a bit problematic - the software has since beenmodified to address

this problem.

There are several takeaways from this work -

148



• Proper naming and a name discovery system is essential to any NDN based

ecosystems. There are several ways to perform name discovery, such as

network-supported queries and catalogs. This work chooses to use a dis-

tributed catalog for two reasons - catalogs can provide a complete enumeration

of namespaces and catalogs can serve data with very few roundtrips.

• Even for name-based networks, some functions such as name discovery should

be at the application layer. NDN better supports name discovery applications

but should not itself perform name discovery for scientific data, which might

take a long time and there is no way to assure all names have been discovered.

• Named discovery is one of the crucial parts of NDN-based ecosystem. Since

names in NDN are globally unique, the names can act as the common interface

between modules providing different functionality. For example, data retrieval,

operations such as data staging and subsetting, data publication and deletion

can be performed using the names. Having a common interface between various

components is very desirable in scientific workflows [79].

• Name catalogs are lightweight and faster to synchronize. Furthermore, anNDN-

based syncmechanism can provide novel distributed synchronization protocols

using name-based packet forwarding and its native multicast support. Even

when the network does not work as intended, the name catalogs can provide

results, though the results might be outdated.

• NDN allows easy decoupling of operations. Once the names are known, the rest

of the operations are decoupled from each other. The names can be used for any

number of operations, and these operations can use the NDN network as they

see fit. For example, a retrieval service might use the names for fastest retrieval

over the NDN network, and a staging service may use the same names for the

most reliable delivery of the data, and so on.

149



• NDN also provides a name based trust and security mechanism. This chapter

discusses one such example where the names being published must belong to

an organization that owns the namespace. More sophisticated trust schemes

can also be used.

• Finally, the name-based operations are intuitive to the scientists, as the qual-

itative survey demonstrated. This thesis hopes that ease of use will lower the

barrier of adoption for an NDN-supported, name-based workflow.

This section demonstrates how to build a service on top of an NDN network that

enables name discovery. The software, simply referred to as the “catalog” that uses

a database to hold the NDN names, synchronizes the names across distributed in-

stances to provide a consistent view, and finally, allows users to query the database.

Once the users (or the applications) know the names, they can perform other tasks,

for example, retrieval. The next chapter discusses the network protocols. These pro-

tocols implement some of the common functionality in the network to facilitate com-

mon operations and are complementary to the naming, and name discovery system

discussed so far.

150



Chapter 7

TheNDN-SCIDataManagement Frame-

work

The previous chapters show how naming and name discovery can create a simpli-

fied and generic framework for scientific data distribution and management. How-

ever, simplification and generalization of applications come with the assumption that

the network will provide some of the common built-in functionality, such as data re-

trieval, pushing computation to the data source, and others, at the network layer.

This chapter discusses these common in-network functionalities necessary to

support a generic name based data management framework for large science data.

The functionality that this section discusses is by no means exhaustive; this section

aims to demonstrate NDN’s capabilities at the network layer in the context of large

scientific data transfer andmanagement. In addition to in-network functionality, this

section also demonstrates NDN’s capability to accommodate new and novel function-

ality in the network such as strategic caching for reducing bandwidth consumption,

and multi-source retrieval for better throughput that are hard to implement today.

Some of these protocols described in this chapter are evaluated using NDNSim, and

some are evaluated using the testbed. Though the testbed provides more realistic

experiments, in some cases it did not have enough nodes to support some of the ex-

periments, requiring the use of NDNSim. The protocols developed using NDNSim are

directly portable and deployable on the testbed.

151



Some in-network functionalities necessary for the large science data manage-

ment framework are included in the NDN architecture [196] [7]. Functionality such

as choosing an alternate route when the existing route fails, forwarding an Interest

to a data source using its name, are integral parts of the architecture [196] [7]. Other

functions such as forwarding Interests to multiple data sources, finding the “best”

route for retrieving a piece of content are not part of the architecture itself.

The NDN architecture provides a “strategy layer” for supporting functionalities

that are not directly in the architecture. Section 2 discusses the strategy layer in

details - but succinctly put, this layer allows network users and operators to plug-

in in-network functionality that they see fit. This chapter extensively utilizes the

strategy layer, as the following sections will describe.

The strategy layer makes it easier to implement generic, reusable functionality

in the network. For example, various applications no longer need to implement the

best-effort data retrieval protocols separately. On the other hand, some applications

may require specialized protocols for retrieval, such as data transfer by a deadline or

data transfers with the highest possible reliability. The strategy layer can also support

these specific protocols. The strategy layer in NDN allows per-namespace strategy

separation, e.g., fastest retrieval strategy for the/CMIP5 namespace andmost reliable

retrieval for the /HEP namespace, This feature that enables various strategies to co-

exist in the network without interfering with requirements of different applications.

This chapter discusses protocols that utilize both NDN’s architectural artifacts as

well as strategies for providing in-network functionality required for big science data.

During the process, the chapter also demonstrates some of the advantages and com-

plexities associatedwith delegating functionality to in-network entities. Functionally,

this chapter divides the requirements of big science data into three primary cate-

gories (a) High-performance data retrieval challenges (b) Time-constrained data re-

trieval challenges; and (c) Usability challenges. An NDN-based network can help with

152



all three. NDN can address high-performance challenges through caching, multi-

source retrieval, retrieval from the fastest data source, and even creating new paths

on-demand. Time constraint challenges can be solved by finding the best sources

that can serve data within the allocated time, creating new on-demand high-speed

paths, or strategically caching content in the network. Caching and intelligent strat-

egy can improve resource (e.g., bandwidth) utilization. Finally, NDN can address us-

ability challenges by providing a standard interface at the network layer and also,

by supporting novel mechanisms such as pushing computations to the data source,

staging data to the remote computing nodes, and transferring only a subset of data

required for computation instead of the full dataset.

The scope of this chapter is confined to large scientific data transfers over single-

domain science networks such as Internet2 or ESnet. This chapter does not consider

inter-domain reservations which can introduce a large number of operational chal-

lenges such as traffic engineering policies, peering, and economic incentives [138].

This work does not propose alternate QoS mechanisms for NDN networks equivalent

to IntServ or DiffServ [90] in IP. Instead, this work provides the building blocks which

such future NDN-based services will utilize.

By providing API-like abstractions for data retrieval and other operations, NDN

can standardize implementations of common functionality and simplify applications.

As the following sections show, NDN can implement high-performance data retrieval,

time-constrained data retrieval, and similar other functionalities at the network layer

that are agnostic of scientific domains or use cases. Climate, HEP, Genomics, and

others, can use these functionality without domain-specific modifications, largely

eliminating the duplicate efforts currently needed to implement domain-specific so-

lutions.

153



7.1 High Performance Data Retrieval Challenges

High-performance data retrieval is one of the critical challenges in scientific com-

munities [132] [65] [41]. In the research communities utilizing large volumes of data,

data need to be transferred at the highest possible throughput because the network

is still the bottleneck for such transfers [131] [132] [115]. The research communities

are also deploying extreme-scale supercomputing facilities that need to have ultra-

high-throughput data transfer capabilities for moving data in or out of them [115].

The current complexity of large scientific data retrieval comes from various ar-

tifacts of the current network design. For example, if a data source slows down, or

if the intermediate routers lose packets, the TCP/IP congestion control algorithms

might irrevocably slow down the transfer. While the application can connect to an-

other faster server and resume download, there are two problems associated with

delegating the application with this task - (a) it requires the application (or some in-

termediary) to monitor and track the network conditions, a problematic proposition

in itself [89] (b) switching over to a new server is not straightforward. The application

needs to perform periodic checkpointing, track available data replicas, find the fastest

one, and move over the retrieval session to it. SDN based approaches may reduce the

complexity of some of these problems, but configuring an SDN based control place

is considerably complex [115] [132], and the network complexity increases with the

application complexity and the size of maintained network [107] [35].

7.1.1 Caching

In-network caching of data packets is a novel feature in NDN. Named and signed

data packets are cached in the network and can be served for subsequent requests.

A considerable number of studies [88] [85] [193] [60] [190] [24] [199] [112] have shown

the benefits (and the challenges) of caching in the network. For big-data transfers,

154



caching provides three primary benefits, fast retransmission, shorter retrieval paths,

faster retrieval in the presence of lossy/bottleneck links.

Currently, high-bandwidth delay networks do not fair well with packet loss and

congestion [41]. Even losing one packet in millions might irrecoverably slow down

large data transfers [4]. NDN’s in-network caches can retransmit the packets rea-

sonably quickly without having to go back to the data source. The ability to quickly

retransmit packet may also help with avoiding congestion control algorithms to kick-

in, albeit at the expense of a larger in-network cache. With NDN, the packet is likely

to come back from a nearer cache without having to go back to the transmitter. Not

having to go back to the data source is also less likely to trigger congestion control

algorithm. However, the trade-off is larger in-network caches that are able to sup-

port packet retransmissions in case packet loss happens. The size of these caches

will depend on the network and application characteristics such as traffic volume,

retransmission time, and the bandwidth-delay of a network [160].

Figure 7.1: HTTP/FTP/ESGF vs NDN comparison topology

Caching also speeds up data retrieval. Chapter 3 presented a simulation study that

showed the caching could help data distribution even when a 1-GB cache is present

at the network’s edge. Using the traffic pattern and the Zipf distribution parameter a

155



Figure 7.2: Cache size vs cache hit ratio

Figure 7.3: Cache hit vs number of files

Figure 7.4: Cache hit vs number of consumers

156



follow-up study [113] over the testbed [72] was created. Figure. 7.1 shows the topology

of this study and this experiment uses climate data as an example.

Figure. 7.4 and Figure. 7.3 show how NDN’s caching helps data retrieval. This study

requests files ranging from 1GB to 1.4GB, sizes around themedianCMIP5 file size [166].

The number of consumers varied from 10-30 and each consumers requested 10-40

files. The size of the cache at the NDN gateway was fixed at 40,000 chunks. Figure. 7.4

shows that the cache hit ratio increased as the number of consumers increased, as ex-

pected. Increasing the number of consumers increases the probability of requesting

the same file bymore consumers, and thus the cache hit ratio increases. In Figure. 7.3,

increasing the number of requested files decreases the probability of requesting the

same file by multiple consumers, hence the drop in cache hit ratio. As for cache re-

placement policy, this experiment used Least Frequently Used (LFU) policy, which

takes into account content popularity.

Figure. 7.4 compares NDN-supported retrieval with contemporary tech-

niques [113]. A node in Korea fetched a 4GB file from the NDN testbed machine

at CSU over NDN. It also fetched the same file from the closest ESGF node at NCAR

(located in Boulder) over HTTP and FTP. As Figure. 7.1 shows, throughput of NDN-

based retrieval improved with increasing packet size, and caching. The throughput

saturated at 140 Mbps using the 1.5-MB packet size without caching and 600Mbps

with caching. The same CMIP5 file was consecutively fetched by the consumers along

the NDN testbed routing path using classical delivery techniques (HTTP and FTP) .

HTTP and FTP-based deliveries had throughputs of 140–150 Mbps. With caching, the

NDN-based delivery was able to achieve a throughput over 600Mbps, approximately

six times more than what conventional delivery techniques could [113].

157



Figure 7.5: Caching Benefit of NDN

7.1.2 Multi-source Retrieval

Supporting movement of large data can be very challenging, and requires paral-

lelism in several dimensions, such as storage, network, and applications [115] [72].

Today, high bandwidth transfer is achieved by concurrent retrieval of several files or

retrieval of a large file in parallel [115] [57] [27]. However, due to the lack of knowledge

of the underlying network, applications often have to rely on middleware or manual

tuning of transfer protocols and associated parameters [4] [80] [82].

If multiple producers are reachable from a node, NDN can route packets simulta-

neously over multiple interfaces for fast data retrieval. NDN-supported applications

may create different threads and assign each thread for downloading a single file.

Alternatively, NDN may ask for different “chunks” of the same file in parallel. De-

pending on how the network is configured, these Interests might be forwarded to

different sources of the same data (assuming the content is replicated) . As Section

2 mentioned above, the appropriate strategy depends on the application; for exam-

ple, an application requiring high redundancy might forward the same interests on all

available interfaces. Another application trying to maximize the transfer rate might

load-balance the requests between all available links.

158



1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

0

200

400

600

800

1000

1200

R
e
tr

e
iv

a
l 
T
im

e
(s

)

0 2 4 6 8
Number of Sources

Parallel Retreival Time
Speedup

Figure 7.6: Scalable Retrieval using NDN

For high-performance applications, it might be desirable to retrieve content from

multiple sources in parallel. Towards this goal, this work implemented a simple

round-robin load balancing strategy in the network. The topology for this example

was simple - a requester and eight data sources connected through an NDN router.

The strategy is simple; each time an interest comes in, one outgoing interface that

can satisfy the request is chosen at random. Note that this method does not consider

all available interfaces for forwarding the Interests, only those which matches the In-

terest namespace (e.g., /CMIP5) and can satisfy the incoming Interests. This work

replicated the climate dataset over multiple sources, started retrieval in parallel us-

ing our prototype implementation. Figure. 7.6 shows that the retrieval time reduces

(almost) linearly as the number of sources increases.

Figure. 7.7 shows that NDN supports graceful degradation as servers fail. This ex-

periment set the cache sizes to zero; as data is retrieved frommultiple sources, one or

159



more nodes were randomly failed. As expected, the content remained available until

all data producer node failed. In the case of parallel retrieval, not only could NDN

gracefully support service degradation, but it could also automatically redistribute

the load among surviving nodes.

20

40

60

80

100

C
o
n
te

n
t 

A
v
a
ila

b
ili

ty
(%

)

0

200

400

600

800

1000

1200

R
e
tr

ie
v
a
l 
T
im

e
(s

)

0 2 4 6 8
Number of failed sources

Retrieval Time - Publishers are bottleneck
Retrieval Time - no bottleneck
Content Availability(%), no caching 

Figure 7.7: Content Availability and graceful degradation for retrieval using NDN

More sophisticated strategies can further improve data distribution. Instead of

simple round-robin strategies, the network may be able to choose the “Best” data

source for content retrieval, as the following section discusses.

7.1.3 Retrieval from “Best” Data Source

NDN is capable of choosing data sources that are “best” for an application. The

definition of “best” is application and context specific. For example, as Chapter 3

discussed before, NDN can redirect requests to the data source with the lowest la-

160



tency. This experiment replicated climate data over five data producers; two in China,

one in France, one in the US, and one in Germany. These locations were deliber-

ately chosen to match actual climate data server locations. This work used an NDN

strategy that finds the lowest latency path from a client to its nearest data producer

using the following procedure: on receiving the first Interest for a namespace (e.g.,

</xrootd/data1>), the strategy sends it over allmatching interfaces (multicast) . Once

data comes back, it records the RTT of each incoming Data packet before forward-

ing it downstream. It then ranks the faces based on RTT and uses that ranking to

forward subsequent Interests. Periodically the strategy tries out other, lower ranked

interfaces, and as Interest/Data exchange continues the strategy adjusts the ranking

based on new observed RTTs. At any given time this strategy chose the lowest latency

path for data retrieval [164].

Figure. 7.8 shows how this strategy can helpwith forwarding the requests to nearer

servers. In the original request log [161], server 6 was the only producer and served

100% requests. With the new strategy, server 6 received only 0.03% of the requests,

and the remaining requests were redirected to other servers closer to the clients.

The delay based strategy redirected 96% of the requests to the two servers in China

(server 1 and 2), freeing up resources at the LLNL node.

Choosing the server with the lowest latency also reduced the delay at the clients.

Figure. 7.10 shows themean delay at each client. Most clients saw a reduction inmean

delay, but the level of reduction is also interesting; the mean delay for Client 3 was

reduced from around 200ms to around 25 ms, an order of magnitude improvement.

Other consumers also saw a significant reduction in latency. Note that this only an

example strategy. In a window-based protocol (such as TCP), sudden changes in la-

tency can adversely affect throughput [49]. With NDN, the effect of such changes can

be normalized by selecting a server with low latency. In addition, an enhanced strat-

161



server1

61.73%

server2 35.51%

server3

2.42%

server4

0.22%

server5

0.10%

server60.03%

Figure 7.8: Percentage of requests served by each server. Server 6 is the original data pro-
ducer.

egy can take into account application processing delays, loads on server, and other

parameters that might slow down a transfer.

Clie
nt

-1

Clie
nt

-2

Clie
nt

-3

Clie
nt

-4

Clie
nt

-5

Clie
nt

-6

Clie
nt

-7

Clie
nt

-8

Clie
nt

-9
0

50

100

150

200

250

M
e
a
n
 D

e
la

y
(m

s)

One Server
Six Servers

Figure 7.9: Mean delay of retrieving a data packet at clients

162



The strategy the previous section described is not the only strategy for large data

transfers. In addition to high-speed, CDN like services and NDN network can also

provide services such as strategic caching, retrieval from a peer, and managing re-

quests to exploit in-network caching, as the following sections discuss.

7.1.4 Creating high-speed on-demand path

Scientific communities are globally distributed and routinely transfer traffic

among various sites. Sometimes existing bandwidth between two nodes is simply not

enough to satisfy a request by a given deadline. At the same time, creating perma-

nent, high-bandwidth paths between all site pairs is not economically feasible. More-

over, as scientific data flows are often bursty [167], creating permanent paths is far

from optimal. The scientific communities address this short-term bandwidth short-

age problem by creating temporary, high-bandwidth paths for large data transfers.

ESnet’s On-Demand Secure Circuits and Advance Reservation System (OSCARS)

[80] is a service that allows users to create such guaranteed bandwidth-reserved

paths. However, users are still responsible for knowing the endpoints, creating paths,

and scheduling transfers. Arbitrary creation of reserved paths may create conflict

between users, and the network resources may not be optimally utilized [164]. Intel-

ligent strategies allow NDN to provide a network-driven approach to path creation.

As Figure. 7.11 shows, an NDN strategy can invoke OSCAR’s path creation mechanism

when the available bandwidth on existing paths is not sufficient. If the path creation

succeeds, the strategy adds a new route to the NDN’s forwarding base. Since NDN

consolidates requests for the same data, a fast path can potentially speed up other

best-effort traffic if such flows are temporally close to the high-speed flow. Note

that strategies are not constrained to using a specific lower layer protocol (such as

OSCARS) but can interact with any other protocol or an even an SDN controller to

create similar high-speed paths.

163



Clie
nt

-1

Clie
nt

-2

Clie
nt

-3

Clie
nt

-4

Clie
nt

-5

Clie
nt

-6

Clie
nt

-7

Clie
nt

-8

Clie
nt

-9
0

50

100

150

200

250

M
e
a
n
 D

e
la

y
(m

s)

One Server
Six Servers

Figure 7.10: Mean delay of retrieving a data packet at clients

sender stack receiver stack

Path 
Setup 
helper

VLAN 
Interface

VLAN 
Interface

NDN 
stack

Path 
Setup 
helper

OSCARS
User

NDN 
stack

Data Producer
1

2

4 4

5

6

5

3

Data transfer

66

Figure 7.11: OSCARS with NDN

164



7.2 Time-constraint challenges

Proliferation of sophisticated scientific instruments, observational and simulation

capabilities continue to increase the volume of valuable science data massively. Be-

sides, scientific communities are increasingly moving towards a global scientific col-

laboration model. The datasets are so big, e.g., the Large Hadron Collider (LHC) alone

generates approximately 50PB data per year [119], no central facility is capable of pro-

viding storage and computational capacities required to sustain these global collabo-

rations. Scientific communities, therefore, must transfer raw or derivative datasets to

local or institutional computation and storage facilities. For transferring these large

datasets, scientific communities have created dedicated scientific networks such as

the LHC Optical Private Network (LHCOPN) [119] and ESnet. While the available

bandwidths in these networks are significant, they are still insufficient to accommo-

date all requests at the same time [166]. Data transfers, therefore, must complete

within a given deadline freeing up network resources for the subsequent transfers,

currently accomplished by manually scheduled transfers, orchestrated high-speed

paths, and ad-hoc end-to-end bandwidth reservation by the user. Arbitrary reserva-

tions can create contention among clients and suboptimal resource utilization [80].

The current way of addressing the challenge of deadline-based data transfer is

not optimal [115] [80]. Scientists create end-to-end reserved paths manually for a

duration that they think they might need for a given transfer. Scientists then try to

complete their transfers within this reserved time slot. If a transfer fails, the scientist

either looks for a new time slot or retry if the current slot is still available. Tools

like OSCARS and AL2S [175] has simplified the process by providing APIs and web

interfaces that scientists can use to create reserved paths. If the requested resources

are not available, these systems throw an error, and the scientist (or the operator) can

try to reserve another time slot, possibly with different parameters.

165



The users often make reservations in an ad-hoc manner. A user trying to reserve

bandwidth must know the data source and the destination, request a reservation,

and transfer data within the reservation’s validity period. There are several inherent

problems associated with this approach. The users need to make sure the chosen

source and the destination are optimal, need to know the operational details of the

network, its capacity, and the size of the data. From the network’s point-of-view, the

whole affair can be highly inefficient; if a user creates a reservation but only uses a

small portion of the available bandwidth, the rest of the reserved bandwidth is wasted.

Contents of the end-to-end flows are not reusable even if multiple reservations share

the same underlying path and retrieve the same content. Finally, failures during data

retrieval may lead to restarts and wasted resources.

Several previous works have built solutions on top of RSVP [197] that can reserve

bandwidth for end users or clients. Such works range from Energy efficient band-

width reservation [134] to layer 3 protocols such as ESnet’s OSCARS [81], from co-

operative bandwidth scheduling [143] to time-shifted advanced bandwidth reserva-

tions [150]. However, all these protocols are either theoretical since they are hard to

implement and deploy in IP networks, or very complex since they need to implement

end-user authentication, point-to-point reservation, and data transfer scheduling. As

the following section shows, supporting deadline based data transfers is simpler with

NDN. Towards this goal, the following section first describes an RSVP-like bandwidth

reservation protocol over NDN. Later, using the high-speed transfer protocols and

the bandwidth reservation protocol described below, this chapter shows how NDN

can support time-constrained data transfers. Additionally, it also shows how NDN

can trade bandwidth for in-network storage to better facilitate such transfers and

optimize resource usage.

166



7.2.1 Bandwidth Reservation Protocol

Bulk data transfers are common in distributed, connected scientific communi-

ties with many simultaneous users. They move a considerable amount of data over

long distance links. For some workflows, such data transfers can reach more than a

Terabyte per day [31]. In addition to The scope of this chapter is confined to large

scientific data transfers over single-domain science networks such as Internet2 or

ESnet. This chapter does not consider inter-domain reservations which can intro-

duce a large number of operational challenges such as traffic engineering policies,

peering, and economic incentives [138]. This work does not propose alternate QoS

mechanisms for NDN networks equivalent to IntServ or DiffServ in IP. Instead, this

work provides the building blocks which such future NDN-based services will utilize.

transferring data for archiving, replication, or local analysis, researchers also pre-

place data copies in caches around the world for efficient, CDN-like access [31]. Data

pre-placement has been particularly popular with communities such as the LHC [31],

which routinely places a significant amount of data near the users. Bulk data trans-

fers are not overly sensitive to RTT but require a significant amount of bandwidth for a

long time and no packet loss. However, a substantial amount of dedicated bandwidth

for an extended period is challenging to acquire on public networks.

Even networks dedicated to scientific communities such as ESnet or Internet2

routinely encounter resource contention and congestion leading to data transfer de-

lays [80] [115]. Satisfying transfer deadlines in such an environment often requires

dedicated per-flow bandwidth allocation [191]. This work proposes a protocol to

create hop-by-hop reservations in an NDN network. Figure. 7.16 shows a high-level

overviewof the reservation protocol; for setting up a reservation anNDNnode sends a

special reservation Interest that is forwarded hop-by-hop upstream. A tuple contain-

ing <data name, requested bandwidth, start_time, deadline> represents the reser-

167



vation request. Each node has a reservation manager that checks if the requested

bandwidth is available during the requested period. If the request is successful, the

reservation manager forwards the Interest upstream. Upon reaching a data producer

or a repository, the Interest brings back a reply with a success message. The reser-

vation manager keeps track of the reservation using a reservation table similar to

TABLE 7.2.

Figure 7.12: Reservation with NDN.

This section presents a high-level overview of an NDN-based Bandwidth Reserva-

tion Protocol. In addition to this protocol, the deadline based transfer protocol uses

the NDN-based circuit-creation protocol and themultipath and delay based forward-

ing protocols. Figure. 7.13 shows a high-level overview of the deadline based data

transfer protocols along with the building blocks. Descriptions of these constructs

are deliberately high-level at this point, but later sections describe them in detail.

Namespace

Hierarchical NDN names align well with existing scientific namespaces; as chap-

ter 5 shows. This work uses xrootd [33] namespace as an example. Data is published

under a root prefix, e.g., </xrootd>. Different sub-namespaces under the root prefix

168



Figure 7.13: Overview of a deadline-based data transfer protocol.

identify data and various services. Figure. 7.14 shows such an example; actual data

is served under </xrootd/data> while two other services are advertised under </x-

rootd/query> and </xrootd/reservation>. The first service allows applications to

query the current network state for the </xrootd> prefix. The second provides a

reservation service that a strategy can use to set up a reserved path for </xrootd>.

Figure 7.14: Namespace Design.

7.2.2 SCARI - A Strategic Caching and Reservation protocol for NDN

This section describes SCARI - a protocol that brings all the components described

above together to create a complete bandwidth reservation and caching protocol for

science data.

169



This work on SCARI draws inspiration from the RSVP protocol [197] in IP that

provides receiver-initiated reservations. Since NDN natively supports multicast, in-

network smart forwarding strategy, and caching, an efficient reservation protocol is

easier to implement with NDN. While SCARI is similar to RSVP , there are two crucial

differences between it and RSVP: (a) SCARI is per name prefix. Per-prefix reservation

means transfers can share the reservation as long as they share some of the network

paths, and (b) in SCARI, while the end-user (or the applications) uses a reservation,

it is not in charge of creating or maintaining it. The second point is an important

distinction. In the IP network, the receiver decides what resources it needs and re-

quests a reservation. This work argues that the network, and not the user, should be

in charge of reservations. In SCARI, the receiver only describes its requirements to

the network, e.g., data transfer deadline in this work, but the network decides when

to create reservations, how to maintain them, and how to optimize reservations to

utilize in-network resources better.

Several works have built solutions on top of RSVP that can reserve bandwidth for

end users or clients. Such works range from Energy efficient bandwidth reservation

[134] to layer 3 protocols such as ESnet’s OSCARS [81], from cooperative bandwidth

scheduling [143] to time-shifted advanced bandwidth reservations [150]. However, all

these protocols are either theoretical since it is hard to implement and deploy them

for IP networks, or very complex since they need to implement end-user authentica-

tion, point-to-point reservation, data transfer scheduling. As later sections show, it

can be much simpler to create and support reservations in NDN networks and at the

same time, reduce network load, and more optimally use the available resources.

170



Table 7.1: Reservation Table in SCARI

Req
Num

Prefix Data
Size

Avail.
Band-
width

Resv.
Request

Avail.
Cache

Start
Time
(s)

Deadline
(s)

1 /xrootd/data1 1GB 10Gbps 1Gbps 1TB 1 10
2 /xrootd/data1 1GB 10Gbps 1Gbps 1TB 2 100
3 /xrootd/data3 1GB 10Gbps 1Gbps 1TB 1 10
4 /xrootd/data3 1GB 10Gbps 1Gbps 1TB 10 20

7.2.3 Protocol Design

This section discusses the protocol details of SCARI and explains the mechanisms

for creating a hop-by-hop reservation in an NDN network, the protocol components,

and message exchanges.

Protocol Overview

Figure. 7.15 provides a high-level overview of our protocol. In SCARI, the receiver

expresses its requirements to the network. This protocol does not define these re-

quirements, and the requirements can be specific requirements for bandwidth, delay,

cache space, or something else. Appropriate strategies are required to interpret the

requests and reserve these resources. This study uses bandwidth and in-network

storage as reservable resources.

In this design, each router has a reservation manager (RM) . The job of this man-

ager is to track available resources, schedule reservation according to local policies,

aggregate reservations if possible, and strategically cache contents for later use. The

reservation manager can be part of the forwarding strategy or a stand-alone daemon.

Two types of reservationmanagers exist in this work (a) reservationmanagers located

on end nodes (ERM), and (b) reservation managers located on router nodes (RRM).

171



Client

ERM

Local disk
based cache

NFD RRM

in-network disk
based cache

NFD RRM

in-network disk
based cache

NFD

Producer
Future data transfer request

Reservation Interest
Figure 7.15: Reservation Communication Overview.

The RRMs reserve resources for future reservations, aggregate reservations if they

are temporally close, and strategically cache content if the requests are not tempo-

rally close (what qualifies as “temporally close” depends on the local policy).

Enough Resources
Available? 

Reservation 
Interest

Reply 
(NACK) No 

NFD node

Reserve Resources,
send upstream

Yes Data Producer 
or 

Strategic Cache 

Reply 
(RESV) 

Figure 7.16: Reservation Protocol Details.

ERMs perform all services that RRMs perform and also act as a liaison between the

network and the applications. In addition to reserving resources, it translates client

requests to reservation Interests that it then forwards upstream. For example, an

ERM can translate a request from the client indicating <data size, start time, deadline

172



>into a <data size, requested bandwidth, start time, deadline >tuple understood by

RRMs. Besides, the ERMs can act as policy modules enforcing quotas and interact

with the clients asking them to resubmit requests when requests fail.

Figure. 7.16 shows a high-level overview of the reservation protocol inside an RRM.

To set up a reservation an NDN node sends a particular reservation Interest that is

forwarded hop-by-hop upstream. If enough resources are available, the router re-

serves these resources, and forward the Interest upstream. If enough resources are

not available, the network returns a NACK along with the reason for failure. Depend-

ing on the network and local policies, theremight be several reasonswhy a routermay

refuse to reserve resources. For example, a router can refuse reservation if a request

exceeds allotted quota, resources are not available, or other higher priority requests

must be satisfied first. On receiving the NACK, the application and an ERM decide

together what to do next. They might reduce the amount of requested resource, try

the reservation at a later time, or abandon the effort.

The Reservation Table

In SCARI, all RMsmaintain a reservation table. This table’s functionality is similar to

NDN’s Pending Interest Table (PIT), but instead of keeping forwarding information, it

keeps states about reservations. The table contains the prefix, the size of the reserved

strategic cache, the reserved bandwidth, available bandwidth, and the start time and

the deadline for the reservation. The reservations are based on name prefixes so that

they can utilize NDN’s request deduplication by caching and PIT and its name based

forwarding. The table is extensible and holds any number of parameters dictated by

various use cases.

173



Reservation Prefix Granularity

The granularity of reservation is very important. If a client makes a reservation

under a top-level prefix, all other requests under the prefix share that reservation.

For example, a reservation for “/xrootd” would lead to millions of datasets under

this name prefix to share in-network resources. On the other hand, creating indi-

vidual file level reservations will lead to an inflated reservation table. However, both

of these scenarios can be perfectly fine depending on various use cases. For example,

if a large volume of scientific data is being replicated between two LHC site, as it of-

ten happens in practice [146], a reservation for an all-encompassing namespace (e.g.,

/xtootd) might be desirable. This study uses a file-level reservation, but reservation

granularity must be carefully considered depending on the use case.

Reservation Interest

The NDN reservation request is an Interest that carries a tuple in following format

<data name, data size, requested bandwidth, start_time, deadline >. This imple-

mentation sends a reservation Interest using a special namespace, </namespace/

reservation/>; so a reservation Interest might look like </xrootd/reserva-

tion/</xrootd/

data1/data_size/start_time/deadline/bandwidth».

On receiving the reservation Interest the forwarding strategy checks if the request

can be merged with another existing request. If it can be aggregated, the strategy

sends a response indicating this. For example, if a strategy sees two overlapping re-

quests, such as request 1 and 2 in Table. 7.1, it combines them since the same data flow

can satisfy both.

SCARI uses three types of messages to communicate with the client. The strategy

sends out a ”Duplicate Reservation” ACK to the client when reservations are com-

bined, and the client then proceeds to request data at the start time. If a reservation

174



request reaches the producer node, it simply answers with a “RESV” message that

signifies a successful reservation up to the data producer, and the client starts the

retrieval at the start time. Finally, if enough resources are not available at a node, it

sends out a NACK back. A NACK clears the pending reservation Interests at all down-

stream hops. On receiving this NACK, the client and reservation manager can decide

how to proceed. While not implement it in this work, the intermediate nodes can also

decide how to satisfy the requests on receiving aNACK. For example, it can create two

smaller reservations to two different sources that satisfy the resource requirements.

Bandwidth Reservation

On receiving a reservation Interest, a node reserves the appropriate amount of

downstream bandwidth for future incoming Data Packets. This work assumes that

Interest packets are small and the path can support them without requiring band-

width reservation. If the reservation is successful, the node forwards the reservation

Interest upstream. If the node is the publisher, it returns a RESV message.

SCARI enforces bandwidth quota for each prefix by controlling the Interest for-

warding rate. Assuming NFD can forward a finite number of packets per seconds,

the protocol considers this number as a sharable resource and divide it appropriately

among reservations. However, NDN Data packet sizes can be variable [19] and hard

to predict. In the cases where data sizes are known, such as for science data, for-

warding rates are easy to calculate. When returning data sizes are unknown, the for-

warding strategy can predict how much bandwidth is used on the return path based

on observed Data packet sizes. When the return data rate goes above the quota, the

strategy asks the client to slow down Interest sending rate, either using a NACK or

other congestion control mechanisms.

175



Cache Reservation and Strategic Caching

Unlike IP networks where bandwidth is the only reservable resource, NDN nodes

can also reserve in-network caches. As a result, NDN can reduce bandwidth con-

sumption at the expense of in-network storage. In SCARI, contents are strategi-

cally cached on a long-term, disk-based, in-network storage. This work envisions

the caches to be disk-based and significantly larger than the in-memory CS, in the

order of several TB or more. Which content to strategically cache depends on how

many reservation requests arrive at a particular node.

This cache is different from a CS in the sense that it has more capacity and con-

tent are cached longer. However, knowing which content to cache for future requests

requires foreknowledge and therefore, is not practical. However, for scientific work-

flows, this work anticipates that end users/applications would submit their requests

before the actual data transfers, a common practice in scientific computing [132], al-

lowing the network some time to optimize the transfers.

SCARI reserves cache space along with bandwidth for the reservations. If another

request for the same data with an extended deadline comes in, the strategy is to sim-

ply cache the content until the new deadline. Request 3 and 4 in Table. 7.1 demon-

strates this; without strategic caching, SCARI will need to create two separate reser-

vations, one from time 1-10 Sec and another from time 10-20 Sec. However, if the path

of these two requests intersects, with the help of strategic caching, the network can

reserve bandwidth from t1 to t10 and caches the content until t20 at the intersection.

There is no need to create two reservations from the clients to the data producer,

two reservation up to the first cache and one reservation from the cache to the data

producer is sufficient, freeing up upstream bandwidth (from intermediate cache to

content producer) that can serve other requests.

Strategic caching also can automatically optimize content placement through the

network. For example, a node may decide to cache data for </xrootd> until tdeadline

176



Enough Available 
Resources? 

Reservation 
Interest 

<name, deadline> 

No 

Intermediate NFD node

Yes Data
Producer

Success 
(RESV) 

Is another transfer 
already scheduled? 

No 

Cache data on
disk until new

deadline

Yes 
NACK 

Success 
(RESV) 

Figure 7.17: Using reservation with strategic caching.

if it receives n requests through m different faces. This simple strategy places the

content only at the nodes (e.g., R1 in Figure. 7.18 that lies at the intersection of future

content paths. This method also frees up resources in the downstream router that

does not lie at any intersection and does not need to cache this particular content

strategically.

Since scientific datasets show a high degree of temporal and spatial locality [161],

this work anticipates that in-network strategic caching is helpful for these data flows.

To summarize, SCARI has two main benefits: unlike today, an end-to-end per-client

path reservation is not required which frees up network resources. Second, SCARI

can dynamically create in-network strategic caches without requiring prior planning

and operator intervention. In-network strategic caches can trade bandwidth for in-

network caches, thereby freeing up available resources.

7.2.4 Simulation Setup

Our topology is deliberately simplistic but should be sufficient to demonstrate the

benefits our protocol offers; a more complex topology will result in more in-network

strategic caches that will improve our results.

177



Data 

Source

1

2

3

4

5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

27

23

24

25

26

29

32

35

28

30

31

33

34

Clients

Figure 7.18: Evaluation topology for SCARI

178



In this work, we use an ndnSIM based simulation to evaluate our protocol from the

perspective of the user, the network, and the data producer. To show the benefits of

our protocol, we use a topology derived from a real data access log recorded at a

single server [161]. Figure. 7.18 shows the topology that we used for our study. Since

the original topology contained a large number of nodes, such large topology slows

the simulation down, and we pruned the excessive nodes on the paths of the topology

without changing the actual connectivity. The new topology contains 35 nodes, one

server/data producer, and nine clients.

In our topology, node 34 is the data producer, intermediate nodes are routers with

RRMs, and the leaves are the clients with ERMs. For this study, we assume the data

source (node 34) and the consumers (leaf nodes in the graph) as part of the same

network and we use shortest path routing for our simulation. Using this topology,

we conduct our simulations for the three approaches: IP-reservation, NDN-without-

caching, and NDN-with-caching. To simplify our simulation, we set the strategic

caching size to unlimited, though we found the actual caches could be much smaller,

around 500GB, for achieving optimal benefits.

We pick the top 999 requests from each client, a total of 8991 requests. 7965 of

these requests contain the unique data names, and the rest are duplicates. The clients

create and submit the reservation requests to their local ERMs that forward them

upstream. For creating duplicate requests, we choose one client and keep its access

log intact, but substitute some of the other clients’ requests using randomly chosen

requests from the first client’s request set. Each client then sends the reservation

requests using the times in the original log, with data sizes ranging between 1 MB and

49.4 GB.

In our scenario, all links had 1Gbps bandwidth. To allow for realistic deadlines,

we calculate the deadlines based on TCP transfer times over a 100Mbps link. Before

the actual data retrieval happens, the client must successfully reserve the bandwidth

179



on the path towards the server. The actual data can be cached but the ACK or RESV

messages are uncacheable. In actual use cases, we expect the clients to allow some

additional time in their deadlines than is required for actual data transfers. To en-

sure timely completion of our simulations, we used large chunk sizes (20MB) . For

NDN-without-caching, the reservation does not end until it times out, so the large

chunks will not impact the results. For NDN-with-caching, we limit the outstanding

Interest pipeline number as the ratio of chunk numbers to the reserved time, trying

to minimize the effect the large chunks size.

7.2.5 SCARI Evaluation

This section evaluates SCARI from the perspective of the user or client, the net-

work, and the data producer. The evaluation starts with the scenario where all reser-

vations are stand-alone, labeled as IP reservation. However, if the requests are tem-

porally close, SCARI can merge them in an effective multicast group. If the clients

start retrieving the content approximately at the same time, only one request reaches

the server, and the rest of the requests are satisfied by content flowing through the

network. This section compares SCARI with and without reservation aggregation.

Figure. 7.19 shows the number of successful reservation requests. Currently, each

request must reserve bandwidth on all the nodes along the path towards the server.

The number of reservation remains constant around 70 (out of the 200 requests) even

when many reservation requests are duplicates.

In contrast, with the same resources, SCARI can support more reservations - ag-

gregating temporally close reservation requests shows an improvement in the num-

ber of accommodated reservations. Figure. 7.19 shows that when there is no duplicate

request, number of successful reservations is equal to IP. However, as the number of

duplicate reservation requests increases; with 60 percent duplicates, the number of

successful reservations grows to 110 with SCARI.

180



0 10 20 30 40 50 60
Duplicate percentage

0

20

40

60

80

100

120

140

160

#S
uc

ce
ss

fu
l R

es
er

va
tio

n

IP-reservation
NDN-without-caching
NDN-with-caching

Figure 7.19: Number of successful reservation requests

With strategic caching, the results are even better. With strategic caching, 140

out of 200 reservation requests could be satisfied, effectively doubling the number of

reservations that the network can support with the same bandwidth. This improve-

ment is the direct result of strategic caching where the intermediate nodes cache

data locally to free up the reserved bandwidth. Note that as the network grows in

size and complexity and more nodes create strategic caches in the network and free

up upstream bandwidth, the number of reservation that can be supported with the

same amount of bandwidth should increase proportionally.

SCARI not only benefits the clients but also benefits the data producers. In Fig-

ure. 7.20 plots the number of reservation requests that reached the data producer.

Figure. 7.20 demonstrate the number of reservation requests that arrive at the data

producer. The simulation found a similar number of requests reach the data produce

both for IP reservation and NDN-without-caching. When all requests are unique, the

number for NDN-with-caching ismuch larger than IP-reservation andNDN-without-

caching cases. This is an interesting observation; in IP andNDN-without-caching, the

181



0 10 20 30 40 50 60
Duplicate percentage

0

20

40

60

80

100

120

140

160

#R
eq

ue
st

 o
n 

Se
rv

er

IP-reservation
NDN-without-caching
NDN-with-caching

Figure 7.20: Number of reservation requests that arrived on the data producer

intermediate router does not have enough bandwidth and therefore rejects most of

the reservation requests before they reach the data producer. As discussed before,

with strategic caching, the intermediate node can release the previously reserved

bandwidth when it can cache the content; trading storage for bandwidth frees up re-

sources so that other reservation requests could go through. As duplicate reservation

requests increase, the number of requests that reach the data producer decreases

linearly for NDN-with-caching scenario since the in-network strategic cache serves

some of these requests instead of the data producer, freeing up available bandwidth

at the data producer.

Besides accommodating an increased number of reservations with the same

amount of resources and freeing up bandwidth at the data producer, our protocol also

benefits the network by reducing bandwidth consumption at the intermediate nodes.

Figure. 7.21 shows the amount of available bandwidth over time at the bottleneck (node

33) with 70 percent duplicate reservation requests. The x-axis is the timeline of the

whole simulation, and the y-axis shows the amount of bandwidth available at the in-

182



0 100 200 300 400 500 600 700 800
Time(s)

0

200

400

600

800

1000

1200

Av
ai

la
bl

e 
Ba

nd
wi

dt
h 

on
 in

te
rm

ed
ia

te
 N

od
e

IP
NDN-without-caching
NDN-with-caching

Figure 7.21: Resource utilization at the intermediate node

termediate node. Both NDN scenarios, with and without strategic caching, use less

bandwidth compared to the IP scenario. Less resource usage means the network can

support more reservations and data flows using the same amount of bandwidth.

While this section shows that SCARI can reduce resource consumption for all

stakeholder, the users, data producers, and the network, more sophisticated cache

optimization, data transfer scheduling, and advanced strategies such as multipath

reservation may be able to reduce resource consumption even further.

7.2.6 A Deadline-Based Data Transfer Protocol: Design and Imple-

mentation

This section uses the NDN-based primitives discussed above to design a deadline-

based data transfer protocol for both best-effort and reserved bandwidth data trans-

fers.

The reference implementation of our protocol has three main components; a data

requester/client, a per-node retrieval decision manager and custom NDN strategies.

183



The forwarding strategy controls intelligent Interest forwarding decisions and when

necessary, reserves bandwidth, creates strategically placed in-network caches and

interacts with the upper/lower layer protocols for dynamic path creation. The re-

trieval manager acts as an intermediary between the client and the strategy. In addi-

tion to communicating with strategies and the clients, the retrieval manager works as

a policy module to enforce retrieval or reservation quotas. Policies are needed to en-

sure that applications do not force the network to use dedicated paths for all transfers

by setting impossible deadlines.

The Reservation Table

The reservation table keeps track of the current and future reservation requests.

Besides, the table also keeps track of available resources such as bandwidth. The

table is extensible, and as the section 7.2.10 will show, can be used to reserve other

resources such as in-network caches.

Table 7.2:
RESERVATION SCHEDULING TABLE

ReqID Prefix Requested StartTime Deadline BW
1 /xrootd 1463330393 1463355592 1Gbps
2 /xrootd 1463330519 1463355623 1Gbps

7.2.7 Component Interaction

In this protocol, the client notifies the network of its requirements by sending an

Interest packet to the retrieval manager. The Interest takes the following form: <data

name, deadline, dataset size, hard/soft deadline flag>. The name of the dataset de-

fines the requested dataset; the retrieval deadline denotes the latest acceptable time

for data retrieval; a “hard deadline” flag means the deadline is non-negotiable while a

“soft deadline” flag denotes best effort traffic. While transfer time for requests with

184



soft deadlines is not guaranteed, the strategy still may use intelligent forwarding, e.g.,

multipath forwarding, to fulfill the request within a reasonable time.

The Interest also tells the retrieval manager the size of the data. While estimating

dataset sizes is not easy for general Internet traffic, scientific data sizes are usually

recorded in a catalog, and therefore relatively easy to estimate [72].

If the retrieval manager sees two or more requests with overlapping deadlines, it

simply aggregates them and suggests a start time to the clients. Otherwise, the re-

trieval manager talks to the local NFD about possible retrieval options using a special

query namespace. For querying retrieval options for </xrootd>, the retrieval man-

ager sends an Interest to the NFD with the following structure: </xrootd/query/

</xrootd/data1/start_time/deadline/deadline_type». On receiving this Interest,

NFD compiles a list of options and returns it to the retrieval manager.

If none of the existing options can meet the deadline, the network must create

a new high-speed path. This work built an NDN strategy that works with Layer 2

protocols (or SDN) to create such a path, as section 4 discussed. Once the strategy

on a node decides that a new path is needed, it calls the OSCARS API which then

creates a new VLAN between the node and a data producer. Once the high-speed

path is set up, the strategy uses it as simply another available link.

This protocol is generic and should work in both NDN-only networks, and NDN

overlays over IP. No additional mechanism is required for fulfilling requests with soft

deadlines; however, meeting hard deadlineswill requireQoS guarantees not only from

the NDN entities but also from the underlying IP routers.

7.2.8 Fulfilling Requests with Soft Deadlines

Figure. 7.22 shows the decision path for Interestswith soft deadlines. If the Interest

is for </xrootd/data1>, the custom NDN strategy looks up the list of faces in the FIB

that can be used for retrieving </xrootd/data1>. If the Interest is under a namespace

185



that was not previously used for data retrieval, the strategy fetches a few chunks using

each matching face and records the following information for each face: <FaceID,

RTT, Max Bandwidth>. The strategy then compiles retrieval options and sends it to

the retrieval manager, which in turn notifies the client. Instead of sending binary

yes/no response to the client, the protocol replies with more detailed return values

alongwith a suggested start time. For this implementation they are (a) the request can

be satisfied, and the client starts retrieval immediately; (b) the retrieval can be satisfied

only with an extended deadline; if the new deadline is acceptable, the client adjusts

the deadline and requests again; (c) the retrieval is aggregated and the client starts

retrieval at the suggested time; and (d) the request can not be satisfied. Such fine-

grained information may enable the clients to make intelligent decisions, a feature

that is not available today. However, since the network condition may change after

the initial reply, there is no guarantee that the network will be able to satisfy the soft

deadline. However, in the case of soft deadlines, this is implicitly understood. If data

must be retrieved by a strict deadline, scientists may use the “hard headline”, as the

following section discusses.

7.2.9 Fulfilling Requests with Hard Deadlines

While strategies such as multi-path may work well for best-effort traffic, the only

way to guarantee timely completion of large data transfers is to create a reserved

bandwidth path [180]. In case the deadline is “hard”, the strategy must create a re-

served path to a publisher or a cache. In this implementation, the application sends

a reservation Interest using a special namespace, </xrootd/reservation/>. A reser-

vation Interest looks like </xrootd/reservation/

</xrootd/data1/start_time/deadline/bandwidth».

On receiving this Interest, a node reserves the appropriate amount of downstream

bandwidth for future incomingData Packets. This work assumes that Interest packets

186



Figure 7.22: Strategy decisions on client node’s NFD.

are small and the path can support them without requiring bandwidth reservation. If

the reservation is successful, the node forwards the reservation Interest upstream. If

the node is the publisher, it returns a success message.

Figure 7.23: Using reservation with strategic caching.

187



The reservation protocol can be tweaked to create intelligent data dissemination

strategies; Figure. 7.23 shows an example. If a new request overlaps with an existing

one, our strategy merges the requests and sends back a reply indicating success and

the time of the reservation. Note that in this case the reserved path is created only

between the client and the replying node. In addition to performing this simple ag-

gregation, an intelligent strategy may create a temporary cache in the intermediate

nodes. For example, a node may decide to cache data for </xrootd> until tdeadline if

there are n requests scheduled between now and time t_deadline. Since scientific

datasets show a high degree of temporal locality [162], in-network strategic caching

is helpful for these data flows.

Our method has two benefits for scientific datasets: unlike today, an end-to-end

per-client path reservation is not required which frees up network resources. Sec-

ond, our strategy can dynamically create in-network caches without requiring prior

planning and operator intervention.

7.2.10 Evaluation

The deadline-based data transfer protocol described in this chapter optimizes

network usage by aggregating requests, caching, and intelligent request scheduling.

This work analytically analyzes an xrootd [33] access log recorded fromApr 23th, 2016

to Apr 30, 2016. The logs had 114K unique requests from 267 users, recorded at a ten-

minute interval. The access logs showed a high degree of duplicate requests; users re-

quested only 1871 unique datasets over 114K requests; so on average, each dataset was

requested sixty times. Duplicate requests can occur in xrootd for popular datasets or

if transfers fail, which then automatically triggers another request for the same data.

NDN can optimize HEP data flow by de-duplicating requests using our deadline based

protocol. For combining the requests, this work introduces a “scheduling window”;

requests falling within this window can potentially be combined.

188



To investigate temporal locality within our scheduling window, this work first sep-

arated the requests in (arbitrary) six-hour bins. The actual window will depend on

network capacity, storage, and individual workflows. Figure. 7.24 shows the number

of duplicate requests over time; each dot represents the number of requests for a

specific dataset in a six-hour window. The evaluation found that many datasets were

requested several thousand of times and over 50% of the requests have one or more

follow-up request(s) within 10 minutes. Having so many duplicate requests in the log

is good news for our strategy since they can be combined efficiently.

201
6-0

4-2
4

201
6-0

4-2
5

201
6-0

4-2
6

201
6-0

4-2
7

201
6-0

4-2
8

201
6-0

4-2
9

201
6-0

4-3
0

Time (6 Hours)

0

2000

4000

6000

8000

N
u
m
b
er

of
d
u
p
lic
at
e
re
q
u
es
ts

Figure 7.24: Duplicate requests for individual datasets over time.

The actual file sizes were not available in this log, as a result this work assumes

each request was for a 2GB file, the average file size found in the log used for these

experiments [166]. Depending on the file size and the request pattern, the bandwidth

savings in Figure. 7.25 will increase or decrease but this figure represents a rough

estimate of how much bandwidth savings can be expected in an NDN network.

189



Intelligent request scheduling allows NDN to retrieve only one copy of the data

that satisfies all requests for the same data. To compare IP’s bandwidth consumption

with NDN, this work first calculates the amount of bandwidth needed for each request

and then calculate the total aggregate bandwidth required to serve all requests over

six-hour periods. Figure. 7.25 shows that the total bandwidth requirement for xrootd

is very high, with peaks at approximately 64 Gbps. This work also calculated how

much bandwidth NDN could save compared to IP when requests are aggregated; it

takes the same requests over 6 hours, de-duplicate the requests and calculate the

total bandwidth required to serve them.

Time

0

10

20

30

40

50

60

70

M
ax
im
u
m
 R
e
q
u
ir
e
d
 B
an
d
w
id
th
 (
G
b
p
s)

Bandwidth requirement in IP

NDN with 100% aggregated requests

NDN with 50% aggregated requests

Ap
r 2
4, 
20
16

Ap
r 2
5, 
20
16

Ap
r 2
6, 
20
16

Ap
r 2
7, 
20
16

Ap
r 2
8, 
20
16

Ap
r 2
9, 
20
16

Ap
r 3
0, 
20
16

Figure 7.25: Reduced bandwidth consumption with NDN.

Looking from the servers’ point of view, Figure. 7.25 shows overall bandwidth de-

mand of the system in two scenarios. First one is the best case; if the protocol can

aggregate all duplicate requests over 6 hours, the max bandwidth requirement at the

servers drops from64Gbps to around 8.2Gbps, an 85% reduction. However, thiswork

190



acknowledges that not all requests can be aggregated; some requests might have very

tight deadlines and need to be served immediately. Even if the protocol can aggregate

50% of the duplicate requests, the bandwidth requirement comes down to 13.2 Gbps,

a 79% reduction. This result shows that even some degree of de-duplication can go a

long way in reducing resource consumption for scientific data flows.

7.3 Usability Challenges

In addition to high-performance and deadline based transfers, NDN can provide

better usability. As explained by the following sections, NDN can push computation

to the source of data. A significant amount of research [181] [195] [44] exists on push-

ing computation to data using NDN that reduces the amount of data transferred, en-

able distributed computations at the network’s edge, and pushing lambdas to the data

source. The goal of these work is not to discuss all of them - but merely to show that

a name based network can support operations necessary for large science data com-

munities. Smarter operations can also be implemented using NDN, as required by

individual workflows. The following sections discuss two such operations, remote

subsetting and remote data staging.

7.3.1 Remote subsetting

Figure 7.26: NDN remote subsetting

191



Remote subsetting can be useful for scientific communities. Instead of download-

ing the full dataset and running computations on them, remote subsetting allows sci-

entists to fetch only a portion of the data that is required for a particular computation.

This approach not only speeds up the total data transfer needed for a particular com-

putation, but it also reduces the amount of data flowing over the network.

Existing applications and protocols such as OpenDAP [61], GridFTP [27], and Dat-

aCutter [36] provide remote subsetting capability. However, these applications also

have several drawbacks. OpenDAP requires the data to be converted into a specific

format suitable for processing. This requires more processing overhead. OpenDAP

query executionmodel is sequential, and it does not support parallel query execution.

When data is distributed, this poses a problem. Moreover, OpenDAP only supports

specific types of queries [61]. GridFTP can provide a portion of a file but can not

run complex subsetting tasks on data. More importantly, these applications do not

provide generic functionality and either domain specific or need to be configured

manually.

NDN, on the other hand, does not need any additional steps for supporting remote

subsetting. Any query can be embedded in the Interest name, andNDN transports the

Interest to a publisher. Embedding the query in the name allows various applications

to merely add their domain-specific queries to the Interests. Each application does

not need to implement their domain-specific functionality separately. When a name

reaches a data publisher, it is up to the publisher to interpret the name and perform

necessary actions.

Embedding the query in the Interest, therefore, enables NDN to support various

applications and all possible queries. Additionally, just like parallel data retrieval dis-

cussed before, NDN enables parallel remote subsetting over multiple sources by dis-

tributing the subsetting Interests among the available replicas. The resulting subsets

are transported back assembled by the application.

192



7.3.2 Staging Data

Figure 7.27: Discovery and Retrieval Protocols

Another example of NDN’s support for improved usability is staging data. Users

often want to download data at the supercomputer where the computation will be

performed. Right now, this process is cumbersome - a scientist often log-in to the

account on a supercomputer, run a script to download data and continue to monitor

it until the process finishes. Intelligent applications such as GridFTP [27] provides a

more simplified process - the users identify a source and a destination, authenticates

to both endpoints and asks GridFTP to perform the retrieval. While this approach

works better than manually downloading datasets, several challenges remain. First,

scientists need to know where data is located, set up the logistics of the transfer,

and start the transfer manually. If underlying network condition changes or the data

source fails, there is no way to react to these events other than selecting a new data

source and starting the retrieval again.

193



NDN can simplify data staging - a user can stage data to a remote site by simply

communicating the desired content name to a retrieval agent at the remote site. This

operation is nuanced from the standard NDN use case as scientists may retrieve to

a remote supercomputer. There is no need for synchronization between the remote

site and the user - the retrieval agent retrieves data according to local policy and

resource availability. Additionally, the network can react to changing conditions and

data source failure. In addition to simple retrieval, the retrieval agent can also take

advantage of deadline-based and high-performance data transfer options mentioned

above. The user needs to specify the name and the deadline to the retrieval agent, and

the data is downloaded to the remote (computing) site without any user intervention.

7.3.3 Common Interface in the Network

Genomics High-energy
Physics Climate

Content  
Names

Name  
Discovery

Data  
Retrieval 

Data
Publication ...

Fastest Retrieval 
Parallel Retrieval 
Reliable Retrieval 

.....

Redundant 
Public 
PrivateNDN Network 

Fiber, 5G, Bluetooth 

Figure 7.28: NDN common interface

In addition to the intelligent functions in the network, NDN can provide a standard

interface in the network that provides common functionality across various scientific

194



domains. For example, all scientific communities need to publish data, discover data,

retrieve data, and run computations. Using names in the network allows the creation

of domain-independent, reusable implementations for these functions.

The current method of implementing these functionalities at the application layer

is not scalable. First, each community must develop, deploy, and maintain each of

these software pieces. Second, since these applications typically make domain spe-

cific assumptions, these applications are very tightly bound to a class of domain-

specific use-cases and are not reusable by other communities.

Even when applications are generic; for example, GridFTP can enable fast

data transfers, tuning and maintaining the tools for each use cases is fairly time-

consuming. NDN simplifies such tools by providing common strategies at the net-

work layer. For example, any application trying to do parallel retrieval can use the

parallel retrieval NDN strategy. In case more sophisticated strategies are required,

they can be implemented and installed at the network by the network operator. Of-

floading the standard functionality in the network not only simplifies the applications

but also improve maintainability of such applications.

While the application complexity is reduced, the network complexity increases. As

discussed above, this study found that a few common strategies would be sufficient

for most applications in the scientific domain, reducing the problem space. For the

broader Internet, however, the interaction between diverse strategies in the network

is not very well understood and requires more careful studies.

This section demonstrates how a name based network can provide intelligent

functionality in the network. This chapter complements Chapter 5 and Chapter 6

that discuss naming and name discovery. The contribution of this chapter is to show

how a name based network better support scientific workflow with new function-

ality in the network. Sought after features such as deadline-based data transfers,

high-performance data transfers, and others are not difficult to implementwith NDN.

195



More importantly, a name based network not only helps to simplify the applications

but also improves resource utilization inside the network by aggregating requests and

streamlining the use of in-network resources.

196



Chapter 8

Conclusions

We have entered an era when the next round of scientific breakthroughs are going

to be supported by big data, new algorithms, purpose-built instruments, and power-

ful supercomputers. To accommodate this new paradigm Computing technologies

and infrastructures must evolve very quickly to keep up with the oncoming deluge

of data, to support novel algorithms and new types of computations, and to support

increasing global collaborations. The network has always played a vital role in con-

necting global scientific communities and supporting scientific ecosystems, starting

from the development of the World Wide Web at CERN. However, the primary design

considerations of the current Internet was to connect resources(e.g., hosts).

The host centric model of the Internet does not support the increasingly content-

centric requirements of the contemporary scientific workflows very well. For exam-

ple, an application retrieving data from a storage host must know the data’s host,

host’s location (IP address), connect to it, and monitor the retrieval. Other arti-

facts of the Internet, such as end-to-end paradigms are indispensable for ensuring

proper function of the current application ecosystems over the Internet, but can ad-

versely affect transfers when the data volume is enormous, in the order of Terabytes

or Petabytes. This section summarizes the thesis which discusses these problems at

length and shows that new Internet protocols help to alleviate these problems. This

section also makes recommendations for the big-data and the networking communi-

ties to facilitate big-data.

197



8.1 Summary

Chapter 2 discusses the difficulties that current scientific workflows face. Sci-

entific data requests are often temporally and spatially close. The current network

does not allow easy reuse of data at the network layer, forcing the network to carry

duplicate traffic and thus wasting resources. Security is in the applications - mak-

ing it harder to cache content in the network and reuse them. The ability to retrieve

content frommultiple sources, pushing computation to the edge, networkmonitoring

andmanagement are some of the elements that are crucial for scientific communities

and yet, not well supported by the network. As a result, scientific communities must

invest time and resources to implement each functionality they need from scratch.

The result is fragmented ecosystems of software solutions that painstakingly reim-

plement same functionality - basic operations for these communities such as fast

data transfers, moving data closer to the users, and others must be implemented, de-

ployed, and maintained separately. Additionally, the amount of data might be so sig-

nificant in the near future, merely improving the network protocols, transfer speeds,

and available bandwidth might not be enough to alleviate significant data problems.

New features such as pushing computations to the edge, pre-caching content at the

location of requests, andminimizing data transfer over the network will be necessary.

Chapter 2 also discusses Named Data Networking (NDN) . NDN repositions the

network architecture to be content-centric, instead of host-centric. The hosts no

longer have a host identifier, and neither do the packets. Network operations such

as routing, forwarding, content retrieval, caching, and others are accomplished using

content names. An application can express an “Interest” into the network, the routers

forward the requests based on content names, and the data producers return data

following the same path. Focusing on the content name better aligns the application

requirements with the network.

198



Additionally, being a clean-slate architecture, NDN can utilize the lessons learned

from IP’s massive success. For example, a measurement and monitoring framework

is likely to be integrated with the architecture, allowing applications to communi-

cate with the network effectively. The in-network strategy layer allows the scientific

communities to decide what type of intelligence they would need in the network and

deploy them easily. Several other functionalities such as caching content in the net-

work near the request hotspots, pushing content to the edge, utilizing the network

storage to optimally fulfilling requests, and reducing resource consumptions in the

network are easier to implement using NDN.

This thesis extensively studies three contemporary scientific workflows in three

different domains - Climate, High Energy Particle Physics, andGenomics. Using these

three big-data use cases, this thesis tries to understand the deficiencies in these do-

mains and how the network contributes to these problems. This work finds that sev-

eral critical operations in scientific domains are common across scientific domains.

Operations such as fast data retrieval, the discovery of dispersed datasets, automatic

failover to a replica data source can be useful to these communities. Additionally,

advanced features such as data transfers from multiple sources, data transfer by a

specific deadline, caching content for localized access are essential but hard to imple-

mentwith the current technology. As a result, each of these communities implements

their own software solutions at the application layer, leading to duplicate implemen-

tations of the same functionality. This thesis first hypothesizes that each of these

functionalities (and more) are straightforward to implement using NDN and using a

content-centric network aligns the functionality of the network with the application

requirements.

To examine this hypothesis, Chapter 3 studies a representative dataset over three

years that was obtained from a node serving climate data. This work shows that

NDN can indeed benefit scientific applications by caching content in the network,

199



automatically routing requests to the closest replica of the data, using multiple data

sources, and enabling intelligent strategies in the network. These observations also

have a profound impact on NDN’s deployment - at the time of this study, very few

researchers have looked into NDN’s feasibility using real-world datasets - this study

shows NDN can provide not only novel methods in the network but also maintain the

appropriate level of performance. Validating NDN’s properties using real data access

logs and access patterns demonstrates the deployability of NDN in real networks.

After showing that NDN can support data-intensive science, Chapters 4, 5, 6, and

7 show how this might be accomplished. The naming of content is critical in a name-

based network - Chapter 5 discusses different naming conventions in the scientific

communities. This chapter notes that though scientific names are naturally hierar-

chical, aligning them with a name based networking paradigm is not trivial. Since

naming of content affects how content is retrieved, accessed, and requests for these

content are handled, trade-offs of naming conventions (such as placement of name

components) should be carefully considered. In some cases, existing names are not

sufficient, and the scientists must consult the metadata and actual data for creating

names that are sufficient to utilize all the benefits that NDN offers. This chapter dis-

cusses how careless naming would create problems in the network and also hamper

data discovery and retrieval. Using domain knowledge and name translation schema,

this section demonstrates how a generic name translation framework can be built

that can transform existing names into NDN compatible names. Finally, the chapter

provides NDN naming guidelines for data-intensive science.

Naming data is only the first piece of the puzzle. Since names are bound to content,

names must be discoverable - easily, quickly, and consistently. Chapter 6 presents a

framework for publishing and discovering names in an NDN network. This frame-

work still maintains a catalog of names, just like contemporary scientific applica-

tions do. However, an NDN based catalog need to maintain only the names (and

200



not the locations) of the data, making the name publication and updation of the cat-

alog lightweight. The lightweight nature of this catalog also beneficial for created

synchronized instances of the catalog. On name publication (or updation) only the

diffs need to be exchanged - since the catalog only hold names, the operation is

lightweight, even when many names are included in the update. In this study, pub-

lishing 2.7 million names took less than 200 milliseconds. A MySQL database sup-

ports the backend of this system. The system can provide automatic failover for the

queries, caching of results (so that same query is not executed repeatedly), and NDN

provides routing of a query to the nearest catalog replica. This chapter also provides

a front-end that helps scientists to query the published named using variousmethods

such as auto-completion assisted typing, selecting name components, and browsing

a name tree. Once the names are known, data can be retrieved by simply expressing

Interests into the network. This work also created a survey and asked a small set of

climate scientists to test the system and provide feedback, and the responses were

overwhelmingly positive.

Chapter 7 describes the in-network protocols for supporting big-science. Once

the naming and name discovery part are in place, the network can support data-

intensive science through in-network intelligent protocols. What operations an NDN

network should support is still under active research. However, looking at the various

scientific communities, a clear pattern emerged. All scientific communities perform

operations such as data publication, data discovery, fast retrieval, pushing computa-

tions to the edge.

Additionally, all these workflows exhibit specific properties, such as temporal lo-

cality of data access, data popularity following a Zipf distribution, and others. It be-

came clear, at least for the scientific communities, migrating which operations in the

network would be beneficial. In network caching, request aggregation, using names

to push computations to the edge, high-speed and deadline based transfers are some

201



of the properties that can help data-intensive science, and this chapter presents NDN

based protocols for each of these. Using in-network caching and an intelligent strat-

egy layer, this chapter shows how data distribution and access can be optimized using

operations such as strategic caching, trading disk-space for bandwidth, and reserv-

ing resources in the network. Finally, this chapter shows how these domain-agonistic

common operations can be packaged in an in-network framework that can reduce the

need for domain-specific software stacks.

8.2 Findings

This section summarizes critical recommendations learned from developing net-

work protocols and data management frameworks for big-science communities.

• This work finds that functional commonalities exist across scientific domains.

Most science communities perform a set of basic operations such as data pub-

lication, discovery, and retrieval. Identifying and implementing these function-

alities at a common layer would reduce the time and effort currently required

to design domain-specific solutions.

• The network is the common platform that all these communities must use.

Therefore, the network is a natural place to implement most of these common

functionalities. The recent trend of programmable networks is making it in-

creasingly feasible to implement these functions in the network.

• Content-centric network paradigms such asNDNcan support big-science com-

munities better. NDN’s in-network protocols can support novel features such

as parallel retrieval, low-latency retrieval, and at the same time, optimize in-

network resource usage via caching, and intelligent request routing.

202



• In anNDNworld, applications should pay extra attention to how they name their

data. Data naming will have a profound impact on location independence, load

balancing, and the amount of in-network state.

• In NDN, names can act as a common interface across various services. Scientific

communities should follow the “name-once” principle, where the community

names data appropriately once and use it consistently across various services

and APIs.

• Future networks (such as NDN) must expose enough information to the appli-

cations. Applications should be able to query information such as the capability

of the network, available resources, usage pattern, and cache capacities tomake

intelligent decisions.

• NDN uses in-network strategies for providing application specific in-network

capabilities. How these in-network strategies will interact is an open research

question and needs to be studied carefully.

8.3 Recommendations

This thesis clearly shows that the current way of handing big-data is hardly op-

timal. Chapter 3 presents an example where upon encountering failures applica-

tions continues to retry retrieval in an ad-hoc manner, making the problems worse.

The end-to-end network principle does not help either since applications must work

around its limitations. The next-generation science applications and an intelligent

network layer must work together to ensure proper utilization of available resources.

The exercise of applying NDN for big-science clearly shows that several aspects

of NDN such as caching, intelligent request routing are beneficial for big-science.

203



Adopting these aspects in a programmable network environment can alleviate big-

data problems in the near future.

Finally, this thesis also shows that NDN’s caching paradigm and in-network intel-

ligence helps big-data. However, it is hard to generalize the caching and in-network

protocols for every science community. Understanding individual workflows is the

key to bringing synergy between applications and in-network network protocols.

For example, physics data access pattern exhibits an extremely long request tail.

NDN’s copy-everywhere caching does not work very well with this pattern, and novel

caching mechanisms should be investigated for this workflow. Similarly, in-network

protocols should also continue to evolve based on the communities’ requirements.

This thesis advances the state of both networking as well as data-intensive science

research. It presents a compelling use case for NDN and demonstrates the value it

can provide at the network layer. Utilizing NDN for a significant class of applica-

tions and showing the benefits, the author hopes would encourage further research.

The protocols and architectures developed during this work have also extensively

contributed to the NDN ecosystem through code contribution, testing, and protocol

development. On the other hand, this work shows that the data-intensive science

community can benefit from a content-centric network - the operations supported

by NDN can simplify the workflows (and dataflows) used by these communities. The

lessons learned from this exercise not only benefits the next generation applications

but can also be applied to current workflows immediately.

204



Bibliography

[1] A. Hanushevsky, Potential Data Access Architectures using xrootd.

http://xrootd.org/presentations/OSGAHM_1103.

Plenary.pptx.

[2] CDN Pricing,https://www.maxcdn.com/blog/cdn-framework-step-2/.

[3] Climate Science’s Globally Distributed Infrastructure. https://nci.org.au/wp-

content/uploads/2016/11/Williams-Trenham-2016-AGU-Fall-Meeting-

ESGF.pdf.

[4] ESNet. https://fasterdata.es.net.

[5] Globus, www.globus.org.

[6] Microsoft Azure CDN Pricing, https://azure.microsoft.com/en-

us/pricing/details/cdn/.

[7] NDN Strategy Callbacks. http://ndnsim.net/2.1/fw.html.

[8] openDAP, www.opendap.org.

[9] Source code for simulation scenarios. https://github.com/susmit85/icn17-

simulation-scenario.

[10] TCP Tuning at ESNet. https://fasterdata.es.net/assets/fasterdata/JT-

201010.pdf.

[11] Worldwide LHC Computing Grid. http://wlcg.web.cern.ch/.

205



[12] 4th annual Earth System Grid Federation and Ultrascale Visualization Climate

Data Analysis Tools face-to-face conference report. Technical Report LLNL-

TR-666753, Lawrence Livermore National Laboratory, Livermore, CA, 2014.

[13] Academic Torrents, May 2019. [Online; accessed 11. May 2019].

[14] CMIP5 Data Search | CMIP5 | ESGF-CoG, Mar 2019. [Online; accessed 17. Mar.

2019].

[15] ESnet’s Network, Software Help SLAC Researchers in Record-Setting Transfer

of 1 Petabyte of Data, Jan 2019. [Online; accessed 31. Jan. 2019].

[16] Global Server Load Balancing (GSLB) for Enterprise: Part 1. Concept and Service

Logic, Feb 2019. [Online; accessed 1. Feb. 2019].

[17] Home | Pacific Wave, Feb 2019. [Online; accessed 15. Feb. 2019].

[18] NDN Testbed - Named Data Networking (NDN), Apr 2019. [Online; accessed 24.

Apr. 2019].

[19] NFD Developer’s Guide - Named Data Networking (NDN), Feb 2019. [Online;

accessed 1. Feb. 2019].

[20] Open Science Torrents - theDatahub,May 2019. [Online; accessed 11.May 2019].

[21] Overview : Main : Sequence Read Archive : NCBI/NLM/NIH,Mar 2019. [Online;

accessed 12. Mar. 2019].

[22] Processing: What to record? |CERN,May 2019. [Online; accessed 10. May 2019].

[23] Whole Genome Sequencing Cost, Apr 2019. [Online; accessed 13. Apr. 2019].

[24] Ibrahim Abdullahi, Suki Arif, and Suhaidi Hassan. Survey on caching approaches

in information centric networking. Journal of Network and Computer Applica-

tions, 56:48–59, 2015.

206



[25] Mohamed Abouelela and Mohamed El-Darieby. Scheduling big data applica-

tions within advance reservation framework in optical grids. Applied Soft Com-

puting, 38:1049–1059, 2016.

[26] T Åkesson. The atlas experiment at the cern large hadron collider. 1999.

[27] William Allcock, John Bresnahan, Rajkumar Kettimuthu, Michael Link, Catalin

Dumitrescu, Ioan Raicu, and Ian Foster. The globus striped gridftp framework

and server. InProceedings of the 2005 ACM/IEEE conference on Supercomputing,

page 54. IEEE Computer Society, 2005.

[28] Ethernet Alliance and Blaine Kohl. Ethernet jumbo frames, 2009.

[29] Venkatramani Balaji, Karl E Taylor, Martin Juckes, Bryan N Lawrence, Paul J Du-

rack, Michael Lautenschlager, Chris Blanton, Luca Cinquini, Sébastien Denvil,

Mark Elkington, et al. Requirements for a global data infrastructure in support

of cmip6. Geoscientific Model Development, 11(9):3659–3680, 2018.

[30] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic parti-

cles in high-energy physicswith deep learning. Nature communications, 5:4308,

2014.

[31] Artur Barczyk. World-wide networking for lhc data processing. In National

Fiber Optic Engineers Conference, pages NTu1E–1. Optical Society of America,

2012.

[32] Tanya Barrett, Stephen E Wilhite, Pierre Ledoux, Carlos Evangelista, Irene F

Kim, Maxim Tomashevsky, Kimberly A Marshall, Katherine H Phillippy, Patti M

Sherman, Michelle Holko, et al. Ncbi geo: archive for functional genomics data

sets—update. Nucleic acids research, 41(D1):D991–D995, 2012.

207



[33] LAT Bauerdick, K Bloom, B Bockelman, DC Bradley, S Dasu, I Sfiligoi, A Tadel,

M Tadel, F Wuerthwein, and A Yagil. Xrootd monitoring for the cms experi-

ment. In Journal of Physics: Conference Series, volume 396, page 042058. IOP

Publishing, 2012.

[34] CGlenn Begley and John PA Ioannidis. Reproducibility in science: improving the

standard for basic and preclinical research. Circulation research, 116(1):116–126,

2015.

[35] Theophilus Benson, Aditya Akella, andDavid AMaltz. Unraveling the complexity

of network management. In NSDI, pages 335–348, 2009.

[36] Michael D Beynon, Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan Sussman,

and Joel Saltz. Distributed processing of very large datasets with datacutter.

Parallel Computing, 27(11):1457–1478, 2001.

[37] Ashwin R Bharambe, Cormac Herley, and Venkata N Padmanabhan. Analyzing

and improving bittorrent performance. Microsoft Research, Microsoft Corpora-

tion One Microsoft Way Redmond, WA, 98052:2005–03, 2005.

[38] Andrew D Birrell, Roy Levin, Michael D Schroeder, and Roger M Needham.

Grapevine: An exercise in distributed computing. Communications of the ACM,

25(4):260–274, 1982.

[39] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve Uh-

lig. Open connect everywhere: A glimpse at the internet ecosystem through

the lens of the netflix cdn. ACM SIGCOMM Computer Communication Review,

48(1):28–34, 2018.

[40] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker, et al. Web caching

and zipf-like distributions: Evidence and implications. In Ieee Infocom, volume 1,

pages 126–134. INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 1999.

208



[41] Brian Tierney and Joe Metzger, ESnet. High Performance Bulk Data Transfer.

https://fasterdata.es.net/assets/fasterdata/JT-201010.pdf.

[42] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. 1998. In Proceedings of the Seventh World Wide Web Conference,

2017.

[43] Rene Brun and Fons Rademakers. Root—an object oriented data analysis frame-

work. Nuclear Instruments and Methods in Physics Research Section A: Acceler-

ators, Spectrometers, Detectors and Associated Equipment, 389(1-2):81–86, 1997.

[44] Jeff Burke, Paolo Gasti, Naveen Nathan, and Gene Tsudik. Securing instru-

mented environments over content-centric networking: the case of lighting

control and ndn. In 2013 IEEE Conference on Computer Communications Work-

shops (INFOCOMWKSHPS), pages 394–398. IEEE, 2013.

[45] Konrad Büssow, Claudia Quedenau, Volker Sievert, Janett Tischer, Christoph

Scheich, Harald Seitz, Brigitte Hieke, Frank H Niesen, Frank Götz, Ulrich Hart-

tig, et al. A catalog of human cdna expression clones and its application to

structural genomics. Genome biology, 5(9):R71, 2004.

[46] Matt Calder, Ashley Flavel, EthanKatz-Bassett, RatulMahajan, and Jitendra Pad-

hye. Analyzing the performance of an anycast cdn. In Proceedings of the 2015

Internet Measurement Conference, pages 531–537. ACM, 2015.

[47] S Campbell, J Calderazzo, CmmapEducationChangingClimates, et al. Changing

climates@ colorado state: 100 (multidisciplinary) views of climate change. In

AGU Fall Meeting Abstracts, 2011.

[48] Neal Cardwell, Yuchung Cheng, Soheil Yeganeh, and Van Jacobson. Bbr con-

gestion control. Working Draft, IETF Secretariat, Internet-Draft draft-cardwell-

iccrg-bbr-congestion-control-00, 2017.

209



[49] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling tcp latency. In

Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.

Nineteenth Annual Joint Conference of the IEEE Computer and Communications

Societies (Cat. No. 00CH37064), volume 3, pages 1742–1751. IEEE, 2000.

[50] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Information sciences,

275:314–347, 2014.

[51] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks

and applications, 19(2):171–209, 2014.

[52] Shuo Chen, Junwei Cao, and Lipeng Zhu. Ndss: A named data storage system. In

2015 International Conference on Cloud and Autonomic Computing, pages 196–

199. IEEE, 2015.

[53] Shuo Chen, Weiqi Shi, Junwei Cao, Alexander Afanasyev, and Lixia Zhang. Ndn

repo: an ndn persistent storage model. 2014.

[54] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven

Tuecke. The data grid: Towards an architecture for the distributed manage-

ment and analysis of large scientific datasets. Journal of network and computer

applications, 23(3):187–200, 2000.

[55] Brian Cho and Indranil Gupta. Budget-constrained bulk data transfer via inter-

net and shipping networks. In Proceedings of the 8th ACM international confer-

ence on Autonomic computing, pages 71–80. ACM, 2011.

[56] Deanna M Church, Valerie A Schneider, Tina Graves, Katherine Auger, Fiona

Cunningham, Nathan Bouk, Hsiu-Chuan Chen, Richa Agarwala, William M

McLaren, Graham RS Ritchie, et al. Modernizing reference genome assemblies.

PLoS biology, 9(7):e1001091, 2011.

210



[57] Luca Cinquini, Daniel Crichton, Chris Mattmann, John Harney, Galen Shipman,

FeiyiWang, Rachana Ananthakrishnan, Neill Miller, SebastianDenvil, MarkMor-

gan, et al. The earth system grid federation: An open infrastructure for access

to distributed geospatial data. Future Generation Computer Systems, 36:400–

417, 2014.

[58] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet: A

distributed anonymous information storage and retrieval system. In Designing

privacy enhancing technologies, pages 46–66. Springer, 2001.

[59] LSST Dark Energy Science Collaboration et al. Large synoptic survey telescope:

dark energy science collaboration. arXiv preprint arXiv:1211.0310, 2012.

[60] Mauro Conti, Paolo Gasti, andMarco Teoli. A lightweight mechanism for detec-

tion of cache pollution attacks in named data networking. Computer Networks,

57(16):3178–3191, 2013.

[61] Peter Cornillon, James Gallagher, and Tom Sgouros. Opendap: Accessing data

in a distributed, heterogeneous environment. Data Science Journal, 2:164–174,

2003.

[62] S Cotter. Sdn-based innovation in new zealand. In 2014 International Science

and Technology Conference (ModernNetworking Technologies)(MoNeTeC), pages

1–2. IEEE, 2014.

[63] Ali Dabirmoghaddam, Mostafa Dehghan, and JJ Garcia-Luna-Aceves. Charac-

terizing interest aggregation in content-centric networks. In IFIP Networking

Conference (IFIP Networking) and Workshops, 2016, pages 449–457. IEEE, 2016.

[64] Yuri Demchenko, Paola Grosso, Cees De Laat, and Peter Membrey. Addressing

big data issues in scientific data infrastructure. In 2013 International Conference

on Collaboration Technologies and Systems (CTS), pages 48–55. IEEE, 2013.

211



[65] Yuri Demchenko, Zhiming Zhao, Paola Grosso, Adianto Wibisono, and Cees

De Laat. Addressing big data challenges for scientific data infrastructure. In

4th IEEE International Conference on Cloud Computing Technology and Science

Proceedings, pages 614–617. IEEE, 2012.

[66] Peter Dewdney, Peter Hall, R Schillizzi, and J Lazio. The square kilometre ar-

ray. Proceedings of the Institute of Electrical and Electronics Engineers IEEE,

97(8):1482–1496, 2009.

[67] Shyamala Doraimani and Adriana Iamnitchi. Revisiting locality of reference in

scientific grid workloads.

[68] AlviseDorigo, Peter Elmer, Fabrizio Furano, andAndrewHanushevsky. Xrootd-a

highly scalable architecture for data access.WSEAS Transactions on Computers,

1(4.3):348–353, 2005.

[69] Bonnie J Dorr, Craig S Greenberg, Peter Fontana, Mark Przybocki, Mar-

ion Le Bras, Cathryn Ploehn, Oleg Aulov, Martial Michel, E Jim Golden, and

Wo Chang. The nist data science initiative. In 2015 IEEE International Con-

ference on Data Science and Advanced Analytics (DSAA), pages 1–10. IEEE, 2015.

[70] Ricky Egeland, Tony Wildish, and Simon Metson. Data transfer infrastructure

for cms data taking. In XII Advanced Computing and Analysis Techniques in

Physics Research, volume 70, page 033. SISSA Medialab, 2009.

[71] Veronika Eyring, Sandrine Bony, Gerald A Meehl, Catherine A Senior, Bjorn

Stevens, Ronald J Stouffer, and Karl E Taylor. Overview of the coupled model

intercomparison project phase 6 (cmip6) experimental design and organization.

Geoscientific Model Development (Online), 9(LLNL-JRNL-736881), 2016.

[72] Chengyu Fan, Susmit Shannigrahi, Steve DiBenedetto, Catherine

Olschanowsky, Christos Papadopoulos, and Harvey Newman. Managing

212



scientific data with named data networking. In Proceedings of the Fifth In-

ternational Workshop on Network-Aware Data Management, page 1. ACM,

2015.

[73] Darleen Fisher. Us national science foundation and the future internet design.

ACM SIGCOMM Computer Communication Review, 37(3):85–87, 2007.

[74] Darleen Fisher. A look behind the future internet architectures efforts. ACM

SIGCOMM Computer Communication Review, 44(3):45–49, 2014.

[75] David Gil and Il-Yeol Song. Modeling and management of big data: challenges

and opportunities, 2016.

[76] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox,

Dennis Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. Ex-

amining the challenges of scientific workflows. Computer, 40(12):24–32, 2007.

[77] Krzysztof Ginalski, Jakub Pas, Lucjan S Wyrwicz, Marcin von Grotthuss,

Janusz M Bujnicki, and Leszek Rychlewski. Orfeus: detection of distant homol-

ogy using sequence profiles and predicted secondary structure. Nucleic acids

research, 31(13):3804–3807, 2003.

[78] Matthew J Graham, S George Djorgovski, Ashish Mahabal, Ciro Donalek, An-

drew Drake, and Giuseppe Longo. Data challenges of time domain astronomy.

Distributed and Parallel Databases, 30(5-6):371–384, 2012.

[79] MA Grigorieva, EA Ryabinkin, MV Golosova, MY Gubin, VV Osipova, and AA Kli-

mentov. Evaluating non-relational storage technology for hep metadata and

meta-data catalog. In J. Phys. Conf. Ser., volume 762, page 012017, 2016.

[80] Chin Guok. A user driven dynamic circuit network implementation. Lawrence

Berkeley National Laboratory, 2009.

213



[81] Chin Guok, ESnet Network Engineer, and David Robertson. Esnet on-demand

secure circuits and advance reservation system (oscars). Internet2 Joint, 92,

2006.

[82] Chin Guok, David Robertson, Mary Thompson, Jason Lee, Brian Tierney, and

William Johnston. Intra and interdomain circuit provisioning using the os-

cars reservation system. In Broadband Communications, Networks and Systems,

2006. BROADNETS 2006. 3rd International Conference on, pages 1–8. IEEE, 2006.

[83] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Donovan, Bran-

don Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and

Ethan Katz-Bassett. Sdx: A software defined internet exchange. ACM SIG-

COMM Computer Communication Review, 44(4):551–562, 2015.

[84] Thomas J Hacker, Brian D Athey, and Brian Noble. The end-to-end performance

effects of parallel tcp sockets on a lossy wide-area network. In Proceedings 16th

International Parallel andDistributed Processing Symposium, pages 10–pp. IEEE,

2001.

[85] Mohamed Ahmed Hail, Marica Amadeo, Antonella Molinaro, and Stefan Fischer.

Caching in named data networking for the wireless internet of things. In 2015

international conference on recent advances in internet of things (RIoT), pages

1–6. IEEE, 2015.

[86] Akram Hakiri, Pascal Berthou, Aniruddha Gokhale, and Slim Abdellatif.

Publish/subscribe-enabled software defined networking for efficient and scal-

able iot communications. arXiv preprint arXiv:1711.05036, 2017.

[87] Keith Hamilton. Secure distributed publish/subscribe system, October 16 2018.

US Patent App. 10/104,049.

214



[88] BingHan, XiaofeiWang, Nakjung Choi, Ted Kwon, and YangheeChoi. Amvs-ndn:

Adaptive mobile video streaming and sharing in wireless named data network-

ing. In 2013 IEEE Conference on Computer Communications Workshops (INFO-

COMWKSHPS), pages 375–380. IEEE, 2014.

[89] Andreas Hanemann, Jeff W Boote, Eric L Boyd, Jérôme Durand, Loukik Kuda-

rimoti, Roman Łapacz, D Martin Swany, Szymon Trocha, and Jason Zurawski.

Perfsonar: A service oriented architecture for multi-domain network monitor-

ing. In International conference on service-oriented computing, pages 241–254.

Springer, 2005.

[90] Jarmo Harju and Perttu Kivimaki. Co-operation and comparison of diffserv and

intserv: performance measurements. In Proceedings 25th Annual IEEE Confer-

ence on Local Computer Networks. LCN 2000, pages 177–186. IEEE, 2000.

[91] David Harrison. bep_0000.rst_post, Mar 2019. [Online; accessed 11. May 2019].

[92] Thomas Hauser, Patrick J Burns, Thomas E Cheatham, HJ Siegel, and James

Williams. Cyberinfrastructure facilities at colorado state university.

[93] Thomas Hauser, Patrick J Burns, Thomas E Cheatham, HJ Siegel, and James

Williams. Rocky mountain advanced computing consortium cyberinfrastruc-

ture plan.

[94] Felix Heine, Matthias Hovestadt, and Odej Kao. Towards ontology-driven p2p

grid resource discovery. In Proceedings of the 5th IEEE/ACM International

Workshop on Grid Computing, pages 76–83. IEEE Computer Society, 2004.

[95] AKM Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia Zhang, and

Lan Wang. Nlsr: named-data link state routing protocol. In Proceedings of the

3rd ACM SIGCOMM workshop on Information-centric networking, pages 15–20.

ACM, 2013.

215



[96] Ivy Pei-Shan Hsu, David Chun-Ying Cheung, and Rajkumar Ramniranjan Jalan.

Global server load balancing, October 25 2016. US Patent 9,479,574.

[97] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn van Oost-

erhout, P Schroeder, Jasper Spaans, and Pedro Larroy. Linux advanced routing

& traffic control. In Ottawa Linux Symposium, volume 213, 2002.

[98] Qingmin Jia, Renchao Xie, Tao Huang, Jiang Liu, and Yunjie Liu. The collabora-

tion for content delivery and network infrastructures: A survey. IEEE Access,

5:18088–18106, 2017.

[99] Xiaolong Jin, Benjamin WWah, Xueqi Cheng, and Yuanzhuo Wang. Significance

and challenges of big data research. Big Data Research, 2(2):59–64, 2015.

[100] Mario Jurić, Jeffrey Kantor, KT Lim, Robert H Lupton, Gregory Dubois-

Felsmann, Tim Jenness, Tim S Axelrod, Jovan Aleksić, Roberta A Allsman,

Yusra AlSayyad, et al. The lsst data management system. arXiv preprint

arXiv:1512.07914, 2015.

[101] Stephen Kaisler, Frank Armour, J Alberto Espinosa, and William Money. Big

data: Issues and challenges moving forward. In 2013 46th Hawaii International

Conference on System Sciences, pages 995–1004. IEEE, 2013.

[102] Ethan Katz-Bassett, Harsha V Madhyastha, Vijay Kumar Adhikari, Colin Scott,

Justine Sherry, Peter Van Wesep, Thomas E Anderson, and Arvind Krishna-

murthy. Reverse traceroute. In NSDI, volume 10, pages 219–234, 2010.

[103] JE Kay, C Deser, A Phillips, A Mai, C Hannay, G Strand, JM Arblaster, SC Bates,

G Danabasoglu, J Edwards, et al. The community earth system model (cesm)

large ensemble project: A community resource for studying climate change in

the presence of internal climate variability. Bulletin of the American Meteoro-

logical Society, 96(8):1333–1349, 2015.

216



[104] Daehwan Kim, B Langmead, and S Salzberg. Hisat2: graph-based alignment of

next-generation sequencing reads to a population of genomes, 2017.

[105] Mariam Kiran, Peter Murphy, Inder Monga, Jon Dugan, and Sartaj Singh Baveja.

Lambda architecture for cost-effective batch and speed big data processing.

In 2015 IEEE International Conference on Big Data (Big Data), pages 2785–2792.

IEEE, 2015.

[106] Tevfik Kosar, Engin Arslan, Brandon Ross, and Bing Zhang. Storkcloud: Data

transfer scheduling and optimization as a service. In Proceedings of the 4th ACM

workshop on Scientific cloud computing, pages 29–36. ACM, 2013.

[107] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Christian Esteve Rothen-

berg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A

comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

[108] Kevin Lahey. Tcp problems with path mtu discovery. Technical report, 2000.

[109] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

[110] Yun-Young Lee and Richard Grotjahn. Evidence of specific mjo phase occur-

rencewith summertime california central valley extreme hot weather. Advances

in Atmospheric Sciences, 36(6):589–602, Jun 2019.

[111] Hui Li. Workload dynamics on clusters and grids. The Journal of Supercomput-

ing, 47(1):1–20, 2009.

[112] Jun Li, Hao Wu, Bin Liu, Jianyuan Lu, Yi Wang, Xin Wang, YanYong Zhang, and

Lijun Dong. Popularity-driven coordinated caching in named data networking.

In Proceedings of the eighth ACM/IEEE symposium on Architectures for network-

ing and communications systems, pages 15–26. ACM, 2012.

217



[113] Huhnkuk Lim, Alexander Ni, Dabin Kim, Young-Bae Ko, Susmit Shannigrahi, and

Christos Papadopoulos. Ndn construction for big science: Lessons learned from

establishing a testbed. IEEE Network, 32(6):124–136, 2018.

[114] Jared Lindblom, M Huang, Jeff Burke, and Lixia Zhang. Filesync/ndn: Peer-to-

peer file sync over named data networking. NDN Technical Report NDN-0012,

2013.

[115] Qiming Lu, Liang Zhang, Sajith Sasidharan, Wenji Wu, Phil DeMar, Chin Guok,

JohnMacauley, InderMonga, Se-young Yu, JimHaoChen, et al. Bigdata express:

Toward schedulable, predictable, and high-performance data transfer. In 2018

IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS), pages 75–

84. IEEE, 2018.

[116] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, Steven Lim, et al. A

survey and comparison of peer-to-peer overlay network schemes.

[117] Jake Luo, MinWu, Deepika Gopukumar, and Yiqing Zhao. Big data application in

biomedical research and health care: a literature review. Biomedical informatics

insights, 8:BII–S31559, 2016.

[118] Gary Scott Malkin. Traceroute using an ip option. 1993.

[119] Edoardo Martelli and S Stancu. Lhcopn and lhcone: status and future evolu-

tion. In Journal of Physics: Conference Series, volume 664, page 052025. IOP

Publishing, 2015.

[120] Vivien Marx. Biology: The big challenges of big data, 2013.

[121] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.

ndnsim 2.0: A new version of the ndn simulator for ns-3. NDN, Technical Report

NDN-0028, 2015.

218



[122] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia Zhang. ntor-

rent: Peer-to-peer file sharing in named data networking. In 2017 26th Inter-

national Conference on Computer Communication and Networks (ICCCN), pages

1–10. IEEE, 2017.

[123] LLC MaxMind. Geoip, 2006.

[124] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. How quick is quic? In 2016

IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2016.

[125] Inder Monga, Eric Pouyoul, and Chin Guok. Software-defined networking for

big-data science-architectural models from campus to the wan. In 2012 SC

Companion: High Performance Computing, Networking Storage and Analysis,

pages 1629–1635. IEEE, 2012.

[126] morrison. BiSON Network, Mar 2005. [Online; accessed 14. Feb. 2019].

[127] Richard PMount et al. The office of science data-management challenge. Tech-

nical report, Stanford Linear Accelerator Center (SLAC), 2005.

[128] Marcus R Munafò, Brian A Nosek, Dorothy VM Bishop, Katherine S Button,

Christopher D Chambers, Nathalie Percie Du Sert, Uri Simonsohn, Eric-JanWa-

genmakers, Jennifer JWare, and John PA Ioannidis. Amanifesto for reproducible

science. Nature human behaviour, 1(1):0021, 2017.

[129] Stefano Nativi, Max Craglia, and Jay Pearlman. Earth science infrastructures

interoperability: the brokering approach. IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, 6(3):1118–1129, 2013.

[130] Stefano Nativi, Paolo Mazzetti, Mattia Santoro, Fabrizio Papeschi, Max Craglia,

and Osamu Ochiai. Big data challenges in building the global earth observation

system of systems. Environmental Modelling & Software, 68:1–26, 2015.

219



[131] Harvey Newman, Richard Cavanaugh, Julian James Bunn, Iosif Legrand,

Steven H Low, Dan Nae, Sylvain Ravot, Conrad D Steenberg, Xun Su, Michael

Thomas, et al. The ultralight project: The network as an integrated and man-

aged resource for data-intensive. Computing in science & engineering, 7(6):38,

2005.

[132] Harvey Newman, Azher Mughal, Dorian Kcira, Iosif Legrand, Ramiro Voicu, and

Julian Bunn. High speed scientific data transfers using software defined net-

working. In Proceedings of the Second Workshop on Innovating the Network for

Data-Intensive Science, page 2. ACM, 2015.

[133] Catherine Olschanowsky, Susmit Shannigrahi, and Christos Papadopoulos.

Supporting climate research using named data networking. In 2014 IEEE 20th

International Workshop on Local & Metropolitan Area Networks (LANMAN),

pages 1–6. IEEE, 2014.

[134] Anne-Cécile Orgerie, Laurent Lefèvre, and Isabelle Guérin-Lassous. Energy-

efficient bandwidth reservation for bulk data transfers in dedicated wired net-

works. The Journal of Supercomputing, 62(3):1139–1166, 2012.

[135] Jonathan T Overpeck, Gerald A Meehl, Sandrine Bony, and David R Easterling.

Climate data challenges in the 21st century. science, 331(6018):700–702, 2011.

[136] H Cenk Ozmutlu, Amanda Spink, and Seda Ozmutlu. Analysis of large data logs:

an application of poisson sampling on excite web queries. Information process-

ing & management, 38(4):473–490, 2002.

[137] Robert B O’hara and D Johan Kotze. Do not log-transform count data. Methods

in Ecology and Evolution, 1(2):118–122, 2010.

220



[138] Ping P Pan, Ellen L Hahne, and Henning Schulzrinne. Bgrp: Sink-tree-based ag-

gregation for inter-domain reservations. Journal of Communications and Net-

works, 2(2):157–167, 2000.

[139] David J Patterson, J Cooper, Paul M Kirk, RL Pyle, and David P Remsen. Names

are key to the big new biology. Trends in ecology & evolution, 25(12):686–691,

2010.

[140] Qiuyu Peng, Anwar Walid, Jaehyun Hwang, and Steven H Low. Multipath tcp:

Analysis, design, and implementation. IEEE/ACM Transactions on networking,

24(1):596–609, 2016.

[141] Andreas J Peters and Lukasz Janyst. Exabyte scale storage at cern. In Journal of

Physics: Conference Series, volume 331, page 052015. IOP Publishing, 2011.

[142] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon

Wischik, and Mark Handley. Improving datacenter performance and robust-

ness with multipath tcp. In ACM SIGCOMM Computer Communication Review,

volume 41, pages 266–277. ACM, 2011.

[143] Kannan Rajah, Sanjay Ranka, and Ye Xia. Advance reservations and schedul-

ing for bulk transfers in research networks. IEEE Transactions on Parallel and

Distributed Systems, 20(11):1682–1697, 2009.

[144] Arcot Rajasekar, Reagan Moore, Chien-yi Hou, Christopher A Lee, Richard Mar-

ciano, Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lu-

cas Gilbert, et al. irods primer: integrated rule-oriented data system. Synthesis

Lectures on Information Concepts, Retrieval, and Services, 2(1):1–143, 2010.

[145] Arcot K Rajasekar and Reagan WMoore. Data and metadata collections for sci-

entific applications. In International Conference on High-Performance Comput-

ing and Networking, pages 72–80. Springer, 2001.

221



[146] J Rehn, T Barrass, D Bonacorsi, J Hernandez, I Semeniouk, L Tuura, and Y Wu.

Phedex high-throughput data transfer management system. In Computing in

High Energy and Nuclear Physics (CHEP), volume 2006, 2006.

[147] Yongmao Ren, Jun Li, Shanshan Shi, Lingling Li, Guodong Wang, and Beichuan

Zhang. Congestion control in named data networking–a survey. Computer

Communications, 86:1–11, 2016.

[148] Russ Rew and Glenn Davis. Netcdf: an interface for scientific data access. IEEE

computer graphics and applications, 10(4):76–82, 1990.

[149] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert, and

Richard Scheffenegger. Cubic for fast long-distance networks. Technical re-

port, 2018.

[150] David R Richardson, John Cormie, Imran S Patel, Benjamin WS Redman, and

Richard Sheehan. Request routing utilizing client location information, Septem-

ber 27 2011. US Patent 8,028,090.

[151] Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping the gnutella net-

work. IEEE Internet Computing, (1):50–57, 2002.

[152] Charles P Rodi, Roderick T Bunch, Sandra W Curtiss, Larry D Kier, Marc A

Cabonce, Julio C Davila, Michael D Mitchell, Carl L Alden, and Dale L Morris.

Revolution through genomics in investigative and discovery toxicology. Toxi-

cologic pathology, 27(1):107–110, 1999.

[153] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In IFIP/ACM In-

ternational Conference on Distributed Systems Platforms and Open Distributed

Processing, pages 329–350. Springer, 2001.

222



[154] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 International

Conference on Collaboration Technologies and Systems (CTS), pages 42–47. IEEE,

2013.

[155] Jagruti Sahoo, Mohammad A Salahuddin, Roch Glitho, Halima Elbiaze, andWes-

sam Ajib. A survey on replica server placement algorithms for content delivery

networks. IEEE Communications Surveys & Tutorials, 19(2):1002–1026, 2017.

[156] Bertil Schmidt and Andreas Hildebrandt. Next-generation sequencing: big data

meets high performance computing. Drug discovery today, 22(4):712–717, 2017.

[157] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. A practical con-

gestion control scheme for named data networking. In Proceedings of the 2016

conference on 3rd ACM Conference on Information-Centric Networking, pages

21–30. ACM, 2016.

[158] Wentao Shang, Alexander Afanasyev, and Lixia Zhang. Vectorsync: distributed

dataset synchronization over named data networking. In Proceedings of the 4th

ACM Conference on Information-Centric Networking, pages 192–193. ACM, 2017.

[159] Wentao Shang, Zhe Wen, Qiuhan Ding, Alexander Afanasyev, and Lixia Zhang.

Ndnfs: An ndn-friendly file system. NDN Technical Report NDN-0027, Revision

1, 2014.

[160] S. Shannigrahi, C. Fan, and G.White. Bridging the icn deployment gapwith ipoc:

An ip-over-icn protocol for 5g networks. In ACM SIGCOMM 2018 Workshop on

Networking for Emerging Applications and Technologies(NEAT). ACM, 2018.

[161] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. Request aggre-

gation, caching, and forwarding strategies for improving large climate data dis-

tribution with ndn: a case study. In Proceedings of the 4th ACM Conference on

Information-Centric Networking, pages 54–65. ACM, 2017.

223



[162] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. Request aggre-

gation, caching, and forwarding strategies for improving large climate data dis-

tribution with ndn: a case study. In Proceedings of the 4th ACM Conference on

Information-Centric Networking, pages 54–65. ACM, 2017.

[163] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. Named data

networking strategies for improving large scientific data transfers. In 2018 IEEE

International Conference on Communications Workshops (ICC Workshops): In-

formation Centric Networking Solutions for Real World Applications (ICN-SRA)

(ICC 2018 Workshop - ICN-SRA), Kansas City, USA, May 2018.

[164] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. Named data

networking strategies for improving large scientific data transfers. In 2018 IEEE

International Conference on Communications Workshops (ICC Workshops): In-

formation Centric Networking Solutions for Real World Applications (ICN-SRA)

(ICC 2018 Workshop - ICN-SRA). IEEE, 2018.

[165] Susmit Shannigrahi, Chengyu Fan, and Christos Papadopoulos. Scari: A strate-

gic caching and reservation protocol for icn. In Proceedings of the Asian Internet

Engineering Conference, pages 1–8. ACM, 2018.

[166] Susmit Shannigrahi, Christos Papadopoulos, Edmund Yeh, HarveyNewman, Ar-

tur Jerzy Barczyk, Ran Liu, Alex Sim, Azher Mughal, Inder Monga, Jean-Roch

Vlimant, et al. Named data networking in climate research and hep applica-

tions. In Journal of Physics: Conference Series, volume 664, page 052033. IOP

Publishing, 2015.

[167] Arie Shoshani and Doron Rotem. Scientific data management. challenges, tech-

nology, and development. Scientific Data Management: Challenges, Technology,

and Deployment, 01 2009.

224



[168] Michael Slocombe, Matthew Miller, Casey Ajalat, and Vincent A Fuller III. Con-

tent request routing and load balancing for content distribution networks,

June 8 2017. US Patent App. 15/433,942.

[169] Robin Snader and Nikita Borisov. A tune-up for tor: Improving security and

performance in the tor network. In ndss, volume 8, page 127, 2008.

[170] Won So, Ashok Narayanan, David Oran, and Mark Stapp. Named data network-

ing on a router: forwarding at 20gbps and beyond. In ACMSIGCOMMComputer

Communication Review, volume 43, pages 495–496. ACM, 2013.

[171] Daniele Spiga, Stefano Lacaprara, W Bacchi, Mattia Cinquilli, Giuseppe Codis-

poti, Marco Corvo, A Dorigo, Alessandra Fanfani, Federica Fanzago, Fabio Fa-

rina, et al. The cms remote analysis builder (crab). In International Conference

on High-Performance Computing, pages 580–586. Springer, Berlin, Heidelberg,

2007.

[172] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxi-

ang Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha,

and Gene E Robinson. Big data: astronomical or genomical? PLoS biology,

13(7):e1002195, 2015.

[173] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrish-

nan. Chord: A scalable peer-to-peer lookup service for internet applications.

ACM SIGCOMM Computer Communication Review, 31(4):149–160, 2001.

[174] Gary Strand. Community earth system model data management: Policies and

challenges. Procedia Computer Science, 4:558–566, 2011.

[175] Rick Summerhill. The new internet2 network. In 6th GLIF Meeting, 2006.

[176] Alexander Szalay and Jim Gray. 2020 computing: Science in an exponential

world. Nature, 440(7083):413, 2006.

225



[177] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,

and Dario Sabella. On multi-access edge computing: A survey of the emerging

5g network edge cloud architecture and orchestration. IEEE Communications

Surveys & Tutorials, 19(3):1657–1681, 2017.

[178] Karl E Taylor, V Balaji, Steve Hankin, Martin Juckes, Bryan Lawrence, and

Stephen Pascoe. Cmip5 data reference syntax (drs) and controlled vocabularies.

In PCMDI, 2011.

[179] Karl E Taylor, Ronald J Stouffer, and Gerald A Meehl. An overview of cmip5

and the experiment design. Bulletin of the American Meteorological Society,

93(4):485–498, 2012.

[180] Brian Tierney, Ezra Kissel, Martin Swany, and Eric Pouyoul. Efficient data trans-

fer protocols for big data. In 2012 IEEE 8th International Conference on E-

Science, pages 1–9. IEEE, 2012.

[181] Christian Tschudin and Manolis Sifalakis. Named function networking.

[182] Satoshi Tsuchiya, Yoshinori Sakamoto, Yuichi Tsuchimoto, and Vivian Lee. Big

data processing in cloud environments. Fujitsu Sci. Tech. J, 48(2):159–168, 2012.

[183] Prem Uppuluri, Narendranadh Jabisetti, Uday Joshi, and Yugyung Lee. P2p grid:

service oriented framework for distributed resourcemanagement. In 2005 IEEE

International Conference on Services Computing (SCC’05) Vol-1, volume 1, pages

347–350. IEEE, 2005.

[184] Marco Viceconti, Peter Hunter, and Rod Hose. Big data, big knowledge: big data

for personalized healthcare. IEEE journal of biomedical and health informatics,

19(4):1209–1215, 2015.

226



[185] Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Halde-

mann, and Ulf Leser. Data management challenges in next generation sequenc-

ing. Datenbank-Spektrum, 12(3):161–171, 2012.

[186] Meisong Wang, Prem Prakash Jayaraman, Rajiv Ranjan, Karan Mitra, Mi-

randa Zhang, Eddie Li, Samee Khan, Mukkaddim Pathan, and Dimitrios

Georgeakopoulos. An overview of cloud based content delivery networks: re-

search dimensions and state-of-the-art. In Transactions on Large-Scale Data-

and Knowledge-Centered Systems XX, pages 131–158. Springer, 2015.

[187] Joel M Wein, John Josef Kloninger, Mark C Nottingham, David R Karger, and

Philip A Lisiecki. Content delivery network (cdn) content server request han-

dling mechanism with metadata framework support, April 19 2018. US Patent

App. 15/846,526.

[188] DNWilliams. 2015 esgf progress report. Technical report, Lawrence Livermore

National Lab.(LLNL), Livermore, CA (United States), 2015.

[189] Hao Xu, Terrell Russell, Jason Coposky, Arcot Rajasekar, Reagan Moore, Antoine

de Torcy, Michael Wan, Wayne Shroeder, and Sheau-Yen Chen. irods primer 2:

integrated rule-oriented data system. Synthesis Lectures on Information Con-

cepts, Retrieval, and Services, 9(3):1–131, 2017.

[190] George Xylomenos, Christopher N Ververidis, Vasilios A Siris, Nikos Fo-

tiou, Christos Tsilopoulos, Xenofon Vasilakos, Konstantinos V Katsaros, and

George C Polyzos. A survey of information-centric networking research. IEEE

Communications Surveys & Tutorials, 16(2):1024–1049, 2014.

[191] Chao-Tung Yang, Sung-Yi Chen, and Tsui-Ting Chen. A grid resource broker

with network bandwidth-aware job scheduling for computational grids. In In-

227



ternational Conference on Grid and Pervasive Computing, pages 1–12. Springer,

2007.

[192] Shui Yu, Meng Liu, Wanchun Dou, Xiting Liu, and Sanming Zhou. Networking

for big data: A survey. IEEE Communications Surveys & Tutorials, 19(1):531–549,

2017.

[193] Haowei Yuan, Tian Song, and Patrick Crowley. Scalable ndn forwarding: Con-

cepts, issues and principles. In 2012 21st International Conference on computer

communications and networks (ICCCN), pages 1–9. IEEE, 2012.

[194] Roberta H Yuhas, Alexander FH Goetz, and Joe W Boardman. Discrimination

among semi-arid landscape endmembers using the spectral anglemapper (sam)

algorithm. 1992.

[195] Haitao Zhang, Zhehao Wang, Christopher Scherb, Claudio Marxer, Jeff Burke,

Lixia Zhang, and Christian Tschudin. Sharing mhealth data via named data net-

working. In Proceedings of the 3rd ACMConference on Information-Centric Net-

working, pages 142–147. ACM, 2016.

[196] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,

Christos Papadopoulos, LanWang, Beichuan Zhang, et al. Named data network-

ing. ACM SIGCOMM Computer Communication Review, 44(3):66–73, 2014.

[197] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zap-

pala. Rsvp: A new resource reservation protocol. Network, IEEE, 7(5):8–18, 1993.

[198] Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton,

Diana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Pa-

padopoulos, et al. Named data networking (ndn) project. Relatório Técnico

NDN-0001, Xerox Palo Alto Research Center-PARC, 157:158, 2010.

228



[199] Meng Zhang, Hongbin Luo, andHongke Zhang. A survey of cachingmechanisms

in information-centric networking. IEEE Communications Surveys & Tutorials,

17(3):1473–1499, 2015.

[200] Minsheng Zhang, Vince Lehman, and Lan Wang. Partialsync: Efficient syn-

chronization of a partial namespace in ndn. Technical report, Technical Report

NDN-0039, NDN, 2016.

[201] Yanxia Zhang and Yongheng Zhao. Astronomy in the big data era. Data Science

Journal, 14, 2015.

[202] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and

John D Kubiatowicz. Tapestry: A resilient global-scale overlay for service de-

ployment. IEEE Journal on selected areas in communications, 22(1):41–53, 2004.

[203] Zhenkai Zhu and Alexander Afanasyev. Let’s chronosync: Decentralized dataset

state synchronization in named data networking. In Network Protocols (ICNP),

2013 21st IEEE International Conference on, pages 1–10. IEEE, 2013.

[204] Liudong Zuo, Michelle Mengxia Zhu, and Chase Qishi Wu. Fast and efficient

bandwidth reservation algorithms for dynamic network provisioning. Journal

of Network and Systems Management, 23(3):420–444, 2015.

229



Glossary

Anycast Network addressing scheme where multiple hosts have single IP address. 27

Big Data Extremely Large Datasets; in scientific context, ranges from hundreds of

Terabytes to Exabytes. 4, 9, 91

BitTorrent A peer-to-peer file sharing protocol. 30, 31, 54, 137

CDN A Content Delivery Network. vi, 84, 85, 163, 167

CENIC The Corporation for Education Network Initiatives in California. 94

Chronosync A protocol for synchronizing datasets among multiple parties in NDN.

137–139, 141

CLUI Command Line User Interface. 129

CS NFD Content Store; a data structure in Named Data Networking. 54, 55, 115, 176

CSU Colorado State University. 93

Data Management Tools and algorithms for managing datasets that are often very

large and dispersed. 8

DKRZ The German Climate Computing Centre. 59

DNS Domain Name System. 26–28, 48, 49, 105, 108

DOE Department of Energy. 36

DRS Data reference syntax; a naming guide used in ESGF. 37, 106

ERM End node reservation manager. 171–173, 179

230



ESGF The Earth System Grid Federation; a distributed system for sharing climate

data. v, vi, viii–x, 3, 24, 28, 36–41, 43, 57–60, 62, 70, 76, 84, 87, 129, 155, 157, 230

ESnet The Energy Sciences Network; high-speed computer network serving United

States Department of Energy scientists and their collaborators. 7, 21, 94, 95, 99,

153, 165–167, 170

FIA NSF Future Internet Architecture Project. 45

FIB Forwarding Information Base; a data structure in Named Data Networking. 47,

50, 53, 105, 185

FRGP Front Range GigaPop; a consortium that cooperate to share wide area net-

working service. 94

FTP File Transfer Protocol. x, 12, 21, 155, 157

Globus A high-performance data transfer application. 39

GridFTP GridFTP is an extension of the File Transfer Protocol for grid computing. 37,

192, 193, 195

GSLB Global server load balancing; intelligent distribution of traffic across servers.

26, 27

HEP High Energy Particle Physics. ii, 1, 7, 9, 12, 24, 35, 36, 57, 79, 92, 103, 110, 111, 121,

152, 153, 188

HTTP The Hypertext Transfer Protocol. x, 12, 18, 20, 23, 26, 27, 39, 59–61, 155, 157

ICN Information Centric Network. 6, 45, 88

IP Internet Protocol. 19–24, 26–30, 32, 34–36, 40, 41, 44, 46, 47, 51, 53, 55, 58–61, 93,

95, 99, 153, 154, 166, 167, 170, 176, 179–181, 183, 185, 190, 197, 199

231



iRODS A Genomics Data Management Software. ix, 24, 41–44, 112

LFU Least Frequently Used Policy; A caching policy that evicts the least frequently

used entry. 157

LHC The Large Hadron Collider; world’s largest and most powerful particle collider.

3, 5, 21, 57, 165, 167, 174

LHCOPN LHC Optical Private Network. 21, 165

LLNL Lawrence Livermore National Laboratory. 59, 63, 70, 73, 85, 161

LSST The Large Synoptic Survey Telescope; a wide-field survey reflecting telescope

under construction. 3, 16, 57

NCBI The National Center for Biotechnology Information. 112

NDN Named Data Networking; A future Internet architecture. ii, iii, v–xi, 1, 6–8, 24,

30, 31, 44–55, 57, 58, 61, 70, 72, 74–76, 78, 79, 81, 84, 85, 87–93, 95–102, 104–113,

115–117, 119–124, 126, 127, 130–133, 135, 137, 138, 143–146, 149–155, 157–161, 163, 164,

166–171, 173–176, 179–183, 185, 188–195, 198–202, 204

NDN-SCI NDN-based scientific data management framework. vi, 7, 8, 92, 144, 145, 151

NDNSim NDN simulator for NS3. 70, 72, 73, 91, 151

NFD Named Data Networking Forwarding Daemon. x, xi, 90, 95, 97–99, 133, 175, 185,

187

NSG Next Generation Genome Sequencing. 2

OpenDAP OPeNDAP is a framework that aims to simplifie all aspects of scientific data

networking. 37, 192

232



OpenID OpenID is an open standard and decentralized authentication protocol. 37,

38, 40, 60

OSCARS ESnet’s On-Demand Secure Circuits and Advance Reservation System; an

advanced software system for booking time and resources on high-speed sci-

ence networks. x, 7, 94, 99, 163–166, 170, 185

P2P Peer-to-Peer. 29, 30, 36, 37

PB Petabyte. 9, 15, 16, 59, 165

PIT Pending Interest Table; a data structure in Named Data Networking. 48, 74, 76,

78, 173

PKI A public key infrastructure creates,manages, and distributes digital certificates

and manage public-key encryption. 38, 135

QoS Quality of service. 21

REANNZ The Kiwi Advanced Research and Education Network. 94

RM Reservation Manager. 171, 173

RRM Router Reservation Manager. 171–173, 179

RSVP Resource Reservation Protocol. 22, 166, 170

SDN Software Defined Networking. 7, 23, 100, 154, 163, 185

SKA The Square Kilometre Array; a radio telescope project proposed to be built in

Australia and South Africa. 57

strategy NDN in-network intelligent mechanisms for steering traffic. 25, 54, 84, 85,

88, 138, 144, 199, 202

233



TB Terabyte. 15, 16, 28, 67, 79, 92, 93, 171, 176

TCP Transmission Control Protocol. viii, x, 21–23, 29, 30, 32–36, 84, 95–97, 99, 154,

161, 179

UDP User Datagram Protocol. 21, 95, 96, 99

UI User Interface. x, 111, 124, 129, 147, 148

VLAN virtual LAN. 94, 99, 185

wget GNU Wget is an application that downloads web content. 37, 39, 40, 84

Xrootd A hierarchical storage system for Physics Data. v, ix, 31–35

234


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Problems of Scientific Data Management
	Networking for Big Science
	Contributions
	Organization

	Background
	Requirements for Big Scientific Data
	Problems with scientific data management
	Data Volume
	Inflexibility in Data Access
	Disorganization in Data Management
	End-to-end networking paradigm

	Current Scientific Data Management Systems
	CDNs as a solution
	Peer-to-Peer Networks as a solution
	Xrootd
	ESGF
	iRods

	Named Data Networking
	Architectural Overview
	Hierarchical naming
	Data-Centric Security
	Data Provanance
	Intelligent Data Plane and Forwarding Strategies
	In-network Caching


	NDN Prototyping for Scientific Data Management
	CMIP5 and the ESGF
	Data Access Log
	Request Locations
	Request Statistics
	Duplicate Requests
	Request Size Distribution
	Duplicate Request Inter-arrival Times
	Request Frequency Distribution

	Simulation Setup
	Evaluation
	Interest Aggregation
	Caching
	Where to Cache?
	How Long to Cache?

	A CDN-like Strategy for ESGF
	Summary


	Testbed Deployment
	Equipment
	Connectivity
	Software Stack
	Lessons Learned

	Naming Scientific Datasets
	Existing Naming in Scientific Communities
	Naming Data for NDN
	Climate Data Naming
	High Energy Particle Physics data naming
	Genomics data naming

	Translating Existing Names to NDN names
	General NDN Discussion
	NDN Naming Recommendations


	Name Discovery in NDN
	NDN-based Distributed Name Catalog
	Actors in the System
	System Components
	Protocols for a Scalable NDN Name Discovery System
	The data publication protocol
	Synchronizing the name catalogs
	The catalog updation protocol
	The Data Query Protocol

	Performance Evaluation of NDN-SCI
	Publication latency
	Name discovery latency
	Query latency for parallel requests
	Qualitative Evaluation


	The NDN-SCI Data Management Framework
	High Performance Data Retrieval Challenges
	Caching
	Multi-source Retrieval
	Retrieval from ``Best" Data Source
	Creating high-speed on-demand path

	Time-constraint challenges
	Bandwidth Reservation Protocol
	SCARI - A Strategic Caching and Reservation protocol for NDN
	Protocol Design
	Simulation Setup
	SCARI Evaluation
	A Deadline-Based Data Transfer Protocol: Design and Implementation
	Component Interaction
	Fulfilling Requests with Soft Deadlines
	Fulfilling Requests with Hard Deadlines
	Evaluation

	Usability Challenges
	Remote subsetting
	Staging Data
	Common Interface in the Network


	Conclusions
	Summary
	Findings
	Recommendations

	Bibliography
	Glossary

